WO2017055662A1 - Porta-filtros integrado y procedimiento de concentración y detección de microorganismos - Google Patents

Porta-filtros integrado y procedimiento de concentración y detección de microorganismos Download PDF

Info

Publication number
WO2017055662A1
WO2017055662A1 PCT/ES2016/070680 ES2016070680W WO2017055662A1 WO 2017055662 A1 WO2017055662 A1 WO 2017055662A1 ES 2016070680 W ES2016070680 W ES 2016070680W WO 2017055662 A1 WO2017055662 A1 WO 2017055662A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
filter holder
sample
reaction chamber
hole
Prior art date
Application number
PCT/ES2016/070680
Other languages
English (en)
French (fr)
Inventor
Óscar CASTILLO FERNÁNDEZ
Fco. Javier MUÑOZ PASCUAL
Naroa URIA MOLTÓ
Noemí PARRAGA NIÑO
Miquel SABRIA LEAL
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Institut D'investigació Germans Trias I Pujol
Centro De Investigación Biomédica En Red (Ciber)
Universitat Autónoma De Barcelona
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic), Institut D'investigació Germans Trias I Pujol, Centro De Investigación Biomédica En Red (Ciber), Universitat Autónoma De Barcelona filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Priority to EP16793933.9A priority Critical patent/EP3357997A1/en
Publication of WO2017055662A1 publication Critical patent/WO2017055662A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/02Membranes; Filters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor

Definitions

  • the present invention is part of the technical field of fluid filtration equipment. Additionally, it incorporates the analysis and detection of microorganisms in the same device.
  • an integrated filter holder which allows the concentration and detection of concentrated microorganisms by filtration to be carried out in the device, maintaining the tightness during concentration and detection.
  • the required detection limit of the control system is very low, that is, it corresponds to a detection of very few cells per volume, which leads to the need to process large amounts of sample.
  • Various types of filters are also known from the state of the art that additionally allow microorganisms to be detected by their growth and development in culture media.
  • a microbiological testing device of a liquid sample comprising a top piece and a bottom piece joined together with a membrane between them is described.
  • the reagent In the lower part is the reagent, and so that it acts on the microorganisms that remain in the membrane when filtering, the device is turned over. In this way the reagent crosses the membrane and passes to the top (which is now below).
  • This device and its technical characteristics are limited to the use of a flexible membrane.
  • the described device is intended for inclusion in a larger container in which the sample analysis is performed.
  • the present invention has an integrated filter holder that allows both the concentration of the microorganisms under study to be performed with the analytical measurement by affinity detection methods, using recognition proteins such as antibodies in so-called immunological methods. That is, in the filter holder a mechanical filtration of the sample is carried out to concentrate the biological material on the filtering membrane and a culture is carried out to, by methods based on the affinity of biomolecules, perform a microbiological detection.
  • the filter holder comprises an upper part, an intermediate part and a lower part, where said parts can be separable from one another in an embodiment in which the filter holder can be reused or can be fixedly connected to one another in one embodiment. in which the filter holder is single use.
  • the filter membrane is disposed inside and after filtering and culture the filter holder can be opened, the membrane removed and replaced with a new one.
  • the filter holder is disposable, all its parts are jointly joined together and when the filtering has been carried out and the culture is simply discarded and to be able to perform a new filtering a new filter holder is used .
  • the functions that the integrated filter holder of the present invention must fulfill are: -the filtration must be sealed and the fluid must pass completely through the filtration membrane to ensure that the retention percentage of the microorganism under study is as high as possible,
  • the membrane protein of the microorganism allows hybridization between the membrane protein of the microorganism and the recognition molecule (such as antibody, peptide, etc.) for which it comprises an incubation chamber,
  • the microorganisms in the sample are retained in the filtration membrane when mechanically filtered.
  • the filters can be in mesh structure such as PVDF (vinylidene polyfluoride) or Nitrocellulose, or micro perforated surface such as polycarbonate.
  • a pretreatment is applied to reduce the non-specific binding of the detection proteins, but without affecting their porosity.
  • affinity detection is carried out in the filter holder itself by introducing the corresponding reagents into a reaction chamber of the filter holder (which is immediately placed on the membrane) so that they react with the microorganisms retained in the membrane.
  • the membrane traps the bacteria (the microorganisms) inside or on its surface and on it the chemical recognition reaction that allows sensing occurs.
  • the system is designed to perform an indirect measurement, for example in the case of having performed an immunological detection, the concentration of antibodies in the filtering membrane is detected.
  • the measurement of the final concentration of the product obtained by the reaction is directly related to the concentration and presence of the microorganisms trapped in the filtration membrane. From the measurement of the antibodies, the amount of bacteria detected in the filter can be taken out and with an extrapolation of results, the contamination of the water body or corresponding system from which the sample has been extracted is calculated.
  • the detection reaction is a reaction catalyzed by a detection element conjugated with a recognition protein.
  • the result and efficiency of this reaction can be measured.
  • the result of this reaction is proportional to the presence in concentration of the detection element, which in turn is proportional to the amount of recognition protein that has reacted with the microorganisms that are present in the membrane. In this way the quantification is carried out by an indirect measure of the presence of microorganisms that are desired detect in the membrane.
  • the recognition elements have elements in their structure that react with a specific solution that allows their detection and quantification through the measurement of the by-product of this reaction.
  • the HRP enzyme horseradish peroxidase
  • the HRP enzyme can be conjugated to the structure of an antibody to determine the amount of antibody that has been bound to the microorganisms found in the membrane by the effect of the enzyme as an oxidant of a given substrate. . These changes are subsequently detected, by electrochemical or optical techniques.
  • the filter holder comprises an upper part through which the sample and reagents are introduced, an intermediate piece in which the reaction chamber is located, a lower part through which the sample is already filtered and a membrane of filtration that is housed between the intermediate piece and the lower part.
  • the upper, intermediate and lower parts are joined together in a removable or fixed way (removable in the case of reusable filter holders and fixed in the case of disposable filter holders).
  • reaction chamber which is arranged immediately above the filtering membrane.
  • reaction chamber In said reaction chamber is where the detection of the microorganisms retained in the filtration membrane occurs.
  • the filter holder can also comprise a diffuser that is arranged in the intermediate piece, above the reaction chamber.
  • the diffuser is a piece with a plurality of holes that allows the sample to be distributed homogeneously over the entire surface of the filtering membrane. The sample passes from an inlet hole of the upper part, through which it enters the filter holder, to the diffuser where it is distributed over its entire surface to pass to the filtering membrane, evenly over the entire surface of said membrane of filtered out.
  • the upper part may have one or more upper holes.
  • the amount of upper holes depends on the type of membrane and membrane entrapment. For hydrophobic perforated surface filters (such as polycarbonate), the microorganisms will be well retained and fixed on the surface of the filtering membrane and therefore two holes in the upper part will be necessary.
  • membranes in the form of a mesh with a 3D structure (such as nitrocellulose or PDVF).
  • the upper part preferably comprises with a single upper hole so that the different reagents that are used in the process since the microorganisms are retained inside the mesh.
  • An advantage associated with the filter holder of the present invention is that by comprising inside the reaction chamber itself arranged on the filtering membrane, the detection operation that is performed just after the filtering operation is performed inside the filter device itself without removing the filter membrane. In this way the membrane remains tight in the intermediate piece so that the crop cannot be contaminated.
  • the lower part comprises a lower hole intended for the sample to exit after having been filtered on the filtering membrane.
  • the at least one upper hole (in the upper part) and the lower hole (in the lower part) can be closed, for example by means of covers that are part of the filter holder itself for the realization of the detection protocol.
  • the filter holder In the embodiment in which the filter holder is reusable, it must be mounted with the filter membrane inside.
  • the lower part is arranged, on it the intermediate piece and the filtering membrane is placed there. Subsequently, the upper part is placed and all the pieces are joined, preferably by screws.
  • the filter holder comprises seals that are arranged between the upper part and the intermediate part and between the intermediate part and the lower part. These joints guarantee the tightness inside the filter holder.
  • the filtering membrane is a porous membrane and preferably has a pore size of 0.2 ⁇ to 0.45 ⁇ that allows the retention of sub-micromic particles as microorganisms or other biological samples as proteins.
  • the different treatments on the membranes are made by different coatings of porous membranes to guarantee the retention of bacteria (the microorganisms) in the membranes as well as to avoid the adhesion of other elements that can alter the result of said detection.
  • the filter holder of the present invention is simpler than other devices of the state of the art since it does not comprise additional elements inside it to accommodate the reagents during filtering.
  • the filter holder is designed to introduce the reagents into the same reaction chamber in which the sample is previously introduced. All reagents are introduced directly into the chamber.
  • This reaction chamber is arranged in the intermediate part of the filter holder on the filter membrane.
  • the reagent is introduced through the same top hole as the sample and follows the same path to the filtration membrane.
  • the reaction chamber of the filter holder must allow mixing of the reagents.
  • movements of the fluid are generated creating convections that guarantee the mixing of the sample and the reagents, as well as the cleaning of the recognition proteins. This cleaning and dragging process allows the removal of excess recognition protein that has not reacted with the microorganisms present in the membranes.
  • Figure 1a Shows a sectional view of the filter holder where the upper part, the intermediate piece and the lower part are shown in upper elevation.
  • Figure 1 b.- Shows a view of the upper part of the filter holder.
  • Figure 1c Shows a view of the intermediate part of the filter holder.
  • Figure 1d. Shows a view of the lower part of the filter holder.
  • Figure 2a. Shows a graph in which the retention results have been represented obtained in an E. coli retention study in a pump filtrate, a syringe filtrate and a filtrate with the integrated filter holder of the present invention.
  • Figure 2b Shows a graph in which the retention results obtained in a retention study of L. Pneumophila in a pump filtrate, a syringe filtrate and a filtrate with the integrated filter holder of the present invention have been represented. .
  • Figure 3. Shows a graph in which the absorbance obtained by means of an enzyme-linked immunosorbent analysis system (ELISA), using a specific antibody against E.coli, labeled with the HRP enzyme (horseradish peroxidases), measuring the amount of antibody in the sample relating the effect of the HRP enzyme on the TMB substrate (tetramethylbenzidine) for an unblocked nitrocellulose filtration membrane, a chemically blocked and an organically blocked.
  • ELISA enzyme-linked immunosorbent analysis system
  • Figure 4. It shows a calibration line that relates the detection capacity of the filter holder with the absorbance values at 480 nm after filtering different concentrations of E.coli. on blocked PVDF filtration membranes before filtering and after filtering with 1% Tween20.
  • Figure 5. Shows a calibration line that relates the absorbance at 480 nm measured after filtering different concentrations of Legionella on nitrocellulose filters blocked with 1% Tween20 with the integrated filter holder of the present invention.
  • Figure 6. Shows a graph in which the absorbance of water samples in the integrated filter holder of the invention has been represented with a nitrocellulose filtration membrane with a Tween20 block and specific antibodies for Legionella pneumophila conjugated with HRP and note that the results are different for the two samples allowing to distinguish a sample that contains Legionella pneumophila and one that does not.
  • the filter holder comprises an upper part with at least one upper hole for sample entry and a lower part with at least one lower hole for exiting the already filtered sample. It also comprises at least one filtration membrane that is preferably a filtered membrane is a porous membrane of polymers such as PVDF (vinylidene polyfluoride) polycarbonate, paper-derived materials such as nitrocellulose.
  • the pore size of the filtering membrane is between 0.1 ⁇ and 0.45 ⁇ . Preferably the pore size is 0.20 ⁇ .
  • detergents such as Tween®, organic molecules such as BSA (bovine serum albumin) and in general any substance used as a blocker in immuno-detection protocols can be used.
  • the filtering membrane can be for example PVDF (vinylidene polyfluoride), nitrocellulose, fiberglass and polycarbonate.
  • the most important technical feature of the filter holder of the present invention is that it comprises an intermediate part, arranged between the upper part and the lower part and attached thereto, and which is intended to house the filtering membrane and a reaction chamber.
  • Said reaction chamber is a hollow space, arranged above the filtration membrane and which is intended to receive a solution and a reagent during the culture process of the microorganism trapped in the filtration membrane.
  • the reaction chamber is connected to the upper hole for entering the sample and the solution and the reagent when appropriate.
  • said reaction chamber that is disposed on the filtering membrane has a volume of less than 3 ml and more preferably between 1 ml and 2 ml.
  • the upper part comprises two upper holes that They flow into the reaction chamber.
  • the upper part comprises two upper holes because the bacteria remain trapped on the membrane surface. In this way the reagents enter and exit from the top of the system.
  • the cleaning solution is a solution of PBS and Tween®, while the reactive solutions are usually hydrogen peroxide solutions.
  • one of the upper holes is intended for the introduction of the sample, the solution and the reagent into the reaction chamber.
  • the other top hole is intended for the extraction of the solution and reagent that have previously been introduced into the filter holder.
  • the filter holder comprises a cover associated with each of the holes that allows closing the space inside the filter holder. That is, when the covers are closed, the filter membrane and the reaction chamber (with the solution or reagent as appropriate) are kept isolated during detection to avoid possible contamination of the reagent. In addition, it is necessary to close at least the lower hole to prevent the solution or reagent that is introduced through one of the upper holes from passing through the filtering membrane and exiting through said lower hole.
  • the filter holder is reusable.
  • the filter holder pieces can be separated to allow the user to remove the filter membrane when it has already been used for filtration and culture. Simply replace this filter membrane with a new one to reuse the filter holder.
  • the upper part, the intermediate part and the lower part are joined together with through screws. These screws allow to keep the pieces together during the concentration and detection procedure, and then separate them to change the filtering membrane.
  • the non-specific binding of the reagents to the filtering membrane is avoided by pretreatment of said filtering membrane and a post-hybridization treatment with known substances of very low nonspecific reactivity.
  • the membrane pretreatment is carried out with the same blocking components that can be used in washes such as BSA, Tween®, Bloking®, etc. Said pretreatment is carried out by absorption of low reactivity substances. non-specific in the structure of the filtering membrane or its surface (depending on the substance).
  • the treatment of the post-hybridization filtration membrane is carried out by the slight movement of a solution on the filter for cleaning and elimination of the excess antibody.
  • the seal in the filter holder preferably comprises a first seal between the upper part and the intermediate piece and a second seal between the intermediate piece and the lower part.
  • the filter holder can be single use in which case the upper part, the intermediate part and the lower part are joined together in solidarity. In this case, the user after using the filter holder discards it directly and if he wants to perform a new filtering and cultivation he uses a new filter holder. It is made of Methacrylate®, Nylon® or thermoplastics.
  • the filter holder may also comprise a diffuser arranged in the intermediate piece. The diffuser comprises a plurality of holes and is configured to distribute the inlet flow from the upper hole to the filter membrane.
  • the inlet flow in the filter holder throughout the procedure changes as the sample under study is first introduced, then a solution and then a reagent.
  • the outflow is each of them as appropriate.
  • the proposed procedure includes the following stages:
  • the filter holder can have one or two rear holes (2) in the upper part (1).
  • the method for the concentration and detection of microorganisms in the filter holder of the present invention comprises the following steps:
  • the second upper hole (2) remains closed, so that the microorganisms in the sample are retained in the filtration membrane when passing through the membrane and the already filtered sample exits through the lower hole (4) of the lower part (3),
  • the method for the concentration and detection of microorganisms in the filter holder of the present invention comprises the following steps :
  • the final solution as a result of the last reaction is extracted and analyzed by electrochemical or colorimetric methods.
  • the introduction of the sample into the filter holder is carried out by means of a peristaltic pump that allows the sample to be forced through the filtration membrane.
  • a peristaltic pump that allows the sample to be forced through the filtration membrane.
  • different flow rates and pressures of the sample are used during the filtration process, to have optimal filtration results.
  • additional filtration steps can also be included to remove solid materials in suspension, by means of nitrocellulose membranes, PVDF (vinylidene polyfluoride) or pore polycarbonate of 5 to 20 ⁇ depending on the contamination.
  • the filter holder is connected through the upper hole to the sample container by means of a peristaltic pump that introduces the sample into the filter holder with adequate flow and pressure.
  • the sample enters the filter holder under said flow and pressure conditions and is forced to pass through the filtration membrane.
  • the lower hole, arranged in the lower part, is intended for the passage of the already filtered sample (it allows the output of said already filtered sample from the filter holder.
  • the filter holder of the present invention is capable of filtering up to 700 ml / h and a flow rate of 1.5 ml / sec.
  • the filtering membrane found in the filter holder depends on the microorganism that you want to study. Depending on the microorganism under study, the membrane is prepared to trap it during the filtration of the sample. Once the sample has been completely filtered and the target microorganisms have been trapped in the membrane there is a stage of closing the lower hole. Subsequently, the solution must be introduced through the upper hole through which the sample was previously introduced. As the bottom hole is closed the solution is trapped in the reaction chamber on the filtering membrane. When the solution has been introduced, the upper hole must be closed and the filter holder closed for a certain time to allow interaction between the solution and the microorganisms in the filtering membrane.
  • the solution After a predetermined time, preferably between 30 and 50 minutes, the solution must be extracted. This extraction can be carried out through an upper hole (in the exemplary embodiment in which the filter holder comprises more than one upper hole) or It can be done through the lower hole.
  • a washing step can be carried out to remove the excess of the solution that has remained inside the filter holder.
  • this washing can be done with PBS and Tween® as previously described.
  • the lower hole must be closed again if it has been opened in the previous stage and a reagent is introduced through the upper hole.
  • the upper hole must be closed so that the reagent that remains in the reaction chamber can react with the microorganism with the solution obtained in the previous stages.
  • the reagent is kept inside the filter holder for a time not exceeding 20 minutes.
  • the reagent After the predetermined time, the reagent must be removed, through the lower hole or through the other upper hole to analyze the solution obtained.
  • an indirect measurement of the microorganisms that are present in the sample is obtained from the antibodies (in the case of immunological detection) that have appeared. Electrochemical measurements are preferably used for this analysis.
  • a leak test and filtration efficiency of the integrated filter of the present invention has been performed by using Escherichia coli and Legionella pneumophila as target microorganisms (microorganism under study).
  • Escherichia coli and Legionella pneumophila as target microorganisms (microorganism under study).
  • 3 solutions of different concentration were prepared: 1e6, 1 e4 and 1 e2 ufe in 50 ml_ of water, and retention efficiency ratios were studied depending on the amount of bacteria present in the sample. This efficiency was also compared with various commercial filtration systems and membranes of different materials.
  • the first results have been obtained using a commercial SWINNEX® system for 47 mm membranes.
  • the second results have been obtained using a commercial SWINNEX® system for 25 mm membranes and an encapsulated and sealed filtration system.
  • the third results have been obtained using the filter holder of the invention with 25 mm membranes.
  • the filtering method with the filter holder of the invention is also carried out with a syringe.
  • the best results of commercial systems correspond to the membranes that are sold encapsulated, without threads and heat-sealed.
  • the filter holder of the present invention allows to achieve the same level of efficiency.
  • FIG. 3 shows a graph in which the absorbance obtained by means of an enzyme-linked immunosorbent analysis system (ELISA), using a specific antibody against E .coli, labeled with the HRP enzyme, measuring the amount of antibody in the sample relating the effect of the HRP enzyme on the TMB substrate.
  • the line with squares is the result obtained using an unblocked nitrocellulose filter.
  • Lines with triangles and circles represent the absorbance results obtained using a chemically blocked nitrocellulose filter (Tween20 line with circles) and another organically locked (BSA line with triangles).
  • the graph shows how to use these blockers the signal obtained is much lower than in the case of the crude membrane minimizing the specific binding between the antibody and the nitrocellulose membrane.
  • the membrane material used for the blocking study were 0.25 cm2 nitrocellulose discs with a pore size of 0.2 microns.
  • Tween®20 and albumin (BSA) were used as an example of both.
  • BSA albumin
  • HRP peroxidase enzyme
  • two filtration membranes were incubated in two tubes containing, in one case 500 ⁇ _ of Tween® 20 and in the other 500 ⁇ _ of BSA, both in a final concentration of 1% in phosphate buffered saline. Additionally, a third filter was introduced into a tube with 500 ⁇ _ phosphate buffered saline without any type of blocking compound as unblocked membrane blank.
  • TMB enzyme substrate 100 ⁇ was added per filter and a kinetic measurement was performed on an ELISA plate detector for 20 min by measuring absorbance at 620 nm to obtain a reaction kinetics between the HRP enzyme (which is bound to the antibody) and the substrate (TMB).
  • Figure 3 shows a much greater absorbance for the nitrocellulose filter without blocking (NC) indicating a much higher antibody binding in this filter. Additionally, between the two chemical and organic blockages, there are no major differences, so both can be used with good results for the minimization of non-specific binding.
  • Figure 3 shows a study of the non-specific binding of antibody to nitrocellulose membranes treated by detergents and proteins, and untreated membranes. The graph shows the results obtained by colorimetric measurements, using HRP and TMB solution as the reaction substrate. In this graph it can be seen how the treatment efficiently reduces the nonspecific absorption of the antibody in the membrane.
  • E.coli 25 mm diameter polycarbonate membranes blocked with 1% PBS-Tw20 have been used before and after. Different suspensions of E.coli were filtered at a flow rate of 0.5 mL / s at a final concentration of 10 2 , 10 3 , 10 4 10 5 , 10 6 total cells in 100 ml_ making dilutions of a bacterial culture of 10 8 cells
  • Figure 5 shows the calibration line that relates the absorbance at 480 nm measured after filtering different concentrations of Legionella on nitrocellulose filters blocked with 1% Tween®20.
  • the two samples to be analyzed were water from two different areas of large industrial facilities, one with frequent presence of Legionella and another with absence.
  • the membranes used for filtration were nitrocellulose discs of 0.2 micron pore size and 26 mm in diameter, blocked with Tween®20 at a concentration of 1% to avoid nonspecific binding between the antibody and the membrane.
  • Tween®20 a concentration of 1% to avoid nonspecific binding between the antibody and the membrane.
  • Figure 6 shows an absorbance study of real water samples from two sanitary water installations from different changing rooms of an industrial plant in Tarragona, two samples were taken, M1 from an installation that is usually positive in Legionella pneumophila , and M2 of an installation without the presence of the bacterium with the filter holder of the present invention and antibodies specific for Legionella pneumophila.
  • the results obtained have been represented by colorimetric measurements, using HRP and TMB solution as the reaction substrate. It can be seen as sample 1, from a system in which the bacterium usually appears, has a significantly higher signal than sample 2.

Abstract

Porta-filtros integrado que permite realizar la concentración de un microorganismo diana de un fluido mediante filtrado de dicho fluido y un cultivo de dicho mecanismo diana para permitir su detección. El porta-filtros comprende una pieza superior (1), una pieza intermedia (5) y una pieza inferior (4) unidas entre sí. En la pieza intermedia (5) se dispone una membrana de filtrado y sobre ésta una cámara de reacción (6)en la que se realiza el cultivo del microorganismo atrapado en la membrana de filtrado al filtrar la muestra. La membrana de filtrado se mantiene en el interior del dispositivo durante todo el procedimiento de concentración y detección. Es también un objeto de la invención el procedimiento de concentración y detección de microorganismos en un porta-filtros como el descrito.

Description

PORTA-FILTROS INTEGRADO Y PROCEDIMIENTO DE CONCENTRACIÓN Y DETECCIÓN DE MICROORGANISMOS
D E S C R I P C I Ó N
OBJETO DE LA INVENCIÓN
La presente invención se enmarca dentro del campo técnico de los equipos de filtración para fluidos. Adicionalmente incorpora el análisis y la detección de microorganismos en el mismo dispositivo.
Más concretamente se describe un porta-filtros integrado que permite realizar en el propio dispositivo tanto la concentración como la detección de los microorganismos concentrados mediante filtración manteniendo la estanqueidad durante la concentración y la detección.
ANTECEDENTES DE LA INVENCIÓN
Existe una necesidad clara de generar nuevos dispositivos para la detección y control de ciertos microorganismos en diferentes entornos. El principal requerimiento del mercado consiste en que los nuevos sistemas que se desarrollen deben ser sencillos, portátiles y de bajo coste de fabricación y bajo coste por análisis, además de permitir una detección rápida (del orden de horas) con el objetivo de tener un control eficiente, mediante la monitorización de la proliferación del microorganismo diana.
En los últimos años han aparecido varios sistemas de detección basados en métodos inmunológicos sobre papel. El papel utilizado normalmente suele ser celulosa u otros derivados. Estos dispositivos se pueden clasificar por el modo de procesado de muestra en: sistemas de flujo lateral o sistemas estáticos que utilizan procesos de inmersión del papel en diferentes reactivos. También se conocen sistemas que emulan una matriz de pocilios que se pueden utilizar directamente en un protocolo análisis de inmuno-absorción ligado a enzimas, mediante imprimaciones de sustancias hidrofóbicas para delimitar las zonas de actuación. En general, todos estos sistemas utilizan la capacidad absorbente de la celulosa para contener los reactivos o las biomoléculas responsables de la detección, en el interior del papel. De esta manera, se reducen los costes y los volúmenes de reactivos. La mayoría de estos sistemas se suelen suministrar con los reactivos pre-cargados. Normalmente, el límite de detección requerido del sistema de control es muy bajo, es decir se corresponde con una detección de muy pocas células por volumen, lo que lleva a la necesidad de procesar grandes cantidades de muestra. Con el fin de evitar las limitaciones de detección de los sistemas sensores, en la relación entre su sensibilidad y volumen de muestra procesado, es necesario realizar una concentración de la muestra previa a la medida. El método más extendido para realizar esta concentración es la filtración mecánica de la muestra, debido a su bajo coste, eficiencia y velocidad.
En el ámbito de la filtración existen diversos sistemas, materiales y tipos de filtrado conocidos que permiten la concentración de bacterias. En esencia se trata de una superficie o estructura en tres dimensiones que permite el bloqueo de diferentes elementos contenidos en la solución liquida inicial. Existen sistemas de encapsulado que permiten la incubación de bacterias y la filtración de líquidos en un solo sistema.
Del estado de la técnica se conocen también diversos tipos de filtros que adicionalmente permiten detectar microorganismos por su crecimiento y desarrollo en medios de cultivo. Por ejemplo, en el documento W09947637 se describe un dispositivo de testeo microbiológico de una muestra líquida que comprende una pieza superior y una pieza inferior unidas entre sí con una membrana entre ellas. En la pieza inferior se encuentra el reactivo, y para que actúe sobre los microorganismos que quedan en la membrana al hacer el filtrado, el dispositivo se voltea. De esta forma el reactivo atraviesa la membrana y pasa hasta la parte superior (que ahora queda abajo). Este dispositivo y sus características técnicas están limitados al uso de una membrana flexible. El dispositivo descrito está destinado a su inclusión en un recipiente de mayor tamaño en el que se realiza el análisis de la muestra.
Se conocen también el documento EP0832181 que describe diferentes soluciones para evitar que la membrana del filtro se contamine con otros microorganismos que se quieren detectar. Surge por tanto la necesidad de desarrollar sistemas de detección de microorganismos en sistemas de refrigeración por agua, desde aires acondicionados y a las torres de refrigeración de cualquier escala, que potencialmente puedan generar un brote de Legionella. En estos sistemas de refrigeración, gracias a las temperaturas del agua se produce una proliferación de microorganismos. En el caso de Legionella, es preocupante porque esta puede pervivir en aerosol y ser liberada al ambiente y poder afectar a la población generando neumonía. Asimismo también existe actualmente una necesidad de este tipo de tecnología en otros sectores, como el de la alimentación, el ambiental y el de salud. DESCRIPCIÓN DE LA INVENCIÓN
La presente invención presenta un porta-filtros integrado que permite realizar en un mismo dispositivo tanto la concentración de los microorganismos objeto a estudio con la medida analítica por métodos de detección por afinidad, utilizando proteínas de reconocimiento como por ejemplo anticuerpos en los llamados métodos inmunológicos. Es decir, en el porta-filtros se realiza una filtración mecánica de la muestra para concentrar el material biológico sobre la membrana de filtrado y se realiza un cultivo para, mediante métodos basados en la afinidad de biomoléculas, realizar una detección microbiológica.
El porta-filtros comprende una pieza superior, una pieza intermedia y una pieza inferior, donde dichas piezas pueden ser separables entre sí en una realización en la que el porta-filtros se puede reutilizar o pueden estar unidos entre sí de forma fija en una realización en la que el porta-filtros es de un solo uso.
En el ejemplo de realización en el que el porta-filtros es reutilizable, la membrana de filtrado está dispuesta en su interior y después de realizar el filtrado y el cultivo se puede abrir el porta-filtros, retirar la membrana y sustituirla por una nueva. En el ejemplo de realización en el que el porta-filtros es desechable, todas sus piezas están unidas solidariamente entre sí y cuando se ha realizado el filtrado y el cultivo simplemente se desecha y para poder realizar un nuevo filtrado se emplea un nuevo porta-filtros.
Las funciones que debe cumplir el porta-filtros integrado de la presente invención son: -la filtración debe ser estanca y el fluido debe pasar completamente por la membrana de filtración para garantizar que el porcentaje de retención del microorganismo a estudio sea lo más alto posible,
-permitir la hibridación entre la proteína de membrana del microorganismo y la molécula de reconocimiento (como por ejemplo anticuerpo, péptido, etc ..) para lo cual comprende una cámara de incubación,
-permitir el intercambio de diferentes soluciones sin la extracción de la membrana de filtración para poder llevar a cabo diferentes fases de la detección por afinidad
En la membrana de filtración quedan retenidos los microorganismos que hay en la muestra al filtrarla mecánicamente. Los filtros pueden ser en estructura de malla como el PVDF (polifluoruro de vinilideno) o Nitrocelulosa, o superficie micro perforada como el policarbonato. Anteriormente a la disposición de las membranas en el porta-filtro a estas se les aplica un tratamiento previo para reducir la unión inespecífica de las proteínas de detección, pero sin afectar a su porosidad. Posteriormente se realiza en el propio porta- filtros la detección por afinidad introduciendo en una cámara de reacción del porta-filtros (que está dispuesta inmediatamente sobre la membrana) los reactivos correspondientes para que reaccionen con los microorganismos retenidos en la membrana. Así pues la membrana atrapa las bacterias (los microorganismos) en su interior o en su superficie y sobre ella se produce la reacción química de reconocimiento que permite el sensado. Preferentemente el sistema está diseñado para realizar una medida indirecta, por ejemplo en el caso de haber realizado una detección inmunológica, se detecta la concentración de anticuerpos que hay en la membrana de filtrado. La medida de la concentración final del producto obtenido por la reacción se relaciona directamente con la concentración y presencia de los microorganismos atrapados en la membrana de filtrado. A partir de la medida de los anticuerpos se puede sacar la cantidad de bacterias detectadas en el filtro y con una extrapolación de resultados se calcula la contaminación de la masa de agua o sistema correspondiente del que se ha extraído la muestra.
La reacción de detección es una reacción catalizada por un elemento de detección conjugado con una proteína de reconocimiento. El resultado y la eficiencia de esta reacción pueden ser medidos. El resultado de esta reacción es proporcional a la presencia en concentración del elemento de detección, que a su vez es proporcional a la cantidad de proteína de reconocimiento que ha reaccionado con los microorganismos que están presentes en la membrana. De esta manera la cuantificación se realiza mediante una medida indirecta de la presencia de microorganismos que se desean detectar en la membrana.
Los elementos de reconocimiento tienen conjugados en su estructura elementos que reaccionan con una solución concreta que permite su detección y cuantificación a través de la medida del subproducto de esta reacción. Por ejemplo, se pueden conjugar la enzima HRP (horseradish peroxidase) a la estructura de un anticuerpo para determinar la cantidad de anticuerpo que se ha unido a los microorganismos que se encuentran en la membrana por el efecto de la enzima como oxidante de un sustrato dado. Estos cambios son detectados posteriormente, mediante técnicas electroquímicas u ópticas.
El porta-filtros comprende una pieza superior a través de la que se introducen la muestra y los reactivos, una pieza intermedia en la que se encuentra la cámara de reacción, una pieza inferior a través de la que la muestra sale ya filtrada y una membrana de filtración que se aloja entre la pieza intermedia y la pieza inferior. Las piezas superior, intermedia e inferior están unidas entre sí de forma removible o de forma fija (removible en el caso de porta-filtros reutilizables y fija en el caso de porta-filtros desechables).
En la pieza intermedia se encuentra una cámara de reacción, que está dispuesta inmediatamente por encima de la membrana de filtrado. En dicha cámara de reacción es donde se produce la detección de los microorganismos retenidos en la membrana de filtración.
En un ejemplo de realización el porta-filtros puede comprender también un difusor que está dispuesto en la pieza intermedia, por encima de la cámara de reacción. El difusor es una pieza con una pluralidad de orificios que permite distribuir la muestra homogéneamente en toda la superficie de la membrana de filtrado. La muestra pasa desde un orificio de entrada de la pieza superior, por el que entra en el porta-filtros, hasta el difusor donde se distribuye por toda su superficie para pasar hasta la membrana de filtrado, uniformemente por toda la superficie de dicha membrana de filtrado.
La pieza superior puede tener uno o más orificios superiores. La cantidad de orificios superiores depende del tipo de membrana y atrapamiento en la membrana. Para filtros hidrofóbicos de superficie perforada (como por ejemplo policarbonato) los microorganismos quedarán bien retenidos y fijados en la superficie de la membrana de filtrado y por tanto serán necesarios dos orificios en la pieza superior. Para membranas en forma de mallado, con una estructura 3D (como por ejemplo nitrocelulosa o PDVF). La pieza superior comprende preferentemente con un solo orificio superior de manera que los diferentes reactivos que se utilizan en el proceso ya que los microorganismos se quedan retenidos en el interior del mallado.
Una ventaja asociada al porta-filtros de la presente invención es que al comprender en el interior la propia cámara de reacción dispuesta sobre la membrana de filtrado, la operación de detección que se realiza justo después de la operación de filtrado se realiza en el interior del propio dispositivo sin extraer la membrana de filtrado. De esta forma la membrana se mantiene estanca en la pieza intermedia de forma que el cultivo no se puede contaminar.
La pieza inferior comprende un orificio inferior destinado a la salida de la muestra después de haber sido filtrada en la membrana de filtrado.
El al menos un orificio superior (en la pieza superior) y el orificio inferior (en la pieza inferior) se pueden cerrar, por ejemplo mediante unas tapas que forman parte del propio porta-filtros para la realización del protocolo de detección. En la realización en la que el porta-filtros es reutilizable hay que montarlo con la membrana de filtrado en su interior. Para ello se dispone la pieza inferior, sobre ella la pieza intermedia y en ella se coloca la membrana de filtrado. Posteriormente se coloca pieza superior y se unen todas las piezas, preferentemente mediante tornillos. También preferentemente el porta-filtros comprende unas juntas que quedan dispuestas entre la pieza superior y la pieza intermedia y entre la pieza intermedia y la pieza inferior. Estas juntas garantizan la estanqueidad en el interior del porta-filtros.
La membrana de filtrado es una membrana porosa y preferentemente tiene un tamaño de poro de 0,2 μηι a 0,45μηι que permite la retención de partículas sub-micrómicas como microorganismos u otras muestras biológicas como proteínas. Los diferentes tratamientos sobre las membranas se hacen mediante diferentes recubrimientos de membranas porosas para garantizar la retención de bacterias (los microorganismos) en las membranas así como evitar la adhesión de otros elementos que pueden alterar el resultado de dicha detección. El porta-filtros de la presente invención es más sencillo que otros dispositivos del estado de la técnica ya que no comprende elementos adicionales en su interior para alojar los reactivos durante el filtrado. El porta-filtros está diseñado para introducir los reactivos en la misma cámara de reacción en la que previamente se introduce la muestra. Todos los reactivos se introducen directamente en la cámara. Esta cámara de reacción está dispuesta en la pieza intermedia del porta-filtros sobre la membrana de filtrado. El reactivo se introduce por el mismo orificio superior que la muestra y sigue el mismo camino hasta la membrana de filtrado. La cámara de reacción del porta-filtros tiene que permitir la mezcla de los reactivos. Utilizando la bomba peristáltica para introducir la muestra y los reactivos en dicha cámara de reacción se generan movimientos del fluido creando convecciones que garantizan la mezcla de la muestra y los reactivos, así como la limpieza de las proteínas de reconocimiento. Este proceso de limpieza y arrastre permite la eliminación de exceso de proteína de reconocimiento que no ha reaccionado con los microorganismos presentes en las membranas.
DESCRIPCIÓN DE LOS DIBUJOS Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, de acuerdo con un ejemplo preferente de realización práctica de la misma, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
Figura 1a.- Muestra una vista en sección del porta-filtros donde se aprecian la pieza superior, la pieza intermedia y la pieza inferior en alzado superior.
Figura 1 b.- Muestra una vista de la pieza superior del porta-filtros.
Figura 1c- Muestra una vista de la pieza intermedia del porta-filtros. Figura 1d.- Muestra una vista de la pieza inferior del porta-filtros. Figura 2a.- Muestra un gráfico en el que se han representado los resultados de retención obtenidos en un estudio de retención de E. Coli en un filtrado con bomba, un filtrado con jeringuilla y un filtrado con el porta-filtros integrado de la presente invención.
Figura 2b.- Muestra un gráfico en el que se han representado los resultados de retención obtenidos en un estudio de retención de L. Pneumophila en un filtrado con bomba, un filtrado con jeringuilla y un filtrado con el porta-filtros integrado de la presente invención.
Figura 3.- Muestra una gráfica en la que se han representado la absorbancia obtenida mediante un sistema de análisis de inmunoabsorción ligado a enzimas (ELISA), utilizando un anticuerpo específico contra E.coli, marcado con el enzima HRP (horseradish peroxidasé), midiendo la cantidad de anticuerpo en la muestra relacionando el efecto del enzima HRP sobre el sustrato TMB (tetramethylbenzidine) para una membrana de filtrado de nitrocelulosa sin bloquear, una bloqueado químicamente y una bloqueada orgánicamente.
Figura 4.- Muestra una recta de calibrado que relaciona la capacidad de detección del porta-filtros con los valores de absorbancia a 480 nm después de filtrar diferentes concentraciones de E.coli. sobre membranas de filtrado de PVDF bloqueadas antes del filtrado y después del filtrado con Tween20 al 1 %.
Figura 5.- Muestra una recta de calibrado que relaciona la absorbancia a 480 nm medida tras filtrar diferentes concentraciones de Legionella sobre filtros de nitrocelulosa bloqueados con Tween20 al 1 % con el porta-filtros integrado de la presente invención.
Figura 6.- Muestra una gráfica en la que se ha representado la absorbancia de muestras de agua en el porta-filtros integrado de la invención con membrana de filtrado de nitrocelulosa con un bloqueo de Tween20 y anticuerpos específicos para Legionella pneumophila conjugado con HRP y se observa que los resultados son diferentes para las dos muestras permitiendo distinguir una muestra que contiene Legionella pneumophila y una que no.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN A continuación se describe, con ayuda de las figuras 1 a 6, unos ejemplos de realización de la invención.
Se describe un porta-filtros integrado que permite realizar el filtrado y el cultivo de una muestra. Permite realizar en el propio dispositivo la concentración de un microorganismo a estudio (gracias a la filtración de la muestra) y el cultivo de dicho microorganismo para detección de éste por ejemplo mediante detección inmunológica. La gran ventaja de la presente invención es que permite realizar las dos operaciones sin tener que manipular la membrana garantizando una correcta detección. El porta-filtros comprende una pieza superior con al menos un orificio superior para entrada de la muestra y una pieza inferior con al menos un orificio inferior para salida de la muestra ya filtrada. Asimismo comprende al menos una membrana de filtrado que preferentemente es una membrana filtrado es una membrana porosa ya sea de polímeros como PVDF (polifluoruro de vinilideno) policarbonato, materiales derivados del papel como la nitrocelulosa. Preferentemente el tamaño de poro de la membrana de filtrado es de entre 0,1 Ομηι y 0,45μηι. Preferentemente el tamaño de poro es de 0,20μηι. Como sustancias bloqueantes se pueden emplear detergentes como el Tween®, moléculas orgánicas como el BSA (albúmina sérica bovina) y en general cualquier sustancia utilizada como bloqueante en protocolos de inmuno-detección. La membrana de filtrado puede ser por ejemplo de PVDF (polifluoruro de vinilideno), nitrocelulosa, fibra de vidrio y policarbonato.
La característica técnica más importante del porta-filtros de la presente invención es que comprende una pieza intermedia, dispuesta entre la pieza superior y la pieza inferior y unida a ellas, y que está destinada a alojar la membrana de filtrado y una cámara de reacción. Dicha cámara de reacción es un espacio hueco, dispuesto por encima de la membrana de filtrado y que está destinado a recibir una solución y un reactivo durante el proceso de cultivo del microorganismo atrapado en la membrana de filtrado. La cámara de reacción está conectada al orificio superior para entrada de la muestra y de la solución y el reactivo cuando corresponde. Preferentemente dicha cámara de reacción que está dispuesta sobre la membrana de filtrado tiene un volumen de menos de 3 mi y más preferentemente de entre 1 mi y 2 mi. En un ejemplo de realización la pieza superior comprende dos orificios superiores que desembocan en la cámara de reacción. En el caso de membranas de filtrado de policarbonato la pieza superior comprende dos orificios superiores debido a que las bacterias se quedan atrapadas en la superficie de la membrana. De esta manera los reactivos entran y salen por la parte superior del sistema. La solución limpiadora es una solución de PBS y Tween®, mientras que las soluciones reactivas suelen ser disoluciones de peróxido de hidrógeno. En este ejemplo de realización uno de los orificios superiores está destinado a la introducción de la muestra, la solución y el reactivo en la cámara de reacción. El otro orificio superior está destinado a la extracción de la solución y el reactivo que previamente se han introducido en el porta-filtros.
También preferentemente el porta-filtros comprende una tapa asociada a cada uno de los orificios que permite cerrar el espacio del interior del porta-filtros. Es decir, al cerrar las tapas la membrana de filtrado y la cámara de reacción (con la solución o el reactivo según corresponda) se mantienen aislados durante la detección para evitar la posible contaminación del reactivo. Además es necesario cerrar al menos el orificio inferior para evitar que la solución o el reactivo que se introducen por uno de los orificios superiores atraviesen la membrana de filtrado y salgan por dicho orificio inferior.
En un ejemplo de realización el porta-filtros es reutilizable. En esta realización las piezas del porta-filtros se pueden separar para permitir al usuario la retirada de la membrana de filtrado cuando ya se ha utilizado para un filtrado y un cultivo. Simplemente hay que sustituir esta membrana de filtrado por una nueva para volver a utilizar el porta-filtros. Preferentemente la pieza superior, la pieza intermedia y la pieza inferior están unidas entre sí con unos tornillos pasantes. Estos tornillos permiten mantener las piezas unidas durante el procedimiento de concentración y detección, y separarlas posteriormente para cambiar la membrana de filtrado.
La unión inespecífica de los reactivos a la membrana de filtrado se evita mediante tratamiento previo de dicha membrana de filtrado y un tratamiento posterior a la hibridación con sustancias conocidas de reactividad inespecífica muy baja. Preferentemente el tratamiento previo de la membrana se realiza con los mismos componentes bloqueantes que se pueden utilizar en lavados como por ejemplo BSA, Tween®, Bloking®, etc. Dicho tratamiento previo se realiza por absorción de las sustancias de baja reactividad inespecífica en la estructura de la membrana de filtrado o en su superficie (dependiendo de la sustancia). El tratamiento de la membrana de filtrado posterior a la hibridación se realiza mediante el ligero movimiento de una solución sobre el filtro para la limpieza y eliminación del sobrante de anticuerpo.
Para garantizar la estanqueidad en el porta-filtros preferentemente este comprende una primera junta de estanqueidad entre la pieza superior y la pieza intermedia y una segunda junta de estanqueidad entre la pieza intermedia y la pieza inferior.
En otro ejemplo de realización el porta-filtros puede ser de un solo uso en cuyo caso la pieza superior, la pieza intermedia y la pieza inferior están unidas entre sí solidariamente. En este caso el usuario después de utilizar el porta-filtros lo desecha directamente y si quiere realizar un nuevo filtrado y cultivo utiliza un nuevo porta-filtros. Está fabricado en Metacrlilato®, Nylon® o termoplásticos. El porta-filtros puede comprender también un difusor dispuesto en la pieza intermedia. El difusor comprende una pluralidad de orificios y está configurado para distribuir el flujo de entrada desde el orificio superior hacia la membrana de filtrado.
Es también un objeto de la presente invención un procedimiento de concentración y detección de microorganismos de una muestra en un porta-filtros integrado como el descrito previamente.
El flujo de entrada en el porta-filtros a lo largo del procedimiento va cambiando ya que primero se introduce la muestra a estudio, luego una solución y posteriormente un reactivo. El flujo de salida es cada uno de ellos según corresponda.
El procedimiento propuesto comprende las siguientes etapas:
-introducir la muestra a través de la pieza superior (1) haciendo pasar la muestra a través de la membrana de filtrado dispuesta en la pieza intermedia (5) de manera que las partículas a estudio queden retenidas en la membrana de filtrado,
-extraer la muestra ya filtrada a través de la pieza inferior (3),
-introducir una solución a través de la pieza superior (1) hasta la cámara de reacción (6) y mantenerla durante un tiempo predeterminado en la cámara de reacción (6) hasta que haya reaccionado con las partículas retenidas en la membrana de filtrado,
-extraer la solución a través de la pieza inferior (3); -introducir un reactivo a través de la pieza superior (1) hasta la cámara de reacción (6) y mantenerlo en dicha cámara de reacción (6) hasta que haya reaccionado con la mezcla de la solución y las partículas retenidas en la membrana de filtrado,
-extraer el reactivo a través de la pieza inferior (3).
Como se ha descrito previamente, el porta-filtros puede tener uno o dos orificios supriores (2) en la pieza superior (1). En el ejemplo de realización en el que el porta-filtros comprende dos orificios superiores en la pieza superior, el procedimiento para la concentración y la detección de microorganismos en el porta-filtros de la presente invención comprende las siguientes etapas:
-introducir la muestra por al menos un orificio superior (2) de la pieza superior (1), el segundo orificio superior (2) permanece cerrado, de forma que los microorganismos que hay en la muestra quedan retenidos en la membrana de filtrado al pasar por la membrana y la muestra ya filtrada sale por el orificio inferior (4) de la pieza inferior (3),
-cerrar el orificio inferior (4),
-introducir una solución que comprende una proteína de reconocimiento a través del otro orificio superior (2) mientras el orificio superior por el que se ha introducido la muestra permanece abierto para permitir el llenado de la cámara de reacción (6),
-cerrar los orificios superiores (1 , 2) para mantener la solución en la cámara de reacción, -mantener el porta-filtros cerrado un tiempo predeterminado hasta que la solución reaccione con los microorganismos que hay atrapados en la membrana de filtrado, -abrir un orificio superior (2) y retirar la solución introducida,
-aplicar un reactivo de lavado a través de un orificio superior (2) manteniendo el otro orificio superior (2) abierto y el orificio inferior (4) cerrado para arrastrar la proteína de reconocimiento que no ha reaccionado con el microorganismo y permanece libre en la solución,
-introducir reactivo que contiene sustrato enzimático que reacciona con la proteína de reconocimiento, a través de un orificio superior (2) con el otro orificio superior abierto (2) y el orificio inferior cerrado (4), de forma que el reactivo queda en la cámara de reacción (6),
-mantener un tiempo predeterminado hasta que el reactivo reacciona con el elemento catalizador de una reacción (enzima) conjugado en la proteína de reacción o hasta que esta reaccione,
-abrir un orificio superior (2) o el orificio inferior (4) y retirar el reactivo introducido. En el ejemplo de realización en el que el porta-filtros comprende un orificio superior (2) en la pieza superior (1), el procedimiento para la concentración y la detección de microorganismos en el porta-filtros de la presente invención comprende las siguientes etapas:
-introducir la muestra por el orificio superior (2) de la pieza superior (1) tal que los microorganismos que hay en la muestra quedan retenidos en la membrana de filtrado y la muestra ya filtrada sale por el orificio inferior (4),
-introducir una solución con una proteína de reconocimiento a través del orificio superior (2) mientras el orificio inferior (4) permanece cerrado para permitir el llenado de la cámara de reacción (6),
-cerrar el orificio superior (2) para mantener la solución en la cámara de reacción (6), -mantener la solución en la cámara de reacción (6) durante un tiempo predeterminado hasta que la solución reacciona con los microorganismos que hay atrapados en la membrana de filtrado,
-abrir los orificios superior e inferior (2, 4) y retirar la solución,
-aplicar un reactivo de lavado a través del orificio superior (2) con el orificio inferior (4) abierto para arrastrar la proteína de reconocimiento que no ha reaccionado con el microorganismo y se ha quedado libre en la solución,
-introducir reactivo que contiene sustrato enzimático que reacciona con la proteína de reconocimiento, a través del orificio superior (2), con el orificio inferior cerrado (4), de forma que el reactivo queda en la cámara de reacción, -mantener un tiempo determinado hasta que el reactivo reacciona con el elemento catalizador de una reacción (enzima) conjugado en la proteína de reacción o hasta que esta reaccione, -abrir el orificio superior (2) y el orificio inferior (4) y retirar el reactivo introducido.
En ningún momento durante todo el procedimiento se separan las piezas del porta-filtros ni se extrae la membrana de filtrado. Por lo tanto el procedimiento se realiza por completo de forma estanca lo cual garantiza el correcto filtrado e incubación (se evita la contaminación externa).
Cuando se ha terminado este procedimiento, la solución final como resultado de la última reacción, se extrae y se analiza mediante métodos electroquímicos o colorimétricos. Preferentemente la introducción de la muestra en el porta-filtros se realiza mediante una bomba peristáltica que permite forzar a la muestra a pasar por la membrana de filtrado. En función del patógeno y de la muestra y las contaminaciones de elementos inorgánicos (sales, óxidos de metales, material sólido) se emplean diferentes caudales y presiones de la muestra durante el proceso de filtración, para tener óptimos resultados de filtración. En este punto también se pueden incluir etapas de filtración adicionales para eliminar materiales sólidos en suspensión, mediante membranas de nitrocelulosa, PVDF (polifluoruro de vinilideno) o policarbonato de poros de 5 a 20 μηι en función de las contaminaciones. En un ejemplo de realización de la invención el porta-filtros se conecta por el orificio superior al recipiente contenedor de la muestra mediante una bomba peristáltica que introduce la muestra en el porta-filtros con un caudal y una presión adecuados. La muestra entra en el porta-filtros bajo dichas condiciones de caudal y presión y es forzada a pasar a través de la membrana de filtrado. El orificio inferior, dispuesto en la pieza inferior, está destinado al paso de la muestra ya filtrada (permite la salida de dicha muestra ya filtrada del porta-filtros.
En un ejemplo de realización el porta-filtros de la presente invención es capaz de filtrar hasta 700 ml/h y un caudal de 1 ,5 ml/seg.
La membrana de filtrado que se encuentra en el porta-filtros depende del microorganismo que se quiere estudiar. En función del microorganismo a estudio, la membrana está preparada para atraparlo durante el filtrado de la muestra. Una vez que la muestra ha sido completamente filtrada y los microorganismos diana han quedado atrapados en la membrana hay una etapa de cerrar el orificio inferior. Posteriormente hay que introducir la solución por el orificio superior por donde se había introducido previamente la muestra. Como el orificio inferior está cerrado la solución queda atrapada en la cámara de reacción sobre la membrana de filtrado. Cuando se ha introducido la solución hay que cerrar el orificio superior y mantener el porta-filtros cerrado durante un tiempo determinado para permitir la interacción entre la solución y los microorganismos que hay en la membrana de filtrado.
Pasado un tiempo predeterminado, preferentemente entre 30 y 50 minutos, hay que extraer la solución. Esta extracción se puede realizar por un orificio superior (en el ejemplo de realización en el que el porta-filtros comprende más de un orificio superior) o se puede realizar por el orificio inferior.
Tras la etapa anterior se puede realizar una etapa de lavado para eliminar el sobrante de la solución que haya quedado en el interior del porta-filtros. Por ejemplo este lavado se puede realizar con PBS y Tween® como se ha descrito previamente.
Posteriormente hay que cerrar de nuevo el orificio inferior en caso de que se haya abierto en la etapa anterior e introducir un reactivo a través del orificio superior. Tras esta etapa hay que cerrar el orificio superior para que el reactivo que se queda en la cámara de reacción pueda reaccionar con el microorganismo con la solución que se ha obtenido en las etapas anteriores. El reactivo se mantiene en el interior del porta-filtros durante un tiempo no superior a 20 minutos.
Pasado el tiempo predeterminado hay que extraer el reactivo, por el orificio inferior o por el otro orificio superior para analizar la solución que se ha obtenido. Al analizarla se consigue una medida indirecta de los microorganismos que hay presentes en la muestra a partir de los anticuerpos (en el caso de detección inmunológica) que hayan aparecido. Para este análisis se emplean preferentemente medidas electroquímicas.
Ejemplos de realización
Ejemplo 1 :
Se ha realizado una prueba de estanqueidad y eficacia de filtración del filtro integrado de la presente invención mediante el uso de Escherichia coli y Legionella pneumophila como microorganismos diana (microorganismo a estudio). Así, a partir de un cultivo controlado de laboratorio, se prepararon 3 soluciones de diferente concentración: 1e6, 1 e4 y 1 e2 ufe en 50 ml_ de agua, y se estudiaron los ratios de eficiencia de retención dependiendo de la cantidad de bacterias presente en la muestra. Esta eficiencia fue, además, comparada con diversos sistemas comerciales de filtración y membranas de diferentes materiales.
En la Figura 2 se pueden ver los resultados de eficiencia de filtrado para dos sistemas de filtrado comerciales (filtrado mediante bomba con filtros de diámetro 47 mm y filtrado mediante jeringuilla con filtros de diámetro 25 mm) y para el porta-filtros integrado de la presente invención con membrana de filtrado nitrocelulosa, PVDF, policarbonato y filtros comerciales encapsulados.
En la Figura 2a están representados los valores de retención para E. coli mientras que los resultados para L pneumophila se muestran en la Figura 2b. En general, ambas especies bacterianas muestran diferencias en la retención según el tipo de filtrado y material de membrana empleado. Sin embargo, sólo existen dos mecanismos que permiten obtener, tanto para E.coli como para L pneumophila, un 100% de de eficiencia de filtrado independientemente del material de la membrana empleada: la filtración mediante jeringa con filtros encapsulados y el porta-filtros integrado de la presente invención.
Los primeros resultados se han obtenido empleando un sistema comercial SWINNEX® para membranas de 47 mm. Los segundos resultados se han obtenido empleando un sistema comercial SWINNEX® para membranas de 25 mm y un sistema de filtración encapsulado y estanco. Los terceros resultados se han obtenido empleando el porta- filtros de la invención con membranas de 25 mm. El método de filtrado con el porta- filtros de la invención también se realiza con jeringa. Los mejores resultados de sistemas comerciales corresponden a las membranas que se comercializan encapsuladas, sin roscas y termoselladas. El porta-filtros de la presente invención permite alcanzar el mismo nivel de eficiencia.
Ejemplo 2:
Se ha realizado un estudio de la minimización de unión inespecífica entre anticuerpo y membrana mediante el uso de albúmina como ejemplo de bloqueante orgánico y Tween20 como bloqueante químico.
Los resultados correspondientes a este ejemplo se han representado en la figura 3. En dicha figura se muestra una gráfica en la que se han representado la absorbancia obtenida mediante un sistema de análisis de inmunoabsorción ligado a enzimas (ELISA), utilizando un anticuerpo específico contra E.coli, marcado con el enzima HRP, midiendo la cantidad de anticuerpo en la muestra relacionando el efecto del enzima HRP sobre el sustrato TMB. La línea con cuadrados es el resultado obtenido empleando un filtro de nitrocelulosa sin bloquear. Las líneas con triángulos y círculos representan los resultados de absorbancia obtenidos empleando un filtro de nitrocelulosa bloqueado químicamente (Tween20 línea con círculos) y otro bloqueado orgánicamente (BSA línea con triángulos). En la gráfica se demuestra como al utilizar estos bloqueantes la señal obtenida es mucho más baja que para el caso de la membrana en crudo minimizando la unión específica entre el anticuerpo y la membrana de nitrocelulosa.
El material de las membranas empleadas para el estudio de bloqueo fueron discos de nitrocelulosa de 0.25 cm2 con un tamaño de poro de 0.2 mieras. Para el estudio de la eficiencia de compuestos químicos y orgánicos en la minimización de la unión inespecífica entre anticuerpo y membrana, se emplearon como ejemplo de ambos tipos Tween®20 y albúmina (BSA) respectivamente. Así mismo, en esta prueba se empleó un anticuerpo anti- E.coli marcado con enzima peroxidasa (HRP).
De esta manera, dos membranas de filtrado fueron incubados en sendos tubos que contenían, en un caso 500 μΙ_ de Tween® 20 y en el otro 500 μΙ_ de BSA, ambos en una concentración final del 1 % en tampón fosfato salino. Adicionalmente, un tercer filtro fue introducido en un tubo con 500 μΙ_ de tampón fosfato salino sin ningún tipo de compuesto bloqueante como blanco de membrana no bloqueada.
Tras una hora de contacto entre la membrana y cada uno de los bloqueantes, estos fueron extraídos de los tubos y lavados tres veces sumergiéndolos en una solución formada, de nuevo, por tampón fosfato salino suplementada con detergente Tween®20 a una concentración 0,5% para eliminar el anticuerpo presente en el filtro pero no adsorbido. Una vez realizados los lavados, se procedió a la determinación del anticuerpo unido inespecíficamente a la membrana de filtrado mediante técnicas colorimétricas. Los filtros fueron introducidos en una placa estándar usada para análisis de inmunoabsorción ligado a enzimas (ELISA). Tras esto, se añadieron 100 μΙ de sustrato enzimático TMB por filtro y se realizó una medida cinética en un detector de placas ELISA durante 20 min midiendo absorbancia a 620 nm para obtener una cinética de la reacción entre el enzima HRP (que se encuentra unido al anticuerpo) y el sustrato (TMB).
Los resultados que se presentan en la figura 3 muestran una absorbancia mucho mayor para el filtro de nitrocelulosa sin bloquear (NC) indicando una mucha mayor unión de anticuerpo en este filtro. Adicionalmente, entre ambos bloqueos, químico y orgánico, no se encuentran grandes diferencias por lo que ambos pueden ser empleados con buenos resultados para la minimización de la unión inespecífica. En dicha figura 3 se muestra un estudio de la unión inespecífica de anticuerpo a membranas de nitrocelulosa tratadas mediante detergentes y proteínas, y membranas sin tratar. En la gráfica se representan los resultados obtenidos mediante medidas colorimétricas, utilizando HRP y solución TMB como sustrato de reacción. En esta gráfica se puede comprobar como el tratamiento reduce de forma eficiente la absorción inespecífica del anticuerpo en la membrana.
Ejemplo 3:
Para comprobar las posibilidad de detección de diferentes tipos de microorganismos. Se ha testado el funcionamiento del porta-filtros frente a varios tipos de microorganismos E.coli y Legionella.
En el caso de E.coli se han utilizado membranas de policarbonato de 25 mm de diámetro bloqueadas con PBS-Tw20 al 1 % antes y después. Se filtraron a un caudal de 0,5 mL/s, diferentes suspensiones de E.coli a una concentración final de 102, 103, 104 105, 106 células totales en 100 ml_ haciendo diluciones de un cultivo bacteriano de 108 células.
Una vez realizada la filtración, se realizaron cuatro perforaciones en cada filtro para coger muestras de 5 mm de diámetro. Tres de ellas se emplearon como réplicas para analizar la unión del anticuerpo al filtro mediante la incubación con anticuerpos. La cuarta muestra se utilizó como blanco incubándolo en ausencia de anticuerpo. Posterior a la incubación con el anticuerpo se realizaron 3 lavados de 5 min introduciendo las membranas en un solución de Tween® 20 y PBS. Por último, los filtros se colocaron en placas de ELISA de 96 pocilios y se les añadió 100 de TMB para poder medir la cinética de reacción a una longitud de onda de 620 nm durante 20 min. La recta de calibrado se realizó con los datos de absorbancia recogidos en el minuto 16 de reacción y se muestra en la figura 4.
En dicha figura se aprecia la absorbancia a 620 nm medida tras filtrar diferentes concentraciones de E.coli sobre filtros de PC bloqueados con Tween® 20 al 1 %. En el caso de Legionella se empleó el mismo procedimiento anterior pero en este caso con filtros de nitrocelulosa bloqueados con Tween® 20 antes de la filtración de la muestra. En este caso se han filtrado concentraciones totales de 106, 104 y 102 Legionella en 30 mi, que se han filtrado con un caudal de 0.5 ml/s. Los resultados se presentan en la figura 5. Las medidas para este ejemplo se han realizado en la absorbancia a 480 nm.
En la figura 5 se aprecia la recta de calibrado que relaciona la absorbancia a 480 nm medida tras filtrar diferentes concentraciones de Legionella sobre filtros de nitrocelulosa bloqueados con Tween®20 al 1 %.
Ejemplo 4:
Se han realizado medidas con muestras reales de instalaciones industriales para la detección de Legionella.
Las dos muestras a analizar eran agua proveniente de dos zonas diferentes de unas grandes instalaciones industriales, una con frecuente presencia de Legionella y otra con ausencia. Las membranas empleadas para la filtración fueron discos de nitrocelulosa de tamaño de poro 0,2 mieras y 26 mm de diámetro, bloqueadas con Tween®20 a una concentración 1 % para evitar la unión inespecífica entre el anticuerpo y la membrana. Tras el filtrado de ambas muestras y un blanco consistente en agua estéril (sin microorganismos) se procedió a la incubación con anticuerpos de Legionella marcados con HRP para repetir también una detección óptica.
En la Figura 4 está representada la absorbancia medida a una longitud de onda de 620 nm en el minuto 16 durante una cinética de 20 minutos de reacción entre el sustrato colorimétrico (TMB) y el filtro. Estos resultados se encuentran normalizados por la absorbancia medida en los filtros empleados para el agua que no contenía bacterias. Así, en la gráfica podemos ver como la muestra 1 que es la que provenía de una zona frecuentemente contaminada con Legionella, daba una señal muy superior a la muestra 2, proveniente de una zona sin contaminación, la cual tenía valores muy próximos a 0. En la figura 6 se ha representado un estudio de absorbancia de muestras reales de agua de dos instalaciones de agua sanitaria procedentes de diferentes vestuarios de una planta industrial de Tarragona, se tomaron dos muestras, M1 procedente de una instalación que suele dar positivo en Legionella pneumophila, y M2 de una instalación sin presencia de la bacteria con el porta-filtros de la presente invención y anticuerpos específicos para Legionella pneumophila. Se han representado los resultados obtenidos mediante medidas colorimétricas, utilizando HRP y solución TMB como sustrato de reacción. Se puede comprobar como la muestra 1 , proveniente de un sistema en el que suele aparecer la bacteria tiene una señal significativamente más alta que la muestra 2.

Claims

R E I V I N D I C A C I O N E S
1. - Porta-filtros integrado para filtrado y cultivo de una muestra que comprende una pieza superior (1) con al menos un orificio superior (2) para paso de un flujo de entrada y una pieza inferior (3) con al menos un orificio inferior (4) para paso de un flujo de salida, y que comprende al menos una membrana de filtrado, y está caracterizado por que:
-comprende una pieza intermedia (5) que está dispuesta entre la pieza superior (1) y la pieza inferior (3) y que está unida a ellas, y en dicha pieza intermedia (5) se encuentra una cámara de reacción (6) que está conectada al orificio superior (2), y
-la membrana de filtrado está dispuesta entre la pieza intermedia (5) y la pieza inferior (3).
2. - Porta-filtros integrado según la reivindicación 1 caracterizado por que la cámara de reacción (6) es un espacio hueco con un volumen de menos de 3 mi y está dispuesta sobre la membrana de filtrado.
3. - Porta-filtros integrado según la reivindicación 2 caracterizado por que el volumen de la membrana de filtrado está entre 1 mi y 2 mi.
4. - Porta-filtros integrado según la reivindicación 1 caracterizado por que comprende dos orificios superiores (2) en la pieza superior (1) y la cámara de reacción (6) está unida a ambos.
5.- Porta-filtros integrado según la reivindicación 1 caracterizado por que comprende una tapa asociada a cada uno de los orificios (2, 4).
6. - Pota-filtros integrado según la reivindicación 1 caracterizado por que la membrana de filtrado es una membrana porosa de tamaño de poro comprendido entre 0,1 m y 0,45 μηι.
7. - Porta-filtros integrado según la reivindicación 1 caracterizado por que comprende una primera ranura (7) en la pieza superior (1) orientada hacia la pieza intermedia (5) destinada a recibir una primera junta de estanqueidad y una segunda ranura (8) en la pieza intermedia (5) orientada hacia la pieza inferior (3) destinada a recibir una segunda junta de estanqueidad.
8. - Porta-filtros integrado según la reivindicación 1 caracterizado por que las piezas superior (1), intermedia (5) e inferior (3) están unidas entre sí solidariamente.
9. - Porta-filtros integrado según la reivindicación 1 caracterizado por que comprende un difusor dispuesto en la pieza intermedia (5) sobre la cámara de reacción (6) y es una pieza con una pluralidad de orificios, configurada para distribuir el flujo de entrada desde al menos un orificio superior (2) hacia la membrana de filtrado.
10. - Procedimiento de concentración y detección de microorganismos de una muestra en un porta-filtros integrado como el descrito en una cualquiera de las reivindicaciones 1 a 9, caracterizado por que comprende las siguientes etapas:
-introducir la muestra a través de la pieza superior (1) haciendo pasar la muestra a través de la membrana de filtrado dispuesta en la pieza intermedia (5) de manera que las partículas a estudio queden retenidas en la membrana de filtrado,
-extraer la muestra ya filtrada a través de la pieza inferior (3),
-introducir una solución a través de la pieza superior (1) hasta la cámara de reacción (6) y mantenerla durante un tiempo predeterminado en la cámara de reacción (6) hasta que haya reaccionado con las partículas retenidas en la membrana de filtrado,
-extraer la solución a través de la pieza inferior (3);
-introducir un reactivo a través de la pieza superior (1) hasta la cámara de reacción (6) y mantenerlo en dicha cámara de reacción (6) hasta que haya reaccionado con la mezcla de la solución y las partículas retenidas en la membrana de filtrado,
-extraer el reactivo a través de la pieza inferior (3).
11. - Procedimiento de concentración y detección según la reivindicación 10 caracterizado por que el reactivo se mantienen en el interior del porta-filtros durante un tiempo inferior a 20 minutos.
12. - Procedimiento de concentración y detección según la reivindicación 10 caracterizado por que la introducción de la muestra se realiza a través de al menos un orificio superior (2) de la pieza superior (1) mediante una bomba peristáltica configurada para forzar el paso de la muestra por la membrana de filtrado y su salida por el orificio inferior (4) de la pieza inferior (3).
13.- Procedimiento de concentración y detección según la reivindicación 10 caracterizado por que se realiza en un porta-filtros con dos orificios superiores (2) y la introducción de la muestra, de la solución y del reactivo se realiza por un orificio superior (2) y la extracción de la solución y del reactivo se realiza por otro orificio superior.
PCT/ES2016/070680 2015-10-01 2016-09-28 Porta-filtros integrado y procedimiento de concentración y detección de microorganismos WO2017055662A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16793933.9A EP3357997A1 (en) 2015-10-01 2016-09-28 Integrated filter-holder and microorganism concentration and detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201531409 2015-10-01
ESP201531409 2015-10-01

Publications (1)

Publication Number Publication Date
WO2017055662A1 true WO2017055662A1 (es) 2017-04-06

Family

ID=57256348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2016/070680 WO2017055662A1 (es) 2015-10-01 2016-09-28 Porta-filtros integrado y procedimiento de concentración y detección de microorganismos

Country Status (2)

Country Link
EP (1) EP3357997A1 (es)
WO (1) WO2017055662A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110938518A (zh) * 2019-10-24 2020-03-31 中山大学 一种用于微生物酶活测试的过滤装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0832181A1 (en) 1995-05-25 1998-04-01 Severn Trent Water Limited Filtration and culture methods and apparatus
WO1999047637A1 (en) 1998-03-19 1999-09-23 Amanzi Technologies Limited Microbiological testing of a liquid sample
US20030153021A1 (en) * 2001-12-06 2003-08-14 Arbor Vita Corporation Effective monitoring system for anthrax smallpox, or other pathogens
EP1593736A1 (en) * 2004-05-06 2005-11-09 Sanyo Electric Co., Ltd. Microorganisms detecting device and method
WO2008144899A1 (en) * 2007-05-25 2008-12-04 Ravi Kanipayor Apparatus and methods for automated diffusion filtration, culturing and photometric detection and enumeration of microbiological parameters in fluid samples
US20100227338A1 (en) * 2007-03-22 2010-09-09 Nanologix, Inc. Method and Apparatus for Rapid Detection and Identification of Live Microorganisms Immobilized On Permeable Membrane by Antibodies

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0832181A1 (en) 1995-05-25 1998-04-01 Severn Trent Water Limited Filtration and culture methods and apparatus
WO1999047637A1 (en) 1998-03-19 1999-09-23 Amanzi Technologies Limited Microbiological testing of a liquid sample
US20030153021A1 (en) * 2001-12-06 2003-08-14 Arbor Vita Corporation Effective monitoring system for anthrax smallpox, or other pathogens
EP1593736A1 (en) * 2004-05-06 2005-11-09 Sanyo Electric Co., Ltd. Microorganisms detecting device and method
US20100227338A1 (en) * 2007-03-22 2010-09-09 Nanologix, Inc. Method and Apparatus for Rapid Detection and Identification of Live Microorganisms Immobilized On Permeable Membrane by Antibodies
WO2008144899A1 (en) * 2007-05-25 2008-12-04 Ravi Kanipayor Apparatus and methods for automated diffusion filtration, culturing and photometric detection and enumeration of microbiological parameters in fluid samples

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110938518A (zh) * 2019-10-24 2020-03-31 中山大学 一种用于微生物酶活测试的过滤装置及方法

Also Published As

Publication number Publication date
EP3357997A1 (en) 2018-08-08

Similar Documents

Publication Publication Date Title
AU2006275344B2 (en) Apparatus and method for detecting an analyte
JP4183508B2 (ja) 一体型濾過および検出デバイス
ES2774386T3 (es) Dispositivo portátil para el enriquecimiento, alicuotado y análisis de microorganismos y toxinas
EP0918563A1 (en) Diagnostic test container
WO2006107684A3 (en) Method and apparatus for automatic cell and biological sample preparation and detection
ES2842525T3 (es) Fraccionamiento y concentración de partículas biológicas de líquido a líquido
US20050189286A1 (en) Filter device to capture a desired amount of material and methods of use
CN103765224A (zh) 用于检测样品中分析物的基于试剂盒的系统和方法
EP0746412A1 (en) Apparatus and method for quantification of biological material in a liquid sample
RU2017110274A (ru) Картридж для очистки нуклеиновой кислоты
WO2011047199A2 (en) Sers-active absorbers for the analysis of analytes
JP2020503497A (ja) サンプルを採取するデバイス、およびかかるデバイスを備えるサンプル分析システム
US6296685B1 (en) Device and method for sampling in liquid phases using a diffusion body and an analyte-binding phase
WO2017055662A1 (es) Porta-filtros integrado y procedimiento de concentración y detección de microorganismos
US20150338323A1 (en) Portable system for automated preparation of liquid and/or solid samples
JP6509913B2 (ja) 磁性体粒子操作用デバイスおよび磁性体粒子の操作方法
US11927600B2 (en) Fluidic bridge device and sample processing methods
CZ131697A3 (cs) Způsob a zařízení pro přípravu substancí pro optickou analýzu
CN108760688B (zh) 一种水下微痕量化学物质的探测识别装置
US9862919B2 (en) Device and method for identification of microorganisms
KR102565215B1 (ko) Rt-pcr용 인터페이스 튜브 모듈 및 이를 사용한 장치
JP2007155398A (ja) 濃縮素子、及び、それを用いた化学分析装置
US9074972B2 (en) Surrogate addition device and a method of analyte concentration
ES2930018B2 (es) Sistema de detección y registro continuo de niveles de agentes microbiológicos de interés en aguas
JP2011095161A (ja) 捕集器具、検出装置、及び、捕集方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16793933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016793933

Country of ref document: EP