WO2017054666A1 - 感应线圈结构及无线充电装置 - Google Patents

感应线圈结构及无线充电装置 Download PDF

Info

Publication number
WO2017054666A1
WO2017054666A1 PCT/CN2016/099629 CN2016099629W WO2017054666A1 WO 2017054666 A1 WO2017054666 A1 WO 2017054666A1 CN 2016099629 W CN2016099629 W CN 2016099629W WO 2017054666 A1 WO2017054666 A1 WO 2017054666A1
Authority
WO
WIPO (PCT)
Prior art keywords
induction coil
wire
coil
capacitor
wireless charging
Prior art date
Application number
PCT/CN2016/099629
Other languages
English (en)
French (fr)
Inventor
朱树华
劳成强
李永辉
张思权
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2017054666A1 publication Critical patent/WO2017054666A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings

Definitions

  • the invention relates to a wireless charging technology, in particular to an induction coil structure and a wireless charging device.
  • an electronic device such as a smart phone or a tablet computer adopts a scheme of power charging of 5 W, 10 W, and 20 W.
  • the above solution is applied to the smart wearable device, which has a problem of low charging efficiency due to mismatch.
  • the input power only needs to meet 2W for normal operation. Therefore, the smart wearable device has a strong demand for wireless charging with a power of 2W, but the smart wearable device is miniaturized according to the market.
  • the wireless charging receiving end coil and the main board equipped with it must adapt to this requirement, so the coil and the main board are gradually developing in the direction of miniaturization and shape diversification, and at the same time, the convenience of charging and The high charging sensitivity and efficiency make the charging device more convenient and faster to increase the user experience, and it is necessary to have a transmitting end matched with the receiving end to meet these needs.
  • the existing products have a large market demand, and the existing standard coils are large in size, and it is difficult to install and integrate them in the wearable products. Especially when combined with a small receiving end coil, the signal is not easily sensed, the recognition is slow, and the efficiency is low. It is easy to power off and other issues, and can not meet the market demand very well.
  • the existing induction coil is formed on the printed circuit board, and the induction coil structure is usually formed by stacking a plurality of printed circuit boards and electrically connecting.
  • the manufacturing process is difficult to ensure, and its thickness is thick. Once the coils of each layer are misaligned, the coils of each layer cannot be turned on, which affects the charging effect.
  • the present invention aims to solve at least one of the technical problems of the prior art. To this end, the present invention needs to provide an induction coil structure and a wireless charging device.
  • an induction coil structure including:
  • the at least one induction coil is wound by a wire, the number of turns of the induction coil is 3-20, and the maximum outer diameter of the induction coil is 10-100 mm.
  • the diameter of the wire is 0.1 to 5 mm,
  • the inductance of the induction coil is 5 to 30 microhenries.
  • the induction coil structure of the embodiment of the present invention provides a small-sized wirelessly charged induction coil.
  • the induction coil is wound by a wire, which is easy to achieve small thickness and high precision, and in the case of multiple layers, each can be guaranteed
  • the connection of the layer induction coil ensures the charging effect.
  • the induction coil has a maximum outer diameter of 10 to 30 mm and the wire has a diameter of 0.1 to 1.5 mm.
  • the induction coil is formed by winding a wire by a winding machine.
  • the wire is an enameled wire or a wire wrapped wire.
  • the inductive coil structure includes a magnetic element disposed on one side of the inductive coil.
  • the projection of the induction coil in a direction perpendicular to the magnetic element is located within the magnetic element.
  • An embodiment of the second aspect of the present invention provides a wireless charging apparatus, including:
  • the coil matching circuit comprising an induction coil structure, the induction coil structure comprising at least one layer of induction coils, the at least one layer of induction coils being wound by wires, and the number of turns of the induction coils per layer is 3 to 20, the maximum outer diameter of the induction coil is 10 to 100 mm, the diameter of the wire is 0.1 to 5 mm, and the inductance of the induction coil is 5 to 30 microhenries, and the coil matching circuit is used for Generating an induced current;
  • An output interface circuit connected to the peripheral circuit of the chip, the output interface circuit is configured to output the rectified induced current to a device to be charged to implement charging.
  • the embodiment of the invention provides a wireless charging device for matching a wirelessly charged induction coil structure of a small-sized electronic product.
  • the induction coil structure comprises an induction coil, and the induction coil is wound by a wire, which is easy to achieve small thickness and high precision. And in the case of multiple layers, the connection of the induction coils of each layer can be ensured, thereby ensuring the charging effect.
  • the coil matching circuit comprises:
  • one end of the first capacitor is connected to one end of the induction coil, and the other end of the first capacitor is connected to the chip peripheral circuit;
  • the second capacitor has one end connected to the other end of the first capacitor, and the other end of the second capacitor is connected to the other end of the induction coil and the chip peripheral circuit.
  • the induction coil has a quality factor greater than 77.
  • the induction coil has a maximum outer diameter of 10 to 30 mm and the wire has a diameter of 0.1 to 1.5 mm.
  • the induction coil is formed by winding a wire by a winding machine.
  • the wire is an enameled wire or a wire wrapped wire.
  • the inductive coil structure includes a magnetic element disposed on one side of the inductive coil.
  • the projection of the induction coil in a direction perpendicular to the ferrite magnet is located within the magnetic element.
  • FIG. 1 is a schematic plan view showing the structure of an induction coil according to an embodiment of the present invention.
  • FIG. 2 is a circuit diagram of a wireless charging device in accordance with one embodiment of the present invention.
  • FIG. 3 is a circuit diagram of a coil matching circuit in accordance with one embodiment of the present invention.
  • FIG. 4 is a perspective view of a structure of an induction coil according to still another embodiment of the present invention.
  • FIG. 5 is a perspective view of a structure of an induction coil according to still another embodiment of the present invention.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include one or more of the described features either explicitly or implicitly.
  • the meaning of "a plurality” is two or more unless specifically and specifically defined otherwise.
  • connection unless otherwise specifically defined and defined, “Connected” and “connected” should be understood in a broad sense. For example, it may be a fixed connection, a detachable connection, or an integral connection; it may be a mechanical connection, or it may be an electrical connection or may communicate with each other; it may be directly connected It can also be indirectly connected through an intermediate medium, which can be the internal communication of two elements or the interaction of two elements.
  • intermediate medium which can be the internal communication of two elements or the interaction of two elements.
  • the first feature "on” or “under” the second feature may include direct contact of the first and second features, and may also include first and second features, unless otherwise specifically defined and defined. It is not in direct contact but through additional features between them.
  • the first feature “above”, “above” and “above” the second feature includes the first feature directly above and above the second feature, or merely indicating that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature includes the first feature directly above and above the second feature, or merely the first feature level being less than the second feature.
  • an inductive coil structure 10 of an embodiment of the present invention includes an inductive coil 100.
  • the number of layers of the induction coil 100 is at least one layer, and the induction coil 100 can be wound by a wire 101.
  • the stretchable wire 101 is wound at one end to form a multilayer induction coil 100 to form the induction coil structure 10.
  • each layer of the induction coil 100 is wound 3 to 20 turns, and the maximum outer diameter of the induction coil 100 is 10 to 100 mm.
  • the wire 101 used for winding the induction coil 100 has a diameter of 0.1 to 5 mm.
  • Self-inductance of the induction coil is 5 to 30 microhenries, wherein the induction coil 100 itself inductance L S in the absence of magnetic active material is close to 5 to 30 microhenries, the induction coil 100 is placed on the power transmitter a self-inductance L S ' It is 6 to 30 microhenries.
  • L S characterizes the inductive reactance of the induction coil 100 itself
  • L S ' characterizes the inductive reactance of the induction coil 100 itself under the influence of other power transmitter coils, that is, the ability of the induction coil 100 to generate electromagnetic induction upon charging.
  • the induction coil structure 10 of the embodiment of the present invention provides a small-sized wirelessly charged induction coil 100.
  • the induction coil 100 is wound by a wire 101, which is easy to achieve small thickness and high precision.
  • the structure 10 is wound by a wire 101, so that in the case of a plurality of layers, the connectivity of the layers of the induction coil 100 can be ensured. In turn, the charging effect is ensured.
  • the induction coil 100 has a maximum outer diameter of 10 to 30 mm and the wire 101 has a diameter of 0.1 to 1.5 mm.
  • Too small a maximum outer diameter of the induction coil 100 results in an increase in impedance due to a decrease in the width of the circuit, and an excessively large maximum outer diameter results in a decrease in power transmission efficiency due to an excessive circuit width.
  • the diameter of the wire 101 affects the thickness and maximum outer diameter of the induction coil 100. Therefore, in order to make the induction coil 100 have good charging efficiency, the above-mentioned appropriate physical parameters are usually selected as needed.
  • the induction coil 100 is formed by winding a wire 101 from a winding machine.
  • Winding with a winding machine allows the induction coil 100 to have a dimensional accuracy of 0.5 mm. Moreover, the size of the induction coil 100 can be adjusted at any time according to changes in parameter requirements, thereby improving charging efficiency.
  • the winding size of the winding machine is high, and the thickness is small, and the coil conforming to the standard can be made in a smaller range.
  • the wire 101 is an enameled wire or a wire wrapped wire.
  • the wire 101 may be selected from a copper wire, and a single-strand enameled wire or a multi-strand wire of the same specification may be selected for winding.
  • the wires 101 are insulated from each other when they are entangled with each other, and the short circuit between the wires 101 is prevented from affecting the direction and magnitude of the magnetic field.
  • the material of the wire 101 is not limited to the use of copper wire, but may be other metals such as zinc, silver, gold, platinum, and the like.
  • the inductive coil structure 10 further includes a magnetic element 110 disposed on one side of the inductive coil 100.
  • the magnetic element 110 is a ferrite magnetic sheet. It can be understood that in other embodiments, the magnetic element 110 can also be other magnetic materials.
  • the primary coil that is, the transmitting end
  • the primary coil When charging is performed, the primary coil, that is, the transmitting end, generates a magnetic field whose intensity and direction are constantly changing.
  • a ferrite magnetic sheet is provided to guide the magnetic field. That is to say, the provision of the ferrite magnetic sheet enables the dispersed magnetic lines of force to be more concentrated on the induction coil 100 to improve the charging efficiency.
  • the device to be charged is a mobile phone
  • the magnetic field can simultaneously act on the battery, the circuit board and other electronic components in the mobile phone and cause it to generate heat.
  • the induction coil 100 When the magnetic field acts on the induction coil 100, the induction coil 100 itself generates heat, and the ferrite magnetic sheet is also provided. Can achieve good heat dissipation.
  • the magnetic element 110 is provided to improve the charging efficiency of the induction coil structure 10, and on the other hand, the heat dissipation effect of the induction coil structure 10 can be improved.
  • the projection of the inductive coil 100 in a direction perpendicular to the magnetic element 110 is located within the magnetic element 110.
  • the edges of the magnetic element 110 need to be greater than 1 mm from the circumference of the induction coil 100.
  • the wireless charging device 20 of the embodiment of the present invention includes a coil matching circuit 200 , a chip and a peripheral circuit 210 , and an output interface circuit 220 .
  • the coil matching circuit 200 includes the inductive coil structure 10 of the above embodiment.
  • the coil matching circuit 200 can be provided as a receiving end to the device to be charged.
  • the coil matching circuit 200 is configured to receive an electromagnetic signal at the transmitting end and generate an induced current.
  • the induced current generated by the coil matching circuit 200 is an alternating current.
  • the chip and peripheral circuit 210 is coupled to the coil matching circuit 200 and used to rectify the alternating current generated by the coil matching circuit 200.
  • the chip and peripheral circuitry 210 can rectify the alternating current to produce a DC current that meets the voltage requirements for charging the device to be charged.
  • the output interface circuit 220 is connected to the chip and the peripheral circuit 210 for outputting the rectified DC current to the device to be charged to achieve charging.
  • the embodiment of the present invention provides a wireless charging device 20 that matches a small-sized wirelessly charged induction coil structure 10.
  • the induction coil structure 10 includes an induction coil 100, and the induction coil 100 is wound by a wire 101, which is easy to achieve a small thickness.
  • the precision is high, and in the case of multiple layers, the connection of the induction coils of each layer can be ensured, thereby ensuring the charging effect.
  • the wireless charging device 20 includes the inductive coil structure 10
  • the embodiment of the wireless charging device 20 includes all the technical solutions of all the embodiments of the inductive coil 10, and the technical effects achieved are also identical. No longer.
  • the coil matching circuit 200 includes a first capacitor C1 and a second capacitor C2.
  • One end of the first capacitor C1 is connected to one end of the induction coil 100, and the other end of the first capacitor C1 is connected to the chip and the peripheral circuit 210.
  • One end of the second capacitor C2 is connected to the other end of the first capacitor C1, and the other end of the second capacitor is connected to the other end of the induction coil 100 and the chip and the peripheral circuit 210.
  • the first capacitor C1 and the second capacitor C2 may be equivalent capacitances of the plurality of capacitors.
  • the coil matching circuit 200 forms a double resonant circuit from the first capacitor C1, the second capacitor C2, and the induction coil 100.
  • the first capacitor C1 forms a series resonance with the induction coil 100, and the resonant loop can generate a high voltage, thereby improving power transmission efficiency.
  • the second capacitor C2 and the induction coil 100 form a parallel resonance, and the second capacitor C2 is used to achieve resonance detection.
  • the quality factor Q of the induction coil 100 is greater than 77.
  • the induction coil quality factor Q is an important parameter to characterize the quality of the coil. The larger the Q value, the smaller the loss of the coil; conversely, the greater the loss of the coil.
  • the induction coil quality factor Q is defined as the ratio of the inductive reactance exhibited by the coil to the DC resistance of the coil when the coil is operated at an AC voltage of a certain frequency.
  • the calculation formula is:
  • LS is the inductive reactance of the induction coil 100
  • R is the DC resistance of the induction coil 100.
  • the Q value is greater than 77.
  • the induction coil structure 10 and the wireless charging device 20 of the embodiments of the present invention will be described below with reference to specific examples to better understand the present invention. It should be noted that the present invention is not limited to the specific examples below.
  • the inductive coil structure 10 and the wireless charging device 20 of the present invention are described in detail by taking a smart watch wireless charging induction coil as an example.
  • the induction coil 100 is wound by a single-strand enamelled copper wire having a wire diameter of 0.2 mm or a multi-strand wire of the same specification and has a number of layers of two layers.
  • the induction coil 100 has an inner diameter di1 of 12.2 mm, an outer diameter do1 of 16.95 mm, and a coil thickness dc1 of 0.4 mm.
  • the induction coil 100 is wound by a winding machine.
  • a magnetic element is disposed on one side of the induction coil 100. 110.
  • the projection of the induction coil 100 in the direction perpendicular to the magnetic element 110 needs to be located in the magnetic element 110.
  • the edges of the magnetic element 110 need to be larger than 1 mm around the induction coil 100. .
  • the magnetic element 110 is a ferrite magnetic sheet
  • the size of the ferrite magnetic sheet is selected to be a square ferrite magnetic sheet having a length L1 of 20 mm and a width W1 of 20 mm, and a ferrite magnetic sheet thickness.
  • H1 is 0.2 mm and magnetic permeability is in the range of 800 to 3000.
  • a 22 mm diameter coil is used as the transmitting end coil.
  • the self inductance L P is 7.43 microhenry. Adjust the series resonant capacitor at the transmitting end by using three 100 nanofarads and one 47 nanofarad ceramic capacitor in parallel to ensure that the resonant frequency f1 is 100K Hz.
  • the induction coil 100 has an inductive reactance L S of 25.25 microhenries, and an inductance-resistance-capacitance (LRC) meter has an L S ' of 28.78 microhenry.
  • LRC inductance-resistance-capacitance
  • the capacitance of the first capacitor C1 is 88 nanofarad
  • the capacitance of the second capacitor C2 is 1 nanofarad
  • the first capacitor C1 actually uses four ceramics of 22 nanofarads.
  • the capacitors are connected in parallel
  • the second capacitor C2 actually uses a ceramic capacitor of 1 nanometer.
  • the transmitting terminal C P uses three 100 nanofarads and one 47 nanofarad ceramic capacitor in parallel.
  • the first capacitor C1 in the coil matching circuit 200 is connected in parallel with four 22-nano ceramic capacitors, and the second capacitor C2 is selected from a ceramic capacitor of 1 nanometer.
  • the frequency of the transmitting end coil is 110K ⁇ 205K Hz, beyond which the data can be considered invalid. During the test, ensure that the transmitter coil is aligned with the center of the receiver coil.
  • the charging efficiency calculation formula of the present invention is:
  • the transmitting end is powered by a regulated power supply, and the current value of the regulated power supply is read at the same time, which is recorded as I in , and the unit is ampere (A).
  • I in the current value of the regulated power supply
  • A ampere
  • V in the input voltage value at the transmitter
  • the receiving end is connected to the electronic load, and the electronic load is read as the current value of the device to be charged, and is recorded as I out in ampere (A).
  • I out ampere
  • V out a multimeter to measure the output voltage at the receiving end, denoted as V out , in volts (V).
  • the charging efficiency is the highest, being 64%, and the output current of the induction coil 100 is 400 mA, and the efficiency is 62%.
  • the present example uses a smart watch wireless charging induction coil as an example to describe the induction coil structure 10 and the wireless charging device 20 of the present invention in detail.
  • the induction coil 100 uses a single-strand enamelled copper wire with a wire diameter of 0.2 mm or a multi-strand wire package of the same specification to be wound around 10 turns.
  • the number of layers is 2 layers.
  • the induction coil 100 has an inner diameter di2 of 20 mm, an outer diameter do2 of 25 mm, and a coil thickness dc2 of 0.4 mm.
  • the induction coil 100 is wound by a winding machine.
  • a layer of magnetic elements 110 is disposed on one side of the induction coil 100.
  • the projection of the induction coil 100 in the direction perpendicular to the magnetic element 110 needs to be located in the magnetic element 110.
  • the edges of the magnetic element 110 need to be larger than 1 mm around the induction coil 100. .
  • the magnetic element 110 is a ferrite magnetic sheet
  • the size of the ferrite magnetic sheet is selected to be a square ferrite magnetic sheet having a length L2 of 30 mm and a width W2 of 30 mm, and a ferrite magnetic sheet thickness.
  • H2 is 0.2 mm and magnetic permeability is in the range of 800 to 3000.
  • a 42 mm diameter coil is used as the transmitting end coil.
  • the self inductance L P is 7.43 microhenry. Adjust the series resonant capacitor at the transmitting end by using three 100 nanofarads and one 47 nanofarad ceramic capacitor in parallel to ensure that the resonant frequency f1 is 100K Hz.
  • the induction coil 100 has an inductive reactance L S of 17.46 microhenry, and an inductance-resistance-capacitance (LRC) meter has an L S ' of 18.90 microhenry.
  • LRC inductance-resistance-capacitance
  • the capacitance of the first capacitor C1 is 134 nanofarad
  • the capacitance of the second capacitor C2 is 1.47 nanofarad
  • the first capacitor C1 actually uses two ceramics of 68 nanofarads.
  • the capacitors are connected in parallel
  • the second capacitor C2 is actually connected in parallel by a 1 nanofarad method and a ceramic capacitor of 0.47 nanofarad.
  • the transmitter CP uses three 100 nanofarads and one 47 nanofarad ceramic capacitor in parallel.
  • the first capacitor C1 in the coil matching circuit 200 is connected in parallel with two ceramic capacitors of 68 nanometers, and the second capacitor C2 is selected from one nanofarad method and one 0.47 nanofarad ceramic capacitor.
  • the frequency of the transmitting end coil is 110K ⁇ 205K Hz, beyond which the data can be considered invalid. During the test, ensure that the transmitter coil is aligned with the center of the receiver coil.
  • the charging efficiency is the highest, which is 68%, and the output current of the induction coil 100 is 400 mA, and the efficiency is 66.3%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种感应线圈结构(10),其包括至少一层感应线圈(100),该至少一层感应线圈(100)经导线(101)绕制而成,每层圈数为3~20,最大外径为10~100毫米,该导线(101)的直径为0.1~5毫米,该感应线圈(100)的自身电感为5~30微亨。一种无线充电装置(20),其包括用于产生感应电流的线圈匹配电路(200)、与所述线圈匹配电路(200)连接的用于对所述感应电流进行整流的芯片外围电路(210)及与所述芯片外围电路(210)连接的用于输出整流后的所述感应电流至待充电设备以实现充电的输出接口电路(220)。

Description

感应线圈结构及无线充电装置
相关申请的交叉引用
本申请基于申请号为201510633542.7、申请日为2015年9月29日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及无线充电技术,特别是一种感应线圈结构及一种无线充电装置。
背景技术
现有技术中的如智能手机、平板电脑等电子设备进行无线充电时采用功率为5W、10W以及20W的方案,上述方案应用到智能穿戴设备中存在由于不匹配导致充电效率低的问题。对于智能手环、智能手表等智能穿戴设备,输入功率只需满足2W即可进行正常工作,因此智能穿戴设备对功率为2W的无线充电需求越发的强烈,但是根据市场对智能穿戴设备小型化、精致化、多样化等要求,其内部配备的无线充电接收端线圈和主板必须要适应该要求,因此线圈和主板正在逐步向小型化、形状多样化的方向发展,同时要保证充电的便捷性及高的充电灵敏性和效率,使得待充设备能够更方便、更快的充电以提高用户体验度,就必须有与接收端配套的发射端以适应这些需求。
现有产品市场需求量大,现有标准的线圈,尺寸较大,很难安装集成在穿戴产品中去,特别是配合小的接收端线圈时容易出现感应不到信号、识别慢、效率低、容易断电等问题,无法很好的满足市场需求。
并且,现有感应线圈形成于印制电路板上,感应线圈结构通常采用多个印制电路板叠加而成,并进行电连接。但制作工艺难以保证,其厚度较厚,一旦各层线圈发生错位,将导致各层线圈间无法导通,影响充电效果。
发明内容
本发明旨在至少解决现有技术中存在的问题技术问题之一。为此,本发明需要提供一种感应线圈结构及一种无线充电装置。
为达到上述目的,本发明第一方面的实施方式提供了一种感应线圈结构,包括:
至少一层感应线圈,所述至少一层感应线圈经导线绕制而成,每层所述感应线圈的圈数为3~20,所述感应线圈的最大外径为10~100毫米,所述导线的直径为0.1~5毫米,所述 感应线圈的自身电感为5~30微亨。
本发明实施方式的感应线圈结构提供了一种小尺寸的无线充电的感应线圈,感应线圈由导线绕制而成,容易做到厚度小,精度高,并且在多层的情况下,可保证各层感应线圈的连接性,进而保证充电效果。
在某些实施方式中,所述感应线圈最大外径为10~30毫米,所述导线的直径为0.1~1.5毫米。
在某些实施方式中,所述感应线圈由绕线机绕制所述导线而成。
在某些实施方式中,所述导线采用漆包线或丝包线。
在某些实施方式中,所述感应线圈结构包括置于所述感应线圈一侧的磁性元件。
在某些实施方式中,所述感应线圈在垂直于所述磁性元件方向上的投影位于所述磁性元件内。
本发明第二方面的实施方式提供了一种无线充电装置,包括:
线圈匹配电路,所述线圈匹配电路包括感应线圈结构,所述感应线圈结构包括至少一层感应线圈,所述至少一层感应线圈经导线绕制而成,每层所述感应线圈的圈数为3~20,所述感应线圈的最大外径为10~100毫米,所述导线的直径为0.1~5毫米,所述感应线圈的自身电感为5~30微亨,所述线圈匹配电路用于产生感应电流;
与所述线圈匹配电路连接的芯片外围电路,所述芯片外围电路用于对所述感应电流进行整流;及
与所述芯片外围电路连接的输出接口电路,所述输出接口电路用于输出整流后的所述感应电流至待充电设备以实现充电。
本发明实施方式提供了一种匹配小尺寸电子产品的无线充电的感应线圈结构的无线充电装置,感应线圈结构包括感应线圈,感应线圈由导线绕制而成,容易做到厚度小,精度高,并且在多层的情况下,可保证各层感应线圈的连接性,进而保证充电效果。
在某些实施方式中,所述线圈匹配电路包括:
第一电容,所述第一电容的一端连接所述感应线圈的一端,所述第一电容的另一端连接所述芯片外围电路;及
第二电容,所述第二电容的一端连接所述第一电容的另一端,所述第二电容的另一端连接所述感应线圈的另一端及所述芯片外围电路。
在某些实施方式中,所述感应线圈的品质因数大于77。
在某些实施方式中,所述感应线圈的最大外径为10~30毫米,所述导线的直径为0.1~1.5毫米。
在某些实施方式中,所述感应线圈由绕线机绕制所述导线而成。
在某些实施方式中,所述导线采用漆包线或丝包线。
在某些实施方式中,所述感应线圈结构包括置于所述感应线圈一侧的磁性元件。
在某些实施方式中,所述感应线圈在垂直于所述铁氧体磁片方向上的投影位于所述磁性元件内。
本发明的附加方面的优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是根据本发明一个实施方式的感应线圈结构的平面示意图。
图2是根据本发明一个实施方式的无线充电装置的电路示意图。
图3是根据本发明一个实施方式的线圈匹配电路的电路示意图。
图4是根据本发明又一个实施方式的感应线圈结构的立体示意图。
图5是根据本发明再一个实施方式的感应线圈结构的立体示意图。
具体实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、 “相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
请参阅图1,本发明实施方式的感应线圈结构10包括感应线圈100。
感应线圈100的层数至少为一层,该感应线圈100可由一根导线101绕制而成。当感应线圈为多层时,可拉伸导线101一端绕制成包括多层感应线圈100从而形成感应线圈结构10。
其中,每一层感应线圈100绕制3~20圈,感应线圈100的最大外径为10~100毫米。
绕制感应线圈100所使用的导线101直径为0.1~5毫米。
感应线圈的自身电感为5~30微亨,其中感应线圈100在没有电磁活性材料靠近时的自身电感LS为5~30微亨,感应线圈100放置于功率发射器上时自身电感LS’为6~30微亨。
LS表征了感应线圈100自身的感抗能力,LS’则表征了在其他功率发射器线圈的影响下感应线圈100自身的感抗能力,即在充电时感应线圈100产生电磁感应的能力。
综上所述,本发明实施方式的感应线圈结构10提供了一种小尺寸的无线充电的感应线圈100,感应线圈100由导线101绕制而成,容易做到厚度小,精度高,感应线圈结构10由一根导线101绕制而成,因此在多层的情况下,仍可保证各层感应线圈100的连接性, 进而保证充电效果。
在某些实施方式中,感应线圈100的最大外径为10~30毫米,导线101的直径为0.1~1.5毫米。
感应线圈100的最大外径过小会导致由于电路宽度的减小而使得阻抗增大,而最大外径过大则会导致由于电路宽度过大而减小功率传输效率。而导线101的直径则会影响感应线圈100的厚度及最大外径。因此,为使得感应线圈100有良好的充电效率,通常根据需要选择上述恰当的物理参数。
如此,采用优选物理参数可使得感应线圈结构10的充电效率更高。
在某些实施方式中,感应线圈100由绕线机绕制导线101而成。
采用绕线机绕线可使得感应线圈100的尺寸精度在0.5毫米内。并且,感应线圈100的尺寸可根据参数需求变化随时调整,从而提高充电效率。
如此,采用绕线机绕线尺寸精度高,并容易做到厚度小,能够在更小的范围内做成符合标准的线圈。同时,方便感应线圈100在绕制时根据需求随时调整。
在某些实施方式中,导线101采用漆包线或丝包线。
例如,导线101可选择使用铜丝,绕线时可选择单股漆包线或相同规格的多股丝包线。
如此,导线101在相互缠绕时彼此绝缘,避免导线101之间短路影响磁场的方向及大小。
可以理解的是,导线101的材料并不限于使用铜丝,也可以是其他金属,例如锌、银、金、白金等。
在本实施方式中,感应线圈结构10还包括置于感应线圈100一侧的磁性元件110。本实施方式中,磁性元件110是铁氧体磁片。可以理解,在其它实施方式中,磁性元件110也可为其它磁性材料。
当进行充电时,初级线圈即发射端产生一个强度、方向不断变化的磁场,为使该磁场能量尽可能地作用于接收线圈即感应线圈100,设置铁氧体磁片可对该磁场进行引导。也即是说,设置铁氧体磁片可使得分散的磁力线能够更聚集于感应线圈100上,以提高充电效率。
此外,当变化的磁场遇到金属等导体时,若导体是闭合导线时会产生电涡流效应。电涡流会产生大量的热量,设置铁氧体磁片可起到阻隔作用,使得该磁场只作用于感应线圈100,从而有效防止电涡流效应产生的热能对待充电设备造成损害。
例如,当待充电设备为手机时,若无铁氧体磁片,该磁场可同时作用于手机内电池、线路板及其他电子元器件并引起其发热。
当该磁场作用于感应线圈100时,感应线圈100自身会产生热量,设置铁氧体磁片还 可起到良好的散热效果。
如此,一方面,设置磁性元件110可提高感应线圈结构10的充电效率,另一方面,可改善感应线圈结构10的散热效果。
在某些实施方式中,感应线圈100在垂直于磁性元件110方向上的投影位于磁性元件110内。
较佳地,磁性元件110的各边缘需离感应线圈100周围大于1毫米。
如此,可避免感应线圈结构10在充电过程中出现漏磁及磁饱和等现象,使用户及电子设备更安全。
请参阅图2,本发明实施方式的无线充电装置20包括线圈匹配电路200、芯片及外围电路210及输出接口电路220。
线圈匹配电路200包括以上实施方式的感应线圈结构10。
作为一种示例,线圈匹配电路200可作为接收端设置于待充电设备。线圈匹配电路200用于接收发射端的电磁信号并产生感应电流。
一般来说,线圈匹配电路200产生的感应电流为交变电流。
芯片及外围电路210与线圈匹配电路200连接,并用于对线圈匹配电路200所产生的交变电流进行整流。
例如,芯片及外围电路210可将交变电流整流后以产生可供待充电设备充电使用的满足电压要求的直流电流。
输出接口电路220与芯片及外围电路210连接,用于将整流后的直流电流输出至待充电设备从而实现充电。
本发明实施方式提供了一种匹配小尺寸的无线充电的感应线圈结构10的无线充电装置20,感应线圈结构10包括感应线圈100,感应线圈100由导线101绕制而成,容易做到厚度小,精度高,并且在多层的情况下,可保证各层感应线圈的连接性,进而保证充电效果。
可以理解的是,由于无线充电装置20包括了感应线圈结构10,因此无线充电装置20的实施方式包括感应线圈10的全部实施方式的全部技术方案,且所达到的技术效果也完全相同,此处不再赘述。
在某些实施方式中,请参图2及3,线圈匹配电路200包括第一电容C1及第二电容C2。
第一电容C1的一端连接感应线圈100的一端,第一电容C1的另一端连接芯片及外围电路210。
第二电容C2的一端连接第一电容C1的另一端,第二电容的另一端连接感应线圈100的另一端及所述芯片及外围电路210。
优选地,第一电容C1及第二电容C2可以为多个电容的等效电容。
请参阅图3,线圈匹配电路200由第一电容C1、第二电容C2及感应线圈100形成双谐振电路。
其中第一电容C1与感应线圈100形成串联谐振,该谐振的回路可产生高电压,从而提高功率传输效率。
第二电容C2及感应线圈100形成并联谐振,第二电容C2用于实现谐振检测。
在一种示例中,根据Qi无线充电标准,该双谐振电路中的谐振频率分别为f1=100K赫兹,f2=1000K赫兹。
根据电容计算公式:
C1=[(f1·2π)2LS']-1……(1);
C2=[(f2·2π)2LS-C1-1]-1……(2)
其中,LS∈[5,30]微亨,及LS’∈[6,30]微亨,计算可得第一电容C1及第二电容C2,可得C1∈[101,253]纳法,C2∈[1.28,2.89]纳法。
在某些实施方式中,感应线圈100的品质因数Q大于77。
感应线圈品质因数Q是表征线圈质量的重要参数,Q值越大,则线圈的损耗越小;反之,线圈的损耗越大。感应线圈品质因数Q定义为当线圈在某一频率的交流电压工作时,线圈所呈现的感抗和线圈直流电阻的比值。
根据Q的定义,在本实施方式中,其计算公式为:
Figure PCTCN2016099629-appb-000001
其中f2=1000k赫兹,LS为感应线圈100自身感抗,R为感应线圈100的直流电阻。当LS确定时,R越小则Q值越大,即能量在感应线圈100上的损失越小,通常为保证充电效率,较佳地,Q值大于77。
下面参照具体的例子描述本发明实施方式的感应线圈结构10及无线充电装置20以更好地理解本发明。需要注意得是,本发明并不限于下面的具体的例子。
例子一:
请参阅图4,本例子中,以一款智能手表无线充电感应线圈为例对本发明的感应线圈结构10以及无线充电装置20进行详细说明。
感应线圈100使用线径0.2毫米的单股漆包铜线或同等规格线径多股丝包线绕制10圈,层数为2层。感应线圈100的内径di1为12.2毫米,外径do1为16.95毫米,线圈厚度dc1为0.4毫米。感应线圈100由绕线机绕制而成。
为了使感应线圈100能够以最大效率充电,在感应线圈100的一侧设置一层磁性元件 110。为了避免在工作中出现漏磁及磁饱和等状况,感应线圈100在垂直于磁性元件110方向上的投影需位于磁性元件110内,例如磁性元件110的各边缘需离感应线圈100周围大于1毫米。
在本例子中,磁性元件110为铁氧体磁片,铁氧体磁片的大小选定为长L1为20毫米,宽W1为20毫米的方形铁氧体磁片,铁氧体磁片厚度H1为0.2毫米,磁导率在800~3000范围内。
在本例子中配以直径22毫米线圈为发射端端线圈。自身电感LP为7.43微亨。调整发射端串联谐振电容选用3颗100纳法及1颗47纳法的陶瓷电容并联,保证谐振频率f1为100K赫兹。
感应线圈100自身感抗LS为25.25微亨,使用电感-电阻-电容(LRC)表测得LS’为28.78微亨。
根据公式(1)及公式(2)计算,得到第一电容C1的电容值为88纳法,第二电容C2的电容值为1纳法,第一电容C1实际采用4颗22纳法的陶瓷电容并联,第二电容C2实际采用1颗1纳法的陶瓷电容。
综上,发射端CP选用3颗100纳法及1颗47纳法的陶瓷电容并联。线圈匹配电路200中的第一电容C1选用4颗22纳法的陶瓷电容并联,第二电容C2选用1颗1纳法的陶瓷电容。
发射端线圈频率为110K~205K赫兹,超出该范围可以认为数据无效。测试时保证发射端线圈与接收端线圈中心对齐。
本发明的充电效率计算公式为:
Efficiency=Iout*Vout/(Iin*Vin)……(4)
发射端使用稳压电源供电,同时读取稳压电源的电流值,记为Iin,单位为安培(A)。使用万用表测量发射端的输入电压值,记为Vin,单位为伏特(V)。
接收端连接电子负载,同时读取电子负载即待充电设备的电流值,记为Iout,单位为安培(A)。使用万用表测量接收端输出电压,记为Vout,单位为伏特(V)。
根据公式(4)并经过测试,本实施方式中,当充电距离为2.8毫米时,充电效率最高,为64%,感应线圈100输出电流为400毫安,效率为62%。
例子二:
请参阅图5,本例子以一款智能手表无线充电感应线圈为例对本发明的感应线圈结构10以及无线充电装置20进行详细说明。
感应线圈100使用线径0.2毫米的单股漆包铜线或同等规格线径多股丝包线绕10圈, 层数为2层。其中,感应线圈100的内径di2为20毫米,外径do2为25毫米,线圈厚度dc2为0.4毫米。感应线圈100由绕线机绕制而成。
为了使感应线圈100能够以最大效率充电,在感应线圈100的一侧设置一层磁性元件110。为了避免在工作中出现漏磁及磁饱和等状况,感应线圈100在垂直于磁性元件110方向上的投影需位于磁性元件110内,例如磁性元件110的各边缘需离感应线圈100周围大于1毫米。
在本例子中,磁性元件110为铁氧体磁片,铁氧体磁片的大小选定为长L2为30毫米,宽W2为30毫米的方形铁氧体磁片,铁氧体磁片厚度H2为0.2毫米,磁导率在800~3000范围内。
在本例子中配以直径42毫米线圈为发射端端线圈。自身电感LP为7.43微亨。调整发射端串联谐振电容选用3颗100纳法及1颗47纳法的陶瓷电容并联,保证谐振频率f1为100K赫兹。
感应线圈100自身感抗LS为17.46微亨,使用电感-电阻-电容(LRC)表测得LS’为18.90微亨。
根据公式(1)及公式(2)计算,得到第一电容C1的电容值为134纳法,第二电容C2的电容值为1.47纳法,第一电容C1实际采用2颗68纳法的陶瓷电容并联,第二电容C2实际采用1颗1纳法及1颗0.47纳法的陶瓷电容并联。
综上,发射端CP选用3颗100纳法及1颗47纳法的陶瓷电容并联。线圈匹配电路200中的第一电容C1选用2颗68纳法的陶瓷电容并联,第二电容C2选用1颗1纳法及1颗0.47纳法陶瓷电容。
发射端线圈频率为110K~205K赫兹,超出该范围可以认为数据无效。测试时保证发射端线圈与接收端线圈中心对齐。
根据公式(4)并经过测试,本实施方式中,当充电距离为3毫米时,充电效率最高,为68%,感应线圈100输出电流为400毫安,效率为66.3%。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施方式,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施方式进行多种变化、修改、替换和变型, 本发明的范围由权利要求及其等同物限定。

Claims (14)

  1. 一种感应线圈结构,其特征在于,所述感应线圈结构包括至少一层感应线圈,所述至少一层感应线圈经导线绕制而成,每层所述感应线圈的圈数为3~20,所述感应线圈的最大外径为10~100毫米,所述导线的直径为0.1~5毫米,所述感应线圈的自身电感为5~30微亨。
  2. 如权利要求1所述的感应线圈结构,其特征在于,所述感应线圈的最大外径为10~30毫米,所述导线的直径为0.1~1.5毫米。
  3. 如权利要求1或2所述的感应线圈结构,其特征在于,所述感应线圈由绕线机绕制所述导线而成。
  4. 如权利要求1至3中任一项所述的感应线圈结构,其特征在于,所述导线采用漆包线或丝包线。
  5. 如权利要求1至4中任一项所述的感应线圈结构,其特征在于,所述感应线圈结构包括置于所述感应线圈一侧的磁性元件。
  6. 如权利要求5所述的感应线圈结构,其特征在于,所述感应线圈在垂直于所述铁氧体磁片方向上的投影位于所述磁性元件内。
  7. 一种无线充电装置,其特征在于,包括:
    线圈匹配电路,所述线圈匹配电路包括感应线圈结构,所述感应线圈结构包括至少一层感应线圈,所述至少一层感应线圈经导线绕制而成,每层所述感应线圈的圈数为3~20,所述感应线圈的最大外径为10~100毫米,所述导线的直径为0.1~5毫米,所述感应线圈的自身电感为5~30微亨,所述线圈匹配电路用于产生感应电流;
    与所述线圈匹配电路连接的芯片及外围电路,所述芯片及外围电路用于对所述感应电流进行整流;及
    与所述芯片及外围电路连接的输出接口电路,所述输出接口电路用于输出整流后的所述感应电流至待充电设备以实现充电。
  8. 如权利要求7所述的无线充电装置,其特征在于,所述线圈匹配电路包括:
    第一电容,所述第一电容的一端连接所述感应线圈的一端,所述第一电容的另一端连接所述芯片外围电路;及
    第二电容,所述第二电容的一端连接所述第一电容的另一端,所述第二电容的另一端连接所述感应线圈的另一端及所述芯片外围电路。
  9. 如权利要求7或8所述的无线充电装置,其特征在于,所述感应线圈的品质因数大于77。
  10. 如权利要求7至9中任一项所述的无线充电装置,其特征在于,所述感应线圈的最大外径为10~30毫米,所述导线的直径为0.1~1.5毫米。
  11. 如权利要求7至10中任一项所述的无线充电装置,其特征在于,所述感应线圈由绕线机绕制所述导线而成。
  12. 如权利要求7至11中任一项所述的无线充电装置,其特征在于,所述导线采用漆包线或丝包线。
  13. 如权利要求7至12中任一项所述的无线充电装置,其特征在于,所述感应线圈结构包括置于所述感应线圈一侧的磁性元件。
  14. 如权利要求13所述的无线充电装置,其特征在于,所述感应线圈在垂直于所述铁氧体磁片方向上的投影位于所述磁性元件内。
PCT/CN2016/099629 2015-09-29 2016-09-21 感应线圈结构及无线充电装置 WO2017054666A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510633542.7 2015-09-29
CN201510633542.7A CN106560904B (zh) 2015-09-29 2015-09-29 感应线圈结构及无线充电装置

Publications (1)

Publication Number Publication Date
WO2017054666A1 true WO2017054666A1 (zh) 2017-04-06

Family

ID=58422667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/099629 WO2017054666A1 (zh) 2015-09-29 2016-09-21 感应线圈结构及无线充电装置

Country Status (2)

Country Link
CN (1) CN106560904B (zh)
WO (1) WO2017054666A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107819362A (zh) * 2017-11-24 2018-03-20 深圳顺络电子股份有限公司 一种无线充电线圈组件
CN108766743B (zh) * 2018-05-15 2020-08-11 北京市燃气集团有限责任公司 用于地下0m-3m无源探测的感应线圈
US10965172B2 (en) 2018-08-14 2021-03-30 Toyota Motor Engineering & Manufacturing North America, Inc. Shape adaptive wireless charging coil for vehicle interior
CN110557127B (zh) * 2019-09-27 2021-09-07 中国科学院深圳先进技术研究院 多线圈天线系统及植入式医疗设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102315691A (zh) * 2010-07-01 2012-01-11 苏州宝时得电动工具有限公司 无线充电系统及无线充电方法
CN102906831A (zh) * 2010-05-28 2013-01-30 皇家飞利浦电子股份有限公司 改进的接收器线圈
CN103051024A (zh) * 2012-12-19 2013-04-17 东莞市创晨电子有限公司 一种无线充电方法及无线充电器
CN203103041U (zh) * 2013-01-16 2013-07-31 西北台庆科技股份有限公司 可避免无线充电装置磁特性降低的线圈模块
CN103280899A (zh) * 2013-05-24 2013-09-04 奇瑞汽车股份有限公司 无线充电接收装置、发射装置和系统
US20140266030A1 (en) * 2013-03-12 2014-09-18 Samsung Electro-Mechanics Co., Ltd. Coil substrate for wireless charging and electric device using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102906831A (zh) * 2010-05-28 2013-01-30 皇家飞利浦电子股份有限公司 改进的接收器线圈
CN102315691A (zh) * 2010-07-01 2012-01-11 苏州宝时得电动工具有限公司 无线充电系统及无线充电方法
CN103051024A (zh) * 2012-12-19 2013-04-17 东莞市创晨电子有限公司 一种无线充电方法及无线充电器
CN203103041U (zh) * 2013-01-16 2013-07-31 西北台庆科技股份有限公司 可避免无线充电装置磁特性降低的线圈模块
US20140266030A1 (en) * 2013-03-12 2014-09-18 Samsung Electro-Mechanics Co., Ltd. Coil substrate for wireless charging and electric device using the same
CN103280899A (zh) * 2013-05-24 2013-09-04 奇瑞汽车股份有限公司 无线充电接收装置、发射装置和系统

Also Published As

Publication number Publication date
CN106560904A (zh) 2017-04-12
CN106560904B (zh) 2019-04-19

Similar Documents

Publication Publication Date Title
US11953646B2 (en) Detecting apparatus, power receiving apparatus, power transmitting apparatus, and contactless power supply system
US11004597B2 (en) Detection apparatus, power supply system, and method of controlling detection apparatus
US10027183B2 (en) Detecting apparatus, power receiving apparatus, power transmitting apparatus, and contactless power supply system
US10186909B2 (en) Wireless power transfer system for wirelessly transferring electric power in noncontact manner by utilizing resonant magnetic field coupling
WO2017054666A1 (zh) 感应线圈结构及无线充电装置
JP6095957B2 (ja) 無線電力伝送装置、給電装置、及び受電装置
CN106888038A (zh) 通信装置
JP2014225962A (ja) 検知装置、給電システム、および、検知装置の制御方法
JP6122402B2 (ja) 送電装置および無線電力伝送システム
JP2014225963A (ja) 検知装置、給電システム、および、検知装置の制御方法
EP2693454B1 (en) Power-receiving coil, power-reception device, and contactless power-transmission system
JP2015046990A (ja) 給電装置、受電装置、給電システム、および、給電装置の制御方法
US11218029B2 (en) Detecting apparatus, power receiving apparatus, power transmitting apparatus, and contactless power supply system
JP2009278837A (ja) 誘導電力伝送システム
JP2010063324A (ja) 誘導電力伝送回路
TW201015821A (en) Electromagnetic interference mitigation
JPWO2013145788A1 (ja) 送電装置、電子機器およびワイヤレス電力伝送システム
JP2016039644A (ja) 送電装置および無線電力伝送システム
US20180062441A1 (en) Segmented and Longitudinal Receiver Coil Arrangements for Wireless Power Transfer
WO2012034520A1 (zh) 天线及具有该天线的装置
CN208521760U (zh) 一种导线绕组装置及电子设备
CN208596971U (zh) 无线装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16850290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16850290

Country of ref document: EP

Kind code of ref document: A1