WO2017054607A1 - Optical network monitoring with a photonic switch - Google Patents

Optical network monitoring with a photonic switch Download PDF

Info

Publication number
WO2017054607A1
WO2017054607A1 PCT/CN2016/097374 CN2016097374W WO2017054607A1 WO 2017054607 A1 WO2017054607 A1 WO 2017054607A1 CN 2016097374 W CN2016097374 W CN 2016097374W WO 2017054607 A1 WO2017054607 A1 WO 2017054607A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
switch
fiber
optical
transmitter
Prior art date
Application number
PCT/CN2016/097374
Other languages
French (fr)
Inventor
Mohammad Mehdi Mansouri Rad
Eric Bernier
Dominic John Goodwill
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to CN201680047256.5A priority Critical patent/CN107925477B/en
Priority to EP16850231.8A priority patent/EP3342067B1/en
Publication of WO2017054607A1 publication Critical patent/WO2017054607A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0771Fault location on the transmission path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/3109Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR
    • G01M11/3136Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR for testing of multiple fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/3109Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR
    • G01M11/3145Details of the optoelectronics or data analysis
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/071Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0775Performance monitoring and measurement of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0066Provisions for optical burst or packet networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0083Testing; Monitoring

Definitions

  • OPM optical performance monitoring
  • AONs agile optical networks
  • OPM should be available for each individual device that connects to an optical fiber. Without OPM, locating faulty optical fibers would be difficult, particularly when fiber density and system complexity are high.
  • An optical time-domain reflectometer (OTDR) is a device used for monitoring optical fibers as part of OPM.
  • OTDR optical time-domain reflectometer
  • the disclosure includes an optical device comprising a transmitter module, a receiver module, and a switch comprising a first port coupled to the transmitter module, a second port coupled to the receiver module, a third port configured to couple to a transmitter fiber, and a fourth port configured to couple to a receiver fiber.
  • the disclosure includes an optical device comprising a transmitter module configured to transmit optical data signals in a data mode, and transmit optical test pulses in a monitor mode, a receiver module configured to receive input optical data signals in the data mode, and receive reflected optical test pulses in the monitor mode, and a switch coupled to the transmitter module and the receiver module and configured to switch optical paths to implement the data mode or the monitor mode.
  • the disclosure includes a method implemented in a switch, the method comprising operating in a monitor mode that provides for monitoring of a transmitter fiber or a receiver fiber, receiving a command to transition from the monitor mode to a data mode, connecting a transmitter module to the transmitter fiber, and connecting a receiver module to the receiver fiber.
  • the disclosure includes a method implemented in a switch, the method comprising operating in a data mode that provides for communication of user data through the switch, receiving a request to transition from the data mode to a monitor mode that provides for monitoring of a transmitter fiber or a receiver fiber, both the transmitter fiber and the receiver fiber are coupled to the switch, and connecting ports of the switch to implement the monitor mode.
  • the disclosure includes a method comprising transmitting, by a transmitter module, an optical test pulse to a switch, switching, by the switch, the optical test pulse to a fiber to be tested, receiving, by the switch, a reflected optical test pulse that is a reflected portion of the optical test pulse, and switching, by the switch, the reflected optical test pulse to a receiver module for monitoring.
  • FIG. 1 is a schematic diagram of an optical network.
  • FIG. 2 is a schematic diagram of a data center.
  • FIG. 3 is a schematic diagram of an optical device.
  • FIG. 4 is a perspective view of an interposer system.
  • FIG. 5 is a schematic diagram of an optical device.
  • FIG. 6 is a schematic diagram of the switch in FIG. 5.
  • FIG. 7 is a schematic diagram of a first port connection configuration for the switch in FIG. 5.
  • FIG. 8 is a schematic diagram of a second port connection configuration for the switch in FIG. 5.
  • FIG. 9 is a diagram of the switch in FIG. 5 transitioning from the data mode to the first monitor mode.
  • FIG. 10 is a diagram of the switch in FIG. 5 transitioning from the data mode to the second monitor mode.
  • FIG. 11 is a flowchart illustrating a method of transitioning a switch from a monitor mode to a data mode.
  • FIG. 12 is a flowchart illustrating a method of transitioning a switch from a data mode to a monitor mode.
  • FIG. 13 is a schematic diagram of a transceiver system in a data mode.
  • FIG. 14 is a schematic diagram of the transceiver system in FIG. 13 in a monitor mode.
  • FIG. 15 is a schematic diagram of a network device.
  • FIG. 16 is a flowchart illustrating a method of monitoring an optical test pulse.
  • FIG. 1 is a schematic diagram of an optical network 100.
  • the optical network 100 includes a quad small form-factor pluggable (QSFP) transceiver 110, five patch panels 120, 40 optical fibers 130, and four destination units 140.
  • QSFP quad small form-factor pluggable
  • the components of the optical network 100 may be arranged as shown or in any other suitable manner.
  • the QSFP transceiver 110 is a transceiver that includes four transmitters and four receivers for data communication.
  • the patch panels 120 couple the QSFP transceiver 110 to the optical fibers 130 and connect different optical fibers 130 to each other.
  • the optical fibers 130 are used to communicate optical signals between the QSFP transceiver 110 and the destination units 140.
  • the destination units 140 are any units that can receive and transmit optical signals.
  • the destination units are data centers.
  • Optical fibers 130 may become faulty when they have cuts, bends, debris, or other issues. It can be difficult to identify which of multiple optical fibers 130 in the optical network 100 is faulty, and to determine the location of the fault.
  • FIG. 2 is a schematic diagram of a data center 200.
  • the data center 200 includes seven nodes 210 and 22 optical fibers 220.
  • the components of the data center 200 may be arranged as shown or in any other suitable manner.
  • Each node 210 transmits and receives optical signals using a transmitter and a receiver (not shown in FIG. 2) .
  • the optical fibers 220 communicate optical signals between any two adjacent nodes 210. It can be difficult to identify which of multiple optical fibers 220 in the data center 200 is faulty, and to determine the location of the fault. Therefore, a need exists for an optical device that monitors the optical fibers 130, 220 and makes such a determination.
  • FIG. 3 is a schematic diagram of an optical device 300.
  • the optical device 300 is described in Neil Parkin, et al., "Gigabit SFP Transceiver with Integrated Optical Time Domain Reflectometer for Ethernet Access Services, " 39th European Conference and Exhibition on Optical Communication (ECOC 2013) , September 2013, which is incorporated by reference.
  • the optical device 300 includes a transmitter module 310, an optical fiber 340, an optical power splitter 350, a microcontroller 360, and a receiver module 370.
  • the optical device 300 may operate as a transceiver or a fiber monitor.
  • the transmitter module 310 transmits optical signals down the optical fiber 340 via the optical power splitter 350, and the receiver module 370 receives optical signals from the optical fiber 340 via the optical power splitter 350.
  • the transmitted and received signals could be ordinarily transmitted and received signals, or the received signal could be a reflection of a test signal transmitted by the transmitter module 310.
  • the components of the optical device 300 may be arranged as shown or in any other suitable manner.
  • the transmitter module 310 includes a data laser driver 325, an OTDR circuit 330, a mode switch 320, and a laser diode (LD) 315.
  • the data laser driver 325 receives electrical transmitter signals 327, amplifies the electrical transmitter signals 327, and outputs amplified electrical transmitter signals.
  • the OTDR circuit 330 generates electrical control signals that drive the LD 315 to generate optical test pulses for fiber monitoring.
  • the mode switch 320 couples the data laser driver 325 to the LD 315 when the optical device 300 is configured as a transceiver.
  • the mode switch 320 couples the OTDR circuit 330 to the LD 315 when the optical device 300 is configured as a fiber monitor.
  • the LD 315 generates optical data signals modulated by the amplified electrical transmitter signals when the optical device 300 is configured as a transceiver.
  • the LD 315 generates optical test pulses when the optical device 300 is configured as a fiber monitor.
  • the optical fiber 340 communicates optical data signals or optical test pulses between the optical device 300 and other devices (not shown) .
  • the optical power splitter 350 splits received optical signals from the optical fiber 340 and passes a portion of the received optical signals to a photodiode (PD) 380. The remaining portion of the received optical signals is lost.
  • the optical power splitter 350 passes transmitted optical signals such as the optical data signals or the optical test pulses from the LD 315 to the optical fiber 340.
  • the optical power splitter 350 may instead be an optical circulator or a directional coupler.
  • the microcontroller 360 communicates with the transmitter module 310 and the receiver module 370.
  • the microcontroller 360 generates fiber diagnosis signals 365 when the optical device 300 is configured as a fiber monitor.
  • the receiver module 370 includes the PD 380 and an amplifier 390.
  • the PD 380 receives the portion of the received optical signals described above and converts the portion of the received optical signals to electrical signals.
  • the amplifier 390 receives the electrical signals and amplifies the electrical signals.
  • the amplifier outputs transceiving amplified electrical signals 395.
  • the amplifier 390 outputs monitoring amplified electrical signals 385 to the microcontroller for fiber diagnosis.
  • the mode switch 320 couples the data laser driver 325 to the LD 315.
  • the data laser driver 325 receives the electrical transmitter signals 327, amplifies the electrical transmitter signals 327, and outputs the amplified electrical transmitter signals.
  • the LD 315 receives the amplified electrical transmitter signals and generates the optical data signals modulated by the amplified electrical transmitter signals.
  • the optical power splitter 350 passes the optical signals to the optical fiber 340.
  • the optical power splitter 350 passes external input optical signals to the receiver module 370 via the optical fiber 340.
  • the PD 380 receives the external input optical signals and converts them to transceiving electrical signals.
  • the amplifier 390 receives the transceiving electrical signals, amplifies the transceiving electrical signals, and outputs transceiving amplified electrical signals 395.
  • the mode switch 320 couples the OTDR circuit 330 to the LD 315.
  • the OTDR circuit 330 generates electrical control signals.
  • the LD 315 receives the electrical control signals and generates optical test pulses.
  • the optical power splitter 350 passes the optical test pulses to the optical fiber 340.
  • the optical test pulses are reflected by the defect in the optical fiber 340 and travel back toward the optical power splitter 350. Otherwise, the optical test pulses reflect at the end of the optical fiber 340. This reflection is known as backscattering.
  • the optical power splitter 350 splits the reflected optical test pulses and passes a portion of the reflected optical test pulses to the receiver module 370.
  • the PD 380 receives the portion of the reflected optical test pulses and converts them to second electrical signals.
  • the amplifier 390 receives the second electrical signals, amplifies the second electrical signals, and outputs second amplified electrical signals 385 to the microcontroller 360.
  • the microcontroller 360 determines whether the optical fiber 340 is functioning properly by calculating the reflection location where the optical test pulses reflect in the optical fiber 340. Specifically, the microcontroller 360 calculates the reflection location based on the velocity of light in the optical fiber 340, the distance between the LD 315 and the optical power splitter 350, and the distance between the PD 380 and the optical power splitter 350, which are known. The microcontroller 360 calculates the reflection location based on the time it takes for the optical test pulses to travel from the LD 315, to the reflection location, and back to the PD 380. The travel time depends on the distance of the reflection location from the optical power splitter 350.
  • the fiber diagnosis signal 365 indicates the optical fiber 340 is not faulty.
  • the fiber diagnosis signal 365 indicates the optical fiber 340 is faulty and indicates the location of the fault.
  • the optical device 300 has several drawbacks. Firstly, the optical device 300 has a single optical fiber 340.
  • the single optical fiber 340 is incompatible with a standard duplex lucent connection (LC) pair, which includes two fiber ports.
  • the optical power splitter 350 introduces significant power loss, which makes the optical device 300 energy inefficient.
  • the mode switch 320 and the OTDR circuit 330 increase the size and cost of the optical device 300.
  • the optical device includes a switch.
  • the switch is a silicon photonic switch, which adds negligible cost for fabrication using silicon photonic technologies.
  • the switch may replace an optical power splitter and thus reduce power loss.
  • the switch includes two inputs and two outputs and may employ a Mach-Zehnder interferometer (MZI) structure.
  • MZI Mach-Zehnder interferometer
  • the optical device is coupled to a transmitter fiber and a receiver fiber, which make the optical device compatible with a standard duplex LC pair.
  • the disclosed embodiments may be employed in data centers, interposer systems, metro networks, long-haul networks, and other systems and networks employing opto-electronic transceivers.
  • FIG. 4 is a perspective view of an interposer system 400.
  • the interposer system 400 is an optoelectronic integrated circuit configured to perform a variety of functions such as receiving optical signals, amplifying optical signals, and transmitting optical signals.
  • the interposer system 400 includes an electrical chip 410 and a photonic chip 430 coupled via copper pillars 460.
  • the components of the interposer system 400 may be arranged as shown or in any other suitable manner.
  • the electrical chip 410 is configured to provide electrical control of the photonic chip 430, signal modulation, and other functions.
  • the electrical chip 410 includes a trans-impedance amplifier (TIA) 415, a linear amplifier (LA) 420, and an electrical transmitter (TX) 425.
  • the photonic chip 430 includes a first fiber 440 coupled to an external continuous-wave laser 435, grating coupler 445, a Mach-Zehnder modulator (MZM) 465, a second fiber 475, wires 480, a third fiber 490, an optical monitoring device 470, an optical waveguide 455, and a PD 450.
  • MZM Mach-Zehnder modulator
  • the optical monitoring device 470 is coupled to the second fiber 475 and is configured to monitor the second fiber 475.
  • the optical monitoring device 470 may also monitor the first fiber 440 and the third fiber 490.
  • the optical monitoring device 470 is similar to the optical device 500 described below.
  • FIG. 5 is a schematic diagram of an optical device 500.
  • the optical device 500 includes a switch 515, a transmitter module 540, a receiver module 560, and a microcontroller 555.
  • the optical device 500 operates in a data mode or one of two monitor modes. In the data mode, the optical device 500 is configured as a transceiver that transmits and receives optical signals. In a first monitor mode, the optical device 500 is configured as a fiber monitor that monitors a transmitter fiber 510. In a second monitor mode, the optical device 500 is configured as a fiber monitor that monitors a receiver fiber 512. Unlike the optical device 300, the optical device 500 does not include the mode switch 320, but instead includes the switch 515. Additionally, unlike the optical device 300, which includes a single optical fiber 340, the optical device 500 includes the transmitter fiber 510 and the receiver fiber 512. The components of the optical device 500 may be arranged as shown or in any other suitable manner.
  • the switch 515 is configured to switch optical paths and includes a first port 525, a second port 535, a third port 520, and a fourth port 530.
  • the switch 515 may be implemented with different structures due to different requirements of insertion loss and configuration time. Insertion loss of the switch 515 is defined as the loss of signal power resulting from the insertion of the switch 515 into the optical device 500. Configuration time of the switch 515 is defined as the time it takes for the switch 515 to switch between modes, which are described with respect to FIGS. 7-10 below.
  • the switch 515 may be a silicon photonic switch and may have the structure in FIG. 6.
  • the transmitter module 540 is coupled to the first port 525 and includes a data laser driver 550 and an LD 545.
  • the data laser driver 550 is configured to amplify a received electrical transmitter signal 552, and output amplified electrical transmitter signals.
  • the amplified electrical transmitter signals drive the LD 545 to generate an optical output signal, which is sent to the first port 525 of the switch 515.
  • the receiver module 560 is coupled to the second port 535 and includes a PD 565 and an amplifier 570.
  • the PD 565 is configured to convert received optical signals to electrical signals.
  • the amplifier 570 amplifies the received electrical signals.
  • the amplifier 570 outputs the amplified electrical signals 575 for further processing by the optical device 500 or another device (not shown) .
  • the amplifier In the monitor mode, the amplifier outputs the amplified electrical signals 568 to the microcontroller 555.
  • the transmitter fiber 510 is coupled to the third port 520.
  • the third port 520 is referred to as a transmitter port.
  • the third port 520 is configured to communicate the optical data signals in the data mode and the optical test pulses in the monitor mode from the transmitter module 540.
  • the receiver fiber 512 is coupled to the fourth port 530.
  • the fourth port 530 is referred to as a receiver port.
  • the fourth port 530 is configured to communicate the input optical data signals in the data mode from external devices (not shown) and the optical test pulses in the monitor modes from the transmitter module 540.
  • the microcontroller 555 is coupled to the transmitter module 540, the switch 515, and the receiver module 560 and is configured to instruct the transmitter module 540, the switch 515, and the receiver module 560 to operate in the data mode or one of the monitor modes. In the monitor modes, the microcontroller 555 is also configured to generate fiber diagnosis signals 557 indicating if the transmitter fiber 510 or the receiver fiber 512 is faulty. Operation of the optical device 500 is described further below.
  • FIG. 6 is a schematic diagram of the switch 515 in FIG. 5. While FIG. 6 shows one architecture for the switch 515, other suitable architectures may be used.
  • the switch 515 has a 2 ⁇ 2 MZI structure.
  • the switch 515 includes the first port 525, the second port 535, a first 2 ⁇ 2 coupler 610, a first arm waveguide 615, a second arm waveguide 625, a first phase shifter 620, a second phase shifter 630, a second 2 ⁇ 2 coupler 640, the third port 520, and the fourth port 530.
  • the components of the switch 515 may be arranged as shown or in any other suitable manner.
  • the first phase shifter 620 is configured to change the phases of optical signals that travel in the first arm waveguide 615.
  • the second phase shifter 630 is configured to change the phases of optical signals that travel in the second arm waveguide 625.
  • the thermal-optic effect is used by applying electrical voltages with a direct current (DC) source (not shown) to the first phase shifter 620, the second phase shifter 630, or both to increase the temperature and induce changes of the refractive index of the first phase shifter 620, the second phase shifter 630, or both.
  • the free carrier plasma effect is used by injecting free carriers in the first phase shifter 620, the second phase shifter 630, or both to change carrier concentration and induce change of the refractive index of the first phase shifter 620, the second phase shifter 630, or both.
  • the method using the free carrier plasma effect provides faster configuration speed than the method using the thermal-optic effect.
  • a typical configuration time based on the method using the free carrier plasma effect is approximately 1 nanosecond (ns)
  • a typical configuration time based on the method using the thermo-optic effect is approximately 1 microsecond ( ⁇ s) . While two methods of tuning the first phase shifter 620 and the second phase shifter 630 are described, other suitable methods may also be used.
  • FIG. 7 is a schematic diagram of a first port connection configuration for the switch 515 in FIG. 5.
  • the first port connection configuration is implemented by tuning the first phase shifter 620, the second phase shifter 630, or both. As shown, the first port 525 is connected to the third port 520, and the second port 535 is connected to the fourth port 530.
  • FIG. 8 is a schematic diagram of a second port connection configuration for the switch 515 in FIG. 5.
  • the second port connection configuration is implemented by tuning the first phase shifter 620, the second phase shifter 630, or both. As shown, the first port 525 is connected to the fourth port 530, and the second port 535 is connected to the third port 520.
  • FIG. 9 is a diagram 900 of the switch 515 in FIG. 5 transitioning from the data mode to the first monitor mode.
  • the transmitter fiber 510 is monitored.
  • a timeline shows the time required to perform the transition.
  • the switch 515 is in the data mode. Specifically, the first port 525 is connected to the third port 520, and the second port 535 is connected to the fourth port 530. Although not shown, the first port 525 is coupled to the transmitter module 540, the second port 535 is coupled to the receiver module 560, the third port 520 is coupled to the transmitter fiber 510, and the fourth port 530 is coupled to the receiver fiber 512.
  • the switch 515 is in a first step of the first monitor mode.
  • the switch 515 transitions from the first stage 910 to the second stage 920 after receiving from the microcontroller 555 a request to transition from the data mode to the first monitor mode.
  • the second port 535 disconnects from the fourth port 530, and the first port 525 connects to the third port 520.
  • Optical test pulses travel from the transmitter module 540, through the first port 525 and the third port 520, and to the transmitter fiber 510.
  • the switch 515 may take about 1 ns of configuration time to transition from the first stage 910 to the second stage 920.
  • the switch 515 is in a second step of the first monitor mode.
  • the switch 515 transitions from the second stage 920 to the third stage 930 after the optical test pulses from the transmitter module 540 enter the transmitter fiber 510.
  • the first port 525 disconnects from the third port 520, and the second port 535 connects to the third port 520.
  • the switch 515 may take about 1 ns of configuration time to transition from the second stage 920 to the third stage 930.
  • FIG. 10 is a diagram 1000 of the switch 515 in FIG. 5 transitioning from the data mode to the second monitor mode.
  • the receiver fiber 512 is monitored.
  • a timeline shows the time required to perform the transition.
  • the switch 515 is in the data mode. Specifically, the first port 525 is connected to the third port 520, and the second port 535 is connected to the fourth port 530. Although not shown, the first port 525 is coupled to the transmitter module 540, the second port 535 is coupled to the receiver module 560, the third port 520 is coupled to the transmitter fiber 510, and the fourth port 530 is coupled to the receiver fiber 512.
  • the switch 515 is in a second step of the second monitor mode.
  • the switch 515 transitions from the first stage 1010 to the second stage 1020 after receiving from the microcontroller 555 a request to transition from the data mode to the second monitor mode.
  • the second port 535 disconnects from the fourth port 530 and the first port 525 connects to the fourth port 530.
  • Optical test pulses travel from the transmitter module 540, through the first port 525 and the fourth port 530, and to the receiver fiber 512.
  • the switch 515 may take about 1 ns of configuration time to transition from the first stage 1010 to the second stage 1020.
  • the switch 515 is in a second step of the second monitor mode.
  • the switch 515 transitions from the second stage 920 to the third stage 930 after the optical test pulses from the transmitter module 540 enter the receiver fiber 512.
  • the first port 525 disconnects from the fourth port 530, and the second port 535 connects to the fourth port 530.
  • the switch 515 may take about 1 ns of configuration time to transition from the second stage 1020 to the third stage 1030.
  • the microcontroller 555 sends a request to the switch 515, the transmitter module 540, and the receiver module 560 to operate in the data mode or one of the monitor modes.
  • electrical transmitter signals 552 carrying transmission data are input to the data laser driver 550, which amplifies the electrical transmitter signals 552, and outputs the amplified electrical transmitter signals.
  • the LD 545 receives the amplified electrical transmitter signals and generates the optical data signals modulated by the amplified electrical transmitter signals.
  • the switch 515 configures port connections so that the first port 525 is connected to the third port 520 and the second port 535 is connected to the fourth port 530.
  • the transmitter module 540 couples to the transmitter fiber 510
  • the receiver module 560 couples to the receiver fiber 512.
  • the switch 515 receives the optical data signals from the LD 545 and switches the optical data signals to the transmitter fiber 510.
  • the switch 515 also receives input optical data signals from the external devices (not shown) via the receiver fiber 512 and switches the input optical data signals from the receiver fiber 512 to the receiver module 560.
  • the PD 565 converts the input optical data signals to first electrical signals.
  • the amplifier 570 receives the first electrical signals, amplifies the first electrical signals, and outputs the first amplified electrical signals 575.
  • electrical transmitter signals 552 carrying control signals are input into the data laser driver 550, which amplifies the electrical transmitter signals 552, and outputs the amplified electrical transmitter signals.
  • the LD 545 receives the amplified electrical transmitter signals and generates optical test pulses.
  • the optical test pulses travel in the transmitter fiber 510, reflect at a reflection location of the transmitter fiber 510, and travel back in the transmitter fiber 510 toward the third port 520.
  • the switch 515 receives the reflected test pulse at the third port 520, switches the reflected test pulse to the second port 535, and outputs the reflected test pulse for fault detection, which is described further below.
  • the effective range of the fault detection depends on the configuration time of the switch 515 because the reflected test pulse may enter the switch 515 before the switch 515 is able to change modes.
  • a 1 ns configuration time may limit fault detection to a reflection location of greater than 10 centimeters (cm) , because 1 ns is enough time for light to travel approximately 10 cm in the transmitter fiber 510, reflect off a defect in the transmitter fiber 510, and travel 10 cm back to the switch 515. If the light has a shorter distance to travel before reflecting, the switch will not yet be configured to route the reflected pulse to the PD 565 for detection.
  • the optical test pulses travel in the receiver fiber 512, reflect at a reflection location of the receiver fiber 512, and travel back in the receiver fiber 512 toward the fourth port 530.
  • the switch 515 receives the reflected test pulse at the fourth port 530, switches the reflected test pulse to the second port 535, and outputs the reflected test pulse for fault detection, which is described further below.
  • the PD 565 receives the reflected optical test pulses and converts the reflected optical test pulses to the second electrical signals.
  • the amplifier 570 receives the second electrical signals, amplifies the second electrical signals, and outputs the second amplified electrical signals 568 to the microcontroller 555.
  • the microcontroller 555 receives the second amplified electrical signals 568, calculates the reflection location to determine whether the transmitter fiber 510 or the receiver fiber 512 is faulty, and generates fiber diagnosis signals 557 indicating whether the transmitter fiber 510 or the receiver fiber 512 is faulty.
  • the microcontroller 555 calculates the reflection location based on the velocity of light in the transmitter fiber 510 and the distance between the LD 545 and the first port 525, the first port 525 and the third port 520, the third port 520 and the second port 535, and the second port and the PD 565, which are known.
  • the microcontroller 555 calculates the reflection location based on the velocity of light in the receiver fiber 512 and the distance between the LD 545 and the first port 525, the first port 525 and the fourth port 530, the fourth port 530 and the second port 535, and the second port and the PD 565, which are known.
  • the microcontroller 555 calculates the reflection location further based on the time it takes for the optical test pulses to travel from the LD 545, to the reflection location, and back to the PD 565. That time varies depending on the distance of the reflection location from the third port 515 for the transmitter fiber 510 or from the fourth port 530 for the receiver fiber 512.
  • the fiber diagnosis signals 557 indicate that the transmitter fiber 510 or the receiver fiber 512 is not faulty. Otherwise, the fiber diagnosis signals 557 indicate the fiber being tested (either the transmitter fiber 510 or the receiver fiber 512) is faulty and where the transmitter fiber 510 or the receiver fiber 512 is faulty.
  • FIG. 11 is a flowchart illustrating a method 1100 of transitioning a switch from a monitor mode to a data mode.
  • the method 1100 may be performed in the switch.
  • the switch operates in a monitor mode that provides for monitoring of a transmitter fiber or a receiver fiber.
  • the transmitter fiber may be the transmitter fiber 510.
  • the receiver fiber may be the receiver fiber 512.
  • the switch receives a command to transition from the monitor mode to a data mode.
  • the switch connects a transmitter module to the transmitter fiber.
  • the switch 515 connects the transmitter module 540 to the transmitter fiber 510.
  • the switch connects a receiver module to the receiver fiber.
  • the switch 515 connects the receiver module 560 to the receiver fiber 512.
  • Step 1130, step 1140, or both may be omitted to provide only transmission or only reception. Both step 1130 and step 1140 may be performed at the same time in order to provide full duplex operation.
  • FIG. 12 is a flowchart illustrating a method 1200 of transitioning a switch from a data mode to a monitor mode.
  • the method 1200 may be performed in the switch 515.
  • the switch operates in a data mode that provides for communication of user data through the switch.
  • the switch receives a request to transition from the data mode to a monitor mode that provides for monitoring of a transmitter fiber or a receiver fiber. Both the transmitter fiber and the receiver fiber are coupled to the switch.
  • the transmitter fiber may be the transmitter fiber 510.
  • the receiver fiber may be the receiver fiber 512.
  • the switch connects ports of the switch to implement the monitor mode.
  • the optical device 500 Compared to the optical device 300, the optical device 500 has the following advantages. Firstly, the optical device 500 is compatible with standard LC connection pairs and applicable to all small form-factor pluggables (SFPs) , QSFPs, and QSFP+. Secondly, the optical device 500 may expand the number of fibers and is suitable for future SFPs which include a plurality of transmitter modules 540 and receiver modules 560. Thirdly, the optical device 500 has lower cost because the optical device 500 does not include the OTDR circuit 330 and the mode switch 320, which are required in the optical device 300, and because the integration of the switch 515 in silicon has negligible cost.
  • SFPs small form-factor pluggables
  • QSFPs QSFPs
  • QSFP+ QSFP+
  • the optical device 500 may expand the number of fibers and is suitable for future SFPs which include a plurality of transmitter modules 540 and receiver modules 560. Thirdly, the optical device 500 has lower cost because the optical device 500 does not include the
  • the optical device 500 may incorporate a switch which is capable of connecting with a large number of optical fibers, and efficiently monitor the large number of optical fibers.
  • the optical device 500 has wide appeal, particularly for data centers.
  • the optical device 500 has low insertion loss (for example, about 0.5 decibel (dB) of insertion loss) .
  • Switches such as the switches 515 may be integrated in other applications.
  • FIGS. 13-14 show different configurations for such applications.
  • the switches may be configured to transition between a data mode and monitor modes.
  • FIG. 13 is a schematic diagram of a transceiver system 1300 in a data mode.
  • the transceiver system 1300 includes an NPU 1310 and a chip 1320.
  • the NPU 1310 is configured to receive and transmit optical signals, convert the optical signals to and from electrical signals, and process those electrical signals.
  • the chip 1320 includes a plurality of switches 1330, which may be the same as the switch 515.
  • the switches 1330 include transmitter (Tx) ports and receiver (Rx) ports.
  • the switches 1330 are in a data mode because the transmitter ports and the receiver ports are coupled to each other as shown.
  • FIG. 14 is a schematic diagram of the transceiver system 1300 in FIG. 13 in a monitor mode.
  • the top and bottom switches 1330 are in the data mode, but the middle switch 1130 is in a monitor mode because a transmitter port is coupled to a receiver port as shown. All the switches 1330 are independent of each other and may dynamically switch between a data mode and monitor modes. By switching among the modes, the switches 1330 may communicate with and monitor the NPU 1310 and media coupled to the transceiver system 1300.
  • FIG. 15 is a schematic diagram of a network device 1500.
  • the network device 1500 is suitable for implementing the disclosed embodiments, including the microcontroller 360 and the microcontroller 555.
  • the network device 1500 includes ingress ports 1510 and receiver units (Rx) 1520 for receiving data; a processor, logic unit, or central processing unit (CPU) 1530 to process the data; transmitter units (Tx) 1540 and egress ports 1550 for transmitting the data; and a memory 1560 for storing the data.
  • the network device 1500 may also include optical-to-electrical (OE) components and electrical-to-optical (EO) components coupled to the ingress ports 1510, receiver units 1520, transmitter units 1540, and egress ports 1550 for egress or ingress of optical or electrical signals.
  • OE optical-to-electrical
  • EO electrical-to-optical
  • the processor 1530 may be implemented by hardware and software.
  • the processor 1530 may be implemented as one or more CPU chips, cores (for example, as a multi-core processor) , field-programmable gate arrays (FPGAs) , application specific integrated circuits (ASICs) , and digital signal processors (DSPs) .
  • the processor 1530 is in communication with the ingress ports 1510, receiver units 1520, transmitter units 1540, egress ports 1550, and memory 1560.
  • the memory 1560 includes one or more disks, tape drives, and solid-state drives and may be used as an over-flow data storage device, to store programs when such programs are selected for execution, and to store instructions and data that are read during program execution.
  • the memory 1560 may be volatile and non-volatile and may be read-only memory (ROM) , random-access memory (RAM) , ternary content-addressable memory (TCAM) , and static random-access memory (SRAM) .
  • FIG. 16 is a flowchart illustrating a method 1600 of monitoring an optical test pulse.
  • the method 1600 may be implemented in the switch 515.
  • an optical test pulse is transmitted by a transmitter module to a switch.
  • the transmitter module 540 transmits an optical test pulse to the switch 515.
  • the optical test pulse is switched by a switch to a fiber to be tested.
  • the switch 515 switches the optical test pulse to either the transmitter fiber 510 or the receiver fiber 512.
  • a reflected optical test pulse is received by the switch.
  • the reflected optical test pulse is a reflected portion of the optical test pulse.
  • the switch 515 receives the reflected optical test pulse.
  • the reflected optical test pulse is switched by a switch to a receiver module for monitoring. For instance, the switch 515 switches the reflected optical test pulse to the receive module 560 for monitoring.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Communication System (AREA)

Abstract

An optical device comprises a transmitter module, a receiver module, and a switch comprising a first port coupled to the transmitter module, a second port coupled to the receiver module, a third port configured to couple to a transmitter fiber, and a fourth port configured to couple to a receiver fiber. A method implemented in a switch, the method comprising operating in a monitor mode that provides for monitoring of a transmitter fiber or a receiver fiber, receiving a command to transition from the monitor mode to a data mode, connecting a transmitter module to the transmitter fiber, and connecting a receiver module to the receiver fiber.

Description

OPTICAL NETWORK MONITORING WITH A PHOTONIC SWITCH
CROSS-REFERENCE TO RELATED APPLICATIONS
The present application claims priority to and benefit of U.S. Non-provisional Patent Application No. 14/867,665, filed September 28, 2015, and entitled “Optical Network Monitoring with a Photonic Switch” , which are incorporated herein by reference as if reproduced in their entirety.
BACKGROUND
Optical performance monitoring (OPM) is important in future agile optical networks (AONs) , in which any fiber problem may cause significant downtime and operating cost for the network infrastructure. OPM should be available for each individual device that connects to an optical fiber. Without OPM, locating faulty optical fibers would be difficult, particularly when fiber density and system complexity are high. An optical time-domain reflectometer (OTDR) is a device used for monitoring optical fibers as part of OPM. However, the typical external hand-held OTDR is bulky, energy-consuming, and expensive.
SUMMARY
In one embodiment, the disclosure includes an optical device comprising a transmitter module, a receiver module, and a switch comprising a first port coupled to the transmitter module, a second port coupled to the receiver module, a third port configured to couple to a transmitter fiber, and a fourth port configured to couple to a receiver fiber.
In another embodiment, the disclosure includes an optical device comprising a transmitter module configured to transmit optical data signals in a data mode, and transmit optical test pulses in a monitor mode, a receiver module configured to receive input optical data signals in the data mode, and receive reflected optical test pulses in the monitor mode, and a switch coupled to the transmitter module and the receiver module and configured to switch optical paths to implement the data mode or the monitor mode.
In yet another embodiment, the disclosure includes a method implemented in a switch, the method comprising operating in a monitor mode that provides for monitoring of a transmitter fiber or a receiver fiber, receiving a command to transition from the monitor mode to a data  mode, connecting a transmitter module to the transmitter fiber, and connecting a receiver module to the receiver fiber.
In yet another embodiment, the disclosure includes a method implemented in a switch, the method comprising operating in a data mode that provides for communication of user data through the switch, receiving a request to transition from the data mode to a monitor mode that provides for monitoring of a transmitter fiber or a receiver fiber, both the transmitter fiber and the receiver fiber are coupled to the switch, and connecting ports of the switch to implement the monitor mode.
In yet another embodiment, the disclosure includes a method comprising transmitting, by a transmitter module, an optical test pulse to a switch, switching, by the switch, the optical test pulse to a fiber to be tested, receiving, by the switch, a reflected optical test pulse that is a reflected portion of the optical test pulse, and switching, by the switch, the reflected optical test pulse to a receiver module for monitoring.
These and other features will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings and claims.
BRIEF DESCRIPTION OF THE DRAWINGS
For a more complete understanding of this disclosure, reference is now made to the following brief description, taken in connection with the accompanying drawings and detailed description, wherein like reference numerals represent like parts.
FIG. 1 is a schematic diagram of an optical network.
FIG. 2 is a schematic diagram of a data center.
FIG. 3 is a schematic diagram of an optical device.
FIG. 4 is a perspective view of an interposer system.
FIG. 5 is a schematic diagram of an optical device.
FIG. 6 is a schematic diagram of the switch in FIG. 5.
FIG. 7 is a schematic diagram of a first port connection configuration for the switch in FIG. 5.
FIG. 8 is a schematic diagram of a second port connection configuration for the switch in FIG. 5.
FIG. 9 is a diagram of the switch in FIG. 5 transitioning from the data mode to the first monitor mode.
FIG. 10 is a diagram of the switch in FIG. 5 transitioning from the data mode to the second monitor mode.
FIG. 11 is a flowchart illustrating a method of transitioning a switch from a monitor mode to a data mode.
FIG. 12 is a flowchart illustrating a method of transitioning a switch from a data mode to a monitor mode.
FIG. 13 is a schematic diagram of a transceiver system in a data mode.
FIG. 14 is a schematic diagram of the transceiver system in FIG. 13 in a monitor mode.
FIG. 15 is a schematic diagram of a network device.
FIG. 16 is a flowchart illustrating a method of monitoring an optical test pulse.
DETAILED DESCRIPTION
It should be understood at the outset that, although an illustrative implementation of one or more embodiments are provided below, the disclosed systems and/or methods may be implemented using any number of techniques, whether currently known or later developed. The disclosure should in no way be limited to the illustrative implementations, drawings, and techniques illustrated below, including the designs and implementations illustrated and described herein, but may be modified within the scope of the appended claims along with their full scope of equivalent.
FIG. 1 is a schematic diagram of an optical network 100. The optical network 100 includes a quad small form-factor pluggable (QSFP) transceiver 110, five patch panels 120, 40 optical fibers 130, and four destination units 140. The components of the optical network 100 may be arranged as shown or in any other suitable manner.
The QSFP transceiver 110 is a transceiver that includes four transmitters and four receivers for data communication. The patch panels 120 couple the QSFP transceiver 110 to the optical fibers 130 and connect different optical fibers 130 to each other. The optical fibers 130 are used to communicate optical signals between the QSFP transceiver 110 and the destination units 140. The destination units 140 are any units that can receive and transmit optical signals. For example, the destination units are data centers. Optical fibers 130 may become faulty when  they have cuts, bends, debris, or other issues. It can be difficult to identify which of multiple optical fibers 130 in the optical network 100 is faulty, and to determine the location of the fault. 
FIG. 2 is a schematic diagram of a data center 200. The data center 200 includes seven nodes 210 and 22 optical fibers 220. The components of the data center 200 may be arranged as shown or in any other suitable manner.
Each node 210 transmits and receives optical signals using a transmitter and a receiver (not shown in FIG. 2) . The optical fibers 220 communicate optical signals between any two adjacent nodes 210. It can be difficult to identify which of multiple optical fibers 220 in the data center 200 is faulty, and to determine the location of the fault. Therefore, a need exists for an optical device that monitors the  optical fibers  130, 220 and makes such a determination.
FIG. 3 is a schematic diagram of an optical device 300. The optical device 300 is described in Neil Parkin, et al., "Gigabit SFP Transceiver with Integrated Optical Time Domain Reflectometer for Ethernet Access Services, " 39th European Conference and Exhibition on Optical Communication (ECOC 2013) , September 2013, which is incorporated by reference. The optical device 300 includes a transmitter module 310, an optical fiber 340, an optical power splitter 350, a microcontroller 360, and a receiver module 370. The optical device 300 may operate as a transceiver or a fiber monitor. Generally, the transmitter module 310 transmits optical signals down the optical fiber 340 via the optical power splitter 350, and the receiver module 370 receives optical signals from the optical fiber 340 via the optical power splitter 350. The transmitted and received signals could be ordinarily transmitted and received signals, or the received signal could be a reflection of a test signal transmitted by the transmitter module 310. The components of the optical device 300 may be arranged as shown or in any other suitable manner.
The transmitter module 310 includes a data laser driver 325, an OTDR circuit 330, a mode switch 320, and a laser diode (LD) 315. The data laser driver 325 receives electrical transmitter signals 327, amplifies the electrical transmitter signals 327, and outputs amplified electrical transmitter signals. The OTDR circuit 330 generates electrical control signals that drive the LD 315 to generate optical test pulses for fiber monitoring. The mode switch 320 couples the data laser driver 325 to the LD 315 when the optical device 300 is configured as a transceiver. The mode switch 320 couples the OTDR circuit 330 to the LD 315 when the optical device 300 is configured as a fiber monitor. The LD 315 generates optical data signals  modulated by the amplified electrical transmitter signals when the optical device 300 is configured as a transceiver. The LD 315 generates optical test pulses when the optical device 300 is configured as a fiber monitor.
The optical fiber 340 communicates optical data signals or optical test pulses between the optical device 300 and other devices (not shown) . The optical power splitter 350 splits received optical signals from the optical fiber 340 and passes a portion of the received optical signals to a photodiode (PD) 380. The remaining portion of the received optical signals is lost. The optical power splitter 350 passes transmitted optical signals such as the optical data signals or the optical test pulses from the LD 315 to the optical fiber 340. The optical power splitter 350 may instead be an optical circulator or a directional coupler. The microcontroller 360 communicates with the transmitter module 310 and the receiver module 370. The microcontroller 360 generates fiber diagnosis signals 365 when the optical device 300 is configured as a fiber monitor.
The receiver module 370 includes the PD 380 and an amplifier 390. The PD 380 receives the portion of the received optical signals described above and converts the portion of the received optical signals to electrical signals. The amplifier 390 receives the electrical signals and amplifies the electrical signals. When the optical device 300 is configured as a transceiver, the amplifier outputs transceiving amplified electrical signals 395. When the optical device 300 is configured as a fiber monitor, the amplifier 390 outputs monitoring amplified electrical signals 385 to the microcontroller for fiber diagnosis.
In operation, when the microcontroller 360 sends a request to the transmitter module 310 and the receiver module 370 to configure the optical device 300 as a transceiver, the mode switch 320 couples the data laser driver 325 to the LD 315. In the transmitter module 310, the data laser driver 325 receives the electrical transmitter signals 327, amplifies the electrical transmitter signals 327, and outputs the amplified electrical transmitter signals. The LD 315 receives the amplified electrical transmitter signals and generates the optical data signals modulated by the amplified electrical transmitter signals. The optical power splitter 350 passes the optical signals to the optical fiber 340. The optical power splitter 350 passes external input optical signals to the receiver module 370 via the optical fiber 340. In the receiver module 370, the PD 380 receives the external input optical signals and converts them to transceiving electrical  signals. The amplifier 390 receives the transceiving electrical signals, amplifies the transceiving electrical signals, and outputs transceiving amplified electrical signals 395.
When the microcontroller 360 instructs the transmitter module 310 and the receiver module 370 to configure the optical device 300 as a fiber monitor, the mode switch 320 couples the OTDR circuit 330 to the LD 315. In the transmitter module 310, the OTDR circuit 330 generates electrical control signals. The LD 315 receives the electrical control signals and generates optical test pulses. The optical power splitter 350 passes the optical test pulses to the optical fiber 340. When the optical fiber 340 is faulty, the optical test pulses are reflected by the defect in the optical fiber 340 and travel back toward the optical power splitter 350. Otherwise, the optical test pulses reflect at the end of the optical fiber 340. This reflection is known as backscattering. The optical power splitter 350 splits the reflected optical test pulses and passes a portion of the reflected optical test pulses to the receiver module 370. In the receiver module 370, the PD 380 receives the portion of the reflected optical test pulses and converts them to second electrical signals. The amplifier 390 receives the second electrical signals, amplifies the second electrical signals, and outputs second amplified electrical signals 385 to the microcontroller 360.
The microcontroller 360 determines whether the optical fiber 340 is functioning properly by calculating the reflection location where the optical test pulses reflect in the optical fiber 340. Specifically, the microcontroller 360 calculates the reflection location based on the velocity of light in the optical fiber 340, the distance between the LD 315 and the optical power splitter 350, and the distance between the PD 380 and the optical power splitter 350, which are known. The microcontroller 360 calculates the reflection location based on the time it takes for the optical test pulses to travel from the LD 315, to the reflection location, and back to the PD 380. The travel time depends on the distance of the reflection location from the optical power splitter 350. When the reflection location is at the end of the optical fiber 340, the fiber diagnosis signal 365 indicates the optical fiber 340 is not faulty. When the reflection location is not at the end of the optical fiber 340, the fiber diagnosis signal 365 indicates the optical fiber 340 is faulty and indicates the location of the fault.
The optical device 300 has several drawbacks. Firstly, the optical device 300 has a single optical fiber 340. The single optical fiber 340 is incompatible with a standard duplex lucent connection (LC) pair, which includes two fiber ports. Secondly, the optical power splitter  350 introduces significant power loss, which makes the optical device 300 energy inefficient. Thirdly, the mode switch 320 and the OTDR circuit 330 increase the size and cost of the optical device 300.
Disclosed herein are embodiments of an improved optical device that can be configured as either a transceiver or a fiber monitor. The optical device includes a switch. In one embodiment, the switch is a silicon photonic switch, which adds negligible cost for fabrication using silicon photonic technologies. The switch may replace an optical power splitter and thus reduce power loss. The switch includes two inputs and two outputs and may employ a Mach-Zehnder interferometer (MZI) structure. Additionally, the optical device is coupled to a transmitter fiber and a receiver fiber, which make the optical device compatible with a standard duplex LC pair. The disclosed embodiments may be employed in data centers, interposer systems, metro networks, long-haul networks, and other systems and networks employing opto-electronic transceivers.
FIG. 4 is a perspective view of an interposer system 400. The interposer system 400 is an optoelectronic integrated circuit configured to perform a variety of functions such as receiving optical signals, amplifying optical signals, and transmitting optical signals. The interposer system 400 includes an electrical chip 410 and a photonic chip 430 coupled via copper pillars 460. The components of the interposer system 400 may be arranged as shown or in any other suitable manner.
The electrical chip 410 is configured to provide electrical control of the photonic chip 430, signal modulation, and other functions. The electrical chip 410 includes a trans-impedance amplifier (TIA) 415, a linear amplifier (LA) 420, and an electrical transmitter (TX) 425. The photonic chip 430 includes a first fiber 440 coupled to an external continuous-wave laser 435, grating coupler 445, a Mach-Zehnder modulator (MZM) 465, a second fiber 475, wires 480, a third fiber 490, an optical monitoring device 470, an optical waveguide 455, and a PD 450.
The optical monitoring device 470 is coupled to the second fiber 475 and is configured to monitor the second fiber 475. The optical monitoring device 470 may also monitor the first fiber 440 and the third fiber 490. The optical monitoring device 470 is similar to the optical device 500 described below.
FIG. 5 is a schematic diagram of an optical device 500. The optical device 500 includes a switch 515, a transmitter module 540, a receiver module 560, and a microcontroller 555. The  optical device 500 operates in a data mode or one of two monitor modes. In the data mode, the optical device 500 is configured as a transceiver that transmits and receives optical signals. In a first monitor mode, the optical device 500 is configured as a fiber monitor that monitors a transmitter fiber 510. In a second monitor mode, the optical device 500 is configured as a fiber monitor that monitors a receiver fiber 512. Unlike the optical device 300, the optical device 500 does not include the mode switch 320, but instead includes the switch 515. Additionally, unlike the optical device 300, which includes a single optical fiber 340, the optical device 500 includes the transmitter fiber 510 and the receiver fiber 512. The components of the optical device 500 may be arranged as shown or in any other suitable manner.
The switch 515 is configured to switch optical paths and includes a first port 525, a second port 535, a third port 520, and a fourth port 530. The switch 515 may be implemented with different structures due to different requirements of insertion loss and configuration time. Insertion loss of the switch 515 is defined as the loss of signal power resulting from the insertion of the switch 515 into the optical device 500. Configuration time of the switch 515 is defined as the time it takes for the switch 515 to switch between modes, which are described with respect to FIGS. 7-10 below. The switch 515 may be a silicon photonic switch and may have the structure in FIG. 6.
The transmitter module 540 is coupled to the first port 525 and includes a data laser driver 550 and an LD 545. The data laser driver 550 is configured to amplify a received electrical transmitter signal 552, and output amplified electrical transmitter signals. The amplified electrical transmitter signals drive the LD 545 to generate an optical output signal, which is sent to the first port 525 of the switch 515.
The receiver module 560 is coupled to the second port 535 and includes a PD 565 and an amplifier 570. The PD 565 is configured to convert received optical signals to electrical signals. The amplifier 570 amplifies the received electrical signals. In the data mode, the amplifier 570 outputs the amplified electrical signals 575 for further processing by the optical device 500 or another device (not shown) . In the monitor mode, the amplifier outputs the amplified electrical signals 568 to the microcontroller 555.
The transmitter fiber 510 is coupled to the third port 520. The third port 520 is referred to as a transmitter port. The third port 520 is configured to communicate the optical data signals in the data mode and the optical test pulses in the monitor mode from the transmitter module 540.  The receiver fiber 512 is coupled to the fourth port 530. The fourth port 530 is referred to as a receiver port. The fourth port 530 is configured to communicate the input optical data signals in the data mode from external devices (not shown) and the optical test pulses in the monitor modes from the transmitter module 540.
The microcontroller 555 is coupled to the transmitter module 540, the switch 515, and the receiver module 560 and is configured to instruct the transmitter module 540, the switch 515, and the receiver module 560 to operate in the data mode or one of the monitor modes. In the monitor modes, the microcontroller 555 is also configured to generate fiber diagnosis signals 557 indicating if the transmitter fiber 510 or the receiver fiber 512 is faulty. Operation of the optical device 500 is described further below.
FIG. 6 is a schematic diagram of the switch 515 in FIG. 5. While FIG. 6 shows one architecture for the switch 515, other suitable architectures may be used. The switch 515 has a 2×2 MZI structure. The switch 515 includes the first port 525, the second port 535, a first 2×2 coupler 610, a first arm waveguide 615, a second arm waveguide 625, a first phase shifter 620, a second phase shifter 630, a second 2×2 coupler 640, the third port 520, and the fourth port 530. The components of the switch 515 may be arranged as shown or in any other suitable manner.
The first phase shifter 620 is configured to change the phases of optical signals that travel in the first arm waveguide 615. The second phase shifter 630 is configured to change the phases of optical signals that travel in the second arm waveguide 625. By tuning the first phase shifter 620 and the second phase shifter 630, the connections between the first port 525 and the second port 535 on the one side and the third port 520 and the fourth port 530 on the other side may be configured differently as described with respect to FIGS. 7-8 below.
There are two main methods of tuning the first phase shifter 620 and the second phase shifter 630. In one method, the thermal-optic effect is used by applying electrical voltages with a direct current (DC) source (not shown) to the first phase shifter 620, the second phase shifter 630, or both to increase the temperature and induce changes of the refractive index of the first phase shifter 620, the second phase shifter 630, or both. In the other method, the free carrier plasma effect is used by injecting free carriers in the first phase shifter 620, the second phase shifter 630, or both to change carrier concentration and induce change of the refractive index of the first phase shifter 620, the second phase shifter 630, or both. The method using the free carrier plasma effect provides faster configuration speed than the method using the thermal-optic effect.  For example, when the switch 515 is a silicon photonic switch, a typical configuration time based on the method using the free carrier plasma effect is approximately 1 nanosecond (ns) , while a typical configuration time based on the method using the thermo-optic effect is approximately 1 microsecond (μs) . While two methods of tuning the first phase shifter 620 and the second phase shifter 630 are described, other suitable methods may also be used.
FIG. 7 is a schematic diagram of a first port connection configuration for the switch 515 in FIG. 5. The first port connection configuration is implemented by tuning the first phase shifter 620, the second phase shifter 630, or both. As shown, the first port 525 is connected to the third port 520, and the second port 535 is connected to the fourth port 530.
FIG. 8 is a schematic diagram of a second port connection configuration for the switch 515 in FIG. 5. The second port connection configuration is implemented by tuning the first phase shifter 620, the second phase shifter 630, or both. As shown, the first port 525 is connected to the fourth port 530, and the second port 535 is connected to the third port 520.
FIG. 9 is a diagram 900 of the switch 515 in FIG. 5 transitioning from the data mode to the first monitor mode. In the first monitor mode, the transmitter fiber 510 is monitored. A timeline shows the time required to perform the transition.
In a first stage 910, the switch 515 is in the data mode. Specifically, the first port 525 is connected to the third port 520, and the second port 535 is connected to the fourth port 530. Although not shown, the first port 525 is coupled to the transmitter module 540, the second port 535 is coupled to the receiver module 560, the third port 520 is coupled to the transmitter fiber 510, and the fourth port 530 is coupled to the receiver fiber 512.
In a second stage 920, the switch 515 is in a first step of the first monitor mode. The switch 515 transitions from the first stage 910 to the second stage 920 after receiving from the microcontroller 555 a request to transition from the data mode to the first monitor mode. In the second stage 920, the second port 535 disconnects from the fourth port 530, and the first port 525 connects to the third port 520. Optical test pulses travel from the transmitter module 540, through the first port 525 and the third port 520, and to the transmitter fiber 510. As shown, the switch 515 may take about 1 ns of configuration time to transition from the first stage 910 to the second stage 920.
In a third stage 930, the switch 515 is in a second step of the first monitor mode. The switch 515 transitions from the second stage 920 to the third stage 930 after the optical test  pulses from the transmitter module 540 enter the transmitter fiber 510. In the third stage 930, the first port 525 disconnects from the third port 520, and the second port 535 connects to the third port 520. As shown, the switch 515 may take about 1 ns of configuration time to transition from the second stage 920 to the third stage 930.
FIG. 10 is a diagram 1000 of the switch 515 in FIG. 5 transitioning from the data mode to the second monitor mode. In the second monitor mode, the receiver fiber 512 is monitored. A timeline shows the time required to perform the transition.
In a first stage 1010, the switch 515 is in the data mode. Specifically, the first port 525 is connected to the third port 520, and the second port 535 is connected to the fourth port 530. Although not shown, the first port 525 is coupled to the transmitter module 540, the second port 535 is coupled to the receiver module 560, the third port 520 is coupled to the transmitter fiber 510, and the fourth port 530 is coupled to the receiver fiber 512.
In a second stage 1020, the switch 515 is in a second step of the second monitor mode. The switch 515 transitions from the first stage 1010 to the second stage 1020 after receiving from the microcontroller 555 a request to transition from the data mode to the second monitor mode. In the second stage 1020, the second port 535 disconnects from the fourth port 530 and the first port 525 connects to the fourth port 530. Optical test pulses travel from the transmitter module 540, through the first port 525 and the fourth port 530, and to the receiver fiber 512. As shown, the switch 515 may take about 1 ns of configuration time to transition from the first stage 1010 to the second stage 1020.
In a third stage 1030, the switch 515 is in a second step of the second monitor mode. The switch 515 transitions from the second stage 920 to the third stage 930 after the optical test pulses from the transmitter module 540 enter the receiver fiber 512. In the third stage 1030, the first port 525 disconnects from the fourth port 530, and the second port 535 connects to the fourth port 530. As shown, the switch 515 may take about 1 ns of configuration time to transition from the second stage 1020 to the third stage 1030.
Returning to FIG. 5, in operation, the microcontroller 555 sends a request to the switch 515, the transmitter module 540, and the receiver module 560 to operate in the data mode or one of the monitor modes. In the data mode, electrical transmitter signals 552 carrying transmission data are input to the data laser driver 550, which amplifies the electrical transmitter signals 552, and outputs the amplified electrical transmitter signals. The LD 545 receives the amplified  electrical transmitter signals and generates the optical data signals modulated by the amplified electrical transmitter signals.
The switch 515 configures port connections so that the first port 525 is connected to the third port 520 and the second port 535 is connected to the fourth port 530. Thus, the transmitter module 540 couples to the transmitter fiber 510, and the receiver module 560 couples to the receiver fiber 512. The switch 515 receives the optical data signals from the LD 545 and switches the optical data signals to the transmitter fiber 510.
The switch 515 also receives input optical data signals from the external devices (not shown) via the receiver fiber 512 and switches the input optical data signals from the receiver fiber 512 to the receiver module 560. In the receiver module 560, the PD 565 converts the input optical data signals to first electrical signals. The amplifier 570 receives the first electrical signals, amplifies the first electrical signals, and outputs the first amplified electrical signals 575. 
In the monitor modes, electrical transmitter signals 552 carrying control signals are input into the data laser driver 550, which amplifies the electrical transmitter signals 552, and outputs the amplified electrical transmitter signals. The LD 545 receives the amplified electrical transmitter signals and generates optical test pulses.
In the first monitor mode, the optical test pulses travel in the transmitter fiber 510, reflect at a reflection location of the transmitter fiber 510, and travel back in the transmitter fiber 510 toward the third port 520. The switch 515 receives the reflected test pulse at the third port 520, switches the reflected test pulse to the second port 535, and outputs the reflected test pulse for fault detection, which is described further below. The effective range of the fault detection depends on the configuration time of the switch 515 because the reflected test pulse may enter the switch 515 before the switch 515 is able to change modes. For example, a 1 ns configuration time may limit fault detection to a reflection location of greater than 10 centimeters (cm) , because 1 ns is enough time for light to travel approximately 10 cm in the transmitter fiber 510, reflect off a defect in the transmitter fiber 510, and travel 10 cm back to the switch 515. If the light has a shorter distance to travel before reflecting, the switch will not yet be configured to route the reflected pulse to the PD 565 for detection. In the second monitor mode, the optical test pulses travel in the receiver fiber 512, reflect at a reflection location of the receiver fiber 512, and travel back in the receiver fiber 512 toward the fourth port 530. The switch 515 receives the  reflected test pulse at the fourth port 530, switches the reflected test pulse to the second port 535, and outputs the reflected test pulse for fault detection, which is described further below.
Finally, in both the first monitor mode and the second monitor mode, the PD 565 receives the reflected optical test pulses and converts the reflected optical test pulses to the second electrical signals. The amplifier 570 receives the second electrical signals, amplifies the second electrical signals, and outputs the second amplified electrical signals 568 to the microcontroller 555. The microcontroller 555 receives the second amplified electrical signals 568, calculates the reflection location to determine whether the transmitter fiber 510 or the receiver fiber 512 is faulty, and generates fiber diagnosis signals 557 indicating whether the transmitter fiber 510 or the receiver fiber 512 is faulty. Specifically, for the transmitter fiber 510, the microcontroller 555 calculates the reflection location based on the velocity of light in the transmitter fiber 510 and the distance between the LD 545 and the first port 525, the first port 525 and the third port 520, the third port 520 and the second port 535, and the second port and the PD 565, which are known. For the receiver fiber 512, the microcontroller 555 calculates the reflection location based on the velocity of light in the receiver fiber 512 and the distance between the LD 545 and the first port 525, the first port 525 and the fourth port 530, the fourth port 530 and the second port 535, and the second port and the PD 565, which are known. For both the transmitter fiber 510 and the receiver fiber 512, the microcontroller 555 calculates the reflection location further based on the time it takes for the optical test pulses to travel from the LD 545, to the reflection location, and back to the PD 565. That time varies depending on the distance of the reflection location from the third port 515 for the transmitter fiber 510 or from the fourth port 530 for the receiver fiber 512. When the reflection location is at the end of the transmitter fiber 510 or the receiver fiber 512, the fiber diagnosis signals 557 indicate that the transmitter fiber 510 or the receiver fiber 512 is not faulty. Otherwise, the fiber diagnosis signals 557 indicate the fiber being tested (either the transmitter fiber 510 or the receiver fiber 512) is faulty and where the transmitter fiber 510 or the receiver fiber 512 is faulty.
FIG. 11 is a flowchart illustrating a method 1100 of transitioning a switch from a monitor mode to a data mode. The method 1100 may be performed in the switch. At step 1110, the switch operates in a monitor mode that provides for monitoring of a transmitter fiber or a receiver fiber. The transmitter fiber may be the transmitter fiber 510. The receiver fiber may be  the receiver fiber 512. At step 1120, the switch receives a command to transition from the monitor mode to a data mode.
At step 1130, the switch connects a transmitter module to the transmitter fiber. For instance, the switch 515 connects the transmitter module 540 to the transmitter fiber 510. At step 1140, the switch connects a receiver module to the receiver fiber. For instance, the switch 515 connects the receiver module 560 to the receiver fiber 512. Step 1130, step 1140, or both may be omitted to provide only transmission or only reception. Both step 1130 and step 1140 may be performed at the same time in order to provide full duplex operation.
FIG. 12 is a flowchart illustrating a method 1200 of transitioning a switch from a data mode to a monitor mode. The method 1200 may be performed in the switch 515. At step 1210, the switch operates in a data mode that provides for communication of user data through the switch. At step 1220, the switch receives a request to transition from the data mode to a monitor mode that provides for monitoring of a transmitter fiber or a receiver fiber. Both the transmitter fiber and the receiver fiber are coupled to the switch. The transmitter fiber may be the transmitter fiber 510. The receiver fiber may be the receiver fiber 512. At step 1230, the switch connects ports of the switch to implement the monitor mode.
Compared to the optical device 300, the optical device 500 has the following advantages. Firstly, the optical device 500 is compatible with standard LC connection pairs and applicable to all small form-factor pluggables (SFPs) , QSFPs, and QSFP+. Secondly, the optical device 500 may expand the number of fibers and is suitable for future SFPs which include a plurality of transmitter modules 540 and receiver modules 560. Thirdly, the optical device 500 has lower cost because the optical device 500 does not include the OTDR circuit 330 and the mode switch 320, which are required in the optical device 300, and because the integration of the switch 515 in silicon has negligible cost. Fourthly, the optical device 500 may incorporate a switch which is capable of connecting with a large number of optical fibers, and efficiently monitor the large number of optical fibers. Fifthly, the optical device 500 has wide appeal, particularly for data centers. Sixthly, the optical device 500 has low insertion loss (for example, about 0.5 decibel (dB) of insertion loss) .
Switches such as the switches 515 may be integrated in other applications. FIGS. 13-14 show different configurations for such applications. In FIG. 13 and FIG. 14, the switches may be configured to transition between a data mode and monitor modes.
FIG. 13 is a schematic diagram of a transceiver system 1300 in a data mode. The transceiver system 1300 includes an NPU 1310 and a chip 1320. The NPU 1310 is configured to receive and transmit optical signals, convert the optical signals to and from electrical signals, and process those electrical signals. The chip 1320 includes a plurality of switches 1330, which may be the same as the switch 515. The switches 1330 include transmitter (Tx) ports and receiver (Rx) ports. The switches 1330 are in a data mode because the transmitter ports and the receiver ports are coupled to each other as shown.
FIG. 14 is a schematic diagram of the transceiver system 1300 in FIG. 13 in a monitor mode. The top and bottom switches 1330 are in the data mode, but the middle switch 1130 is in a monitor mode because a transmitter port is coupled to a receiver port as shown. All the switches 1330 are independent of each other and may dynamically switch between a data mode and monitor modes. By switching among the modes, the switches 1330 may communicate with and monitor the NPU 1310 and media coupled to the transceiver system 1300.
FIG. 15 is a schematic diagram of a network device 1500. The network device 1500 is suitable for implementing the disclosed embodiments, including the microcontroller 360 and the microcontroller 555. The network device 1500 includes ingress ports 1510 and receiver units (Rx) 1520 for receiving data; a processor, logic unit, or central processing unit (CPU) 1530 to process the data; transmitter units (Tx) 1540 and egress ports 1550 for transmitting the data; and a memory 1560 for storing the data. The network device 1500 may also include optical-to-electrical (OE) components and electrical-to-optical (EO) components coupled to the ingress ports 1510, receiver units 1520, transmitter units 1540, and egress ports 1550 for egress or ingress of optical or electrical signals.
The processor 1530 may be implemented by hardware and software. The processor 1530 may be implemented as one or more CPU chips, cores (for example, as a multi-core processor) , field-programmable gate arrays (FPGAs) , application specific integrated circuits (ASICs) , and digital signal processors (DSPs) . The processor 1530 is in communication with the ingress ports 1510, receiver units 1520, transmitter units 1540, egress ports 1550, and memory 1560.
The memory 1560 includes one or more disks, tape drives, and solid-state drives and may be used as an over-flow data storage device, to store programs when such programs are selected for execution, and to store instructions and data that are read during program execution.  The memory 1560 may be volatile and non-volatile and may be read-only memory (ROM) , random-access memory (RAM) , ternary content-addressable memory (TCAM) , and static random-access memory (SRAM) .
FIG. 16 is a flowchart illustrating a method 1600 of monitoring an optical test pulse. The method 1600 may be implemented in the switch 515. At step 1610, an optical test pulse is transmitted by a transmitter module to a switch. For instance, the transmitter module 540 transmits an optical test pulse to the switch 515. At step 1620, the optical test pulse is switched by a switch to a fiber to be tested. For instance, the switch 515 switches the optical test pulse to either the transmitter fiber 510 or the receiver fiber 512.
At step 1630, a reflected optical test pulse is received by the switch. The reflected optical test pulse is a reflected portion of the optical test pulse. For instance, the switch 515 receives the reflected optical test pulse. At step 1640, the reflected optical test pulse is switched by a switch to a receiver module for monitoring. For instance, the switch 515 switches the reflected optical test pulse to the receive module 560 for monitoring.
While several embodiments have been provided in the present disclosure, it should be understood that the disclosed systems and methods might be embodied in many other specific forms without departing from the spirit or scope of the present disclosure. The present examples are to be considered as illustrative and not restrictive, and the intention is not to be limited to the details given herein. For example, the various elements or components may be combined or integrated in another system or certain features may be omitted, or not implemented.
In addition, techniques, systems, subsystems, and methods described and illustrated in the various embodiments as discrete or separate may be combined or integrated with other systems, modules, techniques, or methods without departing from the scope of the present disclosure. Other items shown or discussed as coupled or directly coupled or communicating with each other may be indirectly coupled or communicating through some interface, device, or intermediate component whether electrically, mechanically, or otherwise. Other examples of changes, substitutions, and alterations are ascertainable by one skilled in the art and could be made without departing from the spirit and scope disclosed herein.

Claims (24)

  1. An optical device comprising:
    a transmitter module;
    a receiver module; and
    a switch comprising:
    a first port coupled to the transmitter module;
    a second port coupled to the receiver module;
    a third port configured to couple to a transmitter fiber; and
    a fourth port configured to couple to a receiver fiber.
  2. The optical device of claim 1, further comprising a microcontroller coupled to the transmitter module, the switch, and the receiver module, wherein the transmitter module comprises a data laser driver and a laser diode (LD) coupled to the switch and the data laser driver, and wherein the receiver module comprises a photodiode (PD) coupled to the switch and an amplifier coupled to the PD and the microcontroller.
  3. The optical device of claim 2, wherein the switch is configured to implement a data mode and at least one monitor mode.
  4. The optical device of claim 1, wherein the switch is configured to selectively couple the first port to the third port, the fourth port to the second port, the third port to the second port, and the first port to the fourth port.
  5. An optical device comprising:
    a transmitter module configured to:
    transmit optical data signals in a data mode; and
    transmit optical test pulses in a monitor mode;
    a receiver module configured to:
    receive input optical data signals in the data mode; and
    receive reflected optical test pulses in the monitor mode; and
    a switch coupled to the transmitter module and the receiver module and configured to switch optical paths to implement the data mode or the monitor mode.
  6. The optical device of claim 5, wherein, in the data mode, the switch is configured to:
    receive the optical data signals from the transmitter module;
    switch the optical data signals to a transmitter fiber;
    receive the input optical data signals from a receiver fiber; and
    switch the input optical data signals to the receiver module.
  7. The optical device of claim 5, wherein, in the monitor mode, the switch is configured to:
    receive the optical test pulses from the transmitter module;
    switch the optical test pulses to a transmitter fiber;
    receive the reflected optical test pulses from the transmitter fiber; and
    switch the reflected optical test pulses to the receiver module.
  8. The optical device of claim 5, wherein, in the monitor mode, the switch is configured to:
    receive the optical test pulses from the transmitter module;
    switch the optical test pulses to a receiver fiber;
    receive the reflected optical test pulses from a receiver fiber; and
    switch the reflected optical test pulses to the receiver module.
  9. The optical device of claim 5, wherein the reflected optical test pulses are reflected portions of the optical test pulses.
  10. The optical device of claim 5, wherein the receiver module comprises:
    a photodiode (PD) coupled to the switch and configured to:
    receive the input optical data signals in the data mode;
    receive the reflected optical test pulses in the at least one monitor mode; and
    output electrical signals; and
    an amplifier coupled to the PD and configured to:
    receive the electrical signals;
    amplify the electrical signals; and
    output amplified electrical signals.
  11. The optical device of claim 10, further comprising a microcontroller coupled to the amplifier and configured to:
    receive the amplified electrical signals; and
    determine a fault location of either a transmitter fiber or a receiver fiber.
  12. A method implemented in a switch, the method comprising:
    operating in a monitor mode that provides for monitoring of a transmitter fiber or a receiver fiber;
    receiving a command to transition from the monitor mode to a data mode;
    connecting a transmitter module to the transmitter fiber; and
    connecting a receiver module to the receiver fiber.
  13. The method of claim 12, further comprising:
    receiving optical data signals from the transmitter module;
    switching the optical data signals from the transmitter module to the transmitter fiber;
    receiving input optical data signals from the receiver fiber; and
    switching the input optical data signals from the receiver fiber to the receiver module.
  14. A method implemented in a switch, the method comprising:
    operating in a data mode that provides for communication of user data through the switch;
    receiving a request to transition from the data mode to a monitor mode that provides for monitoring of a transmitter fiber or a receiver fiber, both the transmitter fiber and the receiver fiber are coupled to the switch; and
    connecting ports of the switch to implement the monitor mode.
  15. The method of claim 14, further comprising:
    disconnecting a second port of the switch from a fourth port of the switch, wherein the second port is coupled to a receiver module and the fourth port is coupled to a receiver fiber;
    switching optical test pulses from a first port of the switch to a third port of the switch, wherein the first port is coupled to a transmitter module and the third port is coupled to a transmitter fiber; and
    disconnecting the first port from the third port,
    wherein connecting the ports comprises connecting the third port to the second port, and
    wherein the method further comprises switching reflected optical test pulses from the third port to the second port.
  16. The method of claim 14, further comprising:
    disconnecting a first port of the switch from a third port of the switch, wherein the first port is coupled to a transmitter module and the third port is coupled to a transmitter fiber; and
    disconnecting a second port of the switch from a fourth port of the switch, wherein the second port is coupled to a receiver module and the fourth port is coupled to a receiver fiber,
    wherein connecting the ports comprises connecting the first port to the fourth port and connecting the fourth port to the second port, and
    wherein the method further comprises switching optical test pulses from the first port to the fourth port and switching reflected optical test pulses from the fourth port to the second port.
  17. A method comprising:
    transmitting, by a transmitter module, an optical test pulse to a switch;
    switching, by the switch, the optical test pulse to a fiber to be tested;
    receiving, by the switch, a reflected optical test pulse that is a reflected portion of the optical test pulse; and
    switching, by the switch, the reflected optical test pulse to a receiver module for monitoring.
  18. The method of claim 17, further comprising determining a position of a reflection location of the optical test pulse.
  19. The method of claim 18, wherein the determining comprises calculating a travel time in the fiber.
  20. The method of claim 19, wherein the calculating comprises computing a travel time between the switch and the reflection location.
  21. The method of claim 20, wherein the computing comprises measuring a time between the optical test pulse entering the fiber and the reflected optical test pulse entering the switch.
  22. The method of claim 17, further comprising:
    calculating a time between the optical test pulse exiting the transmitter module and the reflected optical test pulse entering the receiver module;
    determining, based on the calculating, that the location is at an end of the fiber; and
    generating, based on the determining, a fiber diagnosis signal indicating that the fiber is not faulty.
  23. The method of claim 17, further comprising:
    calculating a time between the optical test pulse exiting the transmitter module and the reflected optical test pulse entering the receiver module;
    determining, based on the calculating, that the location is not at an end of the fiber; and
    generating, based on the determining, a fiber diagnosis signal indicating that the fiber is faulty.
  24. The method of claim 17, further comprising:
    calculating a time between the optical test pulse exiting the transmitter module and the reflected optical test pulse entering the receiver module;
    determining, based on the calculating, a distance of a reflection location of the fiber;
    generating, based on the determining, a signal indicating the distance; and
    transmitting the signal.
PCT/CN2016/097374 2015-09-28 2016-08-30 Optical network monitoring with a photonic switch WO2017054607A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680047256.5A CN107925477B (en) 2015-09-28 2016-08-30 Optical device and method implemented in a switch
EP16850231.8A EP3342067B1 (en) 2015-09-28 2016-08-30 Optical network monitoring with a photonic switch

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/867,665 2015-09-28
US14/867,665 US10110302B2 (en) 2015-09-28 2015-09-28 Optical network monitoring with a photonic switch

Publications (1)

Publication Number Publication Date
WO2017054607A1 true WO2017054607A1 (en) 2017-04-06

Family

ID=58407467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/097374 WO2017054607A1 (en) 2015-09-28 2016-08-30 Optical network monitoring with a photonic switch

Country Status (4)

Country Link
US (1) US10110302B2 (en)
EP (1) EP3342067B1 (en)
CN (1) CN107925477B (en)
WO (1) WO2017054607A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7238340B2 (en) * 2018-10-30 2023-03-14 富士通オプティカルコンポーネンツ株式会社 Optical transceiver, optical transceiver module using same, and test method for optical transceiver
US10965370B2 (en) * 2019-06-28 2021-03-30 Huawei Technologies Canada Co., Ltd. Optical performance monitor
US10979140B2 (en) * 2019-07-09 2021-04-13 Huawei Technologies Co., Ltd. Method and apparatus for detecting operational conditions of an optical link in an optical network
US10969302B1 (en) * 2020-02-13 2021-04-06 Afl Telecommunications Llc Optical time-domain reflectometers and related methods
US11569913B2 (en) 2020-06-19 2023-01-31 Huawei Technologies Co., Ltd. Optical modulator control system for interconnect transceivers
US20230344514A1 (en) * 2022-04-22 2023-10-26 Viavi Solutions Inc. High speed bidirectional test of dual-fiber link

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102299746A (en) * 2011-07-08 2011-12-28 成都新易盛通信技术有限公司 Small from-factor pluggable (SFP) module with low costs and high precision digit diagnosis function
US20140077971A1 (en) * 2012-09-19 2014-03-20 Ciena Corporation Raman amplifier system and method with integrated optical time domain reflectometer
CN104734776A (en) * 2015-04-14 2015-06-24 国网吉林省电力有限公司信息通信公司 Optic fiber monitoring system and monitoring method switching three operation modes freely

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6370294B1 (en) * 1999-06-25 2002-04-09 Adc Telecommunications, Inc. Fiber optic circuit and module with switch
JP3696517B2 (en) 2001-03-16 2005-09-21 富士通株式会社 Optical transmission system
KR100569825B1 (en) * 2003-08-07 2006-04-11 최준국 Media converter and wdm pon system of ring type included the converter
US7359592B2 (en) * 2006-03-21 2008-04-15 The Boeing Company Single fiber links for full duplex aircraft data network
JP2012129733A (en) * 2010-12-14 2012-07-05 Fujitsu Ltd Packet transmission device and packet transmission method
JP5737067B2 (en) * 2011-08-25 2015-06-17 富士通株式会社 Optical transmission apparatus and optical transmission network system
CN106656316A (en) * 2013-10-23 2017-05-10 青岛海信宽带多媒体技术有限公司 Optical line terminal (OLT)

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102299746A (en) * 2011-07-08 2011-12-28 成都新易盛通信技术有限公司 Small from-factor pluggable (SFP) module with low costs and high precision digit diagnosis function
US20140077971A1 (en) * 2012-09-19 2014-03-20 Ciena Corporation Raman amplifier system and method with integrated optical time domain reflectometer
CN104734776A (en) * 2015-04-14 2015-06-24 国网吉林省电力有限公司信息通信公司 Optic fiber monitoring system and monitoring method switching three operation modes freely

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PARKIN, NELL.: "Gigabit SFP Transceiver with Integrated Optical Time Domain Reflectometer for Ethernet Access Services", ECOC 2013 LONDON 39TH EUROPE UNÐCONFERENCE ONWPTICALÐCOMMUNICATION, 26 September 2013 (2013-09-26), XP055372188 *
See also references of EP3342067A4 *

Also Published As

Publication number Publication date
CN107925477A (en) 2018-04-17
EP3342067A1 (en) 2018-07-04
EP3342067A4 (en) 2018-12-05
CN107925477B (en) 2020-01-21
US20170093486A1 (en) 2017-03-30
EP3342067B1 (en) 2022-08-24
US10110302B2 (en) 2018-10-23

Similar Documents

Publication Publication Date Title
EP3342067B1 (en) Optical network monitoring with a photonic switch
US11012152B2 (en) Method and system for connectionless integrated optical receiver and transmitter test
US10935820B2 (en) Method and system for integrated power combiners
KR102580275B1 (en) Multi-wavelength lidar design
KR101954376B1 (en) Optical network communication system with optical line terminal transceiver and method of operation thereof
US9209901B2 (en) Configurable single-fiber or dual-fiber optical transceiver
US11063671B2 (en) Method and system for redundant light sources by utilizing two inputs of an integrated modulator
US8909054B2 (en) Bi-direction optical sub-assembly and optical transceiver
JP7192255B2 (en) Optical device, optical module using same, and test method for optical device
US10355783B2 (en) Optical-to-optical transceiver and methods of making and using the same
CN201414130Y (en) Photoelectric integral component and passive optical network element
US10812181B2 (en) Light source redundancy in optical communication devices
US9185475B1 (en) Signal quality in bi-directional optical links using optical circulators
CN102882596A (en) Optical component, operating method thereof and passive optical network equipment
Al-Qadasi et al. Scaling up silicon photonic-based accelerators: challenges and opportunities, and roadmapping with silicon photonics 2.0
WO2020244302A1 (en) Method and device for light source switching
Lee et al. Compact 4× 25 Gb/s optical receiver and transceiver for 100G ethernet interface
Lee et al. Optical label Processing and 10-gb/s variable length optical packet switching using a 4/spl times/4 optical crosspoint switch
Prucnal VLSI optical interconnection networks
Links Conference 9390: Next-Generation Optical Networks for Data Centers and Short-Reach Links II
Kanazawa et al. Low crosstalk and high modulation bandwidth 100GbE optical transmitter using flip-chip interconnects
Rideout et al. Photonic integrated circuits for wide bandwidth avionic systems
JP2013011777A (en) Differential phase-shift keying optical receiver

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16850231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016850231

Country of ref document: EP