WO2017052250A1 - 영상의 부호화/복호화 방법 및 이를 위한 장치 - Google Patents

영상의 부호화/복호화 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2017052250A1
WO2017052250A1 PCT/KR2016/010622 KR2016010622W WO2017052250A1 WO 2017052250 A1 WO2017052250 A1 WO 2017052250A1 KR 2016010622 W KR2016010622 W KR 2016010622W WO 2017052250 A1 WO2017052250 A1 WO 2017052250A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference picture
picture
block
prediction
current
Prior art date
Application number
PCT/KR2016/010622
Other languages
English (en)
French (fr)
Inventor
박승욱
장형문
전용준
Original Assignee
엘지전자(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자(주) filed Critical 엘지전자(주)
Priority to CN201680055193.8A priority Critical patent/CN108141595A/zh
Priority to KR1020187007356A priority patent/KR20180048713A/ko
Priority to US15/762,323 priority patent/US10511839B2/en
Priority to JP2018515235A priority patent/JP2018533286A/ja
Priority to EP16848975.5A priority patent/EP3355581A4/en
Publication of WO2017052250A1 publication Critical patent/WO2017052250A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/159Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/109Selection of coding mode or of prediction mode among a plurality of temporal predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/172Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a picture, frame or field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/44Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • H04N19/517Processing of motion vectors by encoding
    • H04N19/52Processing of motion vectors by encoding by predictive encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/523Motion estimation or motion compensation with sub-pixel accuracy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/59Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial sub-sampling or interpolation, e.g. alteration of picture size or resolution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process

Definitions

  • the present invention relates to a video processing method, and more particularly, to a method for encoding / decoding a video using inter prediction and an apparatus supporting the same.
  • Compression coding refers to a series of signal processing techniques for transmitting digitized information through a communication line or for storing in a form suitable for a storage medium.
  • Media such as an image, an image, an audio, and the like may be a target of compression encoding.
  • a technique of performing compression encoding on an image is called video image compression.
  • Next-generation video content will be characterized by high spatial resolution, high frame rate and high dimensionality of scene representation. Processing such content would result in a tremendous increase in terms of memory storage, memory access rate, and processing power.
  • An object of the present invention is to propose a method for encoding / decoding an image composed of multiple representations.
  • An aspect of the present invention provides a method of decoding an image, comprising: determining whether a property of a current picture and a reference picture are different; and if the property of the current picture and the reference picture is different, the reference picture is the current picture.
  • the method may include converting to have the same properties as a picture and performing inter prediction on the current picture in units of predetermined blocks by using the transformed reference picture.
  • An aspect of the present invention provides a device for decoding an image, comprising: a property determination unit for determining whether a property of a current picture and a reference picture is different;
  • a converting unit may be configured to have the same properties as the current picture, and an inter prediction unit may be used to perform inter prediction on the current picture in a predetermined block unit using the converted reference picture.
  • the property comprises at least one of resolution, bit-depth, color format, dynamic range and width-to-height ratio. can do.
  • the reference picture is equal to the ratio in the width and / or height direction. Downscaling.
  • the reference picture is increased by the ratio in the width and / or height direction. Upscaling.
  • the n-1 subsampling is performed from the reference picture without downscaling the reference picture.
  • a predictive sample of the block can be derived.
  • the motion vector of the reference picture is scaled by a scaling factor of down / upscaling of the reference picture, and in units of blocks of the smallest size that can have a motion vector.
  • the motion vector of the prediction block in the reference picture including the upper left sample may be allocated.
  • the dynamic range and / or bit-depth of the reference picture are different.
  • -depth can be transformed using a predetermined linear or nonlinear function.
  • a chrominance component of the reference picture may be up / downscaled in the horizontal and vertical directions.
  • FIG. 1 is a schematic block diagram of an encoder in which encoding of a still image or video signal is performed according to an embodiment to which the present invention is applied.
  • FIG. 2 is a schematic block diagram of a decoder in which encoding of a still image or video signal is performed according to an embodiment to which the present invention is applied.
  • FIG. 3 is a diagram for describing a partition structure of a coding unit that may be applied to the present invention.
  • FIG. 4 is a diagram for explaining a prediction unit applicable to the present invention.
  • FIG. 5 is a diagram illustrating a direction of inter prediction as an embodiment to which the present invention may be applied.
  • FIG 6 illustrates integer and fractional sample positions for quarter sample interpolation, as an embodiment to which the present invention may be applied.
  • FIG. 7 illustrates a position of a spatial candidate as an embodiment to which the present invention may be applied.
  • FIG. 8 is a diagram illustrating an inter prediction method as an embodiment to which the present invention is applied.
  • FIG. 9 is a diagram illustrating a motion compensation process as an embodiment to which the present invention may be applied.
  • FIG. 10 is a diagram illustrating an adaptive streaming method to which the present invention can be applied.
  • 11 and 12 are diagrams illustrating an adaptive streaming method using multiple representations to which the present invention can be applied.
  • FIG. 13 illustrates a method of determining whether a property / characteristic is different between a current picture and a reference picture according to an embodiment of the present invention.
  • FIG. 14 illustrates a reference picture management process when the resolution between the current picture and the reference picture is different according to an embodiment of the present invention.
  • FIG. 15 is a diagram schematically illustrating the reference picture management process of FIG. 14.
  • 16 is a diagram illustrating a method of performing downsampled prediction according to an embodiment of the present invention.
  • 17 is a diagram for a method of scaling motion information when a resolution between a current picture and a reference picture is different according to an embodiment of the present invention.
  • FIG. 18 illustrates a homography matrix for correcting a case where a bit-depth or dynamic range between a current picture and a reference picture is different according to an embodiment of the present invention.
  • FIG. 19 is a diagram illustrating an image decoding method according to an embodiment of the present invention.
  • 20 is a diagram illustrating a decoding apparatus according to an embodiment of the present invention.
  • the term 'block' or 'unit' refers to a unit in which a process of encoding / decoding such as prediction, transformation, and / or quantization is performed, and may be configured as a multidimensional array of samples (or pixels, pixels).
  • 'Block' or 'unit' may mean a multi-dimensional array of samples for luma components, or may mean a multi-dimensional array of samples for chroma components.
  • the multi-dimensional arrangement of the sample for the luma component and the multi-dimensional arrangement of the sample for the chroma component may also be included.
  • 'block' or 'unit' refers to a coding block (CB) that represents an array of samples to be encoded / decoded, and a coding tree block composed of a plurality of coding blocks (CTB).
  • CB coding block
  • CB coding block
  • CB coding tree block composed of a plurality of coding blocks
  • PB Prediction Block
  • PU Prediction Unit
  • TB Transform Block
  • a 'block' or 'unit' is a syntax structure used in encoding / decoding an array of samples for a luma component and / or a chroma component. can be interpreted to include a sturcture.
  • the syntax structure refers to zero or more syntax elements existing in the bitstream in a specific order, and the syntax element refers to an element of data represented in the bitstream.
  • a 'block' or 'unit' includes a coding unit (CU) including a coding block (CB) and a syntax structure used for encoding the coding block (CB), and a plurality of coding units.
  • TUs transform units
  • the 'block' or 'unit' is not necessarily limited to an array of square or rectangular samples (or pixels or pixels), and polygonal samples having three or more vertices (or pixels or pixels). It can also mean an array of. In this case, it may also be referred to as a polygon block or a polygon unit.
  • FIG. 1 is a schematic block diagram of an encoder in which encoding of a still image or video signal is performed according to an embodiment to which the present invention is applied.
  • the encoder 100 may include an image divider 110, a subtractor 115, a transform unit 120, a quantizer 130, an inverse quantizer 140, an inverse transform unit 150, and a filtering unit. 160, a decoded picture buffer (DPB) 170, a predictor 180, and an entropy encoder 190.
  • the predictor 180 may include an inter predictor 181 and an intra predictor 182.
  • the image divider 110 divides an input video signal (or a picture or a frame) input to the encoder 100 into one or more blocks.
  • the subtractor 115 outputs a predicted signal (or a predicted block) output from the predictor 180 (that is, the inter predictor 181 or the intra predictor 182) in the input image signal. ) To generate a residual signal (or differential block). The generated difference signal (or difference block) is transmitted to the converter 120.
  • the transform unit 120 may convert a differential signal (or a differential block) into a transform scheme (eg, a discrete cosine transform (DCT), a discrete sine transform (DST), a graph-based transform (GBT), and a karhunen-loeve transform (KLT)). Etc.) to generate transform coefficients.
  • a transform scheme eg, a discrete cosine transform (DCT), a discrete sine transform (DST), a graph-based transform (GBT), and a karhunen-loeve transform (KLT)
  • the quantization unit 130 quantizes the transform coefficients and transmits the transform coefficients to the entropy encoding unit 190, and the entropy encoding unit 190 entropy codes the quantized signals and outputs them as bit streams.
  • the quantized signal output from the quantization unit 130 may be used to generate a prediction signal.
  • the quantized signal may recover the differential signal by applying inverse quantization and inverse transformation through an inverse quantization unit 140 and an inverse transformation unit 150 in a loop.
  • a reconstructed signal (or a reconstruction block) may be generated by adding the reconstructed difference signal to a prediction signal output from the inter predictor 181 or the intra predictor 182.
  • the filtering unit 160 applies filtering to the reconstruction signal and outputs it to the reproduction apparatus or transmits the decoded picture buffer to the decoding picture buffer 170.
  • the filtered signal transmitted to the decoded picture buffer 170 may be used as the reference picture in the inter prediction unit 181. As such, by using the filtered picture as a reference picture in the inter prediction mode, not only image quality but also encoding efficiency may be improved.
  • the decoded picture buffer 170 may store the filtered picture for use as a reference picture in the inter prediction unit 181.
  • the inter prediction unit 181 performs temporal prediction and / or spatial prediction to remove temporal redundancy and / or spatial redundancy with reference to a reconstructed picture.
  • the reference picture used to perform the prediction is a transformed signal that has been quantized and dequantized in units of blocks at the time of encoding / decoding in the previous time, blocking artifacts or ringing artifacts may exist. have.
  • the inter prediction unit 181 may interpolate the signals between pixels in sub-pixel units by applying a lowpass filter to solve performance degradation due to discontinuity or quantization of such signals.
  • the sub-pixels mean virtual pixels generated by applying an interpolation filter
  • the integer pixels mean actual pixels existing in the reconstructed picture.
  • the interpolation method linear interpolation, bi-linear interpolation, wiener filter, or the like may be applied.
  • the interpolation filter may be applied to a reconstructed picture to improve the precision of prediction.
  • the inter prediction unit 181 may generate an interpolation pixel by applying an interpolation filter to an integer pixel and perform prediction using an interpolated block composed of interpolated pixels.
  • the intra predictor 182 predicts the current block by referring to samples in the vicinity of the block to which the current encoding is to be performed.
  • the intra prediction unit 182 may perform the following process to perform intra prediction. First, reference samples necessary for generating a prediction signal may be prepared. The predicted signal (predicted block) may be generated using the prepared reference sample. Then, the prediction mode is encoded. In this case, the reference sample may be prepared through reference sample padding and / or reference sample filtering. Since the reference sample has been predicted and reconstructed, there may be a quantization error. Accordingly, the reference sample filtering process may be performed for each prediction mode used for intra prediction to reduce such an error.
  • the predicted signal (or predicted block) generated by the inter predictor 181 or the intra predictor 182 is used to generate a reconstruction signal (or reconstruction block) or a differential signal (or differential). Block).
  • FIG. 2 is a schematic block diagram of a decoder in which encoding of a still image or video signal is performed according to an embodiment to which the present invention is applied.
  • the decoder 200 includes an entropy decoding unit 210, an inverse quantization unit 220, an inverse transform unit 230, an adder 235, a filtering unit 240, and a decoded picture buffer (DPB).
  • Buffer Unit (250) the prediction unit 260 may be configured.
  • the predictor 260 may include an inter predictor 261 and an intra predictor 262.
  • the reconstructed video signal output through the decoder 200 may be reproduced through the reproducing apparatus.
  • the decoder 200 receives a signal (ie, a bit stream) output from the encoder 100 of FIG. 1, and the received signal is entropy decoded through the entropy decoding unit 210.
  • the inverse quantization unit 220 obtains a transform coefficient from the entropy decoded signal using the quantization step size information.
  • the inverse transform unit 230 applies an inverse transform scheme to inverse transform the transform coefficients to obtain a residual signal (or a differential block).
  • the adder 235 outputs the obtained difference signal (or difference block) from the predictor 260 (that is, the predicted signal (or prediction) output from the predictor 260 (that is, the inter predictor 261 or the intra predictor 262). By adding to the generated block), a reconstructed signal (or a restored block) is generated.
  • the filtering unit 240 applies filtering to the reconstructed signal (or the reconstructed block) and outputs the filtering to the reproduction device or transmits the decoded picture buffer unit 250 to the reproduction device.
  • the filtered signal transmitted to the decoded picture buffer unit 250 may be used as a reference picture in the inter predictor 261.
  • the embodiments described by the filtering unit 160, the inter prediction unit 181, and the intra prediction unit 182 of the encoder 100 are respectively the filtering unit 240, the inter prediction unit 261, and the decoder of the decoder. The same may be applied to the intra predictor 262.
  • a still image or video compression technique uses a block-based image compression method.
  • the block-based image compression method is a method of processing an image by dividing the image into specific block units, and may reduce memory usage and calculation amount.
  • FIG. 3 is a diagram for describing a partition structure of a coding unit that may be applied to the present invention.
  • the encoder splits one image (or picture) into units of a coding tree unit (CTU) in a rectangular shape.
  • CTU coding tree unit
  • one CTU is sequentially encoded according to a raster scan order.
  • the size of the CTU may be set to any one of 64 ⁇ 64, 32 ⁇ 32, and 16 ⁇ 16.
  • the encoder may select and use the size of the CTU according to the resolution of the input video or the characteristics of the input video.
  • the CTU includes a coding tree block (CTB) for luma components and a CTB for two chroma components corresponding thereto.
  • CTB coding tree block
  • the CU refers to a basic unit of coding in which an input image is processed, for example, intra / inter prediction is performed.
  • the CU includes a coding block (CB) for a luma component and a CB for two chroma components corresponding thereto.
  • CB coding block
  • the size of a CU may be set to any one of 64 ⁇ 64, 32 ⁇ 32, 16 ⁇ 16, and 8 ⁇ 8.
  • the root node of the quad-tree is associated with the CTU.
  • the quad-tree is split until it reaches a leaf node, which corresponds to a CU.
  • the CTU may not be divided according to the characteristics of the input image.
  • the CTU corresponds to a CU.
  • a node that is no longer divided ie, a leaf node
  • CU a node that is no longer divided
  • CU a node that is no longer divided
  • CU a node corresponding to nodes a, b, and j are divided once in the CTU and have a depth of one.
  • a node (ie, a leaf node) that is no longer divided in a lower node having a depth of 2 corresponds to a CU.
  • CU (c), CU (h) and CU (i) corresponding to nodes c, h and i are divided twice in the CTU and have a depth of two.
  • a node that is no longer partitioned (ie, a leaf node) in a lower node having a depth of 3 corresponds to a CU.
  • CU (d), CU (e), CU (f), and CU (g) corresponding to nodes d, e, f, and g are divided three times in the CTU, Has depth.
  • the maximum size or the minimum size of the CU may be determined according to characteristics (eg, resolution) of the video image or in consideration of encoding efficiency. Information about this or information capable of deriving the information may be included in the bitstream.
  • a CU having a maximum size may be referred to as a largest coding unit (LCU), and a CU having a minimum size may be referred to as a smallest coding unit (SCU).
  • LCU largest coding unit
  • SCU smallest coding unit
  • a CU having a tree structure may be hierarchically divided with predetermined maximum depth information (or maximum level information).
  • Each partitioned CU may have depth information. Since the depth information indicates the number and / or degree of division of the CU, the depth information may include information about the size of the CU.
  • the size of the SCU can be obtained by using the size and maximum depth information of the LCU. Or conversely, using the size of the SCU and the maximum depth information of the tree, the size of the LCU can be obtained.
  • information indicating whether the corresponding CU is split may be transmitted to the decoder.
  • This split mode is included in all CUs except the SCU. For example, if the flag indicating whether to split or not is '1', the CU is divided into 4 CUs again. If the flag indicating whether to split or not is '0', the CU is not divided further. Processing may be performed.
  • a CU is a basic unit of coding in which intra prediction or inter prediction is performed.
  • HEVC divides a CU into prediction units (PUs) in order to code an input image more effectively.
  • the PU is a basic unit for generating a prediction block, and may generate different prediction blocks in PU units within one CU. However, PUs belonging to one CU are not mixed with intra prediction and inter prediction, and PUs belonging to one CU are coded by the same prediction method (ie, intra prediction or inter prediction).
  • the PU is not divided into quad-tree structures, but is divided once in a predetermined form in one CU. This will be described with reference to the drawings below.
  • FIG. 4 is a diagram for explaining a prediction unit applicable to the present invention.
  • the PU is divided differently according to whether an intra prediction mode or an inter prediction mode is used as a coding mode of a CU to which the PU belongs.
  • FIG. 4A illustrates a PU when an intra prediction mode is used
  • FIG. 4B illustrates a PU when an inter prediction mode is used.
  • N ⁇ N type PU when divided into N ⁇ N type PU, one CU is divided into four PUs, and different prediction blocks are generated for each PU unit.
  • the division of the PU may be performed only when the size of the CB for the luminance component of the CU is the minimum size (that is, the CU is the SCU).
  • one CU has 8 PU types (ie, 2N ⁇ 2N). , N ⁇ N, 2N ⁇ N, N ⁇ 2N, nL ⁇ 2N, nR ⁇ 2N, 2N ⁇ nU, 2N ⁇ nD).
  • PU partitioning in the form of N ⁇ N may be performed only when the size of the CB for the luminance component of the CU is the minimum size (that is, the CU is the SCU).
  • AMP Asymmetric Motion Partition
  • 'n' means a 1/4 value of 2N.
  • AMP cannot be used when the CU to which the PU belongs is a CU of the minimum size.
  • an optimal partitioning structure of a coding unit (CU), a prediction unit (PU), and a transformation unit (TU) is subjected to the following process to perform a minimum rate-distortion. It can be determined based on the value. For example, looking at the optimal CU partitioning process in 64 ⁇ 64 CTU, rate-distortion cost can be calculated while partitioning from a 64 ⁇ 64 CU to an 8 ⁇ 8 CU.
  • the specific process is as follows.
  • the partition structure of the optimal PU and TU that generates the minimum rate-distortion value is determined by performing inter / intra prediction, transform / quantization, inverse quantization / inverse transform, and entropy encoding for a 64 ⁇ 64 CU.
  • the 32 ⁇ 32 CU is subdivided into four 16 ⁇ 16 CUs, and a partition structure of an optimal PU and TU that generates a minimum rate-distortion value for each 16 ⁇ 16 CU is determined.
  • 16 ⁇ 16 blocks by comparing the sum of the rate-distortion values of the 16 ⁇ 16 CUs calculated in 3) above with the rate-distortion values of the four 8 ⁇ 8 CUs calculated in 4) above. Determine the partition structure of the optimal CU within. This process is similarly performed for the remaining three 16 ⁇ 16 CUs.
  • a prediction mode is selected in units of PUs, and prediction and reconstruction are performed in units of actual TUs for the selected prediction mode.
  • the TU means a basic unit in which actual prediction and reconstruction are performed.
  • the TU includes a transform block (TB) for a luma component and a TB for two chroma components corresponding thereto.
  • TB transform block
  • the TUs are hierarchically divided into quad-tree structures from one CU to be coded.
  • the TU divided from the CU can be further divided into smaller lower TUs.
  • the size of the TU may be set to any one of 32 ⁇ 32, 16 ⁇ 16, 8 ⁇ 8, and 4 ⁇ 4.
  • a root node of the quad-tree is associated with a CU.
  • the quad-tree is split until it reaches a leaf node, which corresponds to a TU.
  • the CU may not be divided according to the characteristics of the input image.
  • the CU corresponds to a TU.
  • a node ie, a leaf node
  • TU (a), TU (b), and TU (j) corresponding to nodes a, b, and j are divided once in a CU and have a depth of 1.
  • FIG. 3B TU (a), TU (b), and TU (j) corresponding to nodes a, b, and j are divided once in a CU and have a depth of 1.
  • a node (ie, a leaf node) that is no longer divided in a lower node having a depth of 2 corresponds to a TU.
  • TU (c), TU (h), and TU (i) corresponding to nodes c, h, and i are divided twice in a CU and have a depth of two.
  • a node that is no longer partitioned (ie, a leaf node) in a lower node having a depth of 3 corresponds to a CU.
  • TU (d), TU (e), TU (f), and TU (g) corresponding to nodes d, e, f, and g are divided three times in a CU. Has depth.
  • a TU having a tree structure may be hierarchically divided with predetermined maximum depth information (or maximum level information). Each divided TU may have depth information. Since the depth information indicates the number and / or degree of division of the TU, it may include information about the size of the TU.
  • information indicating whether the corresponding TU is split may be delivered to the decoder.
  • This partitioning information is included in all TUs except the smallest TU. For example, if the value of the flag indicating whether to split is '1', the corresponding TU is divided into four TUs again. If the value of the flag indicating whether to split is '0', the corresponding TU is no longer divided.
  • the decoded portion of the current picture or other pictures containing the current block may be used to reconstruct the current block on which decoding is performed.
  • Intra picture or I picture (slice) using only the current picture for reconstruction i.e. performing only intra-picture prediction, and picture (slice) using up to one motion vector and reference index to predict each block
  • a picture using a predictive picture or P picture (slice), up to two motion vectors, and a reference index (slice) may be referred to as a bi-predictive picture or a B picture (slice).
  • Intra prediction means a prediction method that derives the current block from data elements (eg, sample values, etc.) of the same decoded picture (or slice). That is, the method refers to a pixel value of the current block with reference to the reconstructed regions in the current picture.
  • data elements eg, sample values, etc.
  • Inter Inter prediction (or inter screen prediction)
  • Inter prediction means a prediction method of deriving a current block based on data elements (eg, sample values or motion vectors) of a picture other than the current picture. That is, the method refers to a pixel value of the current block by referring to reconstructed regions in other reconstructed pictures other than the current picture.
  • data elements eg, sample values or motion vectors
  • Inter prediction (or inter picture prediction) is a technique for removing redundancy existing between pictures, and is mostly performed through motion estimation and motion compensation.
  • FIG. 5 is a diagram illustrating a direction of inter prediction as an embodiment to which the present invention may be applied.
  • inter prediction includes uni-directional prediction that uses only one past or future picture as a reference picture on a time axis with respect to one block, and bidirectional prediction that simultaneously refers to past and future pictures. Bi-directional prediction).
  • uni-directional prediction includes forward direction prediction using one reference picture displayed (or output) before the current picture in time and 1 displayed (or output) after the current picture in time. It can be divided into backward direction prediction using two reference pictures.
  • the motion parameter (or information) used to specify which reference region (or reference block) is used to predict the current block in the inter prediction process is an inter prediction mode (where
  • the inter prediction mode may indicate a reference direction (i.e., unidirectional or bidirectional) and a reference list (i.e., L0, L1 or bidirectional), a reference index (or reference picture index or reference list index), Contains motion vector information.
  • the motion vector information may include a motion vector, a motion vector predictor (MVP), or a motion vector difference (MVD).
  • the motion vector difference value means a difference value between the motion vector and the motion vector predictor.
  • motion parameters for one direction are used. That is, one motion parameter may be needed to specify the reference region (or reference block).
  • Bidirectional prediction uses motion parameters for both directions.
  • up to two reference regions may be used.
  • the two reference regions may exist in the same reference picture or may exist in different pictures, respectively. That is, up to two motion parameters may be used in the bidirectional prediction scheme, and two motion vectors may have the same reference picture index or different reference picture indexes. In this case, all of the reference pictures may be displayed (or output) before or after the current picture in time.
  • the encoder performs motion estimation to find a reference region most similar to the current block from the reference pictures in the inter prediction process.
  • the encoder may provide a decoder with a motion parameter for the reference region.
  • the encoder / decoder may obtain a reference region of the current block by using the motion parameter.
  • the reference region exists in a reference picture having the reference index.
  • a pixel value or an interpolated value of a reference region specified by the motion vector may be used as a predictor of the current block. That is, using motion information, motion compensation is performed to predict an image of the current block from a previously decoded picture.
  • a method of acquiring a motion vector predictor mvp using motion information of previously coded blocks and transmitting only a difference value mvd thereof may be used. That is, the decoder obtains a motion vector predictor of the current block by using motion information of other decoded blocks, and obtains a motion vector value of the current block by using a difference value transmitted from the encoder. In obtaining a motion vector predictor, the decoder may obtain various motion vector candidate values using motion information of other blocks that are already decoded, and obtain one of them as a motion vector predictor.
  • a set of previously decoded pictures are stored in a decoded picture buffer (DPB) for decoding the remaining pictures.
  • DPB decoded picture buffer
  • a reference picture refers to a picture including a sample that can be used for inter prediction in a decoding process of a next picture in decoding order.
  • a reference picture set refers to a set of reference pictures associated with a picture, and is composed of all pictures previously associated in decoding order.
  • the reference picture set may be used for inter prediction of an associated picture or a picture following an associated picture in decoding order. That is, reference pictures maintained in the decoded picture buffer DPB may be referred to as a reference picture set.
  • the encoder may provide the decoder with reference picture set information in a sequence parameter set (SPS) (ie, a syntax structure composed of syntax elements) or each slice header.
  • SPS sequence parameter set
  • a reference picture list refers to a list of reference pictures used for inter prediction of a P picture (or slice) or a B picture (or slice).
  • the reference picture list may be divided into two reference picture lists, and may be referred to as reference picture list 0 (or L0) and reference picture list 1 (or L1), respectively.
  • a reference picture belonging to reference picture list 0 may be referred to as reference picture 0 (or L0 reference picture)
  • a reference picture belonging to reference picture list 1 may be referred to as reference picture 1 (or L1 reference picture).
  • one reference picture list i.e., reference picture list 0
  • two reference picture lists i.e., reference Picture list 0 and reference picture list 1
  • Such information for distinguishing a reference picture list for each reference picture may be provided to the decoder through reference picture set information.
  • the decoder adds the reference picture to the reference picture list 0 or the reference picture list 1 based on the reference picture set information.
  • a reference picture index (or reference index) is used to identify any one specific reference picture in the reference picture list.
  • a sample of the predictive block for the inter predicted current block is obtained from sample values of the corresponding reference region in the reference picture identified by the reference picture index.
  • the corresponding reference region in the reference picture represents the region of the position indicated by the horizontal component and the vertical component of the motion vector.
  • Fractional sample interpolation is used to generate predictive samples for noninteger sample coordinates, except when the motion vector has an integer value. For example, a motion vector of one quarter of the distance between samples may be supported.
  • fractional sample interpolation of luminance components applies an 8-tap filter in the horizontal and vertical directions, respectively.
  • fractional sample interpolation of the color difference component applies a 4-tap filter in the horizontal direction and the vertical direction, respectively.
  • FIG 6 illustrates integer and fractional sample positions for quarter sample interpolation, as an embodiment to which the present invention may be applied.
  • the shaded block in which the upper-case letter (A_i, j) is written indicates the integer sample position
  • the shaded block in which the lower-case letter (x_i, j) is written is the fractional sample position. Indicates.
  • Fractional samples are generated by applying interpolation filters to integer sample values in the horizontal and vertical directions, respectively.
  • an 8-tap filter may be applied to four integer sample values on the left side and four integer sample values on the right side based on the fractional sample to be generated.
  • a merge mode and advanced motion vector prediction may be used to reduce the amount of motion information.
  • Merge mode refers to a method of deriving a motion parameter (or information) from a neighboring block spatially or temporally.
  • the set of candidates available in merge mode is composed of spatial neighbor candidates, temporal candidates and generated candidates.
  • FIG. 7 illustrates a position of a spatial candidate as an embodiment to which the present invention may be applied.
  • each spatial candidate block is available according to the order of ⁇ A1, B1, B0, A0, B2 ⁇ . In this case, when the candidate block is encoded in the intra prediction mode and there is no motion information, or when the candidate block is located outside the current picture (or slice), the candidate block is not available.
  • the spatial merge candidate may be configured by excluding unnecessary candidate blocks from candidate blocks of the current block. For example, when the candidate block of the current prediction block is the first prediction block in the same coding block, the candidate block having the same motion information may be excluded except for the corresponding candidate block.
  • the temporal merge candidate configuration process is performed in the order of ⁇ T0, T1 ⁇ .
  • the block when the right bottom block T0 of the collocated block of the reference picture is available, the block is configured as a temporal merge candidate.
  • the colocated block refers to a block existing at a position corresponding to the current block in the selected reference picture.
  • the block T1 located at the center of the collocated block is configured as a temporal merge candidate.
  • the maximum number of merge candidates may be specified in the slice header. If the number of merge candidates is larger than the maximum number, the number of spatial candidates and temporal candidates smaller than the maximum number is maintained. Otherwise, the number of merge candidates is generated by combining the candidates added so far until the maximum number of candidates becomes the maximum (ie, combined bi-predictive merging candidates). .
  • the encoder constructs a merge candidate list in the above manner and performs motion estimation to merge candidate block information selected from the merge candidate list into a merge index (for example, merge_idx [x0] [y0] '). Signal to the decoder.
  • a merge index for example, merge_idx [x0] [y0] '.
  • the B1 block is selected from the merge candidate list.
  • “index 1” may be signaled to the decoder as a merge index.
  • the decoder constructs a merge candidate list similarly to the encoder, and derives the motion information of the current block from the motion information of the candidate block corresponding to the merge index received from the encoder in the merge candidate list.
  • the decoder generates a prediction block for the current block based on the derived motion information (ie, motion compensation).
  • the AMVP mode refers to a method of deriving a motion vector prediction value from neighboring blocks.
  • horizontal and vertical motion vector difference (MVD), reference index, and inter prediction modes are signaled to the decoder.
  • the horizontal and vertical motion vector values are calculated using the derived motion vector prediction value and the motion vector difference (MVD) provided from the encoder.
  • the encoder constructs a motion vector predictor candidate list and performs motion estimation to obtain a motion vector predictor flag (ie, candidate block information) selected from the motion vector predictor candidate list (for example, mvp_lX_flag [ x0] [y0] ') to the decoder.
  • the decoder constructs a motion vector predictor candidate list in the same manner as the encoder, and uses the motion information of the candidate block indicated by the motion vector predictor flag received from the encoder in the motion vector predictor candidate list. To derive.
  • the decoder obtains a motion vector value for the current block by using the derived motion vector predictor and the motion vector difference values transmitted from the encoder.
  • the decoder then generates a predicted block (ie, an array of predicted samples) for the current block based on the derived motion information (ie, motion compensation).
  • the first spatial motion candidate is selected from the set of ⁇ A0, A1 ⁇ located on the left side
  • the second spatial motion candidate is selected from the set of ⁇ B0, B1, B2 ⁇ located above.
  • the candidate configuration is terminated, but if less than two, the temporal motion candidate is added.
  • FIG. 8 is a diagram illustrating an inter prediction method as an embodiment to which the present invention is applied.
  • the decoder decodes a motion parameter with respect to the current block (eg, the prediction block) (S801).
  • the decoder may decode the merge index signaled from the encoder.
  • the motion parameter of the current block can be derived from the motion parameter of the candidate block indicated by the merge index.
  • the decoder may decode the horizontal and vertical motion vector difference (MVD), reference index, and inter prediction mode signaled from the encoder.
  • the motion vector predictor may be derived from the motion parameter of the candidate block indicated by the motion vector predictor flag, and the motion vector value of the current block may be derived using the motion vector predictor and the received motion vector difference value.
  • the decoder performs motion compensation on the current block by using the decoded motion parameter (or information) (S802).
  • the encoder / decoder performs motion compensation by using the decoded motion parameter to predict the image of the current block (ie, generating the prediction block for the current unit) from the previously decoded picture.
  • the encoder / decoder may derive the predicted block (ie, the array of predicted samples) of the current block from the samples of the region corresponding to the current block in the previously decoded reference picture.
  • FIG. 9 is a diagram illustrating a motion compensation process as an embodiment to which the present invention may be applied.
  • FIG. 9 illustrates a case in which a motion parameter for a current block to be encoded in a current picture is unidirectional prediction, a second picture in LIST0, LIST0, and a motion vector (-a, b). do.
  • the current block is predicted using values of positions (ie, sample values of a reference block) separated from the current block by (-a, b) in the second picture of LIST0.
  • another reference list e.g., LIST1
  • a reference index e.g., a reference index
  • a motion vector difference value e.g., a motion vector difference value
  • the present invention proposes an encoding / decoding method in the case of streaming service of a content composed of multiple representations.
  • FIG. 10 is a diagram illustrating an adaptive streaming method to which the present invention can be applied.
  • the multiple representation means that one content is produced in various versions of images, from low bitrate to high bitrate, such as various resolutions and various quality.
  • This is a content production method for adaptive streaming used to seamlessly use the service even if the user of the streaming service changes the network state as shown in FIG. 10.
  • multiple representations produced for adaptive streaming may be divided into segments for switching between representations.
  • pictures in one segment are generally closed GOPs (closed GOP: closed) so that pictures of other segments cannot be referred to (ie, used as reference pictures in inter prediction).
  • closed GOP closed GOP
  • the closed GOP since the closed GOP is not mandatory, it may also be encoded in the form of an open GOP.
  • properties / characteristics e.g., picture resolution, bit-depth, color format, dynamic range, width-to-height
  • AR aspect ratio
  • 11 and 12 are diagrams illustrating an adaptive streaming method using multiple representations to which the present invention can be applied.
  • FIG. 11 illustrates a case of closed GOP and FIG. 12 illustrates a case of open GOP.
  • MPEG Moving Picture Experts Group
  • DASH Dynamic Adaptive Streaming over HTTP
  • These segments can vary in length depending on how agile they are to adapt to changes in the network. For example, if the length of the segment is encoded in 10 seconds, the representation can be changed every 10 seconds even if the network changes every second.
  • the length of the segment is 5 seconds, it can be changed at least every 5 seconds, so that the response according to the change of more detailed network becomes possible.
  • the capacity of each representation may increase rapidly. This is due to the increase in IDR pictures.
  • the size of an IDR picture is twice as small as a non-IDR picture and as much as 10 times as large as a non-IDR picture.
  • the length of the segment is shortened, the size of the GOP is reduced, thereby reducing the efficiency of inter picture coding and increasing the capacity of the representation.
  • This problem can occur not only when each representation has a different resolution, but also when the bit-depth is different, the dynamic range is different, the color format is different, the aspect ratio is different, and so on. That's a problem.
  • FIG. 13 illustrates a method of determining whether a property / characteristic is different between a current picture and a reference picture according to an embodiment of the present invention.
  • the decoder when decoding of the current picture (or slice) starts, the decoder first sets a value of a variable indicating whether the property / characteristic is different for each property / characteristic between the current picture and the reference picture to 0 ( S1301).
  • 'IsDiffResolution' is used to indicate whether the resolution is different
  • 'IsDiffBitDepth' is used to indicate whether the bit-depth is different
  • 'IsDiffColorFormat' is used to indicate whether the color format is different and whether the dynamic range is different.
  • a variable indicating whether or not is 'IsDiffDR' and a variable indicating whether or not the aspect ratio is different are illustrated as 'IsDiffAR'. That is, the decoder sets the value of each variable above to zero.
  • the decoder determines whether the width of the reference picture (RefPicWidth) is equal to the width of the current picture (CurPicWidth), and the height of the reference picture (RefPicHeight) and the current picture (CurPicHeight) are the same (S1302).
  • the decoder determines whether the resolution is the same between the current picture and the reference picture.
  • the decoder sets the IsDiffResolution value to 1 (S1303).
  • step S1302 when the resolution is the same between the current picture and the reference picture, the decoder determines whether the bit-depth (RefPicBitDepth) of the reference picture and the bit-depth (CurPicBitDepth) of the current picture are the same (S1304). .
  • the decoder sets the IsDiffBitDepth value to 1 (S1305).
  • the decoder determines whether the color format (RefPicColorFormat) of the reference picture and the color format (CurPicColorFormat) of the current picture are the same (S1306). .
  • the decoder sets the IsDiffColorFormat value to 1 (S1307).
  • the decoder determines whether the dynamic range (RefPicDR) of the reference picture and the dynamic range (CurPicDR) of the current picture are the same (S1308).
  • the decoder sets the IsDiffDR value to 1 (S1309).
  • step S1308 determines whether the dynamic range is the same between the current picture and the reference picture.
  • the decoder sets the IsDiffAR value to 1 (S1311).
  • the decoder determines whether the resolution, bit-depth, color format, dynamic range, and aspect ratio are the same between the current picture and the reference picture (that is, IsDiffResolution). , IsDiffBitDepth, IsDiffColorFormat, IsDiffDR, IsDiffAR are all 0) or not (any one 1) (S1312).
  • step S1313 when any one property / characteristic is different between the current picture and the reference picture, the decoder performs a reference picture management process (RPMP) (S1313).
  • RPMP reference picture management process
  • the reference picture management process refers to the operation of modifying the reference picture to have the same properties as the current picture, which will be described later.
  • the decoder performs an inter prediction process on the current picture based on the reference picture derived from the reference picture management process (S1314).
  • step S1312 determines whether all properties / characteristics are the same between the current picture and the reference picture. If it is determined in step S1312 that all properties / characteristics are the same between the current picture and the reference picture, the decoder performs an inter prediction process (S1314). That is, in this case, the decoder performs an inter prediction process on the current picture based on the reference picture to which the above-mentioned reference picture management process is not applied.
  • the decoder reconstructs the current picture and performs another process (for example, filtering) in operation S1315.
  • resolution, bit-depth, color format, dynamic range, and aspect ratio are illustrated as properties / characteristics between pictures, but the present invention is not limited thereto and some of them may be used, or FIG. 13.
  • Other properties / characteristics may be used in addition to the properties / characteristics illustrated in.
  • FIG. 13 illustrates a process of comparing whether a property / characteristic between a current picture and a reference picture is different in order of resolution, bit-depth, color format, dynamic range, and aspect ratio, but the present invention is limited thereto.
  • the nature / characteristics between the current picture and the reference picture may be different in a different order from that of FIG. 13.
  • a method of efficiently decoding a current picture when a resolution of a current picture and a reference picture are different is proposed.
  • FIG. 14 illustrates a reference picture management process when the resolution between the current picture and the reference picture is different according to an embodiment of the present invention.
  • the picture aspect ratio may differ between representations, it is desirable to consider the width and height separately for the resolution difference between the current picture and the reference picture.
  • the decoder sets the width scaling variable 'WidthScale' using the width of the current picture and the width of the reference picture, and uses the height scaling variable ('HeightScale') using the height of the current picture and the height of the reference picture. ) Is set (S1401).
  • the decoder determines whether the WidthScale is smaller than 1 (S1402).
  • the decoder determines whether the resolution of the reference picture is greater than the resolution of the current picture in the width direction (horizontal direction / axis).
  • step S1402 if the WidthScale is less than 1, the decoder performs a downscaling process in the width direction with respect to the reference picture (S1403) (that is, RefPicWidth * WidthScale).
  • the decoder performs 1/2 scaling of the reference picture along the width axis (horizontal axis).
  • step S1402 determines whether the WidthScale is smaller than 1 (or larger). If it is determined in step S1402 that the WidthScale is not smaller than 1 (or larger), the decoder performs an upscaling process in the width direction with respect to the reference picture (S1404).
  • the upscaling process may be bypassed.
  • the decoder determines whether the HeighScale is smaller than 1 (S1405).
  • the decoder determines whether the resolution of the reference picture is greater than the resolution of the current picture in the height direction (vertical direction / axis).
  • step S1405 if the HeighScale is smaller than 1, the decoder performs a downscaling process in the height direction with respect to the reference picture (S1406) (that is, RefPicHeight * HeightScale).
  • step S1405 if it is determined in step S1405 that the HeighScale is not less than 1 (or larger), the decoder performs an upscaling process in the height direction with respect to the reference picture (S407).
  • the upscaling process may be bypassed.
  • FIG. 15 is a diagram schematically illustrating the reference picture management process of FIG. 14.
  • the resolution of the reference picture 1501 is larger in both the width axis (horizontal axis / direction) and the height axis (vertical axis / direction) than the resolution of the current picture 1504.
  • the decoder determines whether the resolution of the reference picture 1501 in the width direction (horizontal direction) is greater than the resolution of the current picture 1504.
  • the decoder downscales the reference picture 1501 in the width direction (horizontal direction) to generate a reference picture 1502 downscaled in the width direction.
  • the decoder determines whether the resolution of the reference picture 1501 in the height direction (vertical direction) is greater than the resolution of the current picture 1504.
  • the decoder downscales the reference picture 1502 downscaled in the width direction in the height direction (vertical direction), so that the reference picture (downscaled both in the width / height direction) is used. 1503).
  • the decoder predicts the current picture based on the reference picture to which the reference picture management process is applied (that is, the reference picture 1503 downscaled in the width / height direction in FIG. 15).
  • the resolution is compared in the width direction between the reference picture and the current picture, and the resolution is compared in the height direction.
  • the present invention is not limited thereto, and the order may be changed.
  • the RPMP may be designed to suit the environment of the codec in various ways.
  • 16 is a diagram illustrating a method of performing downsampled prediction according to an embodiment of the present invention.
  • the corresponding codec uses half-pel motion information, it is not necessary to perform a downscaling process for the reference picture as shown in FIGS. 14 and 15 above. That is, when the prediction is performed, a downscaling effect can be obtained by deriving a prediction sample through 2: 1 subsampling from the current reference picture (the image having twice the width and height of the current picture).
  • the motion information in units of fractional-pel (1 / n) (for example, half-pel or quarter-pel) is used in the codec.
  • the prediction sample may be derived from n: 1 subsampling from the current reference picture during prediction without performing downscaling of the reference picture.
  • the decoder may not only scale the picture but also move information by the up / downscaling ratio (ie, the scaling factor). (scaling process) can be performed. This will be described with reference to the drawings below.
  • 17 is a diagram for a method of scaling motion information when a resolution between a current picture and a reference picture is different according to an embodiment of the present invention.
  • the decoder obtains a scaled ref pic and then scales all motion information in the reference picture by a scaling factor.
  • the decoder may newly obtain collocated motion in units of 4 ⁇ 4 blocks. This is because the 4x4 block (block A or B in FIG. 10) of the reference picture scaled according to the scaling factor and the original prediction unit may not be aligned as shown in FIG. 17.
  • the motion information of the original prediction unit of the scaled reference picture overlapped with the position of the top-left sample of the 4x4 block is 4x4 block. It can be used as motion information of.
  • the new motion vector of block A is assigned the scaled motion vector of prediction unit A since the position of the upper left sample of block A is included in prediction unit A.
  • the new motion vector of block B is assigned the scaled motion vector of prediction unit B since the position of the upper left sample of block B is included in prediction unit B.
  • each scaled motion vector may be allocated in units of a block having a minimum size that may have a motion vector.
  • FIG. 18 illustrates a homography matrix for correcting a case where a bit-depth or dynamic range between a current picture and a reference picture is different according to an embodiment of the present invention.
  • HDR high dynamic range
  • SDR standard dynamic range
  • 8-bit image the HDR image is SDR. It is necessary to convert a 10-bit image to an 8-bit image and use it as a reference picture.
  • this conversion can be done via RPMP.
  • the decoder adds an original reference picture (10-bit input in FIG. 18) to a new reference picture (FIG. 18). To 8-bit output).
  • tone mapping information SEI Supplemental Enhancement Information
  • knee function information SEI message knee function information SEI message
  • color remapping information SEI message tone mapping and dynamic range information, etc.
  • the encoder may signal information about the transform function to the decoder.
  • use curve B which is a linear conversion curve, by default, or use the transfer function, characteristic function, or default curve of video usability information (VUI).
  • Encoder and decoder can use technology such as transforming a reference picture with a different dynamic range in advance.
  • the decoder intercepts the chrominance components Cr and Cb of the reference picture through RPMP.
  • the chroma resampling filter hint SEI or the like may be used, or the encoder and the decoder may promise a default sampling filter.
  • the default color difference component values promised by the encoder and decoder can be used.
  • the reference picture is BT2020, the currnet picture is BT209, etc.
  • the reference picture is encoded into BT2020 using color_primaries, transfer_characteristics, and color remapping info SEI information transmitted through the VUI. Can be converted to BT709, the color gamut of the current picture.
  • FIG. 19 is a diagram illustrating an image decoding method according to an embodiment of the present invention.
  • the decoder determines whether properties of a current picture and a reference picture are different (S1901).
  • the method described with reference to FIG. 13 may be used to determine whether the properties of the current picture and the reference picture are different.
  • the property may include at least one of resolution, bit-depth, color format, dynamic range, and width-to-height ratio. have.
  • the decoder converts the reference picture to have the same properties as the current picture (S1902).
  • the decoder may perform the reference picture management process (RPMP) described above, and the method according to the various embodiments described above may be used.
  • RPMP reference picture management process
  • the decoder makes the reference picture width and / or height. Downscaling in the direction by the ratio.
  • the decoder upscales the reference picture by the ratio in the width and / or height direction. upscaling.
  • the decoder scales the motion vector of the reference picture by a scaling factor of down / upscaling of the reference picture, and samples the upper left sample of the block in units of the smallest block that may have the motion vector.
  • the motion vector of the prediction block in the included reference picture may be allocated.
  • the decoder may determine that the dynamic range and / or bit-depth of the reference picture is different when the dynamic range and / or bit-depth are different between the reference picture and the current picture. ) Can be converted using a predetermined linear or nonlinear function.
  • the decoder may up / downscale the chrominance component of the reference picture in the horizontal and vertical directions.
  • the decoder performs inter prediction on the current picture in units of predetermined blocks by using the converted reference picture (S1903).
  • the decoder may block n: 1 subsampling from the reference picture without downscaling the reference picture.
  • the prediction sample can be derived in units.
  • steps S1901 and S1902 may be performed in picture (or slice) units in the decoder.
  • steps S1901 and S1902 may be performed before any decoding of the coding unit.
  • the DPB may be performed before the reference picture is stored in the DPB, or may be performed after the reference picture is stored.
  • the above-described operations S1901 and S1902 may be performed before performing motion compensation in the process of performing inter prediction on a predetermined block (for example, prediction block) unit in the current picture.
  • 20 is a diagram illustrating a decoding apparatus according to an embodiment of the present invention.
  • the decoding apparatus implements the functions, processes, and / or methods proposed in FIGS. 5 to 19.
  • the decoding apparatus may be configured to include a property determination unit 2001, a transformation unit 2002, and an inter prediction unit 2003.
  • the decoding apparatus illustrated in FIG. 20 is just one example, and may be implemented by further including components not illustrated in FIG. 20 (eg, components of the decoder illustrated in FIG. 2 above).
  • the property determination unit 2001 determines whether the property of the current picture and the reference picture is different.
  • the method described with reference to FIG. 13 may be used to determine whether the properties of the current picture and the reference picture are different.
  • the property may include at least one of resolution, bit-depth, color format, dynamic range, and width-to-height ratio. have.
  • the conversion unit 2002 converts the reference picture to have the same properties as the current picture.
  • the converter 2002 may perform the reference picture management process (RPMP) described above, and the method according to the various embodiments described above may be used.
  • RPMP reference picture management process
  • the conversion unit 2002 widths the reference picture. And / or downscaling by the ratio in the height direction.
  • the conversion unit 2002 sets the reference picture in the width and / or height direction. Upscaling by a ratio.
  • the transform unit 2002 scales the motion vector of the reference picture by a scaling factor of down / upscaling of the reference picture, and in units of blocks of the smallest size that may have the motion vector.
  • the motion vector of the prediction block in the reference picture including the upper left sample of the block may be allocated.
  • the converter 2002 may determine a dynamic range and / or a bit-depth of the reference picture. (bit-depth) can be converted using a predetermined linear or nonlinear function.
  • the converter 2002 may up / downscale the chrominance components of the reference picture in the horizontal and vertical directions.
  • the inter prediction unit 2003 performs inter prediction on the current picture in a predetermined block unit by using the converted reference picture.
  • the inter prediction unit 2003 may perform n: 1 subsampling from the reference picture without downscaling the reference picture. through subsampling), a prediction sample can be derived in units of blocks.
  • the property determiner 2001 and the converter 2002 may perform operations in units of pictures (or slices), and also perform inter prediction in units of predetermined blocks (eg, prediction blocks) in the current picture.
  • the operation may be performed before the motion compensation is performed.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in memory and driven by the processor.
  • the memory may be located inside or outside the processor, and may exchange data with the processor by various known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

본 발명에서는 영상의 부호화/복호화 방법 및 이를 위한 장치가 개시된다. 구체적으로, 영상을 복호화하는 방법에 있어서, 현재 픽쳐와 참조 픽쳐의 성질이 상이한지 여부를 판단하는 단계, 상기 현재 픽쳐와 상기 참조 픽쳐의 성질이 상이하면, 상기 참조 픽쳐가 상기 현재 픽쳐와 동일한 성질을 가지도록 변환하는 단계 및 상기 변환된 참조 픽쳐를 이용하여 상기 현재 픽쳐를 소정의 블록 단위로 인터 예측을 수행하는 단계를 포함할 수 있다.

Description

영상의 부호화/복호화 방법 및 이를 위한 장치
본 발명은 동영상 처리 방법에 관한 것으로서, 보다 상세하게 화면 간 예측을 이용하여 동영상을 인코딩/디코딩하는 방법 및 이를 지원하는 장치에 관한 것이다.
압축 부호화란 디지털화한 정보를 통신 회선을 통해 전송하거나, 저장 매체에 적합한 형태로 저장하기 위한 일련의 신호 처리 기술을 의미한다. 영상, 이미지, 음성 등의 미디어가 압축 부호화의 대상이 될 수 있으며, 특히 영상을 대상으로 압축 부호화를 수행하는 기술을 비디오 영상 압축이라고 일컫는다.
차세대 비디오 컨텐츠는 고해상도(high spatial resolution), 고프레임율(high frame rate) 및 영상 표현의 고차원화(high dimensionality of scene representation)라는 특징을 갖게 될 것이다. 그러한 컨텐츠를 처리하기 위해서는 메모리 저장(memory storage), 메모리 액세스율(memory access rate) 및 처리 전력(processing power) 측면에서 엄청난 증가를 가져올 것이다.
따라서, 차세대 비디오 컨텐츠를 보다 효율적으로 처리하기 위한 코딩 툴을 디자인할 필요가 있다.
본 발명의 목적은 다중 표현(multiple representation)으로 구성된 영상을 부호화/복호화하기 위한 방법을 제안한다.
또한, 본 발명의 목적은 성질이 상이한 픽쳐 간의 부호화/복호화하기 위한 방법을 제안한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 양상은, 영상을 복호화하는 방법에 있어서, 현재 픽쳐와 참조 픽쳐의 성질이 상이한지 여부를 판단하는 단계, 상기 현재 픽쳐와 상기 참조 픽쳐의 성질이 상이하면, 상기 참조 픽쳐가 상기 현재 픽쳐와 동일한 성질을 가지도록 변환하는 단계 및 상기 변환된 참조 픽쳐를 이용하여 상기 현재 픽쳐를 소정의 블록 단위로 인터 예측을 수행하는 단계를 포함할 수 있다.
본 발명의 일 양상은, 영상을 복호화하는 장치에 있어서, 현재 픽쳐와 참조 픽쳐의 성질이 상이한지 여부를 판단하는 성질 판단부, 상기 현재 픽쳐와 상기 참조 픽쳐의 성질이 상이하면, 상기 참조 픽쳐가 상기 현재 픽쳐와 동일한 성질을 가지도록 변환하는 변환부 및 상기 변환된 참조 픽쳐를 이용하여 상기 현재 픽쳐를 소정의 블록 단위로 인터 예측을 수행하는 인터 예측부를 포함할 수 있다.
바람직하게, 상기 성질은 해상도(resolution), 비트-심도(bit-depth), 컬러 포맷(color format), 다이나믹 레인지(dynamic range) 및 너비-대-높이 비율(aspect ratio) 중 적어도 하나 이상을 포함할 수 있다.
바람직하게, 상기 참조 픽쳐의 너비(width) 및/또는 높이(height) 대비 상기 현재 픽쳐의 너비 및/또는 높이의 비율이 1 보다 작으면, 상기 참조 픽쳐가 너비 및/또는 높이 방향으로 상기 비율만큼 다운스케일링(downscaling)될 수 있다.
바람직하게, 상기 참조 픽쳐의 너비(width) 및/또는 높이(height) 대비 상기 현재 픽쳐의 너비 및/또는 높이의 비율이 1 보다 크면, 상기 참조 픽쳐가 너비 및/또는 높이 방향으로 상기 비율만큼 업스케일링(upscaling)될 수 있다.
바람직하게, 1/n 분수-펠(fractional-pel) 단위의 움직임 정보가 이용되는 경우, 상기 참조 픽쳐에 대한 다운스케일링(downscaling) 없이, 상기 참조 픽쳐로부터 n:1 서브샘플링(subsampling)을 통해 상기 블록의 예측 샘플이 도출될 수 있다.
바람직하게, 상기 참조 픽쳐의 다운/업스케일링(down/upscaling)의 스케일링 인자(scaling factor)만큼 상기 참조 픽쳐의 움직임 벡터가 스케일링되고, 움직임 벡터를 가질 수 있는 최소 크기의 블록 단위로, 상기 블록의 좌상단 샘플이 포함된 상기 참조 픽쳐 내 예측 블록의 움직임 벡터가 할당될 수 있다.
바람직하게, 상기 참조 픽쳐와 상기 현재 픽쳐 간에 다이나믹 레인지(dynamin range) 및/또는 비트-심도(bit-depth)가 상이한 경우, 상기 참조 픽쳐의 다이나믹 레인지(dynamin range) 및/또는 비트-심도(bit-depth)가 미리 정해진 선형 또는 비선형 함수를 이용하여 변환될 수 있다.
바람직하게, 상기 참조 픽쳐와 상기 현재 픽쳐 간에 컬러 포맷(color format)이 상이한 경우, 상기 참조 픽쳐의 색차 컴포넌트(chrominance component)가 수평, 수직 방향으로 업/다운스케일링될 수 있다.
본 발명의 실시예에 따르면, 다중 표현(multiple representation)으로 구성된 영상을 원활하게 복호화할 수 있다.
또한, 본 발명의 실시예에 따르면, 성질이 서로 상이한 픽쳐 간의 원활하게 복호화할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 본 발명이 적용되는 실시예로서, 정지 영상 또는 동영상 신호의 인코딩이 수행되는 인코더의 개략적인 블록도를 나타낸다.
도 2는 본 발명이 적용되는 실시예로서, 정지 영상 또는 동영상 신호의 인코딩이 수행되는 디코더의 개략적인 블록도를 나타낸다.
도 3은 본 발명에 적용될 수 있는 코딩 유닛의 분할 구조를 설명하기 위한 도면이다.
도 4는 본 발명에 적용될 수 있는 예측 유닛을 설명하기 위한 도면이다.
도 5는 본 발명이 적용될 수 있는 실시예로서, 인터 예측의 방향을 예시하는 도면이다.
도 6은 본 발명이 적용될 수 있는 실시예로서, 1/4 샘플 보간을 위한 정수 및 분수 샘플 위치를 예시한다.
도 7은 본 발명이 적용될 수 있는 실시예로서, 공간적 후보의 위치를 예시한다.
도 8은 본 발명이 적용되는 실시예로서, 인터 예측 방법을 예시하는 도면이다.
도 9는 본 발명이 적용될 수 있는 실시예로서, 움직임 보상 과정을 예시하는 도면이다.
도 10은 본 발명이 적용될 수 있는, 적응적인 스트리밍(adaptive streaming) 방법을 예시하는 도면이다.
도 11 및 12는 본 발명이 적용될 수 있는 다중 표현(multiple representation)을 이용한 적응적인 스트리밍(adaptive streaming) 방법을 예시하는 도면이다.
도 13은 본 발명의 일 실시예에 따른 현재 픽쳐와 참조 픽쳐 간의 성질/특성이 상이한지 여부를 판별하는 방법을 예시한다.
도 14는 본 발명의 일 실시예에 따른 현재 픽쳐와 참조 픽쳐 간 해상도가 상이한 경우, 참조 픽쳐 관리 프로세스를 예시한다.
도 15는 앞서 도 14의 참조 픽쳐 관리 프로세스를 도식화한 도면이다.
도 16은 본 발명의 일 실시예에 따른 다운샘플링된 예측을 수행하는 방법을 예시하는 도면이다.
도 17은 본 발명의 일 실시예에 따른 현재 픽쳐와 참조 픽쳐 간 해상도가 상이한 경우, 움직임 정보를 스케일링하는 방법을 예시한다.
도 18은 본 발명의 일 실시예에 따른 현재 픽쳐와 참조 픽쳐 간 비트-심도 또는 다이나믹 레인지가 상이한 경우, 이를 보정하기 위한 호모그래피 행렬(Homography matrix)을 예시한다.
도 19는 본 발명의 일 실시예에 따른 영상 복호화 방법을 예시하는 도면이다.
도 20은 본 발명의 일 실시예에 따른 복호화 장치를 예시하는 도면이다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
아울러, 본 발명에서 사용되는 용어는 가능한 한 현재 널리 사용되는 일반적인 용어를 선택하였으나, 특정한 경우는 출원인이 임의로 선정한 용어를 사용하여 설명한다. 그러한 경우에는 해당 부분의 상세 설명에서 그 의미를 명확히 기재하므로, 본 발명의 설명에서 사용된 용어의 명칭만으로 단순 해석되어서는 안 될 것이며 그 해당 용어의 의미까지 파악하여 해석되어야 함을 밝혀두고자 한다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다. 예를 들어, 신호, 데이터, 샘플, 픽쳐, 프레임, 블록 등의 경우 각 코딩 과정에서 적절하게 대체되어 해석될 수 있을 것이다.
이하 본 명세서에서 '블록' 또는 '유닛'은 예측, 변환 및/또는 양자화 등과 같은 인코딩/디코딩의 과정이 수행되는 단위를 의미하며, 샘플(또는 화소, 픽셀)의 다차원 배열로 구성될 수 있다.
'블록' 또는 '유닛'은 휘도(luma) 성분에 대한 샘플의 다차원 배열을 의미할 수도 있으며, 색차(chroma) 성분에 대한 샘플의 다차원 배열을 의미할 수도 있다. 또한, 휘도(luma) 성분에 대한 샘플의 다차원 배열과 색차(chroma) 성분에 대한 샘플의 다차원 배열을 모두 포함하여 통칭할 수도 있다.
예를 들어, '블록' 또는 '유닛'은 인코딩/디코딩의 수행 대상이 되는 샘플의 배열을 의미하는 코딩 블록(CB: Conding Block), 복수의 코딩 블록으로 구성되는 코딩 트리 블록(CTB: Coding Tree Block), 동일한 예측이 적용되는 샘플의 배열을 의미하는 예측 블록(PB: Prediction Block)(또는 예측 유닛(PU: Prediction Unit)), 동일한 변환이 적용되는 샘플의 배열을 의미하는 변환 블록(TB: Transform Block)(또는 변환 유닛(TU: Transform Unit))을 모두 포함하는 의미로 해석될 수 있다.
또한, 본 명세서 별도의 언급이 없는 한, '블록' 또는 '유닛'은 휘도(luma) 성분 및/또는 색차(chroma) 성분에 대한 샘플의 배열을 인코딩/디코딩하는 과정에서 이용되는 신택스 구조(syntax sturcture)를 포함하는 의미로 해석될 수 있다. 여기서, 신택스 구조는 특정한 순서로 비트스트림 내 존재하는 0 또는 그 이상의 신택스 요소(syntax element)를 의미하며, 신택스 요소는 비트스트림 내에서 표현되는 데이터의 요소를 의미한다.
예를 들어, '블록' 또는 '유닛'은 코딩 블록(CB)과 해당 코딩 블록(CB)의 인코딩을 위해 이용되는 신택스 구조를 포함하는 코딩 유닛(CU: Coding Unit), 복수의 코딩 유닛으로 구성되는 코딩 트리 유닛(CU: Coding Tree Unit), 예측 블록(PB)과 해당 예측 블록(PB)의 예측을 위해 이용되는 신택스 구조를 포함하는 예측 유닛(PU: Prediction Unit), 변환 블록(TB)와 해당 변환 블록(TB)의 변환을 위해 이용되는 신택스 구조를 포함하는 변환 유닛(TU: Transform Unit)을 모두 포함하는 의미로 해석될 수 있다.
또한, 본 명세서에서 '블록' 또는 '유닛'은 반드시 정사각형 또는 직사각형 형태의 샘플(또는 화소, 픽셀)의 배열로 한정되는 것은 아니며, 3개 이상의 꼭지점을 가지는 다각형 형태의 샘플(또는 화소, 픽셀)의 배열을 의미할 수도 있다. 이 경우, 폴리곤(Polygon) 블록 또는 폴리곤 유닛으로 지칭될 수도 있다.
도 1은 본 발명이 적용되는 실시예로서, 정지 영상 또는 동영상 신호의 인코딩이 수행되는 인코더의 개략적인 블록도를 나타낸다.
도 1을 참조하면, 인코더(100)는 영상 분할부(110), 감산기(115), 변환부(120), 양자화부(130), 역양자화부(140), 역변환부(150), 필터링부(160), 복호 픽쳐 버퍼(DPB: Decoded Picture Buffer)(170), 예측부(180) 및 엔트로피 인코딩부(190)를 포함하여 구성될 수 있다. 그리고, 예측부(180)는 인터 예측부(181), 인트라 예측부(182)을 포함하여 구성될 수 있다.
영상 분할부(110)는 인코더(100)에 입력된 입력 영상 신호(Input video signal)(또는, 픽쳐, 프레임)를 하나 이상의 블록으로 분할한다.
감산기(115)는 입력 영상 신호에서 예측부(180)로부터(즉, 인터 예측부(181) 또는 인트라 예측부(182))로부터 출력된 예측된 신호(predicted signal)(또는 예측된 블록(predicted block))를 감산하여 차분 신호(residual signal)(또는 차분 블록)를 생성한다. 생성된 차분 신호(또는 차분 블록)는 변환부(120)로 전송된다.
변환부(120)는 차분 신호(또는 차분 블록)에 변환 기법(예를 들어, DCT(Discrete Cosine Transform), DST(Discrete Sine Transform), GBT(Graph-Based Transform), KLT(Karhunen-Loeve transform) 등)을 적용하여 변환 계수(transform coefficient)를 생성한다. 이때, 변환부(120)는 차분 블록에 적용된 예측 모드와 차분 블록의 크기에 따라서 결정된 변환 기법을 이용하여 변환을 수행함으로써 변환 계수들을 생성할 수 있다.
양자화부(130)는 변환 계수를 양자화하여 엔트로피 인코딩부(190)로 전송하고, 엔트로피 인코딩부(190)는 양자화된 신호(quantized signal)를 엔트로피 코딩하여 비트 스트림으로 출력한다.
한편, 양자화부(130)로부터 출력된 양자화된 신호(quantized signal)는 예측 신호를 생성하기 위해 이용될 수 있다. 예를 들어, 양자화된 신호(quantized signal)는 루프 내의 역양자화부(140) 및 역변환부(150)를 통해 역양자화 및 역변환을 적용함으로써 차분 신호를 복원할 수 있다. 복원된 차분 신호를 인터 예측부(181) 또는 인트라 예측부(182)로부터 출력된 예측 신호(prediction signal)에 더함으로써 복원 신호(reconstructed signal)(또는 복원 블록)가 생성될 수 있다.
한편, 위와 같은 압축 과정에서 인접한 블록들이 서로 다른 양자화 파라미터에 의해 양자화됨으로써 블록 경계가 보이는 열화가 발생될 수 있다. 이러한 현상을 블록킹 열화(blocking artifacts)라고 하며, 이는 화질을 평가하는 중요한 요소 중의 하나이다. 이러한 열화를 줄이기 위해 필터링 과정을 수행할 수 있다. 이러한 필터링 과정을 통해 블록킹 열화를 제거함과 동시에 현재 픽쳐에 대한 오차를 줄임으로써 화질을 향상시킬 수 있게 된다.
필터링부(160)는 복원 신호에 필터링을 적용하여 이를 재생 장치로 출력하거나 복호 픽쳐 버퍼(170)에 전송한다. 복호 픽쳐 버퍼(170)에 전송된 필터링된 신호는 인터 예측부(181)에서 참조 픽쳐로 사용될 수 있다. 이처럼, 필터링된 픽쳐를 화면간 예측 모드에서 참조 픽쳐로 이용함으로써 화질 뿐만 아니라 부호화 효율도 향상시킬 수 있다.
복호 픽쳐 버퍼(170)는 필터링된 픽쳐를 인터 예측부(181)에서의 참조 픽쳐으로 사용하기 위해 저장할 수 있다.
인터 예측부(181)는 복원 픽쳐(reconstructed picture)를 참조하여 시간적 중복성 및/또는 공간적 중복성을 제거하기 위해 시간적 예측 및/또는 공간적 예측을 수행한다.
여기서, 예측을 수행하기 위해 이용되는 참조 픽쳐는 이전 시간에 부호화/복호화 시 블록 단위로 양자화와 역양자화를 거친 변환된 신호이기 때문에, 블로킹 아티팩트(blocking artifact)나 링잉 아티팩트(ringing artifact)가 존재할 수 있다.
따라서, 인터 예측부(181)는 이러한 신호의 불연속이나 양자화로 인한 성능 저하를 해결하기 위해, 로우패스 필터(lowpass filter)를 적용함으로써 픽셀들 사이의 신호를 서브-픽셀 단위로 보간할 수 있다. 여기서, 서브-픽셀은 보간 필터를 적용하여 생성된 가상의 화소를 의미하고, 정수 픽셀은 복원된 픽쳐에 존재하는 실제 화소를 의미한다. 보간 방법으로는 선형 보간, 양선형 보간(bi-linear interpolation), 위너 필터(wiener filter) 등이 적용될 수 있다.
보간 필터는 복원 픽쳐(reconstructed picture)에 적용되어 예측의 정밀도를 향상시킬 수 있다. 예를 들어, 인터 예측부(181)는 정수 픽셀에 보간 필터를 적용하여 보간 픽셀을 생성하고, 보간 픽셀들(interpolated pixels)로 구성된 보간 블록(interpolated block)을 사용하여 예측을 수행할 수 있다.
인트라 예측부(182)는 현재 부호화를 진행하려고 하는 블록의 주변에 있는 샘플들을 참조하여 현재 블록을 예측한다. 인트라 예측부(182)는, 인트라 예측을 수행하기 위해 다음과 같은 과정을 수행할 수 있다. 먼저, 예측 신호를 생성하기 위해 필요한 참조 샘플을 준비할 수 있다. 그리고, 준비된 참조 샘플을 이용하여 예측된 신호(예측된 블록)을 생성할 수 있다. 이후, 예측 모드를 부호화하게 된다. 이때, 참조 샘플은 참조 샘플 패딩 및/또는 참조 샘플 필터링을 통해 준비될 수 있다. 참조 샘플은 예측 및 복원 과정을 거쳤기 때문에 양자화 에러가 존재할 수 있다. 따라서, 이러한 에러를 줄이기 위해 인트라 예측에 이용되는 각 예측 모드에 대해 참조 샘플 필터링 과정이 수행될 수 있다.
인터 예측부(181) 또는 상기 인트라 예측부(182)를 통해 생성된 예측 신호된(predicted signal)(또는 예측된 블록)는 복원 신호(또는 복원 블록)를 생성하기 위해 이용되거나 차분 신호(또는 차분 블록)를 생성하기 위해 이용될 수 있다.
도 2는 본 발명이 적용되는 실시예로서, 정지 영상 또는 동영상 신호의 인코딩이 수행되는 디코더의 개략적인 블록도를 나타낸다.
도 2를 참조하면, 디코더(200)는 엔트로피 디코딩부(210), 역양자화부(220), 역변환부(230), 가산기(235), 필터링부(240), 복호 픽쳐 버퍼(DPB: Decoded Picture Buffer Unit)(250), 예측부(260)를 포함하여 구성될 수 있다. 그리고, 예측부(260)는 인터 예측부(261) 및 인트라 예측부(262)를 포함하여 구성될 수 있다.
그리고, 디코더(200)를 통해 출력된 복원 영상 신호(reconstructed video signal)는 재생 장치를 통해 재생될 수 있다.
디코더(200)는 도 1의 인코더(100)로부터 출력된 신호(즉, 비트 스트림)을 수신하고, 수신된 신호는 엔트로피 디코딩부(210)를 통해 엔트로피 디코딩된다.
역양자화부(220)에서는 양자화 스텝 사이즈 정보를 이용하여 엔트로피 디코딩된 신호로부터 변환 계수(transform coefficient)를 획득한다.
역변환부(230)에서는 역변환 기법을 적용하여 변환 계수를 역변환하여 차분 신호(residual signal)(또는 차분 블록)를 획득하게 된다.
가산기(235)는 획득된 차분 신호(또는 차분 블록)를 예측부(260)(즉, 인터 예측부(261) 또는 인트라 예측부(262))로부터 출력된 예측된 신호(predicted signal)(또는 예측된 블록)에 더함으로써 복원 신호(reconstructed signal)(또는 복원 블록)가 생성된다.
필터링부(240)는 복원 신호(reconstructed signal)(또는 복원 블록)에 필터링을 적용하여 이를 재생 장치로 출력하거나 복호 픽쳐 버퍼부(250)에 전송한다. 복호 픽쳐 버퍼부(250)에 전송된 필터링된 신호는 인터 예측부(261)에서 참조 픽쳐로 사용될 수 있다.
본 명세서에서, 인코더(100)의 필터링부(160), 인터 예측부(181) 및 인트라 예측부(182)에서 설명된 실시예들은 각각 디코더의 필터링부(240), 인터 예측부(261) 및 인트라 예측부(262)에도 동일하게 적용될 수 있다.
블록 분할 구조
일반적으로 정지 영상 또는 동영상 압축 기술(예를 들어, HEVC)에서는 블록 기반의 영상 압축 방법을 이용한다. 블록 기반의 영상 압축 방법은 영상을 특정 블록 단위로 나누어서 처리하는 방법으로서, 메모리 사용과 연산량을 감소시킬 수 있다.
도 3은 본 발명에 적용될 수 있는 코딩 유닛의 분할 구조를 설명하기 위한 도면이다.
인코더는 하나의 영상(또는 픽쳐)을 사각형 형태의 코딩 트리 유닛(CTU: Coding Tree Unit) 단위로 분할한다. 그리고, 래스터 스캔 순서(raster scan order)에 따라 하나의 CTU 씩 순차적으로 인코딩한다.
HEVC에서 CTU의 크기는 64×64, 32×32, 16×16 중 어느 하나로 정해질 수 있다. 인코더는 입력된 영상의 해상도 또는 입력된 영상의 특성 등에 따라 CTU의 크기를 선택하여 사용할 수 있다. CTU은 휘도(luma) 성분에 대한 코딩 트리 블록(CTB: Coding Tree Block)과 이에 대응하는 두 개의 색차(chroma) 성분에 대한 CTB를 포함한다.
하나의 CTU은 쿼드-트리(Quad-tree) 구조로 분할될 수 있다. 즉, 하나의 CTU은 정사각형 형태를 가지면서 절반의 수평 크기(half horizontal size) 및 절반의 수직 크기(half vertical size)를 가지는 4개의 유닛으로 분할되어 코딩 유닛(CU: Coding Unit)이 생성될 수 있다. 이러한 쿼드-트리 구조의 분할은 재귀적으로 수행될 수 있다. 즉, CU은 하나의 CTU로부터 쿼드-트리 구조로 계층적으로 분할된다.
CU은 입력 영상의 처리 과정, 예컨대 인트라(intra)/인터(inter) 예측이 수행되는 코딩의 기본 단위를 의미한다. CU은 휘도(luma) 성분에 대한 코딩 블록(CB: Coding Block)과 이에 대응하는 두 개의 색차(chroma) 성분에 대한 CB를 포함한다. HEVC에서 CU의 크기는 64×64, 32×32, 16×16, 8×8 중 어느 하나로 정해질 수 있다.
도 3을 참조하면, 쿼드-트리의 루트 노드(root node)는 CTU와 관련된다. 쿼드-트리는 리프 노드(leaf node)에 도달할 때까지 분할되고, 리프 노드는 CU에 해당한다.
보다 구체적으로 살펴보면, CTU는 루트 노드(root node)에 해당되고, 가장 작은 깊이(depth)(즉, depth=0) 값을 가진다. 입력 영상의 특성에 따라 CTU가 분할되지 않을 수도 있으며, 이 경우 CTU은 CU에 해당한다.
CTU은 쿼드 트리 형태로 분할될 수 있으며, 그 결과 깊이 1(depth=1)인 하위 노드들이 생성된다. 그리고, 1의 깊이를 가지는 하위 노드에서 더 이상 분할되지 않은 노드(즉, 리프 노드)는 CU에 해당한다. 예를 들어, 도 3(b)에서 노드 a, b 및 j에 대응하는 CU(a), CU(b), CU(j)는 CTU에서 한 번 분할되었으며, 1의 깊이를 가진다.
1의 깊이를 가지는 노드 중 적어도 어느 하나는 다시 퀴드 트리 형태로 분할될 수 있으며, 그 결과 깊이 1(즉, depth=2)인 하위 노드들이 생성된다. 그리고, 2의 깊이를 가지는 하위 노드에서 더 이상 분할되지 않은 노드(즉, 리프 노드)는 CU에 해당한다. 예를 들어, 도 3(b)에서 노드 c, h 및 i에 대응하는 CU(c), CU(h), CU(i)는 CTU에서 두 번 분할되었으며, 2의 깊이를 가진다.
또한, 2의 깊이를 가지는 노드 중 적어도 어느 하나는 다시 쿼드 트리 형태로 분할될 수 있으며, 그 결과 깊이 3(즉, depth=3)인 하위 노드들이 생성된다. 그리고, 3의 깊이를 가지는 하위 노드에서 더 이상 분할되지 않은 노드(즉, 리프 노드)는 CU에 해당한다. 예를 들어, 도 3(b)에서 노드 d, e, f, g에 대응하는 CU(d), CU(e), CU(f), CU(g)는 CTU에서 3번 분할되었으며, 3의 깊이를 가진다.
인코더에서는 비디오 영상의 특성(예를 들어, 해상도)에 따라서 혹은 부호화의 효율을 고려하여 CU의 최대 크기 또는 최소 크기를 결정할 수 있다. 그리고, 이에 대한 정보 또는 이를 유도할 수 있는 정보가 비트스트림에 포함될 수 있다. 최대 크기를 가지는 CU를 최대 코딩 유닛(LCU: Largest Coding Unit)이라고 지칭하며, 최소 크기를 가지는 CU를 최소 코딩 유닛(SCU: Smallest Coding Unit)이라고 지칭할 수 있다.
또한, 트리 구조를 갖는 CU은 미리 정해진 최대 깊이 정보(또는, 최대 레벨 정보)를 가지고 계층적으로 분할될 수 있다. 그리고, 각각의 분할된 CU은 깊이 정보를 가질 수 있다. 깊이 정보는 CU의 분할된 횟수 및/또는 정도를 나타내므로, CU의 크기에 관한 정보를 포함할 수도 있다.
LCU가 쿼드 트리 형태로 분할되므로, LCU의 크기 및 최대 깊이 정보를 이용하면 SCU의 크기를 구할 수 있다. 또는 역으로, SCU의 크기 및 트리의 최대 깊이 정보를 이용하면, LCU의 크기를 구할 수 있다.
하나의 CU에 대하여, 해당 CU이 분할 되는지 여부를 나타내는 정보(예를 들어, 분할 CU 플래그(split_cu_flag))가 디코더에 전달될 수 있다. 이 분할 모드는 SCU을 제외한 모든 CU에 포함되어 있다. 예를 들어, 분할 여부를 나타내는 플래그의 값이 '1'이면 해당 CU은 다시 4개의 CU으로 나누어지고, 분할 여부를 나타내는 플래그의 값이 '0'이면 해당 CU은 더 이상 나누어지지 않고 해당 CU에 대한 처리 과정이 수행될 수 있다.
상술한 바와 같이, CU는 인트라 예측 또는 인터 예측이 수행되는 코딩의 기본 단위이다. HEVC는 입력 영상을 보다 효과적으로 코딩하기 위하여 CU를 예측 유닛(PU: Prediction Unit) 단위로 분할한다.
PU는 예측 블록을 생성하는 기본 단위로서, 하나의 CU 내에서도 PU 단위로 서로 다르게 예측 블록을 생성할 수 있다. 다만, 하나의 CU 내에 속한 PU들은 인트라 예측과 인터 예측이 혼합되어 사용되지 않으며, 하나의 CU 내에 속한 PU들은 동일한 예측 방법(즉, 인트라 예측 혹은 인터 예측)으로 코딩된다.
PU는 쿼드-트리 구조로 분할되지 않으며, 하나의 CU에서 미리 정해진 형태로 한번 분할된다. 이에 대하여 아래 도면을 참조하여 설명한다.
도 4는 본 발명에 적용될 수 있는 예측 유닛을 설명하기 위한 도면이다.
PU는 PU가 속하는 CU의 코딩 모드로 인트라 예측 모드가 사용되는지 인터 예측 모드가 사용되는지에 따라 상이하게 분할된다.
도 4(a)는 인트라 예측 모드가 사용되는 경우의 PU를 예시하고, 도 4(b)는 인터 예측 모드가 사용되는 경우의 PU를 예시한다.
도 4(a)를 참조하면, 하나의 CU의 크기가 2N×2N(N=4,8,16,32)인 경우를 가정하면, 하나의 CU는 2가지 타입(즉, 2N×2N 또는 N×N)으로 분할될 수 있다.
여기서, 2N×2N 형태의 PU로 분할되는 경우, 하나의 CU 내에 하나의 PU만이 존재하는 것을 의미한다.
반면, N×N 형태의 PU로 분할되는 경우, 하나의 CU는 4개의 PU로 분할되고, 각 PU 단위 별로 서로 다른 예측 블록이 생성된다. 다만, 이러한 PU의 분할은 CU의 휘도 성분에 대한 CB의 크기가 최소 크기인 경우(즉, CU가 SCU인 경우)에만 수행될 수 있다.
도 4(b)를 참조하면, 하나의 CU의 크기가 2N×2N(N=4,8,16,32)인 경우를 가정하면, 하나의 CU는 8가지의 PU 타입(즉, 2N×2N, N×N, 2N×N, N×2N, nL×2N, nR×2N, 2N×nU, 2N×nD)으로 분할될 수 있다.
인트라 예측과 유사하게, N×N 형태의 PU 분할은 CU의 휘도 성분에 대한 CB의 크기가 최소 크기인 경우(즉, CU가 SCU인 경우)에만 수행될 수 있다.
인터 예측에서는 가로 방향으로 분할되는 2N×N 형태 및 세로 방향으로 분할되는 N×2N 형태의 PU 분할을 지원한다.
또한, 비대칭 움직임 분할(AMP: Asymmetric Motion Partition) 형태인 nL×2N, nR×2N, 2N×nU, 2N×nD 형태의 PU 분할을 지원한다. 여기서, 'n'은 2N의 1/4 값을 의미한다. 다만, AMP는 PU가 속한 CU가 최소 크기의 CU인 경우 사용될 수 없다.
하나의 CTU 내의 입력 영상을 효율적으로 부호화하기 위해 코딩 유닛(CU), 예측 유닛(PU), 변환 유닛(TU)의 최적의 분할 구조는 아래와 같은 수행 과정을 거쳐 최소 율-왜곡(Rate-Distortion) 값을 기반으로 결정될 수 있다. 예를 들어, 64×64 CTU 내 최적의 CU 분할 과정을 살펴보면, 64×64 크기의 CU에서 8×8 크기의 CU까지의 분할 과정을 거치면서 율-왜곡 비용을 계산할 수 있다. 구체적인 과정은 다음과 같다.
1) 64×64 크기의 CU에 대해 인터/인트라 예측, 변환/양자화, 역양자화/역변환 및 엔트로피 인코딩 수행을 통해 최소의 율-왜곡 값을 발생시키는 최적의 PU와 TU의 분할 구조를 결정한다.
2) 64×64 CU를 32×32 크기의 CU 4개로 분할하고 각 32×32 CU에 대해 최소의 율-왜곡 값을 발생시키는 최적의 PU와 TU의 분할 구조를 결정한다.
3) 32×32 CU를 16×16 크기의 CU 4개로 다시 분할하고, 각 16×16 CU에 대해 최소의 율-왜곡 값을 발생시키는 최적의 PU와 TU의 분할 구조를 결정한다.
4) 16×16 CU를 8×8 크기의 CU 4개로 다시 분할하고, 각 8×8 CU에 대해 최소의 율-왜곡 값을 발생시키는 최적의 PU와 TU의 분할 구조를 결정한다.
5) 위의 3)의 과정에서 산출한 16×16 CU의 율-왜곡 값과 위의 4)의 과정에서 산출한 4개 8×8 CU의 율-왜곡 값의 합을 비교하여 16×16 블록 내에서 최적의 CU의 분할 구조를 결정한다. 이 과정을 나머지 3개의 16×16 CU들에 대해서도 동일하게 수행한다.
6) 위의 2)의 과정에서 계산된 32×32 CU의 율-왜곡 값과 위의 5)의 과정에서 획득한 4개 16×16 CU의 율-왜곡 값의 합을 비교하여 32×32 블록 내에서 최적의 CU의 분할 구조를 결정한다. 이 과정을 나머지 3개의 32×32 CU들에 대해서도 동일하게 수행한다.
7) 마지막으로, 위의 1)의 과정에서 계산된 64×64 CU의 율-왜곡 값과 위의 6)의 과정에서 획득한 4개 32×32 CU의 율-왜곡 값의 합을 비교하여 64×64 블록 내에서 최적의 CU의 분할 구조를 결정한다.
인트라 예측 모드에서, PU 단위로 예측 모드가 선택되고, 선택된 예측 모드에 대해 실제 TU 단위로 예측과 재구성이 수행된다.
TU는 실제 예측과 재구성이 수행되는 기본 단위를 의미한다. TU는 휘도(luma) 성분에 대한 변환 블록(TB: Transform Block)과 이에 대응하는 두 개의 색차(chroma) 성분에 대한 TB를 포함한다.
앞서 도 3의 예시에서 하나의 CTU가 쿼드-트리 구조로 분할되어 CU가 생성되는 것과 같이, TU는 코딩하려는 하나의 CU로부터 쿼드-트리 구조로 계층적으로 분할된다.
TU는 쿼드-트리 구조로 분할되므로 CU로부터 분할된 TU는 다시 더 작은 하위 TU로 분할될 수 있다. HEVC에서는 TU의 크기는 32×32, 16×16, 8×8, 4×4 중 어느 하나로 정해질 수 있다.
다시 도 3을 참조하면, 쿼드-트리의 루트 노드(root node)는 CU와 관련된다고 가정한다. 쿼드-트리는 리프 노드(leaf node)에 도달할 때까지 분할되고, 리프 노드는 TU에 해당한다.
보다 구체적으로 살펴보면, CU는 루트 노드(root node)에 해당되고, 가장 작은 깊이(depth)(즉, depth=0) 값을 가진다. 입력 영상의 특성에 따라 CU가 분할되지 않을 수도 있으며, 이 경우 CU은 TU에 해당한다.
CU은 쿼드 트리 형태로 분할될 수 있으며, 그 결과 깊이 1(depth=1)인 하위 노드들이 생성된다. 그리고, 1의 깊이를 가지는 하위 노드에서 더 이상 분할되지 않은 노드(즉, 리프 노드)는 TU에 해당한다. 예를 들어, 도 3(b)에서 노드 a, b 및 j에 대응하는 TU(a), TU(b), TU(j)는 CU에서 한 번 분할되었으며, 1의 깊이를 가진다.
1의 깊이를 가지는 노드 중 적어도 어느 하나는 다시 퀴드 트리 형태로 분할될 수 있으며, 그 결과 깊이 1(즉, depth=2)인 하위 노드들이 생성된다. 그리고, 2의 깊이를 가지는 하위 노드에서 더 이상 분할되지 않은 노드(즉, 리프 노드)는 TU에 해당한다. 예를 들어, 도 3(b)에서 노드 c, h 및 i에 대응하는 TU(c), TU(h), TU(i)는 CU에서 두 번 분할되었으며, 2의 깊이를 가진다.
또한, 2의 깊이를 가지는 노드 중 적어도 어느 하나는 다시 쿼드 트리 형태로 분할될 수 있으며, 그 결과 깊이 3(즉, depth=3)인 하위 노드들이 생성된다. 그리고, 3의 깊이를 가지는 하위 노드에서 더 이상 분할되지 않은 노드(즉, 리프 노드)는 CU에 해당한다. 예를 들어, 도 3(b)에서 노드 d, e, f, g에 대응하는 TU(d), TU(e), TU(f), TU(g)는 CU에서 3번 분할되었으며, 3의 깊이를 가진다.
트리 구조를 갖는 TU은 미리 정해진 최대 깊이 정보(또는, 최대 레벨 정보)를 가지고 계층적으로 분할될 수 있다. 그리고, 각각의 분할된 TU은 깊이 정보를 가질 수 있다. 깊이 정보는 TU의 분할된 횟수 및/또는 정도를 나타내므로, TU의 크기에 관한 정보를 포함할 수도 있다.
하나의 TU에 대하여, 해당 TU이 분할 되는지 여부를 나타내는 정보(예를 들어, 분할 TU 플래그(split_transform_flag))가 디코더에 전달될 수 있다. 이 분할 정보는 최소 크기의 TU을 제외한 모든 TU에 포함되어 있다. 예를 들어, 분할 여부를 나타내는 플래그의 값이 '1'이면 해당 TU은 다시 4개의 TU으로 나누어지고, 분할 여부를 나타내는 플래그의 값이 '0'이면 해당 TU은 더 이상 나누어지지 않는다.
예측(prediction)
디코딩이 수행되는 현재 블록을 복원하기 위해서 현재 블록이 포함된 현재 픽쳐 또는 다른 픽쳐들의 디코딩된 부분을 이용할 수 있다.
복원에 현재 픽쳐만을 이용하는, 즉 화면내 예측만을 수행하는 픽쳐(슬라이스)를 인트라 픽쳐 또는 I 픽쳐(슬라이스), 각 블록을 예측하기 위하여 최대 하나의 움직임 벡터 및 레퍼런스 인덱스를 이용하는 픽쳐(슬라이스)를 예측 픽쳐(predictive picture) 또는 P 픽쳐(슬라이스), 최대 두 개의 움직임 벡터 및 레퍼런스 인덱스를 이용하는 픽쳐(슬라이스)를 쌍예측 픽쳐(Bi-predictive picture) 또는 B 픽쳐(슬라이스)라고 지칭할 수 있다.
인트라 예측은 동일한 디코딩된 픽쳐(또는 슬라이스)의 데이터 요소(예를 들어, 샘플 값 등)으로부터 현재 블록을 도출하는 예측 방법을 의미한다. 즉, 현재 픽쳐 내의 복원된 영역들을 참조하여 현재 블록의 픽셀값을 예측하는 방법을 의미한다.
이하, 인터 예측에 대하여 보다 상세히 살펴본다.
인터 예측(Inter prediction)(또는 화면 간 예측)
인터 예측은 현재 픽쳐 이외의 픽쳐의 데이터 요소(예를 들어, 샘플 값 또는 움직임 벡터 등)의 기반하여 현재 블록을 도출하는 예측 방법을 의미한다. 즉, 현재 픽쳐 이외의 복원된 다른 픽쳐 내의 복원된 영역들을 참조하여 현재 블록의 픽셀값을 예측하는 방법을 의미한다.
인터 예측(또는 픽쳐간 예측)은 픽쳐들 사이에 존재하는 중복성을 제거하는 기술로 대부분 움직임 추정(motion estimation) 및 움직임 보상(motion compensation)을 통해 이루어진다.
도 5는 본 발명이 적용될 수 있는 실시예로서, 인터 예측의 방향을 예시하는 도면이다.
도 5를 참조하면, 인터 예측은 하나의 블록에 대해 시간축 상에서 과거의 픽쳐 혹은 미래의 픽쳐 하나만을 참조 픽쳐로 사용하는 단방향 예측(Uni-directional prediction)과 과거와 미래 픽쳐들을 동시에 참조하는 양방향 예측(Bi-directional prediction)으로 나눌 수 있다.
또한, 단방향 예측(Uni-directional prediction)은 시간적으로 현재 픽쳐 이전에 표시(또는 출력)되는 1개의 참조 픽쳐를 이용하는 순방향 예측(forward direction prediction)과 시간적으로 현재 픽쳐 이후에 표시(또는 출력)되는 1개의 참조 픽쳐를 이용하는 역방향 예측(backward direction prediction)으로 구분될 수 있다.
인터 예측 과정(즉, 단방향 또는 양방향 예측)에서 현재 블록을 예측하는데 어떤 참조 영역(또는 참조 블록)이 이용되는지 특정하기 위하여 사용되는 움직임 파라미터(또는 정보)는 인터 예측 모드(inter prediction mode)(여기서, 인터 예측 모드는 참조 방향(즉, 단방향 또는 양방향)과 참조 리스트(즉, L0, L1 또는 양방향)을 지시할 수 있음), 참조 인덱스(reference index)(또는 참조 픽쳐 인덱스 또는 참조 리스트 인덱스), 움직임 벡터(motion vector) 정보를 포함한다. 상기 움직임 벡터 정보는 움직임 벡터, 움직임 벡터 예측자(MVP: motion vector predictor) 또는 움직임 벡터 차분값(MVD: motion vector difference)을 포함할 수 있다. 움직임 벡터 차분값은 상기 움직임 벡터와 움직임 벡터 예측자 간의 차분값을 의미한다.
단방향 예측은 한 쪽 방향에 대한 움직임 파라미터가 사용된다. 즉, 참조 영역(또는 참조 블록)을 특정하기 위하여 1개의 움직임 파라미터가 필요할 수 있다.
양방향 예측은 양쪽 방향에 대한 움직임 파라미터가 사용된다. 양방향 예측 방식에서는 최대 2개의 참조 영역을 이용할 수 있는데, 이 2개의 참조 영역은 동일한 참조 픽쳐에 존재할 수도 있고, 서로 다른 픽쳐에 각각 존재할 수도 있다. 즉, 양방향 예측 방식에서는 최대 2개의 움직임 파라미터가 이용될 수 있는데, 2개의 움직임 벡터가 동일한 참조 픽쳐 인덱스를 가질 수도 있고 서로 다른 참조 픽쳐 인덱스를 가질 수도 있다. 이때, 참조 픽쳐들은 시간적으로 현재 픽쳐 이전에 모두 표시(또는 출력)되거나 이후에 모두 표시(또는 출력)될 수 있다.
인코더는 인터 예측 과정에서 현재 블록과 가장 유사한 참조 영역을 참조 픽쳐들로부터 찾는 움직임 추정(Motion Estimation)을 수행한다. 그리고, 인코더는 참조 영역에 대한 움직임 파라미터를 디코더에게 제공할 수 있다.
인코더/디코더는 움직임 파라미터를 이용하여 현재 블록의 참조 영역을 획득할 수 있다. 상기 참조 영역은 상기 참조 인덱스를 가진 참조 픽쳐 내에 존재한다. 또한, 상기 움직임 벡터에 의해서 특정된 참조 영역의 픽셀값 또는 보간(interpolation)된 값이 상기 현재 블록의 예측값(predictor)으로 이용될 수 있다. 즉, 움직임 정보를 이용하여, 이전에 디코딩된 픽쳐로부터 현재 블록의 영상을 예측하는 움직임 보상(motion compensation)이 수행된다.
움직임 벡터 정보와 관련한 전송량을 줄이기 위하여, 이전에 코딩된 블록들의 움직임 정보를 이용하여 움직임 벡터 예측자(mvp)을 획득하고, 이에 대한 차분값(mvd)만을 전송하는 방법을 이용할 수 있다. 즉, 디코더에서는 디코딩된 다른 블록들의 움직임 정보들을 이용하여 현재 블록의 움직임 벡터 예측자를 구하고, 인코더로부터 전송된 차분값을 이용하여 현재 블록에 대한 움직임 벡터값을 획득하게 된다. 움직임 벡터 예측자를 획득함에 있어서, 디코더는 이미 디코딩된 다른 블록들의 움직임 정보을 이용하여 다양한 움직임 벡터 후보 값들을 획득하고 그 중 하나를 움직임 벡터 예측자로 획득할 수 있다.
- 참조 픽쳐 세트 및 참조 픽쳐 리스트
다중의 참조 픽쳐를 관리하기 위하여, 이전에 디코딩된 픽쳐의 세트가 남은 픽쳐의 디코딩을 위해 복호 픽쳐 버퍼(DPB)내 저장된다.
DPB에 저장된 복원된 픽쳐 중 인터 예측에 이용되는 복원된 픽쳐를 참조 픽쳐(referece picture)로 지칭한다. 다시 말해, 참조 픽쳐(reference picture)는 디코딩 순서 상 다음의 픽쳐의 디코딩 프로세스에서 인터 예측을 위해 사용될 수 있는 샘플을 포함하는 픽쳐를 의미한다.
참조 픽쳐 세트(RPS: reference picture set)는 픽쳐와 연관된 참조 픽쳐의 세트를 의미하고, 디코딩 순서 상 이전에 연관된 모든 픽쳐로 구성된다. 참조 픽쳐 세트는 연관된 픽쳐 또는 디코딩 순서 상 연관된 픽쳐에 뒤따르는 픽쳐의 인터 예측에 이용될 수 있다. 즉, 복호 픽쳐 버퍼(DPB)에 유지되는 참조 픽쳐들은 참조 픽쳐 세트로 지칭될 수 있다. 인코더는 시퀀스 파라미터 세트(SPS: sequence parameter set)(즉, 신택스 요소로 구성되는 신택스 구조) 또는 각 슬라이스 헤더에서 참조 픽쳐 세트 정보를 디코더에게 제공할 수 있다.
참조 픽쳐 리스트(reference picture list)는 P 픽쳐(또는 슬라이스) 또는 B 픽쳐(또는 슬라이스)의 인터 예측을 위해 이용되는 참조 픽쳐의 리스트를 의미한다. 여기서, 참조 픽쳐 리스트는 2개의 참조 픽쳐 리스트로 구분될 수 있으며, 각각 참조 픽쳐 리스트 0(또는 L0) 및 참조 픽쳐 리스트 1(또는 L1)로 지칭할 수 있다. 또한, 참조 픽쳐 리스트 0에 속한 참조 픽쳐를 참조 픽쳐 0(또는 L0 참조 픽쳐)로 지칭하고, 참조 픽쳐 리스트 1에 속한 참조 픽쳐를 참조 픽쳐 1(또는 L1 참조 픽쳐)로 지칭할 수 있다.
P 픽쳐(또는 슬라이스)의 디코딩 프로세스에 있어서, 하나의 참조 픽쳐 리스트(즉, 참조 픽쳐 리스트 0)가 이용되고, B 픽쳐(또는 슬라이스)의 디코딩 프로세스에 있어서, 2개의 참조 픽쳐 리스트(즉, 참조 픽쳐 리스트 0 및 참조 픽쳐 리스트 1)가 이용될 수 있다. 이러한, 각 참조 픽쳐 별로 참조 픽쳐 리스트를 구분하기 위한 정보는 참조 픽쳐 세트 정보를 통해 디코더에게 제공될 수 있다. 디코더는 참조 픽쳐 세트(reference picture set) 정보를 기반으로 참조 픽쳐를 참조 픽쳐 리스트 0 또는 참조 픽쳐 리스트 1에 추가한다.
참조 픽쳐 리스트 내 어느 하나의 특정 참조 픽쳐를 식별하기 위하여 참조 픽쳐 인덱스(reference picture index)(또는 참조 인덱스)가 이용된다.
- 분수 샘플 보간(fractional sample interpolation)
인터 예측된 현재 블록에 대한 예측 블록의 샘플은 참조 픽쳐 인덱스(reference picture index)에 의해 식별되는 참조 픽쳐 내 해당 참조 영역의 샘플 값으로부터 획득된다. 여기서, 참조 픽쳐 내 해당 참조 영역은 움직임 벡터의 수평 요소(horizontal component) 및 수직 요소(vertical component)에 의해 지시되는 위치의 영역을 나타낸다. 움직임 벡터가 정수 값을 가지는 경우를 제외하고, 비정수(noninteger) 샘플 좌표를 위한 예측 샘플을 생성하기 위하여 분수 샘플 보간(fractional sample interpolation)이 사용된다. 예를 들어, 샘플 간의 거리의 1/4 단위의 움직임 벡터가 지원될 수 있다.
HEVC의 경우, 휘도 성분의 분수 샘플 보간(fractional sample interpolation)은 8탭 필터를 가로 방향 및 세로 방향으로 각각 적용한다. 그리고, 색차 성분의 분수 샘플 보간(fractional sample interpolation)은 4탭 필터를 가로 방향 및 세로 방향으로 각각 적용한다.
도 6은 본 발명이 적용될 수 있는 실시예로서, 1/4 샘플 보간을 위한 정수 및 분수 샘플 위치를 예시한다.
도 6을 참조하면, 대문자(upper-case letter)(A_i,j)가 기재된 음영 블록은 정수 샘플 위치를 나타내고, 소문자(lower-case letter)(x_i,j)가 기재된 음영 없는 블록은 분수 샘플 위치를 나타낸다.
분수 샘플은 수평 방향 및 수직 방향으로 각각 정수 샘플 값에 보간 필터가 적용되어 생성된다. 예를 들어, 수평 방향의 경우, 생성하려는 분수 샘플을 기준으로 좌측의 4개의 정수 샘플 값과 우측의 4개의 정수 샘플 값에 8탭 필터가 적용될 수 있다.
- 인터 예측 모드
HEVC에서는 움직임 정보의 양을 줄이기 위하여 머지(Merge) 모드, AMVP(Advanced Motion Vector Prediction)를 이용될 수 있다.
1) 머지(Merge) 모드
머지(Merge) 모드는 공간적(spatially) 또는 시간적(temporally)으로 이웃하는 블록으로부터 움직임 파라미터(또는 정보)를 도출하는 방법을 의미한다.
머지 모드에서 이용 가능한 후보의 세트는 공간적으로 이웃하는 후보(spatial neighbor candidates), 시간적 후보(temporal candidates) 및 생성된 후보(generated candidates)로 구성된다.
도 7은 본 발명이 적용될 수 있는 실시예로서, 공간적 후보의 위치를 예시한다.
도 7(a)를 참조하면, {A1, B1, B0, A0, B2}의 순서에 따라 각 공간적 후보 블록이 이용 가능한지 여부가 판단된다. 이때, 후보 블록이 인트라 예측 모드로 인코딩되어 움직임 정보가 존재하지 않는 경우 또는 후보 블록이 현재 픽쳐(또는 슬라이스)의 밖에 위치하는 경우에는 해당 후보 블록은 이용할 수 없다.
공간적 후보의 유효성의 판단 후, 현재 블록의 후보 블록에서 불필요한 후보 블록을 제외함으로써 공간적 머지 후보가 구성될 수 있다. 예를 들어, 현재 예측 블록의 후보 블록이 동일 코딩 블록 내 첫 번째 예측 블록인 경우 해당 후보 블록을 제외하고 또한 동일한 움직임 정보를 가지는 후보 블록들을 제외할 수 있다.
공간적 머지 후보 구성이 완료되면, {T0, T1}의 순서에 따라 시간적 머지 후보 구성 과정이 진행된다.
시간적 후보 구성에 있어서, 참조 픽쳐의 동일 위치(collocated) 블록의 우하단(right bottom) 블록(T0)이 이용 가능한 경우, 해당 블록을 시간적 머지 후보로 구성한다. 동일 위치(collocated) 블록은 선택된 참조 픽쳐에서 현재 블록에 대응되는 위치에 존재하는 블록을 의미한다. 반면, 그렇지 않은 경우, 동일 위치(collocated) 블록의 중앙(center)에 위치하는 블록(T1)을 시간적 머지 후보로 구성한다.
머지 후보의 최대 개수는 슬라이스 헤더에서 특정될 수 있다. 머지 후보의 개수가 최대 개수보다 큰 경우, 최대 개수 보다 작은 개수의 공간적 후보와 시간적 후보가 유지된다. 그렇지 않은 경우, 머지 후보의 개수는 후보 개수가 최대 개수가 될 때까지 현재까지 추가된 후보들을 조합하여 추가적인 머지 후보(즉, 조합된 쌍예측 머지 후보(combined bi-predictive merging candidates))가 생성된다.
인코더에서는 위와 같은 방법으로 머지 후보 리스트를 구성하고, 움직임 추정(Motion Estimation)을 수행함으로써 머지 후보 리스트에서 선택된 후보 블록 정보를 머지 인덱스(merge index)(예를 들어, merge_idx[x0][y0]')로써 디코더에게 시그널링한다. 도 7(b)에서는 머지 후보 리스트에서 B1 블록이 선택된 경우를 예시하고 있으며, 이 경우, 머지 인덱스(merge index)로 "인덱스 1(Index 1)"이 디코더로 시그널링될 수 있다.
디코더에서는 인코더와 동일하게 머지 후보 리스트를 구성하고, 머지 후보 리스트에서 인코더로부터 수신한 머지 인덱스(merge index)에 해당하는 후보 블록의 움직임 정보로부터 현재 블록에 대한 움직임 정보를 도출한다. 그리고, 디코더는 도출한 움직임 정보를 기반으로 현재 블록에 대한 예측 블록을 생성한다(즉, 움직임 보상).
2) AMVP(Advanced Motion Vector Prediction) 모드
AMVP 모드는 주변 블록으로부터 움직임 벡터 예측 값을 유도하는 방법을 의미한다. 따라서, 수평 및 수직 움직임 벡터 차분 값(MVD: motion vector difference), 참조 인덱스 및 인터 예측 모드가 디코더로 시그널링된다. 수평 및 수직 움직임 벡터 값은 유도된 움직임 벡터 예측 값과 인코더로부터 제공된 움직임 벡터 차분 값(MVD: motion vector difference)를 이용하여 계산된다.
즉, 인코더에서는 움직임 벡터 예측자 후보 리스트를 구성하고, 움직임 추정(Motion Estimation)을 수행함으로써 움직임 벡터 예측자 후보 리스트에서 선택된 움직임 벡터 예측자 플래그(즉, 후보 블록 정보)(예를 들어, mvp_lX_flag[x0][y0]')를 디코더에게 시그널링한다. 디코더에서는 인코더와 동일하게 움직임 벡터 예측자 후보 리스트를 구성하고, 움직임 벡터 예측자 후보 리스트에서 인코더로부터 수신한 움직임 벡터 예측자 플래그에서 지시된 후보 블록의 움직임 정보를 이용하여 현재 블록의 움직임 벡터 예측자를 도출한다. 그리고, 디코더는 도출된 움직임 벡터 예측자와 인코더로부터 전송된 움직임 벡터 차분값을 이용하여 현재 블록에 대한 움직임 벡터값을 획득하게 된다. 그리고, 디코더는 도출한 움직임 정보를 기반으로 현재 블록에 대한 예측된 블록(즉, 예측된 샘플들의 배열)을 생성한다(즉, 움직임 보상).
AMVP 모드의 경우, 앞서 도 7에서 5개의 이용 가능한 후보들 중에서 2개의 공간적 움직임 후보가 선택된다. 첫 번째 공간적 움직임 후보는 좌측에 위치한 {A0, A1} 세트로부터 선택되고, 두 번째 공간적 움직임 후보는 상위에 위치한 {B0, B1, B2} 세트로부터 선택된다. 이때, 이웃한 후보 블록의 참조 인덱스가 현재 예측 블록과 동일하지 않은 경우, 움직임 벡터가 스케일링된다.
공간적 움직임 후보의 탐색 결과 선택된 후보 개수가 2개라면 후보 구성을 종료하나, 2개 미만인 경우 시간적 움직임 후보가 추가된다.
도 8은 본 발명이 적용되는 실시예로서, 인터 예측 방법을 예시하는 도면이다.
도 8을 참조하면, 디코더(특히, 도 2에서 디코더의 인터 예측부(261))는 현재 블록(예를 들어, 예측 블록)에 대한 움직임 파라미터를 복호화한다(S801).
예를 들어, 현재 블록이 머지 모드가 적용된 경우, 디코더는 인코더로부터 시그널링된 머지 인덱스를 복호화할 수 있다. 그리고, 머지 인덱스에서 지시된 후보 블록의 움직임 파라미터로부터 현재 블록의 움직임 파라미터를 도출할 수 있다.
또한, 현재 블록이 AMVP 모드가 적용된 경우, 디코더는 인코더로부터 시그널링된 수평 및 수직 움직임 벡터 차분 값(MVD: motion vector difference), 참조 인덱스 및 인터 예측 모드를 복호화할 수 있다. 그리고, 움직임 벡터 예측자 플래그로부터 지시된 후보 블록의 움직임 파라미터로부터 움직임 벡터 예측자를 도출하고, 움직임 벡터 예측자와 수신한 움직임 벡터 차분 값을 이용하여 현재 블록의 움직임 벡터값을 도출할 수 있다.
디코더는 복호화된 움직임 파라미터(또는 정보)를 이용하여 현재 블록에 대한 움직임 보상을 수행한다(S802).
즉, 인코더/디코더에서는 복호화된 움직임 파라미터를 이용하여, 이전에 디코딩된 픽쳐로부터 현재 블록의 영상을 예측(즉, 현재 단위에 대한 예측 블록 생성)하는 움직임 보상(motion compensation)을 수행한다. 인코더/디코더에서는 다시 말해, 이전에 디코딩된 참조 픽쳐 내 현재 블록과 대응되는 영역의 샘플로부터 현재 블록의 예측된 블록(즉, 예측된 샘플들의 배열)을 도출할 수 있다.
도 9는 본 발명이 적용될 수 있는 실시예로서, 움직임 보상 과정을 예시하는 도면이다.
도 9에서는 현재 픽쳐(current picture)에서 부호화 하고자 하는 현재 블록(current block)을 위한 움직임 파라미터는 단방향 예측, LIST0, LIST0 내 두번 째 픽쳐(picture), 움직임 벡터 (-a, b) 인 경우를 예시한다.
이 경우, 도 9와 같이 현재 블록은 LIST0의 두 번째 픽쳐에서 현재 블록과 (-a, b) 만큼 떨어져 있는 위치의 값(즉, 참조 블록(reference block)의 샘플값)들을 사용하여 예측된다.
양방향 예측의 경우는, 또다른 참조 리스트(예를 들어, LIST1)와 참조 인덱스, 움직임 벡터 차분값이 전송되어, 디코더는 두 개의 참조 블록을 도출하고, 이를 기반으로 현재 블록을 예측(즉, 현재 블록의 예측된 샘플 생성)한다.
다중 표현 어플리케이션 (Multiple Representation Application)을 위한 효율적인 예측
본 발명에서는 다중 표현(multiple representation)으로 구성된 컨텐츠를 스트리밍 서비스하는 경우 인코딩/디코딩 방법을 제안한다.
도 10은 본 발명이 적용될 수 있는, 적응적인 스트리밍(adaptive streaming) 방법을 예시하는 도면이다.
Multiple representation이란 하나의 컨텐츠를 다양한 해상도(resolution) 및 다양한 품질(quality) 등 낮은 비트레이트(low bitrate)부터 높은 비트레이트(high bitrate)까지 다양한 버전의 영상으로 제작한 것을 의미한다. 이는, 도 10과 같이 스트리밍 서비스를 이용하는 사용자가 네트워크의 상태가 변하더라도 끊김없이 서비스를 이용하기 위하여 사용되는 적응적인 스트리밍(adaptive streaming)을 위한 컨텐츠 제작 방식이다.
이와 같이 adaptive streaming을 위해 제작되는 multiple representation들은 representation들간 스위칭(switching)을 위해 세그먼트(segment)형태로 분할될 수 있다.
이때, switching 시 디코딩 문제가 발생하지 않도록 일반적으로 하나의 segment 내의 픽쳐(picture)들은 다른 segment의 picture들을 참조(즉, 인터 예측 시 참조 픽쳐로 이용)할 수 없도록 폐쇄된 픽쳐 그룹(closed GOP: closed Group of Picture) 형태로 인코딩될 수 있다. 다만, 폐쇄된 GOP가 필수적(mendatory)은 아니므로 개방된 GOP(open GOP) 형태로도 인코딩될 수도 있다.
만일, 서로 다른 segment가 품질(quality)만이 다른 경우라면, 약간의 화질의 저하가 발생하겠지만 디코더에서 정상적으로 디코딩은 가능하다. 반면 서로 다른 segment의 picture들이 서로 다른 resolution을 갖고 있을 경우에는, 디코더에서 디코딩 자체가 불가능할 수도 있으며, 또는 매우 큰 화질 저하 문제가 발생할 수 있다.
따라서, 본 발명에서는 성질/특성(예를 들어, 픽쳐 해상도(picture resolution), 비트-심도(bit-depth), 컬러 포맷(color format), 다이나믹 레인지(DR: dynamic range), 너비-대-높이 비율(AR: aspect ratio) 등)이 서로 다른 픽쳐들 간에 참조하더라도 정상적인 (또는 큰 화질 저하 없이) 디코딩이 가능하도록 방법을 제안한다.
상술한 적응적 스트리밍(adaptive streaming) 서비스에서 발생하는 이슈에 대해 이하, 좀 더 상세히 설명한다.
도 11 및 12는 본 발명이 적용될 수 있는 다중 표현(multiple representation)을 이용한 적응적인 스트리밍(adaptive streaming) 방법을 예시하는 도면이다.
도 11에서는 closed GOP의 경우를 예시하고, 도 12에서는 open GOP의 경우를 예시한다.
대표적인 adaptive streaming 기술인 MPEG(Moving Picture Experts Group) DASH(Dynamic Adaptive Streaming over HTTP)를 예를 들어 살펴본다. 앞서 설명한 것처럼 일반적으로 모든 segment들은 IDR(Instantaneous Decoding Refresh) picture부터 디코딩을 시작하도록 인코딩되어 있으므로(즉, closed GOP 구조), 만일 segment R0N-1에서 segment R1N으로 스위칭이 발생하더라도 디코더에서는 문제 없이 디코딩이 가능하다.
이러한 segment들은 얼마나 민첩하게 네트워크의 변화에 순응할 것인가에 따라 그 길이를 달리 할 수 있다. 예를 들면, segment의 길이를 10초 분량으로 인코딩할 경우 네트워크의 변화가 1초마다 일어나더라도 10초마다 representation의 변경이 가능하다.
반면, segment의 길이가 5초라면 적어도 5초마다 변경이 가능하여 더욱 세밀한 네트워크의 변화에 따른 대응이 가능해 진다.
다만, 이와 같이 segment의 길이가 짧아 질수록 각 representation의 용량이 급속히 커지게 될 수 있다. 이는 IDR 픽쳐의 증가로 인한 것이다. 일반적으로 IDR picture의 크기는 비-IDR(non-IDR) picture의 크기 대비 용량이 적게는 2배, 많게는 10배 정도 크다. 뿐만 아니라 segment의 길이가 짧아지면 GOP 크기가 줄어들어 인터 픽쳐 코딩(inter picture coding)의 효율 또한 떨어져 representation의 용량이 증가하게 된다.
이와 같은 문제(즉, 코딩 효율 문제 등)를 해결하기 위해서는, 도 12와 같이 서로 다른 segment 간의 예측(prediction)을 허용하는 것이 바람직하다. 다만, 동일한 representation 내에서는 prediction을 허용해도 문제가 발생하지 않지만 switching이 발생하여 서로 다른 representation의 segment들 간에 prediction이 수행될 경우 decoding 문제(예를 들어, 디코더 고장(decoder crash), 매우 큰 화질 저하등)가 발생 할 수 있다.
예를 들면, 도 12에서 representation 0의 픽쳐 크기가 1280x720, representation 1의 픽쳐 크기가 1920x1080인 경우를 가정한다. 만약, segment R0N-1 -> segment R1N으로의 변경이 발생할 경우 1920x1080의 현재 픽쳐는 DPB에 저장되어 있는 1280x720의 참조 픽쳐로부터 prediction을 수행하게 된다. 이때, encoding할 때와 전혀 다른 사이즈의 참조 픽쳐를 사용하여 prediction을 하게 되므로 영상이 크게 망가지게 되며, 또한 현재 블록의 위치가 x=1280, y=720의 위치를 벗어나는 순간 참조 픽쳐에 대응하는 영상이 없기 때문에 디코더가 동작을 멈추거나 오동작을 하게 된다.
이러한 문제는 각각의 representation이 서로 다른 resolution일 경우뿐만 아니라, bit-depth가 다를 경우, dynamic range가 다를 경우, 컬러 포맷(color format)이 다를 경우, aspect ratio가 다를 경우 등 매우 다양한 경우에 발생할 수 있는 문제이다.
따라서, 이하 본 발명에서는 앞서 설명한 바와 같이 상이한 성질/특성을 갖는 두 picture 간에 예측이 수행될 때, 상이한 성질/특성이 있음을 detection 하는 방법, 그리고 성질/특성이 상이할 경우 디코더의 오동작이나 큰 화질 저하 없이 효율적으로 예측이 가능하도록 하는 다양한 예측 방법을 제안한다.
이하, 본 발명의 일 실시예로서, 현재 픽쳐(또는 슬라이스)와 참조 픽쳐가 서로 상이한 성질/특성을 가지는 픽쳐인지 판별(detection)하는 방법을 제안한다.
도 13은 본 발명의 일 실시예에 따른 현재 픽쳐와 참조 픽쳐 간의 성질/특성이 상이한지 여부를 판별하는 방법을 예시한다.
도 13을 참조하면, 현재 픽쳐(또는 슬라이스)의 디코딩이 시작되면, 디코더는 먼저 current picture와 reference picture 간의 각 성질/특성 별로 성질/특성이 상이한지 여부를 나타내는 변수의 값을 0로 셋팅한다(S1301).
도 13에서는 resolution가 상이한지 여부를 나타내는 변수를 'IsDiffResolution', bit-depth가 상이한지 여부를 나타내는 변수를 'IsDiffBitDepth', color format이 상이한지 여부를 나타내는 변수를 'IsDiffColorFormat', dynamic range가 상이한지 여부를 나타내는 변수를 'IsDiffDR', aspect ratio가 상이한지 여부를 나타내는 변수를 'IsDiffAR'로 예시한다. 즉, 디코더는 위의 각 변수의 값을 0으로 셋팅한다.
디코더는 reference picture의 너비(RefPicWidth)와 current picture의 너비(CurPicWidth)가 같고, 또한 reference picture의 높이(RefPicHeight)와 current picture의 높이(CurPicHeight)가 동일한지 여부를 판단한다(S1302).
즉, 디코더는 current picture와 reference picture 간에 resolution이 동일한지 여부를 판단한다.
S1302 단계에서 판단한 결과, current picture와 reference picture 간에 resolution이 동일하지 않은 경우, 디코더는 IsDiffResolution 값을 1로 셋팅한다(S1303).
반면, S1302 단계에서 판단한 결과, current picture와 reference picture간에 resolution이 동일한 경우, 디코더는 reference picture의 bit-depth(RefPicBitDepth)와 current picture의 bit-depth(CurPicBitDepth)가 동일한지 여부를 판단한다(S1304).
S1304 단계에서 판단한 결과, current picture와 reference picture 간에 bit-depth가 동일하지 않은 경우, 디코더는 IsDiffBitDepth 값을 1로 셋팅한다(S1305).
반면, S1304 단계에서 판단한 결과, current picture와 reference picture 간에 bit-depth가 동일한 경우, 디코더는 reference picture의 color format(RefPicColorFormat)과 current picture의 color format(CurPicColorFormat)이 동일한지 여부를 판단한다(S1306).
S1306 단계에서 판단한 결과, current picture와 reference picture 간에 color format이 동일하지 않은 경우, 디코더는 IsDiffColorFormat 값을 1로 셋팅한다(S1307).
반면, S1306 단계에서 판단한 결과, current picture와 reference picture 간에 color format이 동일한 경우, 디코더는 reference picture의 dynamic range(RefPicDR)와 current picture의 dynamic range(CurPicDR)이 동일한지 여부를 판단한다(S1308).
S1308 단계에서 판단한 결과, current picture와 reference picture 간에 dynamic range가 동일하지 않은 경우, 디코더는 IsDiffDR 값을 1로 셋팅한다(S1309).
반면, S1308 단계에서 판단한 결과, current picture와 reference picture 간에 dynamic range가 동일한 경우, 디코더는 reference picture의 aspect ratio와 current picture의 aspect ratio가 동일한지 여부를 판단한다(S1310).
S1310 단계에서 판단한 결과, current picture와 reference picture 간에 aspect ratio가 동일하지 않은 경우, 디코더는 IsDiffAR 값을 1로 셋팅한다(S1311).
반면, S1310 단계에서 판단한 결과, current picture와 reference picture 간에 aspect ratio가 동일한 경우, 디코더는 current picture와 reference picture 간에 resolution, bit-depth, color format, dynamic range, aspect ratio가 모두 동일한지(즉, IsDiffResolution, IsDiffBitDepth, IsDiffColorFormat, IsDiffDR, IsDiffAR의 값이 모두 0) 그렇지 않은지(어느 하나라도 1) 판단한다(S1312).
S1312 단계에서 판단한 결과, current picture와 reference picture 간에 어느 하나의 성질/특성이라도 상이한 경우, 디코더는 참조 픽쳐 관리 프로세스(RPMP: reference picture management process)를 수행한다(S1313).
reference picture management process는 reference picture를 current picture와 동일한 성질을 갖도록 변형하는 작업을 의미하며, 이에 대한 보다 상세한 설명은 후술한다.
그리고, 디코더는 reference picture management process로 도출된 reference picture를 기반으로 current picture에 대한 인터 예측 프로세스를 수행한다(S1314).
반면, S1312 단계에서 판단한 결과, current picture와 reference picture 간에 모든 성질/특성이 동일한 경우, 디코더는 인터 예측 프로세스를 수행한다(S1314). 즉, 이 경우, 디코더는 상술한 reference picture management process가 적용되지 않은 reference picture를 기반으로 current picture에 대한 인터 예측 프로세스를 수행한다.
그리고, 디코더는 current picture를 복원(reconstruction)하고, 이외 다른 프로세스(예를 들어, 필터링 등)을 수행한다(S1315).
한편, 도 13에서는 picture 간의 성질/특성으로서 resolution, bit-depth, color format, dynamic range, aspect ratio를 예시하고 있으나, 본 발명이 이에 한정되는 것은 아니며 그 중 일부가 이용될 수도 있으며, 혹은 도 13에 예시된 성질/특성 이외 다른 성질/특성이 추가로 이용될 수도 있다.
또한, 도 13에서는 current picture와 reference picture 간의 성질/특성이 상이한지 여부를 resolution, bit-depth, color format, dynamic range, aspect ratio의 순서대로 비교하는 프로세스를 예시하고 있으나, 본 발명이 이에 한정되는 것은 아니며 current picture와 reference picture 간의 성질/특성이 상이한지 여부는 도 13과 상이한 순서로 판단될 수 있다.
이하, reference picture management process에 대하여 보다 상세히 살펴본다.
reference picture management process에 대한 일 실시예로서, current picture와 reference picture의 resolution이 다를 경우에 current picture를 효율적으로 decoding하는 방법을 제안한다.
도 14는 본 발명의 일 실시예에 따른 현재 픽쳐와 참조 픽쳐 간 해상도가 상이한 경우, 참조 픽쳐 관리 프로세스를 예시한다.
Representation 간의 picture aspect ratio가 다를 수 있으므로 current picture와 reference picture간의 resolution 차이는 width와 height를 따로 고려하는 것이 바람직하다.
도 14를 참조하면, 디코더는 current picture의 너비와 reference picture의 너비를 이용하여 너비 스케일링 변수('WidthScale')를 셋팅하고 current picture의 높이와 reference picture의 높이를 이용하여 높이 스케일링 변수('HeightScale')를 셋팅한다(S1401).
일례로, current picture의 너비와 reference picture의 너비의 비율로 WidthScale를 셋팅하고(WidthScale = CurPicWidth / RefPicWidth), current picture의 높이와 reference picture의 높이의 비율로 HeightScale를 셋팅할 수 있다(Height = CurPicHeight / RefPicHeight).
디코더는 WidthScale이 1보다 작은지 여부를 판단한다(S1402).
즉, 디코더는 너비 방향(수평 방향/축)으로 reference picture의 resolution이 current picture의 resolution 보다 큰지 여부를 판단한다.
S1402 단계에서 판단한 결과, WidthScale이 1보다 작으면, 디코더는 reference picture에 대하여 너비 방향으로 다운스케일링(downscaling) 프로세스를 수행한다(S1403)(즉, RefPicWidth * WidthScale).
예를 들어, WidthScale = 0.5이면, 디코더는 reference picture를 width 축(수평 축)으로 1/2 스케일링을 수행한다.
반면, S1402 단계에서 판단한 결과, WidthScale이 1보다 작지 않으면(혹은 크면), 디코더는 reference picture에 대하여 너비 방향으로 업스케일링(upscaling) 프로세스를 수행한다(S1404).
만약, width 축으로 reference picture의 resolution이 current picture의 resolution과 동일한 경우, upscaling process는 바이패스(bypass)될 수 있다.
디코더는 HeighScale이 1보다 작은지 여부를 판단한다(S1405).
즉, 디코더는 높이 방향(수직 방향/축)으로 reference picture의 resolution이 current picture의 resolution 보다 큰지 여부를 판단한다.
S1405 단계에서 판단한 결과, HeighScale이 1보다 작으면, 디코더는 reference picture에 대하여 높이 방향으로 다운스케일링(downscaling) 프로세스를 수행한다(S1406)(즉, RefPicHeight * HeightScale).
반면, S1405 단계에서 판단한 결과, HeighScale이 1보다 작지 않으면(혹은 크면), 디코더는 reference picture에 대하여 높이 방향으로 업스케일링(upscaling) 프로세스를 수행한다(S407).
만약, height 축으로 reference picture의 resolution이 current picture의 resolution과 동일한 경우, upscaling process는 바이패스(bypass)될 수 있다.
도 15는 앞서 도 14의 참조 픽쳐 관리 프로세스를 도식화한 도면이다.
도 15에서는 reference picture(1501)의 resolution이 current picture(1504)의 resolution 보다 width 축(수평 축/방향), height 축(수직 축/방향)으로 모두 큰 경우를 예시한다.
디코더는 너비 방향(수평 방향)으로 reference picture(1501)의 resolution이 current picture(1504)의 resolution 보다 큰지 여부를 판단한다.
도 15에서는 큰 경우를 예시하고 있으므로, 디코더는 너비 방향(수평 방향)으로 reference picture(1501)를 다운스케일링(downscaling)하여, 너비 방향으로 다운스케일링된 reference picture(1502)를 생성한다.
디코더는 높이 방향(수직 방향)으로 reference picture(1501)의 resolution이 current picture(1504)의 resolution 보다 큰지 여부를 판단한다.
도 15에서는 큰 경우를 예시하고 있으므로, 디코더는 너비 방향으로 다운스케일링된 reference picture(1502)를 높이 방향(수직 방향)으로 다운스케일링(downscaling)하여, 너비/높이 방향으로 모두 다운스케일링된 reference picture(1503)를 생성한다.
그리고, 디코더는 참조 픽쳐 관리 프로세스가 적용된 reference picture(즉, 도 15에서는 너비/높이 방향으로 모두 다운스케일링된 reference picture(1503))를 기반으로 current picture를 예측한다.
한편, 도 14 및 도 15에서는 reference picture와 current picture 간 너비 방향으로 resolution을 비교한 후, 높이 방향으로 resolution을 비교하는 경우를 예시하고 있으나 본 발명이 이에 한정되는 것은 아니며, 순서가 바뀌어도 무방하다.
또한, 앞서 도 14 및 도 15에서 기술한 방법 외에 RPMP는 다양한 방법으로, 코덱의 환경에 맞게 설계가 가능하다.
도 16은 본 발명의 일 실시예에 따른 다운샘플링된 예측을 수행하는 방법을 예시하는 도면이다.
도 16과 같이 reference picture(1601)의 resolution이 current picture(1602)의 resolution 보다 width, height 축으로 모두 2배 큰 경우(즉, WidthScale = HeightScale = 0.5일 경우)를 가정한다.
이 경우, 만일 해당 코덱이 하프-펠(half-pel) 움직임 정보를 사용한다면 앞서 도 14 및 15과 같은 특별히 reference picture에 대한 downscaling process를 수행할 필요 없다. 즉, prediction 수행 시 현재의 reference picture (current picture보다 width, height가 모두 2배 큰 영상)에서 2:1 서브샘플링(subsampling)을 통해 예측 샘플(prediction sample)을 도출하면 downscaling 효과를 얻을 수 있다.
이를 일반화하면, 코덱에서 분수-펠(fractional-pel)(1/n)(예를 들어, 하프-펠(half-pel) 또는 쿼터-펠(quarter-pel) 등) 단위의 움직임 정보가 이용되는 경우, reference picture의 resolution이 current picture의 resolution 보다 m배 크다면, reference picture의 downscaling을 수행하지 않고도, prediction 수행 시 현재의 reference picture로부터 n:1 subsampling 을 통해 예측 샘플을 도출할 수 있다.
이하, reference picture management process에 대한 일 실시예로서, current picture와 reference picture의 resolution이 다를 경우에 시간적 움직임 벡터 예측(temporal motion vector prediction)을 효율적으로 수행하기 위한 방법에 대해 설명한다.
즉, 앞서 도 14의 reference picture management process 내 up/downscaling process(즉, S1403, S1404, S1406, S1407)에서 디코더는 picture의 크기뿐만 아니라 up/downscaling 비율(즉, 스케일링 인자)만큼 움직임 정보 또한 스케일링 프로세스(scaling process)를 수행할 수 있다. 이에 대하여 아래 도면을 참조하여 설명한다.
도 17은 본 발명의 일 실시예에 따른 현재 픽쳐와 참조 픽쳐 간 해상도가 상이한 경우, 움직임 정보를 스케일링하는 방법을 예시한다.
예를 들면, 디코더는 스케일링된 참조 픽쳐(scaled ref pic)을 구한 후, 참조 픽쳐 내 모든 움직임(motion) 정보를 스케일링 인자(scaling factor)만큼 스케일링(scaling)한다.
그리고, 디코더는 4x4 블록 단위로 동위 움직임(collocated motion)을 새롭게 구할 수 있다. 이는, 도 17과 같이 scaling factor에 따라 스케일링된 reference picture의 4x4 블록(도 10에서 블록 A 또는 블록 B) 단위와 오리지널 예측 유닛(original prediction unit)과 정렬(align)이 안될 수 있기 때문이다.
다시 말해, 현재 픽쳐 내 현재 블록의 움직임 정보를 도출하기 위하여 참조 픽쳐 내 동위 블록(collocated block)의 움직임 정보를 움직임 정보 예측자로서 이용하고자 경우, 이때 동위 블록이 블록 A 또는 블록 B라고 하면, 참조 픽쳐 내 어느 움직임 정보를 현재 블록의 움직임 정보 예측자로서 이용해야 하는지 모호한(ambiguous) 경우가 발생될 수 있다.
따라서, 위와 같이 정렬(align)이 되지 않는 경우, 4x4 블록의 좌상단(top-left) 샘플의 위치와 중첩(overlap)되는 스케일링된 참조 픽쳐의 오리지널 예측 유닛(original prediction unit)의 움직임 정보를 4x4 블록의 움직임 정보로 사용할 수 있다.
도 17을 참조하면, 블록 A의 새로운 움직임 벡터는, 블록 A의 좌상단 샘플의 위치가 예측 유닛 A에 포함되므로, 예측 유닛 A의 스케일링된 움직임 벡터가 할당된다. 블록 B의 새로운 움직임 벡터는, 블록 B의 좌상단 샘플의 위치가 예측 유닛 B에 포함되므로, 예측 유닛 B의 스케일링된 움직임 벡터가 할당된다.
한편, 앞서 설명에서는 스케일링된 참조 픽쳐 내 모든 예측 블록의 움직임 벡터를 스케일링한 후, 4x4 블록 단위로 각 블록의 좌상단 샘플이 포함된 예측 블록의 움직임 벡터를 해당 블록의 움직임 벡터로 할당하는 방법을 설명하였으나, 본 발명이 4x4 블록 단위로 움직임 벡터를 할당하는 방법에 한정되는 것은 아니며 움직임 벡터를 가질 수 있는 최소 크기의 블록 단위로 각각 스케일링된 움직임 벡터가 할당될 수 있다.
이하, reference picture management process에 대한 일 실시예로서, current picture와 reference picture의 bit-depth, 또는 dynamic range가 다를 경우에 current picture를 효율적으로 decoding하는 방법을 제안한다.
도 18은 본 발명의 일 실시예에 따른 현재 픽쳐와 참조 픽쳐 간 비트-심도 또는 다이나믹 레인지가 상이한 경우, 이를 보정하기 위한 호모그래피 행렬(Homography matrix)을 예시한다.
예를 들어, HDR(High Dynamic Range) 영상 또는 10비트로 인코딩된 영상이 포함된 segment에서 SDR(Standard Dynamic Range) 또는 8비트로 영상이 포함된 segment로 스위칭(switching)이 발생했을 경우, HDR 영상을 SDR 영상으로, 또는 10비트 영상을 8비트 영상으로 변환시킨 후 reference picture로 사용해야 한다.
따라서, RPMP를 통해 이러한 변환 작업이 이루어질 수 있다. 예를 들어, 도 18과 같이 다양한 커브(curve)(즉, 다양한 선형/비선형 함수)를 통해, 디코더는 오리지널 참조 픽쳐(original reference picture)(도 18에서 10비트 입력)을 새로운 reference picture (도 18에서 8비트 출력)로 변형시킬 수 있다.
이때, Tone mapping information SEI(Supplemental Enhancement Information) message, knee function information SEI message, color remapping information SEI message를 통해 전송 되는 톤 매핑(tone mapping) 및 다이나믹 레인지(dynamic range) 정보 등을 활용함으로써, 최적의 변환이 가능하다. 즉, 인코더에서 디코더에게 변환 함수에 대한 정보를 시그널링할 수 있다.
관련 SEI message가 없을 경우엔 디폴트(default)로 선형(linear) 변환 커브인 커브 B를 사용하거나, VUI(video usability information)의 변환 함수(transfer function), 특성 함수(characteristic function) 또는 디폴트 커브 등을 활용하여 다른 dynamic range로 reference picture를 변형하는 등의 기술을 encoder와 decoder가 미리 약속하여 사용할 수 있다.
이하, Reference Picture Management Process의 일 실시예로서, current picture와 reference picture의 컬러 포맷(color format)이나 컬러 영역(color gamut)이 서로 다를 경우 current picture를 효율적으로 decoding하는 방법을 제안한다.
예를 들어, reference picture의 color format이 4:4:4이고, current picture의 color format이 4:2:0일 경우, 디코더는 RPMP를 통해 reference picture의 색차 컴포넌트(chrominance component) Cr 및 Cb를 가로 방향(수평 방향/축), 세로 방향(수직 방향/축)으로 1/2로 스케링 다운(scale down)하여 새로운 reference picture 만들 수 있다. 즉, reference picture의 color format이 current picture의 color format과 동일하도록 reference picture의 색차 컴포넌트(chrominance component) Cr 및 Cb를 가로, 세로 방향으로 업/다운스케일링(up/downscaling)한다.
이때, chroma resampling filter hint SEI 등을 활용하거나 디폴트 샘플링 필터(default sampling filter) 등을 encoder와 decoder가 약속하여 사용할 수 있다.
만일, reference picture의 color format이 4:0:0이고, current picture의 color format이 4:2:0일 경우와 같이 참조하고자 하는 색차 컴포넌트(chrominance component)가 존재하지 않을 경우 또는 up/down scaling(또는 up/down sampling)이 불가능한 경우, encoder와 decoder가 약속한 디폴트 색차 컴포넌트 값을 사용할 수 있다.
만일, color gamut이 다를 경우엔(예를 들어, reference picture가 BT2020, currnet picture가 BT209인 경우 등), VUI를 통해 전송되는 color_primaries, transfer_characteristics 및 colour remapping info SEI 정보를 활용하여 BT2020으로 encoding된 reference picture를 current picture의 color gamut인 BT709로 변환할 수 있다.
도 19는 본 발명의 일 실시예에 따른 영상 복호화 방법을 예시하는 도면이다.
도 19를 참조하면, 디코더는 현재 픽쳐와 참조 픽쳐의 성질이 상이한지 여부를 판단한다(S1901).
이때, 현재 픽쳐와 참조 픽쳐의 성질이 상이한지 여부를 판단하기 위하여 앞서 도 13를 참조하여 설명한 방법이 이용될 수 있다.
여기서, 성질은 해상도(resolution), 비트-심도(bit-depth), 컬러 포맷(color format), 다이나믹 레인지(dynamic range) 및 너비-대-높이 비율(aspect ratio) 중 적어도 하나 이상을 포함할 수 있다.
디코더는 현재 픽쳐와 참조 픽쳐의 성질이 상이하면, 참조 픽쳐가 현재 픽쳐와 동일한 성질을 가지도록 변환한다(S1902).
즉, 디코더는 앞서 설명한 참조 픽쳐 관리 프로세스(RPMP)를 수행할 수 있으며 앞서 설명한 다양한 실시예에 따른 방법이 이용될 수 있다.
일례로, 참조 픽쳐의 너비(width) 및/또는 높이(height) 대비 현재 픽쳐의 너비 및/또는 높이의 비율(즉, 스케일링 인자)이 1 보다 작으면, 디코더는 참조 픽쳐를 너비 및/또는 높이 방향으로 상기 비율만큼 다운스케일링(downscaling)할 수 있다.
또한, 참조 픽쳐의 너비(width) 및/또는 높이(height) 대비 상기 현재 픽쳐의 너비 및/또는 높이의 비율이 1 보다 크면, 디코더는 참조 픽쳐를 너비 및/또는 높이 방향으로 상기 비율만큼 업스케일링(upscaling)할 수 있다.
또한, 디코더는 참조 픽쳐의 다운/업스케일링(down/upscaling)의 스케일링 인자(scaling factor)만큼 참조 픽쳐의 움직임 벡터를 스케일링하고, 움직임 벡터를 가질 수 있는 최소 크기의 블록 단위로, 블록의 좌상단 샘플이 포함된 참조 픽쳐 내 예측 블록의 움직임 벡터를 할당할 수 있다.
또한, 디코더는 참조 픽쳐와 현재 픽쳐 간에 다이나믹 레인지(dynamin range) 및/또는 비트-심도(bit-depth)가 상이한 경우, 참조 픽쳐의 다이나믹 레인지(dynamin range) 및/또는 비트-심도(bit-depth)를 미리 정해진 선형 또는 비선형 함수를 이용하여 변환할 수 있다.
또한, 디코더는 참조 픽쳐와 현재 픽쳐 간에 컬러 포맷(color format)이 상이한 경우, 참조 픽쳐의 색차 컴포넌트(chrominance component)를 수평, 수직 방향으로 업/다운스케일링할 수 있다.
디코더는 변환된 참조 픽쳐를 이용하여 현재 픽쳐를 소정의 블록 단위로 인터 예측을 수행한다(S1903).
이때, 1/n 분수-펠(fractional-pel) 단위의 움직임 정보가 이용되는 경우, 상기 참조 픽쳐에 대한 다운스케일링(downscaling) 없이, 디코더는 참조 픽쳐로부터 n:1 서브샘플링(subsampling)을 통해 블록 단위로 예측 샘플을 도출할 수 있다.
또한, 인터 예측을 수행하기 위하여 앞서 도 5 내지 도 9를 참조하여 설명한 방법이 이용될 수 있다.
한편, 앞서 설명한 S1901 및 S1902 단계는 디코더에서 픽쳐(또는 슬라이스) 단위로 수행될 수 있다. 이때, S1901 및 S1902 단계는 코딩 유닛의 어떠한 디코딩 보다 앞서서 수행될 수 있다. 또한, DPB에 참조 픽쳐가 저장되기 전에 수행될 수도 있으며, 참조 픽쳐가 저장된 후 수행될 수도 있다.
또한, 앞서 설명한 S1901 및 S1902 단계는 현재 픽쳐 내 소정의 블록(예를 들어, 예측 블록) 단위로 인터 예측을 수행하는 과정에서 움직임 보상을 수행하기 이전에 수행될 수도 있다.
도 20은 본 발명의 일 실시예에 따른 복호화 장치를 예시하는 도면이다.
도 20을 참조하면, 본 발명에 따른 복호화 장치는 앞서 도 5 내지 도 19에서 제안된 기능, 과정 및/또는 방법을 구현한다.
복호화 장치는 성질 판단부(2001), 변환부(2002), 인터 예측부(2003)을 포함하여 구성될 수 있다. 도 20에서 예시하는 복호화 장치는 하나의 예시에 불과하며, 도 20에서 예시되지 않은 구성 요소(예를 들어, 앞서 도 2에서 예시된 디코더의 구성 요소)를 더 포함하여 구현될 수도 있다.
성질 판단부(2001)는 현재 픽쳐와 참조 픽쳐의 성질이 상이한지 여부를 판단한다.
이때, 현재 픽쳐와 참조 픽쳐의 성질이 상이한지 여부를 판단하기 위하여 앞서 도 13를 참조하여 설명한 방법이 이용될 수 있다.
여기서, 성질은 해상도(resolution), 비트-심도(bit-depth), 컬러 포맷(color format), 다이나믹 레인지(dynamic range) 및 너비-대-높이 비율(aspect ratio) 중 적어도 하나 이상을 포함할 수 있다.
변환부(2002)는 현재 픽쳐와 참조 픽쳐의 성질이 상이하면, 참조 픽쳐가 현재 픽쳐와 동일한 성질을 가지도록 변환한다.
즉, 변환부(2002)는 앞서 설명한 참조 픽쳐 관리 프로세스(RPMP)를 수행할 수 있으며 앞서 설명한 다양한 실시예에 따른 방법이 이용될 수 있다.
일례로, 참조 픽쳐의 너비(width) 및/또는 높이(height) 대비 현재 픽쳐의 너비 및/또는 높이의 비율(즉, 스케일링 인자)이 1 보다 작으면, 변환부(2002)는 참조 픽쳐를 너비 및/또는 높이 방향으로 상기 비율만큼 다운스케일링(downscaling)할 수 있다.
또한, 참조 픽쳐의 너비(width) 및/또는 높이(height) 대비 상기 현재 픽쳐의 너비 및/또는 높이의 비율이 1 보다 크면, 변환부(2002)는 참조 픽쳐를 너비 및/또는 높이 방향으로 상기 비율만큼 업스케일링(upscaling)할 수 있다.
또한, 변환부(2002)는 참조 픽쳐의 다운/업스케일링(down/upscaling)의 스케일링 인자(scaling factor)만큼 참조 픽쳐의 움직임 벡터를 스케일링하고, 움직임 벡터를 가질 수 있는 최소 크기의 블록 단위로, 블록의 좌상단 샘플이 포함된 참조 픽쳐 내 예측 블록의 움직임 벡터를 할당할 수 있다.
또한, 변환부(2002)는 참조 픽쳐와 현재 픽쳐 간에 다이나믹 레인지(dynamin range) 및/또는 비트-심도(bit-depth)가 상이한 경우, 참조 픽쳐의 다이나믹 레인지(dynamin range) 및/또는 비트-심도(bit-depth)를 미리 정해진 선형 또는 비선형 함수를 이용하여 변환할 수 있다.
또한, 변환부(2002)는 참조 픽쳐와 현재 픽쳐 간에 컬러 포맷(color format)이 상이한 경우, 참조 픽쳐의 색차 컴포넌트(chrominance component)를 수평, 수직 방향으로 업/다운스케일링할 수 있다.
인터 예측부(2003)는 변환된 참조 픽쳐를 이용하여 현재 픽쳐를 소정의 블록 단위로 인터 예측을 수행한다.
이때, 1/n 분수-펠(fractional-pel) 단위의 움직임 정보가 이용되는 경우, 상기 참조 픽쳐에 대한 다운스케일링(downscaling) 없이, 인터 예측부(2003)는 참조 픽쳐로부터 n:1 서브샘플링(subsampling)을 통해 블록 단위로 예측 샘플을 도출할 수 있다.
또한, 인터 예측을 수행하기 위하여 앞서 도 5 내지 도 9를 참조하여 설명한 방법이 이용될 수 있다.
한편, 성질 판단부(2001), 변환부(2002)는 픽쳐(또는 슬라이스) 단위로 동작을 수행할 수도 있으며, 또한 현재 픽쳐 내 소정의 블록(예를 들어, 예측 블록) 단위로 인터 예측을 수행하는 과정에서 움직임 보상을 수행하기 이전에 동작을 수행할 수도 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
이상, 전술한 본 발명의 바람직한 실시예는, 예시의 목적을 위해 개시된 것으로, 당업자라면 이하 첨부된 특허청구범위에 개시된 본 발명의 기술적 사상과 그 기술적 범위 내에서, 다양한 다른 실시예들을 개량, 변경, 대체 또는 부가 등이 가능할 것이다.

Claims (10)

  1. 영상을 복호화하는 방법에 있어서,
    현재 픽쳐와 참조 픽쳐의 성질이 상이한지 여부를 판단하는 단계;
    상기 현재 픽쳐와 상기 참조 픽쳐의 성질이 상이하면, 상기 참조 픽쳐가 상기 현재 픽쳐와 동일한 성질을 가지도록 변환하는 단계; 및
    상기 변환된 참조 픽쳐를 이용하여 상기 현재 픽쳐를 소정의 블록 단위로 인터 예측을 수행하는 단계를 포함하는 영상 복호화 방법.
  2. 제1항에 있어서,
    상기 성질은 해상도(resolution), 비트-심도(bit-depth), 컬러 포맷(color format), 다이나믹 레인지(dynamic range) 및 너비-대-높이 비율(aspect ratio) 중 적어도 하나 이상을 포함하는 영상 복호화 방법.
  3. 제2항에 있어서, 상기 변환하는 단계는,
    상기 참조 픽쳐의 너비(width) 및/또는 높이(height) 대비 상기 현재 픽쳐의 너비 및/또는 높이의 비율이 1 보다 작으면, 상기 참조 픽쳐를 너비 및/또는 높이 방향으로 상기 비율만큼 다운스케일링(downscaling)하는 단계를 포함하는 영상 복호화 방법.
  4. 제3항에 있어서, 상기 변환하는 단계는,
    상기 참조 픽쳐의 너비(width) 및/또는 높이(height) 대비 상기 현재 픽쳐의 너비 및/또는 높이의 비율이 1 보다 크면, 상기 참조 픽쳐를 너비 및/또는 높이 방향으로 상기 비율만큼 업스케일링(upscaling)하는 단계를 포함하는 영상 복호화 방법.
  5. 제4항에 있어서, 상기 인터 예측을 수행하는 단계는,
    1/n 분수-펠(fractional-pel) 단위의 움직임 정보가 이용되는 경우, 상기 참조 픽쳐에 대한 다운스케일링(downscaling) 없이, 상기 참조 픽쳐로부터 n:1 서브샘플링(subsampling)을 통해 상기 블록의 예측 샘플을 도출하는 단계를 포함하는 영상 복호화 방법.
  6. 제5항에 있어서, 상기 변환하는 단계는,
    상기 참조 픽쳐의 다운/업스케일링(down/upscaling)의 스케일링 인자(scaling factor)만큼 상기 참조 픽쳐의 움직임 벡터를 스케일링하고,
    움직임 벡터를 가질 수 있는 최소 크기의 블록 단위로, 상기 블록의 좌상단 샘플이 포함된 상기 참조 픽쳐 내 예측 블록의 움직임 벡터를 할당하는 단계를 포함하는 영상 복호화 방법.
  7. 제2항에 있어서, 상기 변환하는 단계는,
    상기 참조 픽쳐와 상기 현재 픽쳐 간에 다이나믹 레인지(dynamin range) 및/또는 비트-심도(bit-depth)가 상이한 경우, 상기 참조 픽쳐의 다이나믹 레인지(dynamin range) 및/또는 비트-심도(bit-depth)를 미리 정해진 선형 또는 비선형 함수를 이용하여 변환하는 단계를 포함하는 영상 복호화 방법.
  8. 제2항에 있어서, 상기 변환하는 단계는,
    상기 참조 픽쳐와 상기 현재 픽쳐 간에 컬러 포맷(color format)이 상이한 경우, 상기 참조 픽쳐의 색차 컴포넌트(chrominance component)를 수평, 수직 방향으로 업/다운스케일링하는 단계를 포함하는 영상 복호화 방법.
  9. 영상을 복호화하는 장치에 있어서,
    현재 픽쳐와 참조 픽쳐의 성질이 상이한지 여부를 판단하는 성질 판단부;
    상기 현재 픽쳐와 상기 참조 픽쳐의 성질이 상이하면, 상기 참조 픽쳐가 상기 현재 픽쳐와 동일한 성질을 가지도록 변환하는 변환부; 및
    상기 변환된 참조 픽쳐를 이용하여 상기 현재 픽쳐를 소정의 블록 단위로 인터 예측을 수행하는 인터 예측부를 포함하는 장치.
  10. 제9항에 있어서,
    상기 성질은 해상도(resolution), 비트-심도(bit-depth), 컬러 포맷(color format), 다이나믹 레인지(dynamic range) 및 너비-대-높이 비율(aspect ratio) 중 적어도 하나 이상을 포함하는 장치.
PCT/KR2016/010622 2015-09-23 2016-09-23 영상의 부호화/복호화 방법 및 이를 위한 장치 WO2017052250A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680055193.8A CN108141595A (zh) 2015-09-23 2016-09-23 图像编码/解码方法及其设备
KR1020187007356A KR20180048713A (ko) 2015-09-23 2016-09-23 영상의 부호화/복호화 방법 및 이를 위한 장치
US15/762,323 US10511839B2 (en) 2015-09-23 2016-09-23 Image encoding/decoding method and device for same
JP2018515235A JP2018533286A (ja) 2015-09-23 2016-09-23 画像の符号化/復号化方法及びこれのために装置
EP16848975.5A EP3355581A4 (en) 2015-09-23 2016-09-23 BILDCODING / DECODING METHOD AND DEVICE THEREFOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562222774P 2015-09-23 2015-09-23
US62/222,774 2015-09-23

Publications (1)

Publication Number Publication Date
WO2017052250A1 true WO2017052250A1 (ko) 2017-03-30

Family

ID=58386384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/010622 WO2017052250A1 (ko) 2015-09-23 2016-09-23 영상의 부호화/복호화 방법 및 이를 위한 장치

Country Status (6)

Country Link
US (1) US10511839B2 (ko)
EP (1) EP3355581A4 (ko)
JP (1) JP2018533286A (ko)
KR (1) KR20180048713A (ko)
CN (1) CN108141595A (ko)
WO (1) WO2017052250A1 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102230877B1 (ko) * 2017-02-06 2021-03-22 후아웨이 테크놀러지 컴퍼니 리미티드 인코딩 방법 및 장치와, 디코딩 방법 및 장치
US10841794B2 (en) * 2017-09-18 2020-11-17 Futurewei Technologies, Inc. Adaptive motion vector resolution
KR101956756B1 (ko) 2018-06-12 2019-03-11 광운대학교 산학협력단 성분 간 참조 기반의 비디오 신호 처리 방법 및 장치
CN113228666B (zh) * 2018-12-31 2022-12-30 华为技术有限公司 支持视频编解码中的自适应分辨率改变
US11290734B2 (en) * 2019-01-02 2022-03-29 Tencent America LLC Adaptive picture resolution rescaling for inter-prediction and display
WO2020181456A1 (en) * 2019-03-11 2020-09-17 Alibaba Group Holding Limited Inter coding for adaptive resolution video coding
CN113826382B (zh) * 2019-05-16 2023-06-20 北京字节跳动网络技术有限公司 视频编解码中的自适应比特深度转换
CN114731428A (zh) * 2019-09-19 2022-07-08 Lg电子株式会社 用于执行prof的图像编码/解码方法和装置及发送比特流的方法
US11539939B2 (en) * 2019-11-27 2022-12-27 Hfi Innovation Inc. Video processing methods and apparatuses for horizontal wraparound motion compensation in video coding systems
US11438611B2 (en) 2019-12-11 2022-09-06 Hfi Innovation Inc. Method and apparatus of scaling window constraint for worst case bandwidth consideration for reference picture resampling in video coding
US11445176B2 (en) * 2020-01-14 2022-09-13 Hfi Innovation Inc. Method and apparatus of scaling window constraint for worst case bandwidth consideration for reference picture resampling in video coding
WO2023059034A1 (ko) * 2021-10-04 2023-04-13 엘지전자 주식회사 적응적으로 해상도를 변경하는 영상 부호화/복호화 방법, 장치, 및 비트스트림을 전송하는 방법
JP2024057980A (ja) * 2022-10-13 2024-04-25 キヤノン株式会社 画像符号化装置、画像符号化方法及びプログラム、画像復号装置、画像復号方法及びプログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130056441A (ko) * 2011-11-22 2013-05-30 삼성전자주식회사 깊이 영상을 위한 움직임 예측 부호화/복호화 장치 및 방법
KR20140102639A (ko) * 2011-01-31 2014-08-22 한국전자통신연구원 움직임 벡터를 이용한 영상 부호화/복호화 방법 및 장치
KR20150027639A (ko) * 2013-09-04 2015-03-12 한국전자통신연구원 화질 개선 장치 및 방법
KR20150048716A (ko) * 2013-07-16 2015-05-07 삼성전자주식회사 비트 뎁스 및 컬러 포맷의 변환을 동반하는 업샘플링 필터를 이용하는 스케일러블 비디오 부호화 방법 및 장치, 스케일러블 비디오 복호화 방법 및 장치
KR20150055005A (ko) * 2013-01-30 2015-05-20 인텔 코포레이션 수정된 참조를 가진 차세대 비디오 코딩용 콘텐츠 적응적 예측 및 기능적 예측 픽처

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101484171B1 (ko) * 2011-01-21 2015-01-23 에스케이 텔레콤주식회사 예측 움직임벡터 색인부호화에 기반한 움직임정보 생성/복원 장치 및 방법, 및 그것을 이용한 영상 부호화/복호화 장치 및 방법
CN107071435A (zh) * 2011-11-08 2017-08-18 株式会社Kt 对视频信号进行解码的方法
US9819965B2 (en) * 2012-11-13 2017-11-14 Intel Corporation Content adaptive transform coding for next generation video
US9813723B2 (en) * 2013-05-03 2017-11-07 Qualcomm Incorporated Conditionally invoking a resampling process in SHVC
WO2016108188A1 (en) 2014-12-31 2016-07-07 Nokia Technologies Oy Inter-layer prediction for scalable video coding and decoding
US9967577B2 (en) * 2015-08-31 2018-05-08 Microsoft Technology Licensing, Llc Acceleration interface for video decoding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140102639A (ko) * 2011-01-31 2014-08-22 한국전자통신연구원 움직임 벡터를 이용한 영상 부호화/복호화 방법 및 장치
KR20130056441A (ko) * 2011-11-22 2013-05-30 삼성전자주식회사 깊이 영상을 위한 움직임 예측 부호화/복호화 장치 및 방법
KR20150055005A (ko) * 2013-01-30 2015-05-20 인텔 코포레이션 수정된 참조를 가진 차세대 비디오 코딩용 콘텐츠 적응적 예측 및 기능적 예측 픽처
KR20150048716A (ko) * 2013-07-16 2015-05-07 삼성전자주식회사 비트 뎁스 및 컬러 포맷의 변환을 동반하는 업샘플링 필터를 이용하는 스케일러블 비디오 부호화 방법 및 장치, 스케일러블 비디오 복호화 방법 및 장치
KR20150027639A (ko) * 2013-09-04 2015-03-12 한국전자통신연구원 화질 개선 장치 및 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3355581A4 *

Also Published As

Publication number Publication date
US20180278940A1 (en) 2018-09-27
KR20180048713A (ko) 2018-05-10
JP2018533286A (ja) 2018-11-08
CN108141595A (zh) 2018-06-08
US10511839B2 (en) 2019-12-17
EP3355581A4 (en) 2019-04-17
EP3355581A1 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
WO2017052250A1 (ko) 영상의 부호화/복호화 방법 및 이를 위한 장치
WO2018066927A1 (ko) 인터 예측 모드 기반 영상 처리 방법 및 이를 위한 장치
WO2017034089A1 (ko) 인터 예측 모드 기반 영상 처리 방법 및 이를 위한 장치
WO2018062788A1 (ko) 인트라 예측 모드 기반 영상 처리 방법 및 이를 위한 장치
WO2017069505A1 (ko) 영상의 부호화/복호화 방법 및 이를 위한 장치
WO2021040481A1 (ko) 크로스 컴포넌트 필터링 기반 영상 코딩 장치 및 방법
WO2018097589A1 (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
WO2016153146A1 (ko) 인트라 예측 모드 기반 영상 처리 방법 및 이를 위한 장치
WO2018070713A1 (ko) 크로마 성분에 대한 인트라 예측 모드를 유도하는 방법 및 장치
WO2018062950A1 (ko) 영상 처리 방법 및 이를 위한 장치
WO2021040480A1 (ko) 인루프 필터링 기반 영상 코딩 장치 및 방법
WO2019050115A1 (ko) 인터 예측 모드 기반 영상 처리 방법 및 이를 위한 장치
WO2017034113A1 (ko) 인터 예측 모드 기반 영상 처리 방법 및 이를 위한 장치
WO2018124333A1 (ko) 인트라 예측 모드 기반 영상 처리 방법 및 이를 위한 장치
WO2019009498A1 (ko) 인터 예측 모드 기반 영상 처리 방법 및 이를 위한 장치
WO2020204413A1 (ko) 복원 픽처를 수정하는 비디오 또는 영상 코딩
WO2021040484A1 (ko) 크로스-컴포넌트 적응적 루프 필터링 기반 영상 코딩 장치 및 방법
WO2021040479A1 (ko) 필터링 기반 영상 코딩 장치 및 방법
WO2018174457A1 (ko) 영상 처리 방법 및 이를 위한 장치
WO2020262931A1 (ko) 비디오/영상 코딩 시스템에서 머지 데이터 신택스의 시그널링 방법 및 장치
WO2021040483A1 (ko) 영상 코딩 장치 및 방법
WO2015060614A1 (ko) 멀티 레이어 비디오 신호 인코딩/디코딩 방법 및 장치
WO2020231139A1 (ko) 루마 맵핑 및 크로마 스케일링 기반 비디오 또는 영상 코딩
WO2020262930A1 (ko) 머지 데이터 신택스에서 중복적인 신택스의 제거 방법 및 장치
WO2015064990A1 (ko) 멀티 레이어 비디오 신호 인코딩/디코딩 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848975

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187007356

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15762323

Country of ref document: US

Ref document number: 2018515235

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016848975

Country of ref document: EP