WO2017052183A1 - 비면허 대역에서 신호를 전송하는 방법 및 이를 위한 장치 - Google Patents
비면허 대역에서 신호를 전송하는 방법 및 이를 위한 장치 Download PDFInfo
- Publication number
- WO2017052183A1 WO2017052183A1 PCT/KR2016/010520 KR2016010520W WO2017052183A1 WO 2017052183 A1 WO2017052183 A1 WO 2017052183A1 KR 2016010520 W KR2016010520 W KR 2016010520W WO 2017052183 A1 WO2017052183 A1 WO 2017052183A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- threshold
- value
- base station
- transmitted
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 66
- 238000001514 detection method Methods 0.000 claims abstract description 48
- 230000008054 signal transmission Effects 0.000 claims abstract description 18
- 238000004891 communication Methods 0.000 abstract description 64
- 230000005540 biological transmission Effects 0.000 description 65
- 210000004027 cell Anatomy 0.000 description 34
- 230000008569 process Effects 0.000 description 23
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 description 21
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 description 21
- 238000010586 diagram Methods 0.000 description 12
- 125000004122 cyclic group Chemical group 0.000 description 10
- 230000006870 function Effects 0.000 description 9
- 238000013468 resource allocation Methods 0.000 description 9
- 230000002776 aggregation Effects 0.000 description 7
- 238000004220 aggregation Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 230000004044 response Effects 0.000 description 7
- 238000005259 measurement Methods 0.000 description 6
- 230000015654 memory Effects 0.000 description 6
- 101150071746 Pbsn gene Proteins 0.000 description 4
- 230000001427 coherent effect Effects 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000013507 mapping Methods 0.000 description 3
- 230000006978 adaptation Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000010267 cellular communication Effects 0.000 description 1
- 230000001149 cognitive effect Effects 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000004457 myocytus nodalis Anatomy 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/08—Access point devices
Definitions
- the present invention relates to a wireless communication system, and more particularly, to a method and apparatus for transmitting a signal in an unlicensed band.
- a node is a fixed point capable of transmitting / receiving a radio signal with a user device having one or more antennas.
- a communication system having a high density of nodes can provide higher performance communication services to user equipment by cooperation between nodes.
- This multi-node cooperative communication method in which a plurality of nodes communicate with a user equipment using the same time-frequency resources, is more efficient than a conventional communication method in which each node operates as an independent base station to communicate with a user equipment without mutual cooperation. It has much better performance in data throughput.
- each node cooperates using a plurality of nodes, acting as base stations or access points, antennas, antenna groups, radio remote headers (RRHs), radio remote units (RRUs). Perform communication.
- the plurality of nodes are typically located more than a certain distance apart.
- the plurality of nodes may be managed by one or more base stations or base station controllers that control the operation of each node or schedule data to be transmitted / received through each node.
- Each node is connected to a base station or base station controller that manages the node through a cable or dedicated line.
- Such a multi-node system can be viewed as a kind of multiple input multiple output (MIMO) system in that distributed nodes can simultaneously communicate with a single or multiple user devices by transmitting and receiving different streams.
- MIMO multiple input multiple output
- the multi-node system transmits signals using nodes distributed in various locations, the transmission area that each antenna should cover is reduced as compared to the antennas provided in the existing centralized antenna system. Therefore, compared to the existing system implementing the MIMO technology in the centralized antenna system, in the multi-node system, the transmission power required for each antenna to transmit a signal can be reduced.
- the transmission distance between the antenna and the user equipment is shortened, path loss is reduced, and high-speed data transmission is possible.
- the transmission capacity and power efficiency of the cellular system can be increased, and communication performance of relatively uniform quality can be satisfied regardless of the position of the user equipment in the cell.
- the base station (s) or base station controller (s) connected to the plurality of nodes cooperate with data transmission / reception, signal loss occurring in the transmission process is reduced.
- the correlation (correlation) and interference between the antennas are reduced. Therefore, according to the multi-node cooperative communication scheme, a high signal to interference-plus-noise ratio (SINR) can be obtained.
- SINR signal to interference-plus-noise ratio
- the multi-node system is designed to reduce the cost of base station expansion and backhaul network maintenance in the next generation mobile communication system, and to increase service coverage and channel capacity and SINR. In parallel with or in place of a centralized antenna system, it is emerging as a new foundation for cellular communication.
- the present invention relates to an energy detection threshold, which is a threshold for determining whether a carrier of the unlicensed band is busy or idle to transmit a signal in an unlicensed band. And transmit a signal in the unlicensed band based on the adjusted energy detection threshold.
- a method of transmitting a signal by a base station in an unlicensed band includes determining whether a received power equal to or greater than a predetermined threshold is detected for a signal associated with a licensed assisted access (LAA) of another system, and determining According to the result, the energy detection threshold is set to a first value or a second value different from the first value, and the power detected by sensing the unlicensed band carrier is set according to the determination result. If less, the downlink signal is transmitted.
- LAA licensed assisted access
- a base station apparatus configured to perform signal transmission in an unlicensed band includes: a radio frequency (RF) unit; And a processor configured to control the RF unit, wherein the processor determines whether a received power equal to or greater than a preset threshold is detected for a licensed assisted access (LAA) related signal of another system, and determines an energy detection threshold according to the determination result.
- LAA licensed assisted access
- (energy detection threshold) is set to a first value or a second value different from the first value, and if the power detected by sensing the carrier of the unlicensed band is less than the energy detection threshold set according to the determination result, the downlink signal It is configured to transmit.
- the LAA related signal of the other system may include a discovery reference signal (DRS), a cell-specific reference signal (CRS), a modulation-reference signal (DM-RS), and a CSI transmitted from the other system. At least one of channel state information (RS) and a synchronization signal may be applied.
- DRS discovery reference signal
- CRS cell-specific reference signal
- DM-RS modulation-reference signal
- CSI transmitted from the other system.
- RS channel state information
- RS channel state information
- the base station may determine whether the received power above the threshold is detected for the CRS transmitted from the antenna port # 0.
- the base station detects the received power above the threshold for the synchronization signal transmitted at one or more of subframe index # 0 and # 5. It can be judged.
- the energy detection threshold when it is determined that received power above the threshold is detected for the LAA related signal of the other system, the energy detection threshold is set to a first value, and the threshold for the LAA related signal of the other system is set. When it is determined that less than received power is detected, the energy detection threshold may be set to a second value, wherein the first value may be smaller than the second value.
- the second value may be applied to -72dBm.
- the base station may determine whether the received power above the threshold is detected for the LAA related signal of the other system only during a preset time interval.
- the base station may maintain the set energy detection threshold for a predetermined time interval.
- the energy detection threshold for the LBT operation of the base station can be adaptively adjusted to the surrounding system environment, thereby enabling more efficient signal transmission in the unlicensed band.
- FIG. 1 illustrates an example of a radio frame structure used in a wireless communication system.
- FIG. 2 illustrates an example of a downlink / uplink (DL / UL) slot structure in a wireless communication system.
- FIG 3 illustrates a downlink (DL) subframe structure used in a 3GPP LTE / LTE-A system.
- FIG. 4 illustrates an example of an uplink (UL) subframe structure used in a 3GPP LTE / LTE-A system.
- FIG 5 illustrates a reference signal used in an uplink subframe of an LTE system.
- CA carrier aggregation
- FIG. 7 is a diagram illustrating an example of a frame based equipment (FBE) operation that is one of listen-before-talk (LBT) processes.
- FBE frame based equipment
- LBT listen-before-talk
- FIG. 8 is a block diagram illustrating an FBE operation.
- LBE load based equipment
- FIG. 10 illustrates a signal method according to an embodiment of the present invention.
- FIG. 11 shows a block diagram of an apparatus for implementing an embodiment (s) of the present invention.
- a user equipment may be fixed or mobile, and various devices which transmit and receive user data and / or various control information by communicating with a base station (BS) belong to this.
- the UE may be a terminal equipment (MS), a mobile station (MS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, a personal digital assistant (PDA), or a wireless modem. It may be called a modem, a handheld device, or the like.
- a BS generally refers to a fixed station communicating with the UE and / or another BS, and communicates with the UE and another BS to exchange various data and control information.
- BS includes Advanced Base Station (ABS), Node-B (NB), evolved-NodeB (eNB), Base Transceiver System (BTS), Access Point, Processing Server (PS), Transmission Point (TP) May be called in other terms.
- ABS Advanced Base Station
- NB Node-B
- eNB evolved-NodeB
- BTS Base Transceiver System
- PS Processing Server
- TP Transmission Point
- BS is collectively referred to as eNB.
- a node refers to a fixed point capable of transmitting / receiving a radio signal by communicating with a user equipment.
- Various forms of eNBs may be used as nodes regardless of their name.
- the node may be a BS, an NB, an eNB, a pico-cell eNB (PeNB), a home eNB (HeNB), a relay, a repeater, and the like.
- the node may not be an eNB.
- it may be a radio remote head (RRH), a radio remote unit (RRU).
- RRHs, RRUs, etc. generally have a power level lower than the power level of the eNB.
- RRH or RRU, RRH / RRU is generally connected to an eNB by a dedicated line such as an optical cable
- RRH / RRU and eNB are generally compared to cooperative communication by eNBs connected by a wireless line.
- cooperative communication can be performed smoothly.
- At least one antenna is installed at one node.
- the antenna may mean a physical antenna or may mean an antenna port, a virtual antenna, or an antenna group.
- Nodes are also called points. Unlike conventional centralized antenna systems (ie, single node systems) where antennas are centrally located at base stations and controlled by one eNB controller, in a multi-node system A plurality of nodes are typically located farther apart than a predetermined interval.
- the plurality of nodes may be managed by one or more eNBs or eNB controllers that control the operation of each node or schedule data to be transmitted / received through each node.
- Each node may be connected to the eNB or eNB controller that manages the node through a cable or dedicated line.
- the same cell identifier (ID) may be used or different cell IDs may be used for signal transmission / reception to / from a plurality of nodes.
- ID cell identifier
- each of the plurality of nodes behaves like some antenna group of one cell.
- a multi-node system may be regarded as a multi-cell (eg, macro-cell / femto-cell / pico-cell) system.
- the network formed by the multiple cells is particularly called a multi-tier network.
- the cell ID of the RRH / RRU and the cell ID of the eNB may be the same or may be different.
- both the RRH / RRU and the eNB operate as independent base stations.
- one or more eNB or eNB controllers connected with a plurality of nodes may control the plurality of nodes to simultaneously transmit or receive signals to the UE via some or all of the plurality of nodes.
- multi-node systems depending on the identity of each node, the implementation of each node, etc., these multi-nodes in that multiple nodes together participate in providing communication services to the UE on a given time-frequency resource.
- the systems are different from single node systems (eg CAS, conventional MIMO system, conventional relay system, conventional repeater system, etc.).
- embodiments of the present invention regarding a method for performing data cooperative transmission using some or all of a plurality of nodes may be applied to various kinds of multi-node systems.
- a node generally refers to an antenna group spaced apart from another node by a predetermined distance or more
- embodiments of the present invention described later may be applied even when the node means any antenna group regardless of the interval.
- the eNB may control the node configured as the H-pol antenna and the node configured as the V-pol antenna, and thus embodiments of the present invention may be applied. .
- a communication scheme that enables different nodes to receive the uplink signal is called multi-eNB MIMO or CoMP (Coordinated Multi-Point TX / RX).
- Cooperative transmission schemes among such cooperative communication between nodes can be largely classified into joint processing (JP) and scheduling coordination.
- the former may be divided into joint transmission (JT) / joint reception (JR) and dynamic point selection (DPS), and the latter may be divided into coordinated scheduling (CS) and coordinated beamforming (CB).
- DPS is also called dynamic cell selection (DCS).
- JP Joint Processing Protocol
- JR refers to a communication scheme in which a plurality of nodes receive the same stream from the UE.
- the UE / eNB combines the signals received from the plurality of nodes to recover the stream.
- the reliability of signal transmission may be improved by transmit diversity.
- DPS in JP refers to a communication technique in which a signal is transmitted / received through one node selected according to a specific rule among a plurality of nodes.
- DPS since a node having a good channel condition between the UE and the node will be selected as a communication node, the reliability of signal transmission can be improved.
- a cell refers to a certain geographic area in which one or more nodes provide a communication service. Therefore, in the present invention, communication with a specific cell may mean communication with an eNB or a node that provides a communication service to the specific cell.
- the downlink / uplink signal of a specific cell means a downlink / uplink signal from / to an eNB or a node that provides a communication service to the specific cell.
- the cell providing uplink / downlink communication service to the UE is particularly called a serving cell.
- the channel state / quality of a specific cell means a channel state / quality of a channel or communication link formed between an eNB or a node providing a communication service to the specific cell and a UE.
- a UE transmits a downlink channel state from a specific node on a channel CSI-RS (Channel State Information Reference Signal) resource to which the antenna port (s) of the specific node is assigned to the specific node. Can be measured using CSI-RS (s).
- CSI-RS Channel State Information Reference Signal
- adjacent nodes transmit corresponding CSI-RS resources on CSI-RS resources orthogonal to each other.
- Orthogonality of CSI-RS resources means that the CSI-RS is allocated by CSI-RS resource configuration, subframe offset, and transmission period that specify symbols and subcarriers carrying the CSI-RS. This means that at least one of a subframe configuration and a CSI-RS sequence for specifying the specified subframes are different from each other.
- Physical Downlink Control CHannel / Physical Control Format Indicator CHannel (PCFICH) / PHICH (Physical Hybrid automatic retransmit request Indicator CHannel) / PDSCH (Physical Downlink Shared CHannel) are respectively DCI (Downlink Control Information) / CFI ( Means a set of time-frequency resources or a set of resource elements that carry downlink format ACK / ACK / NACK (ACKnowlegement / Negative ACK) / downlink data, and also a Physical Uplink Control CHannel (PUCCH) / Physical (PUSCH) Uplink Shared CHannel / PACH (Physical Random Access CHannel) means a set of time-frequency resources or a set of resource elements that carry uplink control information (UCI) / uplink data / random access signals, respectively.
- DCI Downlink Control Information
- CFI Means a set of time-frequency resources or a set of resource elements that carry downlink format ACK / ACK
- the PDCCH / PCFICH / PHICH / PDSCH / PUCCH / PUSCH / PRACH resource is referred to below ..
- the user equipment transmits the PUCCH / PUSCH / PRACH, respectively.
- PDCCH / PCFICH / PHICH / PDSCH is used for downlink data / control information on or through PDCCH / PCFICH / PHICH / PDSCH, respectively. It is used in the same sense as sending it.
- Figure 1 illustrates an example of a radio frame structure used in a wireless communication system.
- Figure 1 (a) shows a frame structure for frequency division duplex (FDD) used in the 3GPP LTE / LTE-A system
- Figure 1 (b) is used in the 3GPP LTE / LTE-A system
- the frame structure for time division duplex (TDD) is shown.
- a radio frame used in a 3GPP LTE / LTE-A system has a length of 10 ms (307200 Ts), and is composed of 10 equally sized subframes (SF). Numbers may be assigned to 10 subframes in one radio frame.
- Each subframe has a length of 1 ms and consists of two slots. 20 slots in one radio frame may be sequentially numbered from 0 to 19. Each slot is 0.5ms long.
- the time for transmitting one subframe is defined as a transmission time interval (TTI).
- the time resource may be classified by a radio frame number (also called a radio frame index), a subframe number (also called a subframe number), a slot number (or slot index), and the like.
- the radio frame may be configured differently according to the duplex mode. For example, in the FDD mode, since downlink transmission and uplink transmission are divided by frequency, a radio frame includes only one of a downlink subframe or an uplink subframe for a specific frequency band. In the TDD mode, since downlink transmission and uplink transmission are separated by time, a radio frame includes both a downlink subframe and an uplink subframe for a specific frequency band.
- Table 1 illustrates a DL-UL configuration of subframes in a radio frame in the TDD mode.
- D represents a downlink subframe
- U represents an uplink subframe
- S represents a special subframe.
- the singular subframe includes three fields of Downlink Pilot TimeSlot (DwPTS), Guard Period (GP), and Uplink Pilot TimeSlot (UpPTS).
- DwPTS is a time interval reserved for downlink transmission
- UpPTS is a time interval reserved for uplink transmission.
- Table 2 illustrates the configuration of a singular frame.
- FIG. 2 illustrates an example of a downlink / uplink (DL / UL) slot structure in a wireless communication system.
- FIG. 2 shows a structure of a resource grid of a 3GPP LTE / LTE-A system. There is one resource grid per antenna port.
- a slot includes a plurality of Orthogonal Frequency Division Multiplexing (OFDM) symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
- OFDM symbol may mean a symbol period.
- the signal transmitted in each slot is * Subcarriers and It may be represented by a resource grid composed of OFDM symbols.
- Represents the number of resource blocks (RBs) in the downlink slot Represents the number of RBs in the UL slot.
- Wow Depends on the DL transmission bandwidth and the UL transmission bandwidth, respectively.
- Denotes the number of OFDM symbols in the downlink slot Denotes the number of OFDM symbols in the UL slot.
- the OFDM symbol may be called an OFDM symbol, a Single Carrier Frequency Division Multiplexing (SC-FDM) symbol, or the like according to a multiple access scheme.
- the number of OFDM symbols included in one slot may vary depending on the channel bandwidth and the length of the cyclic prefix (CP). For example, in case of a normal CP, one slot includes 7 OFDM symbols, whereas in case of an extended CP, one slot includes 6 OFDM symbols.
- FIG. 2 illustrates a subframe in which one slot includes 7 OFDM symbols for convenience of description, embodiments of the present invention can be applied to subframes having other numbers of OFDM symbols in the same manner. 2, each OFDM symbol, in the frequency domain, * Subcarriers are included.
- the types of subcarriers may be divided into data subcarriers for data transmission, reference signal subcarriers for transmission of reference signals, null subcarriers for guard band, and direct current (DC) components.
- the null subcarrier for the DC component is a subcarrier that is left unused and is mapped to a carrier frequency (f0) during an OFDM signal generation process or a frequency upconversion process.
- the carrier frequency is also called the center frequency.
- 1 RB in the time domain It is defined as (eg, seven) consecutive OFDM symbols, and is defined by c (for example 12) consecutive subcarriers in the frequency domain.
- a resource composed of one OFDM symbol and one subcarrier is called a resource element (RE) or tone. Therefore, one RB is * It consists of three resource elements.
- Each resource element in the resource grid may be uniquely defined by an index pair (k, 1) in one slot. k is from 0 in the frequency domain * Index given up to -1, where l is from 0 in the time domain Index given up to -1.
- Two RBs one in each of two slots of the subframe, occupying the same consecutive subcarriers, are called a physical resource block (PRB) pair.
- PRB physical resource block
- Two RBs constituting a PRB pair have the same PRB number (or also referred to as a PRB index).
- VRB is a kind of logical resource allocation unit introduced for resource allocation.
- VRB has the same size as PRB.
- FIG 3 illustrates a downlink (DL) subframe structure used in a 3GPP LTE / LTE-A system.
- a DL subframe is divided into a control region and a data region in the time domain.
- up to three (or four) OFDM symbols located in the first slot of a subframe correspond to a control region to which a control channel is allocated.
- a resource region available for PDCCH transmission in a DL subframe is called a PDCCH region.
- the remaining OFDM symbols other than the OFDM symbol (s) used as the control region correspond to a data region to which a Physical Downlink Shared CHannel (PDSCH) is allocated.
- PDSCH Physical Downlink Shared CHannel
- a resource region available for PDSCH transmission in a DL subframe is called a PDSCH region.
- Examples of DL control channels used in 3GPP LTE include a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), a physical hybrid ARQ indicator channel (PHICH), and the like.
- the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols used for transmission of a control channel within the subframe.
- the PHICH carries a Hybrid Automatic Repeat Request (HARQ) ACK / NACK (acknowledgment / negative-acknowledgment) signal in response to the UL transmission.
- HARQ Hybrid Automatic Repeat Request
- DCI downlink control information
- DL-SCH downlink shared channel
- UL-SCH uplink shared channel
- paging channel a downlink shared channel
- the transmission format and resource allocation information of a downlink shared channel may also be called DL scheduling information or a DL grant, and may be referred to as an uplink shared channel (UL-SCH).
- the transmission format and resource allocation information is also called UL scheduling information or UL grant.
- the DCI carried by one PDCCH has a different size and use depending on the DCI format, and its size may vary depending on a coding rate.
- various formats such as formats 0 and 4 for uplink and formats 1, 1A, 1B, 1C, 1D, 2, 2A, 2B, 2C, 3, and 3A are defined for uplink.
- Hopping flag RB allocation, modulation coding scheme (MCS), redundancy version (RV), new data indicator (NDI), transmit power control (TPC), and cyclic shift DMRS Control information such as shift demodulation reference signal (UL), UL index, CQI request, DL assignment index, HARQ process number, transmitted precoding matrix indicator (TPMI), and precoding matrix indicator (PMI) information
- MCS modulation coding scheme
- RV redundancy version
- NDI new data indicator
- TPC transmit power control
- cyclic shift DMRS Control information such as shift demodulation reference signal (UL), UL index, CQI request, DL assignment index, HARQ process number, transmitted precoding matrix indicator (TPMI), and precoding matrix indicator (PMI) information
- UL shift demodulation reference signal
- CQI request UL assignment index
- HARQ process number transmitted precoding matrix indicator
- PMI precoding matrix indicator
- the DCI format that can be transmitted to the UE depends on the transmission mode (TM) configured in the UE.
- TM transmission mode
- not all DCI formats may be used for a UE configured in a specific transmission mode, but only certain DCI format (s) corresponding to the specific transmission mode may be used.
- the PDCCH is transmitted on an aggregation of one or a plurality of consecutive control channel elements (CCEs).
- CCE is a logical allocation unit used to provide a PDCCH with a coding rate based on radio channel conditions.
- the CCE corresponds to a plurality of resource element groups (REGs). For example, one CCE corresponds to nine REGs and one REG corresponds to four REs.
- REGs resource element groups
- a CCE set in which a PDCCH can be located is defined for each UE.
- the set of CCEs in which a UE can discover its PDCCH is referred to as a PDCCH search space, simply a search space (SS).
- SS search space
- An individual resource to which a PDCCH can be transmitted in a search space is called a PDCCH candidate.
- the collection of PDCCH candidates that the UE will monitor is defined as a search space.
- a search space for each DCI format may have a different size, and a dedicated search space and a common search space are defined.
- the dedicated search space is a UE-specific search space and is configured for each individual UE.
- the common search space is configured for a plurality of UEs.
- An aggregation level defining the search space is as follows.
- One PDCCH candidate corresponds to 1, 2, 4 or 8 CCEs depending on the CCE aggregation level.
- the eNB sends the actual PDCCH (DCI) on any PDCCH candidate in the search space, and the UE monitors the search space to find the PDCCH (DCI).
- monitoring means attempting decoding of each PDCCH in a corresponding search space according to all monitored DCI formats.
- the UE may detect its own PDCCH by monitoring the plurality of PDCCHs. Basically, since the UE does not know where its PDCCH is transmitted, every Pframe attempts to decode the PDCCH until every PDCCH of the corresponding DCI format has detected a PDCCH having its own identifier. It is called blind detection (blind decoding).
- the eNB may transmit data for the UE or the UE group through the data area.
- Data transmitted through the data area is also called user data.
- a physical downlink shared channel (PDSCH) may be allocated to the data area.
- Paging channel (PCH) and downlink-shared channel (DL-SCH) are transmitted through PDSCH.
- the UE may read data transmitted through the PDSCH by decoding control information transmitted through the PDCCH.
- Information indicating to which UE or UE group data of the PDSCH is transmitted, how the UE or UE group should receive and decode PDSCH data, and the like are included in the PDCCH and transmitted.
- a specific PDCCH is masked with a cyclic redundancy check (CRC) with a Radio Network Temporary Identity (RNTI) of "A", a radio resource (eg, a frequency location) of "B” and a transmission of "C".
- CRC cyclic redundancy check
- RNTI Radio Network Temporary Identity
- format information eg, transport block size, modulation scheme, coding information, etc.
- a reference signal reference signal For demodulation of the signal received by the UE from the eNB, a reference signal reference signal (RS) to be compared with the data signal is required.
- the reference signal refers to a signal of a predetermined special waveform that the eNB and the UE know each other, which the eNB transmits to the UE or the eNB, and is also called a pilot.
- Reference signals are divided into a cell-specific RS shared by all UEs in a cell and a demodulation RS (DM RS) dedicated to a specific UE.
- the DM RS transmitted by the eNB for demodulation of downlink data for a specific UE may be specifically referred to as a UE-specific RS.
- the DM RS and the CRS may be transmitted together, but only one of the two may be transmitted.
- the DM RS transmitted by applying the same precoder as the data may be used only for demodulation purposes, and thus RS for channel measurement should be separately provided.
- an additional measurement RS, CSI-RS is transmitted to the UE.
- the CSI-RS is transmitted every predetermined transmission period consisting of a plurality of subframes, unlike the CRS transmitted every subframe, based on the fact that the channel state is relatively not changed over time.
- FIG. 4 illustrates an example of an uplink (UL) subframe structure used in a 3GPP LTE / LTE-A system.
- the UL subframe may be divided into a control region and a data region in the frequency domain.
- One or several physical uplink control channels may be allocated to the control region to carry uplink control information (UCI).
- One or several physical uplink shared channels may be allocated to a data region of a UL subframe to carry user data.
- subcarriers having a long distance based on a direct current (DC) subcarrier are used as a control region.
- subcarriers located at both ends of the UL transmission bandwidth are allocated for transmission of uplink control information.
- the DC subcarrier is a component that is not used for signal transmission and is mapped to a carrier frequency f0 during frequency upconversion.
- the PUCCH for one UE is allocated to an RB pair belonging to resources operating at one carrier frequency in one subframe, and the RBs belonging to the RB pair occupy different subcarriers in two slots.
- the PUCCH allocated in this way is expressed as that the RB pair allocated to the PUCCH is frequency hopped at the slot boundary. However, if frequency hopping is not applied, RB pairs occupy the same subcarrier.
- PUCCH may be used to transmit the following control information.
- SR Service Request: Information used for requesting an uplink UL-SCH resource. It is transmitted using OOK (On-Off Keying) method.
- HARQ-ACK A response to a PDCCH and / or a response to a downlink data packet (eg, codeword) on a PDSCH. This indicates whether the PDCCH or PDSCH is successfully received.
- One bit of HARQ-ACK is transmitted in response to a single downlink codeword, and two bits of HARQ-ACK are transmitted in response to two downlink codewords.
- HARQ-ACK response includes a positive ACK (simple, ACK), negative ACK (hereinafter, NACK), DTX (Discontinuous Transmission) or NACK / DTX.
- the term HARQ-ACK is mixed with HARQ ACK / NACK, ACK / NACK.
- CSI Channel State Information
- MIMO Multiple Input Multiple Output
- RI rank indicator
- PMI precoding matrix indicator
- the amount of uplink control information (UCI) that a UE can transmit in a subframe depends on the number of SC-FDMA available for control information transmission.
- SC-FDMA available for UCI means the remaining SC-FDMA symbol except for the SC-FDMA symbol for transmitting the reference signal in the subframe, and in the case of a subframe including a Sounding Reference Signal (SRS), the last SC of the subframe
- SRS Sounding Reference Signal
- the -FDMA symbol is also excluded.
- the reference signal is used for coherent detection of the PUCCH.
- PUCCH supports various formats according to the transmitted information.
- Table 4 shows a mapping relationship between PUCCH format and UCI in LTE / LTE-A system.
- the PUCCH format 1 series is mainly used to transmit ACK / NACK information
- the PUCCH format 2 series is mainly used to carry channel state information (CSI) such as CQI / PMI / RI
- the PUCCH format 3 series is mainly used to transmit ACK / NACK information.
- the transmitted packet is transmitted through a wireless channel
- signal distortion may occur during the transmission process.
- the distortion In order to correctly receive the distorted signal at the receiving end, the distortion must be corrected in the received signal using the channel information.
- a method of transmitting the signal known to both the transmitting side and the receiving side and finding the channel information with the distortion degree when the signal is received through the channel is mainly used.
- the signal is called a pilot signal or a reference signal.
- the reference signal may be divided into an uplink reference signal and a downlink reference signal.
- an uplink reference signal as an uplink reference signal,
- DM-RS Demodulation-Reference Signal
- SRS sounding reference signal
- DM-RS Demodulation-Reference Signal
- CSI-RS Channel State Information Reference Signal
- MBSFN Multimedia Broadcast Single Frequency Network
- Reference signals can be classified into two types according to their purpose. There is a reference signal for obtaining channel information and a reference signal used for data demodulation. In the former, since the UE can acquire channel information on the downlink, it should be transmitted over a wide band, and even if the UE does not receive downlink data in a specific subframe, it should receive the reference signal. It is also used in situations such as handover.
- the latter is a reference signal transmitted together with a corresponding resource when the base station transmits a downlink, and the terminal can demodulate data by performing channel measurement by receiving the reference signal. This reference signal should be transmitted in the area where data is transmitted.
- FIG 5 illustrates a reference signal used in an uplink subframe of an LTE system.
- a sounding reference signal is a channel for estimating a channel for an uplink subband other than a band for transmitting a PUSCH or a channel corresponding to an entire uplink bandwidth.
- the terminal may transmit periodically or aperiodically to obtain the information.
- the period is determined through the upper layer signal, and the transmission of the aperiodic sounding reference signal is indicated by the base station using the 'SRS request' field of the PDCCH uplink / downlink DCI format. Or send a triggering message. As illustrated in FIG.
- an area in which a sounding reference signal may be transmitted in one subframe is an interval in which an SC-FDMA symbol located last on the time axis is included in one subframe.
- the SRS may be transmitted through an uplink period (eg, UpPTS).
- the SRS may be transmitted through the last one symbol.
- the SRS may be It may be sent on the last one or two symbols. Sounding reference signals of various terminals transmitted in the last SC-FDMA of the same subframe may be distinguished according to frequency positions.
- the sounding reference signal does not perform a Discrete Fourier Transform (DFT) operation to convert to SC-FDMA and is transmitted without using a precoding matrix used in the PUSCH.
- DFT Discrete Fourier Transform
- a region in which a demodulation-reference signal (DMRS) is transmitted in one subframe is a section in which an SC-FDMA symbol located in the center of each slot on a time axis is used. Is sent through. For example, in a subframe to which a general cyclic prefix is applied, a demodulation reference signal is transmitted in a fourth SC-FDMA symbol and an 11th SC-FDMA symbol.
- DMRS demodulation-reference signal
- the demodulation reference signal may be combined with transmission of a PUSCH or a PUCCH.
- the sounding reference signal is a reference signal transmitted by the terminal to the base station for uplink scheduling.
- the base station estimates an uplink channel through the received sounding reference signal and uses the estimated uplink channel for uplink scheduling.
- the sounding reference signal is not combined with the transmission of the PUSCH or the PUCCH.
- the same kind of basic sequence may be used for the demodulation reference signal and the sounding reference signal.
- the precoding applied to the demodulation reference signal in uplink multi-antenna transmission may be the same as the precoding applied to the PUSCH.
- the LTE-U system refers to an LTE system supporting CA conditions of the licensed band and the unlicensed band.
- the unlicensed band may be a Wi-Fi band or a Bluetooth (BT) band.
- FIG. 6 is a diagram illustrating an example of a carrier aggregation (CA) environment supported by an LTE-U system.
- CA carrier aggregation
- CCs component carriers
- a licensed carrier (LCC) in a licensed band is a major carrier (which may be referred to as a primary CC (PCC or PCell)), and an unlicensed carrier (unlicensed CC: UCC) is a subcomponent carrier.
- PCC primary CC
- UCC unlicensed carrier
- embodiments of the present invention may be extended to a situation in which a plurality of licensed bands and a plurality of unlicensed bands are used in a carrier combining method.
- the proposed schemes of the present invention can be extended to not only 3GPP LTE system but also other system.
- FIG. 6 shows a case in which one base station supports both a licensed band and an unlicensed band. That is, the terminal can transmit and receive control information and data through a PCC, which is a licensed band, and can also transmit and receive control information and data through an SCC, which is an unlicensed band.
- PCC which is a licensed band
- SCC which is an unlicensed band
- the terminal may configure a P-cell and a macro base station (M-eNB: Macro eNB) and a small cell (S-eNB: Small eNB) and an S cell.
- M-eNB Macro eNB
- S-eNB Small eNB
- the macro base station and the small base station may be connected through a backhaul network.
- the unlicensed band may be operated in a contention based random access scheme.
- the eNB supporting the unlicensed band may first perform a carrier sensing (CS) process before data transmission and reception.
- the CS process is a process of determining whether the corresponding band is occupied by another entity.
- the eNB of the SCell checks whether the current channel is busy or idle. If the corresponding band is determined to be in an idle state, the base station transmits a scheduling grant to the UE through the (E) PDCCH of the Pcell in the case of the cross-carrier scheduling or the PDCCH of the Scell in the case of the self-scheduling scheme. Resource allocation and data transmission and reception.
- the base station may set a transmission opportunity (TxOP) section consisting of M consecutive subframes.
- TxOP transmission opportunity
- the base station may inform the UE of the M value and the use of the M subframes in advance through a higher layer signal, a physical control channel, or a physical data channel through a Pcell.
- a TxOP period consisting of M subframes may be called a reserved resource period (RRP).
- the CS process may be referred to as a clear channel assessment (CCA) process or a channel access procedure, and a corresponding channel is busy based on a CCA threshold set through a preset or higher layer signal. It may be determined as a busy or idle state. For example, if an energy higher than the CCA threshold is detected in an S cell that is an unlicensed band, it may be determined to be busy or idle. At this time, if the channel state is determined to be idle, the base station may start signal transmission in the SCell. This series of processes may be called List-Before-Talk (LBT).
- LBT List-Before-Talk
- FIG. 7 is a diagram illustrating an example of an FBE operation that is one of LBT processes.
- the European ETSI regulation (EN 301 893 V1.7.1) illustrates two LBT operations, called Frame Based Equipment (FBE) and Load Based Equipment (LBE).
- FBE is the channel occupancy time (e.g. 1 to 10ms) and the minimum 5% of the channel occupancy time, which is the length of time that a communication node can continue to transmit when channel access is successful.
- An idle period constitutes one fixed frame, and CCA is defined as an operation of observing a channel during a CCA slot (at least 20 ⁇ s) at the end of the idle period.
- the communication node periodically performs CCA on a fixed frame basis. If the channel is in the Unoccupied state, the communication node transmits data during the channel occupancy time. If the channel is in the occupied state, the communication node suspends transmission and waits until the next cycle of the CCA slot.
- FIG. 8 is a block diagram illustrating an FBE operation.
- a communication node ie, a base station managing an SCell performs a CCA process during a CCA slot. If the channel is in the idle state, the communication node performs data transmission (Tx). If the channel is in the busy state, the communication node waits as long as the CCA slot is subtracted from the fixed frame period and then performs the CCA process again.
- Tx data transmission
- the communication node performs data transmission during the channel occupancy time, and after the data transmission is completed, waits for the time obtained by subtracting the CCA slot from the idle period and then performs the CCA process again. If the channel is idle or there is no data to be transmitted, the communication node waits for the time obtained by subtracting the CCA slot from the fixed frame period and then performs the CCA process again.
- FIG. 9 is a diagram illustrating an example of an LBE operation that is one of LBT processes.
- the communication node first performs q ⁇ ⁇ 4, 5,... To perform the LBE operation. , 32 ⁇ and CCA for one CCA slot.
- FIG. 9 (b) is a block diagram of the LBE operation.
- the LBE operation will be described with reference to FIG. 9B.
- the communication node may perform a CCA process in the CCA slot. If the channel is not occupied in the first CCA slot, the communication node may transmit data by securing a maximum (13/32) q ms length of time.
- the communication node randomly (i.e., randomly) N ⁇ ⁇ 1, 2,... If the channel is not occupied in a specific CCA slot, the counter value is decreased by one. When the counter value reaches zero, the communication node can transmit data with a maximum length of (13/32) q ms.
- the present invention provides a method of adjusting an energy detection threshold (ED threshold) for the CCA operation when the base station or the terminal performs LBT-based signal transmission including the CCA operation in a wireless communication system consisting of the base station and the terminal. Suggest.
- ED threshold energy detection threshold
- a method of performing wireless transmission / reception through competition between communication nodes requires that each communication node perform channel sensing before transmitting signals to confirm that other communication nodes do not transmit signals. Doing. For convenience, such an operation is called listen before talk (LBT), and in particular, an operation of checking whether another communication node transmits a signal is defined as carrier sensing (CS) or clear channel assessment (CCA).
- CS carrier sensing
- CCA clear channel assessment
- the CCA determines that there is no signal transmission from another communication node, it defines a channel non-occupancy (or channel idle) state, and if there is a signal transmission, it defines a channel occupation (or channel busy) state.
- a base station (e.g., eNB) or a terminal (e.g., UE) of an LTE system must also perform LBT for signal transmission in an unlicensed band, and other communication nodes such as Wi-Fi when the base station or terminal of an LTE system transmits a signal.
- the LBT should not be performed to cause interference.
- the CCA threshold is defined as -62dBm for non-Wi-Fi signals and -82dBm for Wi-Fi signals.
- the access point may not transmit a signal in a corresponding band so as not to cause interference.
- LAA licensed assisted access
- the present invention proposes a method of adjusting an energy detection threshold when performing a CCA operation in an LBT process in a LAA based wireless communication system and transmitting a signal based on the adjusted energy detection threshold.
- the configuration of each embodiment of the present invention is limited and described, but embodiments that are not opposite to each other may overlap each other.
- the following [suggestion scheme # 2] and [suggestion scheme # 6] may be applied in duplicate as follows.
- FIG. 10 illustrates a signal method according to an embodiment of the present invention.
- the base station detects a LAA related signal of another system (S1010), and determines whether a received power over a predetermined threshold value is detected from the detected LAA related signal (S1020).
- the frequency band for detecting the LAA-related signal of the other system is not limited to the unlicensed band to which the base station wants to transmit the signal, and can detect the LAA-related signal of the other system for the entire frequency band including the unlicensed band. have.
- the base station sets the energy detection threshold value of the LBT operation to a first value (S1030). Subsequently, when the carrier of the unlicensed band is detected and the detected power is less than the first value, the downlink signal is transmitted through the unlicensed band (S1040).
- the base station sets the energy detection threshold of the LBT operation to a second value (S1050). Subsequently, when the carrier of the unlicensed band is detected and the detected power is less than the second value, the downlink signal is transmitted through the unlicensed band (S1060).
- the first value and the second value may be different from each other, and preferably, the first value may be smaller than the second value.
- the configuration of the base station to detect the LAA-related signals of other systems may be performed only during a predetermined time interval. That is, the base station does not always detect LAA related signals of other systems, but detects LAA related signals of other systems only for some preset time intervals and adjusts the energy detection threshold accordingly.
- the base station may maintain the set energy detection threshold for a predetermined time interval. In other words, even if the surrounding environment changes and the detection result of the LAA related signal of another system is changed, the set energy detection threshold may not be changed during the predetermined time interval.
- the average interference magnitude is a specific threshold ( Greater than (or less than)
- the ED threshold may be changed when the base station confirms the existence of another adjacent network. For example, the base station measures the interference for a specific intra / inter-operator or heterogeneous system or measures the interference in a specific measurement resource region to obtain the average interference magnitude, and the average interference magnitude is constant. You can change the maximum value of the ED threshold when it is above (or below) the threshold. In this case, the interference may be interference measured in a common measurement resource region (not performing signal transmission) between a plurality of cells.
- the base station transmits a signal from an intra / inter -operator and specifies a threshold value for one or more of ED threshold is adjusted when abnormal reception power is detected
- Synchronization signal for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)
- the WiFi system detects the WiFi signal through preamble detection and adjusts the CS threshold based on the preamble detection.
- the ED threshold can be adjusted accordingly.
- a signal such as a discovery signal (DRS) periodically transmitted by the base station for synchronization and the like may be utilized.
- DRS discovery signal
- the base station detects a LAA related signal of another system, and in particular, determines whether the received power of the LAA related signal of the other system is greater than or equal to a predetermined threshold. According to the determination result, the base station sets the ED threshold for the LBT operation to a first value or a second value. For example, when the received power above the threshold is detected for the LAA related signal of the other system, the ED threshold is set to a first value, and the received power below the threshold for the LAA related signal of the other system is decreased. If detected, the ED threshold may be set to a second value. In this case, a value smaller than the second value may be applied to the first value, and ⁇ 72 dBm may be applied to the second value.
- the LAA related signal of another system may include at least one or more of a DRS, a CRS, a DM-RS, a CSI-RS, and a synchronization signal transmitted from the other system.
- the base station determines whether the received power for the CRS transmitted from the antenna port # 0 is greater than or equal to a threshold, and the determination result. According to the ED threshold can be set for the LBT operation.
- the base station detects the received power above the threshold for the synchronization signal transmitted at one or more of subframe index # 0 and # 5. It is determined whether or not, and according to the determination result, an ED threshold for the LBT operation may be set.
- the base station may determine the degree of interference of each signal in consideration of characteristics such as a time interval or antenna port in which each signal is transmitted, and differently set an ED threshold for LBT operation according to the degree of interference of each signal. have.
- the threshold for interference detection eg , ) Or threshold for detecting ( LAA specific) signal reception in [Proposal # 2] ) Is set equal to the (maximum) ED threshold to be applied for CCA in the LBT process (when interference detection or signal detection) or as a function of the ED threshold.
- the ED threshold for CCA operation may be set to -77 dBm or below -77 dBm in the LBT process after the detection of the specific signal. have. This enables coexistence with adjacent LAA systems. Therefore, the threshold for the interference or signal detection may be determined by the ED threshold for CCA operation in the LBT process to be applied after detection.
- the threshold for interference detection e.g , ) Or threshold for detecting ( LAA specific) signal reception in [Proposal # 2] ) Is a function of the transmit node (e.g. base station) transmit power or power class (reference).
- the power class LTE An index defined by the system means an index classifying a nominal maximum power of a terminal and an error range for the nominal maximum power value. For example, if the power class is 3, the nominal maximum power of the terminal is 23 dBm, and the error means ⁇ 2.7 dB.
- the threshold for detecting interference in [Proposal # 1] or detecting signal reception in [Proposal # 2] may also be adjusted in consideration of coverage. That is, the threshold value for the interference or signal detection purpose may also be set as a function of transmit power or power class.
- a more aggressive ED threshold adjustment scheme may consider a (maximum) ED threshold adjustment scheme based on UE feedback. For example, when the base station adjusts the (maximum) ED threshold by using the A / N feedback received from the terminal, (a) the ratio of the NACK within a certain time interval exceeds a certain value or (b) a continuous number or more If the NACK is shown, the (maximum) ED threshold can be adjusted. Similarly, when considering a competitive window size (CWS) strategy, when (a) the ratio of the maximum contention window size in a certain time interval exceeds a certain value, or (b) a certain number of consecutive maximum contention window sizes are applied. You can adjust the (maximum) ED threshold. However, when the base station manages the contention window size, feedback from the terminal may not be required.
- CWS competitive window size
- the present invention proposes a method of changing the ED threshold only when a certain time period is set by setting a predetermined time interval and a specific condition requiring (maximum) ED threshold adjustment is satisfied within the time interval. For example, detecting a certain amount of interference or LAA specific signal within a certain time interval lowers the (maximum) ED threshold, and conversely, increases or decreases the (maximum) ED threshold if no interference or LAA specific signal is detected within a certain time interval. Can be.
- the ED threshold value is set by setting the minimum holding time, the ED threshold may be operated for the minimum holding time.
- the variation of the operation meets a certain condition (e.g., detecting a certain amount of interference or detecting a specific signal, etc.), then lower (or increase) the ED threshold and then fail to meet the specific condition for a certain period of time. ) May be considered to increase (or lower) the ED threshold.
- a certain condition e.g., detecting a certain amount of interference or detecting a specific signal, etc.
- Broadcast Information e.g., DMTC (Maximum) ED threshold adjustment when one of the following information is found by the base station or when the terminal finds and reports the information
- the base station or the terminal may check the presence or absence of an inter-operator from the broadcast information to lower the (maximum) ED threshold.
- the (maximum) ED threshold may be lowered (or increased) when the broadcast information is found and increased (or lowered) when the information is not found for a certain time.
- the (maximum) ED threshold can also change frequently. Frequent fluctuations in the ED threshold may cause dynamic signal transmission characteristics in the system and negatively affect CSI measurements. Accordingly, hysteresis may be set as a method for alleviating the ping-pong effect as described above. That is, the threshold TH LOW as a reference for decreasing the (maximum) ED threshold and the threshold TH HIGH as a reference for increasing can be independently set.
- the transmitter 10 and the receiver 20 are radio frequency (RF) units 13 and 23 capable of transmitting or receiving radio signals carrying information and / or data, signals, messages, and the like, and in a wireless communication system.
- the device is operatively connected to components such as the memory 12 and 22 storing the communication related information, the RF units 13 and 23 and the memory 12 and 22, and controls the components.
- a processor 11, 21 configured to control the memory 12, 22 and / or the RF units 13, 23, respectively, to perform at least one of the embodiments of the invention described above.
- the memories 12 and 22 may store a program for processing and controlling the processors 11 and 21, and may temporarily store input / output information.
- the memories 12 and 22 may be utilized as buffers.
- the processors 11 and 21 typically control the overall operation of the various modules in the transmitter or receiver. In particular, the processors 11 and 21 may perform various control functions for carrying out the present invention.
- the processors 11 and 21 may also be called controllers, microcontrollers, microprocessors, microcomputers, or the like.
- the processors 11 and 21 may be implemented by hardware or firmware, software, or a combination thereof.
- firmware or software When implementing the present invention using hardware, application specific integrated circuits (ASICs) or digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays) may be provided in the processors 11 and 21.
- ASICs application specific integrated circuits
- DSPs digital signal processors
- DSPDs digital signal processing devices
- PLDs programmable logic devices
- FPGAs field programmable gate arrays
- firmware or software may be configured to include a module, a procedure, or a function for performing the functions or operations of the present invention, and configured to perform the present invention.
- the firmware or software may be provided in the processors 11 and 21 or stored in the memory 12 and 22 to be driven by the processors 11 and 21.
- the processor 11 of the transmission apparatus 10 is predetermined from the processor 11 or a scheduler connected to the processor 11 and has a predetermined encoding and modulation on a signal and / or data to be transmitted to the outside. After performing the transmission to the RF unit 13. For example, the processor 11 converts the data sequence to be transmitted into K layers through demultiplexing, channel encoding, scrambling, and modulation.
- the coded data string is also called a codeword and is equivalent to a transport block, which is a data block provided by the MAC layer.
- One transport block (TB) is encoded into one codeword, and each codeword is transmitted to a receiving device in the form of one or more layers.
- the RF unit 13 may include an oscillator for frequency upconversion.
- the RF unit 13 may include Nt transmit antennas (Nt is a positive integer greater than or equal to 1).
- the signal processing of the receiver 20 is the reverse of the signal processing of the transmitter 10.
- the RF unit 23 of the receiving device 20 receives a radio signal transmitted by the transmitting device 10.
- the RF unit 23 may include Nr receive antennas, and the RF unit 23 frequency down-converts each of the signals received through the receive antennas to restore the baseband signal.
- the RF unit 23 may include an oscillator for frequency downconversion.
- the processor 21 may decode and demodulate a radio signal received through a reception antenna to restore data originally transmitted by the transmission apparatus 10.
- the RF units 13, 23 have one or more antennas.
- the antenna transmits a signal processed by the RF units 13 and 23 to the outside under the control of the processors 11 and 21, or receives a radio signal from the outside to receive the RF unit 13. , 23).
- Antennas are also called antenna ports.
- Each antenna may correspond to one physical antenna or may be configured by a combination of more than one physical antenna elements.
- the signal transmitted from each antenna can no longer be decomposed by the receiver 20.
- a reference signal (RS) transmitted in correspondence with the corresponding antenna defines the antenna as viewed from the perspective of the receiver 20, and whether the channel is a single radio channel from one physical antenna or includes the antenna.
- RS reference signal
- the receiver 20 enables channel estimation for the antenna. That is, the antenna is defined such that a channel carrying a symbol on the antenna can be derived from the channel through which another symbol on the same antenna is delivered.
- the antenna In the case of an RF unit supporting a multi-input multi-output (MIMO) function for transmitting and receiving data using a plurality of antennas, two or more antennas may be connected.
- MIMO multi-input multi-output
- the terminal or the UE operates as the transmitter 10 in the uplink and the receiver 20 in the downlink.
- the base station or eNB operates as the receiving device 20 in the uplink, and operates as the transmitting device 10 in the downlink.
- the transmitting device and / or the receiving device may perform at least one of the embodiments of the present invention or a combination of two or more embodiments or suggestions.
- the present invention can be used in a wireless communication device such as a terminal, a relay, a base station, and the like operating in an unlicensed band.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
본 발명은 무선 통신 시스템에 관한 것으로서, 구체적으로 비면허 대역에서 신호를 전송하는 방법 및 이를 위한 장치에 대해 제시한다. 구체적으로, 본 발명에서는 비면허 대역(unlicensed band)에서 기지국이 신호를 전송하는 방법에 있어서, 상기 기지국이 다른 시스템의 LAA(licensed assisted access) 신호에 대해 기설정된 임계값 이상의 수신 전력이 검출되는지를 판단하고, 판단 결과에 따라 에너지 검출 임계치(energy detection threshold)를 제1 값 또는 상기 제1 값과는 상이한 제2 값으로 설정하고, 비면허 대역의 반송파를 센싱하여 검출된 전력이 상기 판단 결과에 따라 설정된 에너지 검출 임계치 미만인 경우, 하향링크 신호를 송신하는 신호 전송 방법 및 이를 위한 기지국 장치에 대해 제시한다.
Description
본 발명은 무선 통신 시스템에 관한 것으로서, 구체적으로 비면허 대역에서 신호를 전송하는 방법 및 이를 위한 장치에 관한 것이다.
기기간(Machine-to-Machine, M2M) 통신과, 높은 데이터 전송량을 요구하는 스마트폰, 태블릿 PC 등의 다양한 장치 및 기술이 출현 및 보급되고 있다. 이에 따라, 셀룰러 망에서 처리될 것이 요구되는 데이터 양이 매우 빠르게 증가하고 있다. 이와 같이 빠르게 증가하는 데이터 처리 요구량을 만족시키기 위해, 더 많은 주파수 대역을 효율적으로 사용하기 위한 반송파 집성(carrier aggregation) 기술, 인지무선(cognitive radio) 기술 등과, 한정된 주파수 내에서 전송되는 데이터 용량을 높이기 위한 다중 안테나 기술, 다중 기지국 협력 기술 등이 발전하고 있다. 또한, 사용자기기가 주변에서 엑세스할 수 있는 노드의 밀도가 높아지는 방향으로 통신 환경이 진화하고 있다. 노드라 함은 하나 이상의 안테나를 구비하여 사용자기기와 무선 신호를 전송/수신할 수 있는 고정된 지점(point)을 말한다. 높은 밀도의 노드를 구비한 통신 시스템은 노드들 간의 협력에 의해 더 높은 성능의 통신 서비스를 사용자기기에게 제공할 수 있다.
복수의 노드에서 동일한 시간-주파수 자원을 이용하여 사용자기기와 통신을 수행하는 이러한 다중 노드 협력 통신 방식은 각 노드가 독립적인 기지국으로 동작하여 상호 협력 없이 사용자기기와 통신을 수행하는 기존의 통신 방식보다 데이터 처리량에 있어서 훨씬 우수한 성능을 갖는다.
다중 노드 시스템은 각 노드가, 기지국 혹은 엑세스 포인트, 안테나, 안테나 그룹, 무선 리모트 헤드(radio remote header, RRH), 무선 리모트 유닛(radio remote unit, RRU)로서 동작하는, 복수의 노드를 사용하여 협력 통신을 수행한다. 안테나들이 기지국에 집중되어 위치해 있는 기존의 중앙 집중형 안테나 시스템과 달리, 다중 노드 시스템에서 상기 복수의 노드는 통상 일정 간격 이상으로 떨어져 위치한다. 상기 복수의 노드는 각 노드의 동작을 제어하거나, 각 노드를 통해 송/수신될 데이터를 스케줄링하는 하나 이상의 기지국 혹은 기지국 컨트롤러(controller)에 의해 관리될 수 있다. 각 노드는 해당 노드를 관리하는 기지국 혹은 기지국 컨트롤러와 케이블 혹은 전용 회선(dedicated line)을 통해 연결된다.
이러한 다중 노드 시스템은 분산된 노드들이 동시에 서로 다른 스트림을 송/수신하여 단일 또는 다수의 사용자기기와 통신할 수 있다는 점에서 일종의 MIMO(multiple input multiple output) 시스템으로 볼 수 있다. 다만, 다중 노드 시스템은 다양한 위치에 분산된 노드들을 이용하여 신호를 전송하므로, 기존의 중앙 집중형 안테나 시스템에 구비된 안테나들에 비해, 각 안테나가 커버해야 하는 전송 영역이 축소된다. 따라서, 중앙 집중형 안테나 시스템에서 MIMO 기술을 구현하던 기존 시스템에 비해, 다중 노드 시스템에서는 각 안테나가 신호를 전송하는 데 필요한 전송 전력이 감소될 수 있다. 또한, 안테나와 사용자기기 간의 전송 거리가 단축되므로 경로 손실이 감소되며, 데이터의 고속 전송이 가능하게 된다. 이에 따라, 셀룰러 시스템의 전송 용량 및 전력 효율이 높아질 수 있으며, 셀 내의 사용자기기의 위치에 상관없이 상대적으로 균일한 품질의 통신 성능이 만족될 수 있다. 또한, 다중 노드 시스템에서는, 복수의 노드들에 연결된 기지국(들) 혹은 기지국 컨트롤러(들)이 데이터 전송/수신에 협력하므로, 전송 과정에서 발생하는 신호 손실이 감소된다. 또한, 일정 거리 이상 떨어져 위치한 노드들이 사용자기기와 협력 통신을 수행하는 경우, 안테나들 사이의 상관도(correlation) 및 간섭이 줄어들게 된다. 따라서, 다중 노드 협력 통신 방식에 의하면, 높은 신호 대 잡음비(signal to interference-plus-noise ratio, SINR)이 얻어질 수 있다.
이와 같은 다중 노드 시스템의 장점 때문에, 차세대 이동 통신 시스템에서 기지국 증설 비용과 백홀(backhaul) 망의 유지 비용을 줄이는 동시에, 서비스 커버리지의 확대와 채널용량 및 SINR의 향상을 위해, 다중 노드 시스템이 기존의 중앙집중형 안테나 시스템과 병행 혹은 대체하여 셀룰러 통신의 새로운 기반으로 대두되고 있다.
본 발명은 비면허 대역에서 기지국이 신호를 전송하기 위해 상기 비면허 대역의 반송파가 비지(busy) 상태인지 또는 유휴(idle) 상태인지를 판단하기 위한 임계값인 에너지 검출 임계치(energy detection threshold)를 주변 환경에 따라 조정하고, 조정된 에너지 검출 임계치에 기반하여 상기 비면허 대역에서 신호를 전송하는 방안을 제안하고자 한다.
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 양태로서 비면허 대역(unlicensed band)에서 기지국이 신호를 전송하는 방법은, 다른 시스템의 LAA(licensed assisted access) 관련 신호에 대해 기설정된 임계값 이상의 수신 전력이 검출되는지를 판단하고, 판단 결과에 따라 에너지 검출 임계치(energy detection threshold)를 제1 값 또는 상기 제1값과는 상이한 제2 값으로 설정하고, 비면허 대역의 반송파를 센싱하여 검출된 전력이 상기 판단 결과에 따라 설정된 에너지 검출 임계치 미만인 경우, 하향링크 신호를 송신한다.
본 발명의 다른 양태로서 비면허 대역(unlicensed band)에서 신호 전송을 수행하도록 구성된 기지국 장치는 무선 주파수(radio frequency, RF) 유닛; 및 상기 RF 유닛을 제어하도록 구성된 프로세서를 포함하고, 상기 프로세서는 다른 시스템의 LAA(licensed assisted access) 관련 신호에 대해 기설정된 임계값 이상의 수신 전력이 검출되는지를 판단하고, 판단 결과에 따라 에너지 검출 임계치(energy detection threshold)를 제1 값 또는 상기 제1 값과는 상이한 제2 값으로 설정하고, 비면허 대역의 반송파를 센싱하여 검출된 전력이 상기 판단 결과에 따라 설정된 에너지 검출 임계치 미만인 경우, 하향링크 신호를 송신하도록 구성된다.
상기 본 발명의 양태들에서, 상기 다른 시스템의 LAA 관련 신호는, 상기 다른 시스템에서 전송한 DRS(discovery reference signal), CRS(cell-specific reference signal), DM-RS(demodulation - reference signal), CSI-RS(channel state information - reference signal), 동기 신호(synchronization signal) 중 적어도 하나 이상이 적용될 수 있다.
이때, 상기 다른 시스템의 LAA 관련 신호가 상기 다른 시스템에서 전송된 CRS인 경우, 상기 기지국은 안테나 포트 #0에서 전송된 CRS에 대해 상기 임계값 이상의 수신 전력이 검출되는지를 판단할 수 있다.
또한, 상기 다른 시스템의 LAA 관련 신호가 상기 다른 시스템에서 전송된 동기 신호인 경우, 상기 기지국은 서브프레임 인덱스 #0 및 #5 중 하나 이상에서 전송된 동기 신호에 대해 상기 임계값 이상의 수신 전력이 검출되는지를 판단할 수 있다.
다른 일 예로, 상기 다른 시스템의 LAA 관련 신호에 대해 상기 임계값 이상의 수신 전력이 검출된다고 판단되는 경우, 상기 에너지 검출 임계치를 제1 값으로 설정하고, 상기 다른 시스템의 LAA 관련 신호에 대해 상기 임계값 미만의 수신 전력이 검출된다고 판단되는 경우, 상기 에너지 검출 임계치를 제2 값으로 설정하되, 상기 제1 값은 상기 제2 값보다 작이 적용될 수 있다.
특히, 상기 제2 값은 -72dBm이 적용될 수 있다.
또한, 상기 기지국은 미리 설정된 시간 구간 동안에만 상기 다른 시스템의 LAA 관련 신호에 대해 상기 임계값 이상의 수신 전력이 검출되는지를 판단할 수 있다.
또한, 상기 판단 결과에 따라 상기 에너지 검출 임계치가 제1 값 또는 제2 값으로 설정되면, 상기 기지국은 설정된 에너지 검출 임계치를 일정 시간 구간 동안 유지할 수 있다.
상기 과제 해결방법들은 본 발명의 실시예들 중 일부에 불과하며, 본원 발명의 기술적 특징들이 반영된 다양한 실시예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하 상술할 본 발명의 상세한 설명을 기반으로 도출되고 이해될 수 있다.
본 발명의 일 실시예에 따르면 기지국의 LBT 동작을 위한 에너지 검출 임계치는 주변 시스템 환경에 적응적으로 조정될 수 있고, 이에 따라 비면허 대역에서의 보다 효율적인 신호 전송이 가능해진다.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 무선 통신 시스템에서 사용되는 무선 프레임 구조의 일 예를 나타낸 것이다.
도 2는 무선 통신 시스템에서 하향링크/상향링크(DL/UL) 슬롯 구조의 일례를 나타낸 것이다.
도 3은 3GPP LTE/LTE-A 시스템에서 사용되는 하향링크(downlink, DL) 서브프레임 구조를 예시한 것이다.
도 4는 3GPP LTE/LTE-A 시스템에서 사용되는 상향링크(uplink, UL) 서브프레임 구조의 일례를 나타낸 것이다.
도 5는 LTE 시스템의 상향 링크 서브프레임에서 사용되는 참조 신호를 예시한 것이다.
도 6은 LTE-U 시스템에서 지원하는 CA (carrier aggregation) 환경의 일례를 나타내는 도면이다.
도 7은 LBT (listen-before-talk) 과정 중 하나인 FBE(frame based equipment) 동작의 일례를 나타내는 도면이다.
도 8은 FBE 동작을 블록 다이어그램으로 나타낸 도면이다.
도 9는 LBT 과정 중 하나인 LBE(load based equipment) 동작의 일례를 나타내는 도면이다.
도 10은 본 발명의 일 실시예에 따른 신호 방법을 나타낸 도면이다.
도 11은 본 발명의 실시예(들)을 구현하기 위한 장치의 블록도를 도시한다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이 러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
본 발명에 있어서, 사용자기기(user equipment, UE)는 고정되거나 이동성을 가질 수 있으며, 기지국(base station, BS)와 통신하여 사용자데이터 및/또는 각종 제어정보를 송수신하는 각종 기기들이 이에 속한다. UE는 단말(Terminal Equipment), MS(Mobile Station), MT(Mobile Terminal), UT(User Terminal), SS(Subscribe Station), 무선기기(wireless device), PDA(Personal Digital Assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등으로 불릴 수 있다. 또한, 본 발명에 있어서, BS는 일반적으로 UE 및/또는 다른 BS와 통신하는 고정국(fixed station)을 말하며, UE 및 타 BS와 통신하여 각종 데이터 및 제어정보를 교환한다. BS는 ABS(Advanced Base Station), NB(Node-B), eNB(evolved-NodeB), BTS(Base Transceiver System), 엑세스 포인트(Access Point), PS(Processing Server), 전송 포인트(transmission point; TP)등 다른 용어로 불릴 수 있다. 이하의 본 발명에 관한 설명에서는, BS를 eNB로 통칭한다.
본 발명에서 노드(node)라 함은 사용자기기와 통신하여 무선 신호를 전송/수신할 수 있는 고정된 지점(point)을 말한다. 다양한 형태의 eNB들이 그 명칭에 관계없이 노드로서 이용될 수 있다. 예를 들어, BS, NB, eNB, 피코-셀 eNB(PeNB), 홈 eNB(HeNB), 릴레이, 리피터 등이 노드가 될 수 있다. 또한, 노드는 eNB가 아니어도 될 수 있다. 예를 들어, 무선 리모트 헤드(radio remote head, RRH), 무선 리모트 유닛(radio remote unit, RRU)가 될 수 있다. RRH, RRU 등은 일반적으로 eNB의 전력 레벨(power level) 보다 낮은 전력 레벨을 갖는다. RRH 혹은 RRU이하, RRH/RRU)는 일반적으로 광 케이블 등의 전용 회선(dedicated line)으로 eNB에 연결되어 있기 때문에, 일반적으로 무선 회선으로 연결된 eNB들에 의한 협력 통신에 비해, RRH/RRU와 eNB에 의한 협력 통신이 원활하게 수행될 수 있다. 일 노드에는 최소 하나의 안테나가 설치된다. 상기 안테나는 물리 안테나를 의미할 수도 있으며, 안테나 포트, 가상 안테나, 또는 안테나 그룹을 의미할 수도 있다. 노드는 포인트(point)라고 불리기도 한다. 안테나들이 기지국에 집중되어 위치하여 하나의 eNB 컨트롤러(controller)에 의해 제어되는 기존의(conventional) 중앙 집중형 안테나 시스템(centralized antenna system, CAS)(즉, 단일 노드 시스템)과 달리, 다중 노드 시스템에서 복수의 노드는 통상 일정 간격 이상으로 떨어져 위치한다. 상기 복수의 노드는 각 노드의 동작을 제어하거나, 각 노드를 통해 송/수신될 데이터를 스케줄링(scheduling)하는 하나 이상의 eNB 혹은 eNB 컨트롤러에 의해 관리될 수 있다. 각 노드는 해당 노드를 관리하는 eNB 혹은 eNB 컨트롤러와 케이블(cable) 혹은 전용 회선(dedicated line)을 통해 연결될 수 있다. 다중 노드 시스템에서, 복수의 노드들로의/로부터의 통한 신호 전송/수신에는 동일한 셀 식별자(identity, ID)가 이용될 수도 있고 서로 다른 셀 ID가 이용될 수도 있다. 복수의 노드들이 동일한 셀 ID를 갖는 경우, 상기 복수의 노드 각각은 하나의 셀의 일부 안테나 집단처럼 동작한다. 다중 노드 시스템에서 노드들이 서로 다른 셀 ID를 갖는다면, 이러한 다중 노드 시스템은 다중 셀(예를 들어, 매크로-셀/펨토-셀/피코-셀) 시스템이라고 볼 수 있다. 복수의 노드들 각각이 형성한 다중 셀들이 커버리지에 따라 오버레이되는 형태로 구성되면, 상기 다중 셀들이 형성한 네트워크를 특히 다중-계층(multi-tier) 네트워크라 부른다. RRH/RRU의 셀 ID와 eNB의 셀 ID는 동일할 수도 있고 다를 수도 있다. RRH/RRU가 eNB가 서로 다른 셀 ID를 사용하는 경우, RRH/RRU와 eNB는 모두 독립적인 기지국으로서 동작하게 된다.
이하에서 설명될 본 발명의 다중 노드 시스템에서, 복수의 노드와 연결된 하나 이상의 eNB 혹은 eNB 컨트롤러가 상기 복수의 노드 중 일부 또는 전부를 통해 UE에 동시에 신호를 전송 혹은 수신하도록 상기 복수의 노드를 제어할 수 있다. 각 노드의 실체, 각 노드의 구현 형태 등에 따라 다중 노드 시스템들 사이에는 차이점이 존재하지만, 복수의 노드가 함께 소정 시간-주파수 자원 상에서 UE에 통신 서비스를 제공하는 데 참여한다는 점에서, 이들 다중 노드 시스템들은 단일 노드 시스템(예를 들어, CAS, 종래의 MIMO 시스템, 종래의 중계 시스템, 종래의 리피터 시스템 등)과 다르다. 따라서, 복수의 노드들 중 일부 또는 전부를 사용하여 데이터 협력 전송을 수행하는 방법에 관한 본 발명의 실시예들은 다양한 종류의 다중 노드 시스템에 적용될 수 있다. 예를 들어, 노드는 통상 타 노드와 일정 간격 이상으로 떨어져 위치한 안테나 그룹을 일컫지만, 후술하는 본 발명의 실시예들은 노드가 간격에 상관없이 임의의 안테나 그룹을 의미하는 경우에도 적용될 수 있다. 예를 들어, X-pol(Cross polarized) 안테나를 구비한 eNB의 경우, 상기 eNB가 H-pol 안테나로 구성된 노드와 V-pol 안테나로 구성된 노드를 제어한다고 보고 본 발명의 실시예들이 적용될 수 있다.
복수의 전송(Tx)/수신(Rx) 노드를 통해 신호를 전송/수신하거나, 복수의 전송/수신 노드들 중에서 선택된 적어도 하나의 노드를 통해 신호를 전송/수신하거나, 하향링크 신호를 전송하는 노드와 상향링크 신호를 수신하는 노드를 다르게 할 수 있는 통신 기법을 다중-eNB MIMO 또는 CoMP(Coordinated Multi-Point TX/RX)라 한다. 이러한 노드 간 협력 통신 중 협력 전송 기법은 크게 JP(joint processing)과 스케줄링 협력(scheduling coordination)으로 구분될 수 있다. 전자는 JT(joint transmission)/JR(joint reception)과 DPS(dynamic point selection)으로 나뉘고 후자는 CS(coordinated scheduling)과 CB(coordinated beamforming)으로 나뉠 수 있다. DPS는 DCS(dynamic cell selection)으로 불리기도 한다. 다른 협력 통신 기법에 비해, 노드 간 협력 통신 기법들 중 JP가 수행될 때, 보다 더 다양한 통신환경이 형성될 수 있다. JP 중 JT는 복수의 노드들이 동일한 스트림을 UE로 전송하는 통신 기법을 말하며, JR은 복수의 노드들이 동일한 스트림을 UE로부터 수신하는 통신 기법을 말한다. 상기 UE/eNB는 상기 복수의 노드들로부터 수신한 신호들을 합성하여 상기 스트림을 복원한다. JT/JR의 경우, 동일한 스트림이 복수의 노드들로부터/에게 전송되므로 전송 다이버시티(diversity)에 의해 신호 전송의 신뢰도가 향상될 수 있다. JP 중 DPS는 복수의 노드들 중 특정 규칙에 따라 선택된 일 노드를 통해 신호가 전송/수신되는 통신 기법을 말한다. DPS의 경우, 통상적으로 UE와 노드 사이의 채널 상태가 좋은 노드가 통신 노드로서 선택되게 될 것이므로, 신호 전송의 신뢰도가 향상될 수 있다.
한편, 본 발명에서 셀(cell)이라 함은 하나 이상의 노드가 통신 서비스를 제공하는 일정 지리적 영역을 말한다. 따라서, 본 발명에서 특정 셀과 통신한다고 함은 상기 특정 셀에 통신 서비스를 제공하는 eNB 혹은 노드와 통신하는 것을 의미할 수 있다. 또한, 특정 셀의 하향링크/상향링크 신호는 상기 특정 셀에 통신 서비스를 제공하는 eNB 혹은 노드로부터의/로의 하향링크/상향링크 신호를 의미한다. UE에게 상/하향링크 통신 서비스를 제공하는 셀을 특히 서빙 셀(serving cell)이라고 한다. 또한, 특정 셀의 채널 상태/품질은 상기 특정 셀에 통신 서비스를 제공하는 eNB 혹은 노드와 UE 사이에 형성된 채널 혹은 통신 링크의 채널 상태/품질을 의미한다. 3GPP LTE-A 기반의 시스템에서, UE는 특정 노드로부터의 하향링크 채널 상태를 상기 특정 노드의 안테나 포트(들)이 상기 특정 노드에 할당된 채널 CSI-RS(Channel State Information Reference Signal) 자원 상에서 전송하는 CSI-RS(들)을 이용하여 측정할 수 있다. 일반적으로 인접한 노드들은 서로 직교하는 CSI-RS 자원들 상에서 해당 CSI-RS 자원들을 전송한다. CSI-RS 자원들이 직교한다고 함은 CSI-RS를 나르는 심볼 및 부반송파를 특정하는 CSI-RS 자원 구성(resource configuration), 서브프레임 오프셋(offset) 및 전송 주기(transmission period) 등에 의해 CSI-RS가 할당된 서브프레임들을 특정하는 서브프레임 구성(subframe configuration), CSI-RS 시퀀스 중 최소 한가지가 서로 다름을 의미한다.
본 발명에서 PDCCH(Physical Downlink Control CHannel)/PCFICH(Physical Control Format Indicator CHannel)/PHICH((Physical Hybrid automatic retransmit request Indicator CHannel)/PDSCH(Physical Downlink Shared CHannel)은 각각 DCI(Downlink Control Information)/CFI(Control Format Indicator)/하향링크 ACK/NACK(ACKnowlegement/Negative ACK)/하향링크 데이터를 나르는 시간-주파수 자원의 집합 혹은 자원요소의 집합을 의미한다. 또한, PUCCH(Physical Uplink Control CHannel)/PUSCH(Physical Uplink Shared CHannel)/PRACH(Physical Random Access CHannel)는 각각 UCI(Uplink Control Information)/상향링크 데이터/랜덤 엑세스 신호를 나르는 시간-주파수 자원의 집합 혹은 자원요소의 집합을 의미한다. 본 발명에서는, 특히, PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH에 할당되거나 이에 속한 시간-주파수 자원 혹은 자원요소(Resource Element, RE)를 각각 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH RE 또는 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH 자원이라고 칭한다. 이하에서 사용자기기가 PUCCH/PUSCH/PRACH를 전송한다는 표현은, 각각, PUSCH/PUCCH/PRACH 상에서 혹은 통해서 상향링크 제어정보/상향링크 데이터/랜덤 엑세스 신호를 전송한다는 것과 동일한 의미로 사용된다. 또한, eNB가 PDCCH/PCFICH/PHICH/PDSCH를 전송한다는 표현은, 각각, PDCCH/PCFICH/PHICH/PDSCH 상에서 혹은 통해서 하향링크 데이터/제어정보를 전송한다는 것과 동일한 의미로 사용된다.
도 1은 무선 통신 시스템에서 사용되는 무선 프레임 구조의 일 예를 나타낸 것이다. 특히, 도 1(a)는 3GPP LTE/LTE-A 시스템에서 사용되는 주파수분할듀플렉스(frequency division duplex, FDD)용 프레임 구조를 나타낸 것이고, 도 1(b)는 3GPP LTE/LTE-A 시스템에서 사용되는 시분할듀플렉스(time division duplex, TDD)용 프레임 구조를 나타낸 것이다.
도 1을 참조하면, 3GPP LTE/LTE-A 시스템에서 사용되는 무선프레임은 10ms(307200Ts)의 길이를 가지며, 10개의 균등한 크기의 서브프레임(subframe, SF)으로 구성된다. 일 무선프레임 내 10개의 서브프레임에는 각각 번호가 부여될 수 있다. 여기에서, Ts는 샘플링 시간을 나타내고, Ts=1/(2048*15kHz)로 표시된다. 각각의 서브프레임은 1ms의 길이를 가지며 2개의 슬롯으로 구성된다. 일 무선프레임 내에서 20개의 슬롯들은 0부터 19까지 순차적으로 넘버링될 수 있다. 각각의 슬롯은 0.5ms의 길이를 가진다. 일 서브프레임을 전송하기 위한 시간은 전송시간간격(transmission time interval, TTI)로 정의된다. 시간 자원은 무선프레임 번호(혹은 무선 프레임 인덱스라고도 함)와 서브프레임 번호(혹은 서브프레임 번호라고도 함), 슬롯 번호(혹은 슬롯 인덱스) 등에 의해 구분될 수 있다.
무선 프레임은 듀플레스(duplex) 모드에 따라 다르게 구성(configure)될 수 있다. 예를 들어, FDD 모드에서, 하향링크 전송 및 상향링크 전송은 주파수에 의해 구분되므로, 무선 프레임은 특정 주파수 대역에 대해 하향링크 서브프레임 또는 상향링크 서브프레임 중 하나만을 포함한다. TDD 모드에서 하향링크 전송 및 상향링크 전송은 시간에 의해 구분되므로, 특정 주파수 대역에 대해 무선 프레임은 하향링크 서브프레임과 상향링크 서브프레임을 모두 포함한다.
표 1은 TDD 모드에서, 무선 프레임 내 서브프레임들의 DL-UL 구성(configuration)을 예시한 것이다.
표 1
DL-UL configuration | Downlink-to-Uplink Switch-point periodicity | Subframe number | |||||||||
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||
0 | 5ms | D | S | U | U | U | D | S | U | U | U |
1 | 5ms | D | S | U | U | D | D | S | U | U | D |
2 | 5ms | D | S | U | D | D | D | S | U | D | D |
3 | 10ms | D | S | U | U | U | D | D | D | D | D |
4 | 10ms | D | S | U | U | D | D | D | D | D | D |
5 | 10ms | D | S | U | D | D | D | D | D | D | D |
6 | 5ms | D | S | U | U | U | D | S | U | U | D |
표 1에서, D는 하향링크 서브프레임을, U는 상향링크 서브프레임을, S는 특이(special) 서브프레임을 나타낸다. 특이 서브프레임은 DwPTS(Downlink Pilot TimeSlot), GP(Guard Period), UpPTS(Uplink Pilot TimeSlot)의 3개 필드를 포함한다. DwPTS는 하향링크 전송용으로 유보되는 시간 구간이며, UpPTS는 상향링크 전송용으로 유보되는 시간 구간이다. 표 2는 특이 프레임의 구성(configuration)을 예시한 것이다.
표 2
Special subframe configuration | Normal cyclic prefix in downlink | Extended cyclic prefix in downlink | ||||
DwPTS | UpPTS | DwPTS | UpPTS | |||
Normal cyclic prefix in uplink | Extended cyclic prefix in uplink | Normal cyclic prefix in uplink | Extended cyclic prefix in uplink | |||
0 | 6592·Ts | 2192·Ts | 2560·Ts | 7680·Ts | 2192·Ts | 2560·Ts |
1 | 19760·Ts | 20480·Ts | ||||
2 | 21952·Ts | 23040·Ts | ||||
3 | 24144·Ts | 25600·Ts | ||||
4 | 26336·Ts | 7680·Ts | 4384·Ts | *5120·Ts | ||
5 | 6592·Ts | 4384·Ts | *5120·Ts | 20480·Ts | ||
6 | 19760·Ts | 23040·Ts | ||||
7 | 21952·Ts | 12800·Ts | ||||
8 | 24144·Ts | - | - | - | ||
9 | 13168·Ts | - | - | - |
도 2는 무선 통신 시스템에서 하향링크/상향링크(DL/UL) 슬롯 구조의 일례를 나타낸 것이다. 특히, 도 2는 3GPP LTE/LTE-A 시스템의 자원격자(resource grid)의 구조를 나타낸다. 안테나 포트당 1개의 자원격자가 있다.
도 2를 참조하면, 슬롯은 시간 도메인에서 복수의 OFDM(Orthogonal Frequency Division Multiplexing) 심볼을 포함하고, 주파수 도메인에서 다수의 자원블록(resource block, RB)을 포함한다. OFDM 심볼은 일 심볼 구간을 의미하기도 한다. 도 2를 참조하면, 각 슬롯에서 전송되는 신호는 *개의 부반송파(subcarrier)와 개의 OFDM 심볼로 구성되는 자원격자(resource grid)로 표현될 수 있다. 여기서, 은 하향링크 슬롯에서의 자원블록(resource block, RB)의 개수를 나타내고, 은 UL 슬롯에서의 RB의 개수를 나타낸다. 와 은 DL 전송 대역폭과 UL 전송 대역폭에 각각 의존한다. 은 하향링크 슬롯 내 OFDM 심볼의 개수를 나타내며, 은 UL 슬롯 내 OFDM 심볼의 개수를 나타낸다. 는 하나의 RB를 구성하는 부반송파의 개수를 나타낸다.
OFDM 심볼은 다중 접속 방식에 따라 OFDM 심볼, SC-FDM(Single Carrier Frequency Division Multiplexing) 심볼 등으로 불릴 수 있다. 하나의 슬롯에 포함되는 OFDM 심볼의 수는 채널 대역폭, CP(cyclic prefix)의 길이에 따라 다양하게 변경될 수 있다. 예를 들어, 정규(normal) CP의 경우에는 하나의 슬롯이 7개의 OFDM 심볼을 포함하나, 확장(extended) CP의 경우에는 하나의 슬롯이 6개의 OFDM 심볼을 포함한다. 도 2에서는 설명의 편의를 위하여 하나의 슬롯이 7 OFDM 심볼로 구성되는 서브프레임을 예시하였으나, 본 발명의 실시예들은 다른 개수의 OFDM 심볼을 갖는 서브프레임들에도 마찬가지의 방식으로 적용될 수 있다. 도 2를 참조하면, 각 OFDM 심볼은, 주파수 도메인에서, *개의 부반송파를 포함한다. 부반송파의 유형은 데이터 전송을 위한 데이터 부반송파, 참조신호(reference signal)의 전송 위한 참조신호 부반송파, 가드 밴드(guard band) 및 직류(Direct Current, DC) 성분을 위한 널(null) 부반송파로 나뉠 수 있다. DC 성분을 위한 널 부반송파는 미사용인 채 남겨지는 부반송파로서, OFDM 신호 생성 과정 혹은 주파수 상향변환 과정에서 반송파 주파수(carrier frequency, f0)로 맵핑(mapping)된다. 반송파 주파수는 중심 주파수(center frequency)라고도 한다.
일 RB는 시간 도메인에서 개(예를 들어, 7개)의 연속하는 OFDM 심볼로서 정의되며, 주파수 도메인에서 c개(예를 들어, 12개)의 연속하는 부반송파에 의해 정의된다. 참고로, 하나의 OFDM 심볼과 하나의 부반송파로 구성된 자원을 자원요소(resource element, RE) 혹은 톤(tone)이라고 한다. 따라서, 하나의 RB는 *개의 자원요소로 구성된다. 자원격자 내 각 자원요소는 일 슬롯 내 인덱스 쌍 (k, 1)에 의해 고유하게 정의될 수 있다. k는 주파수 도메인에서 0부터 *-1까지 부여되는 인덱스이며, l은 시간 도메인에서 0부터 -1까지 부여되는 인덱스이다.
일 서브프레임에서 개의 연속하는 동일한 부반송파를 점유하면서, 상기 서브프레임의 2개의 슬롯 각각에 1개씩 위치하는 2개의 RB를 물리자원블록(physical resource block, PRB) 쌍(pair)이라고 한다. PRB 쌍을 구성하는 2개의 RB는 동일한 PRB 번호(혹은, PRB 인덱스(index)라고도 함)를 갖는다. VRB는 자원할당을 위해 도입된 일종의 논리적 자원할당 단위이다. VRB는 PRB와 동일한 크기를 갖는다. VRB를 PRB로 맵핑하는 방식에 따라, VRB는 로컬라이즈(localized) 타입의 VRB와 분산(distributed) 타입의 VRB로 구분된다. 로컬라이즈 타입의 VRB들은 PRB들에 바로 맵핑되어, VRB 번호(VRB 인덱스라고도 함)가 PRB 번호에 바로 대응된다. 즉, nPRB=nVRB가 된다. 로컬라이즈 타입의 VRB들에는 0부터 -1순으로 번호가 부여되며, = 이다. 따라서, 로컬라이즈 맵핑 방식에 의하면, 동일한 VRB 번호를 갖는 VRB가 첫 번째 슬롯과 두 번째 슬롯에서, 동일 PRB 번호의 PRB에 맵핑된다. 반면, 분산 타입의 VRB는 인터리빙을 거쳐 PRB에 맵핑된다. 따라서, 동일한 VRB 번호를 갖는 분산 타입의 VRB는 첫 번째 슬롯과 두 번째 슬롯에서 서로 다른 번호의 PRB에 맵핑될 수 있다. 서브프레임의 두 슬롯에 1개씩 위치하며 동일한 VRB 번호를 갖는 2개의 PRB를 VRB 쌍이라 칭한다.
도 3은 3GPP LTE/LTE-A 시스템에서 사용되는 하향링크(downlink, DL) 서브프레임 구조를 예시한 것이다.
도 3을 참조하면, DL 서브프레임은 시간 도메인에서 제어영역(control region)과 데이터영역(data region)으로 구분된다. 도 3을 참조하면, 서브프레임의 첫 번째 슬롯에서 앞부분에 위치한 최대 3(혹은 4)개의 OFDM 심볼은 제어 채널이 할당되는 제어영역(control region)에 대응한다. 이하, DL 서브프레임에서 PDCCH 전송에 이용가능한 자원 영역(resource region)을 PDCCH 영역이라 칭한다. 제어영역으로 사용되는 OFDM 심볼(들)이 아닌 남은 OFDM 심볼들은 PDSCH(Physical Downlink Shared CHannel)가 할당되는 데이터영역(data region)에 해당한다. 이하, DL 서브프레임에서 PDSCH 전송에 이용가능한 자원 영역을 PDSCH 영역이라 칭한다. 3GPP LTE에서 사용되는 DL 제어 채널의 예는 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical hybrid ARQ indicator Channel) 등을 포함한다. PCFICH는 서브프레임의 첫 번째 OFDM 심볼에서 전송되고 서브프레임 내에서 제어 채널의 전송에 사용되는 OFDM 심볼의 개수에 관한 정보를 나른다. PHICH는 UL 전송에 대한 응답으로 HARQ(Hybrid Automatic Repeat Request) ACK/NACK(acknowledgment/negative-acknowledgment) 신호를 나른다.
*PDCCH를 통해 전송되는 제어 정보를 상향링크 제어 정보(downlink control information, DCI)라고 지칭한다. DCI는 UE 또는 UE 그룹을 위한 자원 할당 정보 및 다른 제어 정보를 포함한다. 예를 들어, DCI는 DL 공유 채널(downlink shared channel, DL-SCH)의 전송 포맷 및 자원 할당 정보, UL 공유 채널(uplink shared channel, UL-SCH)의 전송 포맷 및 자원 할당 정보, 페이징 채널(paging channel, PCH) 상의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상에서 전송되는 임의 접속 응답과 같은 상위 계층(upper layer) 제어 메시지의 자원 할당 정보, UE 그룹 내의 개별 UE들에 대한 전송 전력 제어 명령(Transmit Control Command Set), 전송 전력 제어(Transmit Power Control) 명령, VoIP(Voice over IP)의 활성화(activation) 지시 정보, DAI(Downlink Assignment Index) 등을 포함한다. DL 공유 채널(downlink shared channel, DL-SCH)의 전송 포맷(Transmit Format) 및 자원 할당 정보는 DL 스케줄링 정보 혹은 DL 그랜트(DL grant)라고도 불리며, UL 공유 채널(uplink shared channel, UL-SCH)의 전송 포맷 및 자원 할당 정보는 UL 스케줄링 정보 혹은 UL 그랜트(UL grant)라고도 불린다. 일 PDCCH가 나르는 DCI는 DCI 포맷에 따라서 그 크기와 용도가 다르며, 부호화율에 따라 그 크기가 달라질 수 있다. 현재 3GPP LTE 시스템에서는 상향링크용으로 포맷 0 및 4, 하향링크용으로 포맷 1, 1A, 1B, 1C, 1D, 2, 2A, 2B, 2C, 3, 3A 등의 다양한 포맷이 정의되어 있다. DCI 포맷 각각의 용도에 맞게, 호핑 플래그, RB 할당(RB allocation), MCS(modulation coding scheme), RV(redundancy version), NDI(new data indicator), TPC(transmit power control), 순환 천이 DMRS(cyclic shift demodulation reference signal), UL 인덱스, CQI(channel quality information) 요청, DL 할당 인덱스(DL assignment index), HARQ 프로세스 넘버, TPMI(transmitted precoding matrix indicator), PMI(precoding matrix indicator) 정보 등의 제어정보가 취사 선택된 조합이 하향링크 제어정보로서 UE에게 전송된다.
일반적으로, UE에 구성된 전송 모드(transmission mode, TM)에 따라 상기 UE에게 전송될 수 있는 DCI 포맷이 달라진다. 다시 말해, 특정 전송 모드로 구성된 UE를 위해서는 모든 DCI 포맷이 사용될 수 있는 것이 아니라, 상기 특정 전송 모드에 대응하는 일정 DCI 포맷(들)만이 사용될 수 있다.
PDCCH는 하나 또는 복수의 연속된 제어 채널 요소(control channel element, CCE)들의 집성(aggregation) 상에서 전송된다. CCE는 PDCCH에 무선 채널 상태에 기초한 부호화율(coding rate)를 제공하기 위해 사용되는 논리적 할당 유닛(unit)이다. CCE는 복수의 자원 요소 그룹(resource element group, REG)에 대응한다. 예를 들어, 하나의 CCE는 9개의 REG에 대응되고 하나의 REG는 4개의 RE에 대응한다. 3GPP LTE 시스템의 경우, 각각의 UE을 위해 PDCCH가 위치할 수 있는 CCE 세트를 정의하였다. UE가 자신의 PDCCH를 발견할 수 있는 CCE 세트를 PDCCH 탐색 공간, 간단히 탐색 공간(Search Space, SS)라고 지칭한다. 탐색 공간 내에서 PDCCH가 전송될 수 있는 개별 자원을 PDCCH 후보(candidate)라고 지칭한다. UE가 모니터링(monitoring)할 PDCCH 후보들의 모음은 탐색 공간으로 정의된다. 3GPP LTE/LTE-A 시스템에서 각각의 DCI 포맷을 위한 탐색 공간은 다른 크기를 가질 수 있으며, 전용(dedicated) 탐색 공간과 공통(common) 탐색 공간이 정의되어 있다. 전용 탐색 공간은 UE-특정(specific) 탐색 공간이며, 각각의 개별 UE를 위해 구성(configuration)된다. 공통 탐색 공간은 복수의 UE들을 위해 구성된다. 상기 탐색 공간을 정의하는 집성 레벨(aggregation level)은 다음과 같다.
표 3
Search Space SK (L) | Number of PDCCH candidates M(L) | ||
Type | Aggregation Level L | Size[in CCEs] | |
UE-specific | 1 | 6 | 6 |
2 | 12 | 6 | |
4 | 8 | 2 | |
8 | 16 | 2 | |
Common | 4 | 16 | 4 |
8 | 16 | 2 |
하나의 PDCCH 후보는 CCE 집성 레벨에 따라 1, 2, 4 또는 8개의 CCE에 대응한다. eNB는 탐색 공간 내의 임의의 PDCCH 후보 상에서 실제 PDCCH (DCI)를 전송하고, UE는 PDCCH (DCI)를 찾기 위해 탐색 공간을 모니터링한다. 여기서, 모니터링이라 함은 모든 모니터링되는 DCI 포맷들에 따라 해당 탐색 공간 내의 각 PDCCH의 복호(decoding)를 시도(attempt)하는 것을 의미한다. UE는 상기 복수의 PDCCH를 모니터링하여, 자신의 PDCCH를 검출할 수 있다. 기본적으로 UE는 자신의 PDCCH가 전송되는 위치를 모르기 때문에, 매 서브프레임마다 해당 DCI 포맷의 모든 PDCCH를 자신의 식별자를 가진 PDCCH를 검출할 때까지 PDCCH의 복호를 시도하는데, 이러한 과정을 블라인드 검출(blind detection)(블라인드 복호(blind decoding, BD))이라고 한다.
eNB는 데이터영역을 통해 UE 혹은 UE 그룹을 위한 데이터를 전송할 수 있다. 상기 데이터영역을 통해 전송되는 데이터를 사용자데이터라 칭하기도 한다. 사용자데이터의 전송을 위해, 데이터영역에는 PDSCH(Physical Downlink Shared CHannel)가 할당될 수 있다. PCH(Paging channel) 및 DL-SCH(Downlink-shared channel)는 PDSCH를 통해 전송된다. UE는 PDCCH를 통해 전송되는 제어정보를 복호하여 PDSCH를 통해 전송되는 데이터를 읽을 수 있다. PDSCH의 데이터가 어떤 UE 혹은 UE 그룹에게 전송되는지, 상기 UE 혹은 UE 그룹이 어떻게 PDSCH 데이터를 수신하고 복호해야 하는지 등을 나타내는 정보가 PDCCH에 포함되어 전송된다. 예를 들어, 특정 PDCCH가 "A"라는 RNTI(Radio Network Temporary Identity)로 CRC(cyclic redundancy check) 마스킹(masking)되어 있고, "B"라는 무선자원(예, 주파수 위치) 및 "C"라는 전송형식정보(예, 전송 블록 사이즈, 변조 방식, 코딩 정보 등)를 이용해 전송되는 데이터에 관한 정보가 특정 DL 서브프레임을 통해 전송된다고 가정한다. UE는 자신이 가지고 있는 RNTI 정보를 이용하여 PDCCH를 모니터링하고, "A"라는 RNTI를 가지고 있는 UE는 PDCCH를 검출하고, 수신한 PDCCH의 정보를 통해 "B"와 "C"에 의해 지시되는 PDSCH를 수신한다.
UE가 eNB로부터 수신한 신호의 복조를 위해서는 데이터 신호와 비교될 참조신호 참조신호(reference signal, RS)가 필요하다. 참조신호라 함은 eNB가 UE로 혹은 UE가 eNB로 전송하는, eNB와 UE가 서로 알고 있는, 기정의된 특별한 파형의 신호를 의미하며, 파일럿(pilot)이라고도 불린다. 참조신호들은 셀 내 모든 UE들에 의해 공용되는 셀-특정(cell-specific) RS와 특정 UE에게 전용되는 복조(demodulation) RS(DM RS)로 구분된다. eNB가 특정 UE를 위한 하향링크 데이터의 복조를 위해 전송하는 DM RS를 UE-특정적(UE-specific) RS라 특별히 칭하기도 한다. 하향링크에서 DM RS와 CRS는 함께 전송될 수도 있으나 둘 중 한 가지만 전송될 수도 있다. 다만, 하향링크에서 CRS없이 DM RS만 전송되는 경우, 데이터와 동일한 프리코더를 적용하여 전송되는 DM RS는 복조 목적으로만 사용될 수 있으므로, 채널측정용 RS가 별도로 제공되어야 한다. 예를 들어, 3GPP LTE(-A)에서는 UE가 채널 상태 정보를 측정할 수 있도록 하기 위하여, 추가적인 측정용 RS인 CSI-RS가 상기 UE에게 전송된다. CSI-RS는 채널상태가 상대적으로 시간에 따른 변화도가 크지 않다는 사실에 기반하여, 매 서브프레임마다 전송되는 CRS와 달리, 다수의 서브프레임으로 구성되는 소정 전송 주기마다 전송된다.
도 4는 3GPP LTE/LTE-A 시스템에서 사용되는 상향링크(uplink, UL) 서브프레임 구조의 일례를 나타낸 것이다.
도 4를 참조하면, UL 서브프레임은 주파수 도메인에서 제어영역과 데이터영역으로 구분될 수 있다. 하나 또는 여러 PUCCH(physical uplink control channel)가 상향링크 제어 정보(uplink control information, UCI)를 나르기 위해, 상기 제어영역에 할당될 수 있다. 하나 또는 여러 PUSCH(physical uplink shared channel)가 사용자 데이터를 나르기 위해, UL 서브프레임의 데이터영역에 할당될 수 있다.
UL 서브프레임에서는 DC(Direct Current) 부반송파를 기준으로 거리가 먼 부반송파들이 제어영역으로 활용된다. 다시 말해, UL 전송 대역폭의 양쪽 끝부분에 위치하는 부반송파들이 상향링크 제어정보의 전송에 할당된다. DC 부반송파는 신호 전송에 사용되지 않고 남겨지는 성분으로서, 주파수 상향변환 과정에서 반송파 주파수 f0로 맵핑된다. 일 UE에 대한 PUCCH는 일 서브프레임에서, 일 반송파 주파수에서 동작하는 자원들에 속한 RB 쌍에 할당되며, 상기 RB 쌍에 속한 RB들은 두 개의 슬롯에서 각각 다른 부반송파를 점유한다. 이와 같이 할당되는 PUCCH를, PUCCH에 할당된 RB 쌍이 슬롯 경계에서 주파수 호핑된다고 표현한다. 다만, 주파수 호핑이 적용되지 않는 경우에는, RB 쌍이 동일한 부반송파를 점유한다.
PUCCH는 다음의 제어 정보를 전송하는데 사용될 수 있다.
- SR(Scheduling Request): 상향링크 UL-SCH 자원을 요청하는데 사용되는 정보이다. OOK(On-Off Keying) 방식을 이용하여 전송된다.
- HARQ-ACK: PDCCH에 대한 응답 및/또는 PDSCH 상의 하향링크 데이터 패킷(예, 코드워드)에 대한 응답이다. PDCCH 혹은 PDSCH가 성공적으로 수신되었는지 여부를 나타낸다. 단일 하향링크 코드워드에 대한 응답으로 HARQ-ACK 1비트가 전송되고, 두 개의 하향링크 코드워드에 대한 응답으로 HARQ-ACK 2비트가 전송된다. HARQ-ACK 응답은 포지티브 ACK(간단히, ACK), 네거티브 ACK(이하, NACK), DTX(Discontinuous Transmission) 또는 NACK/DTX를 포함한다. 여기서, HARQ-ACK이라는 용어는 HARQ ACK/NACK, ACK/NACK과 혼용된다.
- CSI(Channel State Information): 하향링크 채널에 대한 피드백 정보(feedback information)이다. MIMO(Multiple Input Multiple Output)-관련 피드백 정보는 RI(Rank Indicator) 및 PMI(Precoding Matrix Indicator)를 포함한다.
UE가 서브프레임에서 전송할 수 있는 상향링크 제어정보(UCI)의 양은 제어 정보 전송에 가용한 SC-FDMA의 개수에 의존한다. UCI에 가용한 SC-FDMA는 서브프레임에서 참조 신호 전송을 위한 SC-FDMA 심볼을 제외하고 남은 SC-FDMA 심볼을 의미하고, SRS(Sounding Reference Signal)가 구성된 서브프레임의 경우에는 서브프레임의 마지막 SC-FDMA 심볼도 제외된다. 참조 신호는 PUCCH의 코히런트(coherent) 검출에 사용된다. PUCCH는 전송되는 정보에 따라 다양한 포맷을 지원한다.
표 4는 LTE/LTE-A 시스템에서 PUCCH 포맷과 UCI의 맵핑 관계를 나타낸다.
표 4
PUCCH format | Modulation scheme | Number of bits per subframe | Usage | Etc. |
1 | N/A | N/A (exist or absent) | SR (Scheduling Request) | |
1a | BPSK | 1 | ACK/NACK orSR + ACK/NACK | One codeword |
1b | QPSK | 2 | ACK/NACK orSR + ACK/NACK | Two codeword |
2 | QPSK | 20 | CQI/PMI/RI | Joint coding ACK/NACK (extended CP) |
2a | QPSK+BPSK | 21 | CQI/PMI/RI + ACK/NACK | Normal CP only |
2b | QPSK+QPSK | 22 | CQI/PMI/RI + ACK/NACK | Normal CP only |
3 | QPSK | 48 | ACK/NACK orSR + ACK/NACK orCQI/PMI/RI + ACK/NACK |
표 4를 참조하면, PUCCH 포맷 1 계열은 주로 ACK/NACK 정보를 전송하는 데 사용되며, PUCCH 포맷 2 계열은 주로 CQI/PMI/RI 등의 채널상태정보(channel state information, CSI)를 나르는 데 사용되고, PUCCH 포맷 3 계열은 주로 ACK/NACK 정보를 전송하는 데 사용된다.
참조 신호 (Reference Signal; RS)
무선 통신 시스템에서 패킷을 전송할 때, 전송되는 패킷은 무선 채널을 통해서 전송되기 때문에 전송과정에서 신호의 왜곡이 발생할 수 있다. 왜곡된 신호를 수신측에서 올바로 수신하기 위해서는 채널 정보를 이용하여 수신 신호에서 왜곡을 보정하여야 한다. 채널 정보를 알아내기 위해서, 송신측과 수신측에서 모두 알고 있는 신호를 전송하여, 상기 신호가 채널을 통해 수신될 때의 왜곡 정도를 가지고 채널 정보를 알아내는 방법을 주로 사용한다. 상기 신호를 파일럿 신호(Pilot Signal) 또는 참조신호(Reference Signal)라고 한다.
다중안테나를 사용하여 데이터를 송수신하는 경우에는 각 송신 안테나와 수신 안테나 사이의 채널 상황을 알아야 올바른 신호를 수신할 수 있다. 따라서, 각 송신 안테나 별로, 좀더 자세하게는 안테나 포트(안테나 포트)별로 별도의 참조신호가 존재하여야 한다.
참조신호는 상향링크 참조신호와 하향링크 참조신호로 구분될 수 있다. 현재 LTE 시스템에는 상향링크 참조신호로써,
i) PUSCH 및 PUCCH를 통해 전송된 정보의 코히런트(coherent)한 복조를 위한 채널 추정을 위한 복조 참조신호(DeModulation-Reference Signal, DM-RS)
ii) 기지국이, 네트워크가 다른 주파수에서의 상향링크 채널 품질을 측정하기 위한 사운딩 참조신호(Sounding Reference Signal, SRS)가 있다.
한편, 하향링크 참조신호에는,
i) 셀 내의 모든 단말이 공유하는 셀-특정 참조신호(Cell-specific Reference Signal, CRS)
ii) 특정 단말만을 위한 단말-특정 참조신호(UE-specific Reference Signal)
iii) PDSCH가 전송되는 경우 코히런트한 복조를 위해 전송되는 (DeModulation-Reference Signal, DM-RS)
iv) 하향링크 DMRS가 전송되는 경우 채널 상태 정보(Channel State Information; CSI)를 전달하기 위한 채널상태정보 참조신호(Channel State Information- Reference Signal, CSI-RS)
v) MBSFN(Multimedia Broadcast Single Frequency Network) 모드로 전송되는 신호에 대한 코히런트한 복조를 위해 전송되는 MBSFN 참조신호(MBSFN Reference Signal)
vi) 단말의 지리적 위치 정보를 추정하는데 사용되는 위치 참조신호(Positioning Reference Signal)가 있다.
참조신호는 그 목적에 따라 크게 두 가지로 구분될 수 있다. 채널 정보 획득을 위한 목적의 참조신호와 데이터 복조를 위해 사용되는 참조신호가 있다. 전자는 UE가 하향 링크로의 채널 정보를 획득할 수 있는데 그 목적이 있으므로, 광대역으로 전송되어야 하고, 특정 서브 프레임에서 하향 링크 데이터를 수신하지 않는 단말이라도 그 참조신호를 수신하여야 한다. 또한 이는 핸드 오버 등의 상황에서도 사용된다. 후자는 기지국이 하향링크를 보낼 때 해당 자원에 함께 보내는 참조신호로서, 단말은 해당 참조신호를 수신함으로써 채널 측정을 하여 데이터를 복조할 수 있게 된다. 이 참조신호는 데이터가 전송되는 영역에 전송되어야 한다.
도 5는 LTE 시스템의 상향 링크 서브프레임에서 사용되는 참조 신호를 예시한다.
도 5를 참조하면, 사운딩 참조 신호(SRS: Sounding Reference Signal)는 PUSCH가 전송되는 대역 이외의 상향링크 대역(sub band)에 대한 채널을 추정하거나 전체 상향링크 대역폭(wide band)에 해당하는 채널의 정보를 획득하기 위해서 주기적으로 혹은 비주기적으로 단말이 전송 할 수 있다. 주기적으로 사운딩 참조 신호를 전송하는 경우는 상위 계층 시그널을 통하여 주기가 결정되며 비주기적인 사운딩 참조 신호의 전송은 기지국이 PDCCH 상향링크/하향링크 DCI 포맷의 'SRS request' 필드를 이용하여 지시하거나 트리거(triggering) 메시지를 전송할 수 있다. 도 5에 예시된 바와 같이 한 서브프레임 내에서 사운딩 참조 신호가 전송될 수 있는 영역은 하나의 서브프레임에서 시간 축 상에서 가장 마지막에 위치하는 SC-FDMA 심볼이 있는 구간이다. TDD 특별(special) 서브프레임의 경우 SRS는 상향링크 구간(예, UpPTS)을 통해 전송될 수 있다. 표 2에 따라 상향링크 구간(예, UpPTS)에 1개의 심볼이 할당되는 서브프레임 구성의 경우 SRS는 마지막 1개의 심볼을 통해 전송될 수 있으며, 2개의 심볼이 할당되는 서브프레임 구성의 경우 SRS는 마지막 1개 또는 2개의 심볼을 통해 전송될 수 있다. 동일한 서브프레임의 마지막 SC-FDMA로 전송되는 여러 단말의 사운딩 참조 신호들은 주파수 위치에 따라 구분이 가능하다. 사운딩 참조 신호는 PUSCH와는 달리 SC-FDMA로 변환하기 위한 DFT(Discrete Fourier Transform) 연산을 수행하지 않으며 PUSCH에서 사용된 프리코딩 행렬을 사용하지 않고 전송된다.
나아가, 하나의 서브프레임 내에서 복조용 참조 신호(DMRS: Demodulation-Reference Signal)가 전송되는 영역은 시간 축 상에서 각 슬롯의 가운데 위치하는 SC-FDMA 심볼이 있는 구간이며, 마찬가지로 주파수 상으로는 데이터 전송 대역을 통하여 전송된다. 예를 들어, 일반 순환 전치가 적용되는 서브프레임에서는 4 번째 SC-FDMA 심볼과 11 번째 SC-FDMA 심볼에서 복조용 참조 신호가 전송된다.
복조용 참조 신호는 PUSCH 또는 PUCCH의 전송과 결합될 수 있다. 사운딩 참조 신호는 상향링크 스케줄링을 위해 단말이 기지국으로 전송하는 참조 신호이다. 기지국은 수신된 사운딩 참조 신호를 통해 상향링크 채널을 추정하고, 추정된 상향링크 채널을 상향링크 스케줄링에 이용한다. 사운딩 참조 신호는 PUSCH 또는 PUCCH의 전송과 결합되지 않는다. 복조용 참조 신호와 사운딩 참조 신호를 위하여 동일한 종류의 기본 시퀀스가 사용될 수 있다. 한편, 상향링크 다중 안테나 전송에서 복조용 참조 신호에 적용된 프리코딩은 PUSCH에 적용된 프리코딩과 같을 수 있다.
이하에서는 면허 대역(Licensed Band)인 LTE-A 대역과 비면허 대역(Unlicensed Band)의 반송파 결합 환경에서 데이터를 송수신하는 방법들에 대해서 설명한다. 본 발명의 실시예들에서 LTE-U 시스템은 이러한 면허 대역과 비면허 대역의 CA 상황을 지원하는 LTE 시스템을 의미한다. 비면허 대역은 와이파이(WiFi) 대역 또는 블루투스(BT) 대역 등이 이용될 수 있다.
도 6은 LTE-U 시스템에서 지원하는 CA(carrier aggregation) 환경의 일례를 나타내는 도면이다.
이하에서는 설명의 편의를 위해서, UE가 두 개의 요소 반송파(CC: Component Carrier)를 이용하여 면허 대역과 비면허 대역 각각에서 무선 통신을 수행 하도록 설정된 상황을 가정한다. 물론, UE에 세 개 이상의 CC들이 구성된 경우에도 이하 설명하는 방법들이 적용될 수 있다.
본 발명의 실시예들에서, 면허 대역의 반송파(LCC: Licensed CC)는 주요소 반송파(Primary CC: PCC 또는 P셀로 부를 수 있음)이고, 비 면허 대역의 반송파(Unlicensed CC: UCC)는 부요소 반송파(Secondary CC: SCC 또는 S셀로 부를 수 있음)인 경우를 가정한다. 다만, 본 발명의 실시예들은 다수 개의 면허 대역과 다수 개의 비면허 대역들이 캐리어 결합 방식으로 이용되는 상황에도 확장 적용될 수 있다. 또한, 본 발명의 제안 방식들은 3GPP LTE 시스템뿐만 아니라 다른 특성의 시스템 상에서도 확장 적용이 가능하다.
도 6에서는 하나의 기지국에서 면허 대역과 비면허 대역을 모두 지원하는 경우를 나타내었다. 즉, 단말은 면허 대역인 PCC를 통해 제어 정보 및 데이터를 송수신할 수 있고, 또한 비면허 대역인 SCC를 통해 제어 정보 및 데이터를 송수신할 수 있다. 그러나, 도 6에 도시된 상황은 하나의 일례이며, 하나의 단말이 다수 개의 기지국과 접속하는 CA 환경에도 본 발명의 실시예들이 적용될 수 있다.
예를 들어, 단말은 매크로 기지국(M-eNB: Macro eNB)과 P셀을 구성하고, 스몰 기지국(S-eNB: Small eNB)과 S셀을 구성할 수 있다. 이때, 매크로 기지국과 스몰 기지국은 백홀 망을 통해 연결되어 있을 수 있다.
본 발명의 실시예들에서, 비면허 대역은 경쟁 기반의 임의 접속 방식으로 동작될 수 있다. 이때, 비면허 대역을 지원하는 eNB는 데이터 송수신 전에 먼저 케리어 센싱(CS: Carrier Sensing) 과정을 수행할 수 있다. CS 과정은 해당 대역이 다른 개체에 의해 점유되어 있는지 여부를 판단하는 과정이다.
예를 들어, S셀의 기지국(eNB)은 현재 채널이 사용중인 비지(busy) 상태인지 또는 사용하지 않는 유휴(idle) 상태인지를 체크한다. 만약, 해당 대역이 유휴 상태라고 판단되면, 기지국은 크로스 캐리어 스케줄링 방식인 경우 P셀의 (E)PDCCH를 통해 또는 셀프 스케줄링 방식인 경우 S셀의 PDCCH를 통해 스케줄링 그랜트(scheduling grant)를 단말에 전송하여 자원을 할당하고, 데이터 송수신을 시도할 수 있다.
이때, 기지국은 M개의 연속된 서브프레임으로 구성된 전송 기회(TxOP: Transmission OPportunity) 구간을 설정할 수 있다. 여기서, M값 및 M개의 서브프레임의 용도를 사전에 기지국이 단말에게 P셀을 통해 상위 계층 시그널이나 물리 제어채널 또는 물리 데이터 채널을 통해 알려줄 수 있다. M개의 서브프레임으로 구성된 TxOP 구간은 예약된 자원 구간(RRP: Reserved Resource Period)으로 불릴 수 있다.
캐리어
센싱
과정
본 발명의 실시예들에서 CS 과정은 CCA(Clear Channel Assessment) 과정 또는 채널 접속 과정(Channel Access Procedure)이라 불릴 수 있으며, 기설정된 또는 상위 계층 신호를 통해 설정된 CCA 임계값을 기준으로 해당 채널이 비지(busy) 또는 유휴(idle) 상태로 판단될 수 있다. 예를 들어, 비면허대역인 S셀에서 CCA 임계값보다 높은 에너지가 검출되면 비지 아니면 유휴라고 판단될 수 있다. 이때, 채널 상태가 유휴로 판단되면, 기지국은 S셀에서 신호 전송을 시작할 수 있다. 이러한 일련의 과정은 LBT(Listen-Before-Talk)이라고 명명될 수 있다.
도 7은 LBT 과정 중 하나인 FBE 동작의 일례를 나타내는 도면이다.
유럽의 ETSI 규정(regulation; EN 301 893 V1.7.1)에서는 FBE(Frame Based Equipment)와 LBE(Load Based Equipment)로 명명되는 2가지의 LBT 동작을 예시하고 있다. FBE는 통신 노드가 채널 접속(channel access)에 성공했을 때 송신을 지속할 수 있는 시간을 의미하는 채널 점유 시간(Channel Occupancy Time; 예: 1~10ms)과 채널 점유 시간의 최소 5%에 해당되는 유휴 기간(Idle Period)이 하나의 고정 프레임(Fixed Frame)을 구성하며, CCA는 유휴 기간 내 끝 부분에 CCA 슬롯(최소 20μs) 동안 채널을 관측하는 동작으로 정의된다.
이때, 통신 노드는 고정 프레임 단위로 주기적으로 CCA를 수행한다. 만약, 채널이 비점유(Unoccupied) 상태인 경우에 통신 노드는 채널 점유 시간 동안 데이터를 송신하고, 채널이 점유 상태인 경우에는 전송을 보류하고 다음 주기의 CCA 슬롯까지 기다린다.
도 8은 FBE 동작을 블록 다이어그램으로 나타낸 도면이다.
도 8을 참조하면, S셀을 관리하는 통신노드(즉, 기지국)는 CCA 슬롯 동안 CCA 과정을 수행한다. 만약, 채널이 유휴 상태이면 통신 노드는 데이터 전송(Tx)을 수행하고, 채널이 비지 상태이면 고정 프레임 기간에서 CCA 슬롯을 뺀 시간 만큼 대기한 후 다시 CCA 과정을 수행한다.
통신 노드는 채널 점유 시간동안 데이터 전송을 수행하고, 데이터 전송이 끝나면, 유휴 기간에서 CCA 슬롯을 뺀 시간만큼 대기한 후 다시 CCA 과정을 수행한다. 만약, 통신 노드가 채널이 유휴 상태이나 전송할 데이터가 없는 경우에는 고정 프레임 기간에서 CCA 슬롯을 뺀 시간만큼 대기한 후 다시 CCA 과정을 수행한다.
도 9는 LBT 과정 중 하나인 LBE 동작의 일례를 나타내는 도면이다.
도 9(a)를 참조하면 통신 노드는 LBE 동작을 수행하기 위해 먼저 q∈{4, 5, … , 32}의 값을 설정한 후 1개 CCA 슬롯에 대한 CCA를 수행한다.
도 9(b)는 LBE 동작을 블록 다이어그램으로 나타낸 도면이다. 이하, 도 9(b)를 참조하여 LBE 동작에 대해서 설명한다.
통신 노드는 CCA 슬롯에서 CCA 과정을 수행할 수 있다. 만약, 첫 번째 CCA 슬롯에서 채널이 비점유 상태이면, 통신 노드는 최대 (13/32)q ms 길이의 시간을 확보하여 데이터를 송신할 수 있다.
그러나, 첫 번째 CCA 슬롯에서 채널이 점유 상태이면, 통신 노드는 임의로 (i.e., randomly) N∈{1, 2, … , q}의 값을 골라 카운터 값을 초기값으로 설정 및 저장하고, 이후 CCA 슬롯 단위로 채널 상태를 센싱하면서 특정 CCA 슬롯에서 채널이 비점유 상태이면 앞서 설정한 카운터 값을 1개씩 줄여나간다. 카운터 값이 0이 되면, 통신 노드는 최대 (13/32)q ms 길이의 시간을 확보하여 데이터를 송신할 수 있다.
상기와 같은 기술 사항들을 바탕으로, 본 발명에 대해 상세히 설명한다. 본 발명은 기지국과 단말로 구성된 무선 통신 시스템에서 기지국 또는 단말이 CCA 동작을 포함하는 LBT 기반의 신호 전송을 수행할 때, 상기 CCA 동작을 위한 에너지 검출 임계치(energy detection threshold, ED threshold) 조정 방안을 제안한다.
앞서 설명한 바와 같이, 비면허 대역에서는 각 통신 노드 간의 경쟁을 통해 무선 송수신을 하는 방식을 가정하므로 각 통신 노드가 신호를 전송하기 전에 채널 센싱을 수행하여 다른 통신 노드가 신호 전송을 하지 않음을 확인할 것을 요구하고 있다. 편의상 이와 같은 동작을 LBT (listen before talk)라고 부르며, 특히 다른 통신 노드의 신호 전송 여부를 확인하는 동작을 CS (carrier sensing) 또는 CCA (clear channel assessment)라고 정의한다. 또한 CCA 결과 다른 통신 노드의 신호 전송이 없다고 판단되면 채널 비점유 (또는 채널 유휴) 상태라고 정의하고, 신호 전송이 있으면 채널 점유 (또는 채널 비지) 상태라고 정의한다. LTE 시스템의 기지국(예: eNB)이나 단말(예: UE)도 비면허 대역에서의 신호 전송을 위해서는 LBT를 수행해야 하며, LTE 시스템의 기지국이나 단말이 신호를 전송할 때에 Wi-Fi 등 다른 통신 노드들도 LBT를 수행하여 간섭을 일으키지 않아야 한다. 참고로, Wi-Fi 표준 (예: 801.11ac)에서 CCA 임계치는 비 Wi-Fi 신호에 대하여 -62dBm, Wi-Fi 신호에 대하여 -82dBm으로 규정되어 있으며, 이에 따라 단말(예: 스테이션)이나 기지국(예: 액세스 포인트)은 Wi-Fi 이외의 신호가 -62dBm 이상의 전력(또는 에너지)으로 수신되면 간섭을 일으키지 않도록 해당 대역에서는 신호 전송을 하지 않을 수 있다.
상기 기술한 바와 같이 비면허 대역에서 기지국의 하향링크 전송 또는 단말의 상향링크 전송은 항상 보장되지 않을 수 있으므로 비면허 대역에서 동작하는 단말은 이동성(mobility)이나 RRM 기능 등의 안정적인 제어를 위하여 면허 대역에서 동작하는 또 다른 cell에 접속을 유지하고 있을 수 있다. 이때, 도 6에 도시된 바와 같이, 면허 대역과 비면허 대역에서의 데이터 송수신을 수행하는 방식을 통상적으로 LAA (licensed assisted access)라고 부른다.
본 발명에서는 상기와 같은 관점에서 LAA 기반 무선 통신 시스템에서 LBT 과정의 CCA 동작 수행 시 에너지 검출 임계치를 조정하고, 조정된 에너지 검출 임계치에 기반해 신호를 전송하는 방법을 제안한다. 이하 상술하는 설명에서는 본 발명의 각 실시예에 대한 구성을 한정하여 설명하나, 서로 상반되지 않는 실시예들은 서로 중복되어 적용될 수도 있다. 일 예로, 하기의 [제안 방안 #2] 및 [제안 방안 #6]은 다음과 같이 중복되어 적용될 수 있다.
도 10은 본 발명의 일 실시예에 따른 신호 방법을 나타낸 도면이다.
도 10에 도시된 바와 같이, 기지국은 다른 시스템의 LAA 관련 신호를 검출하고(S1010), 검출된 LAA 관련 신호로부터 일정 임계값 이상의 수신 전력이 검출되는지를 판단한다(S1020). 이때, 상기 다른 시스템의 LAA 관련 신호를 검출하는 주파수 대역은 기지국이 신호를 전송하고자 하는 비면허 대역으로 한정되지 않고, 상기 비면허 대역을 포함한 전체 주파수 대역에 대해 상기 다른 시스템의 LAA 관련 신호를 검출할 수 있다.
S1020 단계에서 검출된 다른 시스템의 LAA 관련 신호의 수신 전력이 일정 임계값 이상인 경우, 기지국은 LBT 동작의 에너지 검출 임계치를 제1 값으로 설정한다(S1030). 이어, 비면허 대역의 반송파를 검출하여 검출된 전력이 상기 제1 값 미만인 경우, 상기 비면허 대역을 통해 하향링크 신호를 전송한다(S1040).
또는, S1020 단계에서 검출된 다른 시스템의 LAA 관련 신호의 수신 전력이 일정 임계값 미만인 경우, 기지국은 LBT 동작의 에너지 검출 임계치를 제2 값으로 설정한다(S1050). 이어, 비면허 대역의 반송파를 검출하여 검출된 전력이 상기 제2 값 미만인 경우, 상기 비면허 대역을 통해 하향링크 신호를 전송한다(S1060).
이때, 상기 제1 값 및 제2 값은 서로 상이한 값이며, 바람직하게 상기 제1 값은 상기 제2 값보다 작을 수 있다.
또한, S1010 단계에서 기지국이 다른 시스템의 LAA 관련 신호를 검출하는 구성은 미리 설정된 시간 구간 동안에만 수행될 수 있다. 즉, 상기 기지국은 항상 다른 시스템의 LAA 관련 신호를 검출하는 것이 아니라 미리 설정된 일부 시간 구간 동안에만 다른 시스템의 LAA 관련 신호를 검출하고, 이에 따라 에너지 검출 임계치를 조정할 수 있다.
또한, 기지국은 에너지 검출 임계치가 빈번하게 변경되는 것을 방지하기 위하여 상기 에너지 검출 임계치가 일정 값으로 설정되면, 설정된 에너지 검출 임계치를 일정 시간 구간 동안 유지할 수 있다. 다시 말해, 주변 환경이 변화하여 다른 시스템의 LAA 관련 신호에 대한 검출 결과가 변경된다 하더라도 상기 일정 시간 구간 동안에는 설정된 에너지 검출 임계치를 변경하지 않을 수 있다.
이하, 본 발명에서 제안하는 복수 개의 제안 방안에 대해 상세히 설명한다.
기지국
센싱
기반 에너지 검출 임계치(Energy Detection Threshold, ED 임계치) 적응
[제안 방안 #1] 기지국이 측정한 간섭을 토대로 아래 중 하나 이상의 방안으로 (최대) ED 임계치를 조정하는 방안
인터-오퍼레이터(Inter-operator) 또는 이종 시스템과의 공존을 위해서 기지국이 인접한 다른 네트워크의 존재를 확인한 경우 ED 임계치를 변경할 수 있다. 예를 들어, 기지국은 특정 인트라/인터-오퍼레이터(Intra/Inter-operator) 또는 이종 시스템에 대해 간섭을 측정하거나 또는 특정 측정 자원 영역에서 간섭을 측정하여 평균 간섭 크기를 구하고, 해당 평균 간섭 크기가 일정 임계값보다 클 때 (또는 작을 때) ED 임계치의 최대 값을 변경할 수 있다. 이때, 상기 간섭은 복수 셀 간 (신호 전송을 수행하지 않는) 공통된 측정 자원 영역에서 측정된 간섭일 수 있다.
[제안 방안 #2] 기지국이
인트라
/
인터
-오퍼레이터로부터 전송된 신호로써 아래 중 하나 이상 신호에 대해 특정 임계값 (
)이상의 수신 전력이 검출한 경우에 (최대) ED 임계치를 조정
(1)
DRS
(Discovery Reference Signal)
(2) CRS (Cell-specific Reference Signal)
(3) DM-
RS
(Demodulation Reference Signal)
(4) CSI-
RS
(Channel State Information - Reference Signal)
(5)
프리앰블
(또는 초기 신호(initial signal))
(6) 동기 신호(Synchronization signal, 일 예로,
PSS
(Primary Synchronization Signal) /
SSS
(Secondary Synchronization Signal)
단, 상기 신호에 대해서 아래와 같은 제약 사항이 적용될 수 있음.
(1) 전송 버스트 내 특정 시간 자원 (예: 특정 서브프레임 또는 특정
심볼
)에서 전송된 신호
(2) 특정 서브프레임 인덱스에서 전송된 신호 (예: 서브프레임 #0, #5)
(3) 특정 안테나 포트에서 전송된 신호 (예: 안테나 포트 0)
ED 임계치 조정으로 다른 LAA 기반 무선 통신 시스템과의 공존을 달성하기 위해, WiFi 시스템에서 프리앰블 검출을 통해 WiFi 신호를 검출하고 이에 기반해 CS 임계값을 조절하는 구성과 유사하게 LAA 특정 신호의 검출 여부에 따라 ED 임계치를 조정할 수 있다. 상기 특정 신호로 기지국이 동기 등의 목적으로 주기적으로 전송하는 DRS (discovery signal) 등의 신호가 활용될 수 있다.
좀더 상세하게 설명하면, 도 10에 도시된 바와 같이 기지국은 다른 시스템의 LAA 관련 신호를 검출하고, 특히 상기 다른 시스템의 LAA 관련 신호의 수신 전력이 일정 임계값 이상인지를 판단한다. 상기 판단 결과에 따라, 상기 기지국은 LBT 동작을 위한 ED 임계치를 제1 값 또는 제2 값으로 설정한다. 일 예로, 상기 다른 시스템의 LAA 관련 신호에 대해 상기 임계값 이상의 수신 전력이 검출되면, 상기 ED 임계치를 제1 값으로 설정하고, 상기 다른 시스템의 LAA 관련 신호에 대해 상기 임계값 미만의 수신 전력이 검출되면, 상기 ED 임계치를 제2 값으로 설정할 수 있다. 이때, 상기 제1 값은 상기 제2 값보다 작은 값이 적용될 수 있으며, 상기 제2 값으로는 -72dBm이 적용될 수 있다.
또한, 앞서 설명한 바와 같이, 다른 시스템의 LAA 관련 신호는 상기 다른 시스템에서 전송한 DRS, CRS, DM-RS, CSI-RS, 동기 신호 중 적어도 하나 이상을 포함할 수 있다.
보다 구체적인 실시예로, 상기 다른 시스템의 LAA 관련 신호가 상기 다른 시스템에서 전송된 CRS인 경우, 상기 기지국은 안테나 포트 #0에서 전송된 CRS에 대한 수신 전력이 임계값 이상인지를 판단하고, 판단 결과에 따라 LBT 동작을 위한 ED 임계치를 설정할 수 있다.
또한, 상기 다른 시스템의 LAA 관련 신호가 상기 다른 시스템에서 전송된 동기 신호인 경우, 상기 기지국은 서브프레임 인덱스 #0 및 #5 중 하나 이상에서 전송된 동기 신호에 대해 상기 임계값 이상의 수신 전력이 검출되는지를 판단하고, 판단 결과에 따라 LBT 동작을 위한 ED 임계치를 설정할 수 있다.
이와 같이, 기지국은 각 신호가 전송되는 시간 구간 또는 안테나 포트 등의 특성을 고려하여 각 신호의 간섭 정도를 판단할 수 있고, 상기 각 신호의 간섭 정도에 따라 LBT 동작을 위한 ED 임계치를 달리 설정할 수 있다.
[제안 방안 #3] [제안 방안 #
1]에서
간섭 검출을 위한 임계값 (예:
,
) 또는 [제안 방안 #
2]에서
(
LAA
특정) 신호 수신 검출을 위한 임계값 (예:
)을 (간섭 검출 또는 신호 검출 시)
LBT
과정에서
CCA를
위해 적용할 (최대) ED 임계치와 동일하게 설정하거나 또는 상기 ED 임계치의 함수로 설정하는 방안
일 예로, [제안 방안 #
2]에서 특정 신호에 대한 검출 임계값을 -77dBm으로 설정한 경우, 상기 특정 신호의 검출 이후 LBT 과정에서 CCA 동작을 위한 ED 임계치를 -77dBm 또는 -77dBm 이하로 설정할 수 있다. 이를 통해 인접 LAA 시스템과의 공존을 구현할 수 있다. 따라서 상기 간섭 또는 신호 검출을 위한 임계값은 검출 이후 적용할 LBT 과정에서의 CCA 동작을 위한 ED 임계치에 의해 결정될 수 있다.
[제안 방안 #4] [제안 방안 #
1]에서
간섭 검출을 위한 임계값 (예:
,
) 또는 [제안 방안 #
2]에서
(
LAA
특정) 신호 수신 검출을 위한 임계값 (예:
)를 (기준이 되는) 송신 노드 (예: 기지국) 송신 전력 또는 전력 클래스(Power class)의 함수로 설정하는 방안.
여기서, 전력 클래스(Power class)란
LTE
시스템에서 정의된 지표로, 단말의 공칭 최대 전력(nominal maximum power)과 상기 공칭 최대 전력 값에 대한 오차 범위를 분류한 지표를 의미한다. 일 예로, 전력 클래스가 3이면 단말의 공칭 최대 전력은 23dBm이고 오차는 ±2.7dB를 의미한다.
일부 지역의 규정(예: ETSI)에서는 송신 전력이 높을수록 커버리지 영역이 넓다고 판단하여 CCA 수행 시의 ED 임계치를 낮추고, 송신 전력이 낮을수록 커버리지 영역이 좁다고 판단하여 CCA 수행 시 ED 임계치를 높이는 동작을 정의하고 있다. 상기 동작과 유사하게 [제안 방안 #
1]에서의 간섭 검출 또는 [제안 방안 #
2]에서의 신호 수신 검출을 위한 임계값 또한 커버리지를 고려하여 조정될 수 있다. 즉, 상기 간섭 또는 신호 검출 목적의 임계값 또한 송신 전력 또는 전력 클래스(Power class)의 함수로 설정될 수 있다.
단말 피드백 기반 ED 임계치 적응
[제안 방안 #5] 단말이 아래 중 하나 이상의 값을 피드백하고 기지국이 상기 피드백 정보를 활용하여 (최대) ED 임계치를 조정하는 방안
(1)
RSSI
(Received Signal Strength Indication)
(2) 검출된 셀의 ID 또는
WiFi
비콘
(3) A/N (
ACK
/
NACK
) 피드백
(4) 경쟁
윈도우
크기 (contention window size) 전략(statistics)
ED 임계치를 조정하는 목적이 서로 다른 전송 노드 간의 충돌 완화라면 보다 적극적인 ED 임계치 조정 방안으로 단말 피드백에 기반한 (최대) ED 임계치 조정 방안을 고려할 수 있다. 일 예로, 기지국이 단말로부터 수신된 A/N 피드백을 활용하여 (최대) ED 임계치를 조정하는 경우 (a) 일정 시간 구간 내 NACK의 비율이 특정 값을 넘거나 또는 (b) 특정 개수 이상의 연속적인 NACK이 보인 경우에 (최대) ED 임계치를 조정할 수 있다. 유사하게 경쟁 윈도우 크기(CWS) 전략을 고려하는 경우, (a) 일정 시간 구간 내 최대 경쟁 윈도우 크기의 비율이 특정 값을 넘거나 또는 (b) 특정 개수 이상의 연속적인 최대 경쟁 윈도우 크기가 적용된 경우에 (최대) ED 임계치를 조정할 수 있다. 단, 경쟁 윈도우 크기를 기지국이 관리하는 경우 단말의 피드백이 필요하지 않을 수 있다.
ED 임계치 적응 시기
[제안 방안 #6] 일정 시간 구간 내에서 (최대) ED 임계치 조정이 요구되는 특정
조건이 충족 되었는지 여부를
확인하고 이후 조건이 충족되면 (최대) ED 임계치 조정을 수행하는 방안
ED 임계치는 신호 전송에 직접적으로 영향을 주는 변수이므로, 지나치게 ED 임계치가 동적으로 변경하는 동작은 시스템 내에 동적인 신호 전송 (또는 간섭) 특성을 유발하게 되어 바람직하지 않다. 따라서 본 발명에서는 일정한 시간 구간을 설정하여 해당 시간 구간 내에서 (최대) ED 임계치 조정이 요구되는 특정 조건이 충족된 경우에만 ED 임계치를 변경하는 방안을 제안한다. 일 예로, 일정 시간 구간 내에 일정 크기 이상의 간섭 또는 LAA 특정 신호를 검출하면 (최대) ED 임계치를 낮추고, 반대로 일정 시간 구간 내에 일정 크기 이상의 간섭 또는 LAA 특정 신호가 검출되지 않으면 (최대) ED 임계치를 높일 수 있다. 또한 최소 유지 시간을 설정하여 ED 임계치 값이 설정되면 상기 최소 유지 시간 동안 ED 임계치를 유지하도록 동작할 수 있다.
상기 동작의 변형으로 특정 조건 (예: 일정 크기 이상의 간섭 검출 또는 특정 신호 검출 등)을 충족하면 (최대) ED 임계치를 낮추고 (또는 높이고), 이후 일정 시간 구간 동안 상기 특정 조건을 충족하지 못하면 (최대) ED 임계치를 높이는 (또는 낮추는) 동작을 고려할 수 있다.
[제안 방안 #7]
브로드캐스트
정보 (e.g.,
DMTC
구간 내)로부터 아래 중 하나의 정보를 기지국이 발견하거나 단말이 발견하여 보고한 경우 (최대) ED 임계치 조정
(1) Other
PLMN
ID
(2) 기지국이 현재 적용한 ED
임계치 보다
낮은 ED 임계치를 적용하는 기지국의 존재 유무
일 예로, 브로드캐스트 정보로써 PLMN ID를 방송하는 기술이 지원된다면, 기지국 또는 단말이 브로드캐스트 정보로부터 인터-오퍼레이터(Inter-operator)의 존재 유무를 확인하여 (최대) ED 임계치를 낮출 수 있다. 이때, (최대) ED 임계치는 상기 브로드캐스트 정보를 발견한 경우에 낮출 수 (또는 높일 수) 있고, 일정 시간 동안 상기 정보가 발견되지 않은 경우에 높일 수 (또는 낮출 수) 있다.
[제안 방안 #8] 간섭 크기 또는 신호의 수신
전력 크기와
특정 임계값을 비교하여 (최대) ED 임계치를 조정할 때, 상기 (최대) ED 임계치를 감소시키는 기준이 되는 임계값 (
)와 증가시키는 기준이 되는 임계값 (
)를 독립적으로 설정하는 방안
[제안 방안 #1] 또는 [제안 방안 #
2]와 같이 간섭 크기 또는 신호의 수신 전력 크기와 특정 임계값을 비교하여 (최대) ED 임계치를 조정하는 경우, 단일 임계값을 적용하게 되면 간섭 또는 수신 전력의 변화가 잦은 경우 (최대) ED 임계치 또한 자주 변동될 수 있다. 상기와 같이 ED 임계치가 자주 변동되는 것은 시스템에 동적인 신호 전송 특성을 유발하여 CSI 측정 등에 부정적인 영향을 줄 수 있다. 이에, 상기와 같은 핑퐁(Ping-Pong) 효과를 완화하기 위한 방안으로 히스테리시스(Hysteresis)를 설정할 수 있다. 즉, (최대) ED 임계치를 감소시키는 기준이 되는 임계값 (THLOW)와 증가시키는 기준이 되는 임계값 (THHIGH)를 독립적으로 설정할 수 있다.
도 11은 본 발명의 실시예들을 수행하는 전송장치(10) 및 수신장치(20)의 구성요소를 나타내는 블록도이다. 전송장치(10) 및 수신장치(20)는 정보 및/또는 데이터, 신호, 메시지 등을 나르는 무선 신호를 전송 또는 수신할 수 있는 RF(Radio Frequency) 유닛(13, 23)과, 무선통신 시스템 내 통신과 관련된 각종 정보를 저장하는 메모리(12, 22), 상기 RF 유닛(13, 23) 및 메모리(12, 22)등의 구성요소와 동작적으로 연결되어, 상기 구성요소를 제어하여 해당 장치가 전술한 본 발명의 실시예들 중 적어도 하나를 수행하도록 메모리(12, 22) 및/또는 RF 유닛(13,23)을 제어하도록 구성된 프로세서(11, 21)를 각각 포함한다.
메모리(12, 22)는 프로세서(11, 21)의 처리 및 제어를 위한 프로그램을 저장할 수 있고, 입/출력되는 정보를 임시 저장할 수 있다. 메모리(12, 22)가 버퍼로서 활용될 수 있다. 프로세서(11, 21)는 통상적으로 전송장치 또는 수신장치 내 각종 모듈의 전반적인 동작을 제어한다. 특히, 프로세서(11, 21)는 본 발명을 수행하기 위한 각종 제어 기능을 수행할 수 있다. 프로세서(11, 21)는 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(microprocessor), 마이크로 컴퓨터(microcomputer) 등으로도 불릴 수 있다. 프로세서(11, 21)는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어, 또는 이들의 결합에 의해 구현될 수 있다. 하드웨어를 이용하여 본 발명을 구현하는 경우에는, 본 발명을 수행하도록 구성된 ASICs(application specific integrated circuits) 또는 DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays) 등이 프로세서(11, 21)에 구비될 수 있다. 한편, 펌웨어나 소프트웨어를 이용하여 본 발명을 구현하는 경우에는 본 발명의 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등을 포함하도록 펌웨어나 소프트웨어가 구성될 수 있으며, 본 발명을 수행할 수 있도록 구성된 펌웨어 또는 소프트웨어는 프로세서(11, 21) 내에 구비되거나 메모리(12, 22)에 저장되어 프로세서(11, 21)에 의해 구동될 수 있다.
전송장치(10)의 프로세서(11)는 상기 프로세서(11) 또는 상기 프로세서(11)와 연결된 스케줄러로부터 스케줄링되어 외부로 전송될 신호 및/또는 데이터에 대하여 소정의 부호화(coding) 및 변조(modulation)를 수행한 후 RF 유닛(13)에 전송한다. 예를 들어, 프로세서(11)는 전송하고자 하는 데이터 열을 역다중화 및 채널 부호화, 스크램블링, 변조과정 등을 거쳐 K개의 레이어로 변환한다. 부호화된 데이터 열은 코드워드로 지칭되기도 하며, MAC 계층이 제공하는 데이터 블록인 전송 블록과 등가이다. 일 전송블록(transport block, TB)은 일 코드워드로 부호화되며, 각 코드워드는 하나 이상의 레이어의 형태로 수신장치에 전송되게 된다. 주파수 상향 변환을 위해 RF 유닛(13)은 오실레이터(oscillator)를 포함할 수 있다. RF 유닛(13)은 Nt개(Nt는 1보다 이상의 양의 정수)의 전송 안테나를 포함할 수 있다.
수신장치(20)의 신호 처리 과정은 전송장치(10)의 신호 처리 과정의 역으로 구성된다. 프로세서(21)의 제어 하에, 수신장치(20)의 RF 유닛(23)은 전송장치(10)에 의해 전송된 무선 신호를 수신한다. 상기 RF 유닛(23)은 Nr개의 수신 안테나를 포함할 수 있으며, 상기 RF 유닛(23)은 수신 안테나를 통해 수신된 신호 각각을 주파수 하향 변환하여(frequency down-convert) 기저대역 신호로 복원한다. RF 유닛(23)은 주파수 하향 변환을 위해 오실레이터를 포함할 수 있다. 상기 프로세서(21)는 수신 안테나를 통하여 수신된 무선 신호에 대한 복호(decoding) 및 복조(demodulation)를 수행하여, 전송장치(10)가 본래 전송하고자 했던 데이터를 복원할 수 있다.
RF 유닛(13, 23)은 하나 이상의 안테나를 구비한다. 안테나는, 프로세서(11, 21)의 제어 하에 본 발명의 일 실시예에 따라, RF 유닛(13, 23)에 의해 처리된 신호를 외부로 전송하거나, 외부로부터 무선 신호를 수신하여 RF 유닛(13, 23)으로 전달하는 기능을 수행한다. 안테나는 안테나 포트로 불리기도 한다. 각 안테나는 하나의 물리 안테나에 해당하거나 하나보다 많은 물리 안테나 요소(element)의 조합에 의해 구성될 수 있다. 각 안테나로부터 전송된 신호는 수신장치(20)에 의해 더 이상 분해될 수 없다. 해당 안테나에 대응하여 전송된 참조신호(reference signal, RS)는 수신장치(20)의 관점에서 본 안테나를 정의하며, 채널이 일 물리 안테나로부터의 단일(single) 무선 채널인지 혹은 상기 안테나를 포함하는 복수의 물리 안테나 요소(element)들로부터의 합성(composite) 채널인지에 관계없이, 상기 수신장치(20)로 하여금 상기 안테나에 대한 채널 추정을 가능하게 한다. 즉, 안테나는 상기 안테나 상의 심볼을 전달하는 채널이 상기 동일 안테나 상의 다른 심볼이 전달되는 상기 채널로부터 도출될 수 있도록 정의된다. 복수의 안테나를 이용하여 데이터를 송수신하는 다중 입출력(Multi-Input Multi-Output, MIMO) 기능을 지원하는 RF 유닛의 경우에는 2개 이상의 안테나와 연결될 수 있다.
본 발명의 실시예들에 있어서, 단말 또는 UE는 상향링크에서는 전송장치(10)로 동작하고, 하향링크에서는 수신장치(20)로 동작한다. 본 발명의 실시예들에 있어서, 기지국 또는 eNB는 상향링크에서는 수신장치(20)로 동작하고, 하향링크에서는 전송장치(10)로 동작한다.
상기 전송장치 및/또는 상기 수신장치는 앞서 설명한 본 발명의 실시예들 중 적어도 하나 또는 둘 이상의 실시예들 또는 제안들의 조합을 수행할 수 있다.
상술한 바와 같이 개시된 본 발명의 바람직한 실시예들에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
본 발명은 비면허 대역에서 동작하는 단말, 릴레이, 기지국 등과 같은 무선 통신 장치에 사용될 수 있다.
Claims (12)
- 비면허 대역(unlicensed band)에서 기지국이 신호를 전송하는 방법에 있어서,다른 시스템의 LAA(licensed assisted access) 관련 신호에 대해 기설정된 임계값 이상의 수신 전력이 검출되는지를 판단하고,판단 결과에 따라 에너지 검출 임계치(energy detection threshold)를 제1 값 또는 상기 제1값과는 상이한 제2 값으로 설정하고,비면허 대역의 반송파를 센싱하여 검출된 전력이 상기 판단 결과에 따라 설정된 에너지 검출 임계치 미만인 경우, 하향링크 신호를 송신하는, 신호 전송 방법.
- 제 1항에 있어서,상기 다른 시스템의 LAA 관련 신호는,상기 다른 시스템에서 전송한 DRS(discovery reference signal), CRS(cell-specific reference signal), DM-RS(demodulation - reference signal), CSI-RS(channel state information - reference signal), 동기 신호(synchronization signal) 중 적어도 하나 이상인, 신호 전송 방법.
- 제 2항에 있어서,상기 다른 시스템의 LAA 관련 신호가 상기 다른 시스템에서 전송된 CRS인 경우,상기 기지국은 안테나 포트 #0에서 전송된 CRS에 대해 상기 임계값 이상의 수신 전력이 검출되는지를 판단하는, 신호 전송 방법.
- 제 2항이 있어서,상기 다른 시스템의 LAA 관련 신호가 상기 다른 시스템에서 전송된 동기 신호인 경우,상기 기지국은 서브프레임 인덱스 #0 및 #5 중 하나 이상에서 전송된 동기 신호에 대해 상기 임계값 이상의 수신 전력이 검출되는지를 판단하는, 신호 전송 방법.
- 제 1항에 있어서,상기 다른 시스템의 LAA 관련 신호에 대해 상기 임계값 이상의 수신 전력이 검출된다고 판단되는 경우, 상기 에너지 검출 임계치를 제1 값으로 설정하고,상기 다른 시스템의 LAA 관련 신호에 대해 상기 임계값 미만의 수신 전력이 검출된다고 판단되는 경우, 상기 에너지 검출 임계치를 제2 값으로 설정하되,상기 제1 값은 상기 제2 값보다 작은 값인, 신호 전송 방법.
- 제 1항에 있어서,상기 기지국은 미리 설정된 시간 구간 동안에만 상기 다른 시스템의 LAA 관련 신호에 대해 상기 임계값 이상의 수신 전력이 검출되는지를 판단하는, 신호 전송 방법.
- 제 1항에 있어서,상기 판단 결과에 따라 상기 에너지 검출 임계치가 제1 값 또는 제2 값으로 설정되면, 상기 기지국은 설정된 에너지 검출 임계치를 일정 시간 구간 동안 유지하는, 신호 전송 방법.
- 비면허 대역(unlicensed band)에서 신호 전송을 수행하도록 구성된 기지국 장치에 있어서,무선 주파수(radio frequency, RF) 유닛; 및상기 RF 유닛을 제어하도록 구성된 프로세서를 포함하고,상기 프로세서는:다른 시스템의 LAA(licensed assisted access) 관련 신호에 대해 기설정된 임계값 이상의 수신 전력이 검출되는지를 판단하고,판단 결과에 따라 에너지 검출 임계치(energy detection threshold)를 제1 값 또는 상기 제1 값과는 상이한 제2 값으로 설정하고,비면허 대역의 반송파를 센싱하여 검출된 전력이 상기 판단 결과에 따라 설정된 에너지 검출 임계치 미만인 경우, 하향링크 신호를 송신하도록 구성되는, 기지국 장치.
- 제 8항에 있어서,상기 다른 시스템의 LAA 관련 신호는,상기 다른 시스템에서 전송한 DRS(discovery reference signal), CRS(cell-specific reference signal), DM-RS(demodulation - reference signal), CSI-RS(channel state information - reference signal), 동기 신호(synchronization signal) 중 적어도 하나 이상인, 기지국 장치.
- 제 9항에 있어서,상기 다른 시스템의 LAA 관련 신호가 상기 다른 시스템에서 전송된 CRS인 경우,상기 프로세서는 안테나 포트 #0에서 전송된 CRS에 대해 상기 임계값 이상의 수신 전력이 검출되는지를 판단하는, 기지국 장치.
- 제 9항이 있어서,상기 다른 시스템의 LAA 관련 신호가 상기 다른 시스템에서 전송된 동기 신호인 경우,상기 프로세서는 서브프레임 인덱스 #0 및 #5 중 하나 이상에서 전송된 동기 신호에 대해 상기 임계값 이상의 수신 전력이 검출되는지를 판단하는, 기지국 장치.
- 제 9항에 있어서,상기 프로세서는 상기 다른 시스템의 LAA 관련 신호에 대해 상기 임계값 이상의 수신 전력이 검출된다고 판단되는 경우, 상기 에너지 검출 임계치를 제1 값으로 설정하고, 상기 다른 시스템의 LAA 관련 신호에 대해 상기 임계값 미만의 수신 전력이 검출된다고 판단되는 경우, 상기 에너지 검출 임계치를 제2 값으로 설정하되,상기 제1 값은 상기 제2 값보다 작은 값인, 기지국 장치.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562222253P | 2015-09-23 | 2015-09-23 | |
US62/222,253 | 2015-09-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017052183A1 true WO2017052183A1 (ko) | 2017-03-30 |
Family
ID=58386471
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/010520 WO2017052183A1 (ko) | 2015-09-23 | 2016-09-21 | 비면허 대역에서 신호를 전송하는 방법 및 이를 위한 장치 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017052183A1 (ko) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110049558A (zh) * | 2018-01-17 | 2019-07-23 | 上海朗帛通信技术有限公司 | 一种用于无线通信的通信节点中的方法和装置 |
WO2019216704A1 (ko) * | 2018-05-10 | 2019-11-14 | 삼성전자 주식회사 | 무선 통신 시스템에서 채널 접속 방법 및 장치 |
CN112073101A (zh) * | 2018-02-07 | 2020-12-11 | 上海朗帛通信技术有限公司 | 一种基站、用户设备中的用于无线通信的方法和装置 |
CN112703813A (zh) * | 2018-09-13 | 2021-04-23 | 索尼公司 | 用于增强型通信的方法和设备 |
WO2022029365A1 (en) * | 2020-08-03 | 2022-02-10 | Nokia Technologies Oy | Performing listen before talk (lbt) for a sub-channel |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130017794A1 (en) * | 2011-07-15 | 2013-01-17 | Cisco Technology, Inc. | Mitigating Effects of Identified Interference with Adaptive CCA Threshold |
US20140247820A1 (en) * | 2013-02-13 | 2014-09-04 | Magnolia Broadband Inc. | Method and system for selective attenuation of preamble reception in co-located wi fi access points |
WO2015103632A1 (en) * | 2014-01-06 | 2015-07-09 | Intel IP Corporation | Systems, methods and devices for multiple signal co-existence in multiple-use frequency spectrum |
-
2016
- 2016-09-21 WO PCT/KR2016/010520 patent/WO2017052183A1/ko active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130017794A1 (en) * | 2011-07-15 | 2013-01-17 | Cisco Technology, Inc. | Mitigating Effects of Identified Interference with Adaptive CCA Threshold |
US20140247820A1 (en) * | 2013-02-13 | 2014-09-04 | Magnolia Broadband Inc. | Method and system for selective attenuation of preamble reception in co-located wi fi access points |
WO2015103632A1 (en) * | 2014-01-06 | 2015-07-09 | Intel IP Corporation | Systems, methods and devices for multiple signal co-existence in multiple-use frequency spectrum |
Non-Patent Citations (2)
Title |
---|
BROADCOM CORPORATION: "Alternatives for LAA LBT Energy Detection Threshold Adaptation", R1-152939, 3GPP TSG RAN WG1 MEETING #81, 16 May 2015 (2015-05-16), Fukuoka, Japan, XP050970032 * |
SAMSUNG: "CCA Threshold and Transmission Power for LAA", R1-154139, 3GPP TSG RAN WG1 #82, 15 August 2015 (2015-08-15), Beijing, China, XP050994270 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110049558A (zh) * | 2018-01-17 | 2019-07-23 | 上海朗帛通信技术有限公司 | 一种用于无线通信的通信节点中的方法和装置 |
CN110049558B (zh) * | 2018-01-17 | 2023-04-18 | 上海朗帛通信技术有限公司 | 一种用于无线通信的通信节点中的方法和装置 |
CN112073101A (zh) * | 2018-02-07 | 2020-12-11 | 上海朗帛通信技术有限公司 | 一种基站、用户设备中的用于无线通信的方法和装置 |
CN112073101B (zh) * | 2018-02-07 | 2024-05-28 | 上海朗帛通信技术有限公司 | 一种基站、用户设备中的用于无线通信的方法和装置 |
WO2019216704A1 (ko) * | 2018-05-10 | 2019-11-14 | 삼성전자 주식회사 | 무선 통신 시스템에서 채널 접속 방법 및 장치 |
US11343682B2 (en) | 2018-05-10 | 2022-05-24 | Samsung Electronics Co., Ltd | Method and apparatus for channel access in wireless communication system |
CN112703813A (zh) * | 2018-09-13 | 2021-04-23 | 索尼公司 | 用于增强型通信的方法和设备 |
CN112703813B (zh) * | 2018-09-13 | 2023-11-21 | 索尼集团公司 | 用于增强型通信的方法和设备 |
WO2022029365A1 (en) * | 2020-08-03 | 2022-02-10 | Nokia Technologies Oy | Performing listen before talk (lbt) for a sub-channel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016105121A1 (ko) | 무선 통신 시스템에서 채널 상태 보고 방법 및 이를 위한 장치 | |
WO2018203732A1 (ko) | 무선 통신 시스템에서 상향링크 신호를 전송하기 위한 방법 및 이를 위한 장치 | |
WO2017135745A1 (ko) | 무선 통신 시스템에서 상향링크 제어 정보의 맵핑, 전송, 또는 수신 방법 및 이를 위한 장치 | |
WO2016148450A1 (ko) | 무선 통신 시스템에서 채널 상태 보고 방법 및 이를 위한 장치 | |
WO2017078338A1 (ko) | 무선 통신 시스템에서 채널 상태 보고 방법 및 이를 위한 장치 | |
WO2018088857A1 (ko) | 무선 통신 시스템에서 상향링크 신호를 전송하기 위한 방법 및 이를 위한 장치 | |
WO2019156466A1 (ko) | 무선 통신 시스템에서 신호를 송신 또는 수신하는 방법 및 이를 위한 장치 | |
WO2018038418A1 (ko) | 무선 통신 시스템에서 상향링크 전송을 위한 방법 및 이를 위한 장치 | |
WO2017078326A1 (ko) | 무선 통신 시스템에서 상향링크 제어 채널 전송 방법 및 이를 위한 장치 | |
WO2018128340A1 (ko) | 무선 통신 시스템에서 채널 상태 보고를 위한 방법 및 이를 위한 장치 | |
WO2016144050A1 (ko) | 무선 통신 시스템에서 신호를 전송하기 위한 방법 및 이를 위한 장치 | |
WO2016021957A1 (ko) | Ack/nack 피드백 방법 및 사용자기기 | |
WO2016182369A1 (ko) | 무선 통신 시스템에서 채널 센싱을 위한 방법 및 이를 위한 장치 | |
WO2018199681A1 (ko) | 무선 통신 시스템에서 채널 및 간섭 측정을 위한 방법 및 이를 위한 장치 | |
WO2016163807A1 (ko) | 무선 통신 시스템에서 간섭 하향링크 제어 정보를 수신하기 위한 방법 및 이를 위한 장치 | |
WO2016122197A1 (ko) | 상향링크 신호를 전송하기 위한 방법 및 이를 위한 장치 | |
WO2013141595A1 (ko) | 상향링크 신호 전송 또는 수신 방법 | |
WO2013055174A2 (ko) | 상향링크 신호 전송방법 및 사용자기기와, 상향링크 신호 수신방법 및 기지국 | |
WO2018012774A1 (ko) | 무선 통신 시스템에서 송수신 방법 및 이를 위한 장치 | |
WO2017026777A1 (ko) | 무선 통신 시스템에서 하향링크 채널 수신 또는 상향링크 채널 전송 방법 및 이를 위한 장치 | |
WO2013129843A1 (ko) | 채널 상태 정보 보고 전송 방법 및 사용자기기와, 채널 상태 정보 보고 수신 방법 및 기지국 | |
WO2016072763A1 (ko) | 비면허 대역-부요소 반송파에서의 데이터 전송을 위한 방법 및 이를 위한 장치 | |
WO2018203624A1 (ko) | 무선 통신 시스템에서 참조 신호를 수신하기 위한 방법 및 이를 위한 장치 | |
WO2016190631A1 (ko) | 무선 통신 시스템에서 채널 센싱 및 그에 따른 전송을 위한 방법 및 이를 위한 장치 | |
WO2013043026A2 (ko) | 상향링크 신호 전송방법 및 사용자기기와, 상향링크 신호 수신방법 및 기지국 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16848909 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16848909 Country of ref document: EP Kind code of ref document: A1 |