WO2017051831A1 - Gel for producing low-refractive-index film, production method for gel for producing low-refractive-index film, coating material for producing low-refractive-index film, production method for coating material for producing low-refractive-index film, production method for laminate film, and production method for image display device - Google Patents

Gel for producing low-refractive-index film, production method for gel for producing low-refractive-index film, coating material for producing low-refractive-index film, production method for coating material for producing low-refractive-index film, production method for laminate film, and production method for image display device Download PDF

Info

Publication number
WO2017051831A1
WO2017051831A1 PCT/JP2016/077903 JP2016077903W WO2017051831A1 WO 2017051831 A1 WO2017051831 A1 WO 2017051831A1 JP 2016077903 W JP2016077903 W JP 2016077903W WO 2017051831 A1 WO2017051831 A1 WO 2017051831A1
Authority
WO
WIPO (PCT)
Prior art keywords
gel
refractive index
low refractive
index film
solvent
Prior art date
Application number
PCT/JP2016/077903
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 服部
裕宗 春田
細川 和人
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN201680053884.4A priority Critical patent/CN108027454A/en
Publication of WO2017051831A1 publication Critical patent/WO2017051831A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials

Definitions

  • the present invention relates to a gel for producing a low refractive index film, a method for producing a gel for producing a low refractive index film, a paint for producing a low refractive index film, a method for producing a paint for producing a low refractive index film, a method for producing a laminated film, and an image display.
  • the present invention relates to a device manufacturing method.
  • silanol porous body sol solutions that can form void structures using silica compound materials (silicon compound materials) as raw materials.
  • silica compound materials silicon compound materials
  • a pulverized sol solution prepared by pulverizing the gelled silica compound is prepared and coated to form a void structure.
  • the film strength of the silanol porous body is remarkably lowered, and it is difficult to easily obtain the silanol porous body industrially.
  • a lens antireflection layer see, for example, Patent Documents 1 to 4).
  • a high temperature of 150 ° C. or higher is baked for a long time.
  • a gel using tetraethoxysilane (TEOS) as a raw material is inferior in flexibility, There was a problem that a porous body could not be formed on a soft substrate.
  • TEOS tetraethoxysilane
  • there is an application example of a void layer in which no firing treatment is performed for example, see Non-Patent Document 1).
  • the silanol pulverized sol still contains a large amount of residual silanol groups, and no firing treatment is performed after the formation of the void layer, so that the resulting porous body has poor film strength and cannot impart impact resistance. There was a problem.
  • the refractive index of the void layer is as low as possible, and specifically, it is desirable that it is 1.25 or less.
  • the sol solution for producing the void layer (low refractive index film) is produced using, for example, a gel obtained by gelling a silica compound as a raw material.
  • the solvent for producing this gel is preferably a high boiling point solvent for the progress of the gelation reaction.
  • a high boiling point solvent remains in a large amount in the sol solution, it is difficult to remove the high boiling point solvent when the void layer (low refractive index film) is produced by coating and drying the sol solution thereafter.
  • a high boiling point solvent remains in the void layer (low refractive index film)
  • the same problem is not limited to gels of silica compounds, but also exists in gels of other materials.
  • the present invention is a low refractive index film manufacturing gel capable of manufacturing a low refractive index film with a small residual amount of the gel manufacturing solvent in the gel, a method for producing a low refractive index film manufacturing gel,
  • An object of the present invention is to provide a coating material for producing a low refractive index film, a method for producing a coating material for producing a low refractive index film, a method for producing a laminated film, and a method for producing an image display device.
  • the gel for producing a low refractive index film of the present invention is a gel for use in producing a low refractive index film, and the residual amount of the solvent for producing the gel in the gel is 0.5 g. / Ml or less, and the refractive index of the manufactured low refractive index film is 1.25 or less.
  • the method for producing a gel for producing a low refractive index film of the present invention comprises a gelation step of gelling the gel raw material in the gel production solvent, and the gel production solvent in the gel as another solvent. It is a manufacturing method of the said gel for low refractive index film
  • the paint for producing a low refractive index film of the present invention is characterized by comprising a pulverized product of the gel for producing a low refractive index film of the present invention and a solvent for producing a low refractive index film.
  • the method for producing a coating material for producing a low refractive index film according to the present invention comprises: It is a manufacturing method of the coating material for low-refractive-index film manufacture of invention.
  • the method for producing a laminated film of the present invention is a method for producing a laminated film including a step of forming a low refractive index film on a substrate, and the step of forming the low refractive index film comprises the step of forming the low refractive index film of the present invention.
  • the method for producing an image display device of the present invention is a method for producing an image display device including a laminated film as an optical member, wherein the laminated film is produced by the method for producing a laminated film of the present invention. To do.
  • the gel for producing a low refractive index film of the present invention produces a low refractive index film having a refractive index of 1.25 or less because the residual amount of the gel production solvent in the gel is as low as 0.5 g / ml or less. It is possible.
  • Such a gel for producing a low refractive index film of the present invention can be produced, for example, by the method for producing a gel for producing a low refractive index film of the present invention.
  • the gel for producing a low refractive index film of the present invention is produced, for example, by using the gel for producing a low refractive index film of the present invention by using the method for producing the paint for producing a low refractive index film of the present invention. Can do.
  • the coating material for producing a low refractive index film of the present invention is not particularly limited. For example, it can be used in the method for producing a laminated film and the method for producing an image display device of the present invention.
  • the low refractive index film produced using the gel for producing the low refractive index film of the present invention or the coating material for producing the low refractive index film of the present invention may be hereinafter referred to as “low refractive index film of the present invention”. .
  • the low refractive index film of the present invention can realize a low refractive index of 1.25 or less by having voids. Therefore, hereinafter, the low refractive index film of the present invention may be referred to as “the void layer of the present invention” or simply “the void layer”.
  • FIG. 1 is a process cross-sectional view schematically showing an example of a method for forming a void layer (low refractive index film) 20 on a substrate 10 using the coating material of the present invention.
  • FIG. 2 is a diagram schematically showing a part of a process for producing a void layer using the coating material of the present invention and an example of an apparatus used therefor.
  • FIG. 3 is a diagram schematically showing a part of a process for producing a void layer using the coating material of the present invention and another example of an apparatus used therefor.
  • the inventors of the present invention have studied various methods for producing a low refractive index film having a refractive index of 1.25 or less. As a result, the final amount of the solvent for gel production in the gel as a raw material is very small. It has been found that this greatly affects the refractive index of the low refractive index film obtained. In addition, in order to produce a low refractive index film having a refractive index of 1.25 or less, the inventors of the present invention have extremely set the residual amount of the gel production solvent in the gel to 0.5 g / ml or less. The inventors have found that it is effective and have reached the present invention. So far, the low refractive index film has been formed by high-temperature baking treatment at 200 ° C.
  • the reason (mechanism) for producing a film having a low refractive index by reducing the residual amount of the solvent for gel production in the gel is unknown, but for example, it is presumed as follows. That is, as described above, the solvent for gel production is preferably a high boiling point solvent (for example, DMSO [dimethyl sulfoxide] or the like) for the progress of the gelation reaction. Then, when a low refractive index film is produced by applying and drying the sol solution produced from the gel, at a normal drying temperature and drying time (not particularly limited, for example, at 100 ° C. for 1 minute, etc.) It is difficult to completely remove the high boiling solvent.
  • a high boiling point solvent for example, DMSO [dimethyl sulfoxide] or the like
  • the residual amount of the solvent for producing the gel in the gel is 0.5 g / ml or less, for example, 0.2 g / ml or less, 0.15 g / ml or less, 0.05 g / ml or less. 0.03 g / ml or less, or 0.02 g / ml or less.
  • the lower limit value of the remaining amount of the solvent for gel production in the gel is not particularly limited, and is, for example, a value exceeding 0, but ideally 0.
  • the residual amount of the solvent for gel production in the gel can be measured, for example, as follows.
  • the gel containing the solvent for gel production is immersed in another solvent that can be mixed with the solvent for gel production at an arbitrary ratio for 3 hours or more. Thereafter, the content (g / ml) of the solvent for gel production in the other solvent is measured by gas chromatography. The measured value is estimated to be equal to the remaining amount of the solvent for gel production in the gel at that time. That is, by immersing the gel in another solvent that can be mixed with the gel production solvent in an arbitrary ratio for 3 hours or more, the remaining amount of the gel production solvent in the gel and the other solvent It is presumed that the content of the solvent for gel production in it reached equilibrium and became equal.
  • the “solvent” for example, a solvent for producing a gel, a solvent for producing a low refractive index film, etc.
  • the “solvent” may not dissolve the gel or a pulverized product thereof. Etc. may be dispersed or precipitated in the solvent.
  • the gel production solvent has a boiling point of 130 ° C. or higher, for example.
  • the gel production solvent is, for example, a water-soluble solvent.
  • the “water-soluble solvent” refers to a solvent that can be mixed with water at an arbitrary ratio.
  • the gel may be, for example, an inorganic gel.
  • the gel may contain at least one element selected from the group consisting of Si, Mg, Al, Ti, Zn, and Zr, for example.
  • the gel may be, for example, a gel silicon compound.
  • the gel silicon compound may be a gel silicon compound obtained from a silicon compound containing at least a trifunctional or lower saturated bond functional group.
  • the low refractive index film production gel of the present invention may be, for example, a low refractive index film production gel for producing the low refractive index film on a substrate.
  • the substrate may be, for example, a resin film.
  • the method for producing a gel for producing a low refractive index film according to the present invention comprises a gelation step of gelling the gel raw material in the gel production solvent, and a gel production solvent in the gel. And a solvent substitution step of substituting with another solvent.
  • the other solvent is, for example, the low refractive index film manufacturing solvent.
  • the other solvent is, for example, a solvent capable of dissolving the solvent for gel production.
  • the other solvent is more preferably a solvent that can be mixed with the solvent for gel production at an arbitrary ratio.
  • the method for producing a gel for producing a low refractive index film of the present invention preferably further includes a gel dividing step of dividing the gel lump into a plurality of pieces prior to the solvent replacement step.
  • the gel is more preferably divided into a three-dimensional structure having a long side of 15 cm or less.
  • the method for producing a gel for producing a low refractive index film of the present invention may further include an aging step for aging the gel in the solvent for gel production prior to the solvent replacement step. Moreover, you may perform the said gel division
  • the coating material for producing a low refractive index film of the present invention is characterized by containing the pulverized product of the gel for producing a low refractive index film of the present invention and a solvent for producing a low refractive index film.
  • the solvent for producing the low refractive index film may be, for example, a catalyst capable of dissolving a gel production catalyst, an alcohol component produced by a condensation reaction, water, etc., and an arbitrary ratio with the gel production solvent. Or a solvent that can be mixed in the above.
  • the gel may be, for example, a gel silicon compound obtained from a silicon compound containing at least a trifunctional or lower saturated bond functional group.
  • the pulverized product of the gel may contain residual silanol groups.
  • the paint for producing a low refractive index film of the present invention may be, for example, a silicone sol paint for chemically bonding the pulverized products.
  • the silicon compound may be, for example, a compound represented by the following formula (2). In formula (2), X is 2 or 3, R 1 and R 2 are each a linear or branched alkyl group, R 1 and R 2 may be the same or different, R 1 s may be the same as or different from each other when X is 2. R 2 may be the same as or different from each other.
  • the volume average particle diameter of the gel pulverized product may be, for example, 0.05 to 2.00 ⁇ m.
  • the paint for producing a low refractive index film of the present invention may contain, for example, a catalyst for chemically bonding the pulverized products.
  • the method for producing a coating material for producing a low refractive index film according to the present invention comprises, as described above, a grinding step for grinding the gel, and a mixing step for mixing the ground product of the gel and the solvent for producing the low refractive index film.
  • the pulverization step of pulverizing the gel may be performed, for example, in the low refractive index film manufacturing solvent.
  • the low refractive index film-producing solvent is, for example, a solvent capable of dissolving the gel-producing catalyst, the alcohol component produced by the condensation reaction, water, etc., and is mixed with the gel-producing solvent at an arbitrary ratio. Possible solvents are more preferred.
  • the method for producing a laminated film of the present invention comprises: a coating process for coating the coating material for producing a low refractive index film of the present invention on a substrate; and the coated coating material for producing a low refractive index film. And a drying step for drying.
  • the method for producing a laminated film of the present invention may further include a crosslinking reaction step in which the pulverized product is subjected to a crosslinking reaction.
  • the coating material for producing a low refractive index film may contain a catalyst for chemically bonding the pulverized products, and the crosslinking reaction may be a crosslinking reaction by the catalyst.
  • the low refractive index film (void layer) formed by the method for producing a laminated film of the present invention has a chemical structure in which one type or plural types of structural units forming a fine void structure are chemically coupled to each other. It may be combined with.
  • the bonds between the constituent units constituting the low refractive index film may include hydrogen bonds or covalent bonds.
  • the structural unit forming the void layer may have a structure having at least one of a particle shape, a fiber shape, and a flat plate shape, for example.
  • the particulate and flat structural units may be made of an inorganic substance, for example.
  • the constituent element of the particulate structural unit may include at least one element selected from the group consisting of Si, Mg, Al, Ti, Zn, and Zr, for example.
  • the structure (constituent unit) forming the particulate form may be a real particle or a hollow particle.
  • the fibrous structural unit is, for example, a nanofiber having a diameter of nano-size, and specifically includes cellulose nanofiber and alumina nanofiber.
  • the plate-like structural unit include nanoclay, and specifically, nano-sized bentonite (for example, Kunipia F [trade name]) and the like.
  • the fibrous structural unit is not particularly limited, but for example, from the group consisting of carbon nanofiber, cellulose nanofiber, alumina nanofiber, chitin nanofiber, chitosan nanofiber, polymer nanofiber, glass nanofiber, and silica nanofiber. It may be at least one fibrous material selected.
  • one type or a plurality of types of structural units forming the fine void structure are chemically bonded directly or indirectly through catalytic action as described above. It may contain the part which is.
  • the void layer in the laminated film of the present invention for example, as described above, at least a part of the one type or a plurality of types of structural units may be chemically bonded via a catalytic action. In this case, for example, even if the structural units are in contact with each other, there may be a portion that is not chemically bonded.
  • the structural units are “indirectly bonded” means that the structural units are bonded to each other through a small amount of a binder component equal to or less than the structural unit amount.
  • the structural units are “directly bonded” means that the structural units are directly bonded without using a binder component or the like.
  • the shape of “particles” is not particularly limited, and may be, for example, spherical or non-spherical.
  • the pulverized particles may be, for example, sol-gel bead-like particles, or may be nanoparticles (hollow nanosilica / nanoballoon particles), nanofibers, or the like as described above.
  • the material for the low refractive index film-producing gel of the present invention (hereinafter sometimes referred to as “the gel of the present invention” or simply “gel”) and the pulverized product thereof are gel-like.
  • a silicon compound typically silica
  • the material of the low refractive index film (void layer) of the present invention is a silicon compound (typically silica)
  • silicon compound typically silica
  • the material for the low refractive index film manufacturing gel, the low refractive index film manufacturing paint, and the low refractive index film (void layer) of the present invention is arbitrary and is not limited to the silicon compound alone.
  • the material is other than a silicon compound, the following explanation of the silicon compound can be cited unless there is a particular circumstance.
  • the material of the coating material for producing a low refractive index film of the present invention (hereinafter sometimes simply referred to as “the coating material of the present invention”) is not particularly limited as described above, but is optional.
  • a paint containing a pulverized product of a gel-like silicon compound obtained from a silicon compound containing a saturated bond functional group, a solvent, the pulverized product containing residual silanol groups, and chemically bonding the pulverized products to each other It may be.
  • such a paint may be referred to as “the silicone sol paint of the present invention” or simply “silicone sol paint”.
  • “including a saturated bond functional group of 3 functional groups or less” means that the silicon compound has 3 or less functional groups, and these functional groups are saturated bonded to silicon (Si). Means that.
  • the method for producing a coating material of the present invention is, for example, the method for producing the silicone sol coating material of the present invention, in which a pulverized product and dispersion of a gel-like silicon compound obtained from a silicon compound containing a saturated bond functional group having at least three functional groups or less.
  • the process of mixing with a medium may be included.
  • the paint of the present invention can be used for the production of the low refractive index film (void layer, typically a silicone porous body) of the present invention having the same function (low refractive property) as the air layer.
  • the paint of the present invention includes, for example, a pulverized product of the gel-like silicon compound, and the pulverized product has the three-dimensional structure of the uncrushed gel-like silicon compound destroyed, and the uncrushed gel-like silicon compound. A new three-dimensional structure different from that can be formed. For this reason, for example, the coating film (silicone porous body precursor) formed using the coating material has a new pore structure (newly formed) that cannot be obtained by the layer formed using the unground gelatinous silicon compound.
  • a layer in which a void structure is formed thereby, the layer can exhibit the same function as the air layer (for example, the same low refractive index).
  • the pulverized product contains residual silanol groups
  • the pulverized product is formed after a new three-dimensional structure is formed as the coating film (precursor of silicone porous material).
  • the coating film precursor of silicone porous material.
  • the coating material of the present invention is very useful, for example, in the production of the low refractive index film (porous structure) that can be used as a substitute for the air layer.
  • the air layer for example, it is necessary to form an air layer between the members by stacking the members with a gap provided therebetween via a spacer or the like.
  • the silicone porous body formed using the coating material of the present invention can exhibit the same function as the air layer only by disposing it at the target site. Therefore, as described above, functions similar to the air layer can be imparted to various objects more easily and simply than forming the air layer.
  • the paint of the present invention can also be referred to as, for example, a paint for forming a low refractive index film or a paint for forming a low refractive layer.
  • the paint of the present invention contains a pulverized product of the gel of the present invention.
  • the volume average particle diameter of the pulverized product is not particularly limited, and the lower limit thereof is, for example, 0.05 ⁇ m or more, 0.10 ⁇ m or more, 0.20 ⁇ m or more, 0.40 ⁇ m or more,
  • the upper limit is, for example, 2.00 ⁇ m or less, 1.50 ⁇ m or less, 1.00 ⁇ m or less, and the ranges thereof are, for example, 0.05 ⁇ m to 2.00 ⁇ m, 0.20 ⁇ m to 1.50 ⁇ m, 0.40 ⁇ m to 1. 00 ⁇ m.
  • the volume average particle diameter indicates a particle size variation of the pulverized product in the paint of the present invention.
  • the particle size distribution can be measured by, for example, a particle size distribution evaluation apparatus such as a dynamic light scattering method or a laser diffraction method, and an electron microscope such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). .
  • a particle size distribution evaluation apparatus such as a dynamic light scattering method or a laser diffraction method
  • an electron microscope such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM).
  • the particle size distribution of the pulverized product is not particularly limited.
  • particles having a particle size of 0.4 ⁇ m to 1 ⁇ m are 50 to 99.9 wt%, 80 to 99.8 wt%, It is 90 to 99.7% by weight, or particles having a particle size of 1 ⁇ m to 2 ⁇ m are 0.1 to 50% by weight, 0.2 to 20% by weight, and 0.3 to 10% by weight.
  • the said particle size distribution shows the particle size variation of the said ground material in the coating material of this invention.
  • the particle size distribution can be measured by, for example, a particle size distribution evaluation apparatus or an electron microscope.
  • the silicon compound is, for example, a compound represented by the following formula (2).
  • R 1 and R 2 are each a linear or branched alkyl group, R 1 and R 2 may be the same or different, R 1 s may be the same as or different from each other when X is 2. R 2 may be the same as or different from each other.
  • the X and R 1 are, for example, the same as X and R 1 in the formula (1) described later.
  • the R 2 is, for example, can be exemplified for R 1 is incorporated in the formula (1) described later.
  • the silicon compound represented by the formula (2) include a compound represented by the following formula (2 ′) in which X is 3.
  • R 1 and R 2 are the same as those in the formula (2), respectively.
  • the silicon compound is trimethoxy (methyl) silane (hereinafter also referred to as “MTMS”).
  • the concentration of the pulverized product of the gel of the present invention in the solvent (dispersion medium) is not particularly limited, and is, for example, 0.3 to 50% (v / v), 0.5 to 30%. (V / v), 1.0 to 10% (v / v).
  • concentration of the pulverized product is too high, for example, the fluidity of the sol solution is remarkably lowered, and there is a possibility of generating aggregates and coating streaks during coating.
  • the concentration of the pulverized product is too low, for example, not only does it take a considerable time to dry the solvent, but also the residual solvent immediately after drying increases, so the porosity may decrease. .
  • the silicon atoms contained are preferably siloxane bonded.
  • the proportion of unbonded silicon atoms (that is, residual silanol) in the total silicon atoms contained in the paint is, for example, less than 50%, 30% or less, or 15% or less.
  • the physical properties of the paint of the present invention are not particularly limited.
  • the shear viscosity of the paint is, for example, a viscosity of 100 cPa ⁇ s or less, a viscosity of 10 cPa ⁇ s or less, and a viscosity of 1 cPa ⁇ s or less at a shear rate of 10001 / s. If the shear viscosity is too high, for example, coating streaks may occur, and problems such as a decrease in the transfer rate of gravure coating may be observed. On the other hand, when the shear viscosity is too low, for example, the wet coating thickness at the time of coating cannot be increased, and a desired thickness may not be obtained after drying.
  • the solvent for producing the low refractive index film (hereinafter also referred to as “coating solvent”) is not particularly limited, and examples thereof include a grinding solvent described later.
  • the coating solvent include organic solvents having a boiling point of 130 ° C. or lower. Specific examples include IPA [isopropyl alcohol], ethanol, methanol, n-butanol, 2-butanol, isobutyl alcohol and the like.
  • the paint of the present invention is, for example, the sol-like pulverized material dispersed in the solvent, it is also referred to as “sol particle liquid”, for example.
  • the coating material of the present invention can continuously form a void layer having a film strength of a certain level or more by performing chemical crosslinking by a bonding step after coating and drying on a substrate, for example.
  • “sol” means that the three-dimensional structure of the gel is pulverized so that the pulverized product (that is, silica sol particles having a nano three-dimensional structure retaining a part of the void structure) is dispersed in the solvent. The state which shows fluidity.
  • the method for producing a paint of the present invention includes a step of mixing the pulverized product of the gel for producing a low refractive index film of the present invention and the solvent for producing a low refractive index film.
  • the mixing step may be, for example, a step of mixing a pulverized product of a gel-like silicon compound obtained from a silicon compound containing a saturated bond functional group having at least three functional groups and a dispersion medium.
  • the pulverized product of the gel-like silicon compound can be obtained from the gel-like silicon compound by, for example, a pulverization step described later.
  • the said gel-like silicon compound can also be called the 1st coating material raw material of the coating material of this invention, for example.
  • the pulverized product of the gel-like silicon compound can be obtained, for example, from the gel-like silicon compound after the aging treatment in which the aging step described later is performed by a pulverizing step described later.
  • the said gel-like silicon compound after the said aging treatment can also be called the 2nd coating material raw material of the coating material of this invention, for example.
  • the gelation step includes, for example, gelling a silicon compound containing at least a trifunctional or lower saturated bond functional group in a solvent to obtain a gel silicon compound (first paint raw material). It may be a process of generating.
  • the gelation step is, for example, a step of gelling the monomer silicon compound by a dehydration condensation reaction in the presence of a dehydration condensation catalyst, whereby a gel-like silicon compound is obtained.
  • the gel-like silicon compound has a residual silanol group, and the residual silanol group is appropriately adjusted according to a chemical bond between pulverized products of the gel-like silicon compound described later. Is preferred.
  • the silicon compound is not particularly limited as long as it is gelled by a dehydration condensation reaction.
  • the silicon compounds are bonded.
  • the bond between the silicon compounds is, for example, a hydrogen bond or an intermolecular force bond.
  • Examples of the silicon compound include a silicon compound represented by the following formula (1). Since the silicon compound of the following formula (1) has a hydroxyl group, between the silicon compounds of the following formula (1), for example, a hydrogen bond or an intermolecular force bond is possible via each hydroxyl group.
  • X is 2, 3 or 4
  • R 1 is a linear or branched alkyl group.
  • the carbon number of R 1 is, for example, 1-6, 1-4, 1-2.
  • Examples of the linear alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group.
  • Examples of the branched alkyl group include an isopropyl group and an isobutyl group.
  • X is, for example, 3 or 4.
  • the silicon compound represented by the formula (1) include a compound represented by the following formula (1 ′) in which X is 3.
  • R 1 is the same as in the above formula (1), and is, for example, a methyl group.
  • the silicon compound is tris (hydroxy) methylsilane.
  • X is 3, the silicon compound is, for example, a trifunctional silane having three functional groups.
  • silicon compound represented by the formula (1) examples include a compound in which X is 4.
  • the silicon compound is, for example, a tetrafunctional silane having four functional groups.
  • the silicon compound may be, for example, a precursor that forms the silicon compound of the formula (1) by hydrolysis.
  • the precursor is not particularly limited as long as it can generate the silicon compound by hydrolysis, and specific examples thereof include a compound represented by the formula (2).
  • the production method of the present invention may include, for example, a step of hydrolyzing the precursor prior to the gelation step.
  • the hydrolysis method is not particularly limited, and can be performed, for example, by a chemical reaction in the presence of a catalyst.
  • the catalyst include acids such as oxalic acid and acetic acid.
  • the hydrolysis reaction can be performed, for example, by slowly dropping an aqueous solution of oxalic acid into the dimethyl sulfoxide solution of the silicon compound precursor in a room temperature environment and then stirring the mixture for about 30 minutes.
  • hydrolyzing the silicon compound precursor for example, by completely hydrolyzing the alkoxy group of the silicon compound precursor, further heating and immobilization after gelation / aging / void structure formation, It can be expressed efficiently.
  • examples of the silicon compound include a hydrolyzate of trimethoxy (methyl) silane.
  • the silicon compound of the monomer is not particularly limited, and can be appropriately selected according to, for example, the use of the silicone porous body to be produced.
  • the silicon compound is preferably the trifunctional silane from the viewpoint of excellent low refractive index, and also has strength (for example, scratch resistance).
  • the tetrafunctional silane is preferred from the viewpoint of excellent scratch resistance.
  • the said silicon compound used as the raw material of the said gel-like silicon compound may use only 1 type, for example, and may use 2 or more types together.
  • the silicon compound may include, for example, only the trifunctional silane, may include only the tetrafunctional silane, may include both the trifunctional silane and the tetrafunctional silane, Furthermore, other silicon compounds may be included.
  • the ratio is not particularly limited and can be set as appropriate.
  • the gel of the present invention is produced by a gelation step of gelling the silicon compound in the gel production solvent and a solvent substitution step of substituting the solvent for gel production in the gel with another solvent. can do.
  • the raw material of the gel of the present invention is not limited to the silicon compound as described above and is arbitrary, but the silicon compound will be described as a representative example.
  • the gelation of the silicon compound can be performed, for example, by a dehydration condensation reaction between the silicon compounds.
  • the dehydration condensation reaction is preferably performed, for example, in the presence of a catalyst.
  • the catalyst include acid catalysts such as hydrochloric acid, oxalic acid, and sulfuric acid, and ammonia, potassium hydroxide, sodium hydroxide, ammonium hydroxide, and the like.
  • a dehydration condensation catalyst such as a base catalyst.
  • the dehydration condensation catalyst may be an acid catalyst or a base catalyst, but a base catalyst is preferred.
  • the amount of the catalyst added to the silicon compound is not particularly limited, and the catalyst is, for example, 0.01 to 10 mol, 0.05 to 7 mol, relative to 1 mol of the silicon compound, 0.1 to 5 moles.
  • Gelation of the raw material (typically silicon compound) of the gel of the present invention is performed, for example, in the gel production solvent as described above.
  • the gel production solvent may be, for example, one type or a combination of two or more types.
  • the ratio of the gel raw material in the solvent is not particularly limited.
  • the solvent for gel production include dimethyl sulfoxide (DMSO), N-methylpyrrolidone (NMP), N, N-dimethylacetamide (DMAc), dimethylformamide (DMF), ⁇ -butyllactone (GBL), acetonitrile (MeCN). ), Ethylene glycol monoethyl ether (EGEE), and the like.
  • a mixed solvent obtained by mixing an alcohol solvent for example, isopropyl alcohol, isobutyl alcohol, n-butyl alcohol, pentanol [n-pentyl alcohol], etc.
  • the gel production solvent is particularly preferably one or more of N-methylpyrrolidone, dimethyl sulfoxide, dimethylformamide (DMF), ⁇ -butyrolactone, and N, N-dimethylacetamide.
  • the gelation conditions are not particularly limited.
  • the gelation conditions vary depending on the type of gel raw material and the like.
  • the treatment temperature for the gel production solvent containing the gel raw material is, for example, 20 to 30 ° C., 22
  • the processing time is, for example, 1 to 60 minutes, 5 to 40 minutes, and 10 to 30 minutes.
  • the process conditions in particular are not restrict
  • the gel form of the gel silicon compound obtained in the gelation step is not particularly limited.
  • “Gel” generally refers to a solidified state in which a solute has a structure in which it loses independent motility due to interaction and aggregates.
  • a wet gel is one in which the solute constituting the skeleton of the gel is integrated in a form containing a solvent, and the surface of the solute is moistened by the solvent.
  • Xerogel refers to a solvent in which the solute has a network structure with voids.
  • wet gel is preferably used as the gel silicon compound.
  • the remaining silanol group of the gel-like silicon compound is not particularly limited, and for example, the ranges described later can be exemplified similarly.
  • the gel-like silicon compound obtained by the gelation may be subjected to, for example, the solvent replacement step and the pulverization step as it is, but may be subjected to an aging treatment in the aging step before the pulverization step.
  • the conditions for the aging treatment are not particularly limited.
  • the gel-like silicon compound may be incubated in a solvent at a predetermined temperature.
  • the gel-like silicon compound having a three-dimensional structure obtained by gelation can further grow the primary particles, thereby increasing the size of the particles themselves. It is. As a result, the contact state of the neck portion where the particles are in contact can be increased from point contact to surface contact, for example.
  • the gel-like silicon compound subjected to the aging treatment as described above increases the strength of the gel itself, and as a result, further improves the strength of the three-dimensional basic structure of the pulverized product after pulverization. it can.
  • a coating film is formed using the coating material of the present invention, for example, even in the drying step after coating, the pore size of the void structure in which the three-dimensional basic structure is deposited is in the drying step. Shrinkage can be suppressed as the solvent in the resulting coating film volatilizes.
  • the lower limit of the temperature of the aging treatment is, for example, 30 ° C. or more, 35 ° C. or more, 40 ° C. or more, and the upper limit thereof is, for example, 80 ° C. or less, 75 ° C. or less, 70 ° C. or less.
  • the predetermined time is not particularly limited, and the lower limit thereof is, for example, 5 hours or more, 10 hours or more, 15 hours or more, and the upper limit thereof is, for example, 50 hours or less, 40 hours or less, 30 hours or less.
  • the range is, for example, 5 to 50 hours, 10 to 40 hours, 15 to 30 hours.
  • the optimum conditions for aging can be set, for example, as described above, such that the gel-like silicon compound can increase the size of the primary particles and increase the contact area of the neck portion.
  • the temperature of the aging treatment preferably takes into account, for example, the boiling point of the solvent used.
  • the aging treatment for example, if the aging temperature is too high, the solvent is excessively volatilized, and there is a possibility that problems such as closing of the pores of the three-dimensional void structure occur due to the concentration of the coating solution. is there.
  • the aging treatment for example, if the aging temperature is too low, the effect due to the aging is not sufficiently obtained, temperature variation with time of the mass production process increases, and a product with poor quality may be produced. There is.
  • the same solvent as in the gelation step can be used.
  • the aging treatment is performed as it is on the reaction product after gelation (that is, the gel production solvent containing the gel). Is preferred.
  • the number of moles of residual silanol groups contained in the gelled silicon compound that has been subjected to aging treatment after gelation is, for example, the number of moles of alkoxy groups in the raw material used for gelation (for example, the silicon compound or its precursor).
  • the lower limit is, for example, 1% or more, 3% or more, 5% or more
  • the upper limit is, for example, 50% or less, 40% or less, 30%
  • the range is, for example, 1 to 50%, 3 to 40%, and 5 to 30%.
  • the number of residual silanol groups is too high, for example, in the formation of the silicone porous body, there is a possibility that the void structure cannot be retained before the precursor of the silicone porous body is crosslinked.
  • the precursor of the silicone porous body cannot be crosslinked, and sufficient film strength may not be imparted.
  • the above is an example of residual silanol groups.
  • the silicon compound modified with various reactive functional groups is used as the raw material of the gel silicon compound, However, the same phenomenon can be applied.
  • a solvent replacement step is performed in which the solvent for gel production in the gel of the present invention is replaced with another solvent.
  • the other solvent is preferably the solvent for producing the low refractive index film (coating solvent).
  • the method of the solvent replacement step is not particularly limited, and can be performed as follows, for example. That is, first, the gel of the present invention is immersed or brought into contact with the other solvent, and the gel production catalyst, the alcohol component produced by the condensation reaction, water, etc. in the gel are dissolved in the other solvent. . Thereafter, the solvent in which the gel is immersed or contacted is discarded, and the gel is immersed or contacted again in a new solvent.
  • the immersion time per time is, for example, 0.5 hours or more, 1 hour or more, or 1.5 hours or more, and the upper limit is not particularly limited, but is, for example, 10 hours or less.
  • the immersion of the solvent may be supported by continuous contact of the solvent with the gel.
  • the temperature during the immersion is not particularly limited, and may be, for example, 20 to 70 ° C., 25 to 65 ° C., or 30 to 60 ° C. When heating is performed, the solvent replacement proceeds quickly, and the amount of solvent necessary for the replacement may be small. However, the solvent replacement may be simply performed at room temperature.
  • the gel is more preferably divided into a three-dimensional structure having a long side of 15 cm or less.
  • the method for dividing the gel lump into a plurality of pieces is not particularly limited, and for example, general pulverization, cutting, or the like may be used.
  • the “long side” refers to the length of the portion having the largest length in the three-dimensional structure. The long side is, for example, 15 cm or less, 10 cm or less, or 5 cm or less, and the lower limit is, for example, 0.005 cm or more, 0.01 cm or more, or 0.02 cm or more.
  • a pulverizing step for pulverizing the gel and a mixing step for mixing the pulverized product of the gel and the solvent for producing the low refractive index film.
  • the coating material for producing a low refractive index film of the present invention can be produced.
  • the pulverization may be performed, for example, on the gel after the gelation step (typically a gel-like silicon compound, the first coating material raw material), and further after the aging treatment, the gel after the aging (Typically, it may be applied to a gel-like silicon compound, a second paint raw material).
  • the pulverization step can be performed, for example, in a pulverizing solvent.
  • the pulverizing solvent may be the same as the low refractive index film manufacturing solvent (coating solvent), for example.
  • the grinding solvent is not particularly limited, and for example, an organic solvent can be used.
  • the organic solvent include solvents having a boiling point of 130 ° C. or lower. Specific examples include isopropyl alcohol (IPA), ethanol, methanol, n-butanol, 2-butanol, isobutyl alcohol, pentyl alcohol, propylene glycol monomethyl ether (PGME), methyl cellosolve, acetone and the like.
  • the pulverizing solvent may be, for example, one type or a combination of two or more types.
  • isopropyl alcohol IPA
  • ethanol n-butanol
  • 2-butanol isobutyl alcohol
  • pentyl alcohol propylene glycol monomethyl ether (PGME)
  • PGME propylene glycol monomethyl ether
  • methyl cellosolve is preferable from the viewpoint of low volatility at room temperature.
  • the combination of the gelling solvent and the grinding solvent is not particularly limited.
  • the gelling solvent with the grinding solvent (coating solvent)
  • a more uniform coating film can be formed in the coating film formation described below.
  • the method for pulverizing the gel is not particularly limited, and can be performed by, for example, an ultrasonic homogenizer, a high-speed rotation homogenizer, a pulverizer using other cavitation phenomenon, or a wet atomizer that obliquely collides liquids at high pressure.
  • a device for performing media grinding such as a ball mill physically destroys the void structure of the gel at the time of grinding, whereas a cavitation type grinding device preferable for the present invention such as a homogenizer is, for example, a gel-less system.
  • the relatively weakly bonded silica particle bonding surface already contained in the three-dimensional structure is peeled off with a high shear force.
  • the three-dimensional structure has, for example, a void structure having a certain range of particle size distribution in the formation of a coating film. It can be retained, and the void structure can be re-formed by deposition during coating and drying.
  • the conditions for the pulverization are not particularly limited.
  • the gel can be pulverized without volatilizing the solvent by instantaneously applying a high-speed flow.
  • the amount of work such as pulverization time and strength is insufficient, for example, coarse particles remain, and fine pores cannot be formed, appearance defects increase, and high quality may not be obtained. is there.
  • the work amount is excessive, for example, the sol particles are finer than the desired particle size distribution, and the void size deposited after coating / drying may become fine and may not satisfy the desired porosity. .
  • the ratio of residual silanol groups contained in the pulverized product after the pulverization step is not particularly limited, and is, for example, the same as the range exemplified for the gel silicon compound after the aging treatment.
  • the ratio of the pulverized product in the solvent containing the pulverized product is not particularly limited, and examples thereof include the conditions for the paint of the present invention described above.
  • the ratio may be, for example, a condition of the solvent itself containing the pulverized product after the pulverization step, or may be a condition adjusted after the pulverization step and before being used as the paint.
  • the coating material of the present invention can be produced, for example, using the first coating material or the second coating material as described above.
  • the first coating material raw material may contain, for example, a gel-like silicon compound obtained from a silicon compound containing at least a trifunctional or lower saturated bond functional group.
  • the method for producing the first coating material raw material includes, for example, a gelation step in which the silicon compound is gelled in a solvent to produce a gel silicon compound. For example, the gel state after the gelation step described above The description of silicon compounds can be incorporated.
  • the second coating material raw material includes, for example, a gel-like material obtained from a silicon compound containing a saturated bond functional group having at least three functional groups and a gel-like silicon compound subjected to aging treatment.
  • the method for producing the second coating material raw material includes, for example, an aging step of aging a gel-like silicon compound obtained from the silicon compound in a solvent.
  • an aging step of aging a gel-like silicon compound obtained from the silicon compound in a solvent for example, the gel-like silicon compound after the aging step described above The description can be incorporated.
  • the low refractive index film-producing gel of the present invention can be produced, and the low refractive index film-producing paint of the present invention containing the pulverized product and a solvent (for example, a dispersion medium) can be produced. it can.
  • a catalyst for chemically bonding the pulverized products may be added to the paint of the present invention during or after each of the production steps. With this catalyst, for example, the pulverized products can be chemically bonded in a bonding step described later.
  • the catalyst may be, for example, a catalyst that promotes cross-linking between the pulverized products.
  • a chemical reaction for chemically bonding the pulverized products for example, it is preferable to use a dehydration condensation reaction of residual silanol groups contained in silica sol molecules.
  • the catalyst include a photoactive catalyst and a thermally active catalyst.
  • the photoactive catalyst for example, the pulverized products can be chemically bonded (for example, crosslinked) without being heated. According to this, for example, since shrinkage due to heating hardly occurs, a higher porosity can be maintained.
  • a substance that generates a catalyst may be used.
  • the catalyst may be a crosslinking reaction accelerator
  • the catalyst generator may be a substance that generates the crosslinking reaction accelerator.
  • a substance that generates a catalyst by light photocatalyst generator
  • a substance that generates water thermally active catalyst
  • the photocatalyst generator is not particularly limited, and examples thereof include a photobase generator (a catalyst that generates a basic catalyst by light irradiation), a photoacid generator (a substance that generates an acidic catalyst by light irradiation), and the like.
  • a photobase generator is preferred.
  • Examples of the photobase generator include 9-anthrylmethyl N, N-diethylcarbamate (trade name WPBG-018), (E) -1- [3- (2- Hydroxyphenyl) -2-propenoyl] piperidine ((E) -1- [3- (2-hydroxyphenyl) -2-propenoyl] piperidine, trade name WPBG-027), 1- (anthraquinone-2-yl) ethyl imidazolecarboxy Rate (1- (anthraquinon-2-yl) ethyl imidazolecarboxylate, trade name WPBG-140), 2-nitrophenylmethyl 4-methacryloyloxypiperidine-1-carboxylate (trade name WPBG-165), 1,2-diisopropyl- 3- [bis (dimethylamino) methylene] guanidium 2- (3-benzoylphenyl) propionate (trade name WPBG-266), 1 , 2-dicy
  • the trade names including “WPBG” are trade names of Wako Pure Chemical Industries, Ltd.
  • Examples of the photoacid generator include aromatic sulfonium salts (trade name SP-170: ADEKA), triarylsulfonium salts (trade name CPI101A: San Apro), and aromatic iodonium salts (trade name Irgacure 250: Ciba Japan). Company).
  • the catalyst for chemically bonding the fine pore particles is not limited to the photoactive catalyst and the photocatalyst generator, and may be a thermal catalyst or a thermal catalyst generator such as urea.
  • the catalyst for chemically bonding the pulverized materials examples include basic catalysts such as potassium hydroxide, sodium hydroxide and ammonium hydroxide, and acid catalysts such as hydrochloric acid, acetic acid and oxalic acid. Of these, base catalysts are preferred.
  • the catalyst for chemically bonding the pulverized materials is used, for example, by adding to the sol particle liquid (for example, suspension) containing the pulverized material immediately before coating, or mixing the catalyst in a solvent. It can be used as a liquid.
  • the mixed liquid may be, for example, a coating liquid that is directly added and dissolved in the sol particle liquid, a solution in which the catalyst is dissolved in a solvent, or a dispersion liquid in which the catalyst is dispersed in a solvent.
  • the solvent is not particularly limited, and examples thereof include various organic solvents, water, and a buffer solution.
  • Examples of the method of using the coating material of the present invention will exemplify a method for producing a low refractive index film (silicone porous material of the present invention) mainly formed of a silicone porous material, but the present invention is not limited thereto.
  • the material of the low refractive index film of the present invention is arbitrary. In the case where the material is other than the porous silicone material, the following description of the porous silicone material can be used unless there are special circumstances.
  • the precursor of the low refractive index film is formed using the paint of the present invention.
  • the precursor can also be referred to as a coating film, for example.
  • the method for producing the low refractive index film for example, a porous structure having the same function as the air layer is formed.
  • the reason is estimated as follows, for example, but the present invention is not limited to this estimation.
  • the paint of the present invention used in the method for producing the low refractive index film contains a pulverized product of the gel of the present invention (for example, a gel-like silicon compound), the three-dimensional structure of the gel is It is in a state of being distributed in a three-dimensional basic structure. For this reason, in the manufacturing method of the low refractive index film, for example, when the precursor (for example, coating film) is formed using the paint, the three-dimensional basic structure is deposited, and based on the three-dimensional basic structure. A void structure is formed.
  • a pulverized product of the gel of the present invention for example, a gel-like silicon compound
  • the manufacturing method of the low refractive index film a new three-dimensional structure formed from the pulverized product of the three-dimensional basic structure, which is different from the three-dimensional structure of the gel silicon compound, is formed.
  • the new three-dimensional structure is fixed in order to chemically bond the pulverized products.
  • membrane is a structure which has a space
  • the low refractive index film of the present invention can be used for products in a wide range of fields such as a heat insulating material, a sound absorbing material, an optical member, an ink image receiving layer, etc. A laminated film can be produced.
  • the production method of the low refractive index film (void layer, typically silicone porous body) of the present invention can be referred to the description of the paint of the present invention unless otherwise specified.
  • the paint of the present invention is applied onto the substrate.
  • the coating material of the present invention is, for example, coated on a base material, dried the coated film, and then chemically bonded (for example, cross-linked) between the pulverized products by the bonding step, thereby achieving a certain level or more. It is possible to continuously form a void layer having a film strength of 10 nm.
  • the coating amount of the coating material on the substrate is not particularly limited, and can be appropriately set according to, for example, the desired thickness of the low refractive index film.
  • the coating amount of the paint on the base material is, for example, 0.01% of the pulverized product per 1 m 2 of the base material area. -60000 ⁇ g, 0.1-5000 ⁇ g, 1-50 ⁇ g.
  • the preferable coating amount of the paint is, for example, related to the concentration of the liquid, the coating method, etc., and thus it is difficult to define it uniquely. However, in consideration of productivity, it is preferable to apply as thin a layer as possible. .
  • the porous body precursor (coating film) may be dried.
  • the drying treatment for example, not only the solvent (the solvent contained in the paint) in the precursor of the porous body is removed, but also the sol particles are settled and deposited to form a void structure during the drying treatment.
  • the drying treatment temperature is, for example, 50 to 250 ° C., 60 to 150 ° C., 70 to 130 ° C.
  • the drying treatment time is, for example, 0.1 to 30 minutes, 0.2 to 10 minutes, 0 .3-3 minutes.
  • the drying process temperature and time are preferably lower and shorter in relation to, for example, continuous productivity and high porosity.
  • the substrate is a resin film
  • the substrate is extended in a drying furnace by being close to the glass transition temperature of the substrate, and formed immediately after coating. Defects such as cracks may occur in the void structure.
  • the conditions are too loose, for example, since the residual solvent is included at the time of leaving the drying furnace, there is a possibility that defects in appearance such as scratches will occur when rubbing with the roll in the next process. is there.
  • the drying treatment may be, for example, natural drying, heat drying, or vacuum drying.
  • the drying method is not particularly limited, and for example, a general heating means can be used.
  • the heating means include a hot air fan, a heating roll, and a far infrared heater.
  • heat drying when it is premised on industrial continuous production, it is preferable to use heat drying.
  • a solvent having a low surface tension is preferable for the purpose of suppressing the generation of shrinkage stress accompanying the solvent volatilization during drying and the cracking phenomenon of the void layer (the silicone porous body).
  • the solvent examples include, but are not limited to, lower alcohols typified by isopropyl alcohol (IPA), hexane, perfluorohexane, and the like. Further, for example, a small amount of perfluoro-based surfactant or silicon-based surfactant may be added to the IPA or the like to reduce the surface tension.
  • IPA isopropyl alcohol
  • hexane hexane
  • perfluorohexane perfluorohexane
  • silicon-based surfactant silicon-based surfactant
  • the substrate is not particularly limited, and for example, a thermoplastic resin substrate, a plastic molded with a thermosetting resin, a carbon fiber material typified by a carbon nanotube, and the like can be preferably used. It is not limited. Examples of the form of the substrate include a film and a plate. Examples of the thermoplastic resin include polyethylene terephthalate (PET), acrylic, cellulose acetate propionate (CAP), cycloolefin polymer (COP), triacetate (TAC), polyethylene naphthalate (PEN), polyethylene (PE), and polypropylene. (PP) etc. are mentioned.
  • PET polyethylene terephthalate
  • CAP cellulose acetate propionate
  • COP cycloolefin polymer
  • TAC triacetate
  • PEN polyethylene naphthalate
  • PE polyethylene
  • PP polypropylene.
  • the bonding step is a step of chemically bonding the pulverized materials included in the porous body precursor (coating film).
  • the bonding step for example, the three-dimensional structure of the pulverized material in the precursor of the porous body is fixed.
  • high temperature treatment at 200 ° C. or higher induces dehydration condensation of silanol groups and formation of siloxane bonds.
  • the bonding step of the present invention by reacting various additives that catalyze the above dehydration condensation reaction, for example, when the substrate is a resin film, the substrate is not damaged, and the temperature is around 100 ° C.
  • the void structure can be continuously formed and fixed at a relatively low drying temperature and a short processing time of less than a few minutes.
  • a method for chemically bonding the pulverized materials to each other is not particularly limited, and for example, cross-linking by a catalytic reaction using the catalyst may be used. Further, for example, the pulverized product may be chemically bonded by a method such as simply heating the porous body precursor (coating film) without using the catalyst.
  • the low refractive index film (void layer) of the present invention can be manufactured, but the manufacturing method of the present invention is not limited to this.
  • the thus obtained low refractive index film (void layer) of the present invention may be laminated with another film (layer) to form a laminated structure including the porous structure.
  • each component in the laminated structure, may be laminated via, for example, a pressure-sensitive adhesive or an adhesive.
  • the lamination may be performed by continuous processing using a long film (so-called Roll to Roll, etc.). May be laminated with batch processing.
  • FIG. 2 after forming the said low-refractive-index film (void layer), it has shown the process of bonding and winding up a protective film, but when laminating
  • the illustrated film forming method is merely an example, and the present invention is not limited thereto.
  • the low refractive index film (void layer) is formed by applying a coating process (1) for applying the coating material 20 ′′ of the present invention onto the substrate 10, and drying the coating material 20 ′′. Then, a coating film forming step (drying step) (2) for forming the coating film 20 ′, which is a precursor layer of the low refractive index film (void layer), and chemical treatment (for example, A chemical treatment step (for example, a cross-linking treatment step) (3) for forming a low refractive index film (void layer) 20 by performing a cross-linking treatment).
  • membrane (gap layer) 20 can be formed on the base material 10 as shown in the figure.
  • the method for forming the low refractive index film (void layer) may or may not include steps other than the steps (1) to (3) as appropriate. Further, for example, the low refractive index film (void layer) is formed only by the coating process (1) and the coating film forming process (drying process) (2) without performing the chemical treatment process (for example, the crosslinking process) (3). ) 20 can also be formed.
  • the coating method of the paint 20 ′′ is not particularly limited, and a general coating method can be adopted.
  • the coating method include a slot die method, a reverse gravure coating method, a micro gravure method (micro gravure coating method), a dip method (dip coating method), a spin coating method, a brush coating method, a roll coating method, and flexographic printing.
  • the extrusion coating method, the curtain coating method, the roll coating method, the micro gravure coating method and the like are preferable from the viewpoints of productivity, coating film smoothness, and the like.
  • the coating amount of the paint 20 ′′ is not particularly limited, and can be appropriately set so that, for example, the thickness of the low refractive index film (void layer) 20 is appropriate.
  • the thickness of the low refractive index film (void layer) 20 is not particularly limited, and is as described above, for example.
  • the coating material 20 ′′ is dried (that is, the dispersion medium contained in the coating material 20 ′′ is removed) to form a coating film (precursor layer) 20 ′.
  • the conditions for the drying treatment are not particularly limited and are as described above.
  • the coating film 20 ′ containing the catalyst for example, a photoactive catalyst or a thermally active catalyst such as KOH
  • the catalyst for example, a photoactive catalyst or a thermally active catalyst such as KOH
  • the pulverized material in the processed film (precursor) 20 ′ is chemically bonded (for example, crosslinked) to form the low refractive index film (void layer) 20.
  • the light irradiation or heating conditions in the chemical treatment step (3) are not particularly limited and are as described above.
  • FIG. 2 schematically shows an example of a slot die coating apparatus and a method for forming the low refractive index film (void layer) using the same.
  • FIG. 2 is a cross-sectional view, hatching is omitted for easy viewing.
  • each step in the method using this apparatus is performed while the substrate 10 is conveyed in one direction by a roller.
  • the conveyance speed is not particularly limited, and is, for example, 1 to 100 m / min, 3 to 50 m / min, or 5 to 30 m / min.
  • a coating process (1) is performed in which the coating roll 102 is coated with the coating material 20 ′′ of the present invention on the coating roll 102 while the substrate 10 is fed out and conveyed from the feed roller 101, and then the oven zone.
  • the process proceeds to the drying step (2).
  • a preliminary drying process is performed after a coating process (1) and prior to a drying process (2).
  • the preliminary drying step can be performed at room temperature without heating.
  • the heating means 111 is used.
  • the heating means 111 as described above, a hot air fan, a heating roll, a far infrared heater, or the like can be used as appropriate.
  • the drying step (2) may be divided into a plurality of steps, and the drying temperature may be increased as the subsequent drying step is performed.
  • the chemical treatment step (3) is performed in the chemical treatment zone 120.
  • the chemical treatment step (3) for example, when the dried coating film 20 ′ includes a photoactive catalyst, light irradiation is performed by lamps (light irradiation means) 121 disposed above and below the base material 10.
  • lamps (light irradiation means) 121 disposed above and below the base material 10.
  • a hot air fan 121 disposed above and below the substrate 10 using a hot air fan (heating means) instead of the lamp (light irradiation device) 121.
  • the pulverized material in the coating film 20 ′ is chemically bonded to each other, and the low refractive index film (void layer) 20 is cured and strengthened.
  • the laminate in which the low refractive index film (void layer) 20 is formed on the substrate 10 is wound up by the winding roll 105.
  • the low refractive index film (gap layer) 20 of the laminate is covered and protected by a protective sheet fed from the roll 106.
  • a protective sheet instead of the protective sheet, another layer formed of a long film may be laminated on the low refractive index film (void layer) 20.
  • FIG. 3 schematically shows an example of a micro gravure method (micro gravure coating method) coating apparatus and a method for forming the low refractive index film (void layer) using the same.
  • the hatch is abbreviate
  • each step in the method using this apparatus is performed while the substrate 10 is conveyed in one direction by a roller, as in FIG.
  • the conveyance speed is not particularly limited, and is, for example, 1 to 100 m / min, 3 to 50 m / min, or 5 to 30 m / min.
  • a coating process (1) for coating the base material 10 with the coating material 20 ′′ of the present invention is performed while the base material 10 is fed out and conveyed from the feed roller 201.
  • the coating material 20 ′′ is applied using a liquid reservoir 202, a doctor (doctor knife) 203, and a micro gravure 204 as shown in the figure.
  • the coating material 20 ′′ stored in the liquid reservoir 202 is attached to the surface of the microgravure 204, and further controlled to a predetermined thickness by the doctor 203 while being applied to the surface of the substrate 10 by the microgravure 204.
  • the microgravure 204 is merely an example, and the present invention is not limited to this, and any other coating means may be used.
  • a drying step (2) is performed. Specifically, as shown in the drawing, the base material 10 coated with the coating material 20 ′′ is transported into the oven zone 210, heated by the heating means 211 in the oven zone 210, and dried.
  • the heating means 211 may be the same as that shown in FIG. Further, for example, by dividing the oven zone 210 into a plurality of sections, the drying step (2) may be divided into a plurality of steps, and the drying temperature may be increased as the subsequent drying step is performed.
  • the chemical treatment step (3) is performed in the chemical treatment zone 220.
  • the chemical treatment step (3) for example, when the dried coating film 20 ′ includes a photoactive catalyst, light irradiation is performed by lamps (light irradiation means) 221 disposed above and below the substrate 10.
  • lamps (light irradiation means) 221 disposed above and below the substrate 10.
  • a hot air fan (heating means) is used instead of the lamp (light irradiation device) 221 and is arranged below the base material 10 ( The substrate 10 is heated by the heating means 221.
  • the pulverized material in the coating film 20 ′ is chemically bonded to each other, and a low refractive index film (void layer) 20 is formed.
  • the laminated body in which the low refractive index film (void layer) 20 is formed on the substrate 10 is wound up by the winding roll 251. Thereafter, for example, another layer may be laminated on the laminate. Further, before the laminate is taken up by the take-up roll 251, for example, another layer may be laminated on the laminate.
  • the low refractive index film (void layer) of the present invention has a low refractive index of 1.25 or less.
  • the low refractive index film (void layer) of the present invention has, for example, a scratch resistance of 60-100% by Bencot (registered trademark) indicating film strength, and the number of foldings by the MIT test indicating flexibility is as follows: It may be 100 times or more.
  • the material of the low refractive index film (void layer) of the present invention is not particularly limited as described above, but is, for example, a silicone porous body. Since the porous silicon body uses a pulverized product of the gel silicon compound, the three-dimensional structure of the gel silicon compound is destroyed and a new three-dimensional structure different from the gel silicon compound is formed. Has been. Thus, the silicone porous body of the present invention is a layer in which a new pore structure (new void structure) that cannot be obtained by the layer formed from the gel-like silicon compound is formed, so that the porosity is reduced. High nanoscale silicone porous bodies can be formed.
  • the silicone porous body of the present invention chemically bonds the pulverized products to each other while adjusting the number of siloxane bond functional groups of the gel silicon compound, for example.
  • the silicone porous body of the present invention since a new three-dimensional structure is formed as a precursor of the silicone porous body and then chemically bonded (for example, crosslinked) in the bonding step, the silicone porous body of the present invention has a structure having voids. Sufficient strength and flexibility can be maintained. Therefore, according to this invention, a silicone porous body can be provided to various objects easily and simply. Specifically, the silicone porous body of the present invention can be used as an optical member or the like instead of an air layer, for example.
  • the porous silicone material of the present invention includes, for example, a pulverized product of a gel-like silicon compound as described above, and the pulverized product is chemically bonded to each other.
  • the form of chemical bonding (chemical bonding) between the pulverized products is not particularly limited, and specific examples of the chemical bonding include, for example, cross-linking.
  • the method for chemically bonding the pulverized products will be described in detail in the method for producing the silicone porous body described later.
  • the cross-linking is, for example, a siloxane bond.
  • the siloxane bond include T2 bond, T3 bond, and T4 bond shown below.
  • T2 bond T2 bond
  • T3 bond T4 bond
  • the silicone porous body of the present invention may have any one kind of bond, any two kinds of bonds, or all three kinds of bonds. Also good.
  • the siloxane bonds the greater the ratio of T2 and T3, the more flexible and the expected properties of the gel can be expected, but the film strength becomes weaker.
  • the T4 ratio in the siloxane bond is large, the film strength is easily developed, but the void size becomes small and the flexibility becomes brittle. For this reason, for example, it is preferable to change the ratio of T2, T3, and T4 according to the application.
  • the silicon atoms contained are preferably bonded with siloxane bonds.
  • the proportion of unbonded silicon atoms (that is, residual silanol) in the total silicon atoms contained in the porous silicone material is, for example, less than 50%, 30% or less, or 15% or less.
  • the low refractive index film (void layer, typically a silicone porous body) of the present invention has, for example, a pore structure.
  • the pore size of the hole refers to the diameter of the major axis among the major axis diameter and minor axis diameter of the void (hole).
  • a preferable pore size is, for example, 5 nm to 200 nm.
  • the lower limit of the void size is, for example, 5 nm or more, 10 nm or more, 20 nm or more, and the upper limit thereof is, for example, 1000 ⁇ m or less, 500 ⁇ m or less, 100 ⁇ m or less, and the range thereof is, for example, 5 nm to 1000 ⁇ m, 10 nm.
  • a preferable void size is determined depending on the use of the void structure, it is necessary to adjust the void size to a desired void size according to the purpose, for example.
  • the void size can be evaluated by the following method, for example.
  • the void size can be quantified by a BET test method. Specifically, 0.1 g of a sample (low refractive index film of the present invention) was put into a capillary of a specific surface area measuring device (Micromeritic: ASAP2020), and then dried under reduced pressure at room temperature for 24 hours. Degas the gas in the void structure. The adsorption isotherm is drawn by adsorbing nitrogen gas to the sample, and the pore distribution is obtained. Thereby, the gap size can be evaluated.
  • the low refractive index film (void layer) of the present invention has, for example, a scratch resistance of 60 to 100% due to Bencot (registered trademark) indicating film strength. Since the present invention has such a film strength, for example, it is excellent in scratch resistance in various processes.
  • the present invention has, for example, scratch resistance in a production process when handling a product film after winding the product after forming the low refractive index film (void layer).
  • the low refractive index film (void layer) of the present invention uses, for example, a catalytic reaction in the heating step described later, instead of reducing the void ratio, to thereby reduce the particle size of the pulverized product of the gel silicon compound.
  • membrane (gap layer) of this invention can provide a certain level of intensity
  • the lower limit of the scratch resistance is, for example, 60% or more, 80% or more, 90% or more, and the upper limit thereof is, for example, 100% or less, 99% or less, 98% or less, and the range is For example, they are 60 to 100%, 80 to 99%, 90 to 98%.
  • the scratch resistance can be measured by, for example, the following method.
  • a void layer (low refractive index film of the present invention) coated and formed on an acrylic film is sampled in a circular shape having a diameter of about 15 mm.
  • silicon is identified with fluorescent X-rays (manufactured by Shimadzu Corporation: ZSX Primus II), and the Si coating amount (Si 0 ) is measured.
  • the gap layer on the acrylic film is cut to 50 mm ⁇ 100 mm from the vicinity sampled, and fixed to a glass plate (thickness 3 mm). Perform dynamic tests.
  • the sliding condition is a weight of 100 g and 10 reciprocations.
  • the residual amount of Si (Si 1 ) after the scratch test is measured by sampling and fluorescent X-ray measurement in the same manner as in (1) from the gap layer after sliding.
  • the low refractive index film (void layer) of the present invention has a folding resistance of 100 times or more by an MIT test showing flexibility. Since the present invention has such flexibility, for example, it is excellent in handleability during winding or use during production.
  • the lower limit of the folding endurance number is, for example, 100 times or more, 500 times or more, 1000 times or more, and the upper limit is not particularly limited, for example, 10,000 times or less, and the range is, for example, 100 10000 times, 500 times to 10000 times, 1000 times to 10000 times.
  • the flexibility means, for example, ease of deformation of the substance.
  • the folding endurance by the MIT test can be measured by the following method, for example.
  • the void layer (low refractive index film of the present invention) is cut into a 20 mm ⁇ 80 mm strip and then attached to an MIT folding tester (manufactured by Tester Sangyo Co., Ltd .: BE-202), and a load of 1.0 N is applied. .
  • the chuck part that embeds the gap layer uses R 2.0 mm, performs the folding endurance up to 10,000 times, and sets the number of times when the gap layer is broken as the number of folding endurances.
  • the film density showing the porosity is not particularly limited, and the lower limit thereof is, for example, 1 g / cm 3 or more, 10 g / cm 3 or more, 15 g / cm 3 or more.
  • the upper limit is, for example, 50 g / cm 3 or less, 40 g / cm 3 or less, 30 g / cm 3 or less, 2.1 g / cm 3 or less, and the range thereof is, for example, 5 to 50 g / cm 3 , 10 ⁇ 40g / cm 3, 15 ⁇ 30g / cm 3, a 1 ⁇ 2.1g / cm 3.
  • the film density can be measured by the following method, for example.
  • the low refractive index film (void layer) of the present invention may have a pore structure (porous structure) as described above, and may be, for example, an open cell structure in which the pore structure is continuous.
  • the open cell structure means, for example, that the low refractive index film (void layer) has a three-dimensional pore structure, and the internal voids of the pore structure are continuous. I can say that.
  • the porous body has an open cell structure, it is possible to increase the porosity occupied in the bulk.
  • closed cells such as hollow silica are used, the open cell structure cannot be formed.
  • the low refractive index film (void layer, typically a silicone porous body) of the present invention has, for example, a silica sol particle (a crushed product of a gel-like silicon compound forming a sol) having a three-dimensional dendritic structure. Therefore, the dendritic particles settle and deposit in a coating film (a sol coating film containing a pulverized product of the gel-like silicon compound), so that an open cell structure can be easily formed. Is possible. Further, the low refractive index film (void layer) of the present invention more preferably forms a monolith structure in which the open cell structure has a plurality of pore distributions.
  • the monolith structure refers to, for example, a structure in which nano-sized fine voids exist and a hierarchical structure in which the nano-voids are gathered as an open cell structure.
  • a structure in which nano-sized fine voids exist and a hierarchical structure in which the nano-voids are gathered as an open cell structure.
  • high porosity can be imparted with coarse open-cell voids, and both film strength and high porosity can be achieved.
  • the monolith structure can be formed by controlling the particle size distribution of the pulverized product to a desired size.
  • the tear crack generation elongation rate showing flexibility is not particularly limited, and the lower limit thereof is, for example, 0.1% or more, 0.5% or more, 1% or more.
  • the upper limit is, for example, 3% or less.
  • the range of the tear crack occurrence elongation is, for example, 0.1 to 3%, 0.5 to 3%, and 1 to 3%.
  • the tear crack elongation rate can be measured, for example, by the following method.
  • the haze showing transparency is not particularly limited, and the lower limit thereof is, for example, 0.1% or more, 0.2% or more, 0.3% or more.
  • the upper limit is, for example, 10% or less, 5% or less, 3% or less, and the range thereof is, for example, 0.1 to 10%, 0.2 to 5%, or 0.3 to 3%.
  • the haze can be measured by, for example, the following method.
  • the void layer (low refractive index film of the present invention) is cut into a size of 50 mm ⁇ 50 mm, and set in a haze meter (manufactured by Murakami Color Research Laboratory Co., Ltd .: HM-150) to measure haze.
  • the refractive index is generally the ratio of the transmission speed of the wavefront of light in a vacuum to the propagation speed in the medium is called the refractive index of the medium.
  • the refractive index of the low refractive index film (void layer) of the present invention is not particularly limited, and the upper limit thereof is, for example, 1.3 or less, less than 1.3, 1.25 or less, 1.2 or less, 1.15.
  • the lower limit is, for example, 1.05 or more, 1.06 or more, 1.07 or more, and the range thereof is, for example, 1.05 or more and 1.3 or less, 1.05 or more and less than 1.3. 1.05 to 1.25, 1.06 to less than 1.2, and 1.07 to 1.15.
  • the refractive index means a refractive index measured at a wavelength of 550 nm unless otherwise specified.
  • the measuring method of a refractive index is not specifically limited, For example, it can measure with the following method.
  • the thickness of the low refractive index film (void layer) of the present invention is not particularly limited, and the lower limit thereof is, for example, 0.05 ⁇ m or more and 0.1 ⁇ m or more, and the upper limit thereof is, for example, 1000 ⁇ m or less, 100 ⁇ m or less.
  • the ranges are, for example, 0.05 to 1000 ⁇ m and 0.1 to 100 ⁇ m.
  • the form of the low refractive index film (void layer) of the present invention is not particularly limited, and may be, for example, a film shape or a block shape.
  • the application of the low refractive index film (void layer) of the present invention is not particularly limited, but is as follows, for example.
  • the low refractive index film (void layer) produced using the paint of the present invention has the same function as the air layer as described above, for the object having the air layer, It can be used instead of the air layer.
  • the low refractive index film (void layer) of the present invention can be used, for example, as an optical member. Specifically, as described above, it can be used for the laminated film and the image display device of the present invention. However, the use of the low refractive index film (void layer) of the present invention is not limited to this.
  • Example 1 In the following manner, the gel for producing a low refractive index film of the present invention was produced, and a coating liquid (the coating material for producing a low refractive index film of the present invention) was obtained using the gel. Furthermore, using the coating liquid, a laminated film of the present invention in which the low refractive index film of the present invention was laminated on a substrate was obtained.
  • methyltrimethoxysilane (trade name KBM-13: manufactured by Shin-Etsu Chemical Co., Ltd.) was added to 4.4 g of DMSO and stirred. To the mixture, 1.0 g of 0.01 mol / l oxalic acid aqueous solution was added dropwise. Further, this was stirred at room temperature for 30 minutes to hydrolyze the methyltrimethoxysilane.
  • a gel for producing a low refractive index film was obtained. Furthermore, after solvent replacement, high-pressure medialess pulverization was performed in IPA to liquefy the sol particles of the gel. In this way, a coating liquid (a coating material for producing a low refractive index film) containing sol particles as the pulverized product of the gel and the IPA (coating solvent) was obtained.
  • the coating liquid a laminated film of the present invention in which the low refractive index film of the present invention was laminated on a substrate was obtained. That is, the coating liquid (paint for producing a low refractive index film) obtained in this example was coated on an acrylic substrate by a bar coating method, and dried at 100 ° C. for 1 min to form a coating film having a thickness of 1 ⁇ m. Formed. Thereafter, heat aging at 60 ° C. was performed for 20 hours to obtain a low refractive index film (void layer). The refractive index of this low refractive index film was 1.127.
  • Example 2 The gel and coating for producing a low refractive index film in the same manner as in Example 1 except that the solvent replacement step in (5) was performed until the residual DMSO amount in the gel washing solvent became 0.007 g / ml. A liquid (liquid for manufacturing a low refractive index film) was obtained.
  • Example 2 the coating solution (low refractive index film production liquid) of this example (Example 2) was used instead of the coating liquid (low refractive index film production liquid) of Example 1.
  • a low refractive index film (void layer) was obtained.
  • the refractive index of this low refractive index film was 1.127.
  • Example 3 The gel and coating for low refractive index film production were performed in the same manner as in Example 1 except that the solvent replacement step in (5) was performed until the amount of DMSO remaining in the gel washing solvent was 0.048 g / ml. A liquid (liquid for manufacturing a low refractive index film) was obtained.
  • Example 3 the coating solution (low refractive index film production liquid) of this example (Example 3) was used instead of the coating liquid (low refractive index film production liquid) of Example 1.
  • a low refractive index film (void layer) was obtained.
  • the refractive index of this low refractive index film was 1.137.
  • Example 4 The gel and coating for producing a low refractive index film were performed in the same manner as in Example 1 except that the solvent replacement step in (5) was performed until the residual DMSO amount in the gel washing solvent became 0.074 g / ml. A liquid (liquid for manufacturing a low refractive index film) was obtained.
  • Example 4 liquid for manufacturing a low refractive index film
  • Example 1 liquid for manufacturing a low refractive index film
  • Example 5 The gel and coating for producing a low refractive index film were performed in the same manner as in Example 1 except that the solvent replacement step in (5) was performed until the residual DMSO amount in the gel washing solvent became 0.139 g / ml. A liquid (liquid for manufacturing a low refractive index film) was obtained.
  • Example 5 liquid for manufacturing low refractive index film
  • Example 1 liquid for manufacturing low refractive index film
  • Example 6 A photobase generator and bis (trimethoxysilyl) ethane were further added to the sol particle liquid (coating liquid) obtained in (5) of Example 1, and the coating liquid (low refractive index) of this example was added. Coating for film production).
  • an IPA solution of 1.5% by weight of a photobase generator (WPBG266: manufactured by Wako Pure Chemical Industries, Ltd.) is prepared, 0.031 g is added to 0.75 g of the sol particle liquid, and 5 Similarly, 0.018 g of bis (trimethoxysilyl) ethane IPA solution in weight% was added to 0.75 g of the sol particle solution to obtain a coating solution of this example (paint for producing a low refractive index film).
  • Example 6 the coating liquid of this example (Example 6) (paint for manufacturing a low refractive index film) was used. After drying at 1 ° C. for 1 min to form a coating film having a thickness of 1 ⁇ m, prior to heat aging, the coating film was irradiated with 300 mJ / cm 2 (@ 360 nm) of UV as in Example 1. Thus, a low refractive index film (void layer) was obtained. The refractive index of this low refractive index film was 1.15.
  • Example 7 A void layer was obtained in the same manner as in Example 1 except that the solvent for gel production described in Example 1 was changed from DMSO to DMF (N, N-dimethylformamide). The refractive index of this low refractive index film was 1.120.
  • Example 8 A void layer was obtained in the same manner as in Example 1 except that the gel production solvent described in Example 1 was changed from DMSO to ⁇ -butyrolactone.
  • the refractive index of this low refractive index film was 1.125.
  • a film (void layer) was obtained in the same manner as in Example 1 except that the coating liquid of this comparative example was used instead of the coating liquid of Example 1 (liquid for manufacturing a low refractive index film).
  • the refractive index of this film was 1.301.
  • Table 1 summarizes the amount of DMSO remaining in the gel and the refractive index of the film (void layer) in Examples 1 to 8 and Comparative Example 1.
  • the residual amount of the gel production solvent (DMSO, DMF or ⁇ -butyrolactone) in the low refractive index film production gel was 0.5 g / ml or less.
  • a low refractive index film having a refractive index of 1.25 or less could be obtained.
  • Comparative Example 1 where the residual amount of DMSO (gel production solvent) in the low refractive index film production gel exceeds 0.5 g / ml, a low refractive index film having a refractive index of 1.25 or less is obtained. I could't.
  • the low refractive index film production gel of the present invention has a low refractive index of 1.25 or less because the residual amount of the gel production solvent in the gel is as small as 0.5 g / ml or less. Rate membranes can be produced.
  • membrane of this invention obtained using this can show
  • membrane of this invention can be used as an optical member etc. instead of an air layer, for example. Therefore, the production method of the present invention and the paint obtained thereby are useful, for example, in the production of the porous structure as described above.
  • Substrate 20 Low refractive index film (void layer) 20 'coating film (precursor layer) 20 '' paint 101 delivery roller 102 coating roll 110 oven zone 111 hot air (heating means) 120 Chemical treatment zone 121 Lamp (light irradiation means) or hot air device (heating means) 105 Winding Roll 106 Roll 201 Feeding Roller 202 Liquid Reservoir 203 Doctor (Doctor Knife) 204 Microgravure 210 Oven zone 211 Heating means 220 Chemical treatment zone 221 Lamp (light irradiation means) or hot air blower (heating means)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Paints Or Removers (AREA)
  • Silicon Polymers (AREA)

Abstract

The purpose of the present invention is to provide a gel that is for producing a low-refractive-index film, that retains little of a solvent that is used to produce the gel, and that can be used to produce a film that has a low refractive index. In order to achieve said purpose, this gel for producing a low-refractive-index film is characterized in that the gel retains 0.5 g/ml or less of a solvent that is used to produce the gel and in that the low-refractive-index film produced from the gel has a refractive index of 1.25 or less.

Description

低屈折率膜製造用ゲル、低屈折率膜製造用ゲルの製造方法、低屈折率膜製造用塗料、低屈折率膜製造用塗料の製造方法、積層フィルムの製造方法および画像表示装置の製造方法Low refractive index film manufacturing gel, low refractive index film manufacturing method, low refractive index film manufacturing paint, low refractive index film manufacturing method, laminated film manufacturing method, and image display device manufacturing method
 本発明は、低屈折率膜製造用ゲル、低屈折率膜製造用ゲルの製造方法、低屈折率膜製造用塗料、低屈折率膜製造用塗料の製造方法、積層フィルムの製造方法および画像表示装置の製造方法に関する。 The present invention relates to a gel for producing a low refractive index film, a method for producing a gel for producing a low refractive index film, a paint for producing a low refractive index film, a method for producing a paint for producing a low refractive index film, a method for producing a laminated film, and an image display. The present invention relates to a device manufacturing method.
 シリカ化合物材料(ケイ素化合物材料)を原料に用いた空隙構造を形成可能なシラノール多孔体用ゾル液については、これまで様々な検討がされている。それらに共通している点としては、シリカ化合物を一度ゲル化した後に、前記ゲル化シリカ化合物を粉砕した粉砕ゾル液を調製し、これをコーティングすることで空隙構造を形成させる、という点である。しかし、より高い空孔率を得ようとすると、シラノール多孔体の膜強度が著しく低下するという問題があり、工業的にシラノール多孔体を簡便に得ることは困難であった。高い空孔率と強度とを両立させた例として、レンズ反射防止層への適用事例がある(例えば、特許文献1~4参照)。この方法では、レンズ上に空隙層を形成した後に、150℃以上の高い温度を長時間かけて焼成させるが、テトラエトキシシラン(TEOS)を原料に用いたゲルは、可撓性に劣るため、柔らかい基材上に多孔体を形成できないという課題があった。一方で、焼成処理を行わない空隙層の適用事例がある(例えば、非特許文献1参照)。しかし、この方法では、シラノール粉砕ゾルに残留シラノール基が多く含まれたままであり、空隙層形成後の焼成処理を行わないため、得られる多孔体は、膜強度が劣り、耐衝撃性を付与できないという課題があった。 Various studies have been conducted on silanol porous body sol solutions that can form void structures using silica compound materials (silicon compound materials) as raw materials. The point common to them is that after the silica compound is once gelled, a pulverized sol solution prepared by pulverizing the gelled silica compound is prepared and coated to form a void structure. . However, when trying to obtain a higher porosity, there is a problem that the film strength of the silanol porous body is remarkably lowered, and it is difficult to easily obtain the silanol porous body industrially. As an example of achieving both high porosity and strength, there is an application example to a lens antireflection layer (see, for example, Patent Documents 1 to 4). In this method, after a void layer is formed on the lens, a high temperature of 150 ° C. or higher is baked for a long time. However, since a gel using tetraethoxysilane (TEOS) as a raw material is inferior in flexibility, There was a problem that a porous body could not be formed on a soft substrate. On the other hand, there is an application example of a void layer in which no firing treatment is performed (for example, see Non-Patent Document 1). However, in this method, the silanol pulverized sol still contains a large amount of residual silanol groups, and no firing treatment is performed after the formation of the void layer, so that the resulting porous body has poor film strength and cannot impart impact resistance. There was a problem.
 このような問題を解消するために、部材間の空隙により形成される空気層に代わるフィルムの開発が試みられている。 In order to solve such problems, an attempt has been made to develop a film that replaces the air layer formed by the gaps between the members.
特開2006-297329号公報JP 2006-297329 A 特開2006-221144号公報JP 2006-221144 A 特開2006-011175号公報JP 2006-011175 A 特開2008-040171号公報JP 2008-040171 A
 特に、光学フィルム等の用途に用いるためには、空隙層の屈折率が極力低いことが必要であり、具体的には、1.25以下であることが望ましい。 In particular, in order to be used for applications such as optical films, it is necessary that the refractive index of the void layer is as low as possible, and specifically, it is desirable that it is 1.25 or less.
 一方、空隙層(低屈折率膜)製造用のゾル液は、前述のとおり、例えばシリカ化合物をゲル化したゲルを原料として製造する。このゲルの製造用溶媒は、ゲル化反応進行のために、高沸点溶媒が望ましい。しかしながら、高沸点溶媒がゾル液中に大量に残留すると、その後にゾル液を塗工乾燥して空隙層(低屈折率膜)を製造した際に、前記高沸点溶媒の除去が困難である。そして、空隙層(低屈折率膜)中に高沸点溶媒が残留すると、低屈折率の発現が困難である。同様の課題は、シリカ化合物のゲルに限定されず、他の材質のゲルにおいても存在する。 On the other hand, as described above, the sol solution for producing the void layer (low refractive index film) is produced using, for example, a gel obtained by gelling a silica compound as a raw material. The solvent for producing this gel is preferably a high boiling point solvent for the progress of the gelation reaction. However, if a high boiling point solvent remains in a large amount in the sol solution, it is difficult to remove the high boiling point solvent when the void layer (low refractive index film) is produced by coating and drying the sol solution thereafter. If a high boiling point solvent remains in the void layer (low refractive index film), it is difficult to develop a low refractive index. The same problem is not limited to gels of silica compounds, but also exists in gels of other materials.
 そこで、本発明は、ゲル中のゲル製造用溶媒の残存量が少なく、低屈折率の膜を製造することが可能な低屈折率膜製造用ゲル、低屈折率膜製造用ゲルの製造方法、低屈折率膜製造用塗料、低屈折率膜製造用塗料の製造方法、積層フィルムの製造方法および画像表示装置の製造方法の提供を目的とする。 Therefore, the present invention is a low refractive index film manufacturing gel capable of manufacturing a low refractive index film with a small residual amount of the gel manufacturing solvent in the gel, a method for producing a low refractive index film manufacturing gel, An object of the present invention is to provide a coating material for producing a low refractive index film, a method for producing a coating material for producing a low refractive index film, a method for producing a laminated film, and a method for producing an image display device.
 前記目的を達成するために、本発明の低屈折率膜製造用ゲルは、低屈折率膜の製造に用いるためのゲルであって、前記ゲル中のゲル製造用溶媒の残存量が0.5g/ml以下であり、製造される前記低屈折率膜の屈折率が1.25以下であることを特徴とする。 In order to achieve the above object, the gel for producing a low refractive index film of the present invention is a gel for use in producing a low refractive index film, and the residual amount of the solvent for producing the gel in the gel is 0.5 g. / Ml or less, and the refractive index of the manufactured low refractive index film is 1.25 or less.
 本発明の低屈折率膜製造用ゲルの製造方法は、前記ゲルの原料を、前記ゲル製造用溶媒中でゲル化するゲル化工程と、前記ゲル中のゲル製造用溶媒を、他の溶媒に置換する溶媒置換工程とを含む、前記本発明の低屈折率膜製造用ゲルの製造方法である。 The method for producing a gel for producing a low refractive index film of the present invention comprises a gelation step of gelling the gel raw material in the gel production solvent, and the gel production solvent in the gel as another solvent. It is a manufacturing method of the said gel for low refractive index film | membrane manufacture of this invention including the solvent substitution process to substitute.
 本発明の低屈折率膜製造用塗料は、前記本発明の低屈折率膜製造用ゲルの粉砕物と、低屈折率膜製造用溶媒と、を含むことを特徴とする。 The paint for producing a low refractive index film of the present invention is characterized by comprising a pulverized product of the gel for producing a low refractive index film of the present invention and a solvent for producing a low refractive index film.
 本発明の低屈折率膜製造用塗料の製造方法は、前記ゲルを粉砕する粉砕工程と、前記ゲルの粉砕物と前記低屈折率膜製造用溶媒とを混合する混合工程とを含む、前記本発明の低屈折率膜製造用塗料の製造方法である。 The method for producing a coating material for producing a low refractive index film according to the present invention comprises: It is a manufacturing method of the coating material for low-refractive-index film manufacture of invention.
 本発明の積層フィルムの製造方法は、基材上に低屈折率膜を形成する工程を含む、積層フィルムの製造方法であって、前記低屈折率膜を形成する工程が、前記本発明の低屈折率膜製造用塗料を基材上に塗工する塗工工程と、塗工した前記低屈折率膜製造用塗料を乾燥させる乾燥工程と、を含むことを特徴とする。 The method for producing a laminated film of the present invention is a method for producing a laminated film including a step of forming a low refractive index film on a substrate, and the step of forming the low refractive index film comprises the step of forming the low refractive index film of the present invention. A coating step for coating the coating material for producing a refractive index film on a substrate; and a drying step for drying the coated coating material for producing a low refractive index film.
 本発明の画像表示装置の製造方法は、光学部材として、積層フィルムを含む画像表示装置の製造方法であって、前記積層フィルムを、前記本発明の積層フィルムの製造方法により製造することを特徴とする。 The method for producing an image display device of the present invention is a method for producing an image display device including a laminated film as an optical member, wherein the laminated film is produced by the method for producing a laminated film of the present invention. To do.
 本発明の低屈折率膜製造用ゲルは、ゲル中のゲル製造用溶媒の残存量が0.5g/ml以下と少ないことにより、屈折率が1.25以下と低屈折率の膜を製造することが可能である。このような本発明の低屈折率膜製造用ゲルは、例えば、前記本発明の低屈折率膜製造用ゲルの製造方法により製造できる。本発明の低屈折率膜製造用ゲルは、例えば、それを用いて、前記本発明の低屈折率膜製造用塗料の製造方法により、前記本発明の低屈折率膜製造用塗料を製造することができる。そして、前記本発明の低屈折率膜製造用塗料を用いて、屈折率が1.25以下と低屈折率の膜を製造することが可能である。前記本発明の低屈折率膜製造用塗料は、その用途は特に限定されないが、例えば、前記本発明の積層フィルムの製造方法および画像表示装置の製造方法に用いることができる。なお、本発明の低屈折率膜製造用ゲルまたは本発明の低屈折率膜製造用塗料を用いて製造される低屈折率膜を、以下において「本発明の低屈折率膜」という場合がある。また、本発明の低屈折率膜は、空隙を有することで、1.25以下という低屈折率を実現できる。このため、以下において、本発明の低屈折率膜を、「本発明の空隙層」または単に「空隙層」という場合がある。 The gel for producing a low refractive index film of the present invention produces a low refractive index film having a refractive index of 1.25 or less because the residual amount of the gel production solvent in the gel is as low as 0.5 g / ml or less. It is possible. Such a gel for producing a low refractive index film of the present invention can be produced, for example, by the method for producing a gel for producing a low refractive index film of the present invention. The gel for producing a low refractive index film of the present invention is produced, for example, by using the gel for producing a low refractive index film of the present invention by using the method for producing the paint for producing a low refractive index film of the present invention. Can do. And it is possible to manufacture a film having a low refractive index of 1.25 or less using the coating material for manufacturing a low refractive index film of the present invention. The use of the coating material for producing a low refractive index film of the present invention is not particularly limited. For example, it can be used in the method for producing a laminated film and the method for producing an image display device of the present invention. The low refractive index film produced using the gel for producing the low refractive index film of the present invention or the coating material for producing the low refractive index film of the present invention may be hereinafter referred to as “low refractive index film of the present invention”. . In addition, the low refractive index film of the present invention can realize a low refractive index of 1.25 or less by having voids. Therefore, hereinafter, the low refractive index film of the present invention may be referred to as “the void layer of the present invention” or simply “the void layer”.
図1は、本発明の塗料を用いて、基材10上に空隙層(低屈折率膜)20を形成する方法の一例を模式的に示す工程断面図である。FIG. 1 is a process cross-sectional view schematically showing an example of a method for forming a void layer (low refractive index film) 20 on a substrate 10 using the coating material of the present invention. 図2は、本発明の塗料を用いて、空隙層を製造する工程の一部と、それに用いる装置の一例とを模式的に示す図である。FIG. 2 is a diagram schematically showing a part of a process for producing a void layer using the coating material of the present invention and an example of an apparatus used therefor. 図3は、本発明の塗料を用いて、空隙層を製造する工程の一部と、それに用いる装置の別の一例とを模式的に示す図である。FIG. 3 is a diagram schematically showing a part of a process for producing a void layer using the coating material of the present invention and another example of an apparatus used therefor.
 以下、本発明について、例を挙げてさらに具体的に説明する。ただし、本発明は、以下の説明により限定および制限されない。 Hereinafter, the present invention will be described more specifically with examples. However, the present invention is not limited or restricted by the following description.
 本発明者らは、屈折率が1.25以下である低屈折率膜の製造方法を種々検討したところ、原料であるゲル中のゲル製造用溶媒の残存量が微量でありながらも、最終的に得られる低屈折率膜の屈折率に大きく影響することを見出した。それに加え、本発明者らは、屈折率が1.25以下である低屈折率膜を製造するために、ゲル中のゲル製造用溶媒の残存量を0.5g/ml以下とすることが極めて効果的であることを見出し、本発明に到達した。これまで低屈折率膜は、膜強度を上げるために200℃以上の高温焼成処理により形成されていたため、前記課題についての認識がされていなかった。しかし、本発明者らは、例えば、200℃以下の比較的マイルドな条件で膜強度のある低屈折率膜を形成させるため、前記ゲル製造用溶媒の残存量に着眼することが非常に重要であることを見出した。この知見は、前記特許文献および非特許文献を含めた先行技術には示されておらず、本発明者らが独自に見出した知見である。 The inventors of the present invention have studied various methods for producing a low refractive index film having a refractive index of 1.25 or less. As a result, the final amount of the solvent for gel production in the gel as a raw material is very small. It has been found that this greatly affects the refractive index of the low refractive index film obtained. In addition, in order to produce a low refractive index film having a refractive index of 1.25 or less, the inventors of the present invention have extremely set the residual amount of the gel production solvent in the gel to 0.5 g / ml or less. The inventors have found that it is effective and have reached the present invention. So far, the low refractive index film has been formed by high-temperature baking treatment at 200 ° C. or higher in order to increase the film strength, and thus the above problem has not been recognized. However, it is very important for the inventors to focus on the remaining amount of the solvent for gel production in order to form a low refractive index film having a film strength under relatively mild conditions of, for example, 200 ° C. or less. I found out. This knowledge is not shown in the prior art including the patent document and the non-patent document, and is a knowledge that the present inventors have found uniquely.
 このように、ゲル中のゲル製造用溶媒の残存量を低減することで低屈折率の膜を製造できる理由(メカニズム)は不明であるが、例えば、以下のように推測される。すなわち、前述のとおり、ゲル製造用溶媒は、ゲル化反応進行のため、高沸点溶媒(例えば、DMSO[ジメチルスルホキシド]等)が好ましい。そして、前記ゲルから製造されたゾル液を塗工乾燥して低屈折率膜を製造する際に、通常の乾燥温度および乾燥時間(特には限定されないが、例えば、100℃で1分等)では、前記高沸点溶媒を完全に除去することは困難である。乾燥温度が高すぎる、または乾燥時間が長すぎると、基材の劣化等の問題が生じる恐れがあるためである。そして、前記塗工乾燥時に残留した前記高沸点溶媒が、前記ゲルの粉砕物同士の間に入り込み、前記粉砕物同士を滑らせ、前記粉砕物同士が密に堆積してしまい空隙率が少なくなるため、低屈折率が発現しにくいと推測される。すなわち、逆に、前記高沸点溶媒の残存量を少なくすれば、そのような現象を抑制でき、低屈折率が発現可能と考えられる。ただし、これらは、推測されるメカニズムの一例であり、本発明をなんら限定しない。 As described above, the reason (mechanism) for producing a film having a low refractive index by reducing the residual amount of the solvent for gel production in the gel is unknown, but for example, it is presumed as follows. That is, as described above, the solvent for gel production is preferably a high boiling point solvent (for example, DMSO [dimethyl sulfoxide] or the like) for the progress of the gelation reaction. Then, when a low refractive index film is produced by applying and drying the sol solution produced from the gel, at a normal drying temperature and drying time (not particularly limited, for example, at 100 ° C. for 1 minute, etc.) It is difficult to completely remove the high boiling solvent. This is because if the drying temperature is too high or the drying time is too long, problems such as deterioration of the substrate may occur. And the said high boiling point solvent remaining at the time of the said coating drying enters between the pulverized products of the gel, the crushed products are slid, and the pulverized products are densely deposited to reduce the porosity. For this reason, it is presumed that a low refractive index is hardly expressed. That is, conversely, if the residual amount of the high boiling point solvent is reduced, such a phenomenon can be suppressed and a low refractive index can be expressed. However, these are examples of the mechanism which is estimated and does not limit this invention at all.
 前記ゲル中のゲル製造用溶媒の残存量は、前述のとおり、0.5g/ml以下であり、また、例えば、0.2g/ml以下、0.15g/ml以下、0.05g/ml以下、0.03g/ml以下、または0.02g/ml以下である。前記ゲル中のゲル製造用溶媒の残存量の下限値は、特に限定されず、例えば0を超える値であるが、理想的には0である。 As described above, the residual amount of the solvent for producing the gel in the gel is 0.5 g / ml or less, for example, 0.2 g / ml or less, 0.15 g / ml or less, 0.05 g / ml or less. 0.03 g / ml or less, or 0.02 g / ml or less. The lower limit value of the remaining amount of the solvent for gel production in the gel is not particularly limited, and is, for example, a value exceeding 0, but ideally 0.
 前記ゲル中のゲル製造用溶媒の残存量は、例えば、下記のようにして測定することができる。 The residual amount of the solvent for gel production in the gel can be measured, for example, as follows.
(ゲル中のゲル製造用溶媒の残存量測定方法)
 ゲル製造用溶媒を含むゲルを、前記ゲル製造用溶媒と任意の比率で混合可能な他の溶媒中に、3時間以上浸漬する。その後、前記他の溶媒中における前記ゲル製造用溶媒の含量(g/ml)を、ガスクロマトグラフィーにより測定する。その測定値を、その時の前記ゲル中のゲル製造用溶媒の残存量に等しいと推定する。すなわち、前記ゲルを、前記ゲル製造用溶媒と任意の比率で混合可能な他の溶媒中に、3時間以上浸漬したことで、前記ゲル中のゲル製造用溶媒の残存量と、前記他の溶媒中における前記ゲル製造用溶媒の含量とが、平衡に達して等しくなったと推定する。
(Method for measuring residual amount of solvent for gel production in gel)
The gel containing the solvent for gel production is immersed in another solvent that can be mixed with the solvent for gel production at an arbitrary ratio for 3 hours or more. Thereafter, the content (g / ml) of the solvent for gel production in the other solvent is measured by gas chromatography. The measured value is estimated to be equal to the remaining amount of the solvent for gel production in the gel at that time. That is, by immersing the gel in another solvent that can be mixed with the gel production solvent in an arbitrary ratio for 3 hours or more, the remaining amount of the gel production solvent in the gel and the other solvent It is presumed that the content of the solvent for gel production in it reached equilibrium and became equal.
 なお、本発明において、「溶媒」(例えば、ゲル製造用溶媒、低屈折率膜製造用溶媒等)は、ゲルまたはその粉砕物等を溶解しなくても良く、例えば、前記ゲルまたはその粉砕物等を、前記溶媒中に分散させたり沈殿させたりしても良い。 In the present invention, the “solvent” (for example, a solvent for producing a gel, a solvent for producing a low refractive index film, etc.) may not dissolve the gel or a pulverized product thereof. Etc. may be dispersed or precipitated in the solvent.
 前記ゲル製造用溶媒は、例えば、沸点が130℃以上である。 The gel production solvent has a boiling point of 130 ° C. or higher, for example.
 前記ゲル製造溶媒は、例えば、水溶性溶媒である。なお、本発明において、「水溶性溶媒」は、水と任意の比率で混合可能な溶媒をいう。 The gel production solvent is, for example, a water-soluble solvent. In the present invention, the “water-soluble solvent” refers to a solvent that can be mixed with water at an arbitrary ratio.
 本発明の低屈折率膜製造用ゲルにおいて、前記ゲルは、例えば、無機物のゲルであっても良い。また、前記ゲルは、例えば、Si、Mg、Al、Ti、ZnおよびZrからなる群から選択される少なくとも一つの元素を含んでいても良い。前記ゲルは、例えば、ゲル状ケイ素化合物であっても良い。また、前記ゲル状ケイ素化合物は、例えば、3官能以下の飽和結合官能基を少なくとも含むケイ素化合物から得られるゲル状ケイ素化合物であっても良い。 In the gel for producing a low refractive index film of the present invention, the gel may be, for example, an inorganic gel. The gel may contain at least one element selected from the group consisting of Si, Mg, Al, Ti, Zn, and Zr, for example. The gel may be, for example, a gel silicon compound. Further, the gel silicon compound may be a gel silicon compound obtained from a silicon compound containing at least a trifunctional or lower saturated bond functional group.
 本発明の低屈折率膜製造用ゲルは、例えば、前記低屈折率膜を基材上に製造するための低屈折率膜製造用ゲルであっても良い。前記基材は、例えば、樹脂フィルムであっても良い。 The low refractive index film production gel of the present invention may be, for example, a low refractive index film production gel for producing the low refractive index film on a substrate. The substrate may be, for example, a resin film.
 本発明の低屈折率膜製造用ゲルの製造方法は、前述のとおり、前記ゲルの原料を、前記ゲル製造用溶媒中でゲル化するゲル化工程と、前記ゲル中のゲル製造用溶媒を、他の溶媒に置換する溶媒置換工程とを含む。前記溶媒置換工程において、前記他の溶媒は、例えば、前記低屈折率膜製造用溶媒である。また、前記他の溶媒は、例えば、前記ゲル製造用溶媒を溶解することが可能な溶媒である。前記他の溶媒は、前記ゲル製造用溶媒と任意の比率で混合可能な溶媒であることがより好ましい。 As described above, the method for producing a gel for producing a low refractive index film according to the present invention comprises a gelation step of gelling the gel raw material in the gel production solvent, and a gel production solvent in the gel. And a solvent substitution step of substituting with another solvent. In the solvent replacement step, the other solvent is, for example, the low refractive index film manufacturing solvent. The other solvent is, for example, a solvent capable of dissolving the solvent for gel production. The other solvent is more preferably a solvent that can be mixed with the solvent for gel production at an arbitrary ratio.
 本発明の低屈折率膜製造用ゲルの製造方法は、さらに、前記溶媒置換工程に先立ち、前記ゲルの塊を複数に分割するゲル分割工程を含むことが好ましい。前記ゲル分割工程において、前記ゲルを、長辺が15cm以下の3次元構造体に分割することがより好ましい。 The method for producing a gel for producing a low refractive index film of the present invention preferably further includes a gel dividing step of dividing the gel lump into a plurality of pieces prior to the solvent replacement step. In the gel dividing step, the gel is more preferably divided into a three-dimensional structure having a long side of 15 cm or less.
 本発明の低屈折率膜製造用ゲルの製造方法は、さらに、前記溶媒置換工程に先立ち、前記ゲルを前記ゲル製造用溶媒中で熟成する熟成工程を含んでいても良い。また、前記ゲル分割工程を、前記熟成工程後に行っても良い。前記熟成工程においては、例えば、前記ゲルを、前記ゲル製造用溶媒中、30℃以上でインキュベートすることにより熟成しても良い。 The method for producing a gel for producing a low refractive index film of the present invention may further include an aging step for aging the gel in the solvent for gel production prior to the solvent replacement step. Moreover, you may perform the said gel division | segmentation process after the said aging process. In the aging step, for example, the gel may be aged by incubating in the gel production solvent at 30 ° C. or higher.
 本発明の低屈折率膜製造用塗料は、前述のとおり、前記本発明の低屈折率膜製造用ゲルの粉砕物と、低屈折率膜製造用溶媒と、を含むことを特徴とする。前記低屈折率膜製造用溶媒は、例えば、ゲル製造用触媒、縮合反応で生成したアルコール成分、水等を溶解することが可能な溶媒であっても良く、前記ゲル製造用溶媒と任意の比率で混合可能な溶媒であっても良い。 As described above, the coating material for producing a low refractive index film of the present invention is characterized by containing the pulverized product of the gel for producing a low refractive index film of the present invention and a solvent for producing a low refractive index film. The solvent for producing the low refractive index film may be, for example, a catalyst capable of dissolving a gel production catalyst, an alcohol component produced by a condensation reaction, water, etc., and an arbitrary ratio with the gel production solvent. Or a solvent that can be mixed in the above.
 本発明の低屈折率膜製造用塗料において、前記ゲルは、例えば、3官能以下の飽和結合官能基を少なくとも含むケイ素化合物から得られたゲル状ケイ素化合物であっても良い。また、前記ゲルの粉砕物が、残留シラノール基を含有していても良い。本発明の前記低屈折率膜製造用塗料は、例えば、前記粉砕物同士を化学的に結合させるためのシリコーンゾル塗料であっても良い。前記ケイ素化合物は、例えば、下記式(2)で表される化合物であっても良い。
式(2)中、
 Xは、2または3であり、
 RおよびRは、それぞれ、直鎖もしくは分枝アルキル基であり、
 RおよびRは、同一でも異なっていても良く、
 Rは、Xが2の場合、互いに同一でも異なっていても良く、
 Rは、互いに同一でも異なっていても良い。
In the coating material for producing a low refractive index film of the present invention, the gel may be, for example, a gel silicon compound obtained from a silicon compound containing at least a trifunctional or lower saturated bond functional group. Moreover, the pulverized product of the gel may contain residual silanol groups. The paint for producing a low refractive index film of the present invention may be, for example, a silicone sol paint for chemically bonding the pulverized products. The silicon compound may be, for example, a compound represented by the following formula (2).
In formula (2),
X is 2 or 3,
R 1 and R 2 are each a linear or branched alkyl group,
R 1 and R 2 may be the same or different,
R 1 s may be the same as or different from each other when X is 2.
R 2 may be the same as or different from each other.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 本発明の低屈折率膜製造用塗料において、前記ゲルの粉砕物の体積平均粒子径が、例えば、0.05~2.00μmであっても良い。 In the coating material for producing a low refractive index film of the present invention, the volume average particle diameter of the gel pulverized product may be, for example, 0.05 to 2.00 μm.
 本発明の低屈折率膜製造用塗料は、例えば、前記粉砕物同士を化学的に結合させるための触媒を含んでいても良い。 The paint for producing a low refractive index film of the present invention may contain, for example, a catalyst for chemically bonding the pulverized products.
 本発明の低屈折率膜製造用塗料の製造方法は、前述のとおり、前記ゲルを粉砕する粉砕工程と、前記ゲルの粉砕物と前記低屈折率膜製造用溶媒とを混合する混合工程とを含む。前記ゲルを粉砕する粉砕工程は、例えば、前記低屈折率膜製造用溶媒中において行っても良い。前記低屈折率膜製造用溶媒は、例えば、前記ゲル製造用触媒、縮合反応で生成したアルコール成分、水等を溶解することが可能な溶媒であり、前記ゲル製造用溶媒と任意の比率で混交可能な溶媒がより好ましい。 The method for producing a coating material for producing a low refractive index film according to the present invention comprises, as described above, a grinding step for grinding the gel, and a mixing step for mixing the ground product of the gel and the solvent for producing the low refractive index film. Including. The pulverization step of pulverizing the gel may be performed, for example, in the low refractive index film manufacturing solvent. The low refractive index film-producing solvent is, for example, a solvent capable of dissolving the gel-producing catalyst, the alcohol component produced by the condensation reaction, water, etc., and is mixed with the gel-producing solvent at an arbitrary ratio. Possible solvents are more preferred.
 本発明の積層フィルムの製造方法は、前述のとおり、前記本発明の低屈折率膜製造用塗料を基材上に塗工する塗工工程と、塗工した前記低屈折率膜製造用塗料を乾燥させる乾燥工程と、を含む。本発明の積層フィルムの製造方法は、さらに、前記粉砕物同士を架橋反応させる架橋反応工程を含んでいても良い。また、前記低屈折率膜製造用塗料が、前記粉砕物同士を化学的に結合させるための触媒を含み、前記架橋反応が、前記触媒による架橋反応であっても良い。また、本発明の積層フィルムの製造方法により形成される前記低屈折率膜(空隙層)は、微細な空隙構造を形成する一種類または複数種類の構成単位同士が、触媒作用を介して化学的に結合していても良い。 As described above, the method for producing a laminated film of the present invention comprises: a coating process for coating the coating material for producing a low refractive index film of the present invention on a substrate; and the coated coating material for producing a low refractive index film. And a drying step for drying. The method for producing a laminated film of the present invention may further include a crosslinking reaction step in which the pulverized product is subjected to a crosslinking reaction. Further, the coating material for producing a low refractive index film may contain a catalyst for chemically bonding the pulverized products, and the crosslinking reaction may be a crosslinking reaction by the catalyst. In addition, the low refractive index film (void layer) formed by the method for producing a laminated film of the present invention has a chemical structure in which one type or plural types of structural units forming a fine void structure are chemically coupled to each other. It may be combined with.
 本発明の積層フィルムにおいて、例えば、前記低屈折率膜(空隙層)を構成する構成単位同士の結合が、水素結合もしくは共有結合を含んでいても良い。前記空隙層を形成する構成単位は、例えば、粒子状、繊維状、平板状の少なくとも一つの形状を有する構造からなっていても良い。前記粒子状および平板状の構成単位は、例えば、無機物からなっていても良い。また、前記粒子状構成単位の構成元素は、例えば、Si、Mg、Al、Ti、ZnおよびZrからなる群から選択される少なくとも一つの元素を含んでいても良い。粒子状を形成する構造体(構成単位)は、実粒子でも中空粒子でもよく、具体的には、シリコーン粒子や微細孔を有するシリコーン粒子、シリカ中空ナノ粒子やシリカ中空ナノバルーン等が挙げられる。繊維状の構成単位は、例えば、直径がナノサイズのナノファイバーであり、具体的には、セルロースナノファイバーやアルミナナノファイバー等が挙げられる。平板状の構成単位は、例えば、ナノクレイが挙げられ、具体的には、ナノサイズのベントナイト(例えばクニピアF[商品名])等が挙げられる。前記繊維状の構成単位は、特に限定されないが、例えば、カーボンナノファイバー、セルロースナノファイバー、アルミナナノファイバー、キチンナノファイバー、キトサンナノファイバー、ポリマーナノファイバー、ガラスナノファイバー、およびシリカナノファイバーからなる群から選択される少なくとも一つの繊維状物質であっても良い。また、本発明の積層フィルムにおいて、前記微細な空隙構造を形成する一種類または複数種類の構成単位同士は、前述のとおり、触媒作用を介して、直接的または間接的に化学的に結合している部分を含んでいても良い。なお、本発明の積層フィルムにおける空隙層中において、例えば、前述のとおり、前記一種類または複数種類の構成単位同士の少なくとも一部が、触媒作用を介して化学的に結合していても良い。この場合において、例えば、構成単位同士が接触していても、化学的に結合していない部分が存在していても良い。また、本発明において、構成単位同士が「間接的に結合している」とは、構成単位量以下の少量のバインダー成分を仲介して、構成単位同士が結合していることを指す。構成単位同士が「直接的に結合している」とは、構成単位同士が、バインダー成分等を介さずに直接結合していることを指す。 In the laminated film of the present invention, for example, the bonds between the constituent units constituting the low refractive index film (void layer) may include hydrogen bonds or covalent bonds. The structural unit forming the void layer may have a structure having at least one of a particle shape, a fiber shape, and a flat plate shape, for example. The particulate and flat structural units may be made of an inorganic substance, for example. In addition, the constituent element of the particulate structural unit may include at least one element selected from the group consisting of Si, Mg, Al, Ti, Zn, and Zr, for example. The structure (constituent unit) forming the particulate form may be a real particle or a hollow particle. Specific examples include silicone particles, silicone particles having fine pores, silica hollow nanoparticles, silica hollow nanoballoons, and the like. The fibrous structural unit is, for example, a nanofiber having a diameter of nano-size, and specifically includes cellulose nanofiber and alumina nanofiber. Examples of the plate-like structural unit include nanoclay, and specifically, nano-sized bentonite (for example, Kunipia F [trade name]) and the like. The fibrous structural unit is not particularly limited, but for example, from the group consisting of carbon nanofiber, cellulose nanofiber, alumina nanofiber, chitin nanofiber, chitosan nanofiber, polymer nanofiber, glass nanofiber, and silica nanofiber. It may be at least one fibrous material selected. Moreover, in the laminated film of the present invention, one type or a plurality of types of structural units forming the fine void structure are chemically bonded directly or indirectly through catalytic action as described above. It may contain the part which is. In the void layer in the laminated film of the present invention, for example, as described above, at least a part of the one type or a plurality of types of structural units may be chemically bonded via a catalytic action. In this case, for example, even if the structural units are in contact with each other, there may be a portion that is not chemically bonded. Further, in the present invention, the structural units are “indirectly bonded” means that the structural units are bonded to each other through a small amount of a binder component equal to or less than the structural unit amount. The structural units are “directly bonded” means that the structural units are directly bonded without using a binder component or the like.
 なお、本発明において、「粒子」(例えば、前記粉砕物の粒子等)の形状は、特に限定されず、例えば、球状でも良いが、非球状系等でも良い。また、本発明において、前記粉砕物の粒子は、例えば、ゾルゲル数珠状粒子でも良いし、前述のとおり、ナノ粒子(中空ナノシリカ・ナノバルーン粒子)、ナノ繊維等であっても良い。 In the present invention, the shape of “particles” (for example, particles of the pulverized product) is not particularly limited, and may be, for example, spherical or non-spherical. In the present invention, the pulverized particles may be, for example, sol-gel bead-like particles, or may be nanoparticles (hollow nanosilica / nanoballoon particles), nanofibers, or the like as described above.
 以下、本発明について、主に、前記本発明の低屈折率膜製造用ゲル(以下、「本発明のゲル」または単に「ゲル」という場合がある。)およびその粉砕物の材質が、ゲル状ケイ素化合物(代表的には、シリカ)である場合を中心に説明する。また、以下において、本発明の低屈折率膜(空隙層)の材質がケイ素化合物(代表的には、シリカ)である場合において、「本発明のシリコーン多孔体」または単に「シリコーン多孔体」という場合がある。ただし、前述のとおり、本発明の低屈折率膜製造用ゲル、低屈折率膜製造用塗料、および低屈折率膜(空隙層)の材質は、任意であり、ケイ素化合物のみに限定されない。前記材質がケイ素化合物以外である場合、特段の事情が無い限り、以下のケイ素化合物についての説明を援用できる。 Hereinafter, regarding the present invention, the material for the low refractive index film-producing gel of the present invention (hereinafter sometimes referred to as “the gel of the present invention” or simply “gel”) and the pulverized product thereof are gel-like. Description will be made mainly on the case of a silicon compound (typically silica). In the following, when the material of the low refractive index film (void layer) of the present invention is a silicon compound (typically silica), it is referred to as “silicone porous body of the present invention” or simply “silicone porous body”. There is a case. However, as described above, the material for the low refractive index film manufacturing gel, the low refractive index film manufacturing paint, and the low refractive index film (void layer) of the present invention is arbitrary and is not limited to the silicon compound alone. When the material is other than a silicon compound, the following explanation of the silicon compound can be cited unless there is a particular circumstance.
[1.低屈折率膜製造用塗料、低屈折率膜製造用ゲルおよびそれらの製造方法]
 本発明の低屈折率膜製造用塗料(以下、単に「本発明の塗料」という場合がある。)の材質は、前述のとおり、特に限定されず任意であるが、例えば、少なくとも3官能以下の飽和結合官能基を含むケイ素化合物から得られたゲル状ケイ素化合物の粉砕物と、溶媒とを含み、前記粉砕物が残留シラノール基を含有し、前記粉砕物同士を化学的に結合させるための塗料であっても良い。以下、このような塗料を、「本発明のシリコーンゾル塗料」または単に「シリコーンゾル塗料」という場合がある。なお、「3官能基以下の飽和結合官能基を含む」とは、ケイ素化合物が、3つ以下の官能基を有し、且つ、これらの官能基が、ケイ素(Si)と飽和結合していることを意味する。
[1. Low Refractive Index Film Manufacturing Paint, Low Refractive Index Film Manufacturing Gel, and Their Manufacturing Method]
The material of the coating material for producing a low refractive index film of the present invention (hereinafter sometimes simply referred to as “the coating material of the present invention”) is not particularly limited as described above, but is optional. A paint containing a pulverized product of a gel-like silicon compound obtained from a silicon compound containing a saturated bond functional group, a solvent, the pulverized product containing residual silanol groups, and chemically bonding the pulverized products to each other It may be. Hereinafter, such a paint may be referred to as “the silicone sol paint of the present invention” or simply “silicone sol paint”. In addition, “including a saturated bond functional group of 3 functional groups or less” means that the silicon compound has 3 or less functional groups, and these functional groups are saturated bonded to silicon (Si). Means that.
 本発明の塗料の製造方法は、例えば、前記本発明のシリコーンゾル塗料の製造方法であり、少なくとも3官能以下の飽和結合官能基を含むケイ素化合物から得られたゲル状ケイ素化合物の粉砕物と分散媒とを混合する工程を含んでいても良い。 The method for producing a coating material of the present invention is, for example, the method for producing the silicone sol coating material of the present invention, in which a pulverized product and dispersion of a gel-like silicon compound obtained from a silicon compound containing a saturated bond functional group having at least three functional groups or less. The process of mixing with a medium may be included.
 本発明の塗料は、空気層と同様の機能(低屈折性)を奏する本発明の低屈折率膜(空隙層、代表的にはシリコーン多孔体)の製造に使用できる。本発明の塗料は、例えば、前記ゲル状ケイ素化合物の粉砕物を含んでおり、前記粉砕物は、未粉砕の前記ゲル状ケイ素化合物の三次元構造が破壊され、前記未粉砕のゲル状ケイ素化合物とは異なる新たな三次元構造を形成できる。このため、例えば、前記塗料を用いて形成した塗工膜(シリコーン多孔体の前駆体)は、前記未粉砕のゲル状ケイ素化合物を用いて形成される層では得られない新たな孔構造(新たな空隙構造)が形成された層となる。これによって、前記層は、空気層と同様の機能(例えば、同様の低屈折性)を奏することができる。また、本発明の塗料は、例えば、前記粉砕物が残留シラノール基を含むことから、前記塗工膜(シリコーン多孔体の前駆体)として新たな三次元構造が形成された後に、前記粉砕物同士を化学的に結合させることができる。これにより、形成されたシリコーン多孔体は、空隙を有する構造であるが、十分な強度と可撓性とを維持できる。このため、本発明によれば、容易且つ簡便に、シリコーン多孔体を様々な対象物に付与できる。本発明の塗料は、例えば、空気層の代替品となり得る前記低屈折率膜(多孔質構造)の製造において、非常に有用である。また、前記空気層の場合、例えば、部材と部材とを、両者の間にスペーサー等を介することで間隙を設けて積層することにより、前記部材間に空気層を形成する必要があった。しかし、本発明の塗料を用いて形成される前記シリコーン多孔体は、これを目的の部位に配置するのみで、前記空気層と同様の機能を発揮させることができる。したがって、前述のように、前記空気層を形成するよりも、容易且つ簡便に、前記空気層と同様の機能を、様々な対象物に付与することができる。 The paint of the present invention can be used for the production of the low refractive index film (void layer, typically a silicone porous body) of the present invention having the same function (low refractive property) as the air layer. The paint of the present invention includes, for example, a pulverized product of the gel-like silicon compound, and the pulverized product has the three-dimensional structure of the uncrushed gel-like silicon compound destroyed, and the uncrushed gel-like silicon compound. A new three-dimensional structure different from that can be formed. For this reason, for example, the coating film (silicone porous body precursor) formed using the coating material has a new pore structure (newly formed) that cannot be obtained by the layer formed using the unground gelatinous silicon compound. A layer in which a void structure is formed. Thereby, the layer can exhibit the same function as the air layer (for example, the same low refractive index). In the paint of the present invention, for example, since the pulverized product contains residual silanol groups, the pulverized product is formed after a new three-dimensional structure is formed as the coating film (precursor of silicone porous material). Can be chemically coupled. Thereby, although the formed porous silicon body has a structure having voids, sufficient strength and flexibility can be maintained. For this reason, according to this invention, a silicone porous body can be easily and simply provided to various objects. The coating material of the present invention is very useful, for example, in the production of the low refractive index film (porous structure) that can be used as a substitute for the air layer. Further, in the case of the air layer, for example, it is necessary to form an air layer between the members by stacking the members with a gap provided therebetween via a spacer or the like. However, the silicone porous body formed using the coating material of the present invention can exhibit the same function as the air layer only by disposing it at the target site. Therefore, as described above, functions similar to the air layer can be imparted to various objects more easily and simply than forming the air layer.
 本発明の塗料は、例えば、低屈折率膜の形成用塗料、または、低屈折層の形成用塗料ということもできる。本発明の塗料は、本発明のゲルの粉砕物を含む。 The paint of the present invention can also be referred to as, for example, a paint for forming a low refractive index film or a paint for forming a low refractive layer. The paint of the present invention contains a pulverized product of the gel of the present invention.
 本発明の塗料において、前記粉砕物の体積平均粒子径は、特に制限されず、その下限が、例えば、0.05μm以上、0.10μm以上、0.20μm以上、0.40μm以上であり、その上限が、例えば、2.00μm以下、1.50μm以下、1.00μm以下であり、その範囲が、例えば、0.05μm~2.00μm、0.20μm~1.50μm、0.40μm~1.00μmである。前記体積平均粒子径は、本発明の塗料における前記粉砕物の粒度バラツキを示す。前記粒度分布は、例えば、動的光散乱法、レーザー回折法等の粒度分布評価装置、および走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)等の電子顕微鏡等により測定することができる。 In the paint of the present invention, the volume average particle diameter of the pulverized product is not particularly limited, and the lower limit thereof is, for example, 0.05 μm or more, 0.10 μm or more, 0.20 μm or more, 0.40 μm or more, The upper limit is, for example, 2.00 μm or less, 1.50 μm or less, 1.00 μm or less, and the ranges thereof are, for example, 0.05 μm to 2.00 μm, 0.20 μm to 1.50 μm, 0.40 μm to 1. 00 μm. The volume average particle diameter indicates a particle size variation of the pulverized product in the paint of the present invention. The particle size distribution can be measured by, for example, a particle size distribution evaluation apparatus such as a dynamic light scattering method or a laser diffraction method, and an electron microscope such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). .
 また、本発明の塗料において、前記粉砕物の粒度分布は、特に制限されず、例えば、粒径0.4μm~1μmの粒子が、50~99.9重量%、80~99.8重量%、90~99.7重量%であり、または、粒径1μm~2μmの粒子が、0.1~50重量%、0.2~20重量%、0.3~10重量%である。前記粒度分布は、本発明の塗料における前記粉砕物の粒度バラツキを示す。前記粒度分布は、例えば、粒度分布評価装置または電子顕微鏡により測定することができる。 In the paint of the present invention, the particle size distribution of the pulverized product is not particularly limited. For example, particles having a particle size of 0.4 μm to 1 μm are 50 to 99.9 wt%, 80 to 99.8 wt%, It is 90 to 99.7% by weight, or particles having a particle size of 1 μm to 2 μm are 0.1 to 50% by weight, 0.2 to 20% by weight, and 0.3 to 10% by weight. The said particle size distribution shows the particle size variation of the said ground material in the coating material of this invention. The particle size distribution can be measured by, for example, a particle size distribution evaluation apparatus or an electron microscope.
 本発明の塗料において、前記ケイ素化合物は、例えば、下記式(2)で表される化合物である。 In the paint of the present invention, the silicon compound is, for example, a compound represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 前記式(2)中、例えば、Xは、2、3または4であり、
 RおよびRは、それぞれ、直鎖もしくは分枝アルキル基であり、
 RおよびRは、同一でも異なっていても良く、
 Rは、Xが2の場合、互いに同一でも異なっていても良く、
 Rは、互いに同一でも異なっていても良い。
In the formula (2), for example, X is 2, 3 or 4,
R 1 and R 2 are each a linear or branched alkyl group,
R 1 and R 2 may be the same or different,
R 1 s may be the same as or different from each other when X is 2.
R 2 may be the same as or different from each other.
 前記XおよびRは、例えば、後述する式(1)におけるXおよびRと同じである。また、前記Rは、例えば、後述する式(1)におけるRの例示が援用できる。 The X and R 1 are, for example, the same as X and R 1 in the formula (1) described later. In addition, the R 2 is, for example, can be exemplified for R 1 is incorporated in the formula (1) described later.
 前記式(2)で表されるケイ素化合物の具体例としては、例えば、Xが3である下記式(2’)に示す化合物が挙げられる。下記式(2’)において、RおよびRは、それぞれ、前記式(2)と同様である。RおよびRがメチル基の場合、前記ケイ素化合物は、トリメトキシ(メチル)シラン(以下、「MTMS」ともいう)である。 Specific examples of the silicon compound represented by the formula (2) include a compound represented by the following formula (2 ′) in which X is 3. In the following formula (2 ′), R 1 and R 2 are the same as those in the formula (2), respectively. When R 1 and R 2 are methyl groups, the silicon compound is trimethoxy (methyl) silane (hereinafter also referred to as “MTMS”).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 本発明の塗料において、前記溶媒(分散媒)中における本発明のゲルの粉砕物の濃度は、特に制限されず、例えば、0.3~50%(v/v)、0.5~30%(v/v)、1.0~10%(v/v)である。前記粉砕物の濃度が高すぎると、例えば、ゾル溶液の流動性が著しく低下し、塗工時の凝集物・塗工スジを発生させる可能性がある。一方で、前記粉砕物の濃度が低すぎると、例えば、溶媒の乾燥に相当の時間がかかるだけでなく、乾燥直後の残留溶媒も高くなるために、空隙率が低下してしまう可能性がある。また、本発明の塗料は、例えば、含まれるケイ素原子がシロキサン結合していることが好ましい。具体例として、前記塗料に含まれる全ケイ素原子のうち、未結合のケイ素原子(つまり、残留シラノール)の割合は、例えば、50%未満、30%以下、15%以下である。 In the paint of the present invention, the concentration of the pulverized product of the gel of the present invention in the solvent (dispersion medium) is not particularly limited, and is, for example, 0.3 to 50% (v / v), 0.5 to 30%. (V / v), 1.0 to 10% (v / v). When the concentration of the pulverized product is too high, for example, the fluidity of the sol solution is remarkably lowered, and there is a possibility of generating aggregates and coating streaks during coating. On the other hand, if the concentration of the pulverized product is too low, for example, not only does it take a considerable time to dry the solvent, but also the residual solvent immediately after drying increases, so the porosity may decrease. . In the coating material of the present invention, for example, the silicon atoms contained are preferably siloxane bonded. As a specific example, the proportion of unbonded silicon atoms (that is, residual silanol) in the total silicon atoms contained in the paint is, for example, less than 50%, 30% or less, or 15% or less.
 本発明の塗料の物性は、特に制限されない。前記塗料のせん断粘度は、例えば、10001/sのせん断速度において、例えば、粘度100cPa・s以下、粘度10cPa・s以下、粘度1cPa・s以下である。せん断粘度が高すぎると、例えば、塗工スジが発生し、グラビア塗工の転写率の低下等の不具合が見られる可能性がある。逆に、せん断粘度が低すぎる場合は、例えば、塗工時のウェット塗布厚みを厚くすることができず、乾燥後に所望の厚みが得られない可能性がある。 The physical properties of the paint of the present invention are not particularly limited. The shear viscosity of the paint is, for example, a viscosity of 100 cPa · s or less, a viscosity of 10 cPa · s or less, and a viscosity of 1 cPa · s or less at a shear rate of 10001 / s. If the shear viscosity is too high, for example, coating streaks may occur, and problems such as a decrease in the transfer rate of gravure coating may be observed. On the other hand, when the shear viscosity is too low, for example, the wet coating thickness at the time of coating cannot be increased, and a desired thickness may not be obtained after drying.
 本発明の塗料において、前記低屈折率膜製造用溶媒(以下、「塗工用溶媒」ともいう)は、特に制限されず、例えば、後述する粉砕用溶媒が挙げられる。前記塗工用溶媒としては、例えば、沸点130℃以下の有機溶媒が挙げられる。具体例としては、例えば、IPA[イソプロピルアルコール]、エタノール、メタノール、n-ブタノール、2-ブタノール、イソブチルアルコール等が挙げられる。 In the paint of the present invention, the solvent for producing the low refractive index film (hereinafter also referred to as “coating solvent”) is not particularly limited, and examples thereof include a grinding solvent described later. Examples of the coating solvent include organic solvents having a boiling point of 130 ° C. or lower. Specific examples include IPA [isopropyl alcohol], ethanol, methanol, n-butanol, 2-butanol, isobutyl alcohol and the like.
 本発明の塗料は、例えば、前記溶媒に分散させたゾル状の前記粉砕物であることから、例えば、「ゾル粒子液」ともいう。本発明の塗料は、例えば、基材上に塗工・乾燥した後に、結合工程により化学架橋を行うことで、一定レベル以上の膜強度を有する空隙層を、連続成膜することが可能である。なお、本発明における「ゾル」とは、ゲルの三次元構造を粉砕することで、前記粉砕物(つまり、空隙構造の一部を保持したナノ三次元構造のシリカゾル粒子)が、溶媒中に分散して流動性を示す状態をいう。 Since the paint of the present invention is, for example, the sol-like pulverized material dispersed in the solvent, it is also referred to as “sol particle liquid”, for example. The coating material of the present invention can continuously form a void layer having a film strength of a certain level or more by performing chemical crosslinking by a bonding step after coating and drying on a substrate, for example. . In the present invention, “sol” means that the three-dimensional structure of the gel is pulverized so that the pulverized product (that is, silica sol particles having a nano three-dimensional structure retaining a part of the void structure) is dispersed in the solvent. The state which shows fluidity.
 以下に、本発明の塗料の製造方法の例を説明するが、本発明の塗料は、以下の説明を援用できる。 Hereinafter, examples of the method for producing the paint of the present invention will be described, but the following explanation can be used for the paint of the present invention.
 本発明の塗料の製造方法は、前述のように、本発明の低屈折率膜製造用ゲルの粉砕物と前記低屈折率膜製造用溶媒とを混合する工程を含む。前記混合工程は、例えば、少なくとも3官能以下の飽和結合官能基を含むケイ素化合物から得られたゲル状ケイ素化合物の粉砕物と分散媒とを混合する工程であっても良い。本発明において、前記ゲル状ケイ素化合物の粉砕物は、例えば、後述する粉砕工程により、前記ゲル状ケイ素化合物から得ることができる。このため、前記ゲル状ケイ素化合物は、例えば、本発明の塗料の第1の塗料原料ということもできる。また、前記ゲル状ケイ素化合物の粉砕物は、例えば、後述する粉砕工程により、後述する熟成工程を施した熟成処理後の前記ゲル状ケイ素化合物から得ることができる。このため、前記熟成処理後の前記ゲル状ケイ素化合物は、例えば、本発明の塗料の第2の塗料原料ということもできる。 As described above, the method for producing a paint of the present invention includes a step of mixing the pulverized product of the gel for producing a low refractive index film of the present invention and the solvent for producing a low refractive index film. The mixing step may be, for example, a step of mixing a pulverized product of a gel-like silicon compound obtained from a silicon compound containing a saturated bond functional group having at least three functional groups and a dispersion medium. In the present invention, the pulverized product of the gel-like silicon compound can be obtained from the gel-like silicon compound by, for example, a pulverization step described later. For this reason, the said gel-like silicon compound can also be called the 1st coating material raw material of the coating material of this invention, for example. Moreover, the pulverized product of the gel-like silicon compound can be obtained, for example, from the gel-like silicon compound after the aging treatment in which the aging step described later is performed by a pulverizing step described later. For this reason, the said gel-like silicon compound after the said aging treatment can also be called the 2nd coating material raw material of the coating material of this invention, for example.
 本発明の塗料の製造方法において、ゲル化工程は、例えば、前記少なくとも3官能以下の飽和結合官能基を含むケイ素化合物を溶媒中でゲル化して、ゲル状ケイ素化合物(第1の塗料原料)を生成する工程であっても良い。前記ゲル化工程は、例えば、モノマーの前記ケイ素化合物を、脱水縮合触媒の存在下、脱水縮合反応によりゲル化する工程であり、これによって、ゲル状ケイ素化合物が得られる。前記ゲル状ケイ素化合物は、前述のように、残留シラノール基を有し、前記残留シラノール基は、後述する前記ゲル状ケイ素化合物の粉砕物同士の化学的な結合に応じて、適宜、調整することが好ましい。 In the method for producing a paint of the present invention, the gelation step includes, for example, gelling a silicon compound containing at least a trifunctional or lower saturated bond functional group in a solvent to obtain a gel silicon compound (first paint raw material). It may be a process of generating. The gelation step is, for example, a step of gelling the monomer silicon compound by a dehydration condensation reaction in the presence of a dehydration condensation catalyst, whereby a gel-like silicon compound is obtained. As described above, the gel-like silicon compound has a residual silanol group, and the residual silanol group is appropriately adjusted according to a chemical bond between pulverized products of the gel-like silicon compound described later. Is preferred.
 前記ゲル化工程において、前記ケイ素化合物は、特に制限されず、脱水縮合反応によりゲル化するものであればよい。前記脱水縮合により、例えば、前記ケイ素化合物間が結合される。前記ケイ素化合物間の結合は、例えば、水素結合または分子間力結合である。 In the gelation step, the silicon compound is not particularly limited as long as it is gelled by a dehydration condensation reaction. By the dehydration condensation, for example, the silicon compounds are bonded. The bond between the silicon compounds is, for example, a hydrogen bond or an intermolecular force bond.
 前記ケイ素化合物は、例えば、下記式(1)で表されるケイ素化合物が挙げられる。下記式(1)のケイ素化合物は、水酸基を有するため、下記式(1)のケイ素化合物間は、例えば、それぞれの水酸基を介して、水素結合または分子間力結合が可能である。 Examples of the silicon compound include a silicon compound represented by the following formula (1). Since the silicon compound of the following formula (1) has a hydroxyl group, between the silicon compounds of the following formula (1), for example, a hydrogen bond or an intermolecular force bond is possible via each hydroxyl group.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 前記式(1)中、例えば、Xは、2、3または4であり、Rは、直鎖もしくは分枝アルキル基、である。前記Rの炭素数は、例えば、1~6、1~4、1~2である。前記直鎖アルキル基は、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等が挙げられ、前記分枝アルキル基は、例えば、イソプロピル基、イソブチル基等が挙げられる。前記Xは、例えば、3または4である。 In the formula (1), for example, X is 2, 3 or 4, and R 1 is a linear or branched alkyl group. The carbon number of R 1 is, for example, 1-6, 1-4, 1-2. Examples of the linear alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group. Examples of the branched alkyl group include an isopropyl group and an isobutyl group. X is, for example, 3 or 4.
 前記式(1)で表されるケイ素化合物の具体例としては、例えば、Xが3である下記式(1’)に示す化合物が挙げられる。下記式(1’)において、Rは、前記式(1)と同様であり、例えば、メチル基である。Rがメチル基の場合、前記ケイ素化合物は、トリス(ヒドロキシ)メチルシランである。前記Xが3の場合、前記ケイ素化合物は、例えば、3つの官能基を有する3官能シランである。 Specific examples of the silicon compound represented by the formula (1) include a compound represented by the following formula (1 ′) in which X is 3. In the following formula (1 ′), R 1 is the same as in the above formula (1), and is, for example, a methyl group. When R 1 is a methyl group, the silicon compound is tris (hydroxy) methylsilane. When X is 3, the silicon compound is, for example, a trifunctional silane having three functional groups.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 また、前記式(1)で表されるケイ素化合物の具体例としては、例えば、Xが4である化合物が挙げられる。この場合、前記ケイ素化合物は、例えば、4つの官能基を有する4官能シランである。 Further, specific examples of the silicon compound represented by the formula (1) include a compound in which X is 4. In this case, the silicon compound is, for example, a tetrafunctional silane having four functional groups.
 前記ケイ素化合物は、例えば、加水分解により前記式(1)のケイ素化合物を形成する前駆体でもよい。前記前駆体としては、例えば、加水分解により前記ケイ素化合物を生成できるものであればよく、具体例として、前記式(2)で表される化合物が挙げられる。 The silicon compound may be, for example, a precursor that forms the silicon compound of the formula (1) by hydrolysis. The precursor is not particularly limited as long as it can generate the silicon compound by hydrolysis, and specific examples thereof include a compound represented by the formula (2).
 前記ケイ素化合物が前記式(2)で表される前駆体の場合、本発明の製造方法は、例えば、前記ゲル化工程に先立って、前記前駆体を加水分解する工程を含んでもよい。 When the silicon compound is a precursor represented by the formula (2), the production method of the present invention may include, for example, a step of hydrolyzing the precursor prior to the gelation step.
 前記加水分解の方法は、特に制限されず、例えば、触媒存在下での化学反応により行うことができる。前記触媒としては、例えば、シュウ酸、酢酸等の酸等が挙げられる。前記加水分解反応は、例えば、シュウ酸の水溶液を、前記ケイ素化合物前駆体のジメチルスルホキシド溶液に、室温環境下でゆっくり滴下混合させた後に、そのまま30分程度撹拌することで行うことができる。前記ケイ素化合物前駆体を加水分解する際は、例えば、前記ケイ素化合物前駆体のアルコキシ基を完全に加水分解することで、その後のゲル化・熟成・空隙構造形成後の加熱・固定化を、さらに効率良く発現することができる。 The hydrolysis method is not particularly limited, and can be performed, for example, by a chemical reaction in the presence of a catalyst. Examples of the catalyst include acids such as oxalic acid and acetic acid. The hydrolysis reaction can be performed, for example, by slowly dropping an aqueous solution of oxalic acid into the dimethyl sulfoxide solution of the silicon compound precursor in a room temperature environment and then stirring the mixture for about 30 minutes. When hydrolyzing the silicon compound precursor, for example, by completely hydrolyzing the alkoxy group of the silicon compound precursor, further heating and immobilization after gelation / aging / void structure formation, It can be expressed efficiently.
 本発明において、前記ケイ素化合物は、例えば、トリメトキシ(メチル)シランの加水分解物が例示できる。 In the present invention, examples of the silicon compound include a hydrolyzate of trimethoxy (methyl) silane.
 前記モノマーのケイ素化合物は、特に制限されず、例えば、製造するシリコーン多孔体の用途に応じて、適宜選択できる。前記シリコーン多孔体の製造において、前記ケイ素化合物は、例えば、低屈折率性を重視する場合、低屈折率性に優れる点から、前記3官能シランが好ましく、また、強度(例えば、耐擦傷性)を重視する場合は、耐擦傷性に優れる点から、前記4官能シランが好ましい。また、前記ゲル状ケイ素化合物の原料となる前記ケイ素化合物は、例えば、一種類のみを使用してもよいし、二種類以上を併用してもよい。具体例として、前記ケイ素化合物として、例えば、前記3官能シランのみを含んでもよいし、前記4官能シランのみを含んでもよいし、前記3官能シランと前記4官能シランの両方を含んでもよいし、さらに、その他のケイ素化合物を含んでもよい。前記ケイ素化合物として、二種類以上のケイ素化合物を使用する場合、その比率は、特に制限されず、適宜設定できる。 The silicon compound of the monomer is not particularly limited, and can be appropriately selected according to, for example, the use of the silicone porous body to be produced. In the production of the silicone porous body, for example, when importance is attached to low refractive index, the silicon compound is preferably the trifunctional silane from the viewpoint of excellent low refractive index, and also has strength (for example, scratch resistance). When importance is attached to the above, the tetrafunctional silane is preferred from the viewpoint of excellent scratch resistance. Moreover, the said silicon compound used as the raw material of the said gel-like silicon compound may use only 1 type, for example, and may use 2 or more types together. As a specific example, the silicon compound may include, for example, only the trifunctional silane, may include only the tetrafunctional silane, may include both the trifunctional silane and the tetrafunctional silane, Furthermore, other silicon compounds may be included. When two or more types of silicon compounds are used as the silicon compound, the ratio is not particularly limited and can be set as appropriate.
 そして、前記ケイ素化合物を、前記ゲル製造用溶媒中でゲル化するゲル化工程と、前記ゲル中のゲル製造用溶媒を、他の溶媒に置換する溶媒置換工程とによって、本発明のゲルを製造することができる。なお、本発明のゲルの原料は、前述のとおり、ケイ素化合物に限定されず任意であるが、ケイ素化合物を代表的な例として説明する。 Then, the gel of the present invention is produced by a gelation step of gelling the silicon compound in the gel production solvent and a solvent substitution step of substituting the solvent for gel production in the gel with another solvent. can do. The raw material of the gel of the present invention is not limited to the silicon compound as described above and is arbitrary, but the silicon compound will be described as a representative example.
 前記ケイ素化合物のゲル化は、例えば、前記ケイ素化合物間の脱水縮合反応により行うことができる。前記脱水縮合反応は、例えば、触媒存在下で行うことが好ましく、前記触媒としては、例えば、塩酸、シュウ酸、硫酸等の酸触媒、およびアンモニア、水酸化カリウム、水酸化ナトリウム、水酸化アンモニウム等の塩基触媒等の、脱水縮合触媒が挙げられる。前記脱水縮合触媒は、酸触媒でも塩基触媒でも良いが、塩基触媒が好ましい。前記脱水縮合反応において、前記ケイ素化合物に対する前記触媒の添加量は、特に制限されず、前記ケイ素化合物1モルに対して、触媒は、例えば、0.01~10モル、0.05~7モル、0.1~5モルである。 The gelation of the silicon compound can be performed, for example, by a dehydration condensation reaction between the silicon compounds. The dehydration condensation reaction is preferably performed, for example, in the presence of a catalyst. Examples of the catalyst include acid catalysts such as hydrochloric acid, oxalic acid, and sulfuric acid, and ammonia, potassium hydroxide, sodium hydroxide, ammonium hydroxide, and the like. And a dehydration condensation catalyst such as a base catalyst. The dehydration condensation catalyst may be an acid catalyst or a base catalyst, but a base catalyst is preferred. In the dehydration condensation reaction, the amount of the catalyst added to the silicon compound is not particularly limited, and the catalyst is, for example, 0.01 to 10 mol, 0.05 to 7 mol, relative to 1 mol of the silicon compound, 0.1 to 5 moles.
 本発明のゲルの原料(代表的にはケイ素化合物)のゲル化は、例えば、前述のとおり、前記ゲル製造用溶媒中で行う。前記ゲル製造用溶媒は、例えば、1種類でもよいし、2種類以上を併用してもよい。前記溶媒中における前記ゲルの原料の割合は、特に制限されない。前記ゲル製造用溶媒は、例えば、ジメチルスルホキシド(DMSO)、N-メチルピロリドン(NMP)、N,N-ジメチルアセトアミド(DMAc)、ジメチルホルムアミド(DMF)、γ-ブチルラクトン(GBL)、アセトニトリル(MeCN)、エチレングリコールモノエチルエーテル(EGEE)等が挙げられる。また、例えば、これらの溶媒の1種類または2種類以上に、アルコール系溶媒(例えば、イソプロピルアルコール、イソブチルアルコール、n-ブチルアルコール、ペンタノール[n-ペンチルアルコール]等)を混合した混合溶媒を、前記ゲル製造用溶媒として用いても良い。前記ゲル製造用溶媒として、特に好ましくは、N-メチルピロリドン、ジメチルスルホキシド、ジメチルホルムアミド(DMF)、γ-ブチロラクトン、およびN,N-ジメチルアセトアミドの1種または2種以上である。 Gelation of the raw material (typically silicon compound) of the gel of the present invention is performed, for example, in the gel production solvent as described above. The gel production solvent may be, for example, one type or a combination of two or more types. The ratio of the gel raw material in the solvent is not particularly limited. Examples of the solvent for gel production include dimethyl sulfoxide (DMSO), N-methylpyrrolidone (NMP), N, N-dimethylacetamide (DMAc), dimethylformamide (DMF), γ-butyllactone (GBL), acetonitrile (MeCN). ), Ethylene glycol monoethyl ether (EGEE), and the like. Further, for example, a mixed solvent obtained by mixing an alcohol solvent (for example, isopropyl alcohol, isobutyl alcohol, n-butyl alcohol, pentanol [n-pentyl alcohol], etc.) with one or more of these solvents, You may use as said solvent for gel manufacture. The gel production solvent is particularly preferably one or more of N-methylpyrrolidone, dimethyl sulfoxide, dimethylformamide (DMF), γ-butyrolactone, and N, N-dimethylacetamide.
 前記ゲル化の条件は、特に制限されない。前記ゲル化の条件は、前記ゲルの原料の種類等によっても異なるが、例えば前記ケイ素化合物の場合、前記ゲルの原料を含む前記ゲル製造用溶媒に対する処理温度は、例えば、20~30℃、22~28℃、24~26℃であり、処理時間は、例えば、1~60分、5~40分、10~30分である。前記脱水縮合反応を行う場合、その処理条件は、特に制限されず、これらの例示を援用できる。前記ゲル化を行うことで、例えば、シロキサン結合が成長し、前記ケイ素化合物の一次粒子が形成され、さらに反応が進行することで、前記一次粒子同士が、数珠状に連なり三次元構造のゲルが生成される。 The gelation conditions are not particularly limited. The gelation conditions vary depending on the type of gel raw material and the like. For example, in the case of the silicon compound, the treatment temperature for the gel production solvent containing the gel raw material is, for example, 20 to 30 ° C., 22 The processing time is, for example, 1 to 60 minutes, 5 to 40 minutes, and 10 to 30 minutes. When performing the said dehydration condensation reaction, the process conditions in particular are not restrict | limited, These illustrations can be used. By performing the gelation, for example, a siloxane bond grows, primary particles of the silicon compound are formed, and further the reaction proceeds, whereby the primary particles are linked in a bead shape to form a three-dimensional gel. Generated.
 前記ゲル化工程において得られる前記ゲル状ケイ素化合物のゲル形態は、特に制限されない。「ゲル」とは、一般に、溶質が、相互作用のために独立した運動性を失って集合した構造をもち、固化した状態をいう。また、ゲルの中でも、一般に、ウェットゲルは、ゲルの骨格を構成する溶質が溶媒を内部に含んだ形で一体化し、前記溶媒により前記溶質表面が湿っている状態の構造をとるものをいい、キセロゲルは、溶媒が除去されて、溶質が、空隙を持つ網目構造をとるものをいう。本発明において、前記ゲル状ケイ素化合物は、例えば、ウェットゲルを用いることが好ましい。前記ゲル状ケイ素化合物の残量シラノール基は、特に制限されず、例えば、後述する範囲が同様に例示できる。 The gel form of the gel silicon compound obtained in the gelation step is not particularly limited. “Gel” generally refers to a solidified state in which a solute has a structure in which it loses independent motility due to interaction and aggregates. In addition, among gels, in general, a wet gel is one in which the solute constituting the skeleton of the gel is integrated in a form containing a solvent, and the surface of the solute is moistened by the solvent. Xerogel refers to a solvent in which the solute has a network structure with voids. In the present invention, for example, wet gel is preferably used as the gel silicon compound. The remaining silanol group of the gel-like silicon compound is not particularly limited, and for example, the ranges described later can be exemplified similarly.
 前記ゲル化により得られた前記ゲル状ケイ素化合物は、例えば、このまま前記溶媒置換工程および粉砕工程に供してもよいが、前記粉砕工程の前に、前記熟成工程において熟成処理を施してもよい。前記熟成工程において、前記熟成処理の条件は、特に制限されず、例えば、前記ゲル状ケイ素化合物を、溶媒中、所定温度でインキュベートすればよい。前記熟成処理によれば、例えば、ゲル化で得られた三次元構造を有するゲル状ケイ素化合物について、前記一次粒子をさらに成長させることができ、これによって前記粒子自体のサイズを大きくすることが可能である。そして、結果的に、前記粒子同士が接触しているネック部分の接触状態を、例えば、点接触から面接触に増やすことができる。上記のような熟成処理を行ったゲル状ケイ素化合物は、例えば、ゲル自体の強度が増加し、結果的には、粉砕を行った後の前記粉砕物の三次元基本構造の強度を、より向上できる。これにより、前記本発明の塗料を用いて塗工膜を形成した場合、例えば、塗工後の乾燥工程においても、前記三次元基本構造が堆積した空隙構造の細孔サイズが、前記乾燥工程において生じる前記塗工膜中の溶媒の揮発に伴って、収縮することを抑制できる。 The gel-like silicon compound obtained by the gelation may be subjected to, for example, the solvent replacement step and the pulverization step as it is, but may be subjected to an aging treatment in the aging step before the pulverization step. In the aging step, the conditions for the aging treatment are not particularly limited. For example, the gel-like silicon compound may be incubated in a solvent at a predetermined temperature. According to the aging treatment, for example, the gel-like silicon compound having a three-dimensional structure obtained by gelation can further grow the primary particles, thereby increasing the size of the particles themselves. It is. As a result, the contact state of the neck portion where the particles are in contact can be increased from point contact to surface contact, for example. The gel-like silicon compound subjected to the aging treatment as described above, for example, increases the strength of the gel itself, and as a result, further improves the strength of the three-dimensional basic structure of the pulverized product after pulverization. it can. Thereby, when a coating film is formed using the coating material of the present invention, for example, even in the drying step after coating, the pore size of the void structure in which the three-dimensional basic structure is deposited is in the drying step. Shrinkage can be suppressed as the solvent in the resulting coating film volatilizes.
 前記熟成処理の温度は、その下限が、例えば、30℃以上、35℃以上、40℃以上であり、その上限が、例えば、80℃以下、75℃以下、70℃以下であり、その範囲が、例えば、30~80℃、35~75℃、40~70℃である。前記所定の時間は、特に制限されず、その下限が、例えば、5時間以上、10時間以上、15時間以上であり、その上限が、例えば、50時間以下、40時間以下、30時間以下であり、その範囲が、例えば、5~50時間、10~40時間、15~30時間である。なお、熟成の最適な条件については、例えば、前述したように、前記ゲル状ケイ素化合物における、前記一次粒子のサイズの増大、および前記ネック部分の接触面積の増大が得られる条件に設定することが好ましい。また、前記熟成工程において、前記熟成処理の温度は、例えば、使用する溶媒の沸点を考慮することが好ましい。前記熟成処理は、例えば、熟成温度が高すぎると、前記溶媒が過剰に揮発してしまい、前記塗工液の濃縮により、三次元空隙構造の細孔が閉口する等の不具合が生じる可能性がある。一方で、前記熟成処理は、例えば、熟成温度が低すぎると、前記熟成による効果が十分に得られず、量産プロセスの経時での温度バラツキが増大することとなり、品質に劣る製品ができる可能性がある。 The lower limit of the temperature of the aging treatment is, for example, 30 ° C. or more, 35 ° C. or more, 40 ° C. or more, and the upper limit thereof is, for example, 80 ° C. or less, 75 ° C. or less, 70 ° C. or less. For example, 30 to 80 ° C, 35 to 75 ° C, 40 to 70 ° C. The predetermined time is not particularly limited, and the lower limit thereof is, for example, 5 hours or more, 10 hours or more, 15 hours or more, and the upper limit thereof is, for example, 50 hours or less, 40 hours or less, 30 hours or less. The range is, for example, 5 to 50 hours, 10 to 40 hours, 15 to 30 hours. The optimum conditions for aging can be set, for example, as described above, such that the gel-like silicon compound can increase the size of the primary particles and increase the contact area of the neck portion. preferable. In the aging step, the temperature of the aging treatment preferably takes into account, for example, the boiling point of the solvent used. In the aging treatment, for example, if the aging temperature is too high, the solvent is excessively volatilized, and there is a possibility that problems such as closing of the pores of the three-dimensional void structure occur due to the concentration of the coating solution. is there. On the other hand, in the aging treatment, for example, if the aging temperature is too low, the effect due to the aging is not sufficiently obtained, temperature variation with time of the mass production process increases, and a product with poor quality may be produced. There is.
 前記熟成処理は、例えば、前記ゲル化工程と同じ溶媒を使用でき、具体的には、前記ゲル化後の反応物(つまり、前記ゲルを含む前記ゲル製造用溶媒)に対して、そのまま施すことが好ましい。ゲル化後の熟成処理を終えた前記ゲル状ケイ素化合物に含まれる残留シラノール基のモル数は、例えば、ゲル化に使用した原材料(例えば、前記ケイ素化合物またはその前駆体)のアルコキシ基のモル数を100とした場合の残留シラノール基の割合であり、その下限が、例えば、1%以上、3%以上、5%以上であり、その上限が、例えば、50%以下、40%以下、30%以下であり、その範囲が、例えば、1~50%、3~40%、5~30%である。前記ゲル状ケイ素化合物の硬度を上げる目的では、例えば、残留シラノール基のモル数が低いほど好ましい。残留シラノール基のモル数が高すぎると、例えば、前記シリコーン多孔体の形成において、前記シリコーン多孔体の前駆体が架橋されるまでに、空隙構造を保持できなくなる可能性がある。一方で、残留シラノール基のモル数が低すぎると、例えば、前記結合工程において、前記シリコーン多孔体の前駆体を架橋できなくなり、十分な膜強度を付与できなくなる可能性がある。なお、上記は、残留シラノール基の例であるが、例えば、前記ゲル状ケイ素化合物の原材料として、前記ケイ素化合物を各種反応性官能基で修飾したものを使用する場合は、各々の官能基に対しても、同様の現象を適用できる。 In the aging treatment, for example, the same solvent as in the gelation step can be used. Specifically, the aging treatment is performed as it is on the reaction product after gelation (that is, the gel production solvent containing the gel). Is preferred. The number of moles of residual silanol groups contained in the gelled silicon compound that has been subjected to aging treatment after gelation is, for example, the number of moles of alkoxy groups in the raw material used for gelation (for example, the silicon compound or its precursor). Is the ratio of residual silanol groups when the value is 100, the lower limit is, for example, 1% or more, 3% or more, 5% or more, and the upper limit is, for example, 50% or less, 40% or less, 30% The range is, for example, 1 to 50%, 3 to 40%, and 5 to 30%. For the purpose of increasing the hardness of the gel silicon compound, for example, the lower the number of moles of residual silanol groups, the better. If the number of residual silanol groups is too high, for example, in the formation of the silicone porous body, there is a possibility that the void structure cannot be retained before the precursor of the silicone porous body is crosslinked. On the other hand, if the number of moles of residual silanol groups is too low, for example, in the bonding step, the precursor of the silicone porous body cannot be crosslinked, and sufficient film strength may not be imparted. The above is an example of residual silanol groups. For example, when the silicon compound modified with various reactive functional groups is used as the raw material of the gel silicon compound, However, the same phenomenon can be applied.
 つぎに、前記本発明のゲル中のゲル製造用溶媒を、他の溶媒に置換する溶媒置換工程を行う。前記他の溶媒は、前述のとおり、前記低屈折率膜製造用溶媒(塗工用溶媒)であることが好ましい。前記溶媒置換工程の方法は特に限定されないが、例えば、以下のようにして行うことができる。すなわち、まず、前記本発明のゲルを、前記他の溶媒に浸漬もしくは接触させ、前記ゲル中のゲル製造用触媒、縮合反応で生成したアルコール成分、水等を、前記他の溶媒中に溶解させる。その後、前記ゲルを浸漬もしくは接触させた溶媒を捨てて、新たな溶媒に再度前記ゲルを浸漬もしくは接触させる。これを、前記ゲル中のゲル製造用溶媒の残存量が、所望の量(上限値は0.5g/ml)となるまで繰り返す。1回あたりの浸漬時間は、例えば、0.5時間以上、1時間以上、または1.5時間以上であり、上限値は特に限定されないが、例えば、10時間以下である。また、上記溶媒の浸漬は、前記溶媒のゲルへの連続的な接触で対応してもよい。また、前記浸漬中の温度は、特に限定されないが、例えば、20~70℃、25~65℃、または30~60℃であっても良い。加熱を行うと溶媒置換が早く進行し、置換させるのに必要な溶媒量が少なくて済むが、室温で簡便に溶媒置換を行ってもよい。 Next, a solvent replacement step is performed in which the solvent for gel production in the gel of the present invention is replaced with another solvent. As described above, the other solvent is preferably the solvent for producing the low refractive index film (coating solvent). The method of the solvent replacement step is not particularly limited, and can be performed as follows, for example. That is, first, the gel of the present invention is immersed or brought into contact with the other solvent, and the gel production catalyst, the alcohol component produced by the condensation reaction, water, etc. in the gel are dissolved in the other solvent. . Thereafter, the solvent in which the gel is immersed or contacted is discarded, and the gel is immersed or contacted again in a new solvent. This is repeated until the remaining amount of the solvent for gel production in the gel reaches a desired amount (the upper limit is 0.5 g / ml). The immersion time per time is, for example, 0.5 hours or more, 1 hour or more, or 1.5 hours or more, and the upper limit is not particularly limited, but is, for example, 10 hours or less. Further, the immersion of the solvent may be supported by continuous contact of the solvent with the gel. The temperature during the immersion is not particularly limited, and may be, for example, 20 to 70 ° C., 25 to 65 ° C., or 30 to 60 ° C. When heating is performed, the solvent replacement proceeds quickly, and the amount of solvent necessary for the replacement may be small. However, the solvent replacement may be simply performed at room temperature.
 また、前述のとおり、前記溶媒置換工程に先立ち、前記ゲルの塊を複数に分割するゲル分割工程を行うことが好ましい。前記ゲル分割工程において、前記ゲルを、長辺が15cm以下の3次元構造体に分割することがより好ましい。これによって、前記ゲル中のゲル製造用溶媒が、前記他の溶媒中に溶出しやすくなり、前記ゲル中のゲル製造用溶媒の残存量を低くしやすくなる。前記ゲルの塊を複数に分割する方法は、特に限定されず、例えば、一般的な物理力による粉砕、切断等を用いれば良い。また、前記「長辺」は、前記3次元構造体において長さが最も大きくなる部分の長さをいう。前記長辺は、例えば、15cm以下、10cm以下、または5cm以下であり、下限値は、例えば、0.005cm以上、0.01cm以上、または0.02cm以上である。 Further, as described above, it is preferable to perform a gel dividing step of dividing the gel lump into a plurality of pieces prior to the solvent replacement step. In the gel dividing step, the gel is more preferably divided into a three-dimensional structure having a long side of 15 cm or less. Thereby, the solvent for gel production in the gel is easily eluted in the other solvent, and the residual amount of the solvent for gel production in the gel is easily lowered. The method for dividing the gel lump into a plurality of pieces is not particularly limited, and for example, general pulverization, cutting, or the like may be used. Further, the “long side” refers to the length of the portion having the largest length in the three-dimensional structure. The long side is, for example, 15 cm or less, 10 cm or less, or 5 cm or less, and the lower limit is, for example, 0.005 cm or more, 0.01 cm or more, or 0.02 cm or more.
 このようにして本発明の低屈折率膜製造用ゲルを製造した後に、前記ゲルを粉砕する粉砕工程と、前記ゲルの粉砕物と前記低屈折率膜製造用溶媒とを混合する混合工程とを行い、本発明の低屈折率膜製造用塗料を製造することができる。前記粉砕は、例えば、前記ゲル化工程後の前記ゲル(代表的にはゲル状ケイ素化合物、第1の塗料原料)に施してもよいし、さらに、前記熟成処理を施した前記熟成後のゲル(代表的にはゲル状ケイ素化合物、第2の塗料原料)に施してもよい。 Thus, after producing the gel for producing a low refractive index film of the present invention, a pulverizing step for pulverizing the gel, and a mixing step for mixing the pulverized product of the gel and the solvent for producing the low refractive index film. The coating material for producing a low refractive index film of the present invention can be produced. The pulverization may be performed, for example, on the gel after the gelation step (typically a gel-like silicon compound, the first coating material raw material), and further after the aging treatment, the gel after the aging (Typically, it may be applied to a gel-like silicon compound, a second paint raw material).
 前記粉砕工程は、例えば、粉砕用溶媒中で行うことができる。前記粉砕用溶媒は、例えば、前記低屈折率膜製造用溶媒(塗工用溶媒)と同じであっても良い。前記粉砕用溶媒は、特に制限されず、例えば、有機溶媒が使用できる。前記有機溶媒は、例えば、沸点130℃以下の溶媒が挙げられる。具体例としては、例えば、イソプロピルアルコール(IPA)、エタノール、メタノール、n-ブタノール、2-ブタノール、イソブチルアルコール、ペンチルアルコール、プロピレングリコールモノメチルエーテル(PGME)、メチルセロソルブ、アセトン等が挙げられる。前記粉砕用溶媒は、例えば、1種類でもよいし、2種類以上の併用でもよい。特には、イソプロピルアルコール(IPA)、エタノール、n-ブタノール、2-ブタノール、イソブチルアルコール、ペンチルアルコール、プロピレングリコールモノメチルエーテル(PGME)、メチルセロソルブが室温での低揮発性の面から好ましい。 The pulverization step can be performed, for example, in a pulverizing solvent. The pulverizing solvent may be the same as the low refractive index film manufacturing solvent (coating solvent), for example. The grinding solvent is not particularly limited, and for example, an organic solvent can be used. Examples of the organic solvent include solvents having a boiling point of 130 ° C. or lower. Specific examples include isopropyl alcohol (IPA), ethanol, methanol, n-butanol, 2-butanol, isobutyl alcohol, pentyl alcohol, propylene glycol monomethyl ether (PGME), methyl cellosolve, acetone and the like. The pulverizing solvent may be, for example, one type or a combination of two or more types. In particular, isopropyl alcohol (IPA), ethanol, n-butanol, 2-butanol, isobutyl alcohol, pentyl alcohol, propylene glycol monomethyl ether (PGME), and methyl cellosolve are preferable from the viewpoint of low volatility at room temperature.
 前記ゲル化用溶媒と前記粉砕用溶媒との組合せは、特に制限されず、例えば、DMSOとIPAとの組合せ、DMSOとエタノールとの組合せ、DMSOとイソブチルアルコールとの組合せ、DMSOとn-ブタノールとの組合せ等が挙げられる。このように、前記ゲル化用溶媒を前記粉砕用溶媒(塗工用溶媒)に置換することで、例えば、後述する塗膜形成において、より均一な塗工膜を形成することができる。 The combination of the gelling solvent and the grinding solvent is not particularly limited. For example, a combination of DMSO and IPA, a combination of DMSO and ethanol, a combination of DMSO and isobutyl alcohol, DMSO and n-butanol and the like. And the like. Thus, by replacing the gelling solvent with the grinding solvent (coating solvent), for example, a more uniform coating film can be formed in the coating film formation described below.
 前記ゲルの粉砕方法は、特に制限されず、例えば、超音波ホモジナイザー、高速回転ホモジナイザー、その他のキャビテーション現象を用いる粉砕装置もしくは高圧で液同士を斜向衝突させる湿式微粒化装置等により行うことができる。ボールミル等のメディア粉砕を行う装置は、例えば、粉砕時にゲルの空隙構造を物理的に破壊するのに対し、ホモジナイザー等の本発明に好ましいキャビテーション方式粉砕装置は、例えば、メディアレス方式のため、ゲル三次元構造にすでに内包されている比較的弱い結合のシリカ粒子接合面を、高速のせん断力で剥離する。このように、前記ゲル状ケイ素化合物を粉砕することで、新たなゾル三次元構造が得られ、前記三次元構造は、例えば、塗工膜の形成において、一定範囲の粒度分布をもつ空隙構造を保持することができ、塗工・乾燥時の堆積による空隙構造を再形成できる。前記粉砕の条件は、特に制限されず、例えば、瞬間的に高速の流れを与えることで、溶媒を揮発させることなくゲルを粉砕することができることが好ましい。例えば、前述のような粒度バラツキ(例えば、体積平均粒子径または粒度分布)の粉砕物となるように粉砕することが好ましい。仮に、粉砕時間・強度等の仕事量が不足した場合は、例えば、粗粒が残ることとなり、緻密な細孔を形成できず、外観欠点も増加し、高い品質を得ることができない可能性がある。一方で、前記仕事量が過多な場合は、例えば、所望の粒度分布よりも微細なゾル粒子となり、塗工・乾燥後に堆積した空隙サイズが微細となり、所望の空隙率に満たない可能性がある。 The method for pulverizing the gel is not particularly limited, and can be performed by, for example, an ultrasonic homogenizer, a high-speed rotation homogenizer, a pulverizer using other cavitation phenomenon, or a wet atomizer that obliquely collides liquids at high pressure. . A device for performing media grinding such as a ball mill physically destroys the void structure of the gel at the time of grinding, whereas a cavitation type grinding device preferable for the present invention such as a homogenizer is, for example, a gel-less system. The relatively weakly bonded silica particle bonding surface already contained in the three-dimensional structure is peeled off with a high shear force. Thus, by pulverizing the gel-like silicon compound, a new sol three-dimensional structure is obtained, and the three-dimensional structure has, for example, a void structure having a certain range of particle size distribution in the formation of a coating film. It can be retained, and the void structure can be re-formed by deposition during coating and drying. The conditions for the pulverization are not particularly limited. For example, it is preferable that the gel can be pulverized without volatilizing the solvent by instantaneously applying a high-speed flow. For example, it is preferable to grind so as to obtain a pulverized product having a particle size variation as described above (for example, a volume average particle size or a particle size distribution). If the amount of work such as pulverization time and strength is insufficient, for example, coarse particles remain, and fine pores cannot be formed, appearance defects increase, and high quality may not be obtained. is there. On the other hand, when the work amount is excessive, for example, the sol particles are finer than the desired particle size distribution, and the void size deposited after coating / drying may become fine and may not satisfy the desired porosity. .
 前記粉砕工程後、前記粉砕物に含まれる残留シラノール基の割合は、特に制限されず、例えば、前記熟成処理後のゲル状ケイ素化合物について例示した範囲と同様である。 The ratio of residual silanol groups contained in the pulverized product after the pulverization step is not particularly limited, and is, for example, the same as the range exemplified for the gel silicon compound after the aging treatment.
 前記粉砕工程後、前記粉砕物を含む前記溶媒における前記粉砕物の割合は、特に制限されず、例えば、前述した前記本発明の塗料における条件が例示できる。前記割合は、例えば、前記粉砕工程後における前記粉砕物を含む溶媒そのものの条件でもよいし、前記粉砕工程後であって、前記塗料として使用する前に、調整された条件であってもよい。 After the pulverization step, the ratio of the pulverized product in the solvent containing the pulverized product is not particularly limited, and examples thereof include the conditions for the paint of the present invention described above. The ratio may be, for example, a condition of the solvent itself containing the pulverized product after the pulverization step, or may be a condition adjusted after the pulverization step and before being used as the paint.
 本発明の塗料は、例えば、前述したように、前記第1の塗料原料または前記第2の塗料原料を用いて製造することができる。前記第1の塗料原料は、前述のように、例えば、少なくとも3官能以下の飽和結合官能基を含むケイ素化合物から得られたゲル状ケイ素化合物を含んでいても良い。前記第1の塗料原料の製造方法は、例えば、前記ケイ素化合物を溶媒中でゲル化して、ゲル状ケイ素化合物を生成するゲル化工程を含み、例えば、前述した前記ゲル化工程後の前記ゲル状ケイ素化合物の記載を援用できる。前記第2の塗料原料は、前述のように、例えば、少なくとも3官能以下の飽和結合官能基を含むケイ素化合物から得られたゲル状物であり且つ熟成処理を施したゲル状ケイ素化合物を含んでいても良い。前記第2の塗料原料の製造方法は、例えば、前記ケイ素化合物から得られたゲル状ケイ素化合物を溶媒中で熟成する熟成工程を含み、例えば、前述した前記熟成工程後の前記ゲル状ケイ素化合物の記載を援用できる。 The coating material of the present invention can be produced, for example, using the first coating material or the second coating material as described above. As described above, the first coating material raw material may contain, for example, a gel-like silicon compound obtained from a silicon compound containing at least a trifunctional or lower saturated bond functional group. The method for producing the first coating material raw material includes, for example, a gelation step in which the silicon compound is gelled in a solvent to produce a gel silicon compound. For example, the gel state after the gelation step described above The description of silicon compounds can be incorporated. As described above, the second coating material raw material includes, for example, a gel-like material obtained from a silicon compound containing a saturated bond functional group having at least three functional groups and a gel-like silicon compound subjected to aging treatment. May be. The method for producing the second coating material raw material includes, for example, an aging step of aging a gel-like silicon compound obtained from the silicon compound in a solvent. For example, the gel-like silicon compound after the aging step described above The description can be incorporated.
 以上のようにして、本発明の低屈折率膜製造用ゲルを製造し、さらに、その粉砕物と溶媒(例えば分散媒)とを含む本発明の低屈折率膜製造用塗料を作製することができる。さらに、本発明の塗料には、前記各作製工程中に、またはその後に、前記粉砕物同士を化学的に結合させる触媒を加えても良い。この触媒により、例えば、後述の結合工程において、前記粉砕物同士を化学的に結合させることができる。前記触媒は、例えば、前記粉砕物同士の架橋結合を促進する触媒であっても良い。前記粉砕物同士を化学的に結合させる化学反応としては、例えば、シリカゾル分子に含まれる残留シラノール基の脱水縮合反応を利用することが好ましい。シラノール基の水酸基同士の反応を前記触媒で促進することで、例えば、短時間で空隙構造を硬化させる連続成膜が可能である。前記触媒としては、例えば、光活性触媒および熱活性触媒が挙げられる。前記光活性触媒によれば、例えば、加熱によらずに前記粉砕物同士を化学的に結合(例えば架橋結合)させることができる。これによれば、例えば、加熱による収縮が起こりにくいため、より高い空隙率を維持できる。また、前記触媒に加え、またはこれに代えて、触媒を発生する物質(触媒発生剤)を用いても良い。例えば、前記触媒が、架橋反応促進剤であり、前記触媒発生剤が、前記架橋反応促進剤を発生する物質でも良い。例えば、前記光活性触媒に加え、またはこれに代えて、光により触媒を発生する物質(光触媒発生剤)を用いても良いし、前記熱活性触媒に加え、またはこれに代えて、熱により触媒を発生する物質(熱触媒発生剤)を用いても良い。前記光触媒発生剤としては、特に限定されないが、例えば、光塩基発生剤(光照射により塩基性触媒を発生する触媒)、光酸発生剤(光照射により酸性触媒を発生する物質)等が挙げられ、光塩基発生剤が好ましい。前記光塩基発生剤としては、例えば、9-アントリルメチル N,N-ジエチルカルバメート(9-anthrylmethyl N,N-diethylcarbamate、商品名WPBG-018)、(E)-1-[3-(2-ヒドロキシフェニル)-2-プロペノイル]ピペリジン((E)-1-[3-(2-hydroxyphenyl)-2-propenoyl]piperidine、商品名WPBG-027)、1-(アントラキノン-2-イル)エチル イミダゾールカルボキシレート(1-(anthraquinon-2-yl)ethyl imidazolecarboxylate、商品名WPBG-140)、2-ニトロフェニルメチル 4-メタクリロイルオキシピペリジン-1-カルボキシラート(商品名WPBG-165)、1,2-ジイソプロピル-3-〔ビス(ジメチルアミノ)メチレン〕グアニジウム 2-(3-ベンゾイルフェニル)プロピオナート(商品名WPBG-266)、1,2-ジシクロヘキシル-4,4,5,5-テトラメチルビグアニジウム n-ブチルトリフェニルボラート(商品名WPBG-300)、および2-(9-オキソキサンテン-2-イル)プロピオン酸1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(東京化成工業株式会社)、4-ピペリジンメタノールを含む化合物(商品名HDPD-PB100:ヘレウス社製)等が挙げられる。なお、前記「WPBG」を含む商品名は、いずれも和光純薬工業株式会社の商品名である。前記光酸発生剤としては、例えば、芳香族スルホニウム塩(商品名SP-170:ADEKA社)、トリアリールスルホニウム塩(商品名CPI101A:サンアプロ社)、芳香族ヨードニウム塩(商品名Irgacure250:チバ・ジャパン社)等が挙げられる。また、前記微細孔粒子同士を化学的に結合させる触媒は、前記光活性触媒および前記光触媒発生剤に限定されず、例えば、熱活性触媒または尿素のような熱触媒発生剤でも良い。前記粉砕物同士を化学的に結合させる触媒は、例えば、水酸化カリウム、水酸化ナトリウム、水酸化アンモニウム等の塩基触媒、塩酸、酢酸、シュウ酸等の酸触媒等が挙げられる。これらの中で、塩基触媒が好ましい。前記粉砕物同士を化学的に結合させる触媒は、例えば、前記粉砕物を含むゾル粒子液(例えば懸濁液)に、塗工直前に添加して使用する、または前記触媒を溶媒に混合した混合液として使用することができる。前記混合液は、例えば、前記ゾル粒子液に直接添加して溶解した塗工液、前記触媒を溶媒に溶解した溶液、前記触媒を溶媒に分散した分散液でもよい。前記溶媒は、特に制限されず、例えば、各種有機溶剤、水、緩衝液等が挙げられる。 As described above, the low refractive index film-producing gel of the present invention can be produced, and the low refractive index film-producing paint of the present invention containing the pulverized product and a solvent (for example, a dispersion medium) can be produced. it can. Furthermore, a catalyst for chemically bonding the pulverized products may be added to the paint of the present invention during or after each of the production steps. With this catalyst, for example, the pulverized products can be chemically bonded in a bonding step described later. The catalyst may be, for example, a catalyst that promotes cross-linking between the pulverized products. As a chemical reaction for chemically bonding the pulverized products, for example, it is preferable to use a dehydration condensation reaction of residual silanol groups contained in silica sol molecules. By promoting the reaction between the hydroxyl groups of the silanol group with the catalyst, for example, continuous film formation that cures the void structure in a short time is possible. Examples of the catalyst include a photoactive catalyst and a thermally active catalyst. According to the photoactive catalyst, for example, the pulverized products can be chemically bonded (for example, crosslinked) without being heated. According to this, for example, since shrinkage due to heating hardly occurs, a higher porosity can be maintained. In addition to or instead of the catalyst, a substance that generates a catalyst (catalyst generator) may be used. For example, the catalyst may be a crosslinking reaction accelerator, and the catalyst generator may be a substance that generates the crosslinking reaction accelerator. For example, in addition to or instead of the photoactive catalyst, a substance that generates a catalyst by light (photocatalyst generator) may be used, or in addition to or instead of the thermally active catalyst A substance that generates water (thermal catalyst generator) may be used. The photocatalyst generator is not particularly limited, and examples thereof include a photobase generator (a catalyst that generates a basic catalyst by light irradiation), a photoacid generator (a substance that generates an acidic catalyst by light irradiation), and the like. A photobase generator is preferred. Examples of the photobase generator include 9-anthrylmethyl N, N-diethylcarbamate (trade name WPBG-018), (E) -1- [3- (2- Hydroxyphenyl) -2-propenoyl] piperidine ((E) -1- [3- (2-hydroxyphenyl) -2-propenoyl] piperidine, trade name WPBG-027), 1- (anthraquinone-2-yl) ethyl imidazolecarboxy Rate (1- (anthraquinon-2-yl) ethyl imidazolecarboxylate, trade name WPBG-140), 2-nitrophenylmethyl 4-methacryloyloxypiperidine-1-carboxylate (trade name WPBG-165), 1,2-diisopropyl- 3- [bis (dimethylamino) methylene] guanidium 2- (3-benzoylphenyl) propionate (trade name WPBG-266), 1 , 2-dicyclohexyl-4,4,5,5-tetramethylbiguanidinium n-butyltriphenylborate (trade name WPBG-300) and 2- (9-oxoxanthen-2-yl) propionic acid 1, 5,7-triazabicyclo [4.4.0] dec-5-ene (Tokyo Chemical Industry Co., Ltd.), a compound containing 4-piperidinemethanol (trade name HDPD-PB100: manufactured by Heraeus), and the like. The trade names including “WPBG” are trade names of Wako Pure Chemical Industries, Ltd. Examples of the photoacid generator include aromatic sulfonium salts (trade name SP-170: ADEKA), triarylsulfonium salts (trade name CPI101A: San Apro), and aromatic iodonium salts (trade name Irgacure 250: Ciba Japan). Company). The catalyst for chemically bonding the fine pore particles is not limited to the photoactive catalyst and the photocatalyst generator, and may be a thermal catalyst or a thermal catalyst generator such as urea. Examples of the catalyst for chemically bonding the pulverized materials include basic catalysts such as potassium hydroxide, sodium hydroxide and ammonium hydroxide, and acid catalysts such as hydrochloric acid, acetic acid and oxalic acid. Of these, base catalysts are preferred. The catalyst for chemically bonding the pulverized materials is used, for example, by adding to the sol particle liquid (for example, suspension) containing the pulverized material immediately before coating, or mixing the catalyst in a solvent. It can be used as a liquid. The mixed liquid may be, for example, a coating liquid that is directly added and dissolved in the sol particle liquid, a solution in which the catalyst is dissolved in a solvent, or a dispersion liquid in which the catalyst is dispersed in a solvent. The solvent is not particularly limited, and examples thereof include various organic solvents, water, and a buffer solution.
[2.低屈折率膜製造用塗料の使用方法]
 本発明の塗料の使用方法として、以下、主に、シリコーン多孔体により形成された低屈折率膜(本発明のシリコーン多孔体)の製造方法を例示するが、本発明は、これには限定されない。また、前述のとおり、本発明の低屈折率膜の材質は任意である。前記材質がシリコーン多孔体以外である場合、特段の事情が無い限り、以下のシリコーン多孔体についての説明を援用できる。
[2. Usage of paint for manufacturing low refractive index film]
Examples of the method of using the coating material of the present invention will exemplify a method for producing a low refractive index film (silicone porous material of the present invention) mainly formed of a silicone porous material, but the present invention is not limited thereto. . As described above, the material of the low refractive index film of the present invention is arbitrary. In the case where the material is other than the porous silicone material, the following description of the porous silicone material can be used unless there are special circumstances.
 本発明の低屈折率膜(空隙層、代表的にはシリコーン多孔体)の製造方法は、例えば、前記本発明の塗料を用いて、前記低屈折率膜(空隙層)の前駆体を形成する前駆体形成工程、および、前記前駆体に含まれる前記塗料の前記粉砕物同士を化学的に結合させる結合工程を含む。前記前駆体は、例えば、塗工膜ということもできる。 In the method for producing a low refractive index film (void layer, typically a porous silicone body) of the present invention, for example, the precursor of the low refractive index film (void layer) is formed using the paint of the present invention. A precursor forming step, and a bonding step of chemically bonding the pulverized materials of the paint contained in the precursor. The precursor can also be referred to as a coating film, for example.
 前記低屈折率膜(空隙層)の製造方法によれば、例えば、空気層と同様の機能を奏する多孔質構造が形成される。その理由は、例えば、以下のように推測されるが、本発明は、この推測には制限されない。 According to the method for producing the low refractive index film (void layer), for example, a porous structure having the same function as the air layer is formed. The reason is estimated as follows, for example, but the present invention is not limited to this estimation.
 前記低屈折率膜(空隙層)の製造方法で使用する前記本発明の塗料は、前記本発明のゲル(例えば、ゲル状ケイ素化合物)の粉砕物を含むことから、前記ゲルの三次元構造が、三次元基本構造に分散された状態となっている。このため、前記低屈折率膜の製造方法では、例えば、前記塗料を用いて前記前駆体(例えば、塗工膜)を形成すると、前記三次元基本構造が堆積され、前記三次元基本構造に基づく空隙構造が形成される。つまり、前記低屈折率膜の製造方法によれば、前記ゲル状ケイ素化合物の三次元構造とは異なる、前記三次元基本構造の前記粉砕物から形成された新たな三次元構造が形成される。また、前記低屈折率膜(空隙層)の製造方法においては、さらに、前記粉砕物同士を化学的に結合させるため、前記新たな三次元構造が固定化される。このため、前記低屈折率膜の製造方法により得られる前記低屈折率膜は、空隙を有する構造であるが、十分な強度と可撓性とを維持できる。本発明の低屈折率膜は、例えば、空隙を利用する部材として、断熱材、吸音材、光学部材、インク受像層等の幅広い分野の製品に使うことが可能で、さらに、各種機能を付与した積層フィルムを作製することができる。 Since the paint of the present invention used in the method for producing the low refractive index film (void layer) contains a pulverized product of the gel of the present invention (for example, a gel-like silicon compound), the three-dimensional structure of the gel is It is in a state of being distributed in a three-dimensional basic structure. For this reason, in the manufacturing method of the low refractive index film, for example, when the precursor (for example, coating film) is formed using the paint, the three-dimensional basic structure is deposited, and based on the three-dimensional basic structure. A void structure is formed. That is, according to the manufacturing method of the low refractive index film, a new three-dimensional structure formed from the pulverized product of the three-dimensional basic structure, which is different from the three-dimensional structure of the gel silicon compound, is formed. In the method for producing the low refractive index film (void layer), the new three-dimensional structure is fixed in order to chemically bond the pulverized products. For this reason, although the said low refractive index film | membrane obtained by the manufacturing method of the said low refractive index film | membrane is a structure which has a space | gap, it can maintain sufficient intensity | strength and flexibility. The low refractive index film of the present invention can be used for products in a wide range of fields such as a heat insulating material, a sound absorbing material, an optical member, an ink image receiving layer, etc. A laminated film can be produced.
 本発明の低屈折率膜(空隙層、代表的にはシリコーン多孔体)の製造方法は、特に記載しない限り、前記本発明の塗料の説明を援用できる。 The production method of the low refractive index film (void layer, typically silicone porous body) of the present invention can be referred to the description of the paint of the present invention unless otherwise specified.
 前記低屈折率膜の前駆体の形成工程においては、例えば、前記本発明の塗料を、前記基材上に塗工する。本発明の塗料は、例えば、基材上に塗工し、前記塗工膜を乾燥した後に、前記結合工程により前記粉砕物同士を化学的に結合(例えば、架橋)することで、一定レベル以上の膜強度を有する空隙層を、連続成膜することが可能である。 In the step of forming the precursor of the low refractive index film, for example, the paint of the present invention is applied onto the substrate. The coating material of the present invention is, for example, coated on a base material, dried the coated film, and then chemically bonded (for example, cross-linked) between the pulverized products by the bonding step, thereby achieving a certain level or more. It is possible to continuously form a void layer having a film strength of 10 nm.
 前記基材に対する前記塗料の塗工量は、特に制限されず、例えば、所望の前記低屈折率膜の厚み等に応じて、適宜設定できる。具体例として、厚み0.1~1000μmの前記低屈折率膜を形成する場合、前記基材に対する前記塗料の塗工量は、前記基材の面積1mあたり、例えば、前記粉砕物0.01~60000μg、0.1~5000μg、1~50μgである。前記塗料の好ましい塗工量は、例えば、液の濃度や塗工方式等と関係するため、一義的に定義することは難しいが、生産性を考慮すると、できるだけ薄層で塗工することが好ましい。塗布量が多すぎると、例えば、溶媒が揮発する前に乾燥炉で乾燥される可能性が高くなる。これにより、溶媒中でナノ粉砕ゾル粒子が沈降・堆積し、空隙構造を形成する前に、溶媒が乾燥することで、空隙の形成が阻害されて空隙率が大きく低下する可能性がある。一方で、塗布量が薄過ぎると、基材の凹凸・親疎水性のバラツキ等により塗工ハジキが発生するリスクが高くなる可能性がある。 The coating amount of the coating material on the substrate is not particularly limited, and can be appropriately set according to, for example, the desired thickness of the low refractive index film. As a specific example, when the low refractive index film having a thickness of 0.1 to 1000 μm is formed, the coating amount of the paint on the base material is, for example, 0.01% of the pulverized product per 1 m 2 of the base material area. -60000 μg, 0.1-5000 μg, 1-50 μg. The preferable coating amount of the paint is, for example, related to the concentration of the liquid, the coating method, etc., and thus it is difficult to define it uniquely. However, in consideration of productivity, it is preferable to apply as thin a layer as possible. . When there is too much application quantity, possibility that it will be dried with a drying furnace before a solvent volatilizes will become high, for example. As a result, the nano-ground sol particles settle and deposit in the solvent, and the solvent is dried before the void structure is formed, so that void formation may be hindered and the porosity may be greatly reduced. On the other hand, if the coating amount is too thin, there is a possibility that the risk of occurrence of coating repellency may increase due to unevenness of the base material, variation in hydrophilicity / hydrophobicity, or the like.
 前記基材に前記塗料を塗工した後、前記多孔体の前駆体(塗工膜)に乾燥処理を施してもよい。前記乾燥処理によって、例えば、前記多孔体の前駆体中の前記溶媒(前記塗料に含まれる溶媒)を除去するだけでなく、乾燥処理中に、ゾル粒子を沈降・堆積させ、空隙構造を形成させることを目的としている。前記乾燥処理の温度は、例えば、50~250℃、60~150℃、70~130℃であり、前記乾燥処理の時間は、例えば、0.1~30分、0.2~10分、0.3~3分である。乾燥処理温度、および時間については、例えば、連続生産性や高い空隙率の発現の関連では、より低く短いほうが好ましい。条件が厳しすぎると、例えば、基材が樹脂フィルムの場合、前記基材のガラス転移温度に近づくことで、前記基材が乾燥炉の中で伸展してしまい、塗工直後に、形成された空隙構造にクラック等の欠点が発生する可能性がある。一方で、条件が緩すぎる場合、例えば、乾燥炉を出たタイミングで残留溶媒を含むため、次工程でロールと擦れた際に、スクラッチ傷が入る等の外観上の不具合が発生する可能性がある。 After the coating material is applied to the substrate, the porous body precursor (coating film) may be dried. By the drying treatment, for example, not only the solvent (the solvent contained in the paint) in the precursor of the porous body is removed, but also the sol particles are settled and deposited to form a void structure during the drying treatment. The purpose is that. The drying treatment temperature is, for example, 50 to 250 ° C., 60 to 150 ° C., 70 to 130 ° C., and the drying treatment time is, for example, 0.1 to 30 minutes, 0.2 to 10 minutes, 0 .3-3 minutes. The drying process temperature and time are preferably lower and shorter in relation to, for example, continuous productivity and high porosity. If the conditions are too strict, for example, when the substrate is a resin film, the substrate is extended in a drying furnace by being close to the glass transition temperature of the substrate, and formed immediately after coating. Defects such as cracks may occur in the void structure. On the other hand, if the conditions are too loose, for example, since the residual solvent is included at the time of leaving the drying furnace, there is a possibility that defects in appearance such as scratches will occur when rubbing with the roll in the next process. is there.
 前記乾燥処理は、例えば、自然乾燥でもよいし、加熱乾燥でもよいし、減圧乾燥でもよい。前記乾燥方法は、特に制限されず、例えば、一般的な加熱手段が使用できる。前記加熱手段は、例えば、熱風器、加熱ロール、遠赤外線ヒーター等が挙げられる。中でも、工業的に連続生産することを前提とした場合は、加熱乾燥を用いることが好ましい。また、使用される溶媒については、乾燥時の溶媒揮発に伴う収縮応力の発生、それによる空隙層(前記シリコーン多孔体)のクラック現象を抑える目的で、表面張力が低い溶媒が好ましい。前記溶媒としては、例えば、イソプロピルアルコール(IPA)に代表される低級アルコール、ヘキサン、ペルフルオロヘキサン等が挙げられるが、これらに限定されない。また、例えば、上記IPA等にペルフルオロ系界面活性剤もしくはシリコン系界面活性剤を少量添加し表面張力を低下させてもよい。 The drying treatment may be, for example, natural drying, heat drying, or vacuum drying. The drying method is not particularly limited, and for example, a general heating means can be used. Examples of the heating means include a hot air fan, a heating roll, and a far infrared heater. Above all, when it is premised on industrial continuous production, it is preferable to use heat drying. As the solvent used, a solvent having a low surface tension is preferable for the purpose of suppressing the generation of shrinkage stress accompanying the solvent volatilization during drying and the cracking phenomenon of the void layer (the silicone porous body). Examples of the solvent include, but are not limited to, lower alcohols typified by isopropyl alcohol (IPA), hexane, perfluorohexane, and the like. Further, for example, a small amount of perfluoro-based surfactant or silicon-based surfactant may be added to the IPA or the like to reduce the surface tension.
 前記基材は、特に制限されず、例えば、熱可塑性樹脂製の基材、熱硬化性樹脂等で成形されたプラスチック、カーボンナノチューブに代表される炭素繊維系材料等が好ましく使用できるが、これらに限定されない。前記基材の形態は、例えば、フィルム、プレート等が挙げられる。前記熱可塑性樹脂は、例えば、ポリエチレンテレフタレート(PET)、アクリル、セルロースアセテートプロピオネート(CAP)、シクロオレフィンポリマー(COP)、トリアセテート(TAC)、ポリエチレンナフタレート(PEN)、ポリエチレン(PE)、ポリプロピレン(PP)等が挙げられる。 The substrate is not particularly limited, and for example, a thermoplastic resin substrate, a plastic molded with a thermosetting resin, a carbon fiber material typified by a carbon nanotube, and the like can be preferably used. It is not limited. Examples of the form of the substrate include a film and a plate. Examples of the thermoplastic resin include polyethylene terephthalate (PET), acrylic, cellulose acetate propionate (CAP), cycloolefin polymer (COP), triacetate (TAC), polyethylene naphthalate (PEN), polyethylene (PE), and polypropylene. (PP) etc. are mentioned.
 前記低屈折率膜の製造方法において、前記結合工程は、前記多孔体の前駆体(塗工膜)に含まれる前記粉砕物同士を化学的に結合させる工程である。前記結合工程によって、例えば、前記多孔体の前駆体における前記粉砕物の三次元構造が、固定化される。従来の焼結による固定化を行う場合は、例えば、200℃以上の高温処理を行うことで、シラノール基の脱水縮合、シロキサン結合の形成を誘発する。本発明における前記結合工程においては、上記の脱水縮合反応を触媒する各種添加剤を反応させることで、例えば、基材が樹脂フィルムの場合に、前記基材にダメージを起こすことなく、100℃前後の比較的低い乾燥温度、および数分未満の短い処理時間で、連続的に空隙構造を形成、固定化することができる。前記結合工程において、前記粉砕物同士を化学的に結合させる方法は、特に限定されず、例えば、前記触媒を用いた触媒反応による架橋結合等でも良い。また、例えば、前記触媒を用いず、前記多孔体の前駆体(塗工膜)を単に加熱する等の方法で前記粉砕物同士を化学的に結合させても良い。 In the method for producing a low refractive index film, the bonding step is a step of chemically bonding the pulverized materials included in the porous body precursor (coating film). By the bonding step, for example, the three-dimensional structure of the pulverized material in the precursor of the porous body is fixed. When fixing by conventional sintering, for example, high temperature treatment at 200 ° C. or higher induces dehydration condensation of silanol groups and formation of siloxane bonds. In the bonding step of the present invention, by reacting various additives that catalyze the above dehydration condensation reaction, for example, when the substrate is a resin film, the substrate is not damaged, and the temperature is around 100 ° C. The void structure can be continuously formed and fixed at a relatively low drying temperature and a short processing time of less than a few minutes. In the bonding step, a method for chemically bonding the pulverized materials to each other is not particularly limited, and for example, cross-linking by a catalytic reaction using the catalyst may be used. Further, for example, the pulverized product may be chemically bonded by a method such as simply heating the porous body precursor (coating film) without using the catalyst.
 以上のようにして、本発明の低屈折率膜(空隙層)を製造することができるが、本発明の製造方法は、これに限定されない。 As described above, the low refractive index film (void layer) of the present invention can be manufactured, but the manufacturing method of the present invention is not limited to this.
 このようにして得られる本発明の低屈折率膜(空隙層)は、例えば、さらに、他のフィルム(層)と積層して、前記多孔質構造を含む積層構造体としてもよい。この場合、前記積層構造体において、各構成要素は、例えば、粘着剤または接着剤を介して積層させてもよい。 The thus obtained low refractive index film (void layer) of the present invention may be laminated with another film (layer) to form a laminated structure including the porous structure. In this case, in the laminated structure, each component may be laminated via, for example, a pressure-sensitive adhesive or an adhesive.
 前記各構成要素の積層は、例えば、効率的であることから、長尺フィルムを用いた連続処理(いわゆるRoll to Roll等)により積層を行ってもよく、基材が成形物・素子等の場合はバッチ処理を行ったものを積層してもよい。 For example, since the lamination of each component is efficient, the lamination may be performed by continuous processing using a long film (so-called Roll to Roll, etc.). May be laminated with batch processing.
 以下に、前記本発明の塗料を用いて、基材上に前記低屈折率膜(空隙層、代表的にはシリコーン多孔体)を形成する方法について、図1~3を用いて例をあげて説明する。図2については、前記低屈折率膜(空隙層)を製膜した後に、保護フィルムを貼合して巻き取る工程を示しているが、別の機能性フィルムに積層を行う場合は、上記の手法を用いてもよいし、別の機能性フィルムを塗工、乾燥した後に、上記成膜を行った前記低屈折率膜(空隙層)を、巻き取り直前に貼り合せることも可能である。なお、図示した製膜方式は、あくまで一例であり、これらに限定されない。 Hereinafter, a method for forming the low refractive index film (void layer, typically a silicone porous body) on a substrate using the paint of the present invention will be described with reference to FIGS. explain. About FIG. 2, after forming the said low-refractive-index film (void layer), it has shown the process of bonding and winding up a protective film, but when laminating | stacking on another functional film, A technique may be used, and after coating and drying another functional film, the low-refractive-index film (void layer) on which the film has been formed can be bonded immediately before winding. The illustrated film forming method is merely an example, and the present invention is not limited thereto.
 図1の断面図に、前記基材上に前記低屈折率膜(空隙層)を形成する方法における工程の一例を、模式的に示す。図1において、前記低屈折率膜(空隙層)の形成方法は、基材10上に、前記本発明の塗料20’’を塗工する塗工工程(1)、塗料20’’を乾燥させて、前記低屈折率膜(空隙層)の前駆層である塗工膜20’を形成する塗工膜形成工程(乾燥工程)(2)、および、塗工膜20’に化学処理(例えば、架橋処理)をして、低屈折率膜(空隙層)20を形成する化学処理工程(例えば、架橋処理工程)(3)を含む。このようにして、図示のとおり、基材10上に低屈折率膜(空隙層)20を形成できる。なお、前記低屈折率膜(空隙層)の形成方法は、前記工程(1)~(3)以外の工程を、適宜含んでいても良いし、含んでいなくても良い。また、例えば、化学処理工程(例えば、架橋処理工程)(3)を行わずに、塗工工程(1)および塗工膜形成工程(乾燥工程)(2)のみで低屈折率膜(空隙層)20を形成することもできる。 1 schematically shows an example of a process in the method of forming the low refractive index film (void layer) on the base material. In FIG. 1, the low refractive index film (void layer) is formed by applying a coating process (1) for applying the coating material 20 ″ of the present invention onto the substrate 10, and drying the coating material 20 ″. Then, a coating film forming step (drying step) (2) for forming the coating film 20 ′, which is a precursor layer of the low refractive index film (void layer), and chemical treatment (for example, A chemical treatment step (for example, a cross-linking treatment step) (3) for forming a low refractive index film (void layer) 20 by performing a cross-linking treatment). Thus, the low refractive index film | membrane (gap layer) 20 can be formed on the base material 10 as shown in the figure. The method for forming the low refractive index film (void layer) may or may not include steps other than the steps (1) to (3) as appropriate. Further, for example, the low refractive index film (void layer) is formed only by the coating process (1) and the coating film forming process (drying process) (2) without performing the chemical treatment process (for example, the crosslinking process) (3). ) 20 can also be formed.
 前記塗工工程(1)において、塗料20’’の塗工方法は特に限定されず、一般的な塗工方法を採用できる。前記塗工方法としては、例えば、スロットダイ法、リバースグラビアコート法、マイクログラビア法(マイクログラビアコート法)、ディップ法(ディップコート法)、スピンコート法、刷毛塗り法、ロールコート法、フレキソ印刷法、ワイヤーバーコート法、スプレーコート法、エクストルージョンコート法、カーテンコート法、リバースコート法等が挙げられる。これらの中で、生産性、塗膜の平滑性等の観点から、エクストルージョンコート法、カーテンコート法、ロールコート法、マイクログラビアコート法等が好ましい。塗料20’’の塗工量は、特に限定されず、例えば、低屈折率膜(空隙層)20の厚みが適切になるように、適宜設定可能である。低屈折率膜(空隙層)20の厚みは、特に限定されず、例えば、前述の通りである。 In the coating step (1), the coating method of the paint 20 ″ is not particularly limited, and a general coating method can be adopted. Examples of the coating method include a slot die method, a reverse gravure coating method, a micro gravure method (micro gravure coating method), a dip method (dip coating method), a spin coating method, a brush coating method, a roll coating method, and flexographic printing. Method, wire bar coating method, spray coating method, extrusion coating method, curtain coating method, reverse coating method and the like. Among these, the extrusion coating method, the curtain coating method, the roll coating method, the micro gravure coating method and the like are preferable from the viewpoints of productivity, coating film smoothness, and the like. The coating amount of the paint 20 ″ is not particularly limited, and can be appropriately set so that, for example, the thickness of the low refractive index film (void layer) 20 is appropriate. The thickness of the low refractive index film (void layer) 20 is not particularly limited, and is as described above, for example.
 前記乾燥工程(2)において、塗料20’’を乾燥し(すなわち、塗料20’’に含まれる分散媒を除去し)、塗工膜(前駆層)20’を形成する。乾燥処理の条件は、特に限定されず、前述の通りである。 In the drying step (2), the coating material 20 ″ is dried (that is, the dispersion medium contained in the coating material 20 ″ is removed) to form a coating film (precursor layer) 20 ′. The conditions for the drying treatment are not particularly limited and are as described above.
 さらに、前記化学処理工程(3)において、塗工前に添加した前記触媒(例えば、光活性触媒またはKOH等の熱活性触媒)を含む塗工膜20’に対し、光照射または加熱し、塗工膜(前駆体)20’中の前記粉砕物同士を化学的に結合させて(例えば、架橋させて)、低屈折率膜(空隙層)20を形成する。前記化学処理工程(3)における光照射または加熱条件は、特に限定されず、前述の通りである。 Further, in the chemical treatment step (3), the coating film 20 ′ containing the catalyst (for example, a photoactive catalyst or a thermally active catalyst such as KOH) added before coating is irradiated with light or heated to be applied. The pulverized material in the processed film (precursor) 20 ′ is chemically bonded (for example, crosslinked) to form the low refractive index film (void layer) 20. The light irradiation or heating conditions in the chemical treatment step (3) are not particularly limited and are as described above.
 つぎに、図2に、スロットダイ法の塗工装置およびそれを用いた前記低屈折率膜(空隙層)の形成方法の一例を模式的に示す。なお、図2は、断面図であるが、見易さのため、ハッチを省略している。 Next, FIG. 2 schematically shows an example of a slot die coating apparatus and a method for forming the low refractive index film (void layer) using the same. Although FIG. 2 is a cross-sectional view, hatching is omitted for easy viewing.
 図示のとおり、この装置を用いた方法における各工程は、基材10を、ローラによって一方向に搬送しながら行う。搬送速度は、特に限定されず、例えば、1~100m/分、3~50m/分、5~30m/分である。 As shown in the figure, each step in the method using this apparatus is performed while the substrate 10 is conveyed in one direction by a roller. The conveyance speed is not particularly limited, and is, for example, 1 to 100 m / min, 3 to 50 m / min, or 5 to 30 m / min.
 まず、送り出しローラ101から基材10を繰り出して搬送しながら、塗工ロール102において、基材に本発明の塗料20’’を塗工する塗工工程(1)を行い、続いて、オーブンゾーン110内で乾燥工程(2)に移行する。図2の塗工装置では、塗工工程(1)の後、乾燥工程(2)に先立ち、予備乾燥工程を行う。予備乾燥工程は、加熱をせずに、室温で行うことができる。乾燥工程(2)においては、加熱手段111を用いる。加熱手段111としては、前述のとおり、熱風器、加熱ロール、遠赤外線ヒーター等を適宜用いることができる。また、例えば、乾燥工程(2)を複数の工程に分け、後の乾燥工程になるほど乾燥温度を高くしても良い。 First, a coating process (1) is performed in which the coating roll 102 is coated with the coating material 20 ″ of the present invention on the coating roll 102 while the substrate 10 is fed out and conveyed from the feed roller 101, and then the oven zone. In 110, the process proceeds to the drying step (2). In the coating apparatus of FIG. 2, a preliminary drying process is performed after a coating process (1) and prior to a drying process (2). The preliminary drying step can be performed at room temperature without heating. In the drying step (2), the heating means 111 is used. As the heating means 111, as described above, a hot air fan, a heating roll, a far infrared heater, or the like can be used as appropriate. Further, for example, the drying step (2) may be divided into a plurality of steps, and the drying temperature may be increased as the subsequent drying step is performed.
 乾燥工程(2)の後に、化学処理ゾーン120内で化学処理工程(3)を行う。化学処理工程(3)においては、例えば、乾燥後の塗工膜20’が光活性触媒を含む場合、基材10の上下に配置したランプ(光照射手段)121で光照射する。または、例えば、乾燥後の塗工膜20’が熱活性触媒を含む場合、ランプ(光照射装置)121に代えて熱風器(加熱手段)を用い、基材10の上下に配置した熱風器121で基材10を加熱する。この架橋処理により、塗工膜20’中の前記粉砕物同士の化学的結合が起こり、低屈折率膜(空隙層)20が硬化・強化される。そして、化学処理工程(3)の後、基材10上に低屈折率膜(空隙層)20が形成された積層体を、巻き取りロール105により巻き取る。なお、図2では、前記積層体の低屈折率膜(空隙層)20を、ロール106から繰り出される保護シートで被覆して保護している。ここで、前記保護シートに代えて、長尺フィルムから形成された他の層を低屈折率膜(空隙層)20上に積層させても良い。 After the drying step (2), the chemical treatment step (3) is performed in the chemical treatment zone 120. In the chemical treatment step (3), for example, when the dried coating film 20 ′ includes a photoactive catalyst, light irradiation is performed by lamps (light irradiation means) 121 disposed above and below the base material 10. Alternatively, for example, when the coating film 20 ′ after drying contains a thermally active catalyst, a hot air fan 121 disposed above and below the substrate 10 using a hot air fan (heating means) instead of the lamp (light irradiation device) 121. To heat the substrate 10. By this crosslinking treatment, the pulverized material in the coating film 20 ′ is chemically bonded to each other, and the low refractive index film (void layer) 20 is cured and strengthened. Then, after the chemical treatment step (3), the laminate in which the low refractive index film (void layer) 20 is formed on the substrate 10 is wound up by the winding roll 105. In FIG. 2, the low refractive index film (gap layer) 20 of the laminate is covered and protected by a protective sheet fed from the roll 106. Here, instead of the protective sheet, another layer formed of a long film may be laminated on the low refractive index film (void layer) 20.
 図3に、マイクログラビア法(マイクログラビアコート法)の塗工装置およびそれを用いた前記低屈折率膜(空隙層)の形成方法の一例を模式的に示す。なお、同図は、断面図であるが、見易さのため、ハッチを省略している。 FIG. 3 schematically shows an example of a micro gravure method (micro gravure coating method) coating apparatus and a method for forming the low refractive index film (void layer) using the same. In addition, although the figure is sectional drawing, the hatch is abbreviate | omitted for legibility.
 図示のとおり、この装置を用いた方法における各工程は、図2と同様、基材10を、ローラによって一方向に搬送しながら行う。搬送速度は、特に限定されず、例えば、1~100m/分、3~50m/分、5~30m/分である。 As shown in the figure, each step in the method using this apparatus is performed while the substrate 10 is conveyed in one direction by a roller, as in FIG. The conveyance speed is not particularly limited, and is, for example, 1 to 100 m / min, 3 to 50 m / min, or 5 to 30 m / min.
 まず、送り出しローラ201から基材10を繰り出して搬送しながら、基材10に本発明の塗料20’’を塗工する塗工工程(1)を行う。塗料20’’の塗工は、図示のとおり、液溜め202、ドクター(ドクターナイフ)203およびマイクログラビア204を用いて行う。具体的には、液溜め202に貯留されている塗料20’’を、マイクログラビア204表面に付着させ、さらに、ドクター203で所定の厚さに制御しながら、マイクログラビア204で基材10表面に塗工する。なお、マイクログラビア204は、例示であり、これに限定されるものではなく、他の任意の塗工手段を用いても良い。 First, a coating process (1) for coating the base material 10 with the coating material 20 ″ of the present invention is performed while the base material 10 is fed out and conveyed from the feed roller 201. The coating material 20 ″ is applied using a liquid reservoir 202, a doctor (doctor knife) 203, and a micro gravure 204 as shown in the figure. Specifically, the coating material 20 ″ stored in the liquid reservoir 202 is attached to the surface of the microgravure 204, and further controlled to a predetermined thickness by the doctor 203 while being applied to the surface of the substrate 10 by the microgravure 204. Apply. The microgravure 204 is merely an example, and the present invention is not limited to this, and any other coating means may be used.
 つぎに、乾燥工程(2)を行う。具体的には、図示のとおり、オーブンゾーン210中に、塗料20’’が塗工された基材10を搬送し、オーブンゾーン210内の加熱手段211により加熱して乾燥する。加熱手段211は、例えば、図2と同様でも良い。また、例えば、オーブンゾーン210を複数の区分に分けることにより、乾燥工程(2)を複数の工程に分け、後の乾燥工程になるほど乾燥温度を高くしても良い。乾燥工程(2)の後に、化学処理ゾーン220内で、化学処理工程(3)を行う。化学処理工程(3)においては、例えば、乾燥後の塗工膜20’が光活性触媒を含む場合、基材10の上下に配置したランプ(光照射手段)221で光照射する。または、例えば、乾燥後の塗工膜20’が熱活性触媒を含む場合、ランプ(光照射装置)221に代えて熱風器(加熱手段)を用い、基材10の下方に配置した熱風器(加熱手段)221で、基材10を加熱する。この架橋処理により、塗工膜20’中の前記粉砕物同士の化学的結合が起こり、低屈折率膜(空隙層)20が形成される。 Next, a drying step (2) is performed. Specifically, as shown in the drawing, the base material 10 coated with the coating material 20 ″ is transported into the oven zone 210, heated by the heating means 211 in the oven zone 210, and dried. The heating means 211 may be the same as that shown in FIG. Further, for example, by dividing the oven zone 210 into a plurality of sections, the drying step (2) may be divided into a plurality of steps, and the drying temperature may be increased as the subsequent drying step is performed. After the drying step (2), the chemical treatment step (3) is performed in the chemical treatment zone 220. In the chemical treatment step (3), for example, when the dried coating film 20 ′ includes a photoactive catalyst, light irradiation is performed by lamps (light irradiation means) 221 disposed above and below the substrate 10. Alternatively, for example, when the coating film 20 ′ after drying contains a thermally active catalyst, a hot air fan (heating means) is used instead of the lamp (light irradiation device) 221 and is arranged below the base material 10 ( The substrate 10 is heated by the heating means 221. By this crosslinking treatment, the pulverized material in the coating film 20 ′ is chemically bonded to each other, and a low refractive index film (void layer) 20 is formed.
 そして、化学処理工程(3)の後、基材10上に低屈折率膜(空隙層)20が形成された積層体を、巻き取りロール251により巻き取る。その後に、前記積層体上に、例えば、他の層を積層させてもよい。また、前記積層体を巻き取りロール251により巻き取る前に、前記積層体に、例えば、他の層を積層させてもよい。 Then, after the chemical treatment step (3), the laminated body in which the low refractive index film (void layer) 20 is formed on the substrate 10 is wound up by the winding roll 251. Thereafter, for example, another layer may be laminated on the laminate. Further, before the laminate is taken up by the take-up roll 251, for example, another layer may be laminated on the laminate.
[3.低屈折率膜(空隙層)]
 本発明の低屈折率膜(空隙層)は、前述のとおり、屈折率が1.25以下という低屈折率を有する。
[3. Low refractive index film (void layer)]
As described above, the low refractive index film (void layer) of the present invention has a low refractive index of 1.25 or less.
 本発明の低屈折率膜(空隙層)は、例えば、膜強度を示すベンコット(登録商標)による耐擦傷性が、60~100%であり、可撓性を示すMIT試験による耐折回数が、100回以上であっても良い。 The low refractive index film (void layer) of the present invention has, for example, a scratch resistance of 60-100% by Bencot (registered trademark) indicating film strength, and the number of foldings by the MIT test indicating flexibility is as follows: It may be 100 times or more.
 本発明の低屈折率膜(空隙層)は、前述のとおり、材質は特に限定されないが、例えば、シリコーン多孔体である。前記シリコーン多孔体は、前記ゲル状ケイ素化合物の粉砕物を使用していることから、前記ゲル状ケイ素化合物の三次元構造が破壊され、前記ゲル状ケイ素化合物とは異なる新たな三次元構造が形成されている。このように、本発明のシリコーン多孔体は、前記ゲル状ケイ素化合物から形成される層では得られない新たな孔構造(新たな空隙構造)が形成された層となったことで、空隙率が高いナノスケールのシリコーン多孔体を形成することができる。また、本発明のシリコーン多孔体は、例えば、ゲル状ケイ素化合物のシロキサン結合官能基数を調整しつつ、前記粉砕物同士を化学的に結合する。また、前記シリコーン多孔体の前駆体として新たな三次元構造が形成された後に、結合工程で化学結合(例えば、架橋)されるため、本発明のシリコーン多孔体は、空隙を有する構造であるが、十分な強度と可撓性とを維持できる。したがって、本発明によれば、容易且つ簡便に、シリコーン多孔体を、様々な対象物に付与することができる。具体的には、本発明のシリコーン多孔体は、例えば、空気層に代えて、光学部材等として使用できる。 The material of the low refractive index film (void layer) of the present invention is not particularly limited as described above, but is, for example, a silicone porous body. Since the porous silicon body uses a pulverized product of the gel silicon compound, the three-dimensional structure of the gel silicon compound is destroyed and a new three-dimensional structure different from the gel silicon compound is formed. Has been. Thus, the silicone porous body of the present invention is a layer in which a new pore structure (new void structure) that cannot be obtained by the layer formed from the gel-like silicon compound is formed, so that the porosity is reduced. High nanoscale silicone porous bodies can be formed. Moreover, the silicone porous body of the present invention chemically bonds the pulverized products to each other while adjusting the number of siloxane bond functional groups of the gel silicon compound, for example. In addition, since a new three-dimensional structure is formed as a precursor of the silicone porous body and then chemically bonded (for example, crosslinked) in the bonding step, the silicone porous body of the present invention has a structure having voids. Sufficient strength and flexibility can be maintained. Therefore, according to this invention, a silicone porous body can be provided to various objects easily and simply. Specifically, the silicone porous body of the present invention can be used as an optical member or the like instead of an air layer, for example.
 本発明のシリコーン多孔体は、例えば、前述のようにゲル状ケイ素化合物の粉砕物を含み、前記粉砕物同士が化学的に結合している。本発明のシリコーン多孔体において、前記粉砕物同士の化学的な結合(化学結合)の形態は、特に制限されず、前記化学結合の具体例は、例えば、架橋結合等が挙げられる。なお、前記粉砕物同士を化学的に結合させる方法は、後述する前記シリコーン多孔体の製造方法において、詳細を述べる。 The porous silicone material of the present invention includes, for example, a pulverized product of a gel-like silicon compound as described above, and the pulverized product is chemically bonded to each other. In the silicone porous body of the present invention, the form of chemical bonding (chemical bonding) between the pulverized products is not particularly limited, and specific examples of the chemical bonding include, for example, cross-linking. The method for chemically bonding the pulverized products will be described in detail in the method for producing the silicone porous body described later.
 前記架橋結合は、例えば、シロキサン結合である。シロキサン結合は、例えば、以下に示す、T2の結合、T3の結合、T4の結合が例示できる。本発明のシリコーン多孔体がシロキサン結合を有する場合、例えば、いずれか一種の結合を有してもよいし、いずれか二種の結合を有してもよいし、三種全ての結合を有してもよい。前記シロキサン結合のうち、T2およびT3の比率が多いほど、可撓性に富み、ゲル本来の特性を期待できるが、膜強度が脆弱になる。一方で、前記シロキサン結合のうちT4比率が多いと、膜強度を発現しやすいが、空隙サイズが小さくなり、可撓性が脆くなる。このため、例えば、用途に応じて、T2、T3、T4比率を変えることが好ましい。 The cross-linking is, for example, a siloxane bond. Examples of the siloxane bond include T2 bond, T3 bond, and T4 bond shown below. When the silicone porous body of the present invention has a siloxane bond, for example, it may have any one kind of bond, any two kinds of bonds, or all three kinds of bonds. Also good. Among the siloxane bonds, the greater the ratio of T2 and T3, the more flexible and the expected properties of the gel can be expected, but the film strength becomes weaker. On the other hand, when the T4 ratio in the siloxane bond is large, the film strength is easily developed, but the void size becomes small and the flexibility becomes brittle. For this reason, for example, it is preferable to change the ratio of T2, T3, and T4 according to the application.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 本発明のシリコーン多孔体が前記シロキサン結合を有する場合、T2、T3およびT4の割合は、例えば、T2を「1」として相対的に表した場合、T2:T3:T4=1:[1~100]:[0~50]、1:[1~80]:[1~40]、1:[5~60]:[1~30]である。 When the silicone porous body of the present invention has the siloxane bond, the ratio of T2, T3, and T4 is, for example, when T2 is expressed as “1”, and T2: T3: T4 = 1: [1 to 100 ]: [0-50], 1: [1-80]: [1-40], 1: [5-60]: [1-30].
 また、本発明のシリコーン多孔体は、例えば、含まれるケイ素原子がシロキサン結合していることが好ましい。具体例として、前記シリコーン多孔体に含まれる全ケイ素原子のうち、未結合のケイ素原子(つまり、残留シラノール)の割合は、例えば、50%未満、30%以下、15%以下、である。 Moreover, in the silicone porous body of the present invention, for example, the silicon atoms contained are preferably bonded with siloxane bonds. As a specific example, the proportion of unbonded silicon atoms (that is, residual silanol) in the total silicon atoms contained in the porous silicone material is, for example, less than 50%, 30% or less, or 15% or less.
 本発明の低屈折率膜(空隙層、代表的にはシリコーン多孔体)は、例えば、孔構造を有している。前記孔の空隙サイズは、空隙(孔)の長軸の直径および短軸の直径のうち、前記長軸の直径を指すものとする。好ましい空孔サイズは、例えば、5nm~200nmである。前記空隙サイズは、その下限が、例えば、5nm以上、10nm以上、20nm以上であり、その上限が、例えば、1000μm以下、500μm以下、100μm以下であり、その範囲が、例えば、5nm~1000μm、10nm~500μm、20nm~100μmである。空隙サイズは、空隙構造を用いる用途に応じて好ましい空隙サイズが決まるため、例えば、目的に応じて、所望の空隙サイズに調整する必要がある。空隙サイズは、例えば、以下の方法により評価できる。 The low refractive index film (void layer, typically a silicone porous body) of the present invention has, for example, a pore structure. The pore size of the hole refers to the diameter of the major axis among the major axis diameter and minor axis diameter of the void (hole). A preferable pore size is, for example, 5 nm to 200 nm. The lower limit of the void size is, for example, 5 nm or more, 10 nm or more, 20 nm or more, and the upper limit thereof is, for example, 1000 μm or less, 500 μm or less, 100 μm or less, and the range thereof is, for example, 5 nm to 1000 μm, 10 nm. ˜500 μm, 20 nm˜100 μm. Since a preferable void size is determined depending on the use of the void structure, it is necessary to adjust the void size to a desired void size according to the purpose, for example. The void size can be evaluated by the following method, for example.
(空隙サイズの評価)
 本発明において、前記空隙サイズは、BET試験法により定量化できる。具体的には、比表面積測定装置(マイクロメリティック社製:ASAP2020)のキャピラリに、サンプル(本発明の低屈折率膜)を0.1g投入した後、室温で24時間、減圧乾燥を行って、空隙構造内の気体を脱気する。そして、前記サンプルに窒素ガスを吸着させることで吸着等温線を描き、細孔分布を求める。これによって、空隙サイズが評価できる。
(Evaluation of gap size)
In the present invention, the void size can be quantified by a BET test method. Specifically, 0.1 g of a sample (low refractive index film of the present invention) was put into a capillary of a specific surface area measuring device (Micromeritic: ASAP2020), and then dried under reduced pressure at room temperature for 24 hours. Degas the gas in the void structure. The adsorption isotherm is drawn by adsorbing nitrogen gas to the sample, and the pore distribution is obtained. Thereby, the gap size can be evaluated.
 本発明の低屈折率膜(空隙層)は、前述のとおり、例えば、膜強度を示すベンコット(登録商標)による耐擦傷性が、60~100%である。本発明は、例えば、このような膜強度を有することから、各種プロセスでの耐擦傷性に優れる。本発明は、例えば、前記低屈折率膜(空隙層)を製膜した後の巻き取りおよび製品フィルムを取り扱う際の生産プロセス内での、耐キズ付き性を有する。また一方で、本発明の低屈折率膜(空隙層)は、例えば、空隙率を減らす代わりに、後述する加熱工程での触媒反応を利用して、前記ゲル状ケイ素化合物の粉砕物の粒子サイズ、および前記粉砕物同士が結合したネック部の結合力を上げることができる。これにより、本発明の低屈折率膜(空隙層)は、例えば、本来脆弱である空隙構造に、一定レベルの強度を付与することができる。 As described above, the low refractive index film (void layer) of the present invention has, for example, a scratch resistance of 60 to 100% due to Bencot (registered trademark) indicating film strength. Since the present invention has such a film strength, for example, it is excellent in scratch resistance in various processes. The present invention has, for example, scratch resistance in a production process when handling a product film after winding the product after forming the low refractive index film (void layer). On the other hand, the low refractive index film (void layer) of the present invention uses, for example, a catalytic reaction in the heating step described later, instead of reducing the void ratio, to thereby reduce the particle size of the pulverized product of the gel silicon compound. , And the binding strength of the neck portion where the pulverized materials are bonded to each other. Thereby, the low refractive index film | membrane (gap layer) of this invention can provide a certain level of intensity | strength, for example to the void structure which is inherently weak.
 前記耐擦傷性は、その下限が、例えば、60%以上、80%以上、90%以上であり、その上限が、例えば、100%以下、99%以下、98%以下であり、その範囲が、例えば、60~100%、80~99%、90~98%である。 The lower limit of the scratch resistance is, for example, 60% or more, 80% or more, 90% or more, and the upper limit thereof is, for example, 100% or less, 99% or less, 98% or less, and the range is For example, they are 60 to 100%, 80 to 99%, 90 to 98%.
 前記耐擦傷性は、例えば、以下のような方法により測定できる。 The scratch resistance can be measured by, for example, the following method.
(耐擦傷性の評価)
(1) アクリルフィルムに塗工・成膜をした空隙層(本発明の低屈折率膜)を、直径15mm程度の円状にサンプリングする。
(2) 次に、前記サンプルについて、蛍光X線(島津製作所社製:ZSX PrimusII)でケイ素を同定して、Si塗布量(Si)を測定する。つぎに、前記アクリルフィルム上の前記空隙層について、前述のサンプリングした近傍から、50mm×100mmに前記空隙層をカットし、これをガラス板(厚み3mm)に固定した後、ベンコット(登録商標)摺動試験を行う。摺動条件は、重り100g、10往復とする。
(3) 摺動を終えた前記空隙層から、前記(1)と同様にサンプリングおよび蛍光X線測定を行うことで、擦傷試験後のSi残存量(Si)を測定する。耐擦傷性は、ベンコット(登録商標)試験前後のSi残存率(%)で定義し、以下の式で表される。
耐擦傷性(%)=[残存したSi量(Si)/Si塗布量(Si)]×100(%)
(Evaluation of scratch resistance)
(1) A void layer (low refractive index film of the present invention) coated and formed on an acrylic film is sampled in a circular shape having a diameter of about 15 mm.
(2) Next, with respect to the sample, silicon is identified with fluorescent X-rays (manufactured by Shimadzu Corporation: ZSX Primus II), and the Si coating amount (Si 0 ) is measured. Next, with respect to the gap layer on the acrylic film, the gap layer is cut to 50 mm × 100 mm from the vicinity sampled, and fixed to a glass plate (thickness 3 mm). Perform dynamic tests. The sliding condition is a weight of 100 g and 10 reciprocations.
(3) The residual amount of Si (Si 1 ) after the scratch test is measured by sampling and fluorescent X-ray measurement in the same manner as in (1) from the gap layer after sliding. The scratch resistance is defined by the Si residual ratio (%) before and after the Bencot (registered trademark) test, and is represented by the following formula.
Scratch resistance (%) = [remaining Si amount (Si 1 ) / Si coating amount (Si 0 )] × 100 (%)
 本発明の低屈折率膜(空隙層)は、例えば、可撓性を示すMIT試験による耐折回数が、100回以上である。本発明は、例えば、このような可撓性を有することから、例えば、製造時における巻き取りや使用時等における取扱い性に優れる。 For example, the low refractive index film (void layer) of the present invention has a folding resistance of 100 times or more by an MIT test showing flexibility. Since the present invention has such flexibility, for example, it is excellent in handleability during winding or use during production.
 前記耐折回数は、その下限が、例えば、100回以上、500回以上、1000回以上であり、その上限が、特に制限されず、例えば、10000回以下であり、その範囲が、例えば、100~10000回、500~10000回、1000~10000回である。 The lower limit of the folding endurance number is, for example, 100 times or more, 500 times or more, 1000 times or more, and the upper limit is not particularly limited, for example, 10,000 times or less, and the range is, for example, 100 10000 times, 500 times to 10000 times, 1000 times to 10000 times.
 前記可撓性は、例えば、物質の変形のし易さを意味する。前記MIT試験による耐折回数は、例えば、以下のような方法により測定できる。 The flexibility means, for example, ease of deformation of the substance. The folding endurance by the MIT test can be measured by the following method, for example.
(耐折試験の評価)
 前記空隙層(本発明の低屈折率膜)を、20mm×80mmの短冊状にカットした後、MIT耐折試験機(テスター産業社製:BE-202)に取り付け、1.0Nの荷重をかける。前記空隙層を抱き込むチャック部は、R2.0mmを使用し、耐折回数を最大10000回行い、前記空隙層が破断した時点の回数を耐折回数とする。
(Evaluation of folding test)
The void layer (low refractive index film of the present invention) is cut into a 20 mm × 80 mm strip and then attached to an MIT folding tester (manufactured by Tester Sangyo Co., Ltd .: BE-202), and a load of 1.0 N is applied. . The chuck part that embeds the gap layer uses R 2.0 mm, performs the folding endurance up to 10,000 times, and sets the number of times when the gap layer is broken as the number of folding endurances.
 本発明の低屈折率膜(空隙層)において、空隙率を示す膜密度は、特に制限されず、その下限が、例えば、1g/cm以上、10g/cm以上、15g/cm以上であり、その上限が、例えば、50g/cm以下、40g/cm以下、30g/cm以下、2.1g/cm以下であり、その範囲が、例えば、5~50g/cm、10~40g/cm、15~30g/cm、1~2.1g/cmである。 In the low refractive index film (void layer) of the present invention, the film density showing the porosity is not particularly limited, and the lower limit thereof is, for example, 1 g / cm 3 or more, 10 g / cm 3 or more, 15 g / cm 3 or more. The upper limit is, for example, 50 g / cm 3 or less, 40 g / cm 3 or less, 30 g / cm 3 or less, 2.1 g / cm 3 or less, and the range thereof is, for example, 5 to 50 g / cm 3 , 10 ~ 40g / cm 3, 15 ~ 30g / cm 3, a 1 ~ 2.1g / cm 3.
 前記膜密度は、例えば、以下のような方法により測定できる。 The film density can be measured by the following method, for example.
(膜密度の評価)
 アクリルフィルムに空隙層(本発明の低屈折率膜)を形成した後、X線回折装置(RIGAKU社製:RINT-2000)を用いて全反射領域のX線反射率を測定する。Intensityと2θのフィッティグを行った後に、空隙層・基材の全反射臨界角から空孔率(P%)を算出する。膜密度は以下の式で表すことができる。
    膜密度(%)=100(%)-空孔率(P%)
(Evaluation of film density)
After forming a void layer (low refractive index film of the present invention) on the acrylic film, the X-ray reflectivity of the total reflection region is measured using an X-ray diffractometer (RIGAKU: RINT-2000). After performing Intensity and 2θ fitting, the porosity (P%) is calculated from the total reflection critical angle of the void layer / base material. The film density can be expressed by the following formula.
Film density (%) = 100 (%)-Porosity (P%)
 本発明の低屈折率膜(空隙層)は、前述のように孔構造(多孔質構造)を有していればよく、例えば、前記孔構造が連続した連泡構造体であってもよい。前記連泡構造体とは、例えば、前記低屈折率膜(空隙層)において、三次元的に、孔構造が連なっていることを意味し、前記孔構造の内部空隙が連続している状態ともいえる。多孔質体が連泡構造を有する場合、これにより、バルク中に占める空隙率を高めることが可能であるが、中空シリカのような独泡粒子を使用する場合は、連泡構造を形成できない。これに対して、本発明の低屈折率膜(空隙層、代表的にはシリコーン多孔体)は、例えば、シリカゾル粒子(ゾルを形成するゲル状ケイ素化合物の粉砕物)が三次元の樹状構造を有するために、塗工膜(前記ゲル状ケイ素化合物の粉砕物を含むゾルの塗工膜)中で、前記樹状粒子が沈降・堆積することで、容易に連泡構造を形成することが可能である。また、本発明の低屈折率膜(空隙層)は、より好ましくは、連泡構造が複数の細孔分布を有するモノリス構造を形成することが好ましい。前記モノリス構造は、例えば、ナノサイズの微細な空隙が存在する構造と、同ナノ空隙が集合した連泡構造として存在する階層構造を指すものとする。前記モノリス構造を形成する場合、例えば、微細な空隙で膜強度を付与しつつ、粗大な連泡空隙で高空隙率を付与し、膜強度と高空隙率とを両立することができる。それらのモノリス構造を形成するには、例えば、まず、前記粉砕物に粉砕する前段階の前記ゲル状ケイ素化合物において、生成する空隙構造の細孔分布を制御することが重要である。また、例えば、前記ゲル状ケイ素化合物を粉砕する際、前記粉砕物の粒度分布を、所望のサイズに制御することで、前記モノリス構造を形成させることができる。 The low refractive index film (void layer) of the present invention may have a pore structure (porous structure) as described above, and may be, for example, an open cell structure in which the pore structure is continuous. The open cell structure means, for example, that the low refractive index film (void layer) has a three-dimensional pore structure, and the internal voids of the pore structure are continuous. I can say that. When the porous body has an open cell structure, it is possible to increase the porosity occupied in the bulk. However, when closed cells such as hollow silica are used, the open cell structure cannot be formed. In contrast, the low refractive index film (void layer, typically a silicone porous body) of the present invention has, for example, a silica sol particle (a crushed product of a gel-like silicon compound forming a sol) having a three-dimensional dendritic structure. Therefore, the dendritic particles settle and deposit in a coating film (a sol coating film containing a pulverized product of the gel-like silicon compound), so that an open cell structure can be easily formed. Is possible. Further, the low refractive index film (void layer) of the present invention more preferably forms a monolith structure in which the open cell structure has a plurality of pore distributions. The monolith structure refers to, for example, a structure in which nano-sized fine voids exist and a hierarchical structure in which the nano-voids are gathered as an open cell structure. In the case of forming the monolith structure, for example, while providing film strength with fine voids, high porosity can be imparted with coarse open-cell voids, and both film strength and high porosity can be achieved. In order to form these monolithic structures, for example, it is important to first control the pore distribution of the generated void structure in the gel-like silicon compound before pulverization into the pulverized product. For example, when the gel-like silicon compound is pulverized, the monolith structure can be formed by controlling the particle size distribution of the pulverized product to a desired size.
 本発明の低屈折率膜(空隙層)において、柔軟性を示す引き裂きクラック発生伸び率は、特に制限されず、その下限が、例えば、0.1%以上、0.5%以上、1%以上であり、その上限が、例えば、3%以下である。前記引き裂きクラック発生伸び率の範囲は、例えば、0.1~3%、0.5~3%、1~3%である。 In the low refractive index film (gap layer) of the present invention, the tear crack generation elongation rate showing flexibility is not particularly limited, and the lower limit thereof is, for example, 0.1% or more, 0.5% or more, 1% or more. The upper limit is, for example, 3% or less. The range of the tear crack occurrence elongation is, for example, 0.1 to 3%, 0.5 to 3%, and 1 to 3%.
 前記引き裂きクラック発生伸び率は、例えば、以下のような方法により測定できる。 The tear crack elongation rate can be measured, for example, by the following method.
(引き裂きクラック発生伸び率の評価)
 アクリルフィルムに空隙層(本発明の低屈折率膜)を形成した後に、5mm×140mmの短冊状にサンプリングを行う。次に、前記サンプルを引っ張り試験機(島津製作所社製:AG-Xplus)に、チャック間距離が100mmになるようにチャッキングした後に、0.1mm/sの引張速度で引っ張り試験を行う。試験中の前記サンプルを、注意深く観察し、前記サンプルの一部にクラックが入った時点で試験を終了し、クラックが入った時点の伸び率(%)を、引き裂きクラック発生伸び率とする。
(Evaluation of tear crack growth rate)
After forming a void layer (low refractive index film of the present invention) on the acrylic film, sampling is performed in a strip shape of 5 mm × 140 mm. Next, the sample is chucked on a tensile tester (manufactured by Shimadzu Corporation: AG-Xplus) so that the distance between chucks is 100 mm, and then a tensile test is performed at a tensile speed of 0.1 mm / s. The sample under test is carefully observed, the test is terminated when a part of the sample has cracks, and the elongation (%) at the point of time when the cracks are taken is the tear crack generation elongation.
 本発明の低屈折率膜(空隙層)において、透明性を示すヘイズは、特に制限されず、その下限が、例えば、0.1%以上、0.2%以上、0.3%以上であり、その上限が、例えば、10%以下、5%以下、3%以下であり、その範囲が、例えば、0.1~10%、0.2~5%、0.3~3%である。 In the low refractive index film (void layer) of the present invention, the haze showing transparency is not particularly limited, and the lower limit thereof is, for example, 0.1% or more, 0.2% or more, 0.3% or more. The upper limit is, for example, 10% or less, 5% or less, 3% or less, and the range thereof is, for example, 0.1 to 10%, 0.2 to 5%, or 0.3 to 3%.
 前記ヘイズは、例えば、以下のような方法により測定できる。 The haze can be measured by, for example, the following method.
(ヘイズの評価)
 空隙層(本発明の低屈折率膜)を50mm×50mmのサイズにカットし、ヘイズメーター(村上色彩技術研究所社製:HM-150)にセットしてヘイズを測定する。ヘイズ値については、以下の式より算出を行う。
    ヘイズ(%)=[拡散透過率(%)/全光線透過率(%)]×100(%)
(Evaluation of haze)
The void layer (low refractive index film of the present invention) is cut into a size of 50 mm × 50 mm, and set in a haze meter (manufactured by Murakami Color Research Laboratory Co., Ltd .: HM-150) to measure haze. The haze value is calculated from the following formula.
Haze (%) = [diffuse transmittance (%) / total light transmittance (%)] × 100 (%)
 前記屈折率は、一般に、真空中の光の波面の伝達速度と、媒質内の伝播速度との比を、その媒質の屈折率という。本発明の低屈折率膜(空隙層)の屈折率は、特に制限されず、その上限が、例えば、1.3以下、1.3未満、1.25以下、1.2以下、1.15以下であり、その下限が、例えば、1.05以上、1.06以上、1.07以上であり、その範囲が、例えば、1.05以上1.3以下、1.05以上1.3未満、1.05以上1.25以下、1.06以上~1.2未満、1.07以上~1.15以下である。 The refractive index is generally the ratio of the transmission speed of the wavefront of light in a vacuum to the propagation speed in the medium is called the refractive index of the medium. The refractive index of the low refractive index film (void layer) of the present invention is not particularly limited, and the upper limit thereof is, for example, 1.3 or less, less than 1.3, 1.25 or less, 1.2 or less, 1.15. The lower limit is, for example, 1.05 or more, 1.06 or more, 1.07 or more, and the range thereof is, for example, 1.05 or more and 1.3 or less, 1.05 or more and less than 1.3. 1.05 to 1.25, 1.06 to less than 1.2, and 1.07 to 1.15.
 本発明において、前記屈折率は、特に断らない限り、波長550nmにおいて測定した屈折率をいう。また、屈折率の測定方法は、特に限定されず、例えば、下記の方法により測定できる。 In the present invention, the refractive index means a refractive index measured at a wavelength of 550 nm unless otherwise specified. Moreover, the measuring method of a refractive index is not specifically limited, For example, it can measure with the following method.
(屈折率の評価)
 アクリルフィルムに空隙層(本発明の低屈折率膜)を形成した後に、50mm×50mmのサイズにカットし、これを粘着層でガラス板(厚み:3mm)の表面に貼合する。前記ガラス板の裏面中央部(直径20mm程度)を黒マジックで塗りつぶして、前記ガラス板の裏面で反射しないサンプルを調製する。エリプソメーター(J.A.Woollam Japan社製:VASE)に前記サンプルをセットし、500nmの波長、入射角50~80度の条件で、屈折率を測定し、その平均値を屈折率とする。
(Evaluation of refractive index)
After forming a void layer (low refractive index film of the present invention) on an acrylic film, it is cut into a size of 50 mm × 50 mm, and this is bonded to the surface of a glass plate (thickness: 3 mm) with an adhesive layer. The back surface central part (diameter of about 20 mm) of the glass plate is painted with black magic to prepare a sample that does not reflect on the back surface of the glass plate. The sample is set in an ellipsometer (manufactured by JA Woollam Japan: VASE), the refractive index is measured under the conditions of a wavelength of 500 nm and an incident angle of 50 to 80 degrees, and the average value is taken as the refractive index.
 本発明の低屈折率膜(空隙層)の厚みは、特に制限されず、その下限が、例えば、0.05μm以上、0.1μm以上であり、その上限が、例えば、1000μm以下、100μm以下であり、その範囲が、例えば、0.05~1000μm、0.1~100μmである。 The thickness of the low refractive index film (void layer) of the present invention is not particularly limited, and the lower limit thereof is, for example, 0.05 μm or more and 0.1 μm or more, and the upper limit thereof is, for example, 1000 μm or less, 100 μm or less. The ranges are, for example, 0.05 to 1000 μm and 0.1 to 100 μm.
 本発明の低屈折率膜(空隙層)の形態は、特に制限されず、例えば、フィルム形状でもよいし、ブロック形状等でもよい。 The form of the low refractive index film (void layer) of the present invention is not particularly limited, and may be, for example, a film shape or a block shape.
 本発明の低屈折率膜(空隙層)の用途は、特に制限されないが、例えば、以下のとおりである。 The application of the low refractive index film (void layer) of the present invention is not particularly limited, but is as follows, for example.
[4.低屈折率膜(空隙層)の用途]
 前記本発明の塗料を用いて製造される前記低屈折率膜(空隙層)は、前述のように、空気層と同様の機能を奏することから、前記空気層を有する対象物に対して、前記空気層に代えて利用することができる。本発明の低屈折率膜(空隙層)は、例えば、光学部材として用いることができ、具体的には、前述のとおり、本発明の積層フィルムおよび画像表示装置に用いることができる。ただし、本発明の低屈折率膜(空隙層)の用途は、これのみには限定されない。
[4. Application of low refractive index film (void layer)]
Since the low refractive index film (gap layer) produced using the paint of the present invention has the same function as the air layer as described above, for the object having the air layer, It can be used instead of the air layer. The low refractive index film (void layer) of the present invention can be used, for example, as an optical member. Specifically, as described above, it can be used for the laminated film and the image display device of the present invention. However, the use of the low refractive index film (void layer) of the present invention is not limited to this.
 つぎに、本発明の実施例について説明する。ただし、本発明は、以下の実施例に限定されない。 Next, examples of the present invention will be described. However, the present invention is not limited to the following examples.
[実施例1]
 以下のようにして、本発明の低屈折率膜製造用ゲルを製造し、さらに、それを用いて塗工液(本発明の低屈折率膜製造用塗料)を得た。また、さらに、前記塗工液を用いて、基材上に本発明の低屈折率膜が積層された本発明の積層フィルムを得た。
[Example 1]
In the following manner, the gel for producing a low refractive index film of the present invention was produced, and a coating liquid (the coating material for producing a low refractive index film of the present invention) was obtained using the gel. Furthermore, using the coating liquid, a laminated film of the present invention in which the low refractive index film of the present invention was laminated on a substrate was obtained.
(1) DMSO4.4gにメチルトリメトキシシラン(商品名KBM-13:信越化学社製)1.9g添加し撹拌した。その混合液に0.01mol/lのシュウ酸水溶液1.0gを滴下しながら加えた。さらに、これを室温で30min撹拌し、前記メチルトリメトキシシランを加水分解させた。
(2) (1)で得た加水分解溶液に、別途DMSO 15.42gと水0.4g、28%NH水溶液0.76gとを混合した液を添加し、ゲル化を行なった(ゲル化工程)。
(3) 前記(2)のゲル化工程後、室温で15min撹拌した後、40℃で20h熟成をさせ(熟成工程)、ゲル状ケイ素化合物を得た。
(4) (3)で得たゲル状ケイ素化合物を、長辺が15cm以下のサイコロ状に粉砕した(分割工程)。
(5) (4)の後、IPAを添加し、DMSOからIPAへの溶媒置換を実施した(溶媒置換工程)。溶媒置換は、IPA添加後に室温で6h静置させる工程を4回繰り返し、その都度IPAの入れ替えを行った。前記4回繰り返した後、ゲル洗浄溶媒中の残存DMSO量が0.014g/mlになり、その時点で溶媒置換を終了した。このようにして低屈折率膜製造用ゲルを得た。さらに、溶媒置換後、IPA中で高圧メディアレス粉砕を行ない、前記ゲルのゾル粒子液化を行った。このようにして、前記ゲルの粉砕物であるゾル粒子と、前記IPA(塗工用溶媒)とを含む塗工液(低屈折率膜製造用塗料)を得た。
(1) 1.9 g of methyltrimethoxysilane (trade name KBM-13: manufactured by Shin-Etsu Chemical Co., Ltd.) was added to 4.4 g of DMSO and stirred. To the mixture, 1.0 g of 0.01 mol / l oxalic acid aqueous solution was added dropwise. Further, this was stirred at room temperature for 30 minutes to hydrolyze the methyltrimethoxysilane.
(2) A solution obtained by separately mixing 15.42 g of DMSO, 0.4 g of water, and 0.76 g of 28% NH 3 aqueous solution was added to the hydrolysis solution obtained in (1) to perform gelation (gelation). Process).
(3) After the gelation step (2), the mixture was stirred at room temperature for 15 minutes and then aged at 40 ° C. for 20 hours (aging step) to obtain a gel silicon compound.
(4) The gel-like silicon compound obtained in (3) was pulverized into a dice having a long side of 15 cm or less (dividing step).
(5) After (4), IPA was added, and solvent substitution from DMSO to IPA was performed (solvent substitution step). For the solvent replacement, the step of allowing to stand at room temperature for 6 hours after IPA addition was repeated 4 times, and the IPA was replaced each time. After repeating the above four times, the amount of DMSO remaining in the gel washing solvent became 0.014 g / ml, and the solvent replacement was completed at that point. In this way, a gel for producing a low refractive index film was obtained. Furthermore, after solvent replacement, high-pressure medialess pulverization was performed in IPA to liquefy the sol particles of the gel. In this way, a coating liquid (a coating material for producing a low refractive index film) containing sol particles as the pulverized product of the gel and the IPA (coating solvent) was obtained.
 さらに、前記塗工液を用いて、基材上に本発明の低屈折率膜が積層された本発明の積層フィルムを得た。すなわち、本実施例で得た塗工液(低屈折率膜製造用塗料)を、バーコート法により、アクリル基材上に塗工し、100℃で1min乾燥して厚み1μmの塗工膜を形成した。その後、60℃での加熱エージングを20h実施し、低屈折率膜(空隙層)を得た。この低屈折率膜の屈折率は、1.127であった。 Furthermore, using the coating liquid, a laminated film of the present invention in which the low refractive index film of the present invention was laminated on a substrate was obtained. That is, the coating liquid (paint for producing a low refractive index film) obtained in this example was coated on an acrylic substrate by a bar coating method, and dried at 100 ° C. for 1 min to form a coating film having a thickness of 1 μm. Formed. Thereafter, heat aging at 60 ° C. was performed for 20 hours to obtain a low refractive index film (void layer). The refractive index of this low refractive index film was 1.127.
[実施例2]
 前記(5)における溶媒置換工程を、ゲル洗浄溶媒中の残存DMSO量が0.007g/mlとなるまで行ったこと以外は、実施例1と同様にして低屈折率膜製造用ゲルおよび塗工液(低屈折率膜製造用液)を得た。
[Example 2]
The gel and coating for producing a low refractive index film in the same manner as in Example 1 except that the solvent replacement step in (5) was performed until the residual DMSO amount in the gel washing solvent became 0.007 g / ml. A liquid (liquid for manufacturing a low refractive index film) was obtained.
 さらに、実施例1の塗工液(低屈折率膜製造用液)に代えて本実施例(実施例2)の塗工液(低屈折率膜製造用液)を用いたこと以外は、実施例1と同様にして低屈折率膜(空隙層)を得た。この低屈折率膜の屈折率は、1.127であった。 Furthermore, it was carried out except that the coating solution (low refractive index film production liquid) of this example (Example 2) was used instead of the coating liquid (low refractive index film production liquid) of Example 1. In the same manner as in Example 1, a low refractive index film (void layer) was obtained. The refractive index of this low refractive index film was 1.127.
[実施例3]
 前記(5)における溶媒置換工程を、ゲル洗浄溶媒中の残存DMSO量が0.048g/mlとなるまで行ったこと以外は、実施例1と同様にして低屈折率膜製造用ゲルおよび塗工液(低屈折率膜製造用液)を得た。
[Example 3]
The gel and coating for low refractive index film production were performed in the same manner as in Example 1 except that the solvent replacement step in (5) was performed until the amount of DMSO remaining in the gel washing solvent was 0.048 g / ml. A liquid (liquid for manufacturing a low refractive index film) was obtained.
 さらに、実施例1の塗工液(低屈折率膜製造用液)に代えて本実施例(実施例3)の塗工液(低屈折率膜製造用液)を用いたこと以外は、実施例1と同様にして低屈折率膜(空隙層)を得た。この低屈折率膜の屈折率は、1.137であった。 Furthermore, it was carried out except that the coating solution (low refractive index film production liquid) of this example (Example 3) was used instead of the coating liquid (low refractive index film production liquid) of Example 1. In the same manner as in Example 1, a low refractive index film (void layer) was obtained. The refractive index of this low refractive index film was 1.137.
[実施例4]
 前記(5)における溶媒置換工程を、ゲル洗浄溶媒中の残存DMSO量が0.074g/mlとなるまで行ったこと以外は、実施例1と同様にして低屈折率膜製造用ゲルおよび塗工液(低屈折率膜製造用液)を得た。
[Example 4]
The gel and coating for producing a low refractive index film were performed in the same manner as in Example 1 except that the solvent replacement step in (5) was performed until the residual DMSO amount in the gel washing solvent became 0.074 g / ml. A liquid (liquid for manufacturing a low refractive index film) was obtained.
 さらに、実施例1の塗工液(低屈折率膜製造用液)に代えて本実施例(実施例4)の塗工液(低屈折率膜製造用液)を用いたこと以外は、実施例1と同様にして低屈折率膜(空隙層)を得た。この低屈折率膜の屈折率は、1.146であった。 Furthermore, it was carried out except that the coating liquid of this example (Example 4) (liquid for manufacturing a low refractive index film) was used in place of the coating liquid of Example 1 (liquid for manufacturing a low refractive index film). In the same manner as in Example 1, a low refractive index film (void layer) was obtained. The refractive index of this low refractive index film was 1.146.
[実施例5]
 前記(5)における溶媒置換工程を、ゲル洗浄溶媒中の残存DMSO量が0.139g/mlとなるまで行ったこと以外は、実施例1と同様にして低屈折率膜製造用ゲルおよび塗工液(低屈折率膜製造用液)を得た。
[Example 5]
The gel and coating for producing a low refractive index film were performed in the same manner as in Example 1 except that the solvent replacement step in (5) was performed until the residual DMSO amount in the gel washing solvent became 0.139 g / ml. A liquid (liquid for manufacturing a low refractive index film) was obtained.
 さらに、実施例1の塗工液(低屈折率膜製造用液)に代えて本実施例(実施例5)の塗工液(低屈折率膜製造用液)を用いたこと以外は、実施例1と同様にして低屈折率膜(空隙層)を得た。この低屈折率膜の屈折率は、1.227であった。 Furthermore, it was carried out except that the coating liquid of this example (Example 5) (liquid for manufacturing low refractive index film) was used instead of the coating liquid of Example 1 (liquid for manufacturing low refractive index film). In the same manner as in Example 1, a low refractive index film (void layer) was obtained. The refractive index of this low refractive index film was 1.227.
[実施例6]
 実施例1の(5)で得たゾル粒子液(塗工液)に対し、さらに光塩基発生剤およびビス(トリメトキシシリル)エタンを添加して、本実施例の塗工液(低屈折率膜製造用塗料)とした。より具体的には、1.5重量%の光塩基発生剤(WPBG266:和光純薬製)のIPA溶液を用意し、前記ゾル粒子液0.75gに対して0.031g添加し、さらに、5重量%のビス(トリメトキシシリル)エタンIPA溶液を同じく前記ゾル粒子液0.75gに対して0.018g添加し、本実施例の塗工液(低屈折率膜製造用塗料)を得た。
[Example 6]
A photobase generator and bis (trimethoxysilyl) ethane were further added to the sol particle liquid (coating liquid) obtained in (5) of Example 1, and the coating liquid (low refractive index) of this example was added. Coating for film production). More specifically, an IPA solution of 1.5% by weight of a photobase generator (WPBG266: manufactured by Wako Pure Chemical Industries, Ltd.) is prepared, 0.031 g is added to 0.75 g of the sol particle liquid, and 5 Similarly, 0.018 g of bis (trimethoxysilyl) ethane IPA solution in weight% was added to 0.75 g of the sol particle solution to obtain a coating solution of this example (paint for producing a low refractive index film).
 さらに、実施例1の塗工液(低屈折率膜製造用塗料)に代えて、本実施例(実施例6)の塗工液(低屈折率膜製造用塗料)を用いたことと、100℃で1min乾燥して厚み1μmの塗工膜を形成した後、加熱エージングに先立ち、前記塗工膜に300mJ/cm(@360nm)のUV照射を行ったこと以外は、実施例1と同様にして低屈折率膜(空隙層)を得た。この低屈折率膜の屈折率は、1.15であった。 Furthermore, instead of the coating liquid of Example 1 (paint for manufacturing a low refractive index film), the coating liquid of this example (Example 6) (paint for manufacturing a low refractive index film) was used. After drying at 1 ° C. for 1 min to form a coating film having a thickness of 1 μm, prior to heat aging, the coating film was irradiated with 300 mJ / cm 2 (@ 360 nm) of UV as in Example 1. Thus, a low refractive index film (void layer) was obtained. The refractive index of this low refractive index film was 1.15.
[実施例7]
 実施例1に記載のゲル製造用溶媒をDMSOからDMF(N,N-ジメチルホルムアミド)に変えた以外は、実施例1と同様の処理を行い、空隙層を得た。この低屈折率膜の屈折率は、1.120であった。
[Example 7]
A void layer was obtained in the same manner as in Example 1 except that the solvent for gel production described in Example 1 was changed from DMSO to DMF (N, N-dimethylformamide). The refractive index of this low refractive index film was 1.120.
[実施例8]
 実施例1に記載のゲル製造用溶媒をDMSOからγ-ブチロラクトンに変えた以外は、実施例1と同様の処理を行い、空隙層を得た。この低屈折率膜の屈折率は、1.125であった。
[Example 8]
A void layer was obtained in the same manner as in Example 1 except that the gel production solvent described in Example 1 was changed from DMSO to γ-butyrolactone. The refractive index of this low refractive index film was 1.125.
[比較例1]
 前記(5)における溶媒置換工程を、ゲル洗浄溶媒中の残存DMSO量が0.55g/mlとなるまで行ったこと以外は、実施例1と同様にして低屈折率膜製造用ゲルおよび塗工液(低屈折率膜製造用液)を得た。
[Comparative Example 1]
The gel and coating for producing a low refractive index film were performed in the same manner as in Example 1 except that the solvent replacement step in (5) was performed until the amount of residual DMSO in the gel washing solvent became 0.55 g / ml. A liquid (liquid for manufacturing a low refractive index film) was obtained.
 さらに、実施例1の塗工液(低屈折率膜製造用液)に代えて本比較例の塗工液を用いたこと以外は実施例1と同様にして膜(空隙層)を得た。この膜の屈折率は、1.301であった。 Further, a film (void layer) was obtained in the same manner as in Example 1 except that the coating liquid of this comparative example was used instead of the coating liquid of Example 1 (liquid for manufacturing a low refractive index film). The refractive index of this film was 1.301.
 実施例1~8および比較例1おけるゲル中の残存DMSO量および膜(空隙層)の屈折率を、下記表1にまとめて示す。 Table 1 below summarizes the amount of DMSO remaining in the gel and the refractive index of the film (void layer) in Examples 1 to 8 and Comparative Example 1.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 上記表1に示すとおり、実施例1~8では、いずれも、低屈折率膜製造用ゲル中のゲル製造用溶媒(DMSO、DMFまたはγ-ブチロラクトン)の残存量が0.5g/ml以下であり、これにより、屈折率が1.25以下の低屈折率膜を得ることができた。これに対し、低屈折率膜製造用ゲル中のDMSO(ゲル製造用溶媒)の残存量が0.5g/mlを超える比較例1では、屈折率が1.25以下の低屈折率膜を得ることができなかった。 As shown in Table 1 above, in Examples 1 to 8, the residual amount of the gel production solvent (DMSO, DMF or γ-butyrolactone) in the low refractive index film production gel was 0.5 g / ml or less. Thus, a low refractive index film having a refractive index of 1.25 or less could be obtained. On the other hand, in Comparative Example 1 where the residual amount of DMSO (gel production solvent) in the low refractive index film production gel exceeds 0.5 g / ml, a low refractive index film having a refractive index of 1.25 or less is obtained. I couldn't.
 この出願は、2015年9月24日に出願された日本出願特願2015-187456を基礎とする優先権を主張し、その開示のすべてをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2015-187456 filed on September 24, 2015, the entire disclosure of which is incorporated herein.
 以上、説明したとおり、本発明の低屈折率膜製造用ゲルは、ゲル中のゲル製造用溶媒の残存量が0.5g/ml以下と少ないことにより、屈折率が1.25以下と低屈折率の膜を製造することが可能である。これを用いて得られた本発明の低屈折率膜は、例えば、空気層と同様の機能を奏することができる。このため、本発明の低屈折率膜は、例えば、空気層に代えて、光学部材等として使用できる。したがって、本発明の製造方法およびそれにより得られる塗料は、例えば、前述のような多孔質構造の製造において有用である。 As described above, the low refractive index film production gel of the present invention has a low refractive index of 1.25 or less because the residual amount of the gel production solvent in the gel is as small as 0.5 g / ml or less. Rate membranes can be produced. The low refractive index film | membrane of this invention obtained using this can show | play the function similar to an air layer, for example. For this reason, the low refractive index film | membrane of this invention can be used as an optical member etc. instead of an air layer, for example. Therefore, the production method of the present invention and the paint obtained thereby are useful, for example, in the production of the porous structure as described above.
10 基材
20 低屈折率膜(空隙層)
20’ 塗工膜(前駆層)
20’’ 塗料
101 送り出しローラ
102 塗工ロール
110 オーブンゾーン
111 熱風器(加熱手段)
120 化学処理ゾーン
121 ランプ(光照射手段)または熱風器(加熱手段)
105 巻き取りロール
106 ロール
201 送り出しローラ
202 液溜め
203 ドクター(ドクターナイフ)
204 マイクログラビア
210 オーブンゾーン
211 加熱手段
220 化学処理ゾーン
221 ランプ(光照射手段)または熱風器(加熱手段)
10 Substrate 20 Low refractive index film (void layer)
20 'coating film (precursor layer)
20 '' paint 101 delivery roller 102 coating roll 110 oven zone 111 hot air (heating means)
120 Chemical treatment zone 121 Lamp (light irradiation means) or hot air device (heating means)
105 Winding Roll 106 Roll 201 Feeding Roller 202 Liquid Reservoir 203 Doctor (Doctor Knife)
204 Microgravure 210 Oven zone 211 Heating means 220 Chemical treatment zone 221 Lamp (light irradiation means) or hot air blower (heating means)

Claims (20)

  1. 低屈折率膜の製造に用いるためのゲルであって、
    前記ゲル中のゲル製造用溶媒の残存量が、0.5g/ml以下であり、
    製造される前記低屈折率膜の屈折率が、1.25以下であることを特徴とする低屈折率膜製造用ゲル。
    A gel for use in the production of a low refractive index film,
    The residual amount of the solvent for gel production in the gel is 0.5 g / ml or less,
    The gel for producing a low refractive index film, wherein the produced low refractive index film has a refractive index of 1.25 or less.
  2. 前記ゲル製造用溶媒の沸点が、130℃以上である請求項1記載の低屈折率膜製造用ゲル。 The gel for producing a low refractive index film according to claim 1, wherein the solvent for producing the gel has a boiling point of 130 ° C. or higher.
  3. 前記ゲル製造溶媒が、水溶性溶媒である請求項1または2記載の低屈折率膜製造用ゲル。 The gel for producing a low refractive index film according to claim 1, wherein the gel production solvent is a water-soluble solvent.
  4. 前記ゲルが、無機物のゲルである請求項1から3のいずれか一項に記載の低屈折率膜製造用ゲル。 The gel for producing a low refractive index film according to any one of claims 1 to 3, wherein the gel is an inorganic gel.
  5. 前記ゲルが、Si、Mg、Al、Ti、ZnおよびZrからなる群から選択される少なくとも一つの元素を含む請求項1から4のいずれか一項に記載の低屈折率膜製造用ゲル。 The gel for producing a low refractive index film according to any one of claims 1 to 4, wherein the gel contains at least one element selected from the group consisting of Si, Mg, Al, Ti, Zn, and Zr.
  6. 前記ゲルが、ゲル状ケイ素化合物である請求項1から5のいずれか一項に記載の低屈折率膜製造用ゲル。 The gel for producing a low refractive index film according to any one of claims 1 to 5, wherein the gel is a gel-like silicon compound.
  7. 前記ゲル状ケイ素化合物が、3官能以下の飽和結合官能基を少なくとも含むケイ素化合物から得られるゲル状ケイ素化合物である請求項6記載の低屈折率膜製造用ゲル。 The gel for producing a low refractive index film according to claim 6, wherein the gel-like silicon compound is a gel-like silicon compound obtained from a silicon compound containing at least a trifunctional or lower saturated bond functional group.
  8. 前記低屈折率膜を基材上に製造するための、請求項1から7のいずれか一項に記載の低屈折率膜製造用ゲル。 The gel for producing a low refractive index film according to any one of claims 1 to 7, for producing the low refractive index film on a substrate.
  9. 前記基材が、樹脂フィルムである請求項8記載の低屈折率膜製造用ゲル。 The gel for producing a low refractive index film according to claim 8, wherein the substrate is a resin film.
  10. 前記ゲルの原料を、前記ゲル製造用溶媒中でゲル化するゲル化工程と、
    前記ゲル中のゲル製造用溶媒を、他の溶媒に置換する溶媒置換工程とを含む、請求項1から9のいずれか一項に記載の低屈折率膜製造用ゲルの製造方法。
    A gelling step of gelling the raw material of the gel in the solvent for gel production;
    The manufacturing method of the gel for low refractive index film | membrane manufacture as described in any one of Claim 1 to 9 including the solvent substitution process which substitutes the solvent for gel manufacture in the said gel with another solvent.
  11. 前記溶媒置換工程において、前記他の溶媒が、前記低屈折率膜製造用溶媒である請求項10記載の製造方法。 The manufacturing method according to claim 10, wherein in the solvent replacement step, the other solvent is a solvent for manufacturing the low refractive index film.
  12. 前記他の溶媒は、前記ゲル製造用触媒を溶解することが可能な溶媒である請求項10または11記載の製造方法。 The production method according to claim 10 or 11, wherein the other solvent is a solvent capable of dissolving the catalyst for gel production.
  13. さらに、前記溶媒置換工程に先立ち、前記ゲルの塊を複数に分割するゲル分割工程を含む、請求項10から12のいずれか一項に記載の製造方法。 Furthermore, the manufacturing method as described in any one of Claims 10-12 including the gel division | segmentation process which divides | segments the said lump of gel into plurality prior to the said solvent substitution process.
  14. 前記ゲル分割工程において、前記ゲルを、長辺が15cm以下の3次元構造体に分割する請求項13記載の製造方法。 The manufacturing method according to claim 13, wherein in the gel dividing step, the gel is divided into a three-dimensional structure having a long side of 15 cm or less.
  15. さらに、前記溶媒置換工程に先立ち、前記ゲルを前記ゲル製造用溶媒中で熟成する熟成工程を含む請求項10から14のいずれか一項に記載の製造方法。 Furthermore, the manufacturing method as described in any one of Claims 10-14 including the aging process which ripens the said gel in the said solvent for gel manufacture prior to the said solvent substitution process.
  16. さらに、前記溶媒置換工程に先立ち、前記ゲルを前記ゲル製造用溶媒中で熟成する熟成工程を含み、前記ゲル分割工程を、前記熟成工程後に行う請求項13または14記載の製造方法。 Furthermore, the manufacturing method of Claim 13 or 14 including the aging process which ripens the said gel in the said solvent for gel manufacture prior to the said solvent substitution process, and performing the said gel division | segmentation process after the said aging process.
  17. 前記熟成工程において、前記ゲルを、前記ゲル製造用溶媒中、30℃以上でインキュベートすることにより熟成する、請求項15または16記載の製造方法。 The production method according to claim 15 or 16, wherein, in the aging step, the gel is aged by incubating the gel in the solvent for gel production at 30 ° C or higher.
  18. 請求項1から9のいずれか一項に記載の低屈折率膜製造用ゲルの粉砕物と、
    低屈折率膜製造用溶媒と、
    を含むことを特徴とする低屈折率膜製造用塗料。
    A pulverized product of the gel for producing a low refractive index film according to any one of claims 1 to 9,
    A solvent for producing a low refractive index film;
    A paint for producing a low refractive index film, comprising:
  19. 前記低屈折率膜製造用溶媒は、前記ゲル製造用触媒を溶解することが可能な溶媒である請求項18記載の低屈折率膜製造用塗料。 The paint for producing a low refractive index film according to claim 18, wherein the solvent for producing the low refractive index film is a solvent capable of dissolving the catalyst for producing the gel.
  20. 光学部材として、積層フィルムを含む画像表示装置の製造方法であって、
    前記積層フィルムの製造方法が、基材上に低屈折率膜を形成する工程を含み、
    前記低屈折率膜を形成する工程が、
    請求項18または19記載の低屈折率膜製造用塗料を基材上に塗工する塗工工程と、
    塗工した前記低屈折率膜製造用塗料を乾燥させる乾燥工程と、
    を含むことを特徴とする、画像表示装置の製造方法。
    As an optical member, a manufacturing method of an image display device including a laminated film,
    The method for producing a laminated film includes a step of forming a low refractive index film on a substrate,
    Forming the low refractive index film comprises:
    A coating process for coating the base material with the paint for producing a low refractive index film according to claim 18 or 19,
    A drying step of drying the applied coating for producing the low refractive index film;
    A method for manufacturing an image display device, comprising:
PCT/JP2016/077903 2015-09-24 2016-09-21 Gel for producing low-refractive-index film, production method for gel for producing low-refractive-index film, coating material for producing low-refractive-index film, production method for coating material for producing low-refractive-index film, production method for laminate film, and production method for image display device WO2017051831A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680053884.4A CN108027454A (en) 2015-09-24 2016-09-21 Low refractive index film manufacture gel and coating and their manufacture method, the manufacture method of stacked film and image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-187456 2015-09-24
JP2015187456A JP2017061604A (en) 2015-09-24 2015-09-24 Gel for producing low refractive index film, production method of gel for producing low refractive index film, coating material for producing low refractive index film, production method of coating material for producing low refractive index film, production method of laminate film and production method of picture display unit

Publications (1)

Publication Number Publication Date
WO2017051831A1 true WO2017051831A1 (en) 2017-03-30

Family

ID=58386774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077903 WO2017051831A1 (en) 2015-09-24 2016-09-21 Gel for producing low-refractive-index film, production method for gel for producing low-refractive-index film, coating material for producing low-refractive-index film, production method for coating material for producing low-refractive-index film, production method for laminate film, and production method for image display device

Country Status (3)

Country Link
JP (1) JP2017061604A (en)
CN (1) CN108027454A (en)
WO (1) WO2017051831A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017066209A (en) * 2015-09-28 2017-04-06 日東電工株式会社 Coating liquid, method for producing coating liquid, method for producing laminated film and method for producing image display device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006297329A (en) * 2005-04-22 2006-11-02 Pentax Corp Silica aerogel film and its manufacturing method
WO2015129736A1 (en) * 2014-02-26 2015-09-03 日立化成株式会社 Aerogel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003229174A (en) * 2002-01-31 2003-08-15 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery using film- like outer package

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006297329A (en) * 2005-04-22 2006-11-02 Pentax Corp Silica aerogel film and its manufacturing method
WO2015129736A1 (en) * 2014-02-26 2015-09-03 日立化成株式会社 Aerogel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YILDIRIM, ADEM ET AL.: "Template free preparation of nanoporous organically modified silica thin films on flexible substrates", JOURNAL OF MATERIALS CHEMISTRY, vol. 21, no. 38, 14 October 2011 (2011-10-14), pages 14830 - 14837, XP055370551, ISSN: 0959-9428 *

Also Published As

Publication number Publication date
CN108027454A (en) 2018-05-11
JP2017061604A (en) 2017-03-30

Similar Documents

Publication Publication Date Title
JP7309787B2 (en) Low refractive index layer, laminated film, method for producing low refractive index layer, method for producing laminated film, optical member, and image display device
JP6604781B2 (en) Laminated film roll and method for producing the same
JP6612563B2 (en) Silicone porous body and method for producing the same
TWI731866B (en) Optical laminate, optical laminate manufacturing method, optical member, image display device, optical member manufacturing method, and image display device manufacturing method
JP6599699B2 (en) Void structure film bonded through catalytic action and method for producing the same
JP6563750B2 (en) Paint and production method thereof
JP6713872B2 (en) Laminated film, laminated film manufacturing method, optical member, image display device, optical member manufacturing method, and image display device manufacturing method
WO2016104762A1 (en) Porous silicone object and process for producing same
TWI691732B (en) Laminated film coil and its manufacturing method
WO2017022690A1 (en) Optical laminate, optical laminate manufacturing method, optical member, and image display device
WO2017043496A1 (en) Low-refractive-index layer, laminated film, method for producing low-refractive-index layer, method for producing laminated film, optical member, and image display device
JP2018001633A (en) Method of manufacturing optical laminate and optical laminate intermediate product
WO2017057331A1 (en) Method for producing porous gel-containing liquid, porous gel-containing liquid, method for producing high-porosity layer, method for producing high-porosity porous body, and method for producing layered film roll
JP2017049577A (en) Laminated optical film, manufacturing method for laminated optical film, optical member, and image display device
JP2017057116A (en) Sol liquid and method for producing the same, method for producing laminate film, laminate film, optical member, and image display device
JP2017064954A (en) Method for producing laminated film and method for producing image display device
WO2017051831A1 (en) Gel for producing low-refractive-index film, production method for gel for producing low-refractive-index film, coating material for producing low-refractive-index film, production method for coating material for producing low-refractive-index film, production method for laminate film, and production method for image display device
WO2016104765A1 (en) Coating material and method for manufacturing same
JP2017066209A (en) Coating liquid, method for producing coating liquid, method for producing laminated film and method for producing image display device
JP6713760B2 (en) Method for producing gel, method for producing paint for producing void structure film, and method for producing void structure film
WO2017033672A1 (en) Laminated optical film, method for producing laminated optical film, optical member, and image display device
TWI744241B (en) Laminated film, method of manufacturing laminated film, optical member, image display device, method of manufacturing optical member, and method of manufacturing image display device
WO2017131220A1 (en) Method for producing liquid that contains pulverized gel
WO2017131219A1 (en) Pulverized-gel-containing liquid, and method for producing pulverized-gel-containing liquid
WO2016104763A1 (en) Void structured film bonded through catalytic action and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16848619

Country of ref document: EP

Kind code of ref document: A1