WO2017051739A1 - Head-up display device - Google Patents

Head-up display device Download PDF

Info

Publication number
WO2017051739A1
WO2017051739A1 PCT/JP2016/076787 JP2016076787W WO2017051739A1 WO 2017051739 A1 WO2017051739 A1 WO 2017051739A1 JP 2016076787 W JP2016076787 W JP 2016076787W WO 2017051739 A1 WO2017051739 A1 WO 2017051739A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
predicted
display
rotational position
correction
Prior art date
Application number
PCT/JP2016/076787
Other languages
French (fr)
Japanese (ja)
Inventor
佐々木 達也
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016033523A external-priority patent/JP6372502B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to KR1020187007978A priority Critical patent/KR101997414B1/en
Priority to US15/761,897 priority patent/US10429642B2/en
Priority to EP16848527.4A priority patent/EP3355095B1/en
Publication of WO2017051739A1 publication Critical patent/WO2017051739A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Arrangement of adaptations of instruments
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays

Definitions

  • the present disclosure relates to a head-up display (hereinafter referred to as HUD) device mounted on a vehicle.
  • HUD head-up display
  • HUD devices that realize a virtual image display of a display light image by projecting a display light image representing vehicle-related information related to the vehicle from a projector and reflecting it by a reflecting mirror are widely known.
  • the reflecting mirror is used in this way, the occupied space of the HUD device in the vehicle becomes as small as possible.
  • Patent Document 1 discloses an apparatus that adjusts the virtual image display position of a display light image by driving the reflecting mirror by decelerating the rotation of the stepping motor by a reduction gear mechanism and transmitting the reduced speed to the reflecting mirror. It is disclosed.
  • the rotation position of the stepping motor is controlled in accordance with an adjustment instruction from the vehicle occupant, so that the virtual image display position of the display light image can be appropriately adjusted to the occupant's expected position.
  • the elastic member generates a restoring force in a direction in which the transmission gears mesh with each other in the reduction gear mechanism, so that the backlash between the transmission gears disappears. As a result, a shift due to backlash between the transmission gears is less likely to occur at the virtual image display position of the display light image.
  • the present disclosure has been made in view of the problems described above, and an object thereof is to provide a HUD device that suppresses a shift of a virtual image display position of a display light image in a vehicle.
  • a first aspect of the present disclosure is a head-up display device mounted on a vehicle, and a projector that projects a display light image representing vehicle-related information related to the vehicle;
  • An optical unit that has a reflecting mirror that reflects the display light image projected from the projector so that it can be driven, and that adjusts the virtual image display position for displaying the display light image reflected by the reflecting mirror as a virtual image by driving the reflecting mirror.
  • a control unit that controls the rotational position of the stepping motor in accordance with an adjustment command from the vehicle occupant and an elastic member that generates At least one transmission gear is defined as a specific gear
  • the predicted temperature of creep deformation is defined as the predicted gear temperature as the environmental temperature of the specific gear, and predicted to occur at the virtual image display position due to creep deformation at the predicted deformation temperature.
  • At least one transmission gear whose creep deformation is predicted in the reduction gear mechanism is used as a specific gear, and correction using the ambient temperature of the specific gear as a trigger is given to the rotational position of the stepping motor.
  • the rotational position of the stepping motor is corrected to return the predicted display deviation related to the virtual image display position of the display light image.
  • the predicted display deviation is a deviation that is predicted to occur at the virtual image display position of the display light image due to creep deformation at or above the predicted deformation temperature. Therefore, even if the specific gear creep-deforms at an environmental temperature higher than the predicted deformation temperature, the virtual position of the display light image is prevented from shifting in the vehicle by correcting the rotational position to return the predicted display deviation. It becomes possible.
  • the control unit when the environmental temperature rises above the predicted deformation temperature, the control unit corrects the rotational position with a correction amount that changes the rotational position to return the predicted display deviation.
  • An execution block and a post-correction control block that controls the rotational position in accordance with the adjustment command based on the position corrected by the correction execution block.
  • the rotational position of the stepping motor when the environmental temperature rises above the predicted deformation temperature, the rotational position of the stepping motor is changed to the side that returns the predicted display deviation by executing the rotational position correction by the correction amount. To do. Therefore, after the change, the rotational position of the stepping motor is controlled according to the adjustment command with the corrected position as a reference. As a result, once the rotational position correction is executed at an environmental temperature that is equal to or higher than the predicted deformation temperature, the virtual image display position of the display light image can be controlled while the deviation due to creep deformation of the specific gear is reduced. It becomes.
  • the drawing It is a schematic structure figure showing the HUD device by a first embodiment. It is a schematic diagram which shows the virtual image display state of the display light image by the HUD apparatus of FIG. It is sectional drawing which shows the stepping motor and reduction gear mechanism of FIG. It is an electric circuit diagram which shows the electrical connection state of the stepping motor of FIG. 1, and a control unit. It is a characteristic view for demonstrating the drive signal applied to the stepping motor of FIG.
  • FIG. 6A is a schematic diagram for explaining creep deformation occurring in the transmission gear of FIG. 1
  • FIG. 6B is a schematic diagram for explaining creep deformation occurring in the transmission gear of FIG.
  • FIG. 8A is a schematic diagram for explaining a correction occurring at the virtual image display position shown in FIG. 2, and FIG. FIG. 2 is a block diagram showing a plurality of blocks constructed by the display control circuit of FIG. 1.
  • the HUD device 1 is mounted on a vehicle and displays a display light image 3 in a virtual image in the vehicle.
  • the HUD device 1 includes a housing 10, a projector 20, an optical unit 30, a stepping motor 40, a reduction gear mechanism 50, an elastic member 60, a temperature sensor 70, an adjustment switch 80, and a control unit 90.
  • the housing 10 is formed in a hollow shape and is installed on the instrument panel 2 in the vehicle.
  • the housing 10 accommodates the components 20, 30, 40, 50, 60, 70, etc. of the device 1 in front of the driver's seat of the vehicle.
  • the housing 10 has a translucent exit window 14 at a position facing the windshield 4 as a projection member in front of the driver's seat of the vehicle in the vertical direction.
  • the projector 20 is composed mainly of a transmission illumination type liquid crystal panel or an organic EL panel, and has a screen 22.
  • the screen 22 is illuminated by a backlight built in the projector 20.
  • the image displayed on the screen 22 as a real image is projected as the display light image 3 by receiving the transmitted illumination and emitting light.
  • the display light image 3 projected from the projector 20 represents vehicle related information related to the vehicle.
  • the display light image 3 of the present embodiment represents navigation information such as the vehicle traveling direction, as shown in FIG.
  • the display light image 3 may represent vehicle state information such as a vehicle speed, a remaining fuel amount, and a coolant temperature, and outside vehicle state information such as traffic conditions.
  • the optical unit 30 includes a plurality of optical members including a reflecting mirror 32.
  • the reflecting mirror 32 is a so-called concave mirror having a reflecting surface 34 that is recessed into a smooth curved surface.
  • the reflecting mirror 32 magnifies and reflects the display light image 3 incident directly or indirectly from the projector 20 to the reflecting surface 34 toward the exit window 14.
  • the reflected display light image 3 passes through the exit window 14 and is projected onto the windshield 4, thereby forming an image in front of the windshield 4 as shown in FIG. 2.
  • the vehicle related information represented by the display light image 3 is displayed as a virtual image toward the driver seat side in the vehicle.
  • the reflecting mirror 32 has a rotating shaft 38.
  • the rotation shaft 38 is rotatably supported by the base 16 fixed to the housing 10.
  • the virtual image display position of the display light image 3 changes up and down with respect to the windshield 4, as shown in FIG.
  • the virtual image display position of the display light image 3 can be adjusted.
  • the stepping motor 40 is a permanent magnet type having a claw pole structure.
  • the stepping motor 40 has a magnetic casing 46, a rotor 41, and stators 44 and 45.
  • the magnetic casing 46 is formed in a hollow shape by a magnetic material.
  • the rotor 41 is formed by assembling a rotor magnet 43 around the outer periphery of the motor shaft 42.
  • the motor shaft 42 is rotatably supported by a magnetic casing 46.
  • the rotor magnet 43 is formed with a plurality of N and S magnetic poles alternately in the rotation direction.
  • the two-phase stators 44 and 45 are held by a magnetic casing 46 on the outer peripheral side of the rotor 41.
  • the A-phase stator 44 includes magnetic yokes 441 and 442 and a coil 443.
  • the B-phase stator 45 includes magnetic yokes 451 and 452 and a coil 453.
  • the coils 443 and 453 of the respective phases A and B are energized and energized by the drive signal, so that the rotor magnet 43 rotates together with the motor shaft 42.
  • a drive signal is applied to the A-phase coil 443 in accordance with a cosine function that alternates the amplitude according to the electrical angle, as shown by a thick solid line graph in FIG.
  • a drive signal is applied to the B-phase coil 453 according to a sine function that alternates the amplitude according to the electrical angle, as shown by a thin solid line graph in FIG. Therefore, the rotational position of the motor shaft 42 is a position corresponding to the electrical angle of the drive signal applied to the coils 443 and 453 of the A and B phases.
  • the reduction gear mechanism 50 shares the magnetic casing 46 with the stepping motor 40.
  • the reduction gear mechanism 50 has a plurality of transmission gears 52, 53, 54, 55, 56, 57, 58, 59 inside the magnetic casing 46.
  • these transmission gears 52, 53, 54, 55, 56, 57, 58 and 59 the whole including the tooth profile portions 52a, 53a, 54a, 55a, 56a, 57a, 58a and 59a is resin-molded.
  • Such transmission gears 52, 53, 54, 55, 56, 57, 58, 59 are caused by residual stress during resin molding, as schematically shown by white arrows in FIG. 6 (a). Creep deformation is likely to occur. Therefore, in the present embodiment, any of the transmission gears 52, 53, 54, 55, 56, 57, 58, and 59 is defined as a “specific gear” in which creep deformation is predicted.
  • the first-stage transmission gear 52 is formed on the motor shaft.
  • the first idler transmission gear 53 and the first pinion transmission gear 54 are integrally formed and are rotatably supported by the magnetic casing 46.
  • the tooth profile 53a of the first idler transmission gear 53 is connected to the tooth profile 52a of the first stage transmission gear 52 by meshing.
  • the second idler transmission gear 55 and the second pinion transmission gear 56 are integrally formed and are rotatably supported by the magnetic casing 46.
  • the tooth profile 55a of the second idler transmission gear 55 is connected to the tooth profile 54a of the first pinion transmission gear 54 by meshing.
  • the third idler transmission gear 57 and the third pinion transmission gear 58 are integrally formed and are rotatably supported by the magnetic casing 46.
  • the tooth profile portion 57a of the third idler transmission gear 57 is connected to the tooth profile portion 58a of the second pinion transmission gear 56 by meshing.
  • the final stage transmission gear 59 is formed on the rotary shaft 38.
  • the tooth profile 59a of the final stage transmission gear 59 is connected to the tooth profile 58a of the third pinion transmission gear 58 by meshing.
  • the rotation of the motor shaft 42 is decelerated and transmitted to the rotation shaft 38.
  • the rotation shaft 38 is driven so that the virtual image display position of the display light image 3 shown in FIG. 2 changes toward the upper limit display position Du.
  • the rotating shaft 38 is driven so that the virtual image display position of the display light image 3 shown in FIG. 2 changes toward the lower lower limit display position Dl.
  • the elastic member 60 is a so-called tension coil spring made of metal.
  • One end of the elastic member 60 is locked by the reflecting mirror 32.
  • the other end of the elastic member 60 is locked by the base 16.
  • the elastic member 60 With such a locking form, the elastic member 60 generates a restoring force so as to urge the rotating shaft 38 to one side in the rotational direction.
  • This restoring force meshes the tooth profile portions 52a, 53a, 54a, 55a, 56a, 57a, 58a, 59a that form the connecting portions of the transmission gears 52, 53, 54, 55, 56, 57, 58, 59. This is the force that is generated in the direction of eliminating the backlash.
  • the creep deformation as shown in FIG. 6 (a) occurs so that the teeth of the tooth profile portions 52a, 53a, 54a, 55a, 56a, 57a, 58a, and 59a are bent to the opposite sides at the respective connecting portions. . Therefore, the transmission gears 59, 57, 55, 53 on the rear stage side receive the restoring force of the elastic member 60 and rotate as schematically shown by the dot-hatched arrows in FIG. Then, fill the backlash as much as possible by bending the teeth. As a result, the virtual image display position of the display light image 3 is shifted upward as schematically shown by a white arrow in FIG.
  • Such creep deformation that causes a shift in the virtual image display position is particularly short as the environmental temperature T (see FIG. 8) of the transmission gears 52, 53, 54, 55, 56, 57, 58, 59 increases. It happens greatly. Therefore, the displacement of the virtual image display position also occurs greatly in a short time as the environmental temperature T increases.
  • the environmental temperature T at which large creep deformation is predicted is defined as the predicted deformation temperature Te (see FIG. 8).
  • the predicted deformation temperature Te is set to a predetermined value such as a temperature T, for example, 85 ° C.
  • the deviation of the virtual image display position predicted to occur due to the creep deformation at the predicted deformation temperature Te is defined as a predicted display deviation ⁇ De as shown in FIG.
  • Such predicted deformation temperature Te and predicted display deviation ⁇ De may be measured from experimental results using a plurality of sets of transmission gears 52, 53, 54, 55, 56, 57, 58, 59, or estimated by simulation. May be.
  • the temperature sensor 70 is housed inside the magnetic casing 46 together with the transmission gears 52, 53, 54, 55, 56, 57, 58 and 59. Thereby, the temperature sensor 70 is installed in the instrument panel 2 in the vehicle.
  • the temperature sensor 70 is mainly composed of a thermistor having a relatively large electric resistance change with respect to a temperature change.
  • the temperature sensor 70 detects an environmental temperature T common to the transmission gears 52, 53, 54, 55, 56, 57, 58 and 59 inside the magnetic casing 46.
  • the temperature sensor 70 outputs a temperature signal representing the detected environmental temperature T.
  • the adjustment switch 80 is installed in the vicinity of the driver's seat of the vehicle so that it can be operated by a passenger.
  • the adjustment switch 80 has operation members 82 and 83 such as a lever type or a push type.
  • the up operation member 82 is operated by an occupant who wants to change the virtual image display position of the display light image 3 upward. In response to this operation, the adjustment switch 80 outputs a command signal for giving an up adjustment command.
  • the down operation member 83 is operated by an occupant who wants to change the virtual image display position of the display light image 3 downward. In response to this operation, the adjustment switch 80 outputs a command signal for giving a down adjustment command.
  • the control unit 90 is installed outside or inside the housing 10.
  • the control unit 90 is formed by combining a display control circuit 92 and a switching circuit 93.
  • the display control circuit 92 is mainly composed of a microcomputer having a processor 92a and a memory 92b.
  • the display control circuit 92 is electrically connected to the projector 20, the temperature sensor 70, and the adjustment switch 80.
  • the switching circuit 93 includes a plurality of transistors as switching elements 94.
  • the collector of each switching element 94 is electrically connected to one of the coils 443 and 453.
  • the emitter and base of each switching element 94 are electrically connected to the vehicle ground terminal and the display control circuit 92, respectively.
  • Each switching element 94 changes the drive signal applied to the coils 443 and 453 of the A and B phases in accordance with the base signal input from the display control circuit 92.
  • the rotational position of the motor shaft 42 changes according to the electrical angle of the drive signal applied to the coils 443 and 453 of the A and B phases. Therefore, hereinafter, controlling the base signal to each switching element 94 will be described as controlling the rotational position of the motor shaft 42.
  • the display control circuit 92 controls display of an image by the projector 20. At the same time, the display control circuit 92 controls the rotational position of the motor shaft 42 in accordance with the temperature signal input from the temperature sensor 70 and the command signal input from the adjustment switch 80.
  • the display control circuit 92 changes the rotational position of the motor shaft 42 to the positive rotation side in accordance with the up adjustment command by the operation of the up operation member 82. Thereby, the virtual image display position of the display light image 3 changes upward according to the up adjustment command.
  • the display control circuit 92 changes the rotation position of the motor shaft 42 to the reverse rotation side in accordance with the down adjustment command by the operation of the down operation member 83. Thereby, the virtual image display position of the display light image 3 changes downward according to the down adjustment command.
  • the up adjustment command and the down adjustment command are collectively referred to as an adjustment command.
  • the display control circuit 92 controls the rotational position of the motor shaft 42 according to the environmental temperature T detected by the temperature sensor 70. Therefore, in the following, the rotational position control according to the environmental temperature T will be described in detail.
  • the display control circuit 92 executes a plurality of blocks 921 and 922 shown in FIG. 9 by executing the control program stored in the memory 92b by the processor 92a in order to realize the rotational position control according to the environmental temperature T. To build.
  • the correction execution block 921 corrects the rotational position of the motor shaft 42 by a predetermined correction amount ⁇ C (see FIG. 8B).
  • the rotational position correction by the correction amount ⁇ C is executed. .
  • the correction amount ⁇ C is changed to the predicted display deviation ⁇ De above the predicted deformation temperature Te by changing the virtual image display position of the display light image 3 downward as schematically indicated by the dot hatching arrow in FIG. Is set on the reverse rotation side of the motor shaft. Therefore, here, as the electrical angle change amount of the drive signal applied to the coils 443 and 453 of the respective phases A and B, a change amount that reversely rotates the motor shaft 42 in order to return the predicted display deviation ⁇ De to before the deviation, for example, 2
  • the correction amount ⁇ C is set to a predetermined value such as 360 degrees for the step.
  • the correction amount ⁇ C is preset and stored in the memory 92b to a value that changes the rotational position of the motor shaft 42 to the reverse rotation side so as to return the predicted display deviation ⁇ De measured or estimated as described above. Yes. Accordingly, the correction execution block 921 reads the correction amount ⁇ C stored in the memory 92b, thereby executing rotational position correction using the correction amount ⁇ C. As a result, the electrical angle of the drive signal applied to the coils 443 and 453 of the A and B phases changes by the correction amount ⁇ C. Therefore, the rotational position of the motor shaft 42 is corrected to the reverse rotation side for returning the predicted display deviation ⁇ De.
  • the creep deformation of the transmission gears 52, 53, 54, 55, 56, 57, 58, 59 can be assumed to be substantially non-occurring after the rotational position correction by the correction execution block 921.
  • the post-correction control block 922 follows the rotational position of the motor shaft 42 from the current position corrected by the correction amount ⁇ C according to the initial adjustment command. Control to position. Further, when an adjustment command for the second time or later is given after the rotational position correction, the post-correction control block 922 determines the rotational position of the motor shaft 42 from the current position controlled through the position corrected by the correction amount ⁇ C. Is controlled to a position according to the second and subsequent adjustment commands. With the above control, once the rotational position of the motor shaft 42 is corrected according to the increase of the environmental temperature T to the predicted deformation temperature Te or higher, the rotational position is controlled based on the corrected position.
  • the display control circuit 92 realizes the display control flow shown in FIG. 10 by the construction of the plural blocks 921 and 922, and the details will be described below.
  • the display control flow starts in response to an on operation of a power switch in the vehicle and ends in response to an off operation of the switch. Further, during the display control flow, the virtual image display of the display light image 3 is continued by the projection of the display light image 3 from the projector 20. Further, “S” in the display control flow means each step.
  • a temperature signal representing the environmental temperature T detected by the temperature sensor 70 is acquired.
  • S103 whether or not the environmental temperature T detected by the temperature sensor 70 is equal to or higher than the predicted deformation temperature Te is determined based on the temperature signal acquired in the immediately preceding S102. As a result, when a positive determination is made, the process proceeds to S104.
  • the process proceeds to S106. Moreover, also when negative determination is made in S103, it transfers to S106. Furthermore, also when an affirmation determination is made in S101, it transfers to S106.
  • S106 even when shifting from any of S101, 103, and S105, in S106, whether or not an adjustment command is given by the occupant is determined based on the presence or absence of a command signal from the adjustment switch 80. As a result, if a negative determination is made, the process returns to S101. On the other hand, if a positive determination is made, the process proceeds to S107.
  • the transmission gears 52, 53, 54, 55, 56, 57, 58 and 59 whose creep deformation is predicted in the reduction gear mechanism 50 are set as “specific gears”, and the ambient temperature T of these gears is triggered. Is applied to the rotational position of the stepping motor 40. Specifically, when the environmental temperature T rises above the predicted deformation temperature Te that is predicted to undergo creep deformation, the rotational position of the stepping motor 40 is shifted to the side that returns the predicted display deviation ⁇ De related to the virtual image display position of the display light image 3. It is corrected.
  • the predicted display deviation ⁇ De is a deviation that is predicted to occur at the virtual image display position of the display light image 3 due to creep deformation at the predicted deformation temperature Te.
  • the rotational position of the stepping motor 40 is changed to return the predicted display deviation ⁇ De by executing the rotational position correction by the correction amount ⁇ C. . Therefore, after such a change, the rotational position of the stepping motor 40 is controlled in accordance with the adjustment command with the corrected position as a reference.
  • the virtual image display position of the display light image 3 is transmitted to the transmission gears 52, 53, 54, 55, 56, 57, 58, It is possible to control while maintaining a state in which the shift due to the creep deformation of 59 is reduced.
  • the environmental temperature T of the transmission gears 52, 53, 54, 55, 56, 57, 58, 59 is likely to be higher than the predicted deformation temperature Te due to traveling of the vehicle on which the HUD device 1 is mounted. Therefore, in the HUD device 1, when the environmental temperature T rises above the predicted deformation temperature Te for the first time after being mounted on the vehicle, rotational position correction is executed. According to this, the rotational position correction can be executed in a timely manner by reliably grasping the situation in which the creep deformation of the transmission gears 52, 53, 54, 55, 56, 57, 58, 59 is predicted. Therefore, it is possible to ensure reliability with respect to the effect of suppressing the shift of the virtual image display position of the display light image 3.
  • the temperature sensor 70 is housed together with the transmission gears 52, 53, 54, 55, 56, 57, 58, 59 inside the magnetic casing 46 in the reduction gear mechanism 50.
  • Such a temperature sensor 70 can detect the environmental temperature T of the transmission gears 52, 53, 54, 55, 56, 57, 58, 59 with high accuracy as close as possible to these gears. According to this, it is possible to accurately grasp that the environmental temperature T has risen above the predicted deformation temperature Te, and to perform rotational position correction in a timely manner. Therefore, it is possible to suppress a situation in which the virtual image display position of the display light image 3 is shifted due to the rotation position correction, although the predicted display deviation ⁇ De requiring the rotation position correction has not occurred. .
  • the transmission gears 52, 53, 54, 55, 56, 57, 58, 59 including the tooth profile portions 52 a, 53 a, 54 a, 55 a, 56 a, 57 a, 58 a, 59 a formed entirely of resin are predicted Creep deformation at the deformation temperature Te or higher is likely to occur.
  • the transmission gears 52, 53, 54, 55, 56, 57, 58, 59 are creep-deformed at the environmental temperature T equal to or higher than the predicted deformation temperature Te. According to this, it is possible to suppress the shift of the virtual image display position of the display light image 3.
  • the second embodiment is a modification of the first embodiment. As shown in FIG. 11, in the second embodiment, S2100 is added to the display control flow.
  • the process proceeds to S2100 when a negative determination is made in S101.
  • S2100 it is determined whether the set time has elapsed since the vehicle stopped.
  • the set time is set to a time necessary for saturation of the environmental temperature T detected by the temperature sensor 70 in the vehicle due to the stop of the vehicle such as an air conditioner. If a negative determination is made in S2100, the process proceeds to S106. On the other hand, if a positive determination is made in S2100, the process proceeds to S102.
  • the rotational position correction is executed.
  • the creep deformation of the transmission gears 52, 53, 54, 55, 56, 57, 58, 59 is predicted based on the knowledge that there is a high possibility that the environmental temperature T will rise after the vehicle stops running.
  • the rotation position correction can be executed in a timely manner. Therefore, it is possible to ensure reliability with respect to the effect of suppressing the shift of the virtual image display position of the display light image 3.
  • the third embodiment is a modification of the second embodiment. As shown in FIG. 12, in the third embodiment, S3104a and S3104b are executed in place of S104 in the display control flow.
  • the process proceeds to S3104a when an affirmative determination is made in S103.
  • the temperature sensor 70 determines which one of the temperature ranges ⁇ T1, ⁇ T2, and ⁇ T3 the environmental temperature T detected by the temperature sensor 70 is equal to or higher than the predicted deformation temperature Te based on the most recent temperature signal acquired in S102.
  • three temperature ranges ⁇ T1, ⁇ T2, and ⁇ T3 are set. These temperature ranges ⁇ T1, ⁇ T2, and ⁇ T3 have a significant difference in the predicted display deviation ⁇ De perceived by the occupant based on the temperature correlation It between the environmental temperature T equal to or higher than the predicted deformation temperature Te and the predicted display deviation ⁇ De as shown in FIG. It is set on the boundary of the predicted temperature.
  • the temperature ranges ⁇ T1, ⁇ T2, and ⁇ T3 are set based on the temperature correlation It in which the predicted display deviation ⁇ De increases as the environmental temperature T increases.
  • the process proceeds to S3104b after the temperature ranges ⁇ T1, ⁇ T2, and ⁇ T3 are determined in S3104a.
  • S3104b as a function of the correction execution block 921, the rotational position of the motor shaft 42 is corrected by one of the multiple values ⁇ C1, ⁇ C2, and ⁇ C3 that are variable correction amounts ⁇ C stored in the memory 92b.
  • three correction amounts ⁇ C1, ⁇ C2, and ⁇ C3 are set corresponding to the three temperature ranges ⁇ T1, ⁇ T2, and ⁇ T3.
  • correction amounts ⁇ C1, ⁇ C2, and ⁇ C3 are different for the corresponding temperature ranges ⁇ T1, ⁇ T2, and ⁇ T3, respectively, based on the temperature correlation It between the environmental temperature T that is equal to or higher than the predicted deformation temperature Te and the predicted display deviation ⁇ De as shown in FIG. Set to value.
  • correction amounts ⁇ C1, ⁇ C2, and ⁇ C3 that increase in value are set in descending order of the corresponding temperature ranges ⁇ T1, ⁇ T2, and ⁇ T3.
  • values corresponding to any one of the temperature ranges ⁇ T1, ⁇ T2, and ⁇ T3 determined in the immediately preceding S3104a are selected from the correction amounts ⁇ C1, ⁇ C2, and ⁇ C3, and the rotational position correction is performed using the selected values.
  • the process proceeds to S105.
  • the rotational position correction is executed by the variable correction amounts ⁇ C1, ⁇ C2, and ⁇ C3 based on the temperature correlation It between the environmental temperature T equal to or higher than the predicted deformation temperature Te and the predicted display deviation ⁇ De.
  • appropriate correction amounts ⁇ C1, ⁇ C2, and ⁇ C3 that take into account even the predicted display deviation ⁇ De varies according to the environmental temperature T can be selected and used for rotational position correction. Therefore, it is possible to ensure reliability with respect to the effect of suppressing the shift of the virtual image display position of the display light image 3.
  • the rotational position correction is executed with a value corresponding to the range to be performed.
  • appropriate correction amounts ⁇ C1, ⁇ C2, and ⁇ C3 are selected for each of the temperature ranges ⁇ T1, ⁇ T2, and ⁇ T3 where a significant difference is expected to occur in the predicted display deviation ⁇ De that the occupant feels, and rotational position correction is performed.
  • the environmental temperature T detected by the temperature sensor 70 is equal to or higher than the predicted deformation temperature Te for the first time after manufacture or factory shipment before the HUD device 1 is mounted on the vehicle.
  • the rotational position correction may be executed by the correction execution block 921.
  • at least a part of the plurality of blocks 921 and 922 may be constructed by hardware using one or a plurality of ICs.
  • a zero position serving as a reference in controlling the rotational position of the motor shaft 42 may be set.
  • the current position and the zero position are corrected with the fixed correction amount ⁇ C or the variable correction amounts ⁇ C1, ⁇ C2, and ⁇ C3 as the rotational position of the motor shaft 42, and then adjusted based on the corrected zero position.
  • Control according to the command may be executed.
  • the environmental temperature T is equal to or higher than the predicted deformation temperature Te for the gears except at least one of the transmission gears 52, 53, 54, 55, 56, 57, 58, 59. Even if it becomes, you may form with the material which does not produce creep deformation easily.
  • at least one transmission gear to be formed of resin as in the above embodiment is defined as a “specific gear”.
  • the tooth profile 52a at least one of the transmission gears 52, 53, 54, 55, 56, 57, 58, 59 is defined as “specific gear”.
  • 53a, 54a, 55a, 56a, 57a, 58a, 59a alone or a part including the tooth profile portions 52a, 53a, 54a, 55a, 56a, 57a, 58a, 59a may be formed of resin.
  • the occupant feels uncomfortable with at least one of the transmission gears 52, 53, 54, 55, 56, 57, 58, 59 defined as “specific gear”.
  • the transmission gears 52, 53, 54, 55, 56, 57, 58, 59 defined as “specific gear”.
  • it may be formed of a material other than resin.
  • any of the shafts of the transmission gears 53, 54, 55, 56, 57, and 58, or the motor shaft 42 may be urged by the elastic member 60.
  • thermometers such as a thermocouple type or an infrared type may be adopted as the temperature sensor 70.
  • the temperature sensor 70 may be installed outside the magnetic casing 46 in the housing 10.
  • the temperature sensor 70 may be installed outside the housing 10.
  • a temperature mounted on the vehicle separately from the HUD device 1 such as a room temperature sensor of an air conditioner.
  • the ambient temperature T may be detected by a sensor.
  • a laser scanner that projects laser light to be the display light image 3 by a micro electro mechanical system, or visible light or laser light to be the display light image 3 is projected by a digital mirror device.
  • a video display system or the like may be employed as the projector 20.
  • the display light image 3 may be projected toward a combiner or the like installed exclusively in the HUD device 1 in the vehicle.
  • the display control flow is changed so as to execute the correction of the rotational position when the environmental temperature T in the vehicle rises above the predicted deformation temperature Te while the vehicle is running. May be.
  • it is determined whether or not the vehicle is in a traveling state in S2100, and if an affirmative determination is made, the process proceeds to S102.
  • the temperature range and the correction amount may be set other than the above-described three sets, that is, two sets or four or more sets.
  • the process may be shifted to S102.
  • the correction amount corresponding to the value T0 as the environmental temperature T is 1: 1 based on the temperature correlation It where the predicted display deviation ⁇ De increases as the environmental temperature T increases.
  • a value ⁇ C0 that is ⁇ C may be used for rotational position correction.
  • the rotational position correction is executed with the correction amount ⁇ C0 corresponding to the environmental temperature T0 based on the acquisition signal at S102 in S3104b without executing S3104a.

Abstract

This head-up display device (1) comprises: a projector (20); an optical unit (30) having a drivable reflection mirror (32) and adjusting a virtual image display position by driving the reflection mirror; a stepping motor (40) for driving the reflection mirror; a gear decelerating mechanism (50) having a plurality of rotatable transmission gears (52 - 59); an elastic member (60) for generating a restorative force in a direction that causes the transmission gears to engage with each other; and a control unit (90) for controlling the rotational position of a motor in accordance with an adjustment command from a vehicle occupant. The control unit corrects the rotational position toward a direction which corrects an estimated display deviation when ambient temperature rises to a level greater than or equal to an estimated deformation temperature, where at least one transmission gear presumably subjected to creep deformation is defined as a designated gear, a temperature at which creep deformation is estimated to start is defined as an estimated deformation temperature (Te) and is taken as the ambient temperature (T) of the designated gear, and a deviation estimated to occur at a virtual image display position due to the creep deformation at the estimated deformation temperature is defined as the estimated display deviation (δDe).

Description

ヘッドアップディスプレイ装置Head-up display device 関連出願の相互参照Cross-reference of related applications
 本出願は、2015年9月25日に出願された日本特許出願番号2015-188752号と、2016年2月24日に出願された日本特許出願番号2016-33523号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2015-188752 filed on September 25, 2015 and Japanese Patent Application No. 2016-33523 filed on February 24, 2016. The description is incorporated.
 本開示は、車両に搭載されるヘッドアップディスプレイ(Head Up Display:以下、HUDと表記。)装置に関する。 The present disclosure relates to a head-up display (hereinafter referred to as HUD) device mounted on a vehicle.
 従来、車両に関連する車両関連情報を表した表示光像を、投射器より投射して反射鏡により反射することで、表示光像の虚像表示を実現するHUD装置は、広く知られている。このように反射鏡を利用すると、車両におけるHUD装置の占有スペースが可及的に小さくなる。 2. Description of the Related Art Conventionally, HUD devices that realize a virtual image display of a display light image by projecting a display light image representing vehicle-related information related to the vehicle from a projector and reflecting it by a reflecting mirror are widely known. When the reflecting mirror is used in this way, the occupied space of the HUD device in the vehicle becomes as small as possible.
 こうしたHUD装置としては、ステッピングモータの回転を減速ギア機構により減速して反射鏡に伝達することで、当該反射鏡を駆動して表示光像の虚像表示位置を調整するものが、特許文献1に開示されている。この特許文献1の開示装置では、車両の乗員からの調整指示に従ってステッピングモータの回転位置が制御されることで、表示光像の虚像表示位置を乗員の期待位置へと適正に調整可能となっている。さらに特許文献1の開示装置では、減速ギア機構において伝達ギア同士を噛合させる向きの復原力を、弾性部材が発生することで、それら伝達ギア間のバックラッシが消失するようになっている。これにより、表示光像の虚像表示位置には、伝達ギア間のバックラッシに起因するずれが生じ難くなる。 As such an HUD device, Patent Document 1 discloses an apparatus that adjusts the virtual image display position of a display light image by driving the reflecting mirror by decelerating the rotation of the stepping motor by a reduction gear mechanism and transmitting the reduced speed to the reflecting mirror. It is disclosed. In the disclosed device of Patent Document 1, the rotation position of the stepping motor is controlled in accordance with an adjustment instruction from the vehicle occupant, so that the virtual image display position of the display light image can be appropriately adjusted to the occupant's expected position. Yes. Further, in the disclosed device of Patent Document 1, the elastic member generates a restoring force in a direction in which the transmission gears mesh with each other in the reduction gear mechanism, so that the backlash between the transmission gears disappears. As a result, a shift due to backlash between the transmission gears is less likely to occur at the virtual image display position of the display light image.
特開2011-131651号公報JP 2011-131651 A
 しかし、特許文献1の開示装置では、伝達ギアの環境温度が車両において高くなる。その結果、噛合による伝達ギア同士の連繋箇所では、バックラッシを広げるように伝達ギアがクリープ変形する。このとき、弾性部材の復原力を受ける伝達ギアは、バックラッシを埋めるように回転する。すると、表示光像の虚像表示位置がずれてしまうため、乗員に違和感を与えるという懸念があった。 However, in the device disclosed in Patent Document 1, the environmental temperature of the transmission gear is high in the vehicle. As a result, the transmission gear creep-deforms so as to widen the backlash at the connection position between the transmission gears by meshing. At this time, the transmission gear that receives the restoring force of the elastic member rotates so as to fill the backlash. Then, since the virtual image display position of the display light image is shifted, there is a concern that the passenger feels uncomfortable.
 本開示は、以上説明した問題に鑑みてなされたものであって、その目的は、車両において表示光像の虚像表示位置がずれるのを抑制するHUD装置を、提供することにある。 The present disclosure has been made in view of the problems described above, and an object thereof is to provide a HUD device that suppresses a shift of a virtual image display position of a display light image in a vehicle.
 上述の目的を達成するために、本開示の第一態様は、車両に搭載されるヘッドアップディスプレイ装置であって、車両に関連する車両関連情報を表した表示光像を、投射する投射器と、投射器から投射された表示光像を反射する反射鏡を、駆動可能に有し、反射鏡により反射された表示光像を虚像表示させる虚像表示位置を、反射鏡の駆動により調整する光学ユニットと、反射鏡を駆動するために回転するステッピングモータと、ステッピングモータの回転を減速して反射鏡に伝達する複数の伝達ギアを、回転可能に有する減速ギア機構と、伝達ギア同士を噛合させる向きの復原力を、発生する弾性部材と、車両の乗員からの調整指令に従ってステッピングモータの回転位置を制御する制御ユニットであって、クリープ変形が予測される少なくとも一つの伝達ギアを特定ギアと定義し、特定ギアの環境温度としてクリープ変形の予測される温度を、予測変形温度と定義し、予測変形温度でのクリープ変形により虚像表示位置に生じると予測されるずれを、予測表示ずれと定義して、環境温度が予測変形温度以上に上昇すると、予測表示ずれを戻す側へ回転位置を補正する制御ユニットとを、備える。 In order to achieve the above object, a first aspect of the present disclosure is a head-up display device mounted on a vehicle, and a projector that projects a display light image representing vehicle-related information related to the vehicle; An optical unit that has a reflecting mirror that reflects the display light image projected from the projector so that it can be driven, and that adjusts the virtual image display position for displaying the display light image reflected by the reflecting mirror as a virtual image by driving the reflecting mirror. And a stepping motor that rotates to drive the reflecting mirror, and a reduction gear mechanism that has a plurality of transmission gears that decelerate the rotation of the stepping motor and transmit it to the reflecting mirror, and a direction in which the transmission gears mesh with each other A control unit that controls the rotational position of the stepping motor in accordance with an adjustment command from the vehicle occupant and an elastic member that generates At least one transmission gear is defined as a specific gear, the predicted temperature of creep deformation is defined as the predicted gear temperature as the environmental temperature of the specific gear, and predicted to occur at the virtual image display position due to creep deformation at the predicted deformation temperature. And a control unit for correcting the rotational position to return the predicted display deviation when the environmental temperature rises above the predicted deformation temperature.
 このように第一態様によると、減速ギア機構においてクリープ変形の予測される少なくとも一つの伝達ギアを特定ギアとして、当該特定ギアの環境温度をトリガとした補正がステッピングモータの回転位置に与えられる。具体的には、クリープ変形の予測される予測変形温度以上に環境温度が上昇すると、ステッピングモータの回転位置は、表示光像の虚像表示位置に関する予測表示ずれを戻す側へと補正される。ここで予測表示ずれは、予測変形温度以上でのクリープ変形により表示光像の虚像表示位置に生じると予測されるずれである。故に、予測変形温度以上の高い環境温度にて特定ギアがクリープ変形したとしても、予測表示ずれを戻す側への回転位置補正によれば、車両において表示光像の虚像表示位置がずれるのを抑制可能となる。 Thus, according to the first aspect, at least one transmission gear whose creep deformation is predicted in the reduction gear mechanism is used as a specific gear, and correction using the ambient temperature of the specific gear as a trigger is given to the rotational position of the stepping motor. Specifically, when the environmental temperature rises above the predicted deformation temperature at which creep deformation is predicted, the rotational position of the stepping motor is corrected to return the predicted display deviation related to the virtual image display position of the display light image. Here, the predicted display deviation is a deviation that is predicted to occur at the virtual image display position of the display light image due to creep deformation at or above the predicted deformation temperature. Therefore, even if the specific gear creep-deforms at an environmental temperature higher than the predicted deformation temperature, the virtual position of the display light image is prevented from shifting in the vehicle by correcting the rotational position to return the predicted display deviation. It becomes possible.
 また、本開示の第二態様によると、制御ユニットは、環境温度が予測変形温度以上に上昇すると、予測表示ずれを戻す側へ回転位置を変化させる補正量により、回転位置の補正を実行する補正実行ブロックと、補正実行ブロックが補正した位置を基準に、回転位置を調整指令に従って制御する補正後制御ブロックとを、有する。 Further, according to the second aspect of the present disclosure, when the environmental temperature rises above the predicted deformation temperature, the control unit corrects the rotational position with a correction amount that changes the rotational position to return the predicted display deviation. An execution block and a post-correction control block that controls the rotational position in accordance with the adjustment command based on the position corrected by the correction execution block.
 このように第二態様では、環境温度が予測変形温度以上に上昇した場合には、補正量による回転位置補正が実行されることで、ステッピングモータの回転位置が予測表示ずれを戻す側へと変化する。そこで、かかる変化後においてステッピングモータの回転位置は、補正された位置を基準として、調整指令に従い制御されることになる。これにより、予測変形温度以上の環境温度にて回転位置補正が一旦実行されれば、表示光像の虚像表示位置は、特定ギアのクリープ変形に起因したずれを低減された状態のまま、制御可能となる。 As described above, in the second aspect, when the environmental temperature rises above the predicted deformation temperature, the rotational position of the stepping motor is changed to the side that returns the predicted display deviation by executing the rotational position correction by the correction amount. To do. Therefore, after the change, the rotational position of the stepping motor is controlled according to the adjustment command with the corrected position as a reference. As a result, once the rotational position correction is executed at an environmental temperature that is equal to or higher than the predicted deformation temperature, the virtual image display position of the display light image can be controlled while the deviation due to creep deformation of the specific gear is reduced. It becomes.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
第一実施形態によるHUD装置を示す概略構成図である。 図1のHUD装置による表示光像の虚像表示状態を示す模式図である。 図1のステッピングモータと減速ギア機構とを示す断面図である。 図1のステッピングモータと制御ユニットとの電気接続状態を示す電気回路図である。 図1のステッピングモータへ印加される駆動信号を説明するための特性図である。 図6(a)は図1の伝達ギアに生じるクリープ変形を説明するための模式図であり、図6(b)は図1の伝達ギアに生じるクリープ変形を説明するための模式図である。 図1のステッピングモータと減速ギア機構との連繋関係を示す模式図である。 図8(a)は図2に示す虚像表示位置に生じるずれ、図8(b)はずれを戻す補正について説明するための模式図である。 図1の表示制御回路が構築する複数ブロックを示すブロック図である。 図1の表示制御回路による表示制御フローを示すフローチャートである。 第二実施形態の表示制御回路による表示制御フローを示すフローチャートである。 第三実施形態の表示制御回路による表示制御フローを示すフローチャートである。 第三実施形態の表示制御回路による補正について説明するための特性図である。 変形例の表示制御回路による補正について説明するための特性図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
It is a schematic structure figure showing the HUD device by a first embodiment. It is a schematic diagram which shows the virtual image display state of the display light image by the HUD apparatus of FIG. It is sectional drawing which shows the stepping motor and reduction gear mechanism of FIG. It is an electric circuit diagram which shows the electrical connection state of the stepping motor of FIG. 1, and a control unit. It is a characteristic view for demonstrating the drive signal applied to the stepping motor of FIG. FIG. 6A is a schematic diagram for explaining creep deformation occurring in the transmission gear of FIG. 1, and FIG. 6B is a schematic diagram for explaining creep deformation occurring in the transmission gear of FIG. It is a schematic diagram which shows the connection relationship of the stepping motor of FIG. 1, and a reduction gear mechanism. FIG. 8A is a schematic diagram for explaining a correction occurring at the virtual image display position shown in FIG. 2, and FIG. FIG. 2 is a block diagram showing a plurality of blocks constructed by the display control circuit of FIG. 1. It is a flowchart which shows the display control flow by the display control circuit of FIG. It is a flowchart which shows the display control flow by the display control circuit of 2nd embodiment. It is a flowchart which shows the display control flow by the display control circuit of 3rd embodiment. It is a characteristic view for demonstrating the correction | amendment by the display control circuit of 3rd embodiment. It is a characteristic view for demonstrating the correction | amendment by the display control circuit of a modification.
 以下、本開示の複数の実施形態を図面に基づいて説明する。尚、各実施形態において対応する構成要素には同一の符号を付すことにより、重複する説明を省略する場合がある。各実施形態において構成の一部分のみを説明している場合、当該構成の他の部分については、先行して説明した他の実施形態の構成を適用することができる。また、各実施形態の説明において明示している構成の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても複数の実施形態の構成同士を部分的に組み合せることができる。
(第一実施形態)
 図1に示すように、第一実施形態によるHUD装置1は、車両に搭載されて、同車両内に表示光像3を虚像表示する。HUD装置1は、ハウジング10、投射器20、光学ユニット30、ステッピングモータ40、減速ギア機構50、弾性部材60、温度センサ70、調整スイッチ80及び制御ユニット90を備えている。
Hereinafter, a plurality of embodiments of the present disclosure will be described based on the drawings. In addition, the overlapping description may be abbreviate | omitted by attaching | subjecting the same code | symbol to the corresponding component in each embodiment. When only a part of the configuration is described in each embodiment, the configuration of the other embodiment described above can be applied to the other part of the configuration. In addition, not only combinations of configurations explicitly described in the description of each embodiment, but also the configurations of a plurality of embodiments can be partially combined even if they are not explicitly specified unless there is a problem with the combination. .
(First embodiment)
As shown in FIG. 1, the HUD device 1 according to the first embodiment is mounted on a vehicle and displays a display light image 3 in a virtual image in the vehicle. The HUD device 1 includes a housing 10, a projector 20, an optical unit 30, a stepping motor 40, a reduction gear mechanism 50, an elastic member 60, a temperature sensor 70, an adjustment switch 80, and a control unit 90.
 ハウジング10は、中空形状に形成され、車両内のインストルメントパネル2に設置される。ハウジング10は、車両の運転席前方において、装置1の構成要素20,30,40,50,60,70等を収容している。ハウジング10は、車両の運転席前方における投影部材としてのウインドシールド4と上下に対向する箇所に、透光性の出射窓14を有している。 The housing 10 is formed in a hollow shape and is installed on the instrument panel 2 in the vehicle. The housing 10 accommodates the components 20, 30, 40, 50, 60, 70, etc. of the device 1 in front of the driver's seat of the vehicle. The housing 10 has a translucent exit window 14 at a position facing the windshield 4 as a projection member in front of the driver's seat of the vehicle in the vertical direction.
 投射器20は、透過照明式の液晶パネル又は有機ELパネル等を主体に構成され、画面22を有している。画面22は、投射器20に内蔵されるバックライトにより、透過照明される。画面22に実像表示される画像は、かかる透過照明を受けて発光することで、表示光像3として投射される。投射器20から投射される表示光像3は、車両に関連する車両関連情報を表している。本実施形態の表示光像3は、図2に示すように、車両進行方向等のナビゲーション情報を表している。尚、表示光像3については、ナビゲーション情報以外にも、車速、燃料残量、冷却水温度等の車両状態情報や、交通状況等の車外状況情報を表すものであってもよい。 The projector 20 is composed mainly of a transmission illumination type liquid crystal panel or an organic EL panel, and has a screen 22. The screen 22 is illuminated by a backlight built in the projector 20. The image displayed on the screen 22 as a real image is projected as the display light image 3 by receiving the transmitted illumination and emitting light. The display light image 3 projected from the projector 20 represents vehicle related information related to the vehicle. The display light image 3 of the present embodiment represents navigation information such as the vehicle traveling direction, as shown in FIG. In addition to the navigation information, the display light image 3 may represent vehicle state information such as a vehicle speed, a remaining fuel amount, and a coolant temperature, and outside vehicle state information such as traffic conditions.
 図1に示すように光学ユニット30は、反射鏡32を含む複数の光学部材から構成されている。但し、図1では、反射鏡32以外の図示を省略している。反射鏡32は、滑らかな曲面状に凹んだ反射面34を有する、所謂凹面鏡である。反射鏡32は、投射器20から反射面34へ直接的又は間接的に入射される表示光像3を、拡大して出射窓14側へと反射する。こうして反射された表示光像3は、出射窓14を通過してウインドシールド4に投影されることで、図2に示すように、当該ウインドシールド4の前方にて結像される。その結果、表示光像3の表す車両関連情報は、虚像として、車両内の運転席側へと向かって表示される。 As shown in FIG. 1, the optical unit 30 includes a plurality of optical members including a reflecting mirror 32. However, in FIG. 1, illustrations other than the reflecting mirror 32 are omitted. The reflecting mirror 32 is a so-called concave mirror having a reflecting surface 34 that is recessed into a smooth curved surface. The reflecting mirror 32 magnifies and reflects the display light image 3 incident directly or indirectly from the projector 20 to the reflecting surface 34 toward the exit window 14. The reflected display light image 3 passes through the exit window 14 and is projected onto the windshield 4, thereby forming an image in front of the windshield 4 as shown in FIG. 2. As a result, the vehicle related information represented by the display light image 3 is displayed as a virtual image toward the driver seat side in the vehicle.
 図1に示すように反射鏡32は、回転軸38を有している。回転軸38は、ハウジング10に固定の基台16より、回転可能に支持されている。この回転軸38が回転駆動されることで、図2に示すように、表示光像3の虚像表示位置がウインドシールド4に対して上下に変化する。ここで本実施形態では、光学ユニット30及びウインドシールド4の光学特性に起因して、図2に実線で示す下限表示位置Dlと、図2に破線で示す上限表示位置Duとの間にて、表示光像3の虚像表示位置を調整可能となっている。 As shown in FIG. 1, the reflecting mirror 32 has a rotating shaft 38. The rotation shaft 38 is rotatably supported by the base 16 fixed to the housing 10. By rotating the rotary shaft 38, the virtual image display position of the display light image 3 changes up and down with respect to the windshield 4, as shown in FIG. Here, in the present embodiment, due to the optical characteristics of the optical unit 30 and the windshield 4, between the lower limit display position D1 indicated by a solid line in FIG. 2 and the upper limit display position Du indicated by a broken line in FIG. The virtual image display position of the display light image 3 can be adjusted.
 図3に示すようにステッピングモータ40は、クローポール構造の永久磁石型である。ステッピングモータ40は、磁性ケーシング46、回転子41及び固定子44,45を有している。磁性ケーシング46は、磁性材により中空形状に形成されている。回転子41は、モータ軸42の外周部にロータ磁石43を組み付けてなる。モータ軸42は、磁性ケーシング46により回転可能に支持されている。ロータ磁石43は、N,Sの各磁極を回転方向に交互に複数ずつ形成している。二相の固定子44,45は、回転子41の外周側にて磁性ケーシング46により保持されている。図3,4に示すようにA相の固定子44は、磁性ヨーク441,442及びコイル443を有している。一方でB相の固定子45は、磁性ヨーク451,452及びコイル453を有している。 As shown in FIG. 3, the stepping motor 40 is a permanent magnet type having a claw pole structure. The stepping motor 40 has a magnetic casing 46, a rotor 41, and stators 44 and 45. The magnetic casing 46 is formed in a hollow shape by a magnetic material. The rotor 41 is formed by assembling a rotor magnet 43 around the outer periphery of the motor shaft 42. The motor shaft 42 is rotatably supported by a magnetic casing 46. The rotor magnet 43 is formed with a plurality of N and S magnetic poles alternately in the rotation direction. The two- phase stators 44 and 45 are held by a magnetic casing 46 on the outer peripheral side of the rotor 41. As shown in FIGS. 3 and 4, the A-phase stator 44 includes magnetic yokes 441 and 442 and a coil 443. On the other hand, the B-phase stator 45 includes magnetic yokes 451 and 452 and a coil 453.
 こうした構成によりステッピングモータ40では、A,B各相のコイル443,453が駆動信号による通電を受けて励磁することで、ロータ磁石43がモータ軸42と共に回転することになる。ここでA相のコイル443には、図5に太実線グラフで示すように、電気角に応じて振幅を交番させる余弦関数に従って駆動信号が印加される。一方でB相のコイル453には、図5に細実線グラフで示すように、電気角に応じて振幅を交番させる正弦関数に従って駆動信号が印加される。したがって、モータ軸42の回転位置は、A,B各相のコイル443,453へ印加される駆動信号の電気角に応じた位置となる。 With such a configuration, in the stepping motor 40, the coils 443 and 453 of the respective phases A and B are energized and energized by the drive signal, so that the rotor magnet 43 rotates together with the motor shaft 42. Here, a drive signal is applied to the A-phase coil 443 in accordance with a cosine function that alternates the amplitude according to the electrical angle, as shown by a thick solid line graph in FIG. On the other hand, a drive signal is applied to the B-phase coil 453 according to a sine function that alternates the amplitude according to the electrical angle, as shown by a thin solid line graph in FIG. Therefore, the rotational position of the motor shaft 42 is a position corresponding to the electrical angle of the drive signal applied to the coils 443 and 453 of the A and B phases.
 図3に示すように減速ギア機構50は、磁性ケーシング46をステッピングモータ40と共有している。それと共に減速ギア機構50は、複数の伝達ギア52,53,54,55,56,57,58,59を、磁性ケーシング46の内部に有している。これら伝達ギア52,53,54,55,56,57,58,59では、それぞれ歯形部52a,53a,54a,55a,56a,57a,58a,59aを含む全体が樹脂成形されている。このような伝達ギア52,53,54,55,56,57,58,59には、図6(a)において白抜きの矢印で模式的に示すように、樹脂成形時の残留応力等に起因したクリープ変形が生じ易い。そこで本実施形態では、伝達ギア52,53,54,55,56,57,58,59のいずれもが、クリープ変形の予測される「特定ギア」として定義される。 As shown in FIG. 3, the reduction gear mechanism 50 shares the magnetic casing 46 with the stepping motor 40. At the same time, the reduction gear mechanism 50 has a plurality of transmission gears 52, 53, 54, 55, 56, 57, 58, 59 inside the magnetic casing 46. In these transmission gears 52, 53, 54, 55, 56, 57, 58 and 59, the whole including the tooth profile portions 52a, 53a, 54a, 55a, 56a, 57a, 58a and 59a is resin-molded. Such transmission gears 52, 53, 54, 55, 56, 57, 58, 59 are caused by residual stress during resin molding, as schematically shown by white arrows in FIG. 6 (a). Creep deformation is likely to occur. Therefore, in the present embodiment, any of the transmission gears 52, 53, 54, 55, 56, 57, 58, and 59 is defined as a “specific gear” in which creep deformation is predicted.
 図3,7に示すように初段伝達ギア52は、モータ軸42に形成されている。第一アイドラ伝達ギア53及び第一ピニオン伝達ギア54は、一体に形成されて、磁性ケーシング46により回転可能に支持されている。第一アイドラ伝達ギア53の歯形部53aは、初段伝達ギア52の歯形部52aと噛合により連繋している。第二アイドラ伝達ギア55及び第二ピニオン伝達ギア56は、一体に形成されて、磁性ケーシング46により回転可能に支持されている。第二アイドラ伝達ギア55の歯形部55aは、第一ピニオン伝達ギア54の歯形部54aと噛合により連繋している。第三アイドラ伝達ギア57及び第三ピニオン伝達ギア58は、一体に形成されて、磁性ケーシング46により回転可能に支持されている。第三アイドラ伝達ギア57の歯形部57aは、第二ピニオン伝達ギア56の歯形部58aと噛合により連繋している。最終段伝達ギア59は、回転軸38に形成されている。最終段伝達ギア59の歯形部59aは、第三ピニオン伝達ギア58の歯形部58aと噛合により連繋している。 3 and 7, the first-stage transmission gear 52 is formed on the motor shaft. The first idler transmission gear 53 and the first pinion transmission gear 54 are integrally formed and are rotatably supported by the magnetic casing 46. The tooth profile 53a of the first idler transmission gear 53 is connected to the tooth profile 52a of the first stage transmission gear 52 by meshing. The second idler transmission gear 55 and the second pinion transmission gear 56 are integrally formed and are rotatably supported by the magnetic casing 46. The tooth profile 55a of the second idler transmission gear 55 is connected to the tooth profile 54a of the first pinion transmission gear 54 by meshing. The third idler transmission gear 57 and the third pinion transmission gear 58 are integrally formed and are rotatably supported by the magnetic casing 46. The tooth profile portion 57a of the third idler transmission gear 57 is connected to the tooth profile portion 58a of the second pinion transmission gear 56 by meshing. The final stage transmission gear 59 is formed on the rotary shaft 38. The tooth profile 59a of the final stage transmission gear 59 is connected to the tooth profile 58a of the third pinion transmission gear 58 by meshing.
 こうした構成により減速ギア機構50では、モータ軸42の回転が減速されて回転軸38に伝達される。その結果、モータ軸42が正回転するときは、図2に示す表示光像3の虚像表示位置が上方の上限表示位置Duへと向かって変化するように、回転軸38が駆動される。一方で、モータ軸42が逆回転するときは、図2に示す表示光像3の虚像表示位置が下方の下限表示位置Dlへと向かって変化するように、回転軸38が駆動される。 With this configuration, in the reduction gear mechanism 50, the rotation of the motor shaft 42 is decelerated and transmitted to the rotation shaft 38. As a result, when the motor shaft 42 rotates forward, the rotation shaft 38 is driven so that the virtual image display position of the display light image 3 shown in FIG. 2 changes toward the upper limit display position Du. On the other hand, when the motor shaft 42 rotates in the reverse direction, the rotating shaft 38 is driven so that the virtual image display position of the display light image 3 shown in FIG. 2 changes toward the lower lower limit display position Dl.
 図1に示すように弾性部材60は、金属により形成された、所謂引張りコイルばねである。弾性部材60の一端は、反射鏡32により係止されている。弾性部材60の他端は、基台16により係止されている。こうした係止形態により弾性部材60は、回転軸38を回転方向の片側へと付勢するように、復原力を発生する。この復原力は、伝達ギア52,53,54,55,56,57,58,59の各連繋箇所をなす歯形部52a,53a,54a,55a,56a,57a,58a,59a同士を噛合させて、バックラッシを消失させる向きに、発生する力となる。 As shown in FIG. 1, the elastic member 60 is a so-called tension coil spring made of metal. One end of the elastic member 60 is locked by the reflecting mirror 32. The other end of the elastic member 60 is locked by the base 16. With such a locking form, the elastic member 60 generates a restoring force so as to urge the rotating shaft 38 to one side in the rotational direction. This restoring force meshes the tooth profile portions 52a, 53a, 54a, 55a, 56a, 57a, 58a, 59a that form the connecting portions of the transmission gears 52, 53, 54, 55, 56, 57, 58, 59. This is the force that is generated in the direction of eliminating the backlash.
 ここで、図6(a)に示す如きクリープ変形は、歯形部52a,53a,54a,55a,56a,57a,58a,59aの歯同士を各連繋箇所にて相反側へと曲げるように、生じる。故に、各連繋箇所にて後段側の伝達ギア59,57,55,53は、弾性部材60の復原力を受けることで、図6(b)においてドットハッチングの矢印で模式的に示すように回転し、歯同士の曲げで広がった分のバックラッシを埋める。その結果として表示光像3の虚像表示位置は、図8(a)において白抜きの矢印で模式的に示すように、上方へとずれる。このような虚像表示位置のずれを招来するクリープ変形は特に、伝達ギア52,53,54,55,56,57,58,59の環境温度T(図8参照)が高くなるほど、短時間に且つ大きく生じる。故に、虚像表示位置のずれも、環境温度Tが高くなるほど、短時間に且つ大きく生じることになる。 Here, the creep deformation as shown in FIG. 6 (a) occurs so that the teeth of the tooth profile portions 52a, 53a, 54a, 55a, 56a, 57a, 58a, and 59a are bent to the opposite sides at the respective connecting portions. . Therefore, the transmission gears 59, 57, 55, 53 on the rear stage side receive the restoring force of the elastic member 60 and rotate as schematically shown by the dot-hatched arrows in FIG. Then, fill the backlash as much as possible by bending the teeth. As a result, the virtual image display position of the display light image 3 is shifted upward as schematically shown by a white arrow in FIG. Such creep deformation that causes a shift in the virtual image display position is particularly short as the environmental temperature T (see FIG. 8) of the transmission gears 52, 53, 54, 55, 56, 57, 58, 59 increases. It happens greatly. Therefore, the displacement of the virtual image display position also occurs greatly in a short time as the environmental temperature T increases.
 そこで本実施形態では、大きなクリープ変形の予測される環境温度Tが、予測変形温度Te(図8参照)として定義される。具体的に、伝達ギア52,53,54,55,56,57,58,59のクリープ変形により招来される虚像表示位置のずれとして、車両の乗員に違和感を与えるずれが生じると予測される環境温度T、例えば85℃といった所定値に予測変形温度Teは設定される。また、かかる予測変形温度Teでのクリープ変形により生じると予測される虚像表示位置のずれは、図8(a)に示す如き予測表示ずれδDeとして、定義される。こうした予測変形温度Te及び予測表示ずれδDeについては、伝達ギア52,53,54,55,56,57,58,59のセットを複数用いた実験結果から実測してもよいし、シミュレーションにより推定してもよい。 Therefore, in this embodiment, the environmental temperature T at which large creep deformation is predicted is defined as the predicted deformation temperature Te (see FIG. 8). Specifically, an environment in which a shift that gives an uncomfortable feeling to a vehicle occupant is predicted as a shift in the virtual image display position caused by creep deformation of the transmission gears 52, 53, 54, 55, 56, 57, 58, and 59. The predicted deformation temperature Te is set to a predetermined value such as a temperature T, for example, 85 ° C. Further, the deviation of the virtual image display position predicted to occur due to the creep deformation at the predicted deformation temperature Te is defined as a predicted display deviation δDe as shown in FIG. Such predicted deformation temperature Te and predicted display deviation δDe may be measured from experimental results using a plurality of sets of transmission gears 52, 53, 54, 55, 56, 57, 58, 59, or estimated by simulation. May be.
 図1,3に示すように温度センサ70は、伝達ギア52,53,54,55,56,57,58,59と共に、磁性ケーシング46の内部に収容されている。これにより温度センサ70は、車両内となるインストルメントパネル2に設置されている。温度センサ70は、温度変化に対して電気抵抗変化の比較的大きなサーミスタを主体に、構成されている。温度センサ70は、磁性ケーシング46の内部では伝達ギア52,53,54,55,56,57,58,59に共通の環境温度Tを、検出する。温度センサ70は、検出した環境温度Tを表す温度信号を、出力する。 1 and 3, the temperature sensor 70 is housed inside the magnetic casing 46 together with the transmission gears 52, 53, 54, 55, 56, 57, 58 and 59. Thereby, the temperature sensor 70 is installed in the instrument panel 2 in the vehicle. The temperature sensor 70 is mainly composed of a thermistor having a relatively large electric resistance change with respect to a temperature change. The temperature sensor 70 detects an environmental temperature T common to the transmission gears 52, 53, 54, 55, 56, 57, 58 and 59 inside the magnetic casing 46. The temperature sensor 70 outputs a temperature signal representing the detected environmental temperature T.
 図1,4に示すように調整スイッチ80は、車両の運転席周辺において乗員により操作可能に、設置されている。調整スイッチ80は、レバー式又はプッシュ式等といった操作部材82,83を、有している。アップ操作部材82は、表示光像3の虚像表示位置を上方に変化させたい乗員により、操作される。この操作を受けて調整スイッチ80は、アップ調整指令を与える指令信号を、出力する。一方でダウン操作部材83は、表示光像3の虚像表示位置を下方に変化させたい乗員により、操作される。この操作を受けて調整スイッチ80は、ダウン調整指令を与える指令信号を、出力する。 As shown in FIGS. 1 and 4, the adjustment switch 80 is installed in the vicinity of the driver's seat of the vehicle so that it can be operated by a passenger. The adjustment switch 80 has operation members 82 and 83 such as a lever type or a push type. The up operation member 82 is operated by an occupant who wants to change the virtual image display position of the display light image 3 upward. In response to this operation, the adjustment switch 80 outputs a command signal for giving an up adjustment command. On the other hand, the down operation member 83 is operated by an occupant who wants to change the virtual image display position of the display light image 3 downward. In response to this operation, the adjustment switch 80 outputs a command signal for giving a down adjustment command.
 制御ユニット90は、ハウジング10の外部又は内部に設置されている。制御ユニット90は、表示制御回路92及びスイッチング回路93を組み合わせてなる。表示制御回路92は、プロセッサ92a及びメモリ92bを有するマイクロコンピュータを主体に、構成されている。表示制御回路92は、投射器20と温度センサ70と調整スイッチ80とに電気接続されている。図4に示すようにスイッチング回路93は、複数のトランジスタをスイッチング素子94として、有している。各スイッチング素子94のコレクタは、いずれかのコイル443,453に電気接続されている。各スイッチング素子94のエミッタとベースとは、それぞれ車両のアース端子と表示制御回路92とに電気接続されている。各スイッチング素子94は、表示制御回路92から入力されるベース信号に従って、A,B各相のコイル443,453へ印加する駆動信号をステップ変化させる。その結果、A,B各相のコイル443,453へ印加された駆動信号の電気角に応じて、モータ軸42の回転位置が変化する。そこで以下では、各スイッチング素子94へのベース信号を制御することを、モータ軸42の回転位置を制御することとして、説明する。 The control unit 90 is installed outside or inside the housing 10. The control unit 90 is formed by combining a display control circuit 92 and a switching circuit 93. The display control circuit 92 is mainly composed of a microcomputer having a processor 92a and a memory 92b. The display control circuit 92 is electrically connected to the projector 20, the temperature sensor 70, and the adjustment switch 80. As shown in FIG. 4, the switching circuit 93 includes a plurality of transistors as switching elements 94. The collector of each switching element 94 is electrically connected to one of the coils 443 and 453. The emitter and base of each switching element 94 are electrically connected to the vehicle ground terminal and the display control circuit 92, respectively. Each switching element 94 changes the drive signal applied to the coils 443 and 453 of the A and B phases in accordance with the base signal input from the display control circuit 92. As a result, the rotational position of the motor shaft 42 changes according to the electrical angle of the drive signal applied to the coils 443 and 453 of the A and B phases. Therefore, hereinafter, controlling the base signal to each switching element 94 will be described as controlling the rotational position of the motor shaft 42.
 こうした構成の制御ユニット90において表示制御回路92は、投射器20による画像の表示を制御する。それと共に表示制御回路92は、温度センサ70から入力される温度信号と、調整スイッチ80から入力される指令信号とに従って、モータ軸42の回転位置を制御する。 In the control unit 90 having such a configuration, the display control circuit 92 controls display of an image by the projector 20. At the same time, the display control circuit 92 controls the rotational position of the motor shaft 42 in accordance with the temperature signal input from the temperature sensor 70 and the command signal input from the adjustment switch 80.
 具体的に表示制御回路92は、アップ操作部材82の操作によるアップ調整指令に従って、モータ軸42の回転位置を正回転側へと変化させる。これにより表示光像3の虚像表示位置は、アップ調整指令に従う上方へ変化する。一方で表示制御回路92は、ダウン操作部材83の操作によるダウン調整指令に従って、モータ軸42の回転位置を逆回転側へと変化させる。これにより表示光像3の虚像表示位置は、ダウン調整指令に従う下方へ変化する。尚、以下の説明では、アップ調整指令及びダウン調整指令を纏めて、調整指令という。 Specifically, the display control circuit 92 changes the rotational position of the motor shaft 42 to the positive rotation side in accordance with the up adjustment command by the operation of the up operation member 82. Thereby, the virtual image display position of the display light image 3 changes upward according to the up adjustment command. On the other hand, the display control circuit 92 changes the rotation position of the motor shaft 42 to the reverse rotation side in accordance with the down adjustment command by the operation of the down operation member 83. Thereby, the virtual image display position of the display light image 3 changes downward according to the down adjustment command. In the following description, the up adjustment command and the down adjustment command are collectively referred to as an adjustment command.
 さらに表示制御回路92は、温度センサ70により検出された環境温度Tに応じて、モータ軸42の回転位置を制御する。そこで以下では、環境温度Tに応じた回転位置制御につき、詳細に説明する。表示制御回路92は、環境温度Tに応じた回転位置制御を実現するためにメモリ92bに記憶された制御プログラムをプロセッサ92aにより実行することで、図9に示す複数のブロック921,922を機能的に構築する。 Further, the display control circuit 92 controls the rotational position of the motor shaft 42 according to the environmental temperature T detected by the temperature sensor 70. Therefore, in the following, the rotational position control according to the environmental temperature T will be described in detail. The display control circuit 92 executes a plurality of blocks 921 and 922 shown in FIG. 9 by executing the control program stored in the memory 92b by the processor 92a in order to realize the rotational position control according to the environmental temperature T. To build.
 温度センサ70により検出の環境温度Tが予測変形温度Te以上に上昇した場合に補正実行ブロック921は、所定の補正量δC(図8(b)参照)によりモータ軸42の回転位置を補正する。特に本実施形態の補正実行ブロック921では、温度センサ70により検出の環境温度Tが車両へのHUD装置1の搭載後に初めて予測変形温度Te以上に上昇すると、補正量δCによる回転位置補正を実行する。 When the environmental temperature T detected by the temperature sensor 70 has risen to the predicted deformation temperature Te or higher, the correction execution block 921 corrects the rotational position of the motor shaft 42 by a predetermined correction amount δC (see FIG. 8B). In particular, in the correction execution block 921 of the present embodiment, when the environmental temperature T detected by the temperature sensor 70 rises above the predicted deformation temperature Te for the first time after the HUD device 1 is mounted on the vehicle, the rotational position correction by the correction amount δC is executed. .
 このとき補正量δCは、図8(b)においてドットハッチングの矢印で模式的に示す下方へと表示光像3の虚像表示位置を変化させることで、予測変形温度Te以上での予測表示ずれδDeを減らすように、モータ軸42の逆回転側に設定される。故にここでは、A,B各相のコイル443,453へ印加する駆動信号の電気角変化量として、予測表示ずれδDeをずれ前へと戻すためにモータ軸42を逆回転させる変化量、例えば2ステップ分の360度といった所定値に、補正量δCが設定される。 At this time, the correction amount δC is changed to the predicted display deviation δDe above the predicted deformation temperature Te by changing the virtual image display position of the display light image 3 downward as schematically indicated by the dot hatching arrow in FIG. Is set on the reverse rotation side of the motor shaft. Therefore, here, as the electrical angle change amount of the drive signal applied to the coils 443 and 453 of the respective phases A and B, a change amount that reversely rotates the motor shaft 42 in order to return the predicted display deviation δDe to before the deviation, for example, 2 The correction amount δC is set to a predetermined value such as 360 degrees for the step.
 こうした補正量δCについては、上述の如く実測又は推定される予測表示ずれδDeを戻すようにモータ軸42の回転位置を逆回転側へと変化させる値に、予め設定されてメモリ92bに記憶されている。そこで補正実行ブロック921は、メモリ92bに記憶の補正量δCを読み出すことで、当該補正量δCによる回転位置補正を実行する。その結果、A,B各相のコイル443,453へ印加する駆動信号の電気角は、補正量δCの分だけ変化する。故にモータ軸42の回転位置は、予測表示ずれδDeを戻す逆回転側へと補正されることになる。 The correction amount δC is preset and stored in the memory 92b to a value that changes the rotational position of the motor shaft 42 to the reverse rotation side so as to return the predicted display deviation δDe measured or estimated as described above. Yes. Accordingly, the correction execution block 921 reads the correction amount δC stored in the memory 92b, thereby executing rotational position correction using the correction amount δC. As a result, the electrical angle of the drive signal applied to the coils 443 and 453 of the A and B phases changes by the correction amount δC. Therefore, the rotational position of the motor shaft 42 is corrected to the reverse rotation side for returning the predicted display deviation δDe.
 ここで、環境温度Tが予測変形温度Te以上に一旦上昇すると、伝達ギア52,53,54,55,56,57,58,59の残留応力は急激に減少する。故に伝達ギア52,53,54,55,56,57,58,59のクリープ変形は、補正実行ブロック921による回転位置補正後には、実質的に生じないものと擬制可能となる。 Here, once the environmental temperature T rises above the predicted deformation temperature Te, the residual stress of the transmission gears 52, 53, 54, 55, 56, 57, 58, 59 decreases rapidly. Therefore, the creep deformation of the transmission gears 52, 53, 54, 55, 56, 57, 58, 59 can be assumed to be substantially non-occurring after the rotational position correction by the correction execution block 921.
 そこで、回転位置補正後においては初回となる調整指令が与えられた場合に補正後制御ブロック922は、補正量δCにより補正された現在位置からモータ軸42の回転位置を、当該初回の調整指令に従う位置へと制御する。また、回転位置補正後において二回目以降となる調整指令が与えられた場合に補正後制御ブロック922は、補正量δCにより補正された位置を経て制御された現在位置から、モータ軸42の回転位置を、当該二回目以降の調整指令に従う位置へと制御する。以上の制御によりモータ軸42の回転位置は、環境温度Tの予測変形温度Te以上への上昇に応じて一旦補正されると、その補正された位置を基準に制御されることになる。 Therefore, when an initial adjustment command is given after the rotational position correction, the post-correction control block 922 follows the rotational position of the motor shaft 42 from the current position corrected by the correction amount δC according to the initial adjustment command. Control to position. Further, when an adjustment command for the second time or later is given after the rotational position correction, the post-correction control block 922 determines the rotational position of the motor shaft 42 from the current position controlled through the position corrected by the correction amount δC. Is controlled to a position according to the second and subsequent adjustment commands. With the above control, once the rotational position of the motor shaft 42 is corrected according to the increase of the environmental temperature T to the predicted deformation temperature Te or higher, the rotational position is controlled based on the corrected position.
 このような複数ブロック921,922の構築等により表示制御回路92は、図10に示す表示制御フローを実現することから、その詳細を以下に説明する。尚、表示制御フローは、車両におけるパワースイッチのオン操作に応じて開始され、同スイッチのオフ操作に応じて終了する。また、表示制御フロー中は、投射器20からの表示光像3の投射により、当該表示光像3の虚像表示が継続される。さらに、表示制御フローにおける「S」とは、各ステップを意味する。 The display control circuit 92 realizes the display control flow shown in FIG. 10 by the construction of the plural blocks 921 and 922, and the details will be described below. The display control flow starts in response to an on operation of a power switch in the vehicle and ends in response to an off operation of the switch. Further, during the display control flow, the virtual image display of the display light image 3 is continued by the projection of the display light image 3 from the projector 20. Further, “S” in the display control flow means each step.
 表示制御フローのS101では、過去に環境温度Tが予測変形温度Te以上に上昇したことがあるか否かを、メモリ92bの記憶内容に基づき判定する。その結果、否定判定が下されると、S102へ移行する。 In S101 of the display control flow, it is determined based on the stored contents of the memory 92b whether or not the environmental temperature T has risen above the predicted deformation temperature Te in the past. As a result, if a negative determination is made, the process proceeds to S102.
 S102では、温度センサ70により検出された環境温度Tを表す温度信号を、取得する。続いてS103では、温度センサ70により検出の環境温度Tが予測変形温度Te以上であるか否かを、直前のS102で取得した温度信号に基づき判定する。その結果、肯定判定が下されると、S104へ移行する。 In S102, a temperature signal representing the environmental temperature T detected by the temperature sensor 70 is acquired. Subsequently, in S103, whether or not the environmental temperature T detected by the temperature sensor 70 is equal to or higher than the predicted deformation temperature Te is determined based on the temperature signal acquired in the immediately preceding S102. As a result, when a positive determination is made, the process proceeds to S104.
 S104では、補正実行ブロック921の機能として、メモリ92bに記憶の補正量δCにより、モータ軸42の回転位置を補正する。続くS105では、車両への搭載後において環境温度Tが初めて予測変形温度Te以上に上昇したことを表す温度上昇フラグを、メモリ92bに記憶する。ここで温度上昇フラグは、メモリ92bに一旦記憶されると、メモリ92bの初期化が外部から強制されない限り、パワースイッチのオンオフ操作に拘らず消去されない。故にS105の実行後、後述の如きS106又はS107からの戻りによって繰り返されるS101では、メモリ92bに記憶の温度上昇フラグに基づき肯定判定が下される。逆にS105の実行前には、メモリ92bに温度上昇フラグが記憶されていないので、S101では否定判定が下されるのである。 In S104, as a function of the correction execution block 921, the rotational position of the motor shaft 42 is corrected by the correction amount δC stored in the memory 92b. In subsequent S105, a temperature rise flag indicating that the environmental temperature T has risen above the predicted deformation temperature Te for the first time after being mounted on the vehicle is stored in the memory 92b. Here, once the temperature increase flag is stored in the memory 92b, the temperature increase flag is not erased regardless of the on / off operation of the power switch unless the initialization of the memory 92b is forced from the outside. Therefore, after the execution of S105, an affirmative determination is made based on the temperature rise flag stored in the memory 92b in S101 which is repeated by a return from S106 or S107 as described later. On the contrary, since the temperature increase flag is not stored in the memory 92b before the execution of S105, a negative determination is made in S101.
 さて、S105の実行後には、S106へと移行する。また、S103にて否定判定が下された場合にも、S106へ移行する。さらに、S101にて肯定判定が下された場合にも、S106へ移行する。ここでS101,103,S105のいずれから移行する場合にもS106では、乗員により調整指令が与えられたか否かを、調整スイッチ80からの指令信号の有無に基づき判定する。その結果、否定判定が下されると、S101へ戻る。一方、肯定判定が下されると、S107へ移行する。 Now, after executing S105, the process proceeds to S106. Moreover, also when negative determination is made in S103, it transfers to S106. Furthermore, also when an affirmation determination is made in S101, it transfers to S106. Here, even when shifting from any of S101, 103, and S105, in S106, whether or not an adjustment command is given by the occupant is determined based on the presence or absence of a command signal from the adjustment switch 80. As a result, if a negative determination is made, the process returns to S101. On the other hand, if a positive determination is made, the process proceeds to S107.
 S107では、補正後制御ブロック922の機能として、モータ軸42の回転位置を調整指令に従う位置へと制御してから、S101へと戻る。故に、S105からS106への移行後における初回のS107では、S105にて補正された現在位置から、モータ軸42の回転位置が制御される。また、S105からS106への移行後における二回目移行のS107では、S104にて補正された位置を経て制御された現在位置から、モータ軸42の回転位置が制御されるのである。 In S107, as a function of the post-correction control block 922, the rotational position of the motor shaft 42 is controlled to a position according to the adjustment command, and then the process returns to S101. Therefore, in the first S107 after the transition from S105 to S106, the rotational position of the motor shaft 42 is controlled from the current position corrected in S105. In S107 of the second transition after the transition from S105 to S106, the rotational position of the motor shaft 42 is controlled from the current position controlled through the position corrected in S104.
 以上説明した第一実施形態の作用効果を、以下に説明する。 The operational effects of the first embodiment described above will be described below.
 第一実施形態によると、減速ギア機構50においてクリープ変形の予測される伝達ギア52,53,54,55,56,57,58,59を「特定ギア」として、それらギアの環境温度Tをトリガとした補正がステッピングモータ40の回転位置に与えられる。具体的には、クリープ変形の予測される予測変形温度Te以上に環境温度Tが上昇すると、ステッピングモータ40の回転位置は、表示光像3の虚像表示位置に関する予測表示ずれδDeを戻す側へと補正される。ここで予測表示ずれδDeは、予測変形温度Teでのクリープ変形により表示光像3の虚像表示位置に生じると予測されるずれである。故に、予測変形温度Te以上の環境温度Tにて伝達ギア52,53,54,55,56,57,58,59がクリープ変形したとしても、予測表示ずれδDeを戻す側への回転位置補正によれば、車両において表示光像3の虚像表示位置がずれるのを抑制可能となる。 According to the first embodiment, the transmission gears 52, 53, 54, 55, 56, 57, 58 and 59 whose creep deformation is predicted in the reduction gear mechanism 50 are set as “specific gears”, and the ambient temperature T of these gears is triggered. Is applied to the rotational position of the stepping motor 40. Specifically, when the environmental temperature T rises above the predicted deformation temperature Te that is predicted to undergo creep deformation, the rotational position of the stepping motor 40 is shifted to the side that returns the predicted display deviation δDe related to the virtual image display position of the display light image 3. It is corrected. Here, the predicted display deviation δDe is a deviation that is predicted to occur at the virtual image display position of the display light image 3 due to creep deformation at the predicted deformation temperature Te. Therefore, even if the transmission gears 52, 53, 54, 55, 56, 57, 58, 59 are creep-deformed at the environmental temperature T that is equal to or higher than the predicted deformation temperature Te, the rotational position correction to the side for returning the predicted display deviation δDe is performed. According to this, it is possible to suppress the shift of the virtual image display position of the display light image 3 in the vehicle.
 また、環境温度Tが予測変形温度Te以上に上昇した場合には、補正量δCによる回転位置補正が実行されることで、ステッピングモータ40の回転位置が予測表示ずれδDeを戻す側へと変化する。そこで、かかる変化後においてステッピングモータ40の回転位置は、補正された位置を基準として、調整指令に従い制御されることになる。これにより、予測変形温度Te以上の環境温度Tにて回転位置補正が一旦実行されれば、表示光像3の虚像表示位置は、伝達ギア52,53,54,55,56,57,58,59のクリープ変形に起因したずれを低減された状態のまま、制御可能となる。 When the environmental temperature T rises above the predicted deformation temperature Te, the rotational position of the stepping motor 40 is changed to return the predicted display deviation δDe by executing the rotational position correction by the correction amount δC. . Therefore, after such a change, the rotational position of the stepping motor 40 is controlled in accordance with the adjustment command with the corrected position as a reference. Thus, once the rotational position correction is executed at the environmental temperature T equal to or higher than the predicted deformation temperature Te, the virtual image display position of the display light image 3 is transmitted to the transmission gears 52, 53, 54, 55, 56, 57, 58, It is possible to control while maintaining a state in which the shift due to the creep deformation of 59 is reduced.
 さらに、伝達ギア52,53,54,55,56,57,58,59の環境温度Tについては、HUD装置1の搭載した車両の走行により、予測変形温度Te以上となる可能性が高い。そこでHUD装置1では、環境温度Tが車両への搭載後に初めて予測変形温度Te以上に上昇すると、回転位置補正が実行される。これによれば、伝達ギア52,53,54,55,56,57,58,59のクリープ変形が予測される状況を確実に捉えて、回転位置補正を適時に実行できる。故に、表示光像3の虚像表示位置がずれるのを抑制する効果につき、信頼性を確保することが可能となる。 Furthermore, the environmental temperature T of the transmission gears 52, 53, 54, 55, 56, 57, 58, 59 is likely to be higher than the predicted deformation temperature Te due to traveling of the vehicle on which the HUD device 1 is mounted. Therefore, in the HUD device 1, when the environmental temperature T rises above the predicted deformation temperature Te for the first time after being mounted on the vehicle, rotational position correction is executed. According to this, the rotational position correction can be executed in a timely manner by reliably grasping the situation in which the creep deformation of the transmission gears 52, 53, 54, 55, 56, 57, 58, 59 is predicted. Therefore, it is possible to ensure reliability with respect to the effect of suppressing the shift of the virtual image display position of the display light image 3.
 またさらに、減速ギア機構50における磁性ケーシング46の内部には、温度センサ70が伝達ギア52,53,54,55,56,57,58,59と共に収容される。このような温度センサ70は、伝達ギア52,53,54,55,56,57,58,59の環境温度Tを、それらギアの可及的に近くにて高精度に検出し得る。これによれば、環境温度Tが予測変形温度Te以上に上昇したことを正確に把握して、回転位置補正を適時に実行できる。故に、回転位置補正を必要とする予測表示ずれδDeが生じていないにも拘らず、回転位置補正が実行されて逆に表示光像3の虚像表示位置がずれてしまう事態を、抑制可能である。 Furthermore, the temperature sensor 70 is housed together with the transmission gears 52, 53, 54, 55, 56, 57, 58, 59 inside the magnetic casing 46 in the reduction gear mechanism 50. Such a temperature sensor 70 can detect the environmental temperature T of the transmission gears 52, 53, 54, 55, 56, 57, 58, 59 with high accuracy as close as possible to these gears. According to this, it is possible to accurately grasp that the environmental temperature T has risen above the predicted deformation temperature Te, and to perform rotational position correction in a timely manner. Therefore, it is possible to suppress a situation in which the virtual image display position of the display light image 3 is shifted due to the rotation position correction, although the predicted display deviation δDe requiring the rotation position correction has not occurred. .
 加えて、歯形部52a,53a,54a,55a,56a,57a,58a,59aを含む全体が樹脂により形成される伝達ギア52,53,54,55,56,57,58,59には、予測変形温度Te以上でのクリープ変形が生じ易くなる。しかし、予測変形温度Te以上の環境温度Tにて伝達ギア52,53,54,55,56,57,58,59がクリープ変形したとしても、予測表示ずれδDeを戻す側への回転位置補正によれば、表示光像3の虚像表示位置がずれるのを抑制可能である。
(第二実施形態)
 第二実施形態は、第一実施形態の変形例である。図11に示すように第二実施形態では、表示制御フローにS2100が追加される。
In addition, the transmission gears 52, 53, 54, 55, 56, 57, 58, 59 including the tooth profile portions 52 a, 53 a, 54 a, 55 a, 56 a, 57 a, 58 a, 59 a formed entirely of resin are predicted Creep deformation at the deformation temperature Te or higher is likely to occur. However, even if the transmission gears 52, 53, 54, 55, 56, 57, 58, 59 are creep-deformed at the environmental temperature T equal to or higher than the predicted deformation temperature Te, the rotational position correction to the side for returning the predicted display deviation δDe is performed. According to this, it is possible to suppress the shift of the virtual image display position of the display light image 3.
(Second embodiment)
The second embodiment is a modification of the first embodiment. As shown in FIG. 11, in the second embodiment, S2100 is added to the display control flow.
 S2100には、S101にて否定判定が下された場合に、移行する。S2100では、車両が停止してから設定時間が経過したか否かを、判定する。ここで設定時間は、エアコン等の停止する車両の停止により、車両内において温度センサ70により検出の環境温度Tが上昇し切って飽和するのに必要な時間に、設定される。こうしたS2100にて否定判定が下されると、S106へ移行する。一方、S2100にて肯定判定が下されると、S102へ移行する。 The process proceeds to S2100 when a negative determination is made in S101. In S2100, it is determined whether the set time has elapsed since the vehicle stopped. Here, the set time is set to a time necessary for saturation of the environmental temperature T detected by the temperature sensor 70 in the vehicle due to the stop of the vehicle such as an air conditioner. If a negative determination is made in S2100, the process proceeds to S106. On the other hand, if a positive determination is made in S2100, the process proceeds to S102.
 このような第二実施形態によると、車両が停止してから車両内における環境温度Tが予測変形温度Te以上に上昇すると、回転位置補正が実行されることとなる。これによれば、車両の走行停止後に環境温度Tの上昇し切る可能性が高くなるという知見に基づき、伝達ギア52,53,54,55,56,57,58,59のクリープ変形が予測される状況を確実に捉えて、回転位置補正を適時に実行できる。故に、表示光像3の虚像表示位置がずれるのを抑制する効果につき、信頼性を確保することが可能となる。
(第三実施形態)
 第三実施形態は、第二実施形態の変形例である。図12に示すように第三実施形態では、表示制御フローにてS104に代わるS3104a,S3104bが実行される。
According to the second embodiment, when the environmental temperature T in the vehicle rises to the predicted deformation temperature Te or higher after the vehicle stops, the rotational position correction is executed. According to this, the creep deformation of the transmission gears 52, 53, 54, 55, 56, 57, 58, 59 is predicted based on the knowledge that there is a high possibility that the environmental temperature T will rise after the vehicle stops running. The rotation position correction can be executed in a timely manner. Therefore, it is possible to ensure reliability with respect to the effect of suppressing the shift of the virtual image display position of the display light image 3.
(Third embodiment)
The third embodiment is a modification of the second embodiment. As shown in FIG. 12, in the third embodiment, S3104a and S3104b are executed in place of S104 in the display control flow.
 まず、S3104aには、S103にて肯定判定が下された場合に、移行する。S3104aでは、温度センサ70により検出の環境温度Tが予測変形温度Te以上の複数の温度範囲δT1,δT2,δT3のうちいずれに該当するかを、直近のS102で取得した温度信号に基づき判断する。ここで本実施形態では、三つの温度範囲δT1,δT2,δT3が設定される。これら温度範囲δT1,δT2,δT3は、図13に示す如き予測変形温度Te以上の環境温度Tと予測表示ずれδDeとの温度相関Itに基づき、乗員の感じる予測表示ずれδDeに顕著な違いが生じると予測される温度を境に、設定される。特に本実施形態では、環境温度Tが高いほど予測表示ずれδDeが大きくなる温度相関Itに基づき、温度範囲δT1,δT2,δT3が設定される。 First, the process proceeds to S3104a when an affirmative determination is made in S103. In S3104a, the temperature sensor 70 determines which one of the temperature ranges δT1, δT2, and δT3 the environmental temperature T detected by the temperature sensor 70 is equal to or higher than the predicted deformation temperature Te based on the most recent temperature signal acquired in S102. Here, in this embodiment, three temperature ranges δT1, δT2, and δT3 are set. These temperature ranges δT1, δT2, and δT3 have a significant difference in the predicted display deviation δDe perceived by the occupant based on the temperature correlation It between the environmental temperature T equal to or higher than the predicted deformation temperature Te and the predicted display deviation δDe as shown in FIG. It is set on the boundary of the predicted temperature. In particular, in the present embodiment, the temperature ranges δT1, δT2, and δT3 are set based on the temperature correlation It in which the predicted display deviation δDe increases as the environmental temperature T increases.
 次に、図12に示すようにS3104bには、S3104aにて温度範囲δT1,δT2,δT3が判断されてから、移行する。S3104bでは、補正実行ブロック921の機能として、メモリ92bに記憶された可変の補正量δCである複数値δC1,δC2,δC3のうちいずれかによって、モータ軸42の回転位置を補正する。ここで本実施形態では、三つの温度範囲δT1,δT2,δT3に対応して、三つの補正量δC1,δC2,δC3が設定される。これら補正量δC1,δC2,δC3は、図13に示す如き予測変形温度Te以上の環境温度Tと予測表示ずれδDeとの温度相関Itに基づき、それぞれ対応する温度範囲δT1,δT2,δT3毎に異なる値に、設定される。特に本実施形態では、対応する温度範囲δT1,δT2,δT3が高い順に、値の大きくなる補正量δC1,δC2,δC3が設定される。そこでS3104bでは、補正量δC1,δC2,δC3のうち、直前のS3104aで判断したいずれかの温度範囲δT1,δT2,δT3に対応する値を選定して、当該選定値により回転位置補正を実行する。尚、S3104bにて回転位置補正の実行が完了すると、S105へ移行する。 Next, as shown in FIG. 12, the process proceeds to S3104b after the temperature ranges δT1, δT2, and δT3 are determined in S3104a. In S3104b, as a function of the correction execution block 921, the rotational position of the motor shaft 42 is corrected by one of the multiple values δC1, δC2, and δC3 that are variable correction amounts δC stored in the memory 92b. Here, in the present embodiment, three correction amounts δC1, δC2, and δC3 are set corresponding to the three temperature ranges δT1, δT2, and δT3. These correction amounts δC1, δC2, and δC3 are different for the corresponding temperature ranges δT1, δT2, and δT3, respectively, based on the temperature correlation It between the environmental temperature T that is equal to or higher than the predicted deformation temperature Te and the predicted display deviation δDe as shown in FIG. Set to value. In particular, in the present embodiment, correction amounts δC1, δC2, and δC3 that increase in value are set in descending order of the corresponding temperature ranges δT1, δT2, and δT3. Therefore, in S3104b, values corresponding to any one of the temperature ranges δT1, δT2, and δT3 determined in the immediately preceding S3104a are selected from the correction amounts δC1, δC2, and δC3, and the rotational position correction is performed using the selected values. When the execution of the rotational position correction is completed in S3104b, the process proceeds to S105.
 このような第三実施形態によると、予測変形温度Te以上の環境温度Tと予測表示ずれδDeとの温度相関Itに基づく可変の補正量δC1,δC2,δC3により、回転位置補正が実行される。これにより、一般には環境温度Tに応じて予測表示ずれδDeが変動することまでをも考慮した適切な補正量δC1,δC2,δC3を選定して、回転位置補正に利用し得る。故に、表示光像3の虚像表示位置がずれるのを抑制する効果につき、信頼性を確保することが可能となる。 According to the third embodiment, the rotational position correction is executed by the variable correction amounts δC1, δC2, and δC3 based on the temperature correlation It between the environmental temperature T equal to or higher than the predicted deformation temperature Te and the predicted display deviation δDe. As a result, in general, appropriate correction amounts δC1, δC2, and δC3 that take into account even the predicted display deviation δDe varies according to the environmental temperature T can be selected and used for rotational position correction. Therefore, it is possible to ensure reliability with respect to the effect of suppressing the shift of the virtual image display position of the display light image 3.
 さらに第三実施形態によると、温度相関Itに基づく予測変形温度Te以上の複数の温度範囲δT1,δT2,δT3毎に値が異ならされる補正量δC1,δC2,δC3のうち、環境温度Tの該当する範囲に対応した値により、回転位置補正が実行される。これによれば、乗員の感じる予測表示ずれδDeに顕著な違いが生じると予測される温度範囲δT1,δT2,δT3毎に、適切な補正量δC1,δC2,δC3を選定して、回転位置補正に利用し得る。故に、表示光像3の虚像表示位置がずれるのを抑制する効果につき、高い信頼性を確保することが可能となる。 Further, according to the third embodiment, among the correction amounts δC1, δC2, and δC3 that have different values for each of the plurality of temperature ranges δT1, δT2, and δT3 that are equal to or higher than the predicted deformation temperature Te based on the temperature correlation It, The rotational position correction is executed with a value corresponding to the range to be performed. According to this, appropriate correction amounts δC1, δC2, and δC3 are selected for each of the temperature ranges δT1, δT2, and δT3 where a significant difference is expected to occur in the predicted display deviation δDe that the occupant feels, and rotational position correction is performed. Can be used. Therefore, it is possible to ensure high reliability with respect to the effect of suppressing the shift of the virtual image display position of the display light image 3.
  複数の実施形態について、ここまで説明したが、本開示は、それらの実施形態に限定して解釈されるものではなく、本開示の要旨を逸脱しない範囲内において種々の実施形態に適用可能である。上記実施形態の変形例について述べる。 Although a plurality of embodiments have been described so far, the present disclosure is not construed as being limited to those embodiments, and can be applied to various embodiments without departing from the scope of the present disclosure. . A modification of the above embodiment will be described.
 具体的に、第一~第三実施形態に関する変形例1では、温度センサ70により検出の環境温度TがHUD装置1の車両搭載前となる製造後又は工場出荷後に、初めて予測変形温度Te以上となった場合に、補正実行ブロック921により回転位置補正を実行してもよい。第一~第三実施形態に関する変形例2では、複数ブロック921,922のうち少なくとも一部を、一つ又は複数のIC等によりハードウェア的に構築してもよい。 Specifically, in the first modification relating to the first to third embodiments, the environmental temperature T detected by the temperature sensor 70 is equal to or higher than the predicted deformation temperature Te for the first time after manufacture or factory shipment before the HUD device 1 is mounted on the vehicle. In such a case, the rotational position correction may be executed by the correction execution block 921. In the second modification regarding the first to third embodiments, at least a part of the plurality of blocks 921 and 922 may be constructed by hardware using one or a plurality of ICs.
 第一~第三実施形態に関する変形例3では、モータ軸42の回転位置を制御する上での基準となる零位置を、設定してもよい。この変形例3では、モータ軸42の回転位置として現在位置及び零位置を固定の補正量δC又は可変の補正量δC1,δC2,δC3により補正した後、その補正された零位置を基準に、調整指令に従う制御を実行してもよい。 In the third modification related to the first to third embodiments, a zero position serving as a reference in controlling the rotational position of the motor shaft 42 may be set. In the third modification, the current position and the zero position are corrected with the fixed correction amount δC or the variable correction amounts δC1, δC2, and δC3 as the rotational position of the motor shaft 42, and then adjusted based on the corrected zero position. Control according to the command may be executed.
 第一~第三実施形態に関する変形例4では、伝達ギア52,53,54,55,56,57,58,59のうち少なくとも一つを除くギアにつき、環境温度Tが予測変形温度Te以上となってもクリープ変形の生じ難い材料により、形成してもよい。この変形例4では、上記実施形態と同様に樹脂により形成されることになる少なくとも一つの伝達ギアが、「特定ギア」として定義される。 In the fourth modification related to the first to third embodiments, the environmental temperature T is equal to or higher than the predicted deformation temperature Te for the gears except at least one of the transmission gears 52, 53, 54, 55, 56, 57, 58, 59. Even if it becomes, you may form with the material which does not produce creep deformation easily. In the fourth modification, at least one transmission gear to be formed of resin as in the above embodiment is defined as a “specific gear”.
 第一~第三実施形態に関する変形例5では、伝達ギア52,53,54,55,56,57,58,59のうち「特定ギア」として定義される少なくとも一つのギアにつき、歯形部52a,53a,54a,55a,56a,57a,58a,59aのみ、又は歯形部52a,53a,54a,55a,56a,57a,58a,59aを含む一部分を、樹脂で形成してもよい。 In the fifth modification relating to the first to third embodiments, the tooth profile 52a, at least one of the transmission gears 52, 53, 54, 55, 56, 57, 58, 59 is defined as “specific gear”. 53a, 54a, 55a, 56a, 57a, 58a, 59a alone or a part including the tooth profile portions 52a, 53a, 54a, 55a, 56a, 57a, 58a, 59a may be formed of resin.
 第一~第三実施形態に関する変形例6では、伝達ギア52,53,54,55,56,57,58,59のうち「特定ギア」として定義される少なくとも一つのギアにつき、乗員に違和感を与えるまで虚像表示位置をずらすクリープ変形の生じる限りにて、樹脂以外の材料で形成してもよい。 In the sixth modification related to the first to third embodiments, the occupant feels uncomfortable with at least one of the transmission gears 52, 53, 54, 55, 56, 57, 58, 59 defined as “specific gear”. As long as creep deformation occurs in which the virtual image display position is shifted until it is applied, it may be formed of a material other than resin.
 第一~第三実施形態に関する変形例7では、ねじりコイルばね又は渦巻きばね等といった各種トーションスプリングを、弾性部材60として採用してもよい。第一~第三実施形態に関する変形例8では、伝達ギア53,54,55,56,57,58の軸のうちいずれか、又はモータ軸42を弾性部材60により付勢してもよい。この変形例8では、上記実施形態と同様に、伝達ギア52,53,54,55,56,57,58,59の各連繋箇所をなす歯形部52a,53a,54a,55a,56a,57a,58a,59a同士を噛合させる向きに、弾性部材60の復原力を発生させる。 In the modified example 7 regarding the first to third embodiments, various torsion springs such as a torsion coil spring or a spiral spring may be adopted as the elastic member 60. In the eighth modification related to the first to third embodiments, any of the shafts of the transmission gears 53, 54, 55, 56, 57, and 58, or the motor shaft 42 may be urged by the elastic member 60. In the modified example 8, as in the above-described embodiment, the tooth profile portions 52a, 53a, 54a, 55a, 56a, 57a, which form the connecting portions of the transmission gears 52, 53, 54, 55, 56, 57, 58, 59, The restoring force of the elastic member 60 is generated in the direction in which 58a and 59a are engaged with each other.
 第一~第三実施形態に関する変形例9では、熱電対式又は赤外線式等といった各種温度計を、温度センサ70として採用してもよい。第一~第三実施形態に関する変形例10では、ハウジング10の内部のうち、磁性ケーシング46の外部に、温度センサ70を設置してもよい。第一~第三実施形態に関する変形例11では、ハウジング10の外部に温度センサ70を設置してもよい。第一~第三実施形態に関する変形例12では、上記実施形態の如きHUD装置1に専用の温度センサ70に代えて、空調装置の室温センサ等、車両においてHUD装置1とは別に搭載される温度センサにより、環境温度Tを検出してもよい。 In Modification 9 regarding the first to third embodiments, various thermometers such as a thermocouple type or an infrared type may be adopted as the temperature sensor 70. In Modification 10 regarding the first to third embodiments, the temperature sensor 70 may be installed outside the magnetic casing 46 in the housing 10. In Modification 11 regarding the first to third embodiments, the temperature sensor 70 may be installed outside the housing 10. In the twelfth modification related to the first to third embodiments, instead of the temperature sensor 70 dedicated to the HUD device 1 as in the above embodiment, a temperature mounted on the vehicle separately from the HUD device 1 such as a room temperature sensor of an air conditioner. The ambient temperature T may be detected by a sensor.
 第一~第三実施形態に関する変形例13では、表示光像3となるレーザ光を微小電気機械システムにより投射するレーザスキャナ、あるいは表示光像3となる可視光又はレーザ光をデジタルミラーデバイスにより投射する映像表示システム等を、投射器20として採用してもよい。第一~第三実施形態に関する変形例14では、車両内においてHUD装置1に専用に設置されるコンバイナ等へ向かって、表示光像3を投影してもよい。 In the thirteenth modification related to the first to third embodiments, a laser scanner that projects laser light to be the display light image 3 by a micro electro mechanical system, or visible light or laser light to be the display light image 3 is projected by a digital mirror device. A video display system or the like may be employed as the projector 20. In the fourteenth modified example relating to the first to third embodiments, the display light image 3 may be projected toward a combiner or the like installed exclusively in the HUD device 1 in the vehicle.
 第二及び第三実施形態に関する変形例15では、車両の走行中に車両内における環境温度Tが予測変形温度Te以上に上昇すると、回転位置の補正を実行するように、表示制御フローを変更してもよい。この変形例15の表示制御フローでは、S2100にて車両が走行状態にあるか否かを判定し、肯定判定が下された場合にはS102へ移行する。 In the modified example 15 related to the second and third embodiments, the display control flow is changed so as to execute the correction of the rotational position when the environmental temperature T in the vehicle rises above the predicted deformation temperature Te while the vehicle is running. May be. In the display control flow of the modified example 15, it is determined whether or not the vehicle is in a traveling state in S2100, and if an affirmative determination is made, the process proceeds to S102.
 第三実施形態に関する変形例16では、温度範囲及び補正量の組を先述した三組以外、即ち二組又は四組以上、設定してもよい。第三実施形態に関する変形例17の表示制御フローでは、第一実施形態と同様にS2100を実行しないで、S101にて否定判定が下されると、S102へ移行させてもよい。 In the modification 16 regarding the third embodiment, the temperature range and the correction amount may be set other than the above-described three sets, that is, two sets or four or more sets. In the display control flow of the modified example 17 related to the third embodiment, if the negative determination is made in S101 without executing S2100 as in the first embodiment, the process may be shifted to S102.
 第三実施形態に関する変形例18では、図14に示す如く環境温度Tが高いほど予測表示ずれδDeが大きくなる温度相関Itに基づき、環境温度Tとしての値T0に1:1に対応した補正量δCである値δC0を、回転位置補正に利用してもよい。この変形例18の表示制御フローでは、S3104aを実行しないで、S3104bにてS102での取得信号に基づく環境温度T0に対応した補正量δC0により、回転位置補正を実行する。 In the modified example 18 related to the third embodiment, as shown in FIG. 14, the correction amount corresponding to the value T0 as the environmental temperature T is 1: 1 based on the temperature correlation It where the predicted display deviation δDe increases as the environmental temperature T increases. A value δC0 that is δC may be used for rotational position correction. In the display control flow of this modification 18, the rotational position correction is executed with the correction amount δC0 corresponding to the environmental temperature T0 based on the acquisition signal at S102 in S3104b without executing S3104a.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (8)

  1.  車両に搭載されるヘッドアップディスプレイ装置(1)であって、
     前記車両に関連する車両関連情報を表した表示光像(3)を、投射する投射器(20)と、
     前記投射器(20)から投射された前記表示光像(3)を反射する反射鏡(32)を、駆動可能に有し、前記反射鏡(32)により反射された前記表示光像(3)を虚像表示させる虚像表示位置を、前記反射鏡(32)の駆動により調整する光学ユニット(30)と、
     前記反射鏡(32)を駆動するために回転するステッピングモータ(40)と、
     前記ステッピングモータ(40)の回転を減速して前記反射鏡(32)に伝達する複数の伝達ギア(52,53,54,55,56,57,58,59)を、回転可能に有する減速ギア機構(50)と、
     前記伝達ギア(52,53,54,55,56,57,58,59)同士を噛合させる向きの復原力を、発生する弾性部材(60)と、
     前記車両の乗員からの調整指令に従って前記ステッピングモータ(40)の回転位置を制御する制御ユニット(90)であって、クリープ変形が予測される少なくとも一つの前記伝達ギア(52,53,54,55,56,57,58,59)を特定ギアと定義し、前記特定ギアの環境温度(T)として前記クリープ変形の予測される温度を、予測変形温度(Te)と定義し、前記予測変形温度(Te)での前記クリープ変形により前記虚像表示位置に生じると予測されるずれを、予測表示ずれ(δDe)と定義して、前記環境温度(T)が前記予測変形温度(Te)以上に上昇すると、前記予測表示ずれ(δDe)を戻す側へ前記回転位置を補正する制御ユニット(90)とを、備えるヘッドアップディスプレイ装置。
    A head-up display device (1) mounted on a vehicle,
    A projector (20) for projecting a display light image (3) representing vehicle-related information related to the vehicle;
    The display light image (3) reflected by the reflecting mirror (32), having a reflecting mirror (32) that reflects the display light image (3) projected from the projector (20). An optical unit (30) for adjusting a virtual image display position for displaying a virtual image by driving the reflecting mirror (32);
    A stepping motor (40) that rotates to drive the reflector (32);
    A reduction gear having a plurality of transmission gears (52, 53, 54, 55, 56, 57, 58, 59) that can reduce the rotation of the stepping motor (40) and transmit it to the reflecting mirror (32). A mechanism (50);
    An elastic member (60) for generating a restoring force in a direction for meshing the transmission gears (52, 53, 54, 55, 56, 57, 58, 59);
    A control unit (90) for controlling the rotational position of the stepping motor (40) in accordance with an adjustment command from an occupant of the vehicle, wherein at least one transmission gear (52, 53, 54, 55 in which creep deformation is predicted) , 56, 57, 58, 59) are defined as specific gears, the predicted temperature of the creep deformation is defined as the predicted deformation temperature (Te) as the environmental temperature (T) of the specific gear, and the predicted deformation temperature. A shift that is predicted to occur at the virtual image display position due to the creep deformation at (Te) is defined as a predicted display shift (δDe), and the environmental temperature (T) rises above the predicted deformation temperature (Te). Then, a head-up display device comprising: a control unit (90) that corrects the rotational position to return the predicted display deviation (δDe).
  2.  前記制御ユニット(90)は、
     前記環境温度(T)が前記予測変形温度(Te)以上に上昇すると、前記予測表示ずれ(δDe)を戻す側へ前記回転位置を変化させる補正量(δC,δC1,δC2,δC3)により、前記回転位置の補正を実行する補正実行ブロック(921)と、
     前記補正実行ブロック(921)が補正した位置を基準に、前記回転位置を前記調整指令に従って制御する補正後制御ブロック(922)とを、有する請求項1に記載のヘッドアップディスプレイ装置。
    The control unit (90)
    When the environmental temperature (T) rises above the predicted deformation temperature (Te), the correction amount (δC, δC1, δC2, δC3) for changing the rotational position to return the predicted display deviation (δDe) is used. A correction execution block (921) for correcting the rotational position;
    The head-up display device according to claim 1, further comprising a post-correction control block (922) that controls the rotational position according to the adjustment command based on the position corrected by the correction execution block (921).
  3.  前記補正実行ブロック(921)は、前記予測変形温度(Te)以上の前記環境温度(T)と前記予測表示ずれ(δDe)との温度相関(It)に基づく可変の前記補正量(δC,δC1,δC2,δC3)により、前記回転位置の補正を実行する請求項2に記載のヘッドアップディスプレイ装置。 The correction execution block (921) is a variable correction amount (δC, δC1) based on a temperature correlation (It) between the environmental temperature (T) equal to or higher than the predicted deformation temperature (Te) and the predicted display deviation (δDe). , ΔC2, δC3), the head-up display device according to claim 2, wherein the rotational position is corrected.
  4.  前記補正実行ブロック(921)は、前記温度相関(It)に基づく前記予測変形温度(Te)以上の複数の温度範囲(δT1,δT2,δT3)毎に値が異ならされる複数の前記補正量(δC1,δC2,δC3)のうち、前記環境温度(T)が該当する前記温度範囲(δT1,δT2,δT3)に対応した値により、前記回転位置の補正を実行する請求項3に記載のヘッドアップディスプレイ装置。 The correction execution block (921) has a plurality of correction amounts whose values are different for a plurality of temperature ranges (δT1, δT2, δT3) that are equal to or higher than the predicted deformation temperature (Te) based on the temperature correlation (It) ( 4. The head-up according to claim 3, wherein the rotational position is corrected by a value corresponding to the temperature range (δT1, δT2, δT3) in which the environmental temperature (T) falls within the range of δC1, δC2, δC3). Display device.
  5.  前記制御ユニット(90)は、前記環境温度(T)が前記車両への搭載後において初めて前記予測変形温度(Te)以上に上昇すると、前記回転位置の補正を実行する請求項1~4のいずれか一項に記載のヘッドアップディスプレイ装置。 The control unit (90) executes the correction of the rotational position when the environmental temperature (T) rises above the predicted deformation temperature (Te) for the first time after being mounted on the vehicle. A head-up display device according to claim 1.
  6.  前記制御ユニット(90)は、前記車両が停止してから前記車両内における前記環境温度(T)が前記予測変形温度(Te)以上に上昇すると、前記回転位置の補正を実行する請求項1~5のいずれか一項に記載のヘッドアップディスプレイ装置。 The control unit (90) executes the correction of the rotational position when the environmental temperature (T) in the vehicle rises above the predicted deformation temperature (Te) after the vehicle stops. The head-up display device according to claim 5.
  7.  前記環境温度(T)を検出する温度センサ(70)を、さらに備え、
     前記減速ギア機構(50)は、前記特定ギアと共に前記温度センサ(70)を内部に収容するケーシング(46)を、有し、
     前記制御ユニット(90)は、前記温度センサ(70)により検出された前記環境温度(T)が前記予測変形温度(Te)以上に上昇すると、前記回転位置の補正を実行する請求項1~6のいずれか一項に記載のヘッドアップディスプレイ装置。
    A temperature sensor (70) for detecting the environmental temperature (T);
    The reduction gear mechanism (50) includes a casing (46) that houses the temperature sensor (70) together with the specific gear,
    The control unit (90) executes the correction of the rotational position when the environmental temperature (T) detected by the temperature sensor (70) rises above the predicted deformation temperature (Te). The head-up display device according to any one of the above.
  8.  前記特定ギアにおいて少なくとも歯形部(52a,53a,54a,55a,56a,57a,58a,59a)は、樹脂により形成される請求項1~7のいずれか一項に記載のヘッドアップディスプレイ装置。 The head-up display device according to any one of claims 1 to 7, wherein at least the tooth profile (52a, 53a, 54a, 55a, 56a, 57a, 58a, 59a) in the specific gear is formed of a resin.
PCT/JP2016/076787 2015-09-25 2016-09-12 Head-up display device WO2017051739A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187007978A KR101997414B1 (en) 2015-09-25 2016-09-12 Head-up display device
US15/761,897 US10429642B2 (en) 2015-09-25 2016-09-12 Head-up display device
EP16848527.4A EP3355095B1 (en) 2015-09-25 2016-09-12 Head-up display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015188752 2015-09-25
JP2015-188752 2015-09-25
JP2016033523A JP6372502B2 (en) 2015-09-25 2016-02-24 Head-up display device
JP2016-033523 2016-02-24

Publications (1)

Publication Number Publication Date
WO2017051739A1 true WO2017051739A1 (en) 2017-03-30

Family

ID=58386585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076787 WO2017051739A1 (en) 2015-09-25 2016-09-12 Head-up display device

Country Status (1)

Country Link
WO (1) WO2017051739A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108256179A (en) * 2017-12-29 2018-07-06 沈阳工业大学 A kind of method for predicting material creep curve

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0796771A (en) * 1993-09-27 1995-04-11 Nippondenso Co Ltd Display position adjuster of head up display
JP2011131651A (en) * 2009-12-22 2011-07-07 Denso Corp Head-up display device
WO2011132407A1 (en) * 2010-04-20 2011-10-27 パナソニック株式会社 Image display device
JP2014203012A (en) * 2013-04-09 2014-10-27 日本精機株式会社 Head-up display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0796771A (en) * 1993-09-27 1995-04-11 Nippondenso Co Ltd Display position adjuster of head up display
JP2011131651A (en) * 2009-12-22 2011-07-07 Denso Corp Head-up display device
WO2011132407A1 (en) * 2010-04-20 2011-10-27 パナソニック株式会社 Image display device
JP2014203012A (en) * 2013-04-09 2014-10-27 日本精機株式会社 Head-up display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108256179A (en) * 2017-12-29 2018-07-06 沈阳工业大学 A kind of method for predicting material creep curve
CN108256179B (en) * 2017-12-29 2021-06-15 沈阳工业大学 Method for predicting material creep curve

Similar Documents

Publication Publication Date Title
JP6372502B2 (en) Head-up display device
US8970933B2 (en) Head-up display device for vehicle
KR101704366B1 (en) Vehicle headup display device
KR101222414B1 (en) Head up display device for vehicle
JP5093279B2 (en) Head-up display device for vehicle
US9036234B2 (en) Head-up display device for vehicle
JP5488279B2 (en) Head-up display device for vehicle
KR101930188B1 (en) Head-up display device
WO2017051739A1 (en) Head-up display device
JP6468161B2 (en) Head-up display device
JP6520819B2 (en) Display position adjustment unit and head-up display device
JP5799864B2 (en) Head-up display device for vehicle
JP6485344B2 (en) Display position adjustment unit and head-up display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848527

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187007978

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15761897

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016848527

Country of ref document: EP