WO2017049726A1 - 一种基于laa系统的数据传输方法及装置 - Google Patents

一种基于laa系统的数据传输方法及装置 Download PDF

Info

Publication number
WO2017049726A1
WO2017049726A1 PCT/CN2015/093505 CN2015093505W WO2017049726A1 WO 2017049726 A1 WO2017049726 A1 WO 2017049726A1 CN 2015093505 W CN2015093505 W CN 2015093505W WO 2017049726 A1 WO2017049726 A1 WO 2017049726A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
data packet
base station
time slot
uplink transmission
Prior art date
Application number
PCT/CN2015/093505
Other languages
English (en)
French (fr)
Inventor
朱亚军
李明菊
张云飞
Original Assignee
宇龙计算机通信科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇龙计算机通信科技(深圳)有限公司 filed Critical 宇龙计算机通信科技(深圳)有限公司
Publication of WO2017049726A1 publication Critical patent/WO2017049726A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1221Wireless traffic scheduling based on age of data to be sent

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a data transmission method and apparatus based on an LAA system.
  • LAA licensed-assisted access
  • the transmission of mobile communication can be carried on an unlicensed spectrum, such as the 5 GHz band.
  • unlicensed spectrums currently mainly WiFi, Bluetooth, radar, medical and other systems are in use.
  • the direct use of the LTE mechanism on the unlicensed spectrum cannot guarantee the security of the user and the stability of the connection. Therefore, in the LAA mechanism, the licensed spectrum is used to assist in access on the unlicensed spectrum.
  • the base station In order to allocate channel resources reasonably, the base station usually sets a maximum transmission duration for an uplink transmission channel, which causes the terminal to detect that the uplink transmission lane is idle when the terminal is idle at some time, and the remaining transmission time for transmitting data is short. , resulting in a short amount of data that can be transmitted; and at other times when the LBT detects that the uplink transmission lane is idle, the remaining available for transmission.
  • the transmission data has a long transmission time, resulting in a short amount of data that can be transmitted. Therefore, the LAA system in the conventional technology does not have high channel resource utilization when transmitting data under this channel condition.
  • the terminal needs to compete for the use of channel resources, thereby causing the opportunity of uplink transmission of data to be unstable, thereby causing technical problems of insufficient resource utilization of channel resources for uplink data transmission.
  • a data transmission method based on LAA system is proposed.
  • a data transmission method based on LAA system comprising:
  • the data quantity parameter is a data packet number
  • the data packet number is pre-generated identification information of a data packet corresponding to different data volume sizes
  • the step of generating a data packet according to the acquired data volume parameter is:
  • the pre-generated data packet is extracted according to the acquired packet number.
  • the data amount parameter is a modulation coding parameter
  • the step of generating a data packet according to the acquired data volume parameter is:
  • the data amount parameter is a transport block size TBS
  • the step of generating a data packet according to the acquired data volume parameter is:
  • the step of uploading the data packet to the base station by using an uplink transmission channel of the unlicensed spectrum further includes:
  • the data received after the arrival of the upload time slot is parsed according to the size of the cache data.
  • the step of receiving an upload time slot allocated by the base station is:
  • Radio resource control RRC signaling or physical layer signaling of the base station in the licensed frequency band or the unlicensed spectrum and parsing the uplink time slot allocated by the base station.
  • the terminal needs to compete for the use of channel resources, resulting in unstable uplink transmission data, and thus the technical problem of insufficient resource utilization of channel resources for uplink data transmission is proposed.
  • a data transmission device based on the LAA system In order to solve the above-mentioned technical problems in the LAA system, the terminal needs to compete for the use of channel resources, resulting in unstable uplink transmission data, and thus the technical problem of insufficient resource utilization of channel resources for uplink data transmission is proposed.
  • a data transmission device based on the LAA system.
  • a data transmission device based on the LAA system comprising:
  • An upload slot receiving module configured to receive an upload slot allocated by the base station, where the number of the upload slots is at least one;
  • a data quantity parameter setting module configured to generate a data quantity parameter corresponding to a start time of the upload time slot
  • a channel occupancy detecting module configured to detect whether an uplink transmission channel of the unlicensed spectrum is occupied, and acquire, when the first uplink time slot after the uplink transmission channel is not occupied, acquire the uplink time slot The data amount parameter corresponding to the starting time;
  • an uplink transmission module configured to generate a data packet according to the acquired data volume parameter, and upload the data packet to the base station by using an uplink transmission channel of the unlicensed spectrum.
  • the data quantity parameter is a data packet number
  • the data packet number is pre-generated identification information of a data packet corresponding to different data volume sizes
  • the uplink transmission module is configured to extract a pre-generated data packet according to the acquired data packet number.
  • the data amount parameter is a modulation coding parameter
  • the uplink transmission module is configured to encode, according to the acquired modulation and coding parameters, a service data stream of a preset data size to generate a data packet.
  • the data amount parameter is a transport block size TBS
  • the uplink transmission module is configured to extract a service data flow according to the acquired transport block size TBS Generate a data packet;
  • the uplink transmission module is further configured to notify the base station of the first uplink time slot after detecting that the uplink transmission channel is not occupied, and the base station caches the The data received after the arrival of the first upload time slot after the uplink transmission channel is not occupied is detected, and the data packet is parsed according to the size of the cache data.
  • the uploading time slot receiving module is further configured to receive radio resource control RRC signaling or physical layer signaling sent by the base station on the licensed frequency band or the unlicensed spectrum, and parse the uploaded data of the base station. Time slot.
  • the data amount of the data packet transmitted by the terminal to the base station is related to the first arriving upload time slot after the uplink transmission channel detected by the terminal is not occupied, if the base station allocates The plurality of uploading time slots, the first arriving uploading time slot after the detected uplink transmission channel is not occupied, in the plurality of allocated uploading time slots, the higher the time, the data packet uploaded by the terminal to the base station The larger the amount of data; the first arriving upload time slot after the detected uplink transport channel is not occupied is in the plurality of allocated upload time slots, and the later the time, the data packet uploaded by the terminal to the base station The smaller the amount of data.
  • the foregoing method utilizes the channel resources allocated by the base station reasonably and transmits in a longer transmittable time.
  • a data packet with a large amount of data thereby improving the utilization of channel resources.
  • the terminal also transmits the data packet with a small amount of data in a short transmission time, thereby avoiding that the data packet is discarded due to the excessive amount of data and is not transmitted when the transmission time is exceeded, and the transmission is also improved. Efficiency and utilization of channel resources.
  • 1 is a networking diagram of an LAA system in an embodiment
  • FIG. 2 is a flow chart of a data transmission method based on an LAA system in an embodiment
  • FIG. 3 is a schematic diagram of a subframe slot of an OFDM system in an embodiment
  • FIG. 4 is a schematic diagram of a data transmission apparatus based on an LAA system in an embodiment.
  • LAA base station 1 and LAA base station 2 coexist with a WiFi system, wherein the users served by the LAA base station 1 are terminals 1 and 2; The terminal served by the LAA base station 2 is the terminal 3; the terminal served by the WiFi AP is the terminal 4. These three cells can work on the same channel and need to compete to use channel resources.
  • the terminal needs to compete for the use of channel resources, thereby causing the uplink transmission data to be unstable, and thus the technical problem of insufficient resource utilization of channel resources for uplink data transmission is in this case.
  • a data transmission method based on the LAA system is proposed, which can be implemented by a mobile terminal supporting the LAA system.
  • the method includes:
  • Step S102 Receive an uplink time slot allocated by the base station, where the number of the uplink time slots is at least one.
  • the base station may allocate time slot resources on the unlicensed spectrum to the plurality of terminals served by the base station according to the idle condition of the channel resource, so that the terminal can upload to the terminal through the unlicensed spectrum when the corresponding time slot resource arrives. data.
  • FIG. 3 shows an Orthogonal Frequency Division Multiplexing (OFDM) technology, that is, a frame structure in data transmission.
  • the data transmitted by the terminal to the base station is a structure of multiple subframes, and each subframe includes a slot resource.
  • Each subframe contains a plurality of OFDM symbols, and each OFDM symbol corresponds to a corresponding slot resource.
  • the base station may notify the symbol 4 and symbol 11 of the terminal subframe N at the moment of the subframe N-4 (the channel resources of the base station may be used for other services such as downlink data transmission), as the start of the upload data.
  • the base station may send radio resource control RRC signaling or physical layer signaling (both broadcast or separate transmission) to all terminals on the channel in the licensed band or the unlicensed spectrum, and the terminal receives the base station in the licensed band or non-
  • the RRC signaling or the physical layer signaling of the transmitted radio resource on the authorized spectrum is parsed to obtain the uplink time slot allocated by the base station, that is, the symbol 4 and the symbol 11 of the subframe N.
  • Step S104 Generate a data amount parameter corresponding to the start time of the upload time slot.
  • the uplink time slot allocated by the base station is symbol 4 and symbol 11 of the subframe N. Due to the limitation of the maximum transmission time in one subframe, the durations of the transmittable data corresponding to the two time slots of symbol 4 and symbol 11 are different. Therefore, a larger data amount parameter can be set for symbol4, and a smaller data amount parameter can be set for symbol11.
  • a larger data amount parameter corresponds to a larger amount of data that can be transmitted, and a larger data amount parameter corresponds to a smaller amount of data that can be transmitted.
  • the terminal may set the corresponding data quantity parameter according to the number of the OFDM symbol symbol position in the subframe sequence transmitted by the base station according to the upload time slot.
  • Step S106 detecting whether the uplink transmission channel of the unlicensed spectrum is occupied, and acquiring the start time of the upload time slot when detecting that the first uplink time slot after the uplink transmission channel is not occupied arrives Corresponding data volume parameter.
  • the terminal can preset the detection time slot as the time slot position for detecting whether the uplink transmission channel for uploading data to the base station is occupied.
  • the terminal uses the LBT mechanism to detect whether the uplink transmission channel is occupied, and can be detected by using FBE or LBE. Whether other terminals in the uplink transmission channel are uploading data to the base station.
  • the terminal can periodically detect whether the uplink transmission channel is occupied by the LBT mechanism, and the preset detection time slot is a plurality of time slot intervals that arrive periodically, and each time periodically arrives at the detection time slot. At the time of the moment, the above process of detecting whether the uplink transmission channel is occupied may be performed.
  • the LBT mode according to the service requirement, when the detection time slot defined by the upper layer service arrives, the process of detecting whether the uplink transmission channel is occupied is performed.
  • the terminal when the terminal arrives at a time corresponding to a time slot of an OFDM symbol of a preset OFDM subframe, the terminal detects whether the uplink transmission channel is occupied, and the time slot is pre- Set the detection time slot.
  • CCA Clear Channel Assessment
  • a device when a device needs to transmit data on a certain channel, it first receives on the channel. If a device does not find that another device transmits data on the channel after a given time, it determines that the channel is idle. If you find that another device is sending data, try again after a period of random evasion.
  • the method can effectively avoid collisions on the wireless channel, also called Carrier Sense Multiple Access with Conflict Avoidance (CSMA/CA).
  • CSMA/CA Carrier Sense Multiple Access with Conflict Avoidance
  • the uplink time slot allocated by the base station is two timeslots of symbol4 and symbol11 of the subframe N, and if the terminal performs LBT detection at the position of symbol1 of the subframe N, the CCA check is passed.
  • the terminal For the terminal at this moment, if the first upload slot after the detection slot is symbol 4, the data amount parameter corresponding to symbol 4 can be obtained; and if the terminal performs LBT detection at the position of symbol 6 of the subframe N, the terminal passes.
  • the CCA check for the terminal at this moment, the first upload slot after the detection slot is symbol11, and the data amount parameter corresponding to symbol11 can be obtained.
  • Step S108 Generate a data packet according to the acquired data quantity parameter, and upload the data packet to the base station by using an uplink transmission channel of the unlicensed spectrum.
  • the data size parameter determines the size of the uploaded data packet.
  • the generated data packet has a large amount of data. If the first upload time slot after the detection time slot is symbol11, the data amount of the generated data packet is small. Since the data is transmitted at the start time of symbol4, compared with the time when symbol11 is used as the starting time, there are 7 symbol 4 times in the channel occupation time. Therefore, the amount of data that can be transmitted is large, so it can be fully utilized.
  • data amount parameter in the present invention can be defined in various ways, for example:
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the data amount parameter is a data packet number
  • the data packet number is pre-generated identification information of a data packet corresponding to different data volume sizes.
  • the terminal can generate two data packets A and B in advance (intercepted after copying the data through the service data stream), wherein the data amount of the data packet A is large, and the data is large.
  • the data amount of the packet B is small, and the data packet identifier of the data packet A is A, corresponding to symbol4, and the data packet identifier of the data packet B is B, corresponding to symbol11.
  • the step of generating a data packet according to the acquired data volume parameter may be specifically: extracting a pre-generated data packet according to the acquired data packet number.
  • the time slot when the uplink transmission channel of the unlicensed spectrum is not occupied is the symbol 2 of the subframe N
  • the first arriving upload time slot after the uplink transmission channel of the unlicensed spectrum is unoccupied is detected.
  • a pre-generated data packet A with a large amount of data can be obtained, and the data packet A is uploaded to the base station through an uplink transmission channel of the unlicensed spectrum.
  • the time slot when the uplink transmission channel of the unlicensed spectrum is not occupied is the symbol 6 of the subframe N, if the uplink time slot of the unlicensed spectrum is not occupied, the first arriving time slot is symbol11.
  • a pre-generated data packet B with a small amount of data can be obtained, and the data packet B is uploaded to the base station through an uplink transmission channel of the unlicensed spectrum.
  • the terminal transmits the data packet A with a large amount of data in a long transmission time, thereby improving the utilization of channel resources.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the data quantity parameter is a modulation and coding parameter
  • the step of generating a data packet according to the acquired data quantity parameter may be specifically: a service according to the acquired modulation and coding parameter to a preset data size
  • the data stream is encoded to generate a data packet.
  • the terminal may generate two modulation coding parameters A and modulation coding parameters B in advance, wherein the compression coding parameter A has a small compression ratio, corresponding to the upload time slot symbol4. No. symbol4; the modulation coding parameter B has a large compression ratio, corresponding to the number symbol11 of the upload slot symbol11.
  • the time slot when the uplink transmission channel of the unlicensed spectrum is unoccupied is the symbol 2 of the subframe N
  • the uplink time slot of the unlicensed spectrum is not occupied, the first arriving time slot is symbol 4
  • the modulation coding parameter A with a small compression ratio can be obtained, and then the data packet of the preset data size is encoded according to the modulation and coding parameter A, and the data packet obtained after the coding has a small compression ratio, so the reliability of the transmission is high.
  • the encoded packet is then passed through the unlicensed spectrum.
  • the uplink transmission channel is uploaded to the base station.
  • the time slot when the uplink transmission channel of the unlicensed spectrum is not occupied is the symbol 6 of the subframe N
  • the uplink time slot of the unlicensed spectrum is not occupied, the first arriving time slot is symbol11.
  • the modulation coding parameter B with a large compression ratio can be obtained, and then the data packet of the preset data size is encoded according to the modulation and coding parameter B, and the data packet obtained after the coding is obtained, and the reliability of the transmission is low due to the large compression ratio. Then, the encoded data packet is uploaded to the base station through the uplink transmission channel of the unlicensed spectrum.
  • the terminal transmits a data packet encoded by the modulation coding parameter A with a large amount of data in a long transmission time, thereby improving the reliability of channel transmission.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the data amount parameter is a transport block size TBS (English: Transmission Block Size, that is, a data size that can be transmitted on one transmission resource).
  • TBS Transport Block Size
  • the step of generating a data packet according to the acquired data quantity parameter may be specifically: encoding, according to the acquired modulation and coding parameter, a service data stream of a preset data size to generate a data packet.
  • the terminal may generate two transport block sizes TBS1 and a transport block size TBS2 in advance, where TBS1 is larger, corresponding to the number of symbol 4 of the upload time slot symbol4; TBS2 is smaller Corresponding to the number symbol11 of the upload slot symbol11.
  • the time slot when the uplink transmission channel of the unlicensed spectrum is unoccupied is the symbol 2 of the subframe N
  • the uplink time slot of the unlicensed spectrum is not occupied, the first arriving time slot is symbol 4, then A larger TBS1 can be obtained, and then the data packet is loaded according to TBS1, that is, the size of the data packet is limited by TBS1, and then the encoded data packet is uploaded to the base station through the uplink transmission channel of the unlicensed spectrum.
  • the time slot when the uplink transmission channel of the unlicensed spectrum is not occupied is the symbol 6 of the subframe N
  • the uplink time slot of the unlicensed spectrum is not occupied, the first arriving time slot is symbol11.
  • a smaller TBS2 can be obtained, and then the data packet is loaded according to TBS2, that is, the size of the data packet is limited by TBS2, and then the encoded data packet is uploaded to the base station through the uplink transmission channel of the unlicensed spectrum.
  • the terminal transmits a maximum amount of data that can be TBS1 (larger) during a longer transmission time. According to the package, the utilization of channel resources is improved.
  • the terminal transmits a data packet with a maximum amount of TBS2 (small) in a short transmission time, so that the TBS2 data packet can be transmitted in a short transmission time without being discarded, and the data is also improved. The efficiency of the transmission.
  • the step of the terminal uploading the data packet to the base station by using an uplink transmission channel of the unlicensed spectrum further includes:
  • the data received after the arrival of the upload time slot is parsed according to the size of the cache data.
  • the terminal if the terminal starts to upload data in the upload time slot of the symbol 4 of the subframe N, the terminal notifies the base station to the symbol 4, and the base station buffers all the data uploaded by the subframe N, and then according to the real transmission time reported by the terminal, That is, symbol4, thereby obtaining the amount of data of the uploaded data packet, thereby demodulating or decoding the buffered data packet; if the terminal starts uploading data in the uploading time slot of symbol11, the terminal notifies the base station of symbol11, and the base station buffers (buffer) All the data uploaded by the subframe N, thereby obtaining the data amount of the uploaded data packet, so that the buffered data packet can be demodulated or decoded according to the size of the buffered data amount.
  • a data transmission apparatus based on the LAA system includes an upload slot receiving module 102, a data amount parameter setting module 104, a channel occupancy detecting module 106, and an uplink transmission.
  • Module 108 wherein:
  • the upload time slot receiving module 102 is configured to receive an upload time slot allocated by the base station, where the number of the upload time slots is at least one.
  • the data amount parameter setting module 104 is configured to generate a data amount parameter corresponding to a start time of the upload time slot.
  • the channel occupancy detecting module 106 is configured to detect whether an uplink transmission channel of the unlicensed spectrum is occupied, and acquire the time when the first uplink time slot after the uplink transmission channel is not occupied is acquired The data amount parameter corresponding to the start time of the gap.
  • the uplink transmission module 108 is configured to generate a data packet according to the acquired data quantity parameter, by using the The uplink transmission channel of the unlicensed spectrum uploads the data packet to the base station.
  • the data volume parameter is a data packet number
  • the data packet number is pre-generated identification information of a data packet corresponding to different data volume sizes.
  • the uplink transmission module 108 is configured to extract a pre-generated data packet according to the acquired data packet number.
  • the data amount parameter is a modulation coding parameter.
  • the uplink transmission module 108 is configured to encode a service data stream of a preset data size according to the acquired modulation and coding parameters to generate a data packet.
  • the data amount parameter is a transport block size TBS.
  • the uplink transmission module 108 is configured to extract a service data stream to generate a data packet according to the obtained transport block size TBS;
  • the uplink transmission module 108 is further configured to notify the base station of the first uplink time slot after detecting that the uplink transmission channel is not occupied, where the base station caches the detected The data received after the arrival of the first uplink time slot after the uplink transmission channel is not occupied, and parsing the data packet according to the size of the cache data.
  • the upload slot receiving module 102 is further configured to receive radio resource control RRC signaling or physical layer signaling sent by the base station on the licensed frequency band or the unlicensed spectrum, and parse the uplink time slot allocated by the base station. .
  • the data amount of the data packet transmitted by the terminal to the base station is related to the first arriving upload time slot after the uplink transmission channel detected by the terminal is not occupied, if the base station allocates The plurality of uploading time slots, the first arriving uploading time slot after the detected uplink transmission channel is not occupied, in the plurality of allocated uploading time slots, the higher the time, the data packet uploaded by the terminal to the base station The larger the amount of data; the first arriving upload time slot after the detected uplink transport channel is not occupied is in the plurality of allocated upload time slots, and the later the time, the data packet uploaded by the terminal to the base station The smaller the amount of data.
  • the foregoing method utilizes the channel resources allocated by the base station reasonably and transmits in a longer transmittable time.
  • a data packet with a large amount of data thereby improving the benefit of channel resources.
  • the terminal also transmits the data packet with a small amount of data in a short transmission time, thereby avoiding that the data packet is discarded due to the excessive amount of data and is not transmitted when the transmission time is exceeded, and the transmission is also improved.
  • Efficiency and utilization of channel resources are efficient and utilization of channel resources.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种基于LAA系统的数据传输方法,包括:接收基站分配的上传时隙,所述上传时隙的数量为至少一个;生成与所述上传时隙的起始时刻对应的数据量参数;检测非授权频谱的上行传输信道是否被占用,在检测到所述上行传输信道未被占用之后的第一个所述上传时隙抵达时,获取与所述上传时隙的起始时刻对应的数据量参数;根据所述获取到的数据量参数生成数据包,通过所述非授权频谱的上行传输信道向所述基站上传所述数据包。本发明还公开了一种基于LAA系统的数据传输装置。本发明中基于LAA系统的数据传输方法及装置可以提高信道资源的资源利用率。

Description

一种基于LAA系统的数据传输方法及装置 技术领域
本发明涉及通信技术领域,尤其涉及一种基于LAA系统的数据传输方法及装置。
背景技术
随着移动业务的快速发展,现有的分配给移动业务的无线频谱的容量已经无法满足要求了。在3GPP Rel-13阶段,一种称作LAA(licensed-assisted access)的机制被引入了。在LAA机制中,移动通信的传输可以在非授权频谱上承载,如5GHz的频段。在这些非授权频谱上,目前主要是WiFi,蓝牙,雷达,医疗等系统在使用。
由于非授权频谱上系统的多样性和复杂性,直接把LTE的机制用于非授权频谱上是无法保证用户的安全性以及连接的稳定性的。因此,在LAA的机制中,使用授权频谱来帮助非授权频谱上的接入。
在LAA系统中,为了保证与其他系统的公平共享非授权频谱。一种先听后说(listen before talk)的机制被引入了。也就是说在发送数据之前,需要发送端去检测信道是否空闲。当信道空闲的时候才能够去发送数据。LBT机制的使用大致分为两种方法,一种是FBE(Frame-Based Equipment),一种是LBE(Load-Based Equipment)。FBE的情况下,可以使得不同的发送端可以在相对固定的时间去检测信道,从而提高了复用的机会;然而占用频谱的机会可能较少;LBE可以由业务驱动,随时的去检测信道,提高了信道占用的机会,然而无法保证发送端在同一个时刻去占用信道,因为无法保证不同发送端的复用。
也就是说,在现有的LAA系统中,由于需要去竞争使用信道,导致信道占用的时刻是无法预知的。基站为了合理地分配信道资源,通常也为某一个上行传输信道设置最大传输时长,这就使得终端在某些时刻通过LBT检测到上行传输行道空闲时,剩余的可用于传输数据的传输时长较短,导致可传输的数据量较短;而在另一些时刻通过LBT检测到上行传输行道空闲时,剩余的可用于传 输数据的传输时长较长,导致可传输的数据量较短。因此,传统技术中的LAA系统在此信道状况下传输数据时的信道资源利用率不高。
发明内容
基于此,为解决上述提到的传统技术中的LAA系统中,终端需要竞争使用信道资源从而导致上行传输数据的机会不稳定,从而导致的上行数据传输的信道资源的资源利用率不足的技术问题,特提出了一种基于LAA系统的数据传输方法。
一种基于LAA系统的数据传输方法,包括:
接收基站分配的上传时隙,所述上传时隙的数量为至少一个;
生成与所述上传时隙的起始时刻对应的数据量参数;
检测非授权频谱的上行传输信道是否被占用,在检测到所述上行传输信道未被占用之后的第一个所述上传时隙抵达时,获取与所述上传时隙的起始时刻对应的数据量参数;
根据所述获取到的数据量参数生成数据包,通过所述非授权频谱的上行传输信道向所述基站上传所述数据包。
在其中一个实施例中,所述数据量参数为数据包编号,所述数据包编号为预先生成的对应不同数据量大小的数据包的标识信息;
所述根据所述获取到的数据量参数生成数据包的步骤为:
根据所述获取到的数据包编号提取预先生成的数据包。
在其中一个实施例中,所述数据量参数为调制编码参数;
所述根据所述获取到的数据量参数生成数据包的步骤为:
根据所述获取到的调制编码参数对预设数据量大小的业务数据流进行编码生成数据包。
在其中一个实施例中,所述数据量参数为传输块大小TBS;
所述根据所述获取到的数据量参数生成数据包的步骤为:
根据所述获取到的传输块大小TBS提取业务数据流生成数据包;
在其中一个实施例中,所述通过所述非授权频谱的上行传输信道向所述基站上传所述数据包的步骤还包括:
将所述在检测到所述上行传输信道未被占用之后的第一个所述上传时隙通知给基站,所述基站缓存所述在检测到所述上行传输信道未被占用之后的第一个所述上传时隙抵达后接收的数据,根据缓存数据的大小对数据包进行解析。
在其中一个实施例中,所述接收基站分配的上传时隙的步骤为:
接收基站在授权频段或非授权频谱上的发送的无线资源控制RRC信令或物理层信令,解析得到所述基站分配的上传时隙。
为解决上述提到的传统技术中的LAA系统中,终端需要竞争使用信道资源从而导致上行传输数据的机会不稳定,从而导致的上行数据传输的信道资源的资源利用率不足的技术问题,特提出了一种基于LAA系统的数据传输装置。
一种基于LAA系统的数据传输装置,包括:
上传时隙接收模块,用于接收基站分配的上传时隙,所述上传时隙的数量为至少一个;
数据量参数设置模块,用于生成与所述上传时隙的起始时刻对应的数据量参数;
信道占用检测模块,用于检测非授权频谱的上行传输信道是否被占用,在检测到所述上行传输信道未被占用之后的第一个所述上传时隙抵达时,获取与所述上传时隙的起始时刻对应的数据量参数;
上行传输模块,用于根据所述获取到的数据量参数生成数据包,通过所述非授权频谱的上行传输信道向所述基站上传所述数据包。
在其中一个实施例中,所述数据量参数为数据包编号,所述数据包编号为预先生成的对应不同数据量大小的数据包的标识信息;
所述上行传输模块用于根据所述获取到的数据包编号提取预先生成的数据包。
在其中一个实施例中,所述数据量参数为调制编码参数;
所述上行传输模块用于根据所述获取到的调制编码参数对预设数据量大小的业务数据流进行编码生成数据包。
在其中一个实施例中,所述数据量参数为传输块大小TBS;
所述上行传输模块用于根据所述获取到的传输块大小TBS提取业务数据流 生成数据包;
在其中一个实施例中,所述上行传输模块还用于将所述在检测到所述上行传输信道未被占用之后的第一个所述上传时隙通知给基站,所述基站缓存所述在检测到所述上行传输信道未被占用之后的第一个所述上传时隙抵达后接收的数据,根据缓存数据的大小对数据包进行解析。
在其中一个实施例中,所述上传时隙接收模块还用于接收基站在授权频段或非授权频谱上的发送的无线资源控制RRC信令或物理层信令,解析得到所述基站分配的上传时隙。
实施本发明实施例,将具有如下有益效果:
在上述基于LAA系统的数据传输方法即装置中,终端向基站上传的数据包的数据量与终端检测到的上行传输信道未被占用之后的第一个抵达的上传时隙相关,若基站分配了多个上传时隙,则检测到的上行传输信道未被占用之后的第一个抵达的上传时隙在这多个分配的上传时隙中,时间越靠前,则终端向基站上传的数据包的数据量越大;检测到的上行传输信道未被占用之后的第一个抵达的上传时隙在这多个分配的上传时隙中,时间越靠后,则终端向基站上传的数据包的数据量越小。由于基站分配的多个上传时隙中,时间靠前的上传时隙对应的可传输时间较长,因此,上述方法合理地利用了基站分配的信道资源,在较长的可传输时间内传输了数据量较大的数据包,从而提高了信道资源的利用率。同时,也使得终端在较短的可传输时间内传输了数据量较小的数据包,从而避免了数据包由于数据量过大而在超出可传输时间未传输完毕时被丢弃,也提高了传输的效率以及信道资源的利用率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
其中:
图1为一个实施例中一种LAA系统的组网图;
图2为一个实施例中一种基于LAA系统的数据传输方法流程图;
图3为一个实施例中OFDM系统的子帧时隙的示意图;
图4为一个实施例中一种基于LAA系统的数据传输装置的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
传统技术中,以图1中的部署场景为例,考虑了两个LAA小区(LAA基站1和LAA基站2)与一个WiFi系统共存的例子,其中LAA基站1服务的用户是终端1和2;LAA基站2服务的终端是终端3;WiFi的AP服务的终端是终端4。这三个小区可以工作在相同的信道上,需要竞争去使用信道资源。
为解决上述提到的传统技术中的LAA系统中,终端需要竞争使用信道资源从而导致上行传输数据的机会不稳定,从而导致的上行数据传输的信道资源的资源利用率不足的技术问题,在本实施例中,提出了一种基于LAA系统的数据传输方法,该方法可依赖于支持LAA系统的移动终端实现。
具体的,如图2所示,该方法包括:
步骤S102:接收基站分配的上传时隙,所述上传时隙的数量为至少一个。
在本实施例中,基站可根据信道资源的空闲情况为其服务的多个终端分配非授权频谱上的时隙资源,使得终端能够在相应的时隙资源抵达时,通过非授权频谱向终端上传数据。
如图3所示,图3展示了正交频分复用技术(英文:Orthogonal Frequency Division Multiplexing,简称:OFDM)即数据传输中的帧结构。终端向基站发送的数据为多个子帧的结构,每个子帧包含有时隙资源。每个子帧包含有多个OFDM符号(symbol),每个OFDM symbol即对应相应的时隙资源。
例如,基站可在子帧N-4(此时基站的信道资源可能用于下行数据传输等其他业务)的时刻通知终端子帧N的symbol4和symbol11两个时隙位置可作为上传数据的起始时间位置,基站可在授权频段或非授权频谱上发送无线资源控制RRC信令或物理层信令发送(广播或单独发送均可)给该信道上的所有终端,终端接收基站在授权频段或非授权频谱上的发送的无线资源控制RRC信令或物理层信令,解析得到所述基站分配的上传时隙,即子帧N的symbol4和symbol11两个时隙。
步骤S104:生成与所述上传时隙的起始时刻对应的数据量参数。
在本实施例中,为了更好地利用信道资源,对于不同的上传时隙的起始时刻设置有不同的数据量参数。如上例中,基站分配的上传时隙为子帧N的symbol4和symbol11两个时隙,由于一个子帧内最大传输时间的限制,symbol4和symbol11两个时隙对应的可传输数据的时长不同,因此,对于symbol4可设置较大的数据量参数,对于symbol11可设置较小的数据量参数。较大的数据量参数对应着可传输较多的数据量,较大的数据量参数对应着可传输较少的数据量。
也就是说,终端在接收到基站分配的多个上传时隙之后,则可根据上传时隙在基站传输的子帧序列中的OFDM符号symbol位置的编号设置相应的数据量参数。
步骤S106:检测非授权频谱的上行传输信道是否被占用,在检测到所述上行传输信道未被占用之后的第一个所述上传时隙抵达时,获取与所述上传时隙的起始时刻对应的数据量参数。
LAA系统中,终端可预先设定检测时隙作为检测向基站上传数据的上行传输信道是否被占用的时隙位置,终端采用LBT机制检测上行传输信道是否被占用,可采用FBE或LBE的方式检测上行传输信道中是否有其他终端在向基站上传数据。在FBE方式中,终端可周期性地通过LBT机制检测上行传输信道是否被占用,预设的检测时隙即为周期性抵达的多个时隙区间,每当周期性地抵达检测时隙所对应的时刻时,均可执行上述检测上行传输信道是否被占用的过程。而在LBT的方式中,可根据业务需要,在上层业务定义的检测时隙抵达时,执行上述检测上行传输信道是否被占用的过程。
如图3所示,在LAA系统中,终端可在预设的某个OFDM子帧的某个OFDM symbol的时隙对应的时刻抵达时,检测上行传输信道是否被占用,该时隙即为预设的检测时隙。
在本实施例中,可通过空闲信道评估(英文:Clear Channel Assessment,简称:CCA)检测上行传输信道是否被占用。在无线通信系统中,当设备需要在某一信道上发送数据之前,首先在这个频道上进行接收,如果经过给定的时间,没有发现有其它设备在此频道上发送数据,则判定该信道空闲;如果发现有其他设备在发送数据,则随机避让一段时间后再次重试此过程。该方法能够有效地避免无线信道上的冲突,也叫做带有冲突避免的载频侦听多路访问(Carrier Sense Multiple Access with Conflict Avoidance,CSMA/CA)。
如上例中,如图3所示,基站分配的上传时隙为子帧N的symbol4和symbol11两个时隙,则若终端在子帧N的symbol1的位置进行LBT检测,通过了CCA校验,对于此时刻的终端而言,检测时隙之后的第一个上传时隙即为symbol4,则可获取symbol4对应的数据量参数;而若终端在子帧N的symbol6的位置进行LBT检测,通过了CCA校验,对于此时刻的终端而言,检测时隙之后的第一个上传时隙即为symbol11,则可获取symbol11对应的数据量参数。
步骤S108:根据所述获取到的数据量参数生成数据包,通过所述非授权频谱的上行传输信道向所述基站上传所述数据包。
如前所述,数据量参数决定了上传的数据包的大小,在本实施例中,若检测时隙之后的第一个上传时隙即为symbol4,则生成的数据包的数据量较大,若检测时隙之后的第一个上传时隙即为symbol11,则生成的数据包的数据量较小。由于以symbol4为起始时刻发送数据相比于以symbol11为起始时刻发送数据,信道占用时间上多出了7个symbol4时隙,因此,可传输的数据量本身就较大,因此可充分利用基站分配的信道资源,而若以symbol11为起始时刻发送较少的数据,可防止数据块发送不完整而导致发送失败,因此也提高了传输效率。
另外,本发明中的数据量参数可以采用多种方式来定义,例如:
实施例一:
在该实施例中,数据量参数为数据包编号,数据包编号为预先生成的对应不同数据量大小的数据包的标识信息。
也就是说,在基站分配了symbol4和symbol11作为上传时隙之后,终端可预先生成两个数据包A和B(通过业务数据流拷贝数据后截取),其中数据包A的数据量较大,数据包B的数据量较小,数据包A的数据包标识即为A,对应symbol4,数据包B的数据包标识即为B,对应symbol11。
根据所述获取到的数据量参数生成数据包的步骤则可具体为:根据所述获取到的数据包编号提取预先生成的数据包。
也就是说,若检测到非授权频谱的上行传输信道未被占用时的时隙为子帧N的symbol2,则检测到非授权频谱的上行传输信道未被占用之后第一个抵达的上传时隙为symbol4,则可获取数据量较大的预生成的数据包A,将数据包A通过非授权频谱的上行传输信道上传至基站。
若检测到非授权频谱的上行传输信道未被占用时的时隙为子帧N的symbol6,则检测到非授权频谱的上行传输信道未被占用之后第一个抵达的上传时隙为symbol11,则可获取数据量较小的预生成的数据包B,将数据包B通过非授权频谱的上行传输信道上传至基站。
因此,终端在较长的传输时间内传输了数据量较大的数据包A,从而提高了信道资源的利用率。
实施例二:
在该实施例中,数据量参数为调制编码参数;根据所述获取到的数据量参数生成数据包的步骤则可具体为:根据所述获取到的调制编码参数对预设数据量大小的业务数据流进行编码生成数据包。
也就是说,在基站分配了symbol4和symbol11作为上传时隙之后,终端可预先生成两个调制编码参数A和调制编码参数B,其中调制编码参数A的压缩比例较小,对应上传时隙symbol4的编号symbol4;调制编码参数B的压缩比例较大,对应上传时隙symbol11的编号symbol11。
若检测到非授权频谱的上行传输信道未被占用时的时隙为子帧N的symbol2,则检测到非授权频谱的上行传输信道未被占用之后第一个抵达的上传时隙为symbol4,则可获取压缩比例较小的调制编码参数A,然后根据调制编码参数A对预设数据量大小的数据包进行编码,编码后得到的数据包由于压缩比例较小,因此传输的可靠性较高,然后将编码后得到的数据包通过非授权频谱 的上行传输信道上传至基站。
若检测到非授权频谱的上行传输信道未被占用时的时隙为子帧N的symbol6,则检测到非授权频谱的上行传输信道未被占用之后第一个抵达的上传时隙为symbol11,则可获取压缩比例较大的调制编码参数B,然后根据调制编码参数B对预设数据量大小的数据包进行编码,编码后得到得而数据包由于压缩比例较大,因此传输的可靠性较低,然后将编码后得到的数据包通过非授权频谱的上行传输信道上传至基站。
因此,终端在较长的传输时间内传输了数据量较大的通过调制编码参数A编码的数据包,从而提高了信道传输的可靠性。
实施例三:
在该实施例中,数据量参数为传输块大小TBS(英文:Transmission Block Size,即一个传输资源上可以传输的数据大小)。根据所述获取到的数据量参数生成数据包的步骤则可具体为:根据所述获取到的调制编码参数对预设数据量大小的业务数据流进行编码生成数据包。
也就是说,在基站分配了symbol4和symbol11作为上传时隙之后,终端可预先生成两个传输块大小TBS1和传输块大小TBS2,其中TBS1较大,对应上传时隙symbol4的编号symbol4;TBS2较小,对应上传时隙symbol11的编号symbol11。
若检测到非授权频谱的上行传输信道未被占用时的时隙为子帧N的symbol2,则检测到非授权频谱的上行传输信道未被占用之后第一个抵达的上传时隙为symbol4,则可获取较大的TBS1,然后根据TBS1装填数据包,即数据包的大小为TBS1限定的大小,然后将编码后得到的数据包通过非授权频谱的上行传输信道上传至基站。
若检测到非授权频谱的上行传输信道未被占用时的时隙为子帧N的symbol6,则检测到非授权频谱的上行传输信道未被占用之后第一个抵达的上传时隙为symbol11,则可获取较小的TBS2,然后根据TBS2装填数据包,即数据包的大小为TBS2限定的大小,然后将编码后得到的数据包通过非授权频谱的上行传输信道上传至基站。
因此,终端在较长的传输时间内传输了数据量最多可为TBS1(较大)的数 据包,从而提高了信道资源的利用率。而终端在较短的传输时间内传输了数据量最多可为TBS2(较小)的数据包,使得TBS2的数据包可在较短的传输时间内传输完毕而不会造成丢弃,也提高了数据传输的效率。
另外,在本实施例中,终端通过非授权频谱的上行传输信道向所述基站上传所述数据包的步骤还包括:
将所述在检测到所述上行传输信道未被占用之后的第一个所述上传时隙通知给基站,所述基站缓存所述在检测到所述上行传输信道未被占用之后的第一个所述上传时隙抵达后接收的数据,根据缓存数据的大小对数据包进行解析。
也就是说,终端若在子帧N的symbol4的上传时隙开始上传数据,则终端将symbol4通知基站,基站缓存(buffer)子帧N上传的所有数据,然后根据终端上报的真实的传输时刻,即symbol4,从而得到上传的数据包的数据量的大小,从而对缓存的数据包进行解调或解码;终端若在symbol11的上传时隙开始上传数据,则终端将symbol11通知基站,基站缓存(buffer)子帧N上传的的所有数据,从而得到上传的数据包的数据量的大小,从而可根据缓存的数据量的大小对缓存的数据包进行解调或解码。
此外,为解决上述提到的传统技术中的LAA系统中,终端需要竞争使用信道资源从而导致上行传输数据的机会不稳定,从而导致的上行数据传输的信道资源的资源利用率不足的技术问题,在一个实施例中,如图4所示,还提出了一种基于LAA系统的数据传输装置,该装置包括上传时隙接收模块102、数据量参数设置模块104、信道占用检测模块106和上行传输模块108,其中:
上传时隙接收模块102,用于接收基站分配的上传时隙,所述上传时隙的数量为至少一个。
数据量参数设置模块104,用于生成与所述上传时隙的起始时刻对应的数据量参数。
信道占用检测模块106,用于检测非授权频谱的上行传输信道是否被占用,在检测到所述上行传输信道未被占用之后的第一个所述上传时隙抵达时,获取与所述上传时隙的起始时刻对应的数据量参数。
上行传输模块108,用于根据所述获取到的数据量参数生成数据包,通过所 述非授权频谱的上行传输信道向所述基站上传所述数据包。
在一个实施例中,数据量参数为数据包编号,所述数据包编号为预先生成的对应不同数据量大小的数据包的标识信息。
上行传输模块108用于根据所述获取到的数据包编号提取预先生成的数据包。
在一个实施例中,数据量参数为调制编码参数。
上行传输模块108用于根据所述获取到的调制编码参数对预设数据量大小的业务数据流进行编码生成数据包。
在一个实施例中,数据量参数为传输块大小TBS。
上行传输模块108用于根据所述获取到的传输块大小TBS提取业务数据流生成数据包;
在一个实施例中,上行传输模块108还用于将所述在检测到所述上行传输信道未被占用之后的第一个所述上传时隙通知给基站,所述基站缓存所述在检测到所述上行传输信道未被占用之后的第一个所述上传时隙抵达后接收的数据,根据缓存数据的大小对数据包进行解析。
在一个实施例中,上传时隙接收模块102还用于接收基站在授权频段或非授权频谱上的发送的无线资源控制RRC信令或物理层信令,解析得到所述基站分配的上传时隙。
实施本发明实施例,将具有如下有益效果:
在上述基于LAA系统的数据传输方法即装置中,终端向基站上传的数据包的数据量与终端检测到的上行传输信道未被占用之后的第一个抵达的上传时隙相关,若基站分配了多个上传时隙,则检测到的上行传输信道未被占用之后的第一个抵达的上传时隙在这多个分配的上传时隙中,时间越靠前,则终端向基站上传的数据包的数据量越大;检测到的上行传输信道未被占用之后的第一个抵达的上传时隙在这多个分配的上传时隙中,时间越靠后,则终端向基站上传的数据包的数据量越小。由于基站分配的多个上传时隙中,时间靠前的上传时隙对应的可传输时间较长,因此,上述方法合理地利用了基站分配的信道资源,在较长的可传输时间内传输了数据量较大的数据包,从而提高了信道资源的利 用率。同时,也使得终端在较短的可传输时间内传输了数据量较小的数据包,从而避免了数据包由于数据量过大而在超出可传输时间未传输完毕时被丢弃,也提高了传输的效率以及信道资源的利用率。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (12)

  1. 一种基于LAA系统的数据传输方法,其特征在于,包括:
    接收基站分配的上传时隙,所述上传时隙的数量为至少一个;
    生成与所述上传时隙的起始时刻对应的数据量参数;
    检测非授权频谱的上行传输信道是否被占用,在检测到所述上行传输信道未被占用之后的第一个所述上传时隙抵达时,获取与所述上传时隙的起始时刻对应的数据量参数;
    根据所述获取到的数据量参数生成数据包,通过所述非授权频谱的上行传输信道向所述基站上传所述数据包。
  2. 根据权利要求1所述的基于LAA系统的数据传输方法,其特征在于,所述数据量参数为数据包编号,所述数据包编号为预先生成的对应不同数据量大小的数据包的标识信息;
    所述根据所述获取到的数据量参数生成数据包的步骤为:
    根据所述获取到的数据包编号提取预先生成的数据包。
  3. 根据权利要求1所述的基于LAA系统的数据传输方法,其特征在于,所述数据量参数为调制编码参数;
    所述根据所述获取到的数据量参数生成数据包的步骤为:
    根据所述获取到的调制编码参数对预设数据量大小的业务数据流进行编码生成数据包。
  4. 根据权利要求1所述的基于LAA系统的数据传输方法,其特征在于,所述数据量参数为传输块大小TBS;
    所述根据所述获取到的数据量参数生成数据包的步骤为:
    根据所述获取到的传输块大小TBS提取业务数据流生成数据包。
  5. 根据权利要求1所述的基于LAA系统的数据传输方法,其特征在于,所述通过所述非授权频谱的上行传输信道向所述基站上传所述数据包的步骤还包括:
    将所述在检测到所述上行传输信道未被占用之后的第一个所述上传时隙通知给基站,所述基站缓存所述在检测到所述上行传输信道未被占用之后的第一 个所述上传时隙抵达后接收的数据,根据缓存数据的大小对数据包进行解析。
  6. 根据权利要求1所述的基于LAA系统的数据传输方法,其特征在于,所述接收基站分配的上传时隙的步骤为:
    接收基站在授权频段或非授权频谱上的发送的无线资源控制RRC信令或物理层信令,解析得到所述基站分配的上传时隙。
  7. 一种基于LAA系统的数据传输装置,其特征在于,包括:
    上传时隙接收模块,用于接收基站分配的上传时隙,所述上传时隙的数量为至少一个;
    数据量参数设置模块,用于生成与所述上传时隙的起始时刻对应的数据量参数;
    信道占用检测模块,用于检测非授权频谱的上行传输信道是否被占用,在检测到所述上行传输信道未被占用之后的第一个所述上传时隙抵达时,获取与所述上传时隙的起始时刻对应的数据量参数;
    上行传输模块,用于根据所述获取到的数据量参数生成数据包,通过所述非授权频谱的上行传输信道向所述基站上传所述数据包。
  8. 根据权利要求7所述的基于LAA系统的数据传输装置,其特征在于,所述数据量参数为数据包编号,所述数据包编号为预先生成的对应不同数据量大小的数据包的标识信息;
    所述上行传输模块用于根据所述获取到的数据包编号提取预先生成的数据包。
  9. 根据权利要求7所述的基于LAA系统的数据传输装置,其特征在于,所述数据量参数为调制编码参数;
    所述上行传输模块用于根据所述获取到的调制编码参数对预设数据量大小的业务数据流进行编码生成数据包。
  10. 根据权利要求7所述的基于LAA系统的数据传输装置,其特征在于,所述数据量参数为传输块大小TBS;
    所述上行传输模块用于根据所述获取到的传输块大小TBS提取业务数据流生成数据包。
  11. 根据权利要求7所述的基于LAA系统的数据传输装置,其特征在于,所述上行传输模块还用于将所述在检测到所述上行传输信道未被占用之后的第一个所述上传时隙通知给基站,所述基站缓存所述在检测到所述上行传输信道未被占用之后的第一个所述上传时隙抵达后接收的数据,根据缓存数据的大小对数据包进行解析。
  12. 根据权利要求7所述的基于LAA系统的数据传输装置,其特征在于,所述上传时隙接收模块还用于接收基站在授权频段或非授权频谱上的发送的无线资源控制RRC信令或物理层信令,解析得到所述基站分配的上传时隙。
PCT/CN2015/093505 2015-09-25 2015-10-31 一种基于laa系统的数据传输方法及装置 WO2017049726A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510624311.XA CN105307180B (zh) 2015-09-25 2015-09-25 一种基于laa系统的数据传输方法及装置
CN201510624311.X 2015-09-25

Publications (1)

Publication Number Publication Date
WO2017049726A1 true WO2017049726A1 (zh) 2017-03-30

Family

ID=55203817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/093505 WO2017049726A1 (zh) 2015-09-25 2015-10-31 一种基于laa系统的数据传输方法及装置

Country Status (2)

Country Link
CN (1) CN105307180B (zh)
WO (1) WO2017049726A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106160967A (zh) * 2015-03-30 2016-11-23 中兴通讯股份有限公司 一种非授权资源的传输方法和装置
WO2017132953A1 (zh) * 2016-02-04 2017-08-10 华为技术有限公司 Laa-lte系统中pusch的传输方法和用户设备
CN108605319A (zh) * 2016-04-01 2018-09-28 华为技术有限公司 一种上行信息的传输方法及设备、系统
CN109076571B (zh) * 2016-05-09 2021-02-12 华为技术有限公司 一种控制信息的处理方法、基站及终端
GB2550200B (en) * 2016-05-13 2021-08-04 Tcl Communication Ltd Methods and devices for supporting access to unlicensed radio resources in wireless communication systems
WO2017214980A1 (zh) * 2016-06-17 2017-12-21 华为技术有限公司 数据传输方法及装置
JP6663518B2 (ja) * 2016-06-28 2020-03-11 華為技術有限公司Huawei Technologies Co.,Ltd. アンライセンス周波数バンドにおける通信方法、端末デバイス及びネットワーク・デバイス
WO2018058562A1 (en) * 2016-09-30 2018-04-05 Qualcomm Incorporated Autonomous uplink in multefire
CN110999164A (zh) * 2017-07-21 2020-04-10 日本电气株式会社 用于基于授权辅助访问的数据通信的方法和设备
CN109495923B (zh) * 2017-09-11 2021-09-07 中兴通讯股份有限公司 一种cca检测方法、装置、存储介质和终端
CN109803388B (zh) * 2017-11-17 2023-07-25 上海诺基亚贝尔股份有限公司 用于非授权频带通信的方法、设备和计算机可读存储介质
CN110087314B (zh) * 2018-01-25 2023-07-25 上海诺基亚贝尔股份有限公司 用于非授权频带传输的方法、设备和计算机可读存储介质
CN110392432B (zh) * 2018-04-20 2023-04-25 展讯通信(上海)有限公司 上行数据传输方法及装置
CN110972327B (zh) * 2018-09-28 2022-03-11 维沃移动通信有限公司 基于非授权频段的信号传输方法和通信设备
CN111107628A (zh) * 2018-10-25 2020-05-05 普天信息技术有限公司 一种数据传输方法及装置
CN110753370B (zh) * 2019-09-12 2022-12-16 海能达通信股份有限公司 数据传输方法及其系统以及基站、终端和存储装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2494132A (en) * 2011-08-30 2013-03-06 Renesas Mobile Corp Allocating unique sensing periods to terminal devices during which it senses an uplink time-frequency resource for a conflicting transmission
CN103813345A (zh) * 2012-11-05 2014-05-21 华为技术有限公司 上行频谱资源共享方法、终端及其系统
CN104540230A (zh) * 2015-01-30 2015-04-22 深圳酷派技术有限公司 一种上行调度方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101668234B (zh) * 2009-10-19 2012-07-04 国网信息通信有限公司 一种数据包发送方法及模块
CN103428841B (zh) * 2013-08-08 2017-02-15 大唐移动通信设备有限公司 一种功率授权的确定方法和设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2494132A (en) * 2011-08-30 2013-03-06 Renesas Mobile Corp Allocating unique sensing periods to terminal devices during which it senses an uplink time-frequency resource for a conflicting transmission
CN103813345A (zh) * 2012-11-05 2014-05-21 华为技术有限公司 上行频谱资源共享方法、终端及其系统
CN104540230A (zh) * 2015-01-30 2015-04-22 深圳酷派技术有限公司 一种上行调度方法及装置

Also Published As

Publication number Publication date
CN105307180A (zh) 2016-02-03
CN105307180B (zh) 2018-09-14

Similar Documents

Publication Publication Date Title
WO2017049726A1 (zh) 一种基于laa系统的数据传输方法及装置
CN109804657B (zh) 针对灵活无线电服务的5g nr数据传送
CN111771415B (zh) 用于侧行链路资源调度的机制
EP3627933B1 (en) Communication method, terminal, and base station
US20200235889A1 (en) Data transmission method and apparatus
CN107113880B (zh) 用于在未授权射频频谱频带上发送前导的方法和装置
CN112740818A (zh) Nru中的接收机辅助的传输
CN111316737B (zh) 数据传输方法、终端设备和网络设备
KR102417274B1 (ko) 다중 사용자 무선 통신 방법 및 이를 사용하는 무선 통신 단말
US9807795B2 (en) Method and device for reverse transmission in a mobile communication system
WO2017049727A1 (zh) 一种基于上行复用的数据传输方法及装置
CN105659678B (zh) 一种上行数据的传输方法及相关设备
KR102104274B1 (ko) 다중 사용자 상향 전송을 위한 무선 통신 방법 및 무선 통신 단말
JP6516131B2 (ja) 基地局装置、端末装置、および通信方法
CN115777223A (zh) 用于针对非许可无线电频谱带中的侧链路通信的资源选择的技术
CN108432281B (zh) 一种上行传输方法、基站及终端设备
EP2561720B9 (en) Channel reservation in time division duplex wireless communication system
CN110612771A (zh) 无线传输中的调度请求技术
WO2020164635A1 (zh) 初始信号传输方法、装置
CN114449675B (zh) 信息传输方法及相关产品
US10291445B2 (en) Method and system for minimizing channel preservation time in cellular communications on un-licensed band
KR20190113423A (ko) 이동통신 시스템에서 스케줄링 요청을 전송하는 방법 및 장치
CN117041984A (zh) 共享资源分配方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15904601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15904601

Country of ref document: EP

Kind code of ref document: A1