WO2017049629A1 - 一种上行信息的传输方法和基站以及用户设备 - Google Patents

一种上行信息的传输方法和基站以及用户设备 Download PDF

Info

Publication number
WO2017049629A1
WO2017049629A1 PCT/CN2015/090817 CN2015090817W WO2017049629A1 WO 2017049629 A1 WO2017049629 A1 WO 2017049629A1 CN 2015090817 W CN2015090817 W CN 2015090817W WO 2017049629 A1 WO2017049629 A1 WO 2017049629A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
uplink information
subframe set
uplink
frequency resource
Prior art date
Application number
PCT/CN2015/090817
Other languages
English (en)
French (fr)
Inventor
南方
余政
王轶
程型清
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201580071325.1A priority Critical patent/CN107113805B/zh
Priority to PCT/CN2015/090817 priority patent/WO2017049629A1/zh
Priority to CN202010996031.2A priority patent/CN112291858B/zh
Priority to BR112018005906-4A priority patent/BR112018005906B1/pt
Priority to EP15904505.3A priority patent/EP3346783B1/en
Priority to EP20166204.6A priority patent/EP3749039B1/en
Publication of WO2017049629A1 publication Critical patent/WO2017049629A1/zh
Priority to US15/933,348 priority patent/US10945242B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the embodiments of the present invention relate to the field of communications, and in particular, to a method for transmitting uplink information, a base station, and a user equipment.
  • the user equipment In the machine type communication (English name: Machine Type Communication, English abbreviation: MTC), the user equipment (English name: User Equipment, English abbreviation: UE) has a large number of users, and it is necessary to reduce the complexity or cost of the UE. Reducing the bandwidth of the received and transmitted signals supported by the UE is one of the main techniques used to reduce the complexity or cost of the UE. For example, the bandwidth of the UE receiving and transmitting signals is only 1.4 MHz.
  • LTE Long Term Evolution
  • LTE Advanced Long-term evolution
  • LTE-A advanced long-term evolution
  • Resources within the bandwidth of the LTE system are divided into subcarriers in frequency.
  • the resources of the LTE system are divided into radio frames (ie, system frames) in time, and one radio frame is 10 ms.
  • a radio frame contains two 5ms half frames.
  • a radio frame contains 10 subframes, one subframe is 1 ms long, and one subframe contains two slots.
  • the uplink of the LTE system uses single-carrier frequency-division multiple access (English name: Single-carrier Frequency-Division Multiple Access, English abbreviation: SC-FDMA). Each time slot contains 6 or 7 SC-FDMA symbols.
  • a physical resource block (English full name: Physical Resource Block, English abbreviation: PRB) contains 12 subcarriers in frequency. A PRB occupies one time slot in time.
  • the LTE system supports two frame structures: Type1 and Type2, where Type1 is used for frequency division duplex (English name: Frequency Division Duplexing, English abbreviation: FDD), and Type2 is used for time division duplex (English full name: Time Division Duplexing, English abbreviation) :TDD).
  • Type 1 Frequency Division Duplexing, English abbreviation: FDD
  • Type2 time division duplex
  • TDD Time Division Duplexing
  • each subframe included in a 10 ms radio frame can transmit both downlink information and uplink information.
  • a subframe included in a 10 ms radio frame is either a downlink subframe, an uplink subframe, or a special subframe. Which specific subframe is the downlink
  • the subframe, the uplink subframe, and the special subframe are determined by the uplink and downlink configurations.
  • LTE TDD supports 7 different uplink and downlink configuration options.
  • the frequency resources within the LTE system bandwidth can be divided into narrowbands.
  • the frequency bandwidth of the narrowband included frequency resource does not exceed the working bandwidth supported by the UE.
  • a narrowband has a frequency width of only 1.4 MHz, or a frequency width of six PRBs.
  • the transmission of the uplink information of the MTC can be switched between different narrowbands.
  • Switching between low-complexity or low-cost UE transmission information between different narrowbands requires a maximum of 2 symbols for frequency adjustment.
  • the UE frequency adjustment for low complexity or low cost is used. That is, the first narrowband of the first subframe and the second narrowband of the second subframe transmit uplink information of the UE, and at least one interval subframe between the first subframe and the second subframe. In the interval subframe, the UE performs frequency adjustment between the first narrowband and the second narrowband without transmitting uplink information.
  • the above-mentioned prior art interval subframe has at least 1 ms, which is far greater than the frequency adjustment time of a maximum of 2 symbols required for a UE with low complexity or low cost to transmit uplink information between different narrowbands. This will cause unnecessary transmission delay for the transmission of uplink information.
  • leaving the interval subframe will result in the division of resource utilization in the time dimension, which increases the complexity of base station resource scheduling.
  • the embodiment of the invention provides a method for transmitting uplink information, a base station and a user equipment, which can reduce unnecessary uplink information transmission delay and avoid the increase of base station resource scheduling complexity.
  • an embodiment of the present invention provides a method for transmitting uplink information, including:
  • the user equipment UE sends the first uplink information on the first frequency resource of the first subframe set
  • the first frequency resource and the second frequency resource are frequency resources respectively included in two different narrowbands
  • the radio frame in which the subframe in the first subframe set is located is different from the radio frame in which the subframe in the second subframe set is located, and any one subframe included in the first subframe set and the Any one of the subframes included in the second subframe set belongs to a different radio frame; or,
  • the field in which the subframe in the first subframe set is located is different from the field in which the subframe in the second subframe set is located, and any one of the subframes included in the first subframe set and the Any one of the subframes included in the second subframe set belongs to a different field.
  • the radio frame where the subframe in the first subframe set is located and the radio frame where the subframe in the second subframe set is located It is an adjacent different radio frame, or a field in which the subframe in the first subframe set is located and a field in which the subframe in the second subframe set is located is a different subframe.
  • the first subframe set and the first part in a time division duplex TDD system there are only downlink subframes and/or special subframes between the two subframe sets.
  • the first uplink information is sent in the first frequency resource
  • the starting subframe is the first available uplink subframe within a radio frame or within one field;
  • the initial subframe in which the second uplink information is sent in the second frequency resource is a first available uplink subframe within a radio frame or a field;
  • the frequency hopping granularity of the first uplink information and/or the second uplink information transmission is 5 ⁇ M subframes, where M is a pre-configured positive integer.
  • the information type of the first uplink information is the same.
  • the embodiment of the present invention further provides a method for transmitting uplink information, including:
  • the user equipment UE sends the first uplink information on the first frequency resource of the first subframe set
  • the first frequency resource and the second frequency resource are frequency resources included in different narrowbands, and a last subframe in the first subframe set and a start subframe in the second subframe set. Is an adjacent subframe;
  • the second uplink information is not sent on the first B time units, and the A and the B are natural numbers.
  • the first uplink information and the second uplink information are on a physical uplink control channel.
  • Two uplink information carried, the last uplink information of the first uplink information in the first subframe set is transmitted in a shortened physical uplink control channel format, and the second uplink information is in the second subframe set.
  • the starting subframe in the transmission is shortened by the physical uplink control channel format.
  • the A 0.
  • the embodiment of the present invention further provides a method for transmitting uplink information, including:
  • the base station receives the first uplink information on the first frequency resource of the first subframe set
  • the base station receives second uplink information on a second frequency resource of the second subframe set
  • the first frequency resource and the second frequency resource are frequency resources respectively included in two different narrowbands
  • the radio frame in which the subframe in the first subframe set is located is different from the radio frame in which the subframe in the second subframe set is located, and any one subframe included in the first subframe set and the Any one of the subframes included in the second subframe set belongs to a different radio frame; or,
  • the field in which the subframe in the first subframe set is located is different from the field in which the subframe in the second subframe set is located, and any one of the subframes included in the first subframe set and the Any one of the subframes included in the second subframe set belongs to a different field.
  • the radio frame where the subframe in the first subframe set is located and the radio frame where the subframe in the second subframe set is located It is an adjacent different radio frame, or a field in which the subframe in the first subframe set is located and a field in which the subframe in the second subframe set is located is a different subframe.
  • the first subframe set and the first part in a time division duplex TDD system There are only downlink subframes and/or special subframes between the two subframe sets.
  • the first uplink information is sent in the first frequency resource
  • the starting subframe is the first available uplink subframe within a radio frame or within one field;
  • the initial subframe in which the second uplink information is sent in the second frequency resource is a first available uplink subframe within a radio frame or a field;
  • the frequency hopping granularity of the first uplink information and/or the second uplink information transmission is 5 ⁇ M subframes, where M is a pre-configured positive integer.
  • the information type of the first uplink information is the same.
  • the embodiment of the present invention further provides a method for transmitting uplink information, including:
  • the base station receives the first uplink information on the first frequency resource of the first subframe set
  • the base station receives second uplink information on a second frequency resource of the second subframe set
  • the first frequency resource and the second frequency resource are frequency resources included in different narrowbands, and a last subframe in the first subframe set and a start subframe in the second subframe set. Is an adjacent subframe;
  • the second uplink information is not received on the first B time units, and the A and the B are natural numbers.
  • the first uplink information and the second uplink information are on a physical uplink control channel Two uplink information carried, the last uplink information of the first uplink information in the first subframe set is transmitted in a shortened physical uplink control channel format, and the second uplink information is in the second subframe set.
  • the starting subframe in the transmission is shortened by the physical uplink control channel format.
  • the A 0.
  • the embodiment of the present invention further provides a user equipment, including:
  • a first sending module configured to send first uplink information on a first frequency resource of the first subframe set
  • a second sending module configured to send second uplink information on the second frequency resource of the second subframe set
  • the first frequency resource and the second frequency resource are frequency resources respectively included in two different narrowbands
  • the radio frame in which the subframe in the first subframe set is located is different from the radio frame in which the subframe in the second subframe set is located, and any one subframe included in the first subframe set and the Any one of the subframes included in the second subframe set belongs to a different radio frame; or,
  • the field in which the subframe in the first subframe set is located is different from the field in which the subframe in the second subframe set is located, and any one of the subframes included in the first subframe set and the Any one of the subframes included in the second subframe set belongs to a different field.
  • the radio frame where the subframe in the first subframe set is located and the radio frame where the subframe in the second subframe set is located It is an adjacent different radio frame, or a field in which the subframe in the first subframe set is located and a field in which the subframe in the second subframe set is located is a different subframe.
  • the first subframe set and the first part in a time division duplex TDD system There are only downlink subframes and/or special subframes between the two subframe sets.
  • the first uplink information is sent in the first frequency resource
  • the starting subframe is the first available uplink subframe within a radio frame or within one field;
  • the initial subframe in which the second uplink information is sent in the second frequency resource is a first available uplink subframe within a radio frame or a field;
  • the frequency hopping granularity of the first uplink information and/or the second uplink information transmission is 5 ⁇ M subframes, where M is a pre-configured positive integer.
  • the information type of the first uplink information and the information type of the second uplink information are the same.
  • the embodiment of the present invention further provides a user equipment, including:
  • a first sending module configured to send first uplink information on a first frequency resource of the first subframe set
  • a second sending module configured to send second uplink information on the second frequency resource of the second subframe set
  • the first frequency resource and the second frequency resource are frequency resources included in different narrowbands, and a last subframe in the first subframe set and a start subframe in the second subframe set. Is an adjacent subframe;
  • the second uplink information is not sent on the first B time units, and the A and the B are natural numbers.
  • the first uplink information and the second uplink information are two uplink information carried on a physical uplink control channel, and the first uplink information uses a shortened physical uplink in a last subframe of the first subframe set.
  • the control channel format is transmitted, and the start subframe of the second uplink information in the second subframe set is transmitted by shortening a physical uplink control channel format.
  • the A 0.
  • the embodiment of the present invention further provides a base station, including:
  • a first receiving module configured to receive first uplink information on a first frequency resource of the first subframe set
  • a second receiving module configured to receive second uplink information on a second frequency resource of the second subframe set
  • the first frequency resource and the second frequency resource are frequency resources respectively included in two different narrowbands
  • the radio frame in which the subframe in the first subframe set is located is different from the radio frame in which the subframe in the second subframe set is located, and any one subframe included in the first subframe set and the Any one of the subframes included in the second subframe set belongs to a different radio frame; or,
  • the field in which the subframe in the first subframe set is located is different from the field in which the subframe in the second subframe set is located, and any one of the subframes included in the first subframe set and the Any one of the subframes included in the second subframe set belongs to a different field.
  • the radio frame where the subframe in the first subframe set is located and the radio frame where the subframe in the second subframe set is located It is an adjacent different radio frame, or a field in which the subframe in the first subframe set is located and a field in which the subframe in the second subframe set is located is a different subframe.
  • the first subframe set and the first part in a time division duplex TDD system There are only downlink subframes and/or special subframes between the two subframe sets.
  • the first subframe in which the first uplink information is transmitted in the first frequency resource is within a radio frame or the first available uplink subframe in a field; and/or,
  • the initial subframe in which the second uplink information is sent in the second frequency resource is a first available uplink subframe within a radio frame or a field;
  • the frequency hopping granularity of the first uplink information and/or the second uplink information transmission is 5 ⁇ M subframes, where M is a pre-configured positive integer.
  • the information type of the first uplink information is the same.
  • the eighth aspect of the present invention further provides a base station, including:
  • a first receiving module configured to receive a first uplink message on a first frequency resource of the first subframe set interest
  • a second receiving module configured to receive second uplink information on a second frequency resource of the second subframe set
  • the first frequency resource and the second frequency resource are frequency resources included in different narrowbands, and a last subframe in the first subframe set and a start subframe in the second subframe set. Is an adjacent subframe;
  • the second uplink information is not received on the first B time units, and the A and the B are natural numbers.
  • the first uplink information and the second uplink information are two uplink information carried on a physical uplink control channel, and the first uplink information uses a shortened physical uplink in a last subframe of the first subframe set.
  • the control channel format is transmitted, and the start subframe of the second uplink information in the second subframe set is transmitted by shortening a physical uplink control channel format.
  • the A 0.
  • the UE sends the first uplink information on the first frequency resource of the first subframe set, and the UE sends the second uplink information on the second frequency resource of the second subframe set.
  • the first frequency resource and the second frequency resource are frequency resources respectively included in two different narrow bands.
  • the radio frame in which the subframe in the first subframe set is located is different from the radio frame in which the subframe in the second subframe set is located, and any one of the subframes included in the first subframe set and the second subframe set include any One subframe belongs to a different radio frame.
  • the subframe in which the subframe in the first subframe set is located and the subframe in the second subframe set are located The half frames are different, and any one of the subframes included in the first subframe set and any one of the subframes included in the second subframe set belong to different half frames.
  • the first uplink information and the second uplink information are separately sent by using different first subframe sets and second subframe sets, and the UE needs to switch between different narrowbands after sending the first uplink information.
  • the radio frames (or the half frames) in which the subframes in the two subframe sets (ie, the first subframe set and the second subframe set) are located are different, and any one in the first subframe set is Any one of the sub-frames and the second sub-frame set belongs to a different radio frame (or field). Therefore, in the embodiment of the present invention, there is already an interval between the subframes in the first subframe set and the subframes in the second subframe set, and the UE may use the subframes in the first subframe set.
  • the interval between the frame and the subframes in the second subframe set is narrowband-switched, and the method of leaving the extra subframe as the interval subframe in the prior art is completely different, and the embodiment of the present invention can avoid unnecessary
  • the uplink information transmission delay avoids the complexity of base station resource scheduling complexity.
  • FIG. 1 is a system architecture diagram of a method for transmitting uplink information according to the present invention applied to a communication system;
  • FIG. 2 is a schematic block diagram of a method for transmitting uplink information according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of uplink information transmission according to an embodiment of the present invention.
  • FIG. 4 is a schematic block diagram showing another method for transmitting uplink information according to an embodiment of the present invention.
  • FIG. 5-a is a schematic diagram of another uplink information transmission according to an embodiment of the present invention.
  • FIG. 5-b is a schematic diagram of another uplink information transmission according to an embodiment of the present invention.
  • FIG. 5-c is a schematic diagram of another uplink information transmission according to an embodiment of the present invention.
  • FIG. 5-d is a schematic diagram of another uplink information transmission according to an embodiment of the present invention.
  • 6-a is a schematic diagram of a process of overlapping between multiple subframes to transmit uplink data and multiple subframes to be transmitted UCI according to an embodiment of the present invention
  • 6-b is a schematic diagram of another processing procedure for overlapping between multiple subframes to transmit uplink data and multiple subframes to be transmitted UCI according to an embodiment of the present invention
  • 6-c is a schematic diagram of a processing procedure for overlapping between multiple subframes to transmit uplink data and multiple subframes to be transmitted UCI according to an embodiment of the present invention
  • FIG. 7 is a schematic block diagram showing another method for transmitting uplink information according to an embodiment of the present invention.
  • FIG. 8 is a schematic block diagram of another method for transmitting uplink information according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a component of a UE according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of another UE according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of another base station according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of another UE according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of another base station according to an embodiment of the present invention.
  • the embodiment of the invention provides a method for transmitting uplink information, a base station and a user equipment, which can reduce unnecessary uplink information transmission delay and avoid the increase of base station resource scheduling complexity.
  • the present invention is mainly applied to an LTE system or an advanced LTE-Advanced (LTE-Advanced) system.
  • LTE-Advanced LTE-Advanced
  • the present invention can also be applied to other communication systems, for example, Wideband Code Division Multiple Access (WCDMA), Time Division-Synchronous Code Division Multiple Access (TD-SCDMA), and the like.
  • WCDMA Wideband Code Division Multiple Access
  • TD-SCDMA Time Division-Synchronous Code Division Multiple Access
  • the entity can send information, and other entities in the communication system can receive the information.
  • the transmission may be transmission or reception. If the transmission of one side device is transmission, the transmission of the other side communication device corresponding to the side device is reception; and vice versa.
  • the coverage enhancement in the embodiment of the present invention may be repeated transmission, spread spectrum transmission, retransmission, bundle time interval transmission, narrowband (such as subcarrier scheduling) transmission, and ultra narrowband (such as bandwidth of several tens of hertz to ten thousand kilohertz).
  • narrowband such as subcarrier scheduling
  • ultra narrowband such as bandwidth of several tens of hertz to ten thousand kilohertz.
  • a low-cost terminal or a low-complexity terminal means that the working bandwidth of the terminal device is smaller than the working bandwidth of the non-low-cost terminal or the non-low-complexity terminal.
  • the working bandwidth may be one or more of processing bandwidth, radio frequency processing bandwidth, and baseband processing bandwidth.
  • FIG. 1 a system architecture diagram of a method for transmitting uplink information according to the present invention is applied to a communication system, as shown in FIG. 1 , a base station (English name Base station) and a user equipment (UE, User Equipment) 1 to The UE 6 constitutes a communication system, in which the base station transmits one or more of system information, RAR message and paging message to one or more UEs of UE1 to UE6, and the base station is a method for transmitting information of the present invention.
  • the transmitting end device, UE1 to UE6, is a receiving end device in the method for transmitting information of the present invention.
  • UE4 to UE6 also form a communication system, in which UE5 can be implemented as a function of a base station, and UE5 can send one or more of system information, RAR message and paging message to UE4 and UE6.
  • UE5 can be implemented as a function of a base station, and UE5 can send one or more of system information, RAR message and paging message to UE4 and UE6.
  • UE4 to UE6 also form a communication system, in which UE5 can be implemented as a function of a base station, and UE5 can send one or more of system information, RAR message and paging message to UE4 and UE6.
  • UE5 can be implemented as a function of a base station, and UE5 can send one or more of system information, RAR message and paging message to UE4 and UE6.
  • RAR message Radio Access
  • paging message paging message
  • An embodiment of the method for transmitting the uplink information of the present invention is applicable to a scenario in which the UE sends the uplink information to the base station.
  • the method for transmitting the uplink information may include the following steps:
  • the UE sends the first uplink information on the first frequency resource of the first subframe set.
  • the UE sends the second uplink information on the second frequency resource of the second subframe set.
  • the first frequency resource and the second frequency resource are frequency resources respectively included in two different narrowbands
  • the radio frame in which the subframe in the first subframe set is located is different from the radio frame in which the subframe in the second subframe set is located, and any one of the subframes included in the first subframe set and the second subframe set include any One subframe belongs to a different radio frame; or,
  • the field in which the subframe in the first subframe set is located is different from the field in which the subframe in the second subframe set is located, and any one of the subframe included in the first subframe set and any of the second subframe set includes One subframe belongs to a different radio frame.
  • the UE may separately send the uplink information by using different frequency resources in the two subframe sets.
  • the first subframe set and the second subframe set respectively exist, where At least one subframe may be included in each subframe set.
  • At least one subframe may be included in each subframe set.
  • All subframes included in the same subframe set may belong to the same radio frame or may belong to different radio frames.
  • all the subframes included in the same subframe set may belong to the same field, or may belong to different fields, which is not limited in the embodiment of the present invention.
  • the first uplink information is sent by using the first frequency resource of the first subframe set
  • the second uplink information is sent by the second frequency resource of the second subframe set.
  • the positional relationship between the subframes in the first subframe set and the subframes in the second subframe set is described in detail, and the following relationships are satisfied between the subframes in the two subframe sets: 1) The radio frame (or field) in which the subframe in the first subframe set is located is different from the radio frame (or half frame) in which the subframe in the second subframe set is located; 2) the first subframe set Any one of the included subframes and any one of the subframes included in the second subframe set belong to different radio frames (or fields).
  • the narrowband of the frequency resource in which the UE sends the uplink information is different from the narrowband in the previous radio frame or the field in which the UE transmits the uplink information in the previous radio frame or the field change.
  • the narrowband of the frequency resource in which the UE transmits the uplink information and the narrowband in the previous radio frame or the field in which the UE transmits the uplink information may also be the same.
  • the narrowband of the frequency resource in which the UE transmits the uplink information is the same.
  • the operating bandwidth is 1.4 MHz (or 200 KHz, or 180 KHz).
  • a low complexity or low cost UE can only receive or transmit signals in a narrow band.
  • a narrow band is a frequency resource having a specific frequency width.
  • the narrowband may be composed of one or more subcarriers (e.g., the size of one subcarrier is 15 Khz, or 2.5 KHz, or 3.75 KHz), or may be composed of one or more resource blocks.
  • the size of the narrow band can be the working bandwidth.
  • the radio frame in which the subframe in the first subframe set is located and the radio frame in which the subframe in the second subframe set is located are adjacent different radio frames, or the first subframe set.
  • the half frame in which the inner subframe is located and the half frame in which the subframe in the second subframe set are located are adjacent different half frames.
  • the radio frame in the subframe in the first subframe set or the subframe in the second subframe set may be one radio frame or multiple radio frames.
  • a child within the first set of subframes The field in which the subframe or the subframe in the second subframe set is located may be one field or multiple fields.
  • the A radio frame in which a subframe within a subframe set is located includes one radio frame, and one radio frame in a radio frame in which the subframe in the second subframe set is located is two different radio frames adjacent to each other.
  • the field in which the subframe in the first subframe set is located is a plurality of fields, and/or the field in which the subframe in the second subframe set is located is a plurality of fields, the first One field included in a field in which a subframe in a subframe set is located, and two different fields in a field in a field in which the subframe in the second subframe set is located .
  • the narrowband in which the frequency resource in which the current radio frame UE transmits the uplink information is different from the narrowband in which the frequency resource in which the adjacent radio frame UE transmits the uplink information before the current radio frame (or after the current radio frame) is different.
  • the narrowband in which the frequency resource in which the uplink information is transmitted by the UE in the current field is located is different from the narrowband in which the frequency resource in which the uplink information is transmitted in the previous (or later) one adjacent field.
  • a method for transmitting uplink information provided by an embodiment of the present invention is applied to a TDD system.
  • For the TDD system there are only downlink subframes and/or special subframes between the first subframe set and the second subframe set.
  • the time that the UE adjusts the frequency resource for transmitting the uplink information from the first frequency resource to the second frequency resource may use an uplink pilot time slot in the special subframe (English full name: Uplink Pilot Time Slot, English) Abbreviation: UpPTS), the guard interval in the special subframe (English name: Guard Period, English abbreviation: GP), and the downlink pilot time slot in the special subframe (English name: Downlink Pilot Time Slot, English abbreviation: DwPTS ), the downlink subframe, the transition time of the uplink transmission to the downlink transmission, and the time of one or more of the transition time of the downlink transmission to the uplink transmission.
  • UpPTS Uplink Pilot Time Slot
  • GP Guard Period
  • DwPTS downlink Pilot Time Slot
  • FIG. 3 is a schematic diagram of uplink information transmission according to an embodiment of the present invention.
  • the narrowband of the frequency resource for uplink information transmission is the same in all subframes in one field. Uplink transmission per half frame The narrow band where the frequency resource is located changes once. That is, it is only possible that the narrowband of the frequency resource for uplink information transmission is different in different field or radio frames.
  • the first subframe in which the first uplink information is transmitted in the first frequency resource is the first available uplink subframe within one radio frame or one field; and or,
  • the initial subframe in which the second uplink information is sent in the second frequency resource is a first available uplink subframe within a radio frame or a field;
  • the frequency hopping granularity of the first uplink information or the second uplink information is 5 ⁇ M subframes, where M is a pre-configured positive integer.
  • the starting subframe in which the UE sends the uplink information by using the changed frequency resource is the first available uplink subframe in one radio frame or one field.
  • the frequency resource change of the uplink information sent by the UE is changed from the first frequency resource to the second frequency resource, and at this time, the start of the second uplink information in the second frequency resource is sent.
  • a frame is the first available uplink subframe within a radio frame or within a field.
  • the frequency resource change of the uplink information sent by the UE is changed from the second frequency resource to the first frequency resource, and at this time, the first uplink information is sent in the start of the first frequency resource.
  • a frame is the first available uplink subframe within a radio frame or within a field.
  • the frequency resource change of the uplink information sent by the UE includes changing from the first frequency resource to the second frequency resource, and also includes changing from the second frequency resource to the first frequency resource, where And the first uplink information is sent in the first frequency resource, or the first uplink subframe in the first frame, and the second uplink information is in the first uplink information.
  • the starting subframe transmitted by the second frequency resource is the first available uplink subframe within a radio frame or within one field. It should be noted that the starting subframe in which the UE sends the uplink information may be any available uplink subframe within one radio frame or within one field.
  • the available uplink subframe refers to an uplink subframe that can be used to transmit uplink information.
  • the specific implementation of the available uplink subframe needs to be determined in combination with an application scenario, where the available uplink subframe can be usually a radio frame or a half.
  • the first uplink subframe in the frame may or may not be the first uplink subframe.
  • the available uplink subframe may be a radio frame or a second uplink subframe within the subframe.
  • the frequency resource change in which the UE transmits the uplink information is referred to as frequency hopping of the uplink information transmission.
  • the granularity of the frequency hopping of the uplink information transmission is 5 ⁇ M subframes, which means that the frequency resource 5 ⁇ M subframes of the uplink information transmission change once.
  • Each of the 5 ⁇ M subframes may be 1 ms.
  • the size of the subframe may be flexibly configured. If one subframe is 1 ms, that is, uplink.
  • the information type of the uplink information may be uplink data, uplink control information UCI, and random access preamble.
  • the information type of the first uplink information may be the same as the information type of the second uplink information.
  • This embodiment is applicable to a frequency resource change in which the UE sends uplink information of the same information type. It should be noted that the information type of the first uplink information and the information type of the second uplink information may also be different. This embodiment is also applicable to a frequency resource change in which the UE sends uplink information of different information types.
  • the uplink physical channel of LTE includes an uplink control channel, an uplink shared channel, and a random access channel. Different uplink channels are used to carry different uplink information.
  • the uplink information may include uplink data, uplink control information (English full name: Uplink control information, English abbreviation: UCI), and random access preamble.
  • uplink data is carried by a physical uplink shared channel (English full name: Physical Uplink Shared Channel, English abbreviation: PUSCH)
  • UCI is carried by a physical uplink control channel (PUCCH) (English name: Physical uplink control channel, English abbreviation: PUCCH) or PUSCH.
  • PUCCH Physical uplink control channel
  • the random access preamble is carried by the physical random access channel PRACH (English full name: Physical Random Access channel, English abbreviation: PRACH).
  • the narrowband of the uplink information transmission and the narrowband of the uplink information transmission in the previous radio frame or field may only be used after the radio frame change or the field change. Not the same. Therefore, the UE can use the guard interval of the uplink and downlink transition, or the downlink subframe, or the special subframe to adjust the frequency of sending the uplink information, so that no extra subframe is left as the interval subframe, and unnecessary uplink information is avoided.
  • the transmission delay avoids the complexity of base station resource scheduling complexity.
  • the guard interval refers to an interval of uplink and downlink transitions, and handover of the UE between different narrowbands may also be completed in the guard interval, so that no additional allocation of the subframe to the UE is required.
  • the UE sends the first uplink information on the first frequency resource of the first subframe set, and the UE sends the second uplink information on the second frequency resource of the second subframe set.
  • the first frequency resource and the second frequency resource are frequency resources respectively included in two different narrow bands.
  • the radio frame in which the subframe in the first subframe set is located is different from the radio frame in which the subframe in the second subframe set is located, and any one of the subframes included in the first subframe set and the second subframe set include any One subframe belongs to a different radio frame.
  • the subframe in which the subframe in the first subframe set is located is different from the subframe in which the subframe in the second subframe set is located, and any one of the subframe and the second subframe included in the first subframe set includes Any one of the sub-frames belongs to a different field.
  • the first The row information and the second uplink information are respectively sent by using different first subframe sets and second subframe sets. After the first uplink information is sent by the UE, the UE needs to switch between different narrowbands. In the embodiment of the present invention, two children are defined.
  • the radio frames (or the half frames) in which the subframes in the frame set (ie, the first subframe set and the second subframe set) are located are different, and any one of the subframes and the second subframe set in the first subframe set are different. Any one of the subframes belongs to a different radio frame (or field). Therefore, in the embodiment of the present invention, there is already an interval between the subframes in the first subframe set and the subframes in the second subframe set, and the UE may use the subframes in the first subframe set.
  • the interval between the frame and the subframes in the second subframe set is narrowband-switched, and the method of leaving the extra subframe as the interval subframe in the prior art is completely different, and the embodiment of the present invention can avoid unnecessary
  • the uplink information transmission delay avoids the complexity of base station resource scheduling complexity.
  • the foregoing embodiment describes a method for transmitting uplink information implemented from the UE side.
  • another method for transmitting uplink information implemented from the UE side is introduced.
  • the uplink provided by the embodiment of the present invention is provided.
  • Information transmission methods including:
  • the UE sends the first uplink information on the first frequency resource of the first subframe set.
  • the UE sends the second uplink information on the second frequency resource of the second subframe set.
  • the first frequency resource and the second frequency resource are frequency resources included in different narrowbands, and the last subframe in the first subframe set and the start subframe in the second subframe set are adjacent subframes.
  • the UE may separately send the uplink information by using different frequency resources in the two subframe sets.
  • the first subframe set and the second subframe set respectively exist, where At least one subframe may be included in each subframe set.
  • At least one subframe may be included in each subframe set.
  • All the subframes included in the same subframe group may belong to the same radio frame or belong to different radio frames.
  • all subframes included in the same subframe group may belong to the same field or may belong to different subframes.
  • the field of the present invention is not limited in the embodiment of the present invention.
  • the first uplink information is sent by using the first frequency resource of the first subframe set
  • the second uplink information is sent by the second frequency resource of the second subframe set.
  • the positional relationship between the subframes in the first subframe set and the subframes in the second subframe set is made.
  • the subframes in the two subframe sets satisfy the following relationship: the last subframe in the first subframe set and the start subframe in the second subframe set are adjacent subframes. That is, the last subframe in the first subframe set and the start subframe in the second subframe set are two subframes temporally adjacent.
  • the embodiment of the present invention further describes that the first uplink information is not sent on the last A time units in the last subframe in the first subframe set, and/or the initiator in the second subframe set.
  • the second uplink information is not transmitted on the first B time units in the frame.
  • the last subframe in the first subframe set includes a plurality of time units
  • the time unit in the embodiment of the present invention is a component in the subframe.
  • the time unit may be a symbol.
  • the symbols are SC-FDMA symbols, or symbols of other multiple access methods. Since A time units and/or B time units do not transmit uplink information, the A time units and/or B time units are used for the UE to transmit an adjustment of the uplink information frequency resource.
  • the first subframe set has one subframe
  • the second subframe set has one subframe
  • the time unit is one SC-FDMA symbol
  • one subframe has seven SC-FDMA symbols, as shown in the figure.
  • a schematic diagram of another uplink information transmission provided by the embodiment of the present invention is shown in FIG.
  • Figure 5-a the UE does not transmit uplink information in the two symbols of the shaded portion, and the two symbols in the shaded portion can be used for adjustment of the UE frequency.
  • the first subframe set has one subframe
  • the second subframe set has one subframe
  • the time unit is one SC-FDMA symbol
  • one subframe has seven SC-FDMA symbols, as shown in the figure.
  • a schematic diagram of another uplink information transmission provided by the embodiment of the present invention is shown in FIG.
  • Figure 5-b the UE does not transmit uplink information in the two symbols of the shaded portion, and the two symbols in the shaded portion can be used for adjustment of the UE frequency.
  • FIG. 5 is a schematic diagram of another uplink information transmission provided by an embodiment of the present invention.
  • the UE does not transmit uplink information in two symbols in the shaded portion, and the two symbols in the shaded portion are used for adjustment of the UE frequency.
  • the uplink information transmission shown in FIG. 4 provided by the embodiment of the present invention is provided.
  • the transmission method is applied to the FDD system.
  • the information type of the uplink information or the uplink information may be uplink data, uplink control information, and random access preamble.
  • the information type of the first uplink information is the same as the information type of the second uplink information.
  • This embodiment is applicable to a frequency resource change in which the UE sends uplink information of the same information type. It should be noted that the information type of the first uplink information and the information type of the second uplink information may also be different. This embodiment is also applicable to a frequency resource change in which the UE sends uplink information of different information types.
  • the last uplink information of the first uplink information in the first subframe set is transmitted by shortening the physical uplink control channel format. It should be noted that the other uplinks of the first uplink information in the first subframe set are transmitted in the shortened physical uplink control channel format, or are not transmitted in the physical uplink control channel format, that is, in the normal physical uplink control channel format.
  • the physical uplink control channel format is shortened to be applied to a subframe including a sounding reference signal (Sounding Reference Signal, English abbreviation: SRS).
  • SRS Sounding Reference Signal
  • the physical uplink control channel shortening the physical uplink control channel format is not mapped to the last SC-FDMA symbol in the subframe.
  • the length of the orthogonal sequence used by the physical uplink control channel in the first time slot of the subframe is 1, 1a or 1b.
  • the length of the orthogonal sequence used by the physical uplink control channel in the first time slot of one subframe is a positive integer.
  • Special R 4.
  • the first uplink information is transmitted in a shortened physical uplink control channel format in one subframe of the first subframe set, including: shortening a physical uplink control channel in a first time slot of the subframe
  • the length of the orthogonal sequence used by the physical uplink control channel of the format In the second time slot of the subframe, shortening the length of the orthogonal sequence used by the physical uplink control channel of the physical uplink control channel format P, Q are positive integers, and P>Q.
  • the shortened physical uplink control channel format adopted by the first uplink information in one subframe of the first subframe set is the same as the shortened physical uplink control channel format of the prior art.
  • the second uplink information is uplink information carried on a physical uplink control channel
  • the second uplink The starting subframe of the row information in the second subframe set is transmitted in a shortened physical uplink control channel format.
  • the other uplink subframes in the second subframe set are transmitted in a shortened physical uplink control channel format, or the physical uplink control channel format is not used, that is, normal physical uplink control is adopted. Channel format transmission.
  • the second uplink information is transmitted in a shortened physical uplink control channel format in one subframe of the second subframe set, including: shortening a physical uplink control channel in a first time slot of the subframe
  • the shortened physical uplink control channel format adopted by the first uplink information in one subframe of the first subframe set is different from the shortened physical uplink control channel format of the prior art.
  • FIG. 5-d is a schematic diagram of another uplink information transmission according to an embodiment of the present invention.
  • the time unit is one SC-FDMA symbol
  • one subframe has seven SC-FDMA symbols as an example
  • the last subframe in the first subframe set is transmitted by using a shortened physical uplink control channel format
  • the second uplink information is shortened by using a physical uplink control channel in the start subframe of the second subframe set. Format transfer.
  • the B 0.
  • the format of the random access preamble is one of the formats 1-3. Since the last subframe of one or more subframes of the random access preamble used for one of the transmission formats 1-3 exists, the guard interval is greater than the length of time of the two SC-FDMA symbols, and thus The starting subframe in the two subframe sets does not need to leave the guard time as the UE frequency adjustment.
  • the UE may perform frequency adjustment using a guard interval existing in a subframe of a random access preamble for one of the transmission formats 1-3.
  • the A 0. Transmitting the first uplink information to the last time unit in the last subframe in the first subframe set (or the time occupied by the random access preamble transmission in the last subframe) ends.
  • the first uplink information is not transmitted on the last time unit in the last subframe of the subframe set, and is on the previous time unit in the start subframe in the second subframe set.
  • the second uplink information is not sent as the guard time of the UE frequency adjustment.
  • the embodiment of the present invention utilizes only the last A time units in the last subframe in the first subframe set, and/or the starting subframe in the second subframe set.
  • the first B time units are adjusted in the UE frequency, so that the time for adjusting the frequency is the maximum value of the frequency adjustment time required by the UE, so that no extra subframe is left as the interval subframe, and no
  • the necessary uplink information transmission delay avoids the complexity of base station resource scheduling complexity.
  • the first uplink information and the second uplink information are two uplink information carried on the physical uplink control channel, and the uplink information is transmitted by shortening the physical uplink control channel format.
  • the orthogonal uplink sequence length of the physical uplink control channel that shortens the physical uplink control channel format is the same as that of the prior art, thereby ensuring orthogonality of orthogonal sequences used by different PUCCHs and ensuring uplink information carried by the PUCCH. Transmission performance.
  • the uplink information transmission method includes:
  • the UCI is carried over the PUSCH unless the The uplink data is the uplink data in the random access process, at which time the UCI is not transmitted; or the UCI is not transmitted; or the UCI is carried over the PUCCH, and the overlapping subframes, and one subframe or C subsequent to the overlapping subframes
  • the time unit does not transmit UCI, and C is a natural number. Please refer to FIG.
  • the uplink scheduling information is transmitted from n1 to n1+NRep1, the downlink scheduling information is transmitted from n2 to n2+NRep2, and the downlink data is transmitted from n4 to n4+NRep4.
  • the uplink data is transmitted from n3 to n3+NRep3, and the UCI is transmitted from n5 to n5+NRep5.
  • the UCI passes The PUCCH carries, and does not transmit uplink data in overlapping subframes, and one subframe or C time units after the overlapping subframe; or does not transmit uplink data.
  • FIG. 6-b is a schematic diagram of another processing procedure for overlapping between multiple subframes to transmit uplink data and multiple subframes to be transmitted UCI according to an embodiment of the present invention.
  • the uplink scheduling information is transmitted from n1 to n1+NRep1, the downlink scheduling information is transmitted from n2 to n2+NRep2, and the downlink data is transmitted from n4 to n4+NRep4.
  • UCI is transmitted from n3 to n3+NRep3, and uplink data is transmitted from n5 to n5+NRep5.
  • the UCI is carried over the PUCCH, and The UCI is not transmitted in the overlapping subframes, and in one subframe or C time units before the overlapping subframes, as shown in FIG. 6-c, which is a plurality of sub-data to be transmitted according to an embodiment of the present invention.
  • FIG. 6-c is a plurality of sub-data to be transmitted according to an embodiment of the present invention.
  • the uplink scheduling information is transmitted from n1 to n1+NRep1, the downlink scheduling information is transmitted from n2 to n2+NRep2, and the downlink data is transmitted from n4 to n4+NRep4.
  • UCI is transmitted from n3 to n3+NRep3, and uplink data is transmitted from n5 to n5+NRep5.
  • the uplink information transmission method includes:
  • start subframe of the random access preamble is to be transmitted before the start subframe of the uplink data/UCI to be transmitted
  • the end subframe of the random access preamble is to be transmitted after the start subframe of the uplink data/UCI to be transmitted , in the overlapping subframe, and one subframe or C time units after the overlapping subframe does not transmit uplink data / UCI; or does not transmit uplink data / UCI; or does not transmit uplink data / UCI in overlapping subframes .
  • the uplink data/UCI is not transmitted in one subframe or C time units before the overlapping subframe, and before the overlapping subframe; or the uplink data/UCI is not transmitted.
  • the meaning of the time unit is as described in the second embodiment.
  • One subframe or C time units subsequent to the overlapping subframe are temporally adjacent to the overlapping subframe.
  • One subframe or C time units preceding the overlapping subframe are temporally adjacent to the overlapping subframe.
  • the embodiment of the present invention enables the UE to simultaneously transmit different subframes in the subframe where the uplink information is to be transmitted.
  • the uplink information can be transmitted according to a predetermined priority, and the transmission performance of the uplink information with high priority is ensured.
  • the embodiment of the present invention enables the UE to transmit uplink information according to a predetermined priority when the subframe in which the uplink information is to be transmitted cannot simultaneously transmit different uplink information, thereby ensuring the transmission performance of the uplink information with high priority.
  • the method for transmitting uplink information is described from the UE side.
  • the method for transmitting uplink information provided by the present invention is described from the opposite end (base station) side of the UE. Referring to FIG. 7, another implementation of the present invention is shown.
  • the method for transmitting uplink information provided by the example may include the following steps:
  • the base station receives the first uplink information on the first frequency resource of the first subframe set.
  • the base station receives second uplink information on the second frequency resource of the second subframe set.
  • the first frequency resource and the second frequency resource are frequency resources respectively included in two different narrowbands
  • the radio frame in which the subframe in the first subframe set is located is different from the radio frame in which the subframe in the second subframe set is located, and any one of the subframes included in the first subframe set and the second subframe set include any One subframe belongs to a different radio frame; or,
  • the field in which the subframe in the first subframe set is located is different from the field in which the subframe in the second subframe set is located, and any one of the subframe included in the first subframe set and any of the second subframe set includes A sub-frame belongs to a different field.
  • the base station may separately receive the uplink information received by the base station by using different frequency resources in the two subframe sets.
  • the first subframe set and the second subframe respectively exist.
  • a set, where each subframe set may include at least one subframe, for example, there may be only one subframe in the subframe set, and multiple subframes may also be in the subframe set.
  • All the subframes included in the same subframe group may belong to the same radio frame or belong to different radio frames.
  • all subframes included in the same subframe group may belong to the same field or may belong to different subframes.
  • the field of the present invention is not limited in the embodiment of the present invention.
  • the first uplink information is received by the first frequency resource of the first subframe set
  • the second uplink information is received by the second frequency resource of the second subframe set.
  • the positional relationship between the subframes in the first subframe set and the subframes in the second subframe set is described in detail, and the following relationships are satisfied between the subframes in the two subframe sets: 1) a radio frame (or a field) in which the subframes in the first subframe set are located and a radio frame (or a half frame) in which the subframes in the second subframe set are located Differently, 2), any one of the subframes included in the first subframe set and any one of the subframes included in the second subframe set belong to different radio frames (or half frames).
  • the narrowband of the frequency resource in which the base station receives the uplink information is different from the narrowband in the previous radio frame or the half frame in which the frequency resource of the base station receives the uplink information is different after the radio frame change or the field change.
  • the narrowband in which the base station receives the uplink information and the narrowband in the previous radio frame or the half frame in which the base station receives the uplink information may also be the same.
  • the narrowband of the frequency resource at which the base station receives the uplink information is the same.
  • Narrowband refers to the inclusion of one or more frequency resources in frequency.
  • the frequency resource may be a subcarrier or a frequency resource occupied by the PRB.
  • the radio frame in which the subframe in the first subframe set is located and the radio frame in which the subframe in the second subframe set is located are adjacent different radio frames, or the first subframe set.
  • the half frame in which the inner subframe is located and the half frame in which the subframe in the second subframe set are located are adjacent different half frames.
  • radio frame in the subframe in the first subframe set or the subframe in the second subframe set may be one radio frame or multiple radio frames.
  • the subframe in the first subframe set or the subframe in the second subframe set may be one field or multiple fields.
  • the A radio frame in which a subframe within a subframe set is located includes one radio frame, and one radio frame in a radio frame in which the subframe in the second subframe set is located is two different radio frames adjacent to each other.
  • the field in which the subframe in the first subframe set is located is a plurality of fields, and/or the field in which the subframe in the second subframe set is located is a plurality of fields
  • the first One field included in a field in which a subframe within a subframe set is located, and one field in a field in which the subframe in the second subframe set is located are two adjacent different fields.
  • the narrowband in which the frequency resource in which the current radio frame UE transmits the uplink information is different from the narrowband in which the frequency resource in which the adjacent radio frame UE transmits the uplink information before the current radio frame (or after the current radio frame) is different.
  • the narrowband in which the frequency resource in which the uplink information is transmitted by the UE in the current field is located is different from the narrowband in which the frequency resource in which the uplink information is transmitted in the previous (or later) one adjacent field.
  • an uplink information transmission method application provided by an embodiment of the present invention is applied.
  • TDD Time Division duplex TDD system.
  • the UE can adjust the working frequency of transmitting the uplink information by using the time of the downlink subframe and/or the special subframe, that is, adjusting the frequency resource for transmitting the uplink information from the first frequency resource to the second frequency resource.
  • the first subframe in which the first uplink information is transmitted in the first frequency resource is the first available uplink subframe within one radio frame or one field; and or,
  • the initial subframe in which the second uplink information is sent in the second frequency resource is a first available uplink subframe within a radio frame or a field;
  • the frequency hopping granularity of the first uplink information or the second uplink information is 5 ⁇ M subframes, where M is a pre-configured positive integer.
  • the starting subframe in which the base station sends the uplink information by using the changed frequency resource is the first available uplink subframe in one radio frame or one field.
  • the frequency resource change of the base station receiving the uplink information is changed from the first frequency resource to the second frequency resource, and at this time, the second uplink information is sent in the start of the second frequency resource.
  • a frame is the first available uplink subframe within a radio frame or within a field.
  • the frequency resource change of the uplink information received by the base station is changed from the second frequency resource to the first frequency resource, and at this time, the first uplink information is sent in the start of the first frequency resource.
  • a frame is the first available uplink subframe within a radio frame or within a field.
  • the frequency resource change of the base station receiving the uplink information includes changing from the first frequency resource to the second frequency resource, and also includes changing from the second frequency resource to the first frequency resource, where And the first uplink information is sent in the first frequency resource, or the first uplink subframe in the first frame, and the second uplink information is in the first uplink information.
  • the starting subframe transmitted by the second frequency resource is the first available uplink subframe within a radio frame or within one field. It should be noted that the starting subframe in which the base station receives the uplink information may be any one of the available uplink subframes within one radio frame or within one field.
  • the available uplink subframe refers to an uplink subframe that can be used to transmit uplink information.
  • the specific implementation of the available uplink subframe needs to be determined in combination with an application scenario, where the available uplink subframe can be usually a radio frame or a half.
  • the first uplink subframe in the frame may or may not be the first uplink subframe, and the available uplink subframe may be a radio frame or a second uplink subframe in the subframe.
  • the granularity of the frequency hopping of the uplink information transmission is 5 ⁇ M subframes, that is, the frequency resource 5 ⁇ M subframes of the uplink information transmission are changed once.
  • Each of the 5 ⁇ M subframes may be 1 ms.
  • the information type of the uplink information may be uplink data, uplink control information UCI, and random access preamble.
  • the information type of the first uplink information is the same as the information type of the second uplink information.
  • This embodiment is applicable to a frequency resource change in which a base station receives uplink information of the same information type. It should be noted that the information type of the first uplink information and the information type of the second uplink information may also be different. This embodiment is also applicable to a frequency resource change in which the base station receives uplink information of different information types.
  • the frequency of uplink and downlink information transmission is not the same.
  • only the narrowband of the uplink information transmission and the narrowband of the uplink information transmission in the previous radio frame or the half frame are different after the radio frame change or the field change, so the UE can utilize the uplink and downlink conversion.
  • the protection interval, or the downlink subframe, or the special subframe adjusts the frequency of transmitting the uplink information.
  • the base station does not need to receive the uplink information sent by the UE in the protection interval of the uplink and downlink transition, so the UE enters the narrowband by using the protection interval of the uplink and downlink conversion. Switching. Therefore, there is no need to leave extra subframes as the interval subframes, which avoids unnecessary uplink information transmission delay and avoids the complexity of base station resource scheduling complexity.
  • the guard interval refers to an interval of uplink and downlink transitions, and handover of the UE between different narrowbands may also be completed in the guard interval, so that no additional allocation of the subframe to the UE is required.
  • the base station receives the first uplink information on the first frequency resource of the first subframe set, and the base station receives the second uplink information on the second frequency resource of the second subframe set.
  • the first frequency resource and the second frequency resource are frequency resources respectively included in two different narrow bands.
  • the radio frame in which the subframe in the first subframe set is located is different from the radio frame in which the subframe in the second subframe set is located, and any one of the subframes included in the first subframe set and the second subframe set include any One subframe belongs to a different radio frame.
  • the subframe in which the subframe in the first subframe set is located is different from the subframe in which the subframe in the second subframe set is located, and any one of the subframe and the second subframe included in the first subframe set includes Any one of the sub-frames belongs to a different field.
  • the first uplink information and the second uplink information are separately sent by using different first subframe sets and second subframe sets, After receiving the first uplink information, the base station needs to switch between different narrowbands.
  • the radio frame where the subframes in the two subframe sets ie, the first subframe set and the second subframe set) are located is clarified.
  • any one of the first subframe set and any one of the second subframe set belong to a different radio frame (or field). Therefore, in the embodiment of the present invention, there is already an interval between the subframes in the first subframe set and the subframes in the second subframe set, and the UE may use the subframes in the first subframe set.
  • the interval between the frame and the subframes in the second subframe set is narrowband-switched, and the method of leaving the extra subframe as the interval subframe in the prior art is completely different, and the embodiment of the present invention can avoid unnecessary
  • the uplink information transmission delay avoids the complexity of base station resource scheduling complexity.
  • the foregoing embodiment describes a method for transmitting uplink information implemented from a base station side. Next, another method for transmitting uplink information implemented from a base station side is described. Referring to FIG. 8, the uplink provided by the embodiment of the present invention is provided.
  • Information transmission methods including:
  • the base station receives the first uplink information on the first frequency resource of the first subframe set.
  • the base station receives second uplink information on a second frequency resource of the second subframe set.
  • the first frequency resource and the second frequency resource are frequency resources included in different narrowbands, and the last subframe in the first subframe set and the start subframe in the second subframe set are adjacent subframes;
  • the base station may separately receive the uplink information by using different frequency resources in the two subframe sets.
  • the first subframe set and the second subframe set respectively exist, where At least one subframe may be included in each subframe set.
  • At least one subframe may be included in each subframe set.
  • there may be only one subframe in the subframe set and multiple subframes may also be in the subframe set.
  • All the subframes included in the same subframe group may belong to the same radio frame or belong to different radio frames.
  • all subframes included in the same subframe group may belong to the same field or may belong to different subframes.
  • the field of the present invention is not limited in the embodiment of the present invention.
  • the first uplink information is received by the first frequency resource of the first subframe set
  • the second uplink information is received by the second frequency resource of the second subframe set.
  • the positional relationship between the subframes in the first subframe set and the subframes in the second subframe set is described in detail, and the following relationships are satisfied between the subframes in the two subframe sets:
  • the last in the first set of subframes One subframe is a subframe adjacent to the start subframe in the second subframe set. That is, the last subframe in the first subframe set and the start subframe in the second subframe set are two subframes temporally adjacent.
  • the embodiment of the present invention further describes that the first uplink information is not received on the last A time units in the last subframe in the first subframe set, and/or the initiator in the second subframe set.
  • the second uplink information is not received on the first B time units in the frame.
  • the last subframe in the first subframe set includes a plurality of time units, and the time unit in the embodiment of the present invention is a component in the subframe.
  • the time unit may be a symbol.
  • the symbols are SC-FDMA symbols, or symbols of other multiple access methods. Since A time units and/or B time units do not transmit uplink information, the A time units and/or B time units are used for the UE to transmit an adjustment of the uplink information frequency resource.
  • the first subframe set has one subframe
  • the second subframe set has one subframe
  • the time unit is one SC-FDMA symbol
  • one subframe has seven SC-FDMA symbols, as shown in the figure.
  • a schematic diagram of another uplink information transmission provided by the embodiment of the present invention is shown in FIG.
  • Figure 5-a the base station does not receive uplink information for the two symbols in the shaded portion, and the two symbols of the shaded portion can be used for adjustment of the UE frequency.
  • the first subframe set has one subframe
  • the second subframe set has one subframe
  • the time unit is one SC-FDMA symbol
  • one subframe has seven SC-FDMA symbols, as shown in the figure.
  • a schematic diagram of another uplink information transmission provided by the embodiment of the present invention is shown in FIG.
  • the base station does not receive uplink information for the two symbols in the shaded portion, and the two symbols of the shaded portion can be used for adjustment of the UE frequency.
  • FIG. 5 is a schematic diagram of another uplink information transmission provided by an embodiment of the present invention.
  • the base station does not receive uplink information in two symbols in the shaded portion, and the two symbols in the shaded portion are used for adjustment of the UE frequency.
  • the method for transmitting uplink information shown in FIG. 8 provided by the embodiment of the present invention is applied to an FDD system.
  • the information type of the uplink information or the uplink information may be Therefore, it is uplink data, uplink control information UCI, and random access preamble.
  • the information type of the first uplink information is the same as the information type of the second uplink information.
  • This embodiment is applicable to a frequency resource change in which a base station receives uplink information of the same information type. It should be noted that the information type of the first uplink information and the information type of the second uplink information may also be different. This embodiment is also applicable to a frequency resource change in which the base station receives uplink information of different information types.
  • the last uplink information of the first uplink information in the first subframe set is transmitted by shortening the physical uplink control channel format. It should be noted that the other uplink information of the first uplink information in the first subframe set is transmitted by shortening the physical uplink control channel format; or the physical uplink control channel format transmission is not adopted, that is, the normal physical uplink control channel format is used for transmission.
  • the shortened physical uplink control channel format is applied to a subframe including an SRS.
  • the physical uplink control channel shortening the physical uplink control channel format is not mapped to the last SC-FDMA symbol in the subframe.
  • the length of the orthogonal sequence used by the physical uplink control channel in the first time slot of the subframe is 1, 1a or 1b.
  • the length of the orthogonal sequence used by the physical uplink control channel in the first time slot of one subframe is a positive integer.
  • Special R 4.
  • the first uplink information is transmitted in a shortened physical uplink control channel format in one subframe of the first subframe set, including: shortening a physical uplink control channel in a first time slot of the subframe
  • the shortened physical uplink control channel format adopted by the first uplink information in one subframe of the first subframe set is the same as the shortened physical uplink control channel format of the prior art.
  • the start subframe of the second uplink information in the second subframe set is transmitted by shortening the physical uplink control channel format. It should be noted that the second uplink information is used in other subframes in the second subframe set.
  • the physical uplink control channel format transmission is shortened; or the physical uplink control channel format transmission is not shortened, that is, the normal physical uplink control channel format is used for transmission.
  • the second uplink information is transmitted in a shortened physical uplink control channel format in one subframe of the second subframe set, including: shortening a physical uplink control channel in a first time slot of the subframe
  • the shortened physical uplink control channel format adopted by the first uplink information in one subframe of the first subframe set is different from the shortened physical uplink control channel format of the prior art.
  • FIG. 5-d is a schematic diagram of another uplink information transmission according to an embodiment of the present invention.
  • the time unit is one SC-FDMA symbol
  • one subframe has seven SC-FDMA symbols as an example
  • the last subframe in the first subframe set is transmitted by using a shortened physical uplink control channel format
  • the second uplink information is shortened by using a physical uplink control channel in the start subframe of the second subframe set. Format transfer.
  • the B 0.
  • the format of the random access preamble is one of the formats 1-3. Since the last subframe of one or more subframes of the random access preamble used for one of the transmission formats 1-3 exists, the guard interval is greater than the length of time of the two SC-FDMA symbols, and thus The starting subframe in the two subframe sets does not need to leave the guard time as the UE frequency adjustment.
  • the UE may perform frequency adjustment using a guard interval existing in a subframe of a random access preamble for one of the transmission formats 1-3.
  • the A 0. Transmitting the first uplink information to the last one time unit in the last subframe of the first subframe set ends.
  • the embodiment of the present invention utilizes only the last A time units in the last subframe in a subframe set, and/or in the starting subframe in the second subframe set.
  • the first B time units perform adjustment of the UE frequency, so that the time for frequency adjustment is the maximum value of the frequency adjustment time required by the UE, so that no extra subframe is left as the interval subframe, thereby avoiding unnecessary
  • the uplink information transmission delay avoids the complexity of base station resource scheduling complexity.
  • the first uplink information and the second uplink information are two uplink information carried on the physical uplink control channel, and the uplink information is transmitted by shortening the physical uplink control channel format.
  • the orthogonal sequence length of the physical uplink control channel that shortens the physical uplink control channel format is the same as that of the prior art, so as to ensure the orthogonality of orthogonal sequences used by different PUCCHs and ensure the uplink information transmission performance of the PUCCH. .
  • a UE 900 which is provided by the embodiment of the present invention, may include: a first sending module 901 and a second sending module 902, where
  • the first sending module 901 is configured to send first uplink information on the first frequency resource of the first subframe set;
  • the second sending module 902 is configured to send second uplink information on the second frequency resource of the second subframe set.
  • the first frequency resource and the second frequency resource are frequency resources respectively included in two different narrowbands
  • the radio frame in which the subframe in the first subframe set is located is different from the radio frame in which the subframe in the second subframe set is located, and any one subframe included in the first subframe set and the Any one of the subframes included in the second subframe set belongs to a different radio frame; or,
  • any one of the subframes included in the first subframe set and any one of the subframes included in the second subframe set belong to different half frames.
  • the radio frame in which the subframe in the first subframe set is located and the radio frame in which the subframe in the second subframe set is located are adjacent different radio frames, or
  • the field in which the subframe in the first subframe set is located and the field in which the subframe in the second subframe set are located are adjacent different subframes.
  • the first subframe in which the first uplink information is transmitted in the first frequency resource is the first available uplink subframe within one radio frame or one field; and or,
  • the initial subframe in which the second uplink information is sent in the second frequency resource is a first available uplink subframe within a radio frame or a field;
  • the frequency hopping granularity of the first uplink information and/or the second uplink information transmission is 5 ⁇ M subframes, where M is a pre-configured positive integer.
  • the information type of the first uplink information and the information type of the second uplink information are the same.
  • the UE sends the first uplink information on the first frequency resource of the first subframe set, and the UE sends the second uplink information on the second frequency resource of the second subframe set.
  • the first frequency resource and the second frequency resource are frequency resources respectively included in two different narrow bands.
  • the radio frame in which the subframe in the first subframe set is located is different from the radio frame in which the subframe in the second subframe set is located, and any one of the subframes included in the first subframe set and the second subframe set include any One subframe belongs to a different radio frame.
  • the subframe in which the subframe in the first subframe set is located is different from the subframe in which the subframe in the second subframe set is located, and any one of the subframe and the second subframe included in the first subframe set includes Any one of the sub-frames belongs to a different field.
  • the first uplink information and the second uplink information are separately sent by using different first subframe sets and second subframe sets, and the UE needs to switch between different narrowbands after sending the first uplink information.
  • the radio frames (or the half frames) in which the subframes in the two subframe sets (ie, the first subframe set and the second subframe set) are located are different, and any one in the first subframe set is Any one of the sub-frames and the second sub-frame set belongs to a different radio frame (or field). Therefore, in the embodiment of the present invention, between the subframes in the first subframe set and the subframes in the second subframe set, the UE does not send uplink information. Interval, the UE may perform narrowband handover using the interval existing between the subframes in the first subframe set and the subframes in the second subframe set, and leave an extra subframe as a spacer subframe in the prior art.
  • the manner of the invention is completely different.
  • the embodiment of the present invention can avoid unnecessary uplink information transmission delay and avoid the increase of base station resource scheduling complexity.
  • a UE 1000 may include: a first sending module 1001 and a second sending module 1002, where
  • the first sending module 1001 is configured to send first uplink information on the first frequency resource of the first subframe set.
  • the second sending module 1002 is configured to send second uplink information on the second frequency resource of the second subframe set.
  • the first frequency resource and the second frequency resource are frequency resources included in different narrowbands, and a last subframe in the first subframe set and a start subframe in the second subframe set. Is an adjacent subframe;
  • the second uplink information is not sent on the first B time units, and the A and the B are natural numbers.
  • the first uplink information and the second uplink information are two uplink information carried on a physical uplink control channel, where the first uplink information is in the first subframe set.
  • the last subframe is transmitted in the shortened physical uplink control channel format, and the first subframe in the second subframe set is transmitted in the shortened physical uplink control channel format.
  • the A 0.
  • the embodiment of the present invention utilizes only the last A time units in the last subframe in the first subframe set, and/or the starting subframe in the second subframe set.
  • the first B time units are adjusted to adjust the UE frequency, so that the time for adjusting the frequency is the maximum value of the frequency adjustment time required by the UE, so that no extra subframe is left as the interval subframe, which avoids Unnecessary uplink information transmission delay avoids the complexity of base station resource scheduling complexity.
  • the first uplink information and the second uplink information are two uplink information carried on the physical uplink control channel, and the uplink information is transmitted by shortening the physical uplink control channel format.
  • the orthogonal uplink sequence length of the physical uplink control channel that shortens the physical uplink control channel format is the same as that of the prior art, thereby ensuring orthogonality of orthogonal sequences used by different PUCCHs and ensuring uplink information carried by the PUCCH. Transmission performance.
  • a base station 1100 may include: a first receiving module 1101 and a second receiving module 1102, where
  • the first receiving module 1101 is configured to receive first uplink information on a first frequency resource of the first subframe set.
  • the second receiving module 1102 is configured to receive second uplink information on the second frequency resource of the second subframe set.
  • the first frequency resource and the second frequency resource are frequency resources respectively included in two different narrowbands
  • the radio frame in which the subframe in the first subframe set is located is different from the radio frame in which the subframe in the second subframe set is located, and any one subframe included in the first subframe set and the Any one of the subframes included in the second subframe set belongs to a different radio frame; or,
  • the field in which the subframe in the first subframe set is located is different from the field in which the subframe in the second subframe set is located, and any one of the subframes included in the first subframe set and the Any one of the subframes included in the second subframe set belongs to a different field.
  • the radio frame in which the subframe in the first subframe set is located and the radio frame in which the subframe in the second subframe set is located are adjacent different radio frames, or
  • the field in which the subframe in the first subframe set is located and the field in which the subframe in the second subframe set are located are adjacent different subframes.
  • the first subframe in which the first uplink information is transmitted in the first frequency resource is the first available uplink subframe within one radio frame or one field; and or,
  • the initial subframe in which the second uplink information is sent in the second frequency resource is a first available uplink subframe within a radio frame or a field;
  • the frequency hopping granularity of the first uplink information and/or the second uplink information transmission is 5 ⁇ M subframes, where M is a pre-configured positive integer.
  • the information type of the first uplink information and the information type of the second uplink information are the same.
  • the base station receives the first uplink information on the first frequency resource of the first subframe set, and the base station receives the second uplink information on the second frequency resource of the second subframe set.
  • the first frequency resource and the second frequency resource are frequency resources respectively included in two different narrow bands.
  • the radio frame in which the subframe in the first subframe set is located is different from the radio frame in which the subframe in the second subframe set is located, and any one of the subframes included in the first subframe set and the second subframe set include any One subframe belongs to a different radio frame.
  • the subframe in which the subframe in the first subframe set is located is different from the subframe in which the subframe in the second subframe set is located, and any one of the subframe and the second subframe included in the first subframe set includes Any one of the sub-frames belongs to a different field.
  • the first uplink information and the second uplink information are separately sent by using different first subframe sets and second subframe sets, and the base station needs to switch between different narrowbands after receiving the first uplink information.
  • the radio frames (or the half frames) in which the subframes in the two subframe sets (ie, the first subframe set and the second subframe set) are located are different, and any one in the first subframe set is Any one of the sub-frames and the second sub-frame set belongs to a different radio frame (or field). Therefore, in the embodiment of the present invention, there is already an interval between the subframes in the first subframe set and the subframes in the second subframe set, and the UE may use the subframes in the first subframe set.
  • the interval between the frame and the subframes in the second subframe set is narrowband-switched, and the method of leaving the extra subframe as the interval subframe in the prior art is completely different, and the embodiment of the present invention can avoid unnecessary
  • the uplink information transmission delay avoids the complexity of base station resource scheduling complexity.
  • a base station 1200 may include: a first receiving module 1201 and a second receiving module 1202, where
  • the first receiving module 1201 is configured to receive first uplink information on the first frequency resource of the first subframe set.
  • the second receiving module 1202 is configured to receive second uplink information on the second frequency resource of the second subframe set.
  • the first frequency resource and the second frequency resource are frequency resources included in different narrowbands, and a last subframe in the first subframe set and a start subframe in the second subframe set. Yes Adjacent sub-frames;
  • the second uplink information is not received on the first B time units, and the A and the B are natural numbers.
  • the first uplink information and the second uplink information are two uplink information carried on a physical uplink control channel, where the first uplink information is in the first subframe set.
  • the last subframe is transmitted in the shortened physical uplink control channel format, and the first subframe in the second subframe set is transmitted in the shortened physical uplink control channel format.
  • the A 0.
  • the embodiment of the present invention utilizes only the last A time units in the last subframe in a subframe set, and/or in the starting subframe in the second subframe set.
  • the first B time units perform adjustment of the UE frequency, so that the time for frequency adjustment is the maximum value of the frequency adjustment time required by the UE, so that no extra subframe is left as the interval subframe, thereby avoiding unnecessary
  • the uplink information transmission delay avoids the complexity of base station resource scheduling complexity.
  • the first uplink information and the second uplink information are two uplink information carried on the physical uplink control channel, and the uplink information is transmitted by shortening the physical uplink control channel format.
  • the orthogonal sequence length of the physical uplink control channel that shortens the physical uplink control channel format is the same as that of the prior art, so as to ensure the orthogonality of orthogonal sequences used by different PUCCHs and ensure the uplink information transmission performance of the PUCCH. .
  • the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium is stored There is a program that executes some or all of the steps recited in the above method embodiments.
  • the UE 1300 includes:
  • the receiver 1301, the transmitter 1302, the processor 1303, and the memory 1304 (wherein the number of the processors 1303 in the UE 1300 may be one or more, and one processor in FIG. 13 is taken as an example).
  • the receiver 1301, the transmitter 1302, the processor 1303, and the memory 1304 may be connected by a bus or other means, wherein the bus connection is taken as an example in FIG.
  • the processor 1303 is configured to perform the following steps:
  • the first frequency resource and the second frequency resource are frequency resources respectively included in two different narrowbands
  • the radio frame in which the subframe in the first subframe set is located is different from the radio frame in which the subframe in the second subframe set is located, and any one subframe included in the first subframe set and the Any one of the subframes included in the second subframe set belongs to a different radio frame; or,
  • the field in which the subframe in the first subframe set is located is different from the field in which the subframe in the second subframe set is located, and any one of the subframes included in the first subframe set and the Any one of the subframes included in the second subframe set belongs to a different field.
  • the radio frame in which the subframe in the first subframe set is located and the radio frame in which the subframe in the second subframe set is located are adjacent different radio frames, or
  • the field in which the subframe in the first subframe set is located and the field in which the subframe in the second subframe set are located are adjacent different subframes.
  • the first subframe in which the first uplink information is transmitted in the first frequency resource is within a radio frame or the first available uplink subframe in a field; and/or,
  • the initial subframe in which the second uplink information is sent in the second frequency resource is a first available uplink subframe within a radio frame or a field;
  • the frequency hopping granularity of the first uplink information and/or the second uplink information is 5 ⁇ M sub- Frame, where M is a pre-configured positive integer.
  • the information type of the first uplink information and the information type of the second uplink information are the same.
  • the UE sends the first uplink information on the first frequency resource of the first subframe set, and the UE sends the second uplink information on the second frequency resource of the second subframe set.
  • the first frequency resource and the second frequency resource are frequency resources respectively included in two different narrow bands.
  • the radio frame in which the subframe in the first subframe set is located is different from the radio frame in which the subframe in the second subframe set is located, and any one of the subframes included in the first subframe set and the second subframe set include any One subframe belongs to a different radio frame.
  • the subframe in which the subframe in the first subframe set is located is different from the subframe in which the subframe in the second subframe set is located, and any one of the subframe and the second subframe included in the first subframe set includes Any one of the sub-frames belongs to a different field.
  • the first uplink information and the second uplink information are separately sent by using different first subframe sets and second subframe sets, and the UE needs to switch between different narrowbands after sending the first uplink information.
  • the radio frames (or the half frames) in which the subframes in the two subframe sets (ie, the first subframe set and the second subframe set) are located are different, and any one in the first subframe set is Any one of the sub-frames and the second sub-frame set belongs to a different radio frame (or field). Therefore, in the embodiment of the present invention, there is already an interval between the subframes in the first subframe set and the subframes in the second subframe set, and the UE may use the subframes in the first subframe set.
  • the interval between the frame and the subframes in the second subframe set is narrowband-switched, and the method of leaving the extra subframe as the interval subframe in the prior art is completely different, and the embodiment of the present invention can avoid unnecessary
  • the uplink information transmission delay avoids the complexity of base station resource scheduling complexity.
  • the following is a description of another UE provided by the embodiment of the present invention.
  • the structure of the UE is the same as that of the UE 1300 shown in FIG. 13, but the processor 1303 is configured to perform the following steps:
  • the first frequency resource and the second frequency resource are frequency resources included in different narrowbands, and a last subframe in the first subframe set and a start subframe in the second subframe set. Is an adjacent subframe;
  • the second uplink information is not sent on the unit, and the A and the B are natural numbers.
  • the first uplink information and the second uplink information are two uplink information carried on a physical uplink control channel, where the first uplink information is in the first subframe set.
  • the last subframe is transmitted in the shortened physical uplink control channel format, and the first subframe in the second subframe set is transmitted in the shortened physical uplink control channel format.
  • the A 0.
  • the embodiment of the present invention utilizes only the last A time units in the last subframe in the first subframe set, and/or the starting subframe in the second subframe set.
  • the first B time units are adjusted in the UE frequency, so that the time for adjusting the frequency is the maximum value of the frequency adjustment time required by the UE, so that no extra subframe is left as the interval subframe, and no
  • the necessary uplink information transmission delay avoids the complexity of base station resource scheduling complexity.
  • the first uplink information and the second uplink information are two uplink information carried on the physical uplink control channel, and the uplink information is transmitted by shortening the physical uplink control channel format.
  • the orthogonal uplink sequence length of the physical uplink control channel that shortens the physical uplink control channel format is the same as that of the prior art, thereby ensuring orthogonality of orthogonal sequences used by different PUCCHs and ensuring uplink information carried by the PUCCH. Transmission performance.
  • the base station 1400 includes:
  • the receiver 1401, the transmitter 1402, the processor 1403, and the memory 1404 (wherein the number of the processors 1403 in the base station 1400 may be one or more, and one processor in FIG. 14 is taken as an example).
  • the receiver 1401, the transmitter 1402, the processor 1403, and the memory 1404 may be connected by a bus or other means, wherein the bus connection is taken as an example in FIG.
  • the processor 1403 is configured to perform the following steps:
  • the first frequency resource and the second frequency resource are frequency resources respectively included in two different narrowbands
  • the radio frame in which the subframe in the first subframe set is located is different from the radio frame in which the subframe in the second subframe set is located, and any one subframe included in the first subframe set and the Any one of the subframes included in the second subframe set belongs to a different radio frame; or,
  • the field in which the subframe in the first subframe set is located is different from the field in which the subframe in the second subframe set is located, and any one of the subframes included in the first subframe set and the Any one of the subframes included in the second subframe set belongs to a different field.
  • the radio frame in which the subframe in the first subframe set is located and the radio frame in which the subframe in the second subframe set is located are adjacent different radio frames, or
  • the field in which the subframe in the first subframe set is located and the field in which the subframe in the second subframe set are located are adjacent different subframes.
  • the first subframe in which the first uplink information is transmitted in the first frequency resource is the first available uplink subframe within one radio frame or one field; and or,
  • the initial subframe in which the second uplink information is sent in the second frequency resource is a first available uplink subframe within a radio frame or a field;
  • the frequency hopping granularity of the first uplink information and/or the second uplink information transmission is 5 ⁇ M subframes, where M is a pre-configured positive integer.
  • the information type of the first uplink information and the information type of the second uplink information are the same.
  • the base station receives the first uplink information on the first frequency resource of the first subframe set, and the base station receives the second uplink information on the second frequency resource of the second subframe set.
  • the first frequency resource and the second frequency resource are frequency resources respectively included in two different narrow bands.
  • the radio frame in which the subframe in the first subframe set is located is different from the radio frame in which the subframe in the second subframe set is located, and any one of the subframes included in the first subframe set and the second subframe set include any One subframe belongs to a different radio frame.
  • the subframe in which the subframe in the first subframe set is located is different from the subframe in which the subframe in the second subframe set is located, and any one of the subframe and the second subframe included in the first subframe set includes Any one of the sub-frames belongs to a different field. Due to the first embodiment of the present invention, The uplink information and the second uplink information are respectively sent by using different first subframe sets and second subframe sets, and the base station needs to switch between different narrowbands after receiving the first uplink information. In the embodiment of the present invention, two children are defined.
  • the radio frames (or the half frames) in which the subframes in the frame set (ie, the first subframe set and the second subframe set) are located are different, and any one of the subframes and the second subframe set in the first subframe set are different. Any one of the subframes belongs to a different radio frame (or field). Therefore, in the embodiment of the present invention, there is already an interval between the subframes in the first subframe set and the subframes in the second subframe set, and the UE may use the subframes in the first subframe set.
  • the interval between the frame and the subframes in the second subframe set is narrowband-switched, and the method of leaving the extra subframe as the interval subframe in the prior art is completely different, and the embodiment of the present invention can avoid unnecessary
  • the uplink information transmission delay avoids the complexity of base station resource scheduling complexity.
  • the structure of the base station is the same as that of the base station 1400 shown in FIG. 14, but the processor 1403 is configured to perform the following steps:
  • the first frequency resource and the second frequency resource are frequency resources included in different narrowbands, and a last subframe in the first subframe set and a start subframe in the second subframe set. Is an adjacent subframe;
  • the second uplink information is not received on the first B time units, and the A and the B are natural numbers.
  • the first uplink information and the second uplink information are two uplink information carried on a physical uplink control channel, where the first uplink information is in the first subframe set.
  • the last subframe is transmitted in the shortened physical uplink control channel format, and the first subframe in the second subframe set is transmitted in the shortened physical uplink control channel format.
  • the A 0.
  • the embodiment of the present invention utilizes only the last A time units in the last subframe in a subframe set, and/or in the starting subframe in the second subframe set.
  • the first B time units perform adjustment of the UE frequency, so that the time for frequency adjustment is the maximum value of the frequency adjustment time required by the UE, so that no extra subframe is left as the interval subframe, thereby avoiding unnecessary
  • the uplink information transmission delay avoids the complexity of base station resource scheduling complexity.
  • the first uplink information and the second uplink information are two uplink information carried on the physical uplink control channel, and the uplink information is transmitted by shortening the physical uplink control channel format.
  • the orthogonal sequence length of the physical uplink control channel that shortens the physical uplink control channel format is the same as that of the prior art, so as to ensure the orthogonality of orthogonal sequences used by different PUCCHs and ensure the uplink information transmission performance of the PUCCH. .
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be Physical units can be located in one place or distributed to multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the connection relationship between the modules indicates that there is a communication connection between them, and specifically, one or more communication buses or signal lines can be realized.
  • the present invention can be implemented by means of software plus necessary general hardware, and of course, dedicated hardware, dedicated CPU, dedicated memory, dedicated memory, Special components and so on.
  • functions performed by computer programs can be easily implemented with the corresponding hardware, and the specific hardware structure used to implement the same function can be various, such as analog circuits, digital circuits, or dedicated circuits. Circuits, etc.
  • software program implementation is a better implementation in more cases.
  • the technical solution of the present invention which is essential or contributes to the prior art, can be embodied in the form of a software product stored in a readable storage medium, such as a floppy disk of a computer.
  • U disk mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), disk or optical disk, etc., including a number of instructions to make a computer device (may be A personal computer, server, or network device, etc.) performs the methods described in various embodiments of the present invention.
  • a computer device may be A personal computer, server, or network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种上行信息的传输方法和基站以及用户设备。一种上行信息的传输方法,包括:UE在第一子帧集合的第一频率资源上发送第一上行信息;所述UE在第二子帧集合的第二频率资源上发送第二上行信息;其中,所述第一频率资源和所述第二频率资源是两个不同窄带分别包括的频率资源;所述第一子帧集合内的子帧所在的无线帧与所述第二子帧集合内的子帧所在的无线帧不同,且所述第一子帧集合包括的任何一个子帧和所述第二子帧集合包括的任何一个子帧都属于不同的无线帧;或,所述第一子帧集合内的子帧所在的半帧与所述第二子帧集合内的子帧所在的半帧不同,且所述第一子帧集合包括的任何一个子帧和所述第二子帧集合包括的任何一个子帧都属于不同的半帧。

Description

一种上行信息的传输方法和基站以及用户设备 技术领域
本发明实施例涉及通信领域,尤其涉及一种上行信息的传输方法和基站以及用户设备。
背景技术
在机器类型通信(英文全称:Machine Type Communication,英文简称:MTC)中,由于用户设备(英文全称:User Equipment,英文简称:UE)数量众多,需要降低UE的复杂度或成本。降低UE支持的接收和发送信号的带宽是降低UE的复杂度或成本采用的主要技术之一。比如UE接收和发送信号的带宽只有1.4MHz。然而,现在的长期演进(英文全称:Long Term Evolution,英文简称:LTE)或高级的长期演进(英文全称:LTE Advanced,英文简称:LTE-A)系统规定了1.4MHz,3MHz,5MHz,10MHz,15MHz,20MHz的6种系统带宽。因此,当系统带宽大于或者等于低复杂度或低成本的UE接收和发送信号的带宽时,所述UE也需要能够进行通信。
LTE系统带宽内的资源在频率上被划分成子载波。LTE系统的资源在时间上被划分为无线帧(即系统帧),一个无线帧为10ms。一个无线帧包含两个5ms的半帧。一个无线帧包含10个子帧,一个子帧长1ms,一个子帧包含两个时隙。LTE系统的上行采用单载波频分多址(英文全称:Single-carrier Frequency-Division Multiple Access,英文简称:SC-FDMA)。每个时隙包含6个或者7个SC-FDMA符号。一个物理资源块(英文全称:Physical Resource Block,英文简称:PRB)在频率上包含12个子载波。一个PRB在时间上占据一个时隙。
LTE系统支持两种帧结构:Type1和Type2,其中Type1用于频分双工(英文全称:Frequency Division Duplexing,英文简称:FDD),Type2用于时分双工(英文全称:Time Division Duplexing,英文简称:TDD)。对于FDD的帧结构Type1,一个10ms无线帧包含的每个子帧既可以传输下行信息,也可以用于传输上行信息。对于TDD的帧结构Type2,一个10ms的无线帧包含的子帧或者为下行子帧,或者为上行子帧,或者为特殊子帧。具体哪个子帧为下行 子帧、上行子帧、特殊子帧由上下行配置决定。LTE TDD支持7种不同的上下行配置选项。
当低复杂度或低成本的UE利用LTE系统进行通信时,可以将LTE系统带宽内的频率资源划分成窄带。窄带包含的频率资源的频率宽度不超过UE支持的工作带宽。比如,一个窄带的频率宽度只有1.4MHz,或6个PRB的频率宽度。
当系统带宽内的窄带个数大于1个时,MTC的上行信息的传输,可以在不同的窄带之间进行切换。低复杂度或者低成本的UE传输信息在不同的窄带之间进行切换需要最多2个符号的时间进行频率调整。
现有技术中,MTC的上行信息的传输在不同的窄带之间进行切换时,留出一个子帧不传输上行信息,用于低复杂度或者低成本的UE频率的调整。也就是说,在第一子帧的第一窄带和第二子帧的第二窄带传输UE的上行信息,第一子帧和第二子帧之间至少有一个间隔子帧。在间隔子帧,所述UE在第一窄带和第二窄带之间进行频率调整,而不进行上行信息的发送。
上述现有技术的间隔子帧至少有1ms,远大于低复杂度或者低成本的UE发送上行信息在不同的窄带之间进行切换需要的最多2个符号的频率调整时间。从而会对上行信息的传输造成不必要的传输时延。另外,留出间隔子帧会造成在时间维度的资源利用的分割,增加了基站资源调度的复杂度。
发明内容
本发明实施例提供了一种上行信息的传输方法和基站以及用户设备,能够减少不必要的上行信息传输时延,避免基站资源调度复杂度的增加。
第一方面,本发明实施例提供一种上行信息的传输方法,包括:
用户设备UE在第一子帧集合的第一频率资源上发送第一上行信息;
所述UE在第二子帧集合的第二频率资源上发送第二上行信息;
其中,所述第一频率资源和所述第二频率资源是两个不同窄带分别包括的频率资源;
所述第一子帧集合内的子帧所在的无线帧与所述第二子帧集合内的子帧所在的无线帧不同,且所述第一子帧集合包括的任何一个子帧和所述第二子帧集合包括的任何一个子帧都属于不同的无线帧;或,
所述第一子帧集合内的子帧所在的半帧与所述第二子帧集合内的子帧所在的半帧不同,且所述第一子帧集合包括的任何一个子帧和所述第二子帧集合包括的任何一个子帧都属于不同的半帧。
结合第一方面,在第一方面的第一种可能的实现方式中,所述第一子帧集合内的子帧所在的无线帧与所述第二子帧集合内的子帧所在的无线帧是相邻的不同无线帧,或所述第一子帧集合内的子帧所在的半帧与所述第二子帧集合内的子帧所在的半帧是相邻的不同半帧。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第一种可能的实现方式中,在时分双工TDD系统中的所述第一子帧集合和所述第二子帧集合之间只存在下行子帧和/或特殊子帧。
结合第一方面或第一方面的第一种可能或第二种可能的实现方式,在第一方面的第三种可能的实现方式中,所述第一上行信息在所述第一频率资源发送的起始子帧是一个无线帧内或者一个半帧内的第一个可用的上行子帧;和/或,
所述第二上行信息在所述第二频率资源发送的起始子帧是一个无线帧内或者一个半帧内的第一个可用的上行子帧;和/或,
所述第一上行信息和/或所述第二上行信息发送的跳频粒度是5×M个子帧,其中M是预先配置的正整数。
结合第一方面或第一方面的第一种可能或第二种可能或第三种可能的实现方式,在第一方面的第四种可能的实现方式中,所述第一上行信息的信息类型和所述第二上行信息的信息类型相同。
第二方面,本发明实施例还提供一种上行信息的传输方法,包括:
用户设备UE在第一子帧集合的第一频率资源上发送第一上行信息;
所述UE在第二子帧集合的第二频率资源上发送第二上行信息;
其中,所述第一频率资源和所述第二频率资源是不同窄带包含的频率资源,所述第一子帧集合中的最后一个子帧与所述第二子帧集合中的起始子帧是相邻的子帧;
在所述第一子帧集合中的最后一个子帧内的最后A个时间单元上不发送所述第一上行信息,和/或在所述第二子帧集合中的起始子帧内的前B个时间单元上不发送所述第二上行信息,所述A和所述B为自然数。
结合第二方面,在第二方面的第一种可能的实现方式中,所述A=1,所述 B=1;或,
所述A=2,所述B=0;或,
所述A=0,所述B=2。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第一种可能的实现方式中,所述第一上行信息和所述第二上行信息是物理上行控制信道上承载的两个上行信息,所述第一上行信息在所述第一子帧集合中的最后一个子帧采用缩短物理上行控制信道格式传输,所述第二上行信息在所述第二子帧集合中的起始子帧采用缩短物理上行控制信道格式传输。
结合第二方面或第二方面的第一种可能或第二种可能的实现方式,在第二方面的第三种可能的实现方式中,当所述第一上行信息是随机接入前导时,所述B=0;或,
当所述第二上行信息是随机接入前导时,所述A=0。
第三方面,本发明实施例还提供一种上行信息的传输方法,包括:
基站在第一子帧集合的第一频率资源上接收第一上行信息;
所述基站在第二子帧集合的第二频率资源上接收第二上行信息;
其中,所述第一频率资源和所述第二频率资源是两个不同窄带分别包括的频率资源;
所述第一子帧集合内的子帧所在的无线帧与所述第二子帧集合内的子帧所在的无线帧不同,且所述第一子帧集合包括的任何一个子帧和所述第二子帧集合包括的任何一个子帧都属于不同的无线帧;或,
所述第一子帧集合内的子帧所在的半帧与所述第二子帧集合内的子帧所在的半帧不同,且所述第一子帧集合包括的任何一个子帧和所述第二子帧集合包括的任何一个子帧都属于不同的半帧。
结合第三方面,在第三方面的第一种可能的实现方式中,所述第一子帧集合内的子帧所在的无线帧与所述第二子帧集合内的子帧所在的无线帧是相邻的不同无线帧,或所述第一子帧集合内的子帧所在的半帧与所述第二子帧集合内的子帧所在的半帧是相邻的不同半帧。
结合第三方面或第三方面的第一种可能的实现方式,在第三方面的第一种可能的实现方式中,在时分双工TDD系统中的所述第一子帧集合和所述第二子帧集合之间只存在下行子帧和/或特殊子帧。
结合第三方面或第三方面的第一种可能或第二种可能的实现方式,在第三方面的第三种可能的实现方式中,所述第一上行信息在所述第一频率资源发送的起始子帧是一个无线帧内或者一个半帧内的第一个可用的上行子帧;和/或,
所述第二上行信息在所述第二频率资源发送的起始子帧是一个无线帧内或者一个半帧内的第一个可用的上行子帧;和/或,
所述第一上行信息和/或所述第二上行信息发送的跳频粒度是5×M个子帧,其中M是预先配置的正整数。
结合第三方面或第三方面的第一种可能或第二种可能或第三种可能的实现方式,在第三方面的第四种可能的实现方式中,所述第一上行信息的信息类型和所述第二上行信息的信息类型相同。
第四方面,本发明实施例还提供一种上行信息的传输方法,包括:
基站在第一子帧集合的第一频率资源上接收第一上行信息;
所述基站在第二子帧集合的第二频率资源上接收第二上行信息;
其中,所述第一频率资源和所述第二频率资源是不同窄带包含的频率资源,所述第一子帧集合中的最后一个子帧与所述第二子帧集合中的起始子帧是相邻的子帧;
在所述第一子帧集合中的最后一个子帧内的最后A个时间单元上不接收所述第一上行信息,和/或在所述第二子帧集合中的起始子帧内的前B个时间单元上不接收所述第二上行信息,所述A和所述B为自然数。
结合第四方面,在第四方面的第一种可能的实现方式中,所述A=1,所述B=1;或,
所述A=2,所述B=0;或,
所述A=0,所述B=2。
结合第四方面或第四方面的第一种可能的实现方式,在第四方面的第一种可能的实现方式中,所述第一上行信息和所述第二上行信息是物理上行控制信道上承载的两个上行信息,所述第一上行信息在所述第一子帧集合中的最后一个子帧采用缩短物理上行控制信道格式传输,所述第二上行信息在所述第二子帧集合中的起始子帧采用缩短物理上行控制信道格式传输。
结合第四方面或第四方面的第一种可能或第二种可能的实现方式,在第四方面的第三种可能的实现方式中,当所述第一上行信息是随机接入前导时,所 述B=0;或,
当所述第二上行信息是随机接入前导时,所述A=0。
第五方面,本发明实施例还提供一种用户设备,包括:
第一发送模块,用于在第一子帧集合的第一频率资源上发送第一上行信息;
第二发送模块,用于在第二子帧集合的第二频率资源上发送第二上行信息;
其中,所述第一频率资源和所述第二频率资源是两个不同窄带分别包括的频率资源;
所述第一子帧集合内的子帧所在的无线帧与所述第二子帧集合内的子帧所在的无线帧不同,且所述第一子帧集合包括的任何一个子帧和所述第二子帧集合包括的任何一个子帧都属于不同的无线帧;或,
所述第一子帧集合内的子帧所在的半帧与所述第二子帧集合内的子帧所在的半帧不同,且所述第一子帧集合包括的任何一个子帧和所述第二子帧集合包括的任何一个子帧都属于不同的半帧。
结合第五方面,在第五方面的第一种可能的实现方式中,所述第一子帧集合内的子帧所在的无线帧与所述第二子帧集合内的子帧所在的无线帧是相邻的不同无线帧,或所述第一子帧集合内的子帧所在的半帧与所述第二子帧集合内的子帧所在的半帧是相邻的不同半帧。
结合第五方面或第五方面的第一种可能的实现方式,在第五方面的第一种可能的实现方式中,在时分双工TDD系统中的所述第一子帧集合和所述第二子帧集合之间只存在下行子帧和/或特殊子帧。
结合第五方面或第五方面的第一种可能或第二种可能的实现方式,在第五方面的第三种可能的实现方式中,所述第一上行信息在所述第一频率资源发送的起始子帧是一个无线帧内或者一个半帧内的第一个可用的上行子帧;和/或,
所述第二上行信息在所述第二频率资源发送的起始子帧是一个无线帧内或者一个半帧内的第一个可用的上行子帧;和/或,
所述第一上行信息和/或所述第二上行信息发送的跳频粒度是5×M个子帧,其中M是预先配置的正整数。
结合第五方面或第五方面的第一种可能或第二种可能或第三种可能的实 现方式,在第五方面的第四种可能的实现方式中,所述第一上行信息的信息类型和所述第二上行信息的信息类型相同。
第六方面,本发明实施例还提供一种用户设备,包括:
第一发送模块,用于在第一子帧集合的第一频率资源上发送第一上行信息;
第二发送模块,用于在第二子帧集合的第二频率资源上发送第二上行信息;
其中,所述第一频率资源和所述第二频率资源是不同窄带包含的频率资源,所述第一子帧集合中的最后一个子帧与所述第二子帧集合中的起始子帧是相邻的子帧;
在所述第一子帧集合中的最后一个子帧内的最后A个时间单元上不发送所述第一上行信息,和/或在所述第二子帧集合中的起始子帧内的前B个时间单元上不发送所述第二上行信息,所述A和所述B为自然数。
结合第六方面,在第六方面的第一种可能的实现方式中,所述A=1,所述B=1;或,
所述A=2,所述B=0;或,
所述A=0,所述B=2。
结合第六方面或第六方面的第一种可能的实现方式,在第六方面的第一种可能的实现方式中,
所述第一上行信息和所述第二上行信息是物理上行控制信道上承载的两个上行信息,所述第一上行信息在所述第一子帧集合中的最后一个子帧采用缩短物理上行控制信道格式传输,所述第二上行信息在所述第二子帧集合中的起始子帧采用缩短物理上行控制信道格式传输。
结合第六方面或第六方面的第一种可能或第二种可能的实现方式,在第六方面的第三种可能的实现方式中,当所述第一上行信息是随机接入前导时,所述B=0;或,
当所述第二上行信息是随机接入前导时,所述A=0。
第七方面,本发明实施例还提供一种基站,包括:
第一接收模块,用于在第一子帧集合的第一频率资源上接收第一上行信息;
第二接收模块,用于在第二子帧集合的第二频率资源上接收第二上行信息;
其中,所述第一频率资源和所述第二频率资源是两个不同窄带分别包括的频率资源;
所述第一子帧集合内的子帧所在的无线帧与所述第二子帧集合内的子帧所在的无线帧不同,且所述第一子帧集合包括的任何一个子帧和所述第二子帧集合包括的任何一个子帧都属于不同的无线帧;或,
所述第一子帧集合内的子帧所在的半帧与所述第二子帧集合内的子帧所在的半帧不同,且所述第一子帧集合包括的任何一个子帧和所述第二子帧集合包括的任何一个子帧都属于不同的半帧。
结合第七方面,在第七方面的第一种可能的实现方式中,所述第一子帧集合内的子帧所在的无线帧与所述第二子帧集合内的子帧所在的无线帧是相邻的不同无线帧,或所述第一子帧集合内的子帧所在的半帧与所述第二子帧集合内的子帧所在的半帧是相邻的不同半帧。
结合第七方面或第七方面的第一种可能的实现方式,在第七方面的第一种可能的实现方式中,在时分双工TDD系统中的所述第一子帧集合和所述第二子帧集合之间只存在下行子帧和/或特殊子帧。
结合第七方面或第七方面的第一种可能或第二种可能的实现方式,在第七方面的第三种可能的实现方式中,
所述第一上行信息在所述第一频率资源发送的起始子帧是一个无线帧内或者一个半帧内的第一个可用的上行子帧;和/或,
所述第二上行信息在所述第二频率资源发送的起始子帧是一个无线帧内或者一个半帧内的第一个可用的上行子帧;和/或,
所述第一上行信息和/或所述第二上行信息发送的跳频粒度是5×M个子帧,其中M是预先配置的正整数。
结合第七方面或第七方面的第一种可能或第二种可能或第三种可能的实现方式,在第七方面的第四种可能的实现方式中,所述第一上行信息的信息类型和所述第二上行信息的信息类型相同。
第八方面,本发明实施例还提供一种基站,包括:
第一接收模块,用于在第一子帧集合的第一频率资源上接收第一上行信 息;
第二接收模块,用于在第二子帧集合的第二频率资源上接收第二上行信息;
其中,所述第一频率资源和所述第二频率资源是不同窄带包含的频率资源,所述第一子帧集合中的最后一个子帧与所述第二子帧集合中的起始子帧是相邻的子帧;
在所述第一子帧集合中的最后一个子帧内的最后A个时间单元上不接收所述第一上行信息,和/或在所述第二子帧集合中的起始子帧内的前B个时间单元上不接收所述第二上行信息,所述A和所述B为自然数。
结合第八方面,在第八方面的第一种可能的实现方式中,所述A=1,所述B=1;或,
所述A=2,所述B=0;或,
所述A=0,所述B=2。
结合第八方面或第八方面的第一种可能的实现方式,在第八方面的第一种可能的实现方式中,
所述第一上行信息和所述第二上行信息是物理上行控制信道上承载的两个上行信息,所述第一上行信息在所述第一子帧集合中的最后一个子帧采用缩短物理上行控制信道格式传输,所述第二上行信息在所述第二子帧集合中的起始子帧采用缩短物理上行控制信道格式传输。
结合第八方面或第八方面的第一种可能或第二种可能的实现方式,在第八方面的第三种可能的实现方式中,当所述第一上行信息是随机接入前导时,所述B=0;或,
当所述第二上行信息是随机接入前导时,所述A=0。
从以上技术方案可以看出,本发明实施例具有以下优点:
本发明实施例中,UE在第一子帧集合的第一频率资源上发送第一上行信息;UE在第二子帧集合的第二频率资源上发送第二上行信息。其中,第一频率资源和第二频率资源是两个不同窄带分别包括的频率资源。第一子帧集合内的子帧所在的无线帧与第二子帧集合内的子帧所在的无线帧不同,且第一子帧集合包括的任何一个子帧和第二子帧集合包括的任何一个子帧都属于不同的无线帧。或,第一子帧集合内的子帧所在的半帧与第二子帧集合内的子帧所在的 半帧不同,且第一子帧集合包括的任何一个子帧和第二子帧集合包括的任何一个子帧都属于不同的半帧。由于本发明实施例中,第一上行信息和第二上行信息使用不同的第一子帧集合和第二子帧集合分别发送,UE发送第一上行信息完之后需要在不同的窄带之间切换。本发明实施例中明确了两个子帧集合(即第一子帧集合和第二子帧集合)内的子帧所在的无线帧(或半帧)不同,并且第一子帧集合内的任何一个子帧和第二子帧集合内的任何一个子帧都属于不同的无线帧(或半帧)。因此本发明实施例中第一子帧集合内的子帧和第二子帧集合内的子帧之间已经存在有UE不会发送上行信息的间隔,UE可以使用第一子帧集合内的子帧和第二子帧集合内的子帧之间已经存在的间隔进行窄带切换,而与现有技术中留出额外的子帧作为间隔子帧的方式完全不同,本发明实施例可以避免不必要的上行信息传输时延,避免了基站资源调度复杂度的增加。
附图说明
图1为本发明上行信息的传输方法应用在通信系统中的系统架构图;
图2为本发明实施例提供的一种上行信息的传输方法的流程方框示意图;
图3为本发明实施例提供的一种上行信息传输的示意图;
图4为本发明实施例提供的另一种上行信息的传输方法的流程方框示意图;
图5-a为本发明实施例提供的另一种上行信息传输的示意图;
图5-b为本发明实施例提供的另一种上行信息传输的示意图;
图5-c为本发明实施例提供的另一种上行信息传输的示意图;
图5-d为本发明实施例提供的另一种上行信息传输的示意图;
图6-a为本发明实施例提供的将要传输上行数据的多个子帧和将要传输UCI的多个子帧之间存在交叠的一种处理过程示意图;
图6-b为本发明实施例提供的将要传输上行数据的多个子帧和将要传输UCI的多个子帧之间存在交叠的另一种处理过程示意图;
图6-c为本发明实施例提供的将要传输上行数据的多个子帧和将要传输UCI的多个子帧之间存在交叠的一种处理过程示意图;
图7为本发明实施例提供的另一种上行信息的传输方法的流程方框示意 图;
图8为本发明实施例提供的另一种上行信息的传输方法的流程方框示意图;
图9为本发明实施例提供的一种UE的组成结构示意图;
图10为本发明实施例提供的另一种UE的组成结构示意图;
图11为本发明实施例提供的一种基站的组成结构示意图;
图12为本发明实施例提供的另一种基站的组成结构示意图;
图13为本发明实施例提供的另一种UE的组成结构示意图;
图14为本发明实施例提供的另一种基站的组成结构示意图。
具体实施方式
本发明实施例提供了一种上行信息的传输方法和基站以及用户设备,能够减少不必要的上行信息传输时延,避免基站资源调度复杂度的增加。
为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,下面所描述的实施例仅仅是本发明一部分实施例,而非全部实施例。基于本发明中的实施例,本领域的技术人员所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本发明的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、系统、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。
首先对本发明上行信息的传输方法应用的系统架构进行简介,本发明主要应用于LTE系统或高级的长期演进(LTE-A,LTE Advanced)系统。本发明也可以应用于其它的通信系统,例如,宽带码分多址(Wideband Code Division Multiple Access,WCDMA)、时分同步码分多址(Time Division-Synchronous Code Division Multiple Access,TD-SCDMA)等系统,只要该通信系统中存 在实体可以发送信息,该通信系统中存在其它实体可以接收信息即可。
本发明实施例中传输可以是发送或接收。若一侧设备的传输是发送,则该侧设备对应的另一侧通信设备的传输是接收;反之亦然。本发明实施例中的覆盖增强可以是重复传输、扩频传输、重传、捆绑时间间隔传输、窄带(如子载波调度)传输、超窄带(如带宽是几十赫兹到十几千赫兹)传输、提高功率谱密度传输、放松需求传输、不断尝试传输中的一种或多种。低成本终端或低复杂度终端是指终端设备的工作带宽小于非低成本终端或非低复杂度终端的工作带宽。工作带宽可以是处理带宽、射频处理带宽、基带处理带宽中的一种或多种。
请参阅如图1所示,为本发明上行信息的传输方法应用在通信系统中的系统架构图,如图1所示,基站(英文名称Base station)和用户设备(UE,User Equipment)1~UE6组成一个通信系统,在该通信系统中,基站发送系统信息、RAR消息和寻呼消息中的一种或多种给UE1~UE6中的一个或多个UE,基站为本发明信息的传输方法中的发送端设备,UE1~UE6为本发明信息的传输方法中的接收端设备。此外,UE4~UE6也组成一个通信系统,在该通信系统中,UE5可以作为基站的功能实现,UE5可以发送系统信息、RAR消息和寻呼消息中的一种或多种给UE4和UE6中的一个或多个UE。
以下分别进行详细说明。
本发明上行信息的传输方法的一个实施例,可应用于UE向基站发送上行信息的场景中,请参阅图2所示,该上行信息的传输方法,可以包括如下步骤:
201、UE在第一子帧集合的第一频率资源上发送第一上行信息;
202、UE在第二子帧集合的第二频率资源上发送第二上行信息;
其中,第一频率资源和第二频率资源是两个不同窄带分别包括的频率资源;
第一子帧集合内的子帧所在的无线帧与第二子帧集合内的子帧所在的无线帧不同,且第一子帧集合包括的任何一个子帧和第二子帧集合包括的任何一个子帧都属于不同的无线帧;或,
第一子帧集合内的子帧所在的半帧与第二子帧集合内的子帧所在的半帧不同,且第一子帧集合包括的任何一个子帧和第二子帧集合包括的任何一个子帧都属于不同的无线帧。
在本发明实施例中,UE可以分别使用两个子帧集合中的不同频率资源分别发送上行信息,具体的,本发明实施例中,分别存在有第一子帧集合和第二子帧集合,其中每个子帧集合中可以包括至少一个子帧。例如,子帧集合中可以只有一个子帧,子帧集合中也可以有多个子帧。同一个子帧集合中包括的所有子帧可以属于同一个无线帧,也可以属于不同的无线帧。同样的,同一个子帧集合中包括的所有子帧可以属于同一个半帧,也可以属于不同的半帧,本发明实施例中不做限定。
在本发明实施例中,第一上行信息通过第一子帧集合的第一频率资源发送,第二上行信息通过第二子帧集合的第二频率资源发送。并且本发明实施例中对第一子帧集合内的子帧和第二子帧集合内的子帧之间的位置关系作出了详细说明,两个子帧集合内的子帧之间满足如下关系:1)、第一子帧集合内的子帧所在的无线帧(或半帧)与第二子帧集合内的子帧所在的无线帧(或半帧)不同;2)、第一子帧集合包括的任何一个子帧和第二子帧集合包括的任何一个子帧都属于不同的无线帧(或半帧)。
在本发明实施例中,仅可能在无线帧变化或者半帧变化后,UE发送上行信息的频率资源所在的窄带和之前的无线帧或者半帧中UE发送上行信息的频率资源所在的窄带不相同。需要说明的是,在无线帧变化或者半帧变化后,UE发送上行信息的频率资源所在的窄带和之前的无线帧或者半帧中UE发送上行信息的频率资源所在的窄带也可以相同。在一个无线帧或者半帧中的所有子帧,UE发送上行信息的频率资源所在的窄带都相同。例如,工作带宽为1.4MHz(或200KHz,或180KHz)。在一个子帧,一个低复杂度或低成本的UE只能在一个窄带中进行信号的接收或发送。窄带是具有特定频率宽度的频率资源。窄带可以由一个或多个子载波(如一个子载波的大小是15Khz,或2.5KHz,或3.75KHz)构成,也可以由一个或多个资源块构成。窄带的大小可以是工作带宽。
在本发明的一些实施例中,第一子帧集合内的子帧所在的无线帧与第二子帧集合内的子帧所在的无线帧是相邻的不同无线帧,或第一子帧集合内的子帧所在的半帧与第二子帧集合内的子帧所在的半帧是相邻的不同半帧。
需要说明的是,所述第一子帧集合内的子帧或第二子帧集合内的子帧所在的无线帧可以是一个无线帧,也可以是多个无线帧。所述第一子帧集合内的子 帧或第二子帧集合内的子帧所在的半帧可以是一个半帧,也可以是多个半帧。
若所述第一子帧集合内的子帧所在的无线帧是多个无线帧,和/或所述第二子帧集合内的子帧所在的无线帧是多个无线帧,则所述第一子帧集合内的子帧所在的无线帧包括的一个无线帧,与所述第二子帧集合内的子帧所在的无线帧中的一个无线帧是相邻的两个不同的无线帧。
若所述第一子帧集合内的子帧所在的半帧是多个半帧,和/或所述第二子帧集合内的子帧所在的半帧是多个半帧,则所述第一子帧集合内的子帧所在的半帧中包括的一个半帧,与所述第二子帧集合内的子帧所在的半帧中的一个半帧是相邻的两个不同的半帧。
也就是说,在当前无线帧UE发送上行信息的频率资源所在的窄带和在当前无线帧之前(或当前无线帧之后)的一个相邻无线帧UE发送上行信息的频率资源所在的窄带不相同。或者在当前半帧UE发送上行信息的频率资源所在的窄带和在之前(或之后)的一个相邻半帧UE发送上行信息的频率资源所在的窄带不相同。
在本发明的一些实施例中,本发明实施例提供的上行信息的传输方法应用于TDD系统。在时分双工TDD系统中的第一子帧集合和第二子帧集合之间只存在下行子帧和/或特殊子帧。对于TDD系统,所述第一子帧集合和所述第二子帧集合之间只存在下行子帧和/或特殊子帧。所述第一子帧集合和所述第二子帧集合之间不存在上行子帧。因此,UE就可以利用下行子帧和/或特殊子帧的时刻调整发送上行信息的工作频率,即将发送上行信息的频率资源从第一频率资源调整到第二频率资源。具体的,UE将发送上行信息的频率资源从第一频率资源调整到第二频率资源所占用的时间可以利用特殊子帧中的上行链路导频时隙(英文全称:Uplink Pilot Time Slot,英文简称:UpPTS)、特殊子帧中的保护间隔(英文全称:Guard Period,英文简称:GP)、特殊子帧中的下行链路导频时隙(英文全称:Downlink Pilot Time Slot,英文简称:DwPTS)、下行子帧、上行传输到下行传输的转换时间、下行传输到上行传输的转换时间中的一个或者多个的时间。
举例说明如下,对于TDD系统上下行配置0,请参阅如图3所示,为本发明实施例提供的上行信息传输的一种示意图。在图3中,在一个半帧中的所有子帧,上行信息传输的频率资源所在的窄带都相同。每半帧,上行信息传输 的频率资源所在的窄带变化一次。即仅可能在不同的半帧或无线帧,上行信息传输的频率资源所在的窄带不同。
在本发明的一些实施例中,所述第一上行信息在所述第一频率资源发送的起始子帧是一个无线帧内或者一个半帧内的第一个可用的上行子帧;和/或,
所述第二上行信息在所述第二频率资源发送的起始子帧是一个无线帧内或者一个半帧内的第一个可用的上行子帧;和/或,
所述第一上行信息或所述第二上行信息发送的跳频粒度是5×M个子帧,其中M是预先配置的正整数。
其中,UE发送上行信息的频率资源变化时,UE使用变化后的频率资源发送上行信息的起始子帧是一个无线帧内或者一个半帧内的第一个可用的上行子帧。例如,所述UE发送上行信息的频率资源变化是从所述第一频率资源变化到所述第二频率资源,此时,所述第二上行信息在所述第二频率资源发送的起始子帧是一个无线帧内或者一个半帧内的第一个可用的上行子帧。例如,所述UE发送上行信息的频率资源变化是从所述第二频率资源变化到所述第一频率资源,此时,所述第一上行信息在所述第一频率资源发送的起始子帧是一个无线帧内或者一个半帧内的第一个可用的上行子帧。例如,所述UE发送上行信息的频率资源变化既包括是从所述第一频率资源变化到所述第二频率资源,也包括从所述第二频率资源变化到所述第一频率资源,此时,所述第一上行信息在所述第一频率资源发送的起始子帧是一个无线帧内或者一个半帧内的第一个可用的上行子帧,和所述第二上行信息在所述第二频率资源发送的起始子帧是一个无线帧内或者一个半帧内的第一个可用的上行子帧。需要说明的是,UE发送上行信息的起始子帧可以是一个无线帧内或者一个半帧内的任意一个可用的上行子帧。其中,可用的上行子帧指的是可以被用于传输上行信息的上行子帧,可用的上行子帧的具体实现需要结合应用场景来确定,该可用的上行子帧通常可以是无线帧或者半帧内的第一个上行子帧,也可能不是第一个上行子帧。例如,可用的上行子帧可以是无线帧或者子帧内的第二个上行子帧。
另外,UE发送上行信息的频率资源变化称作上行信息发送的跳频。所述上行信息发送的跳频的粒度为5×M个子帧是指上行信息发送的频率资源5×M个子帧变化一次。其中,5×M个子帧中每个子帧的可以是1ms,当然在其它的通信协议系统中子帧的大小也可以灵活配置,若一个子帧是1ms,即上行 信息发送的频率资源5×M ms变化一次。比如M=1或者M=2。
本发明实施例中,上行信息的信息类型可以是上行数据、上行控制信息UCI、随机接入前导。第一上行信息的信息类型可以和所述第二上行信息的信息类型相同。本实施例适用于UE发送相同信息类型的上行信息的频率资源变化。需要说明的是,第一上行信息的信息类型和所述第二上行信息的信息类型也可以不相同。本实施例还适用于UE发送不相同信息类型的上行信息的频率资源变化。例如,LTE的上行的物理信道有上行控制信道、上行共享信道、随机接入信道,。不同上行信道用于承载不同的上行信息。上行信息可以包括上行数据、上行控制信息(英文全称:Uplink control information,英文简称:UCI)、随机接入前导。例如,上行数据通过物理上行共享信道(英文全称:Physical Uplink Shared Channel,英文简称:PUSCH)承载,UCI通过物理上行控制信道PUCCH(英文全称:Physical uplink control channel,英文简称:PUCCH)或者PUSCH承载,随机接入前导通过物理随机接入信道PRACH(英文全称:Physical Random Access channel,英文简称:PRACH)承载。
由前述对本发明的举例说明可知,对于TDD系统,通过本发明实施例,仅可能在无线帧变化或者半帧变化后,上行信息传输的窄带和之前的无线帧或者半帧中上行信息传输的窄带不相同。因此,UE就可以利用上下行转换的保护间隔,或下行子帧,或特殊子帧调整发送上行信息的频率,从而就不用留出额外的子帧作为间隔子帧,避免了不必要的上行信息传输时延,避免了基站资源调度复杂度的增加。其中,该保护间隔是指上下行转换的间隔,UE在不同窄带之间的切换也可以在该保护间隔中完成,因此不需要额外给UE分配间隔子帧。
通过前述实施例对本发明的描述可知,UE在第一子帧集合的第一频率资源上发送第一上行信息;UE在第二子帧集合的第二频率资源上发送第二上行信息。其中,第一频率资源和第二频率资源是两个不同窄带分别包括的频率资源。第一子帧集合内的子帧所在的无线帧与第二子帧集合内的子帧所在的无线帧不同,且第一子帧集合包括的任何一个子帧和第二子帧集合包括的任何一个子帧都属于不同的无线帧。或,第一子帧集合内的子帧所在的半帧与第二子帧集合内的子帧所在的半帧不同,且第一子帧集合包括的任何一个子帧和第二子帧集合包括的任何一个子帧都属于不同的半帧。由于本发明实施例中,第一上 行信息和第二上行信息使用不同的第一子帧集合和第二子帧集合分别发送,UE发送第一上行信息完之后需要在不同的窄带之间切换,本发明实施例中明确了两个子帧集合(即第一子帧集合和第二子帧集合)内的子帧所在的无线帧(或半帧)不同,并且第一子帧集合内的任何一个子帧和第二子帧集合内的任何一个子帧都属于不同的无线帧(或半帧)。因此本发明实施例中第一子帧集合内的子帧和第二子帧集合内的子帧之间已经存在有UE不会发送上行信息的间隔,UE可以使用第一子帧集合内的子帧和第二子帧集合内的子帧之间已经存在的间隔进行窄带切换,而与现有技术中留出额外的子帧作为间隔子帧的方式完全不同,本发明实施例可以避免不必要的上行信息传输时延,避免了基站资源调度复杂度的增加。
前述实施例描述了从UE侧实现的一种上行信息的传输方法,接下来介绍从UE侧实现的另一种上行信息的传输方法,请参阅如图4所示,本发明实施例提供的上行信息的传输方法,包括:
401、UE在第一子帧集合的第一频率资源上发送第一上行信息。
402、UE在第二子帧集合的第二频率资源上发送第二上行信息。
其中,第一频率资源和第二频率资源是不同窄带包含的频率资源,第一子帧集合中的最后一个子帧与第二子帧集合中的起始子帧是相邻的子帧。
在第一子帧集合中的最后一个子帧内的最后A个时间单元上不发送第一上行信息,和/或在第二子帧集合中的起始子帧内的前B个时间单元上不发送第二上行信息,A和B为自然数。
在本发明实施例中,UE可以分别使用两个子帧集合中的不同频率资源分别发送上行信息,具体的,本发明实施例中,分别存在有第一子帧集合和第二子帧集合,其中每个子帧集合中可以包括至少一个子帧。例如,子帧集合中可以只有一个子帧,子帧集合中也可以有多个子帧。同一个子帧集合中包括的所有子帧可以属于同一个无线帧,也可以属于不同的无线帧,同样的,同一个子帧集合中包括的所有子帧可以属于同一个半帧,也可以属于不同的半帧,本发明实施例中不做限定。
在本发明实施例中,第一上行信息通过第一子帧集合的第一频率资源发送,第二上行信息通过第二子帧集合的第二频率资源发送。并且本发明实施例中对第一子帧集合内的子帧和第二子帧集合内的子帧之间的位置关系作出了 详细说明,两个子帧集合内的子帧之间满足如下关系:第一子帧集合中的最后一个子帧与第二子帧集合中的起始子帧是相邻的子帧。即第一子帧集合中的最后一个子帧和第二子帧集合中的起始子帧是时间上相邻的两个子帧。并且本发明实施例中进一步描述了在第一子帧集合中的最后一个子帧内的最后A个时间单元上不发送第一上行信息,和/或在第二子帧集合中的起始子帧内的前B个时间单元上不发送第二上行信息。其中,本发明实施例中第一子帧集合中的最后一个子帧包括有多个时间单元,本发明实施例中的时间单元为子帧内的组成部分,具体的,该时间单元可以为符号,时间单元也可以是Ts。例如,Ts=1/(15000×2048)秒。进一步的,符号是SC-FDMA符号,或者其它多址方式的符号。由于A个时间单元和/或B个时间单元不发送上行信息,所述A个时间单元和/或B个时间单元用于UE发送上行信息频率资源的调整。
在本发明的一种实施方式中,所述A=1并且所述B=1。举例说明如下,第一子帧集合中有一个子帧,第二子帧集合中有一个子帧,时间单元为一个SC-FDMA符号,一个子帧有7个SC-FDMA符号,请参阅如图5-a所示,为本发明实施例提供的另一种上行信息传输的示意图。在图5-a中,UE不在阴影部分的两个符号发送上行信息,阴影部分的两个符号可以用于UE频率的调整。
在本发明的另一种实施方式中,所述A=2并且所述B=0。举例说明如下,第一子帧集合中有一个子帧,第二子帧集合中有一个子帧,时间单元为一个SC-FDMA符号,一个子帧有7个SC-FDMA符号,请参阅如图5-b所示,为本发明实施例提供的另一种上行信息传输的示意图。在图5-b中,UE不在阴影部分的两个符号发送上行信息,阴影部分的两个符号可以用于UE频率的调整。
在本发明的另一种实施方式中,所述A=0并且所述B=2。举例说明如下,第一子帧集合中有一个子帧,第二子帧集合中有一个子帧,时间单元为一个SC-FDMA符号,一个子帧有7个SC-FDMA符号,请参阅如图5-c所示,为本发明实施例提供的另一种上行信息传输的示意图。本实施方式上行信息传输的如图5-c所示,UE不在阴影部分的两个符号发送上行信息,阴影部分的两个符号用于UE频率的调整。
在本发明的一些实施例中,本发明实施例提供的图4所示的上行信息的传 输方法应用于FDD系统。本实施例中,上行信息或者上行信息的信息类型可以是上行数据、上行控制信息、随机接入前导。第一上行信息的信息类型和第二上行信息的信息类型相同。本实施例适用于UE发送相同信息类型的上行信息的频率资源变化。需要说明的是,第一上行信息的信息类型和第二上行信息的信息类型也可以不相同。本实施例还适用于UE发送不相同信息类型的上行信息的频率资源变化。
当第一上行信息是物理上行控制信道上承载的上行信息,第一上行信息在第一子帧集合中的最后一个子帧采用缩短物理上行控制信道格式传输。需要说明的是,第一上行信息在第一子帧集合中的其它子帧采用缩短物理上行控制信道格式传输,或者不采用缩短物理上行控制信道格式传输,即采用正常物理上行控制信道格式传输。
在现有技术中,缩短物理上行控制信道格式应用于包含探测参考信号(英文全称:Sounding Reference Signal,英文简称:SRS)的子帧。在包含SRS的子帧,缩短物理上行控制信道格式的物理上行控制信道不映射在子帧的最后一个SC-FDMA符号。对于缩短物理上行控制信道格式的物理上行控制信道,当其格式是1、1a或1b,则在所述子帧的第一个时隙,所述物理上行控制信道采用的正交序列的长度
Figure PCTCN2015090817-appb-000001
在所述子帧的第二个时隙,所述物理上行控制信道采用的正交序列的长度
Figure PCTCN2015090817-appb-000002
对于所述正常物理上行控制信道格式的物理上行控制信道,在一个子帧的第一个时隙,所述物理上行控制信道采用的正交序列的长度
Figure PCTCN2015090817-appb-000003
在一个子帧的第二个时隙,所述物理上行控制信道采用的正交序列的长度
Figure PCTCN2015090817-appb-000004
R是正整数。特别的R=4。
具体的,所述第一上行信息在所述第一子帧集合中的一个子帧采用缩短物理上行控制信道格式传输,包括:在所述子帧的第一个时隙,缩短物理上行控制信道格式的物理上行控制信道采用的正交序列的长度
Figure PCTCN2015090817-appb-000005
在所述子帧的第二个时隙,缩短物理上行控制信道格式的物理上行控制信道采用的正交序列的长度
Figure PCTCN2015090817-appb-000006
P、Q是正整数,并且P>Q。例如P=4,Q=3。例如,所述第一上行信息在所述第一子帧集合中的一个子帧采用的缩短物理上行控制信道格式和现有技术的缩短物理上行控制信道格式相同。
当所述第二上行信息是物理上行控制信道上承载的上行信息,所述第二上 行信息在所述第二子帧集合中的起始子帧采用缩短物理上行控制信道格式传输。需要说明的是,所述第二上行信息在所述第二子帧集合中的其它子帧采用缩短物理上行控制信道格式传输,或者不采用缩短物理上行控制信道格式传输,即采用正常物理上行控制信道格式传输。
具体的,所述第二上行信息在所述第二子帧集合中的一个子帧采用缩短物理上行控制信道格式传输,包括:在所述子帧的第一个时隙,缩短物理上行控制信道格式的物理上行控制信道采用的正交序列的长度
Figure PCTCN2015090817-appb-000007
在所述子帧的第二个时隙,缩短物理上行控制信道格式的物理上行控制信道采用的正交序列的长度
Figure PCTCN2015090817-appb-000008
P、Q是正整数,并且P>Q。例如P=4,Q=3。特别地,所述第一上行信息在所述第一子帧集合中的一个子帧采用的缩短物理上行控制信道格式和现有技术的缩短物理上行控制信道格式不相同。
接下来,请参阅如图5-d所示,为本发明实施例提供的另一种上行信息传输的示意图。以第一子帧集合中有一个子帧,第二子帧集合中有一个子帧,时间单元为一个SC-FDMA符号,一个子帧有7个SC-FDMA符号为例,所述第一上行信息在所述第一子帧集合中的最后一个子帧采用缩短物理上行控制信道格式传输,所述第二上行信息在所述第二子帧集合中的起始子帧采用缩短物理上行控制信道格式传输。
特别的,当所述第一上行信息是随机接入前导时,所述B=0。从所述第二子帧集合中的起始子帧内的第1个时间单元开始发送所述第二上行信息。特别的,所述随机接入前导的格式是格式1-3中的一种。由于在用于传输格式1-3中的一种的随机接入前导的一个或多个子帧的最后一个子帧,存在的保护间隔大于2个SC-FDMA符号的时间长度,因此在所述第二子帧集合中的起始子帧,不需要留出作为UE频率调整的保护时间。UE可以利用在用于传输格式1-3中的一种的随机接入前导的子帧中存在的保护间隔进行频率的调整。
或者,特别的,当所述第一上行信息是随机接入前导时,所述A=0。发送所述第一上行信息至所述第一子帧集合中的最后一个子帧内的最后1个时间单元(或最后一个子帧内的随机接入前导传输占用的时间)结束。
或者,特别的,当所述第一上行信息是随机接入前导时,随机接入前导的格式是格式0,所述A=1,所述B=1。由于在用于传输格式0的随机接入前导的一个子帧,存在的保护间隔小于2个SC-FDMA符号的时间长度,因此在第 一子帧集合中的最后一个子帧内的最后1个时间单元上不发送所述第一上行信息,和在所述第二子帧集合中的起始子帧内的前1个时间单元上不发送所述第二上行信息,作为UE频率调整的保护时间。
在本发明实施例中,由于本发明实施例只利用第一子帧集合中的最后一个子帧内的最后A个时间单元,和/或在所述第二子帧集合中的起始子帧内的前B个时间单元进行UE频率的调整,使得用于频率的调整的时间为UE所需要的频率调整时间的最大值,从而就不用留出额外的子帧作为间隔子帧,避免了不必要的上行信息传输时延,避免了基站资源调度复杂度的增加。进一步的,本发明实施例所述第一上行信息和所述第二上行信息是物理上行控制信道上承载的两个上行信息,上行信息采用缩短物理上行控制信道格式传输。特别地,所述缩短物理上行控制信道格式的物理上行控制信道采用的正交序列长度和现有技术相同,从而有利于保证不同PUCCH采用的正交序列的正交性,保证PUCCH承载的上行信息的传输性能。
在本发明的一些实施例中,当PUSCH和PUCCH的频率资源不在一个窄带,将要传输上行数据的多个子帧和将要传输上行控制信息(英文全称:Uplink Control Information,英文简称:UCI),UCI包括:混合自动重传请求的反馈信息(英文全称:Hybrid automatic retransmission request,英文简称:HARQ)的多个子帧有交叠时,发明方案实施例提供的上行信息传输方法包括:
若将要传输上行数据的起始子帧在将要传输UCI的起始子帧之前,并且将要传输上行数据的结束子帧在将要传输UCI的起始子帧之后,则UCI通过PUSCH承载,除非所述上行数据是随机接入过程中的上行数据,此时不传输UCI;或者不传输UCI;或者UCI通过PUCCH承载,并且在交叠的子帧,以及交叠子帧之后的一个子帧或C个时间单元不传输UCI,C为自然数。请参阅如图6-a所示,为本发明实施例提供的将要传输上行数据的多个子帧和将要传输UCI的多个子帧之间存在交叠的一种处理过程示意图。从n1到n1+NRep1传输上行调度信息,从n2到n2+NRep2传输下行调度信息,从从n4到n4+NRep4传输下行数据。从n3到n3+NRep3传输上行数据,从n5到n5+NRep5传输UCI。
若将要传输UCI的起始子帧在将要传输上行数据的起始子帧之前,并且将要传输UCI的结束子帧在将要传输上行数据的起始子帧之后,则UCI通过 PUCCH承载,并且在交叠的子帧,以及交叠子帧之后的一个子帧或C个时间单元不传输上行数据;或者不传输上行数据。请参阅如图6-b所示,为本发明实施例提供的将要传输上行数据的多个子帧和将要传输UCI的多个子帧之间存在交叠的另一种处理过程示意图。从n1到n1+NRep1传输上行调度信息,从n2到n2+NRep2传输下行调度信息,从从n4到n4+NRep4传输下行数据。从n3到n3+NRep3传输UCI,从n5到n5+NRep5传输上行数据。
或者,若将要传输UCI的起始子帧在将要传输上行数据的起始子帧之前,并且将要传输UCI的结束子帧在将要传输上行数据的起始子帧之后,则UCI通过PUCCH承载,并且在交叠的子帧,以及交叠子帧之前的一个子帧或C个时间单元不传输UCI,请参阅如图6-c所示,为本发明实施例提供的将要传输上行数据的多个子帧和将要传输UCI的多个子帧之间存在交叠的另一种处理过程示意图。从n1到n1+NRep1传输上行调度信息,从n2到n2+NRep2传输下行调度信息,从从n4到n4+NRep4传输下行数据。从n3到n3+NRep3传输UCI,从n5到n5+NRep5传输上行数据。
当将要传输随机接入前导的多个子帧和将要传输上行数据/UCI的多个子帧有交叠,发明方案实施例提供的上行信息传输方法包括:
若将要传输随机接入前导的起始子帧在将要传输上行数据/UCI的起始子帧之前,并且将要传输随机接入前导的结束子帧在将要传输上行数据/UCI的起始子帧之后,则在交叠子帧,以及交叠子帧之后的一个子帧或C个时间单元不传输上行数据/UCI;或者不传输上行数据/UCI;或者在交叠子帧不传输上行数据/UCI。
若将要传输上行数据/UCI的起始子帧在将要传输随机接入前导的起始子帧之前,并且将要传输上行数据/UCI的结束子帧在将要传输随机接入前导的起始子帧之后,则在交叠子帧,以及交叠子帧之前的一个子帧或C个时间单元不传输上行数据/UCI;或者不传输上行数据/UCI。
在本实施例中,时间单元含义如实施例二所述。C为自然数。特别的,C=1,时间单元是1个符号。所述交叠子帧之后的一个子帧或C个时间单元在时间上与所述交叠子帧相邻。所述交叠子帧之前的一个子帧或C个时间单元在时间上与所述交叠子帧相邻。
本发明实施例使得UE在将要传输上行信息的子帧无法同时传输不同的上 行信息时,能够按照预先规定的优先级传输上行信息,保证了优先级高的上行信息的传输性能。
本发明实施例使得UE在将要传输上行信息的子帧无法同时传输不同的上行信息时,能够按照预先规定的优先级传输上行信息,保证了优先级高的上行信息的传输性能。
上述实施例中从UE侧描述了上行信息的传输方法,接下来从UE的对端(基站)侧进行说明本发明提供的上行信息的传输方法,请参阅图7所示,本发明另一个实施例提供的上行信息的传输方法,可以包括如下步骤:
701、基站在第一子帧集合的第一频率资源上接收第一上行信息;
702、基站在第二子帧集合的第二频率资源上接收第二上行信息;
其中,第一频率资源和第二频率资源是两个不同窄带分别包括的频率资源;
第一子帧集合内的子帧所在的无线帧与第二子帧集合内的子帧所在的无线帧不同,且第一子帧集合包括的任何一个子帧和第二子帧集合包括的任何一个子帧都属于不同的无线帧;或,
第一子帧集合内的子帧所在的半帧与第二子帧集合内的子帧所在的半帧不同,且第一子帧集合包括的任何一个子帧和第二子帧集合包括的任何一个子帧都属于不同的半帧。
在本发明实施例中,基站可以分别使用两个子帧集合中的不同频率资源分别接收基站接收的上行信息,具体的,本发明实施例中,分别存在有第一子帧集合和第二子帧集合,其中每个子帧集合中可以包括至少一个子帧,例如,子帧集合中可以只有一个子帧,子帧集合中也可以有多个子帧。同一个子帧集合中包括的所有子帧可以属于同一个无线帧,也可以属于不同的无线帧,同样的,同一个子帧集合中包括的所有子帧可以属于同一个半帧,也可以属于不同的半帧,本发明实施例中不做限定。
在本发明实施例中,第一上行信息通过第一子帧集合的第一频率资源接收,第二上行信息通过第二子帧集合的第二频率资源接收。并且本发明实施例中对第一子帧集合内的子帧和第二子帧集合内的子帧之间的位置关系作出了详细说明,两个子帧集合内的子帧之间满足如下关系:1)、第一子帧集合内的子帧所在的无线帧(或半帧)与第二子帧集合内的子帧所在的无线帧(或半帧) 不同,2)、第一子帧集合包括的任何一个子帧和第二子帧集合包括的任何一个子帧都属于不同的无线帧(或半帧)。
在本发明实施例中,仅可能在无线帧变化或者半帧变化后,基站接收上行信息的频率资源所在的窄带和之前的无线帧或者半帧中基站接收上行信息的频率资源所在的窄带不相同。需要说明的是,在无线帧变化或者半帧变化后,基站接收上行信息的频率资源所在的窄带和之前的无线帧或者半帧中基站接收上行信息的频率资源所在的窄带也可以相同。在一个无线帧或者半帧中的所有子帧,基站接收上行信息的频率资源所在的窄带都相同。窄带指的是在频率上包含一个或者多个频率资源。所述频率资源可以是子载波,也可以是PRB所占的频率资源。
在本发明的一些实施例中,第一子帧集合内的子帧所在的无线帧与第二子帧集合内的子帧所在的无线帧是相邻的不同无线帧,或第一子帧集合内的子帧所在的半帧与第二子帧集合内的子帧所在的半帧是相邻的不同半帧。
需要说明的是,所述第一子帧集合内的子帧或第二子帧集合内的子帧所在的无线帧可以是一个无线帧,也可以是多个无线帧。所述第一子帧集合内的子帧或第二子帧集合内的子帧所在的半帧可以是一个半帧,也可以是多个半帧。
若所述第一子帧集合内的子帧所在的无线帧是多个无线帧,和/或所述第二子帧集合内的子帧所在的无线帧是多个无线帧,则所述第一子帧集合内的子帧所在的无线帧包括的一个无线帧,与所述第二子帧集合内的子帧所在的无线帧中的一个无线帧是相邻的两个不同的无线帧。
若所述第一子帧集合内的子帧所在的半帧是多个半帧,和/或所述第二子帧集合内的子帧所在的半帧是多个半帧,则所述第一子帧集合内的子帧所在的半帧中包括的一个半帧,与所述第二子帧集合内的子帧所在的半帧中的一个半帧是相邻两个不同的半帧。
也就是说,在当前无线帧UE发送上行信息的频率资源所在的窄带和在当前无线帧之前(或当前无线帧之后)的一个相邻无线帧UE发送上行信息的频率资源所在的窄带不相同。或者在当前半帧UE发送上行信息的频率资源所在的窄带和在之前(或之后)的一个相邻半帧UE发送上行信息的频率资源所在的窄带不相同。
在本发明的一些实施例中,本发明实施例提供的上行信息的传输方法应用 于TDD系统。在时分双工TDD系统中的第一子帧集合和第二子帧集合之间只存在下行子帧和/或特殊子帧。对于TDD系统,所述第一子帧集合和所述第二子帧集合之间只存在下行子帧和/或特殊子帧。所述第一子帧集合和所述第二子帧集合之间不存在上行子帧。因此,UE就可以利用下行子帧和/或特殊子帧的时刻调整发送上行信息的工作频率,即将发送上行信息的频率资源从第一频率资源调整到第二频率资源。
在本发明的一些实施例中,所述第一上行信息在所述第一频率资源发送的起始子帧是一个无线帧内或者一个半帧内的第一个可用的上行子帧;和/或,
所述第二上行信息在所述第二频率资源发送的起始子帧是一个无线帧内或者一个半帧内的第一个可用的上行子帧;和/或,
所述第一上行信息或所述第二上行信息发送的跳频粒度是5×M个子帧,其中M是预先配置的正整数。
其中,基站接收上行信息的频率资源变化时,基站使用变化后的频率资源发送上行信息的起始子帧是一个无线帧内或者一个半帧内的第一个可用的上行子帧。例如,所述基站接收上行信息的频率资源变化是从所述第一频率资源变化到所述第二频率资源,此时,所述第二上行信息在所述第二频率资源发送的起始子帧是一个无线帧内或者一个半帧内的第一个可用的上行子帧。例如,所述基站接收上行信息的频率资源变化是从所述第二频率资源变化到所述第一频率资源,此时,所述第一上行信息在所述第一频率资源发送的起始子帧是一个无线帧内或者一个半帧内的第一个可用的上行子帧。例如,所述基站接收上行信息的频率资源变化既包括是从所述第一频率资源变化到所述第二频率资源,也包括从所述第二频率资源变化到所述第一频率资源,此时,所述第一上行信息在所述第一频率资源发送的起始子帧是一个无线帧内或者一个半帧内的第一个可用的上行子帧,和所述第二上行信息在所述第二频率资源发送的起始子帧是一个无线帧内或者一个半帧内的第一个可用的上行子帧。需要说明的是,基站接收上行信息的起始子帧可以是一个无线帧内或者一个半帧内的任意一个可用的上行子帧。其中,可用的上行子帧指的是可以被用于传输上行信息的上行子帧,可用的上行子帧的具体实现需要结合应用场景来确定,该可用的上行子帧通常可以是无线帧或者半帧内的第一个上行子帧,也可能不是第一个上行子帧,可用的上行子帧可以是无线帧或者子帧内的第二个上行子帧。
在本发明实施例中,所述上行信息发送的跳频的粒度为5×M个子帧是指上行信息发送的频率资源5×M个子帧变化一次。其中,5×M个子帧中每个子帧的可以是1ms,当然在其它的通信协议系统中子帧的大小也可以灵活配置,若一个子帧是1ms,即上行信息发送的频率资源5×M ms变化一次。比如M=1或者M=2。
本发明实施例中,上行信息的信息类型可以是上行数据、上行控制信息UCI、随机接入前导。第一上行信息的信息类型和所述第二上行信息的信息类型相同。本实施例适用于基站接收相同信息类型的上行信息的频率资源变化。需要说明的是,第一上行信息的信息类型和所述第二上行信息的信息类型也可以不相同。本实施例还适用于基站接收不相同信息类型的上行信息的频率资源变化。
由前述对本发明的举例说明可知,对于TDD系统,由于UE在每个半帧或者每个无线帧,一定要进行上下行的转换,而上下行信息发送的频率不相同。通过本发明实施例,仅可能在无线帧变化或者半帧变化后,上行信息传输的窄带和之前的无线帧或者半帧中上行信息传输的窄带不相同,因此,UE就可以利用上下行转换的保护间隔,或下行子帧,或特殊子帧调整发送上行信息的频率,基站在上下行转换的保护间隔内不需要去接收UE发送的上行信息,因此UE利用上下行转换的保护间隔进去了窄带的切换。从而就不用留出额外的子帧作为间隔子帧,避免了不必要的上行信息传输时延,避免了基站资源调度复杂度的增加。其中,该保护间隔是指上下行转换的间隔,UE在不同窄带之间的切换也可以在该保护间隔中完成,因此不需要额外给UE分配间隔子帧。
通过前述实施例对本发明的描述可知,基站在第一子帧集合的第一频率资源上接收第一上行信息;基站在第二子帧集合的第二频率资源上接收第二上行信息。其中,第一频率资源和第二频率资源是两个不同窄带分别包括的频率资源。第一子帧集合内的子帧所在的无线帧与第二子帧集合内的子帧所在的无线帧不同,且第一子帧集合包括的任何一个子帧和第二子帧集合包括的任何一个子帧都属于不同的无线帧。或,第一子帧集合内的子帧所在的半帧与第二子帧集合内的子帧所在的半帧不同,且第一子帧集合包括的任何一个子帧和第二子帧集合包括的任何一个子帧都属于不同的半帧。由于本发明实施例中,第一上行信息和第二上行信息使用不同的第一子帧集合和第二子帧集合分别发送, 基站接收第一上行信息完之后需要在不同的窄带之间切换,本发明实施例中明确了两个子帧集合(即第一子帧集合和第二子帧集合)内的子帧所在的无线帧(或半帧)不同,并且第一子帧集合内的任何一个子帧和第二子帧集合内的任何一个子帧都属于不同的无线帧(或半帧)。因此本发明实施例中第一子帧集合内的子帧和第二子帧集合内的子帧之间已经存在有UE不会发送上行信息的间隔,UE可以使用第一子帧集合内的子帧和第二子帧集合内的子帧之间已经存在的间隔进行窄带切换,而与现有技术中留出额外的子帧作为间隔子帧的方式完全不同,本发明实施例可以避免不必要的上行信息传输时延,避免了基站资源调度复杂度的增加。
前述实施例描述了从基站侧实现的一种上行信息的传输方法,接下来介绍从基站侧实现的另一种上行信息的传输方法,请参阅如图8所示,本发明实施例提供的上行信息的传输方法,包括:
801、基站在第一子帧集合的第一频率资源上接收第一上行信息;
802、基站在第二子帧集合的第二频率资源上接收第二上行信息;
其中,第一频率资源和第二频率资源是不同窄带包含的频率资源,第一子帧集合中的最后一个子帧与第二子帧集合中的起始子帧是相邻的子帧;
在第一子帧集合中的最后一个子帧内的最后A个时间单元上不接收第一上行信息,和/或在第二子帧集合中的起始子帧内的前B个时间单元上不接收第二上行信息,A和B为自然数。
在本发明实施例中,基站可以分别使用两个子帧集合中的不同频率资源分别接收上行信息,具体的,本发明实施例中,分别存在有第一子帧集合和第二子帧集合,其中每个子帧集合中可以包括至少一个子帧,例如,子帧集合中可以只有一个子帧,子帧集合中也可以有多个子帧。同一个子帧集合中包括的所有子帧可以属于同一个无线帧,也可以属于不同的无线帧,同样的,同一个子帧集合中包括的所有子帧可以属于同一个半帧,也可以属于不同的半帧,本发明实施例中不做限定。
在本发明实施例中,第一上行信息通过第一子帧集合的第一频率资源接收,第二上行信息通过第二子帧集合的第二频率资源接收。并且本发明实施例中对第一子帧集合内的子帧和第二子帧集合内的子帧之间的位置关系作出了详细说明,两个子帧集合内的子帧之间满足如下关系:第一子帧集合中的最后 一个子帧与第二子帧集合中的起始子帧是相邻的子帧。即第一子帧集合中的最后一个子帧和第二子帧集合中的起始子帧是时间上相邻的两个子帧。并且本发明实施例中进一步描述了在第一子帧集合中的最后一个子帧内的最后A个时间单元上不接收第一上行信息,和/或在第二子帧集合中的起始子帧内的前B个时间单元上不接收第二上行信息。其中,本发明实施例中第一子帧集合中的最后一个子帧包括有多个时间单元,本发明实施例中的时间单元为子帧内的组成部分,具体的,该时间单元可以为符号,时间单元也可以是Ts。Ts=1/(15000×2048)秒。进一步的,符号是SC-FDMA符号,或者其它多址方式的符号。由于A个时间单元和/或B个时间单元不发送上行信息,所述A个时间单元和/或B个时间单元用于UE发送上行信息频率资源的调整。
在本发明的一种实施方式中,所述A=1并且所述B=1。举例说明如下,第一子帧集合中有一个子帧,第二子帧集合中有一个子帧,时间单元为一个SC-FDMA符号,一个子帧有7个SC-FDMA符号,请参阅如图5-a所示,为本发明实施例提供的另一种上行信息传输的示意图。在图5-a中,基站不在阴影部分的两个符号接收上行信息,阴影部分的两个符号可以用于UE频率的调整。
在本发明的另一种实施方式中,所述A=2并且所述B=0。举例说明如下,第一子帧集合中有一个子帧,第二子帧集合中有一个子帧,时间单元为一个SC-FDMA符号,一个子帧有7个SC-FDMA符号,请参阅如图5-b所示,为本发明实施例提供的另一种上行信息传输的示意图。在图5-b中,基站不在阴影部分的两个符号接收上行信息,阴影部分的两个符号可以用于UE频率的调整。
在本发明的另一种实施方式中,所述A=0并且所述B=2。举例说明如下,第一子帧集合中有一个子帧,第二子帧集合中有一个子帧,时间单元为一个SC-FDMA符号,一个子帧有7个SC-FDMA符号,请参阅如图5-c所示,为本发明实施例提供的另一种上行信息传输的示意图。本实施方式上行信息传输的如图5-c所示,基站不在阴影部分的两个符号接收上行信息,阴影部分的两个符号用于UE频率的调整。
在本发明的一些实施例中,本发明实施例提供的图8所示的上行信息的传输方法应用于FDD系统。本实施例中,上行信息或者上行信息的信息类型可 以是上行数据、上行控制信息UCI、随机接入前导。第一上行信息的信息类型和第二上行信息的信息类型相同。本实施例适用于基站接收相同信息类型的上行信息的频率资源变化。需要说明的是,第一上行信息的信息类型和第二上行信息的信息类型也可以不相同。本实施例还适用于基站接收不相同信息类型的上行信息的频率资源变化。
当第一上行信息是物理上行控制信道上承载的上行信息,第一上行信息在第一子帧集合中的最后一个子帧采用缩短物理上行控制信道格式传输。需要说明的是,第一上行信息在第一子帧集合中的其它子帧采用缩短物理上行控制信道格式传输;或者不采用缩短物理上行控制信道格式传输,即采用正常物理上行控制信道格式传输。
在现有技术中,缩短物理上行控制信道格式应用于包含SRS的子帧。在包含SRS的子帧,缩短物理上行控制信道格式的物理上行控制信道不映射在子帧的最后一个SC-FDMA符号。对于缩短物理上行控制信道格式的物理上行控制信道,当其格式是1、1a或1b,则在所述子帧的第一个时隙,所述物理上行控制信道采用的正交序列的长度
Figure PCTCN2015090817-appb-000009
在所述子帧的第二个时隙,所述物理上行控制信道采用的正交序列的长度
Figure PCTCN2015090817-appb-000010
对于所述正常物理上行控制信道格式的物理上行控制信道,在一个子帧的第一个时隙,所述物理上行控制信道采用的正交序列的长度
Figure PCTCN2015090817-appb-000011
在一个子帧的第二个时隙,所述物理上行控制信道采用的正交序列的长度
Figure PCTCN2015090817-appb-000012
R是正整数。特别的R=4。
具体的,所述第一上行信息在所述第一子帧集合中的一个子帧采用缩短物理上行控制信道格式传输,包括:在所述子帧的第一个时隙,缩短物理上行控制信道格式的物理上行控制信道采用的正交序列的长度
Figure PCTCN2015090817-appb-000013
在所述子帧的第二个时隙,缩短物理上行控制信道格式的物理上行控制信道采用的正交序列的长度
Figure PCTCN2015090817-appb-000014
P、Q是正整数,并且P>Q。例如P=4,Q=3。所述第一上行信息在所述第一子帧集合中的一个子帧采用的缩短物理上行控制信道格式和现有技术的缩短物理上行控制信道格式相同。
当所述第二上行信息是物理上行控制信道上承载的上行信息,所述第二上行信息在所述第二子帧集合中的起始子帧采用缩短物理上行控制信道格式传输。需要说明的是,所述第二上行信息在所述第二子帧集合中的其它子帧采用 缩短物理上行控制信道格式传输;或者不采用缩短物理上行控制信道格式传输,即采用正常物理上行控制信道格式传输。
具体的,所述第二上行信息在所述第二子帧集合中的一个子帧采用缩短物理上行控制信道格式传输,包括:在所述子帧的第一个时隙,缩短物理上行控制信道格式的物理上行控制信道采用的正交序列的长度
Figure PCTCN2015090817-appb-000015
在所述子帧的第二个时隙,缩短物理上行控制信道格式的物理上行控制信道采用的正交序列的长度
Figure PCTCN2015090817-appb-000016
P、Q是正整数,并且P>Q。例如P=4,Q=3。所述第一上行信息在所述第一子帧集合中的一个子帧采用的缩短物理上行控制信道格式和现有技术的缩短物理上行控制信道格式不相同。
接下来,请参阅如图5-d所示,为本发明实施例提供的另一种上行信息传输的示意图。以第一子帧集合中有一个子帧,第二子帧集合中有一个子帧,时间单元为一个SC-FDMA符号,一个子帧有7个SC-FDMA符号为例,所述第一上行信息在所述第一子帧集合中的最后一个子帧采用缩短物理上行控制信道格式传输,所述第二上行信息在所述第二子帧集合中的起始子帧采用缩短物理上行控制信道格式传输。
特别的,当所述第一上行信息是随机接入前导时,所述B=0。从所述第二子帧集合中的起始子帧内的第1个时间单元开始发送所述第二上行信息。特别的,所述随机接入前导的格式是格式1-3中的一种。由于在用于传输格式1-3中的一种的随机接入前导的一个或多个子帧的最后一个子帧,存在的保护间隔大于2个SC-FDMA符号的时间长度,因此在所述第二子帧集合中的起始子帧,不需要留出作为UE频率调整的保护时间。UE可以利用在用于传输格式1-3中的一种的随机接入前导的子帧中存在的保护间隔进行频率的调整。
或者,特别的,当所述第一上行信息是随机接入前导时,所述A=0。发送所述第一上行信息至所述第一子帧集合中的最后一个子帧内的最后1个时间单元结束。
或者,特别的,当所述第一上行信息是随机接入前导时,随机接入前导的格式是格式0,所述A=1,所述B=1。由于在用于传输格式0的随机接入前导的一个子帧,存在的保护间隔小于2个SC-FDMA符号的时间长度,因此在第一子帧集合中的最后一个子帧内的最后1个时间单元上不发送所述第一上行信息,和在所述第二子帧集合中的起始子帧内的前1个时间单元上不发送所述 第二上行信息,作为UE频率调整的保护时间。
在本发明实施例中,由于本发明实施例只利用一子帧集合中的最后一个子帧内的最后A个时间单元,和/或在所述第二子帧集合中的起始子帧内的前B个时间单元进行UE频率的调整,使得用于频率的调整的时间为UE所需要的频率调整时间的最大值,从而就不用留出额外的子帧作为间隔子帧,避免了不必要的上行信息传输时延,避免了基站资源调度复杂度的增加。进一步的,本发明实施例所述第一上行信息和所述第二上行信息是物理上行控制信道上承载的两个上行信息,上行信息采用缩短物理上行控制信道格式传输。所述缩短物理上行控制信道格式的物理上行控制信道采用的正交序列长度和现有技术相同,从而有利于保证不同PUCCH采用的正交序列的正交性,保证PUCCH承载的上行信息的传输性能。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
为便于更好的实施本发明实施例的上述方案,下面还提供用于实施上述方案的相关装置。
请参阅图9所示,本发明实施例提供的一种UE900,可以包括:第一发送模块901和第二发送模块902,其中,
第一发送模块901,用于在第一子帧集合的第一频率资源上发送第一上行信息;
第二发送模块902,用于在第二子帧集合的第二频率资源上发送第二上行信息;
其中,所述第一频率资源和所述第二频率资源是两个不同窄带分别包括的频率资源;
所述第一子帧集合内的子帧所在的无线帧与所述第二子帧集合内的子帧所在的无线帧不同,且所述第一子帧集合包括的任何一个子帧和所述第二子帧集合包括的任何一个子帧都属于不同的无线帧;或,
所述第一子帧集合内的子帧所在的半帧与所述第二子帧集合内的子帧所 在的半帧不同,且所述第一子帧集合包括的任何一个子帧和所述第二子帧集合包括的任何一个子帧都属于不同的半帧。
在本发明的一些实施例中,所述第一子帧集合内的子帧所在的无线帧与所述第二子帧集合内的子帧所在的无线帧是相邻的不同无线帧,或所述第一子帧集合内的子帧所在的半帧与所述第二子帧集合内的子帧所在的半帧是相邻的不同半帧。
在本发明的一些实施例中,在时分双工TDD系统中的所述第一子帧集合和所述第二子帧集合之间只存在下行子帧和/或特殊子帧。
在本发明的一些实施例中,所述第一上行信息在所述第一频率资源发送的起始子帧是一个无线帧内或者一个半帧内的第一个可用的上行子帧;和/或,
所述第二上行信息在所述第二频率资源发送的起始子帧是一个无线帧内或者一个半帧内的第一个可用的上行子帧;和/或,
所述第一上行信息和/或所述第二上行信息发送的跳频粒度是5×M个子帧,其中M是预先配置的正整数。
在本发明的一些实施例中,所述第一上行信息的信息类型和所述第二上行信息的信息类型相同。
通过前述实施例对本发明的描述可知,UE在第一子帧集合的第一频率资源上发送第一上行信息;UE在第二子帧集合的第二频率资源上发送第二上行信息。其中,第一频率资源和第二频率资源是两个不同窄带分别包括的频率资源。第一子帧集合内的子帧所在的无线帧与第二子帧集合内的子帧所在的无线帧不同,且第一子帧集合包括的任何一个子帧和第二子帧集合包括的任何一个子帧都属于不同的无线帧。或,第一子帧集合内的子帧所在的半帧与第二子帧集合内的子帧所在的半帧不同,且第一子帧集合包括的任何一个子帧和第二子帧集合包括的任何一个子帧都属于不同的半帧。由于本发明实施例中,第一上行信息和第二上行信息使用不同的第一子帧集合和第二子帧集合分别发送,UE发送第一上行信息完之后需要在不同的窄带之间切换,本发明实施例中明确了两个子帧集合(即第一子帧集合和第二子帧集合)内的子帧所在的无线帧(或半帧)不同,并且第一子帧集合内的任何一个子帧和第二子帧集合内的任何一个子帧都属于不同的无线帧(或半帧)。因此本发明实施例中第一子帧集合内的子帧和第二子帧集合内的子帧之间已经存在有UE不会发送上行信息的 间隔,UE可以使用第一子帧集合内的子帧和第二子帧集合内的子帧之间已经存在的间隔进行窄带切换,而与现有技术中留出额外的子帧作为间隔子帧的方式完全不同,本发明实施例可以避免不必要的上行信息传输时延,避免了基站资源调度复杂度的增加。
请参阅图10所示,本发明实施例提供的一种UE1000,可以包括:第一发送模块1001和第二发送模块1002,其中,
第一发送模块1001,用于在第一子帧集合的第一频率资源上发送第一上行信息;
第二发送模块1002,用于在第二子帧集合的第二频率资源上发送第二上行信息;
其中,所述第一频率资源和所述第二频率资源是不同窄带包含的频率资源,所述第一子帧集合中的最后一个子帧与所述第二子帧集合中的起始子帧是相邻的子帧;
在所述第一子帧集合中的最后一个子帧内的最后A个时间单元上不发送所述第一上行信息,和/或在所述第二子帧集合中的起始子帧内的前B个时间单元上不发送所述第二上行信息,所述A和所述B为自然数。
在本发明的一些实施例中,所述A=1,所述B=1;或,
所述A=2,所述B=0;或,
所述A=0,所述B=2。
在本发明的一些实施例中,所述第一上行信息和所述第二上行信息是物理上行控制信道上承载的两个上行信息,所述第一上行信息在所述第一子帧集合中的最后一个子帧采用缩短物理上行控制信道格式传输,所述第二上行信息在所述第二子帧集合中的起始子帧采用缩短物理上行控制信道格式传输。
在本发明的一些实施例中,当所述第一上行信息是随机接入前导时,所述B=0;或,
当所述第二上行信息是随机接入前导时,所述A=0。
在本发明实施例中,由于本发明实施例只利用第一子帧集合中的最后一个子帧内的最后A个时间单元,和/或在所述第二子帧集合中的起始子帧内的前B个时间单元进行UE频率的调整,使得用于频率的调整的时间为UE所需要的频率调整时间的最大值,从而就不用留出额外的子帧作为间隔子帧,避免了 不必要的上行信息传输时延,避免了基站资源调度复杂度的增加。进一步的,本发明实施例所述第一上行信息和所述第二上行信息是物理上行控制信道上承载的两个上行信息,上行信息采用缩短物理上行控制信道格式传输。特别地,所述缩短物理上行控制信道格式的物理上行控制信道采用的正交序列长度和现有技术相同,从而有利于保证不同PUCCH采用的正交序列的正交性,保证PUCCH承载的上行信息的传输性能。
请参阅图11所示,本发明实施例提供的一种基站1100,可以包括:第一接收模块1101和第二接收模块1102,其中,
第一接收模块1101,用于在第一子帧集合的第一频率资源上接收第一上行信息;
第二接收模块1102,用于在第二子帧集合的第二频率资源上接收第二上行信息;
其中,所述第一频率资源和所述第二频率资源是两个不同窄带分别包括的频率资源;
所述第一子帧集合内的子帧所在的无线帧与所述第二子帧集合内的子帧所在的无线帧不同,且所述第一子帧集合包括的任何一个子帧和所述第二子帧集合包括的任何一个子帧都属于不同的无线帧;或,
所述第一子帧集合内的子帧所在的半帧与所述第二子帧集合内的子帧所在的半帧不同,且所述第一子帧集合包括的任何一个子帧和所述第二子帧集合包括的任何一个子帧都属于不同的半帧。
在本发明的一些实施例中,所述第一子帧集合内的子帧所在的无线帧与所述第二子帧集合内的子帧所在的无线帧是相邻的不同无线帧,或所述第一子帧集合内的子帧所在的半帧与所述第二子帧集合内的子帧所在的半帧是相邻的不同半帧。
在本发明的一些实施例中,在时分双工TDD系统中的所述第一子帧集合和所述第二子帧集合之间只存在下行子帧和/或特殊子帧。
在本发明的一些实施例中,所述第一上行信息在所述第一频率资源发送的起始子帧是一个无线帧内或者一个半帧内的第一个可用的上行子帧;和/或,
所述第二上行信息在所述第二频率资源发送的起始子帧是一个无线帧内或者一个半帧内的第一个可用的上行子帧;和/或,
所述第一上行信息和/或所述第二上行信息发送的跳频粒度是5×M个子帧,其中M是预先配置的正整数。
在本发明的一些实施例中,所述第一上行信息的信息类型和所述第二上行信息的信息类型相同。
通过前述实施例对本发明的描述可知,基站在第一子帧集合的第一频率资源上接收第一上行信息;基站在第二子帧集合的第二频率资源上接收第二上行信息。其中,第一频率资源和第二频率资源是两个不同窄带分别包括的频率资源。第一子帧集合内的子帧所在的无线帧与第二子帧集合内的子帧所在的无线帧不同,且第一子帧集合包括的任何一个子帧和第二子帧集合包括的任何一个子帧都属于不同的无线帧。或,第一子帧集合内的子帧所在的半帧与第二子帧集合内的子帧所在的半帧不同,且第一子帧集合包括的任何一个子帧和第二子帧集合包括的任何一个子帧都属于不同的半帧。由于本发明实施例中,第一上行信息和第二上行信息使用不同的第一子帧集合和第二子帧集合分别发送,基站接收第一上行信息完之后需要在不同的窄带之间切换,本发明实施例中明确了两个子帧集合(即第一子帧集合和第二子帧集合)内的子帧所在的无线帧(或半帧)不同,并且第一子帧集合内的任何一个子帧和第二子帧集合内的任何一个子帧都属于不同的无线帧(或半帧)。因此本发明实施例中第一子帧集合内的子帧和第二子帧集合内的子帧之间已经存在有UE不会发送上行信息的间隔,UE可以使用第一子帧集合内的子帧和第二子帧集合内的子帧之间已经存在的间隔进行窄带切换,而与现有技术中留出额外的子帧作为间隔子帧的方式完全不同,本发明实施例可以避免不必要的上行信息传输时延,避免了基站资源调度复杂度的增加。
请参阅图12所示,本发明实施例提供的一种基站1200,可以包括:第一接收模块1201和第二接收模块1202,其中,
第一接收模块1201,用于在第一子帧集合的第一频率资源上接收第一上行信息;
第二接收模块1202,用于在第二子帧集合的第二频率资源上接收第二上行信息;
其中,所述第一频率资源和所述第二频率资源是不同窄带包含的频率资源,所述第一子帧集合中的最后一个子帧与所述第二子帧集合中的起始子帧是 相邻的子帧;
在所述第一子帧集合中的最后一个子帧内的最后A个时间单元上不接收所述第一上行信息,和/或在所述第二子帧集合中的起始子帧内的前B个时间单元上不接收所述第二上行信息,所述A和所述B为自然数。
在本发明的一些实施例中,所述A=1,所述B=1;或,
所述A=2,所述B=0;或,
所述A=0,所述B=2。
在本发明的一些实施例中,所述第一上行信息和所述第二上行信息是物理上行控制信道上承载的两个上行信息,所述第一上行信息在所述第一子帧集合中的最后一个子帧采用缩短物理上行控制信道格式传输,所述第二上行信息在所述第二子帧集合中的起始子帧采用缩短物理上行控制信道格式传输。
在本发明的一些实施例中,当所述第一上行信息是随机接入前导时,所述B=0;或,
当所述第二上行信息是随机接入前导时,所述A=0。
在本发明实施例中,由于本发明实施例只利用一子帧集合中的最后一个子帧内的最后A个时间单元,和/或在所述第二子帧集合中的起始子帧内的前B个时间单元进行UE频率的调整,使得用于频率的调整的时间为UE所需要的频率调整时间的最大值,从而就不用留出额外的子帧作为间隔子帧,避免了不必要的上行信息传输时延,避免了基站资源调度复杂度的增加。进一步的,本发明实施例所述第一上行信息和所述第二上行信息是物理上行控制信道上承载的两个上行信息,上行信息采用缩短物理上行控制信道格式传输。所述缩短物理上行控制信道格式的物理上行控制信道采用的正交序列长度和现有技术相同,从而有利于保证不同PUCCH采用的正交序列的正交性,保证PUCCH承载的上行信息的传输性能。
需要说明的是,上述装置各模块/单元之间的信息交互、执行过程等内容,由于与本发明方法实施例基于同一构思,其带来的技术效果与本发明方法实施例相同,具体内容可参见本发明前述所示的方法实施例中的叙述,此处不再赘述。
本发明实施例还提供一种计算机存储介质,其中,该计算机存储介质存储 有程序,该程序执行包括上述方法实施例中记载的部分或全部步骤。
接下来介绍本发明实施例提供的另一种UE,请参阅图13所示,UE1300包括:
接收器1301、发送器1302、处理器1303和存储器1304(其中UE1300中的处理器1303的数量可以一个或多个,图13中以一个处理器为例)。在本发明的一些实施例中,接收器1301、发送器1302、处理器1303和存储器1304可通过总线或其它方式连接,其中,图13中以通过总线连接为例。
其中,处理器1303,用于执行如下步骤:
在第一子帧集合的第一频率资源上发送第一上行信息;
在第二子帧集合的第二频率资源上发送第二上行信息;
其中,所述第一频率资源和所述第二频率资源是两个不同窄带分别包括的频率资源;
所述第一子帧集合内的子帧所在的无线帧与所述第二子帧集合内的子帧所在的无线帧不同,且所述第一子帧集合包括的任何一个子帧和所述第二子帧集合包括的任何一个子帧都属于不同的无线帧;或,
所述第一子帧集合内的子帧所在的半帧与所述第二子帧集合内的子帧所在的半帧不同,且所述第一子帧集合包括的任何一个子帧和所述第二子帧集合包括的任何一个子帧都属于不同的半帧。
在本发明的一些实施例中,所述第一子帧集合内的子帧所在的无线帧与所述第二子帧集合内的子帧所在的无线帧是相邻的不同无线帧,或所述第一子帧集合内的子帧所在的半帧与所述第二子帧集合内的子帧所在的半帧是相邻的不同半帧。
在本发明的一些实施例中,在时分双工TDD系统中的所述第一子帧集合和所述第二子帧集合之间只存在下行子帧和/或特殊子帧。
在本发明的一些实施例中,
所述第一上行信息在所述第一频率资源发送的起始子帧是一个无线帧内或者一个半帧内的第一个可用的上行子帧;和/或,
所述第二上行信息在所述第二频率资源发送的起始子帧是一个无线帧内或者一个半帧内的第一个可用的上行子帧;和/或,
所述第一上行信息和/或所述第二上行信息发送的跳频粒度是5×M个子 帧,其中M是预先配置的正整数。
在本发明的一些实施例中,所述第一上行信息的信息类型和所述第二上行信息的信息类型相同。
通过前述实施例对本发明的描述可知,UE在第一子帧集合的第一频率资源上发送第一上行信息;UE在第二子帧集合的第二频率资源上发送第二上行信息。其中,第一频率资源和第二频率资源是两个不同窄带分别包括的频率资源。第一子帧集合内的子帧所在的无线帧与第二子帧集合内的子帧所在的无线帧不同,且第一子帧集合包括的任何一个子帧和第二子帧集合包括的任何一个子帧都属于不同的无线帧。或,第一子帧集合内的子帧所在的半帧与第二子帧集合内的子帧所在的半帧不同,且第一子帧集合包括的任何一个子帧和第二子帧集合包括的任何一个子帧都属于不同的半帧。由于本发明实施例中,第一上行信息和第二上行信息使用不同的第一子帧集合和第二子帧集合分别发送,UE发送第一上行信息完之后需要在不同的窄带之间切换,本发明实施例中明确了两个子帧集合(即第一子帧集合和第二子帧集合)内的子帧所在的无线帧(或半帧)不同,并且第一子帧集合内的任何一个子帧和第二子帧集合内的任何一个子帧都属于不同的无线帧(或半帧)。因此本发明实施例中第一子帧集合内的子帧和第二子帧集合内的子帧之间已经存在有UE不会发送上行信息的间隔,UE可以使用第一子帧集合内的子帧和第二子帧集合内的子帧之间已经存在的间隔进行窄带切换,而与现有技术中留出额外的子帧作为间隔子帧的方式完全不同,本发明实施例可以避免不必要的上行信息传输时延,避免了基站资源调度复杂度的增加。
接下来介绍本发明实施例提供的另一种UE,该UE的结构和图13所示的UE1300相同,但是处理器1303,用于执行如下步骤:
在第一子帧集合的第一频率资源上发送第一上行信息;
在第二子帧集合的第二频率资源上发送第二上行信息;
其中,所述第一频率资源和所述第二频率资源是不同窄带包含的频率资源,所述第一子帧集合中的最后一个子帧与所述第二子帧集合中的起始子帧是相邻的子帧;
在所述第一子帧集合中的最后一个子帧内的最后A个时间单元上不发送所述第一上行信息,和/或在所述第二子帧集合中的起始子帧内的前B个时间 单元上不发送所述第二上行信息,所述A和所述B为自然数。
在本发明的一些实施例中,所述A=1,所述B=1;或,
所述A=2,所述B=0;或,
所述A=0,所述B=2。
在本发明的一些实施例中,所述第一上行信息和所述第二上行信息是物理上行控制信道上承载的两个上行信息,所述第一上行信息在所述第一子帧集合中的最后一个子帧采用缩短物理上行控制信道格式传输,所述第二上行信息在所述第二子帧集合中的起始子帧采用缩短物理上行控制信道格式传输。
在本发明的一些实施例中,当所述第一上行信息是随机接入前导时,所述B=0;或,
当所述第二上行信息是随机接入前导时,所述A=0。
在本发明实施例中,由于本发明实施例只利用第一子帧集合中的最后一个子帧内的最后A个时间单元,和/或在所述第二子帧集合中的起始子帧内的前B个时间单元进行UE频率的调整,使得用于频率的调整的时间为UE所需要的频率调整时间的最大值,从而就不用留出额外的子帧作为间隔子帧,避免了不必要的上行信息传输时延,避免了基站资源调度复杂度的增加。进一步的,本发明实施例所述第一上行信息和所述第二上行信息是物理上行控制信道上承载的两个上行信息,上行信息采用缩短物理上行控制信道格式传输。特别地,所述缩短物理上行控制信道格式的物理上行控制信道采用的正交序列长度和现有技术相同,从而有利于保证不同PUCCH采用的正交序列的正交性,保证PUCCH承载的上行信息的传输性能。
接下来介绍本发明实施例提供的另一种基站,请参阅图14所示,基站1400包括:
接收器1401、发送器1402、处理器1403和存储器1404(其中基站1400中的处理器1403的数量可以一个或多个,图14中以一个处理器为例)。在本发明的一些实施例中,接收器1401、发送器1402、处理器1403和存储器1404可通过总线或其它方式连接,其中,图14中以通过总线连接为例。
其中,处理器1403,用于执行如下步骤:
在第一子帧集合的第一频率资源上接收第一上行信息;
在第二子帧集合的第二频率资源上接收第二上行信息;
其中,所述第一频率资源和所述第二频率资源是两个不同窄带分别包括的频率资源;
所述第一子帧集合内的子帧所在的无线帧与所述第二子帧集合内的子帧所在的无线帧不同,且所述第一子帧集合包括的任何一个子帧和所述第二子帧集合包括的任何一个子帧都属于不同的无线帧;或,
所述第一子帧集合内的子帧所在的半帧与所述第二子帧集合内的子帧所在的半帧不同,且所述第一子帧集合包括的任何一个子帧和所述第二子帧集合包括的任何一个子帧都属于不同的半帧。
在本发明的一些实施例中,所述第一子帧集合内的子帧所在的无线帧与所述第二子帧集合内的子帧所在的无线帧是相邻的不同无线帧,或所述第一子帧集合内的子帧所在的半帧与所述第二子帧集合内的子帧所在的半帧是相邻的不同半帧。
在本发明的一些实施例中,在时分双工TDD系统中的所述第一子帧集合和所述第二子帧集合之间只存在下行子帧和/或特殊子帧。
在本发明的一些实施例中,所述第一上行信息在所述第一频率资源发送的起始子帧是一个无线帧内或者一个半帧内的第一个可用的上行子帧;和/或,
所述第二上行信息在所述第二频率资源发送的起始子帧是一个无线帧内或者一个半帧内的第一个可用的上行子帧;和/或,
所述第一上行信息和/或所述第二上行信息发送的跳频粒度是5×M个子帧,其中M是预先配置的正整数。
在本发明的一些实施例中,所述第一上行信息的信息类型和所述第二上行信息的信息类型相同。
通过前述实施例对本发明的描述可知,基站在第一子帧集合的第一频率资源上接收第一上行信息;基站在第二子帧集合的第二频率资源上接收第二上行信息。其中,第一频率资源和第二频率资源是两个不同窄带分别包括的频率资源。第一子帧集合内的子帧所在的无线帧与第二子帧集合内的子帧所在的无线帧不同,且第一子帧集合包括的任何一个子帧和第二子帧集合包括的任何一个子帧都属于不同的无线帧。或,第一子帧集合内的子帧所在的半帧与第二子帧集合内的子帧所在的半帧不同,且第一子帧集合包括的任何一个子帧和第二子帧集合包括的任何一个子帧都属于不同的半帧。由于本发明实施例中,第一 上行信息和第二上行信息使用不同的第一子帧集合和第二子帧集合分别发送,基站接收第一上行信息完之后需要在不同的窄带之间切换,本发明实施例中明确了两个子帧集合(即第一子帧集合和第二子帧集合)内的子帧所在的无线帧(或半帧)不同,并且第一子帧集合内的任何一个子帧和第二子帧集合内的任何一个子帧都属于不同的无线帧(或半帧)。因此本发明实施例中第一子帧集合内的子帧和第二子帧集合内的子帧之间已经存在有UE不会发送上行信息的间隔,UE可以使用第一子帧集合内的子帧和第二子帧集合内的子帧之间已经存在的间隔进行窄带切换,而与现有技术中留出额外的子帧作为间隔子帧的方式完全不同,本发明实施例可以避免不必要的上行信息传输时延,避免了基站资源调度复杂度的增加。
接下来介绍本发明实施例提供的另一种基站,该基站的结构和图14所示的基站1400相同,但是处理器1403,用于执行如下步骤:
在第一子帧集合的第一频率资源上接收第一上行信息;
在第二子帧集合的第二频率资源上接收第二上行信息;
其中,所述第一频率资源和所述第二频率资源是不同窄带包含的频率资源,所述第一子帧集合中的最后一个子帧与所述第二子帧集合中的起始子帧是相邻的子帧;
在所述第一子帧集合中的最后一个子帧内的最后A个时间单元上不接收所述第一上行信息,和/或在所述第二子帧集合中的起始子帧内的前B个时间单元上不接收所述第二上行信息,所述A和所述B为自然数。
在本发明的一些实施例中,所述A=1,所述B=1;或,
所述A=2,所述B=0;或,
所述A=0,所述B=2。
在本发明的一些实施例中,所述第一上行信息和所述第二上行信息是物理上行控制信道上承载的两个上行信息,所述第一上行信息在所述第一子帧集合中的最后一个子帧采用缩短物理上行控制信道格式传输,所述第二上行信息在所述第二子帧集合中的起始子帧采用缩短物理上行控制信道格式传输。
在本发明的一些实施例中,当所述第一上行信息是随机接入前导时,所述B=0;或,
当所述第二上行信息是随机接入前导时,所述A=0。
在本发明实施例中,由于本发明实施例只利用一子帧集合中的最后一个子帧内的最后A个时间单元,和/或在所述第二子帧集合中的起始子帧内的前B个时间单元进行UE频率的调整,使得用于频率的调整的时间为UE所需要的频率调整时间的最大值,从而就不用留出额外的子帧作为间隔子帧,避免了不必要的上行信息传输时延,避免了基站资源调度复杂度的增加。进一步的,本发明实施例所述第一上行信息和所述第二上行信息是物理上行控制信道上承载的两个上行信息,上行信息采用缩短物理上行控制信道格式传输。所述缩短物理上行控制信道格式的物理上行控制信道采用的正交序列长度和现有技术相同,从而有利于保证不同PUCCH采用的正交序列的正交性,保证PUCCH承载的上行信息的传输性能。
另外需说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本发明提供的装置实施例附图中,模块之间的连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发明可借助软件加必需的通用硬件的方式来实现,当然也可以通过专用硬件包括专用集成电路、专用CPU、专用存储器、专用元器件等来实现。一般情况下,凡由计算机程序完成的功能都可以很容易地用相应的硬件来实现,而且,用来实现同一功能的具体硬件结构也可以是多种多样的,例如模拟电路、数字电路或专用电路等。但是,对本发明而言更多情况下软件程序实现是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘、U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
综上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽 管参照上述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对上述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (36)

  1. 一种上行信息传输方法,其特征在于,包括:
    用户设备UE在第一子帧集合的第一频率资源上发送第一上行信息;
    所述UE在第二子帧集合的第二频率资源上发送第二上行信息;
    其中,所述第一频率资源和所述第二频率资源是两个不同窄带分别包括的频率资源;
    所述第一子帧集合内的子帧所在的无线帧与所述第二子帧集合内的子帧所在的无线帧不同,且所述第一子帧集合包括的任何一个子帧和所述第二子帧集合包括的任何一个子帧都属于不同的无线帧;或,
    所述第一子帧集合内的子帧所在的半帧与所述第二子帧集合内的子帧所在的半帧不同,且所述第一子帧集合包括的任何一个子帧和所述第二子帧集合包括的任何一个子帧都属于不同的半帧。
  2. 根据权利要求1所述的方法,其特征在于,所述第一子帧集合内的子帧所在的无线帧与所述第二子帧集合内的子帧所在的无线帧是相邻的不同无线帧,或所述第一子帧集合内的子帧所在的半帧与所述第二子帧集合内的子帧所在的半帧是相邻的不同半帧。
  3. 根据权利要求1-2中任一项权利要求所述的方法,其特征在于,在时分双工TDD系统中的所述第一子帧集合和所述第二子帧集合之间只存在下行子帧和/或特殊子帧。
  4. 根据权利要求1-3中任一项权利要求所述的方法,其特征在于,
    所述第一上行信息在所述第一频率资源发送的起始子帧是一个无线帧内或者一个半帧内的第一个可用的上行子帧;和/或,
    所述第二上行信息在所述第二频率资源发送的起始子帧是一个无线帧内或者一个半帧内的第一个可用的上行子帧;和/或,
    所述第一上行信息和/或所述第二上行信息发送的跳频粒度是5×M个子帧,其中M是预先配置的正整数。
  5. 根据权利要求1-4中任一项权利要求所述的方法,其特征在于,所述第一上行信息的信息类型和所述第二上行信息的信息类型相同。
  6. 一种上行信息的传输方法,其特征在于,所述方法包括:
    用户设备UE在第一子帧集合的第一频率资源上发送第一上行信息;
    所述UE在第二子帧集合的第二频率资源上发送第二上行信息;
    其中,所述第一频率资源和所述第二频率资源是不同窄带包含的频率资源,所述第一子帧集合中的最后一个子帧与所述第二子帧集合中的起始子帧是相邻的子帧;
    在所述第一子帧集合中的最后一个子帧内的最后A个时间单元上不发送所述第一上行信息,和/或在所述第二子帧集合中的起始子帧内的前B个时间单元上不发送所述第二上行信息,所述A和所述B为自然数。
  7. 根据权利要求6所述的方法,其特征在于,所述A=1,所述B=1;或,
    所述A=2,所述B=0;或,
    所述A=0,所述B=2。
  8. 根据权利要求6-7中任一项权利要求所述的方法,其特征在于,
    所述第一上行信息和所述第二上行信息是物理上行控制信道上承载的两个上行信息,所述第一上行信息在所述第一子帧集合中的最后一个子帧采用缩短物理上行控制信道格式传输,所述第二上行信息在所述第二子帧集合中的起始子帧采用缩短物理上行控制信道格式传输。
  9. 根据权利要求6-8中任一项权利要求所述的方法,其特征在于,当所述第一上行信息是随机接入前导时,所述B=0;或,
    当所述第二上行信息是随机接入前导时,所述A=0。
  10. 一种上行信息传输方法,其特征在于,包括:
    基站在第一子帧集合的第一频率资源上接收第一上行信息;
    所述基站在第二子帧集合的第二频率资源上接收第二上行信息;
    其中,所述第一频率资源和所述第二频率资源是两个不同窄带分别包括的频率资源;
    所述第一子帧集合内的子帧所在的无线帧与所述第二子帧集合内的子帧所在的无线帧不同,且所述第一子帧集合包括的任何一个子帧和所述第二子帧集合包括的任何一个子帧都属于不同的无线帧;或,
    所述第一子帧集合内的子帧所在的半帧与所述第二子帧集合内的子帧所在的半帧不同,且所述第一子帧集合包括的任何一个子帧和所述第二子帧集合包括的任何一个子帧都属于不同的半帧。
  11. 根据权利要求10所述的方法,其特征在于,所述第一子帧集合内的 子帧所在的无线帧与所述第二子帧集合内的子帧所在的无线帧是相邻的不同无线帧,或所述第一子帧集合内的子帧所在的半帧与所述第二子帧集合内的子帧所在的半帧是相邻的不同半帧。
  12. 根据权利要求10-11中任一项权利要求所述的方法,其特征在于,在时分双工TDD系统中的所述第一子帧集合和所述第二子帧集合之间只存在下行子帧和/或特殊子帧。
  13. 根据权利要求10-12中任一项权利要求所述的方法,其特征在于,
    所述第一上行信息在所述第一频率资源发送的起始子帧是一个无线帧内或者一个半帧内的第一个可用的上行子帧;和/或,
    所述第二上行信息在所述第二频率资源发送的起始子帧是一个无线帧内或者一个半帧内的第一个可用的上行子帧;和/或,
    所述第一上行信息和/或所述第二上行信息发送的跳频粒度是5×M个子帧,其中M是预先配置的正整数。
  14. 根据权利要求10-13中任一项权利要求所述的方法,其特征在于,所述第一上行信息的信息类型和所述第二上行信息的信息类型相同。
  15. 一种上行信息的传输方法,其特征在于,所述方法包括:
    基站在第一子帧集合的第一频率资源上接收第一上行信息;
    所述基站在第二子帧集合的第二频率资源上接收第二上行信息;
    其中,所述第一频率资源和所述第二频率资源是不同窄带包含的频率资源,所述第一子帧集合中的最后一个子帧与所述第二子帧集合中的起始子帧是相邻的子帧;
    在所述第一子帧集合中的最后一个子帧内的最后A个时间单元上不接收所述第一上行信息,和/或在所述第二子帧集合中的起始子帧内的前B个时间单元上不接收所述第二上行信息,所述A和所述B为自然数。
  16. 根据权利要求15所述的方法,其特征在于,所述A=1,所述B=1;或,
    所述A=2,所述B=0;或,
    所述A=0,所述B=2。
  17. 根据权利要求15-16中任一项权利要求所述的方法,其特征在于,
    所述第一上行信息和所述第二上行信息是物理上行控制信道上承载的两 个上行信息,所述第一上行信息在所述第一子帧集合中的最后一个子帧采用缩短物理上行控制信道格式传输,所述第二上行信息在所述第二子帧集合中的起始子帧采用缩短物理上行控制信道格式传输。
  18. 根据权利要求15-17中任一项权利要求所述的方法,其特征在于,当所述第一上行信息是随机接入前导时,所述B=0;或,
    当所述第二上行信息是随机接入前导时,所述A=0。
  19. 一种用户设备UE,其特征在于,包括:
    第一发送模块,用于在第一子帧集合的第一频率资源上发送第一上行信息;
    第二发送模块,用于在第二子帧集合的第二频率资源上发送第二上行信息;
    其中,所述第一频率资源和所述第二频率资源是两个不同窄带分别包括的频率资源;
    所述第一子帧集合内的子帧所在的无线帧与所述第二子帧集合内的子帧所在的无线帧不同,且所述第一子帧集合包括的任何一个子帧和所述第二子帧集合包括的任何一个子帧都属于不同的无线帧;或,
    所述第一子帧集合内的子帧所在的半帧与所述第二子帧集合内的子帧所在的半帧不同,且所述第一子帧集合包括的任何一个子帧和所述第二子帧集合包括的任何一个子帧都属于不同的半帧。
  20. 根据权利要求19所述的用户设备,其特征在于,所述第一子帧集合内的子帧所在的无线帧与所述第二子帧集合内的子帧所在的无线帧是相邻的不同无线帧,或所述第一子帧集合内的子帧所在的半帧与所述第二子帧集合内的子帧所在的半帧是相邻的不同半帧。
  21. 根据权利要求19-20中任一项权利要求所述的用户设备,其特征在于,在时分双工TDD系统中的所述第一子帧集合和所述第二子帧集合之间只存在下行子帧和/或特殊子帧。
  22. 根据权利要求19-21中任一项权利要求所述的用户设备,其特征在于,
    所述第一上行信息在所述第一频率资源发送的起始子帧是一个无线帧内或者一个半帧内的第一个可用的上行子帧;和/或,
    所述第二上行信息在所述第二频率资源发送的起始子帧是一个无线帧内 或者一个半帧内的第一个可用的上行子帧;和/或,
    所述第一上行信息和/或所述第二上行信息发送的跳频粒度是5×M个子帧,其中M是预先配置的正整数。
  23. 根据权利要求19-22中任一项权利要求所述的用户设备,其特征在于,所述第一上行信息的信息类型和所述第二上行信息的信息类型相同。
  24. 一种用户设备UE,其特征在于,所述UE,包括:
    第一发送模块,用于在第一子帧集合的第一频率资源上发送第一上行信息;
    第二发送模块,用于在第二子帧集合的第二频率资源上发送第二上行信息;
    其中,所述第一频率资源和所述第二频率资源是不同窄带包含的频率资源,所述第一子帧集合中的最后一个子帧与所述第二子帧集合中的起始子帧是相邻的子帧;
    在所述第一子帧集合中的最后一个子帧内的最后A个时间单元上不发送所述第一上行信息,和/或在所述第二子帧集合中的起始子帧内的前B个时间单元上不发送所述第二上行信息,所述A和所述B为自然数。
  25. 根据权利要求24所述的用户设备,其特征在于,所述A=1,所述B=1;或,
    所述A=2,所述B=0;或,
    所述A=0,所述B=2。
  26. 根据权利要求24-25中任一项权利要求所述的用户设备,其特征在于,
    所述第一上行信息和所述第二上行信息是物理上行控制信道上承载的两个上行信息,所述第一上行信息在所述第一子帧集合中的最后一个子帧采用缩短物理上行控制信道格式传输,所述第二上行信息在所述第二子帧集合中的起始子帧采用缩短物理上行控制信道格式传输。
  27. 根据权利要求24-26中任一项权利要求所述的用户设备,其特征在于,当所述第一上行信息是随机接入前导时,所述B=0;或,
    当所述第二上行信息是随机接入前导时,所述A=0。
  28. 一种基站,其特征在于,包括:
    第一接收模块,用于在第一子帧集合的第一频率资源上接收第一上行信 息;
    第二接收模块,用于在第二子帧集合的第二频率资源上接收第二上行信息;
    其中,所述第一频率资源和所述第二频率资源是两个不同窄带分别包括的频率资源;
    所述第一子帧集合内的子帧所在的无线帧与所述第二子帧集合内的子帧所在的无线帧不同,且所述第一子帧集合包括的任何一个子帧和所述第二子帧集合包括的任何一个子帧都属于不同的无线帧;或,
    所述第一子帧集合内的子帧所在的半帧与所述第二子帧集合内的子帧所在的半帧不同,且所述第一子帧集合包括的任何一个子帧和所述第二子帧集合包括的任何一个子帧都属于不同的半帧。
  29. 根据权利要求28所述的基站,其特征在于,所述第一子帧集合内的子帧所在的无线帧与所述第二子帧集合内的子帧所在的无线帧是相邻的不同无线帧,或所述第一子帧集合内的子帧所在的半帧与所述第二子帧集合内的子帧所在的半帧是相邻的不同半帧。
  30. 根据权利要求28-29中任一项权利要求所述的基站,其特征在于,在时分双工TDD系统中的所述第一子帧集合和所述第二子帧集合之间只存在下行子帧和/或特殊子帧。
  31. 根据权利要求28-30中任一项权利要求所述的基站,其特征在于,
    所述第一上行信息在所述第一频率资源发送的起始子帧是一个无线帧内或者一个半帧内的第一个可用的上行子帧;和/或,
    所述第二上行信息在所述第二频率资源发送的起始子帧是一个无线帧内或者一个半帧内的第一个可用的上行子帧;和/或,
    所述第一上行信息和/或所述第二上行信息发送的跳频粒度是5×M个子帧,其中M是预先配置的正整数。
  32. 根据权利要求28-31中任一项权利要求所述的基站,其特征在于,所述第一上行信息的信息类型和所述第二上行信息的信息类型相同。
  33. 一种基站,其特征在于,所述基站包括:
    第一接收模块,用于在第一子帧集合的第一频率资源上接收第一上行信息;
    第二接收模块,用于在第二子帧集合的第二频率资源上接收第二上行信息;
    其中,所述第一频率资源和所述第二频率资源是不同窄带包含的频率资源,所述第一子帧集合中的最后一个子帧与所述第二子帧集合中的起始子帧是相邻的子帧;
    在所述第一子帧集合中的最后一个子帧内的最后A个时间单元上不接收所述第一上行信息,和/或在所述第二子帧集合中的起始子帧内的前B个时间单元上不接收所述第二上行信息,所述A和所述B为自然数。
  34. 根据权利要求33所述的基站,其特征在于,所述A=1,所述B=1;或,
    所述A=2,所述B=0;或,
    所述A=0,所述B=2。
  35. 根据权利要求33-34中任一项权利要求所述的基站,其特征在于,
    所述第一上行信息和所述第二上行信息是物理上行控制信道上承载的两个上行信息,所述第一上行信息在所述第一子帧集合中的最后一个子帧采用缩短物理上行控制信道格式传输,所述第二上行信息在所述第二子帧集合中的起始子帧采用缩短物理上行控制信道格式传输。
  36. 根据权利要求33-35中任一项权利要求所述的基站,其特征在于,当所述第一上行信息是随机接入前导时,所述B=0;或,
    当所述第二上行信息是随机接入前导时,所述A=0。
PCT/CN2015/090817 2015-09-25 2015-09-25 一种上行信息的传输方法和基站以及用户设备 WO2017049629A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201580071325.1A CN107113805B (zh) 2015-09-25 2015-09-25 一种上行信息的传输方法和基站以及用户设备
PCT/CN2015/090817 WO2017049629A1 (zh) 2015-09-25 2015-09-25 一种上行信息的传输方法和基站以及用户设备
CN202010996031.2A CN112291858B (zh) 2015-09-25 2015-09-25 一种上行信息的传输方法和基站以及用户设备
BR112018005906-4A BR112018005906B1 (pt) 2015-09-25 Método de transmissão de informações de enlace ascendente,estação de base e equipamento de usuário
EP15904505.3A EP3346783B1 (en) 2015-09-25 2015-09-25 Uplink information transmission method, base station and user equipment
EP20166204.6A EP3749039B1 (en) 2015-09-25 2015-09-25 Uplink information transmission method, base station, and user equipment
US15/933,348 US10945242B2 (en) 2015-09-25 2018-03-22 Uplink information transmission method, base station, and user equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/090817 WO2017049629A1 (zh) 2015-09-25 2015-09-25 一种上行信息的传输方法和基站以及用户设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/933,348 Continuation US10945242B2 (en) 2015-09-25 2018-03-22 Uplink information transmission method, base station, and user equipment

Publications (1)

Publication Number Publication Date
WO2017049629A1 true WO2017049629A1 (zh) 2017-03-30

Family

ID=58385757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/090817 WO2017049629A1 (zh) 2015-09-25 2015-09-25 一种上行信息的传输方法和基站以及用户设备

Country Status (4)

Country Link
US (1) US10945242B2 (zh)
EP (2) EP3346783B1 (zh)
CN (2) CN107113805B (zh)
WO (1) WO2017049629A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109039554A (zh) * 2017-06-09 2018-12-18 上海朗帛通信技术有限公司 一种被用于窄带通信的用户设备、基站中的方法和装置
WO2019029696A1 (zh) * 2017-08-11 2019-02-14 华为技术有限公司 信号的发送方法、接收方法和装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6714593B2 (ja) * 2015-07-28 2020-06-24 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 端末および通信方法
US10798719B2 (en) * 2016-01-12 2020-10-06 Sony Corporation Communications device, infrastructure equipment, wireless communications network and methods
US10477526B2 (en) * 2016-06-10 2019-11-12 Qualcomm Incorporated Uplink procedures on a shared communication medium
US10454657B2 (en) 2017-02-28 2019-10-22 Qualcomm Incorporated Narrowband time-division duplex frame structure for narrowband communications
EP3550915B1 (en) 2018-02-11 2022-01-26 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and device for transmitting uplink control information
CN110944387B (zh) * 2018-09-21 2023-09-12 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101426274A (zh) * 2007-10-29 2009-05-06 大唐移动通信设备有限公司 一种随机接入过程中资源分配位置的指示方法、系统及装置
WO2014171683A1 (en) * 2013-04-14 2014-10-23 Lg Electronics Inc. Method and apparatus for controlling monitoring timing in wireless communication system
CN104221457A (zh) * 2012-02-03 2014-12-17 高通股份有限公司 管理针对低成本用户设备的下行链路和上行链路资源
CN104937860A (zh) * 2013-06-24 2015-09-23 Lg电子株式会社 在无线通信系统中控制探测参考信号的传输功率的方法及其设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8411631B2 (en) * 2010-06-11 2013-04-02 Intel Corporation Response mechanisms for wireless networks using wide bandwidth
CN102035786B (zh) * 2010-11-12 2013-05-01 清华大学 一种用于宽带无线通信系统的时分双工传输方法
CN102271032B (zh) * 2011-08-09 2014-11-19 电信科学技术研究院 一种实现上行反馈的方法、系统及装置
EP3490320B1 (en) * 2011-09-30 2023-08-23 InterDigital Patent Holdings, Inc. Device communication using a reduced channel bandwidth
WO2015005334A1 (ja) * 2013-07-09 2015-01-15 シャープ株式会社 端末装置、基地局装置、通信方法および集積回路
CN104348602B (zh) * 2013-08-09 2019-06-18 北京三星通信技术研究有限公司 一种混合双工通信方法、基站及终端
CN105594134B (zh) 2013-11-11 2018-01-23 华为技术有限公司 跳频处理方法及装置
JP6662881B2 (ja) * 2015-07-24 2020-03-11 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 基地局、端末および通信方法
CN106454695B (zh) * 2015-08-12 2021-03-26 中兴通讯股份有限公司 一种机器类通信系统中的信息传输方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101426274A (zh) * 2007-10-29 2009-05-06 大唐移动通信设备有限公司 一种随机接入过程中资源分配位置的指示方法、系统及装置
CN104221457A (zh) * 2012-02-03 2014-12-17 高通股份有限公司 管理针对低成本用户设备的下行链路和上行链路资源
WO2014171683A1 (en) * 2013-04-14 2014-10-23 Lg Electronics Inc. Method and apparatus for controlling monitoring timing in wireless communication system
CN104937860A (zh) * 2013-06-24 2015-09-23 Lg电子株式会社 在无线通信系统中控制探测参考信号的传输功率的方法及其设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3346783A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109039554A (zh) * 2017-06-09 2018-12-18 上海朗帛通信技术有限公司 一种被用于窄带通信的用户设备、基站中的方法和装置
CN109039554B (zh) * 2017-06-09 2021-01-26 上海朗帛通信技术有限公司 一种被用于窄带通信的用户设备、基站中的方法和装置
WO2019029696A1 (zh) * 2017-08-11 2019-02-14 华为技术有限公司 信号的发送方法、接收方法和装置

Also Published As

Publication number Publication date
CN112291858B (zh) 2023-11-21
US20180213525A1 (en) 2018-07-26
BR112018005906A2 (zh) 2018-10-16
EP3346783A4 (en) 2018-10-10
EP3346783B1 (en) 2020-04-01
CN112291858A (zh) 2021-01-29
EP3346783A1 (en) 2018-07-11
EP3749039A1 (en) 2020-12-09
EP3749039B1 (en) 2024-01-03
CN107113805A (zh) 2017-08-29
US10945242B2 (en) 2021-03-09
CN107113805B (zh) 2020-10-09

Similar Documents

Publication Publication Date Title
US20230422261A1 (en) Physical downlink control channel and physical hybrid automatic repeat request indicator channel enhancements
WO2017049629A1 (zh) 一种上行信息的传输方法和基站以及用户设备
JP6989708B2 (ja) 無線通信システムにおける任意接続プリアンブルを送受信するための方法、及びこのための装置
WO2018192015A1 (zh) 时频资源传输方向的配置方法和装置
US20170041119A1 (en) Configurable bi-directional time division duplex (tdd) subframe structure
JP2020535713A (ja) 無線通信システムにおけるprbグリッドを構成する方法及び装置
CN110574486A (zh) 虚拟载波和虚拟连接聚合
JP2020529786A (ja) 無線通信システムにおいてlte及びnrに基づいた信号送受信の方法並びにそのための装置
US11606821B2 (en) Downlink transmission indication for RACH occasions
US20220393847A1 (en) Method and apparatus for in-band full-duplex communication
US20220295451A1 (en) Method and communication device for switching bwp for sidelink communication
US20230379977A1 (en) Random access channel message repetition indication for retransmission
WO2018058630A1 (zh) 一种自包含子帧的配置方法和装置
US20230224911A1 (en) Rules for multi-slot physical downlink control channel (pdcch) monitoring in common search space sets
JP2020520134A (ja) 無線通信システムにおいて信号を生成する方法及び装置
US11974334B2 (en) Bundle size configuration for demodulation reference signal bundling in case of uplink random access channel message repetition
US11832091B2 (en) Timing advance configuration for uplink communication resources
WO2024093193A1 (en) Devices, methods and medium for sidelink communications
WO2023000117A1 (en) Control channel design in orbital angular momentum (oam) based communication system
US20230109809A1 (en) Scheduling for sidelink communications
US20230422213A1 (en) Paging early indication location determination
US20230224856A1 (en) Paging early indication location determination
US20240147385A1 (en) Power headroom reporting for uplink channel repetition
US20220360368A1 (en) Repetition across slot boundary handling
WO2023056477A1 (en) Random access radio network temporary identifier for higher subcarrier spacing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15904505

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018005906

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2015904505

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112018005906

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180323