WO2017049460A1 - 一种光网络单元注册的方法、装置及系统 - Google Patents

一种光网络单元注册的方法、装置及系统 Download PDF

Info

Publication number
WO2017049460A1
WO2017049460A1 PCT/CN2015/090298 CN2015090298W WO2017049460A1 WO 2017049460 A1 WO2017049460 A1 WO 2017049460A1 CN 2015090298 W CN2015090298 W CN 2015090298W WO 2017049460 A1 WO2017049460 A1 WO 2017049460A1
Authority
WO
WIPO (PCT)
Prior art keywords
onu
port
onu port
wavelength
olt
Prior art date
Application number
PCT/CN2015/090298
Other languages
English (en)
French (fr)
Inventor
高波
陶明慧
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201580083087.6A priority Critical patent/CN108028972A/zh
Priority to EP15904347.0A priority patent/EP3349479A4/en
Priority to PCT/CN2015/090298 priority patent/WO2017049460A1/zh
Publication of WO2017049460A1 publication Critical patent/WO2017049460A1/zh
Priority to US15/927,964 priority patent/US20180212705A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0238Wavelength allocation for communications one-to-many, e.g. multicasting wavelengths
    • H04J14/0239Wavelength allocation for communications one-to-many, e.g. multicasting wavelengths in WDM-PON sharing multiple downstream wavelengths for groups of optical network units [ONU], e.g. multicasting wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2854Wide area networks, e.g. public data networks
    • H04L12/2856Access arrangements, e.g. Internet access
    • H04L12/2858Access network architectures
    • H04L12/2861Point-to-multipoint connection from the data network to the subscribers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2854Wide area networks, e.g. public data networks
    • H04L12/2856Access arrangements, e.g. Internet access
    • H04L12/2869Operational details of access network equipments
    • H04L12/2898Subscriber equipments
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/40Network security protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0086Network resource allocation, dimensioning or optimisation

Definitions

  • Embodiments of the present invention relate to an optical communication technology, and in particular, to a method, an apparatus, and a system for registering an optical network unit.
  • the PON system may include Time Division Multiplexing (TDM) PON: Gigabit Passive Optical Network (GPON) and 10G GPON, Ethernet Passive Optical Network (Ethernet) Passive Optical Network (referred to as "EPON”) and 10GEPON, Time Wavelength Division Multiplexing (TWDM) PON, Point to Point (PtP), Wavelength Division Multiplexing ( Wavelength Division Multiplexing (referred to as "WDM”) PON, etc.
  • TDM Time Division Multiplexing
  • GPON Gigabit Passive Optical Network
  • 10G GPON Ethernet Passive Optical Network
  • Ethernet Ethernet Passive Optical Network
  • 10GEPON 10GEPON
  • TWDM Time Wavelength Division Multiplexing
  • PtP Point to Point
  • WDM Wavelength Division Multiplexing
  • the PON system may include: an optical line terminal (“OLT”) located at a central office, and an optical distribution network including passive optical devices ( Optical Distribution Network (ODN), and Optical Network Unit (ONU)/Optical Network Terminal (ONT), where ONU can be used.
  • ONT optical line terminal
  • ONT optical Distribution Network
  • ONU Optical Network Unit
  • ONT Optical Network Terminal
  • the TWDM PON system is a point-to-multipoint communication system in which multiple wavelength channels are used for data between the optical line terminal (OLT) at the central office and the optical network unit (ONU) at the user side.
  • OLT optical line terminal
  • ONU optical network unit
  • each ONU operates in one of the wavelength channels.
  • the OLT broadcasts downlink data to multiple ONUs working in the wavelength channel by using corresponding downlink wavelengths of each wavelength channel.
  • the ONU of each wavelength channel can adopt the time slot allocated by the OLT.
  • the upstream wavelength of the wavelength channel sends uplink data to the OLT.
  • GPON has a higher bandwidth efficiency, and its synchronization timer mechanism follows the traditional SDH, and uses GEM encapsulation to adapt services of different rates. Therefore, it has become the most used access system for operators in various countries.
  • GPON point-to-multipoint network structure one OLT and multiple ONUs simultaneously To distinguish different ONUs, you need to set a unique ONU-ID for each ONU as the ID of the ONU. Since multiple ONUs generate data to the OLT at the same time, signal collision may occur, which affects the normal transmission of the OLT. Therefore, the OLT needs to coordinate the transmission of the ONU by means of time slice authorization, and only allows one ONU to transmit data in a certain time period. Effectively avoid conflicts.
  • the OLT time slice authorization object is an allocation unit on the ONU, and the Alloc-ID identifier is used.
  • EPON related technologies and standards are developed on the basis of IEEE802.3, compatible with ubiquitous ETH technology and equipment, can reuse a large number of existing mature devices and circuits, design low risk, relatively mature technology and industrial chain costs low. Therefore, it is loved by domestic telecom operators.
  • an OLT communicates with multiple ONUs at the same time.
  • a unique LLID Logical Link Identifier
  • LLID Logical Link Identifier
  • the OLT first sends a special authorization discovery gate to ensure that all normal ONUs stop transmitting, thereby generating an idle time period (hereinafter referred to as a quiet window).
  • the newly registered ONU sends a Registe_REQ MPCP message carrying its own MAC address in the quiet window.
  • the OLT After receiving the message, the OLT sends the allocated LLID to the ONU by sending the Register to cancel the MPCP, and the LLID is used to identify the ONU.
  • the ranging between the OLT and the ONU is calculated by the local timers of the two parties and the time stamp carried in the MPCP, so the OLT does not need to perform the ranging authorization separately.
  • the OLT receives the Register_ACK MPCP message of the ONU, the entire registration process ends, and the ONU can perform normal communication with the OLT.
  • an ONU In a typical PON, an ONU has only one wavelength channel (one wavelength channel includes one downstream wavelength and one upstream wavelength), so that the maximum bandwidth of the ONU is only 10 Gbps.
  • the industry has proposed that the bandwidth of the ONU is greater than 10G, and each ONU is required to have more than one wavelength channel. How to provide an efficient ONU registration mechanism allows a single ONU to support more wavelength channels, and increasing bandwidth is an urgent technical problem to be solved.
  • the embodiment of the invention provides a method, a device and a system for communicating passive optical network, which are used to solve the problem that when the bandwidth requirement of the ONU is relatively large, how to make the port on the ONU stand independently at the OLT On the registration, improve the ONU's bandwidth support and technical support for wavelength channel support.
  • An embodiment of the present invention provides an ONU registration method, including: an ONU port scanning a downlink wavelength channel, the ONU port being one of a plurality of ports on the ONU; and the ONU port receiving a discovery authorization message from the optical line terminal OLT, the discovery authorization message The channel identifier of the downlink wavelength channel where the discovery authorization message is located; the ONU port sends a registration request message to the OLT, where the registration request message includes the port number of the ONU port; the ONU port receives the registration message from the OLT, The registration message includes a port number of the ONU port and an ONU logical identifier assigned by the OLT to the ONU port.
  • the embodiment of the present invention further provides an ONU registration method, including: sending a discovery authorization message to an ONU port, where the discovery authorization message includes a channel identifier of a downlink wavelength channel where the discovery authorization message is located, and the ONU port is multiple on the ONU. a port in the port; receiving a registration request message from the ONU port, where the registration request message includes a port number of the ONU port; sending a registration message to the ONU port, where the registration message includes the ONU port The port number and the ONU logical identity assigned to the ONU port.
  • the embodiment of the present invention further provides an ONU, including an ONU port, where the ONU port is one of a plurality of ports on the ONU, and the ONU port includes: a scanning module for scanning a downlink wavelength channel; and a transceiver module for And receiving, by the optical line terminal OLT, a discovery authorization message, where the discovery authorization message includes a channel identifier of a downlink wavelength channel where the discovery authorization message is located, and sending a registration request message to the OLT, where the registration request message includes a port number of the ONU port. Receiving a registration message from the OLT, the registration message including a port number of the ONU port, and an ONU logical identifier assigned by the OLT to the ONU port.
  • the embodiment of the present invention further provides a passive optical network device, including: a sending module, configured to send a discovery authorization message to an ONU port, where the discovery authorization message includes a channel identifier of a downlink wavelength channel where the discovery authorization message is located,
  • the ONU port is one of the multiple ports on the ONU;
  • the receiving module is configured to receive a registration request message from the ONU port, where the registration request message includes a port number of the ONU port;
  • the sending module is further used to: Transmitting a registration message to the ONU port, the registration message including a port number of the ONU port, and an ONU logical identifier assigned to the ONU port.
  • the embodiment of the present invention further provides a PON system, where the system includes an OLT and an ONU, and the ONU includes an ONU port, and the ONU port is one of a plurality of ports on the ONU.
  • the ONU port is configured to: scan a downlink wavelength channel, and receive a discovery authorization message from the OLT, where the discovery authorization message includes a channel identifier of a downlink wavelength channel where the discovery authorization message is located, and send a registration request message to the OLT, where The registration request message includes a port number of the ONU port, and receives a registration message from the OLT, where the registration message includes a port number of the ONU port, and an ONU logical identifier assigned by the OLT to the ONU port.
  • the ONU port receives the discovery authorization from the OLT, sends a registration request to the OLT, and receives the ONU logical identifier of the ONU port from the OLT, and provides an efficient ONU registration mechanism, and the ONU port is used as the ONU. Management and maintenance, enabling ONUs to support more bandwidth channels and increase bandwidth.
  • FIG. 1 is a schematic structural diagram of a PON network provided by the prior art
  • FIG. 2 is a schematic structural diagram of a TWDM-PON network according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of an NG-EPON network according to an embodiment of the present disclosure
  • FIG. 4 is a flowchart of a method for registering an ONU port according to an embodiment of the present invention
  • FIG. 5 is a flowchart of a method for registering an ONU port according to another embodiment of the present invention.
  • FIG. 6 is a structural diagram of an ONU according to an embodiment of the present invention.
  • FIG. 7 is a structural diagram of a PON system according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of a method for registering an ONU port according to another embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a passive optical network device according to an embodiment of the present invention.
  • the TWDM-PON system 100 includes an OLT 110, a plurality of ONUs 120, and an Optical Distribution Network (ODN) 130, wherein the OLT 110 uses the ODN 130 to point-to-multiple. Point mode is connected to multiple ONUs 120. More than one OLT may also be included in the TWDM-PON system 100.
  • the plurality of ONUs 120 share the optical transmission medium of the ODN 130.
  • the ODN 130 may include a backbone fiber 131, an optical power split module 132, and a plurality of branch fibers 133.
  • the optical power splitting module 132 may be disposed at a remote node (RN), which is connected to the OLT 110 through the trunk optical fiber 131 on the one hand, and connected to the plurality of ONUs 120 through the plurality of branch optical fibers 133 on the other hand.
  • the communication link between the OLT 110 and the plurality of ONUs 120 may include a plurality of wavelength channels, and the plurality of wavelength channels share the optical transmission medium of the ODN 130 by WDM.
  • Each ONU 120 can operate in one of the wavelength channels of the TWDM-PON system 100, and each wavelength channel can carry the traffic of one or more ONUs 120.
  • the ONUs 120 operating in the same wavelength channel can share the wavelength channel by TDM.
  • the TWDM-PON system 100 has four wavelength channels as an example. It should be understood that, in practical applications, the number of wavelength channels of the TWDM-PON system 100 may also be determined according to network requirements.
  • the four wavelength channels of the TWDM-PON system 100 are respectively named as wavelength channel 1, wavelength channel 2, wavelength channel 3, and wavelength channel 4, wherein each wavelength channel adopts a pair of uplink and downlink wavelengths respectively.
  • the upstream wavelength and the downstream wavelength of the wavelength channel 1 may be ⁇ u1 and ⁇ d1, respectively
  • the upstream wavelength and the downstream wavelength of the wavelength channel 2 may be ⁇ u2 and ⁇ d2, respectively
  • the upstream wavelength and the downstream wavelength of the wavelength channel 3 may be ⁇ u3 and ⁇ d3, respectively.
  • the upstream wavelength and the downstream wavelength of the wavelength channel 4 may be ⁇ u4 and ⁇ d4, respectively.
  • Each wavelength channel can have a corresponding wavelength channel identifier (for example, the channel numbers of the four wavelength channels can be 1, 2, 3, and 4 respectively), that is, the wavelength channel identifier matches the uplink and downlink wavelengths of the wavelength channel identified by the wavelength channel.
  • the OLT 110 and the ONU 120 can learn the upstream wavelength and the downstream wavelength of the wavelength channel according to the wavelength channel identifier.
  • the OLT 110 may include an optical coupler 111, a wavelength division multiplexer 112, a second wavelength division multiplexer 113, a plurality of downstream optical transmitters Tx1 to Tx4, a plurality of upstream optical receivers Rx1 to Rx4, and a processing module 114.
  • the plurality of downstream optical transmitters Tx1 to Tx4 are connected to the optical coupler 111 through the wavelength division multiplexer 112, and the plurality of upstream optical receivers Rx1 to Rx4 are connected to the optical coupler 111 through the second wavelength division multiplexer 113.
  • the coupler 111 is further connected to the trunk fiber 131 of the ODN 130.
  • the emission wavelengths of the plurality of downstream light emitters Tx1 to Tx4 are different, wherein each of the descending lights
  • the transmitters Tx1 to Tx4 may respectively correspond to one of the wavelength channels of the TWDM-PON system 100.
  • the emission wavelengths of the plurality of downlink light emitters Tx1 to Tx4 may be respectively ⁇ d1 to ⁇ d4.
  • the downlink optical transmitters Tx1 to Tx4 can respectively transmit downlink data to corresponding wavelength channels by using their emission wavelengths ⁇ d1 ⁇ ⁇ d4 to be received by the ONUs 120 operating in the corresponding wavelength channels.
  • the receiving wavelengths of the plurality of uplink optical receivers Rx1 to Rx4 may be different, and each of the upstream optical receivers Rx1 to Rx4 also respectively correspond to one of the wavelength channels of the TWDM-PON system 100, for example, multiple uplinks.
  • the receiving wavelengths of the optical receivers Rx1 to Rx4 may be ⁇ u1 to ⁇ u4, respectively.
  • the upstream optical receivers Rx1 to Rx4 can receive the uplink data transmitted by the ONU 120 operating in the corresponding wavelength channel by using the reception wavelengths ⁇ u1 to ⁇ u4, respectively.
  • the wavelength division multiplexer 112 is configured to perform wavelength division multiplexing processing on the downlink data of the plurality of downlink optical transmitters Tx1 to Tx4 and having wavelengths of ⁇ d1 to ⁇ d4, respectively, and transmit the downlink data to the trunk optical fiber 131 of the ODN 130 through the optical coupler 111.
  • the downlink data is provided to the ONU 120 through the ODN 130.
  • the optical coupler 111 can also be used to provide uplink data from the plurality of ONUs 120 and having wavelengths of ⁇ u1 to ⁇ u4, respectively, to the second wavelength division multiplexer 113, and the second wavelength division multiplexer 113 can respectively set the wavelength to ⁇ u1.
  • the uplink data of ⁇ u4 is demultiplexed to the upstream optical receivers Rx1 to Rx4 for data reception.
  • the processing module 114 may be a Media Access Control (MAC) module, which may specify a working wavelength channel for the plurality of ONUs 120 by wavelength negotiation, and send the signal to the ONU 120 according to the working wavelength channel of the ONU 120.
  • the downlink data is provided to the downlink optical transmitters Tx1 to Tx4 corresponding to the wavelength channels, so that the downlink optical transmitters Tx1 to Tx4 transmit the downlink data to the corresponding wavelength channels.
  • the processing module 114 can also uplink the respective wavelength channels.
  • the Dynamic Bandwidth Allocation is configured to allocate an uplink transmission slot to the ONU 120 multiplexed to the same wavelength channel by the TDM mode, to authorize the ONU 120 to transmit uplink data through the corresponding wavelength channel in the designated time slot.
  • the uplink transmit wavelength and the downlink receive wavelength of each ONU 120 are adjustable, and the ONU 120 can adjust its own uplink transmit wavelength and downlink receive wavelength to the upstream wavelength and the downlink wavelength of the wavelength channel according to the wavelength channel specified by the OLT 110, thereby realizing The uplink and downlink data are transmitted and received through the wavelength channel.
  • the OLT 110 indicates that an ONU 120 operates to the wavelength channel 1 during the wavelength negotiation process, the ONU 120 can adjust its own uplink transmission wavelength and downlink reception wavelength to the uplink wavelength ⁇ u1 and the downlink wavelength ⁇ d1, respectively; if the OLT 110 instructs the ONU 120 to operate to the wavelength Channel 3, ONU 120 can divide its own uplink transmit wavelength and downlink receive wavelength Do not adjust to the third upstream wavelength ⁇ u3 and the downstream wavelength ⁇ d3.
  • the ONU 120 may include an optical coupler 121, a downstream optical receiver 122, an upstream optical transmitter 123, and a processing module 124.
  • the downstream optical receiver 122 and the upstream optical transmitter 123 are connected to the branch optical fiber 133 corresponding to the ONU 120 through the optical coupler 121.
  • the optical coupler 121 can provide the uplink data sent by the upstream optical transmitter 123 to the branch fiber 133 of the ODN 130 to be sent to the OLT 110 through the ODN 130; on the other hand, the optical coupler 121 can also send the downlink data sent by the OLT 110 through the ODN 130.
  • the downlink optical receiver 122 is provided for data reception.
  • the processing module 124 can be a MAC module, which can perform wavelength negotiation with the OLT 110, and adjust the receiving wavelength of the downstream optical receiver 122 and the transmitting wavelength of the upstream optical transmitter 123 according to the wavelength channel specified by the OLT 110 (ie, adjusting the downlink receiving wavelength of the ONU 120). And the uplink transmit wavelength), so that the ONU 120 operates in the wavelength channel specified by the OLT 110.
  • the processing module 124 can also control the uplink optical transmitter 123 to send uplink data in a specified time slot according to the dynamic bandwidth allocation result of the OLT 110.
  • each wavelength channel corresponds to an independent bandwidth scheduling module, as shown in Figure 3A.
  • Modules 1, 2, 3 and 4 each ONU corresponds to a wavelength channel.
  • ONU1 ⁇ 3 work in ⁇ 1 wavelength channel
  • ONU4 ⁇ 5 work in ⁇ 2 wavelength channel
  • ONU6 and ONU8 work in ⁇ 3 wavelength channel
  • ONU7 and ONU9 work in ⁇ 4 wavelength channel.
  • Figure 3 is a time slot diagram corresponding to the operation of the ONU. Each ladder block represents a time slot.
  • the OLT allocates three time slots of different lengths to the ONUs 1 to 3; in the ⁇ 2 wavelength channel, the OLT gives the ONUs 4 More uplink time slots are allocated; similarly, in the ⁇ 3 wavelength channel, the OLT allocates more uplink time slots to the ONU6; in the ⁇ 4 wavelength channel, the OLT allocates more uplink time slots to the ONU9.
  • wavelength registration is performed in units of ONUs, and ONUs work in corresponding wavelength channels. The OLT allocates time slots to ONUs, which cannot be finely managed and maintained.
  • FIG. 4 is a flowchart of a method for registering an ONU port according to an embodiment of the present invention.
  • the ONU port registration process includes:
  • the ONU port scans a downlink wavelength channel, where the ONU port is one of multiple ports on the ONU.
  • each port of the ONU scans the downlink wavelength signal to implement initialization and calibration of the downlink wavelength channel.
  • the ONU port is a PON-side port, specifically a port on the ONU that is connected to the OLT PON side port through the ODN and communicates.
  • the ONU port receives a discovery authorization message from the OLT, where the discovery authorization message includes a channel identifier of the downlink wavelength channel where the discovery authorization is located.
  • the message that the ONU port interacts with the OLT may be a message based on a Multiple Point Control Protocol (MPCP), or may be based on an Operation Administration Maintenance (OAM) message. It is based on the Physical Layer Operation Administration Maintenance (PLOAM) message, and can also be an Operation Management Control Interface (OMCI) message, or through a customized message format.
  • MPCP Multiple Point Control Protocol
  • OAM Operation Administration Maintenance
  • PLOAM Physical Layer Operation Administration Maintenance
  • OMCI Operation Management Control Interface
  • the discovery authorization message received by the ONU port from the OLT may be a Gate (MPG) message.
  • the Gate MPCP message may include a port number of the ONU port in addition to the channel identifier of the downlink wavelength channel.
  • the ONU port sends a registration request to the OLT, where the registration request includes a port number of the ONU port.
  • each ONU port of the ONU can send a registration request to the OLT.
  • the ONU selects the default ONU port to register, and only the selected default ONU port sends a registration request to the OLT.
  • the ONU port that sends the registration request may be specified by the OLT.
  • the specified ONU port has been previously registered with the OLT.
  • the OLT may use the port number of the ONU port carried in the Gate MPCP message in step S402. Specifies the ONU port that needs to send a registration request to the OLT.
  • the ONU can store the mapping between the channel identifier of the downlink wavelength channel and the channel identifier of the uplink wavelength channel.
  • the downlink wavelength channel and the uplink wavelength channel form a wavelength channel group, and the ONU port sends a registration request message to the OLT, where the ONU port can include:
  • the upstream wavelength channel sends a registration request message to the OLT.
  • the ONU port receives a registration message from the OLT, where the registration message includes a port number of the ONU port, and an ONU logical identifier assigned by the OLT to the ONU port.
  • the ONU port may also send a registration response message to the OLT, where the registration response message is used for the OLT to confirm the allocation of the ONU logical identifier of the ONU port, and the registration response message includes the Port number of the ONU port.
  • the ONU logical identifier may be an ONU ID.
  • the ONU logical identifier may be an LLID.
  • the ONU port receives the discovery authorization from the OLT, sends a registration request to the OLT, and receives the ONU logical identifier of the ONU port from the OLT, thereby providing an efficient ONU registration mechanism, so that the ONU can support more Bandwidth channel to increase bandwidth.
  • FIG. 5 is a flowchart of a method for registering an ONU port according to another embodiment of the present invention, where the ONU port registration process includes:
  • the ONU port scans a downlink wavelength channel, where the ONU port is one of multiple ports on the ONU.
  • each port of the ONU scans the downlink wavelength signal to implement initialization and calibration of the downlink wavelength channel.
  • the port of the ONU may be a wavelength channel terminal that communicates with the OLT PON port on the PON side.
  • the ONU port receives a discovery authorization message from the OLT, where the discovery authorization message includes a channel identifier of the downlink wavelength channel where the discovery authorization is located.
  • the message that the ONU port interacts with the OLT may be a message based on a Multiple Point Control Protocol (MPCP), or may be based on an Operation Administration Maintenance (OAM) message. It is based on the Physical Layer Operation Administration Maintenance (PLOAM) message, and can also be an Operation Management Control Interface (OMCI) message, or through a customized message format.
  • MPCP Multiple Point Control Protocol
  • OAM Operation Administration Maintenance
  • PLOAM Physical Layer Operation Administration Maintenance
  • OMCI Operation Management Control Interface
  • the discovery authorization message received by the ONU port from the OLT may be a Gate MPCP message, and the Gate MPCP message may include a port number of the ONU port in addition to the channel identifier of the downlink wavelength channel.
  • an MPCP message is taken as an example to describe an information format in which an ONU port interacts with an OLT.
  • the MPCP message format can be as follows:
  • Table 1 shows the frame format of the existing MPCP protocol, where the destination address (DA), which is 6 bytes, is used to mark the IP address sent by the packet.
  • DA destination address
  • SA Source Address
  • the length/type of the packet which is 2 bytes, is used to mark the length and type of the packet.
  • Opcode which is 2 bytes, is used to mark the number of the MPCP frame
  • the time stamp (TimeStamps), which is 4 bytes, is used to mark the time when the message is sent;
  • Data/Reserved/Pad which is 40 bytes, used to carry data information or as a reserved field for extended use;
  • FCS Frame Sequence Check
  • the five types of frames all include the above fields, such as a destination address, a source address, a length/type, an operation code, a time label, a data/retention field, and a frame sequence check, and the contents of different frame fields are different.
  • the Opcode of these five frames is 0002,0003,0004,0005,0006.
  • Gate MPCP One possible format of a Gate MPCP message is as follows:
  • the ONU port sends a registration request message to the OLT, where the registration request message includes a port number of the ONU port.
  • each ONU port of the ONU can send a registration request message to the OLT.
  • the ONU selects the default ONU port to register, and only the selected default ONU port sends a registration to the OLT. Request message.
  • the ONU port that sends the registration request may be specified by the OLT. The specified ONU port has been previously registered with the OLT. The OLT may use the port number of the ONU port carried in the Gate MPCP message in step S502. Specifies the ONU port that needs to send a registration request to the OLT.
  • the ONU port sends a registration request in addition to the port carrying the ONU port.
  • the number of the ONU port such as the channel identifier of the downlink receiving wavelength channel where the ONU port is currently located, and the rate supported by the ONU port.
  • the following table is a possible format for the ONU port registration request (Register_req MPCP):
  • the ONU port receives a recalibration request message from the OLT, where the recalibration request message includes a port number of the ONU port, a channel identifier of an uplink wavelength channel currently in the ONU port, and the target to be calibrated by the ONU port The channel identifier of the upstream wavelength channel and the channel identifier of the target downstream wavelength channel to which the ONU port needs to be calibrated.
  • the recalibration request message may be sent by the OLT to the ONU port when the OLT finds that the ONU port is not in the expected uplink wavelength channel, and the OLT may only send a recalibration request message to the ONU port that is not in the expected uplink wavelength channel.
  • the ONU port performs calibration according to the channel identifier of the target uplink wavelength channel and the channel identifier of the target downlink wavelength channel that need to be calibrated.
  • the recalibrated ONU port operates in the desired target upstream wavelength channel and target downstream wavelength channel.
  • the ONU port receives an uplink wavelength fine adjustment request message from the OLT, where the uplink wavelength fine adjustment request message includes a port number of the ONU port, an adjustment direction of the uplink wavelength fine adjustment, and an adjustment amount of the uplink wavelength adjustment.
  • the OLT finds that the ONU port is in the expected upstream wavelength channel. When the upstream wavelength of the ONU port is not aligned with the center wavelength of the receiving filter, the OLT sends an uplink wavelength fine adjustment request to the ONU.
  • the following table is a possible format for the upstream wavelength fine-tuning request message (MPCP message) sent by the ONU port:
  • the S507 and the ONU port adjust the uplink wavelength of the ONU port according to the adjustment direction of the uplink wavelength fine adjustment and the adjustment amount of the uplink wavelength fine adjustment.
  • the upstream wavelength of the ONU port after the fine adjustment of the upstream wavelength is aligned with the center wavelength of the receive filter.
  • step S504 the wavelength channel recalibration of S505 is triggered when the ONU port is not in the expected wavelength channel. If the ONU port is already in the expected wavelength channel, the step of recalibrating the wavelength channel may not be performed.
  • step S506 the uplink wavelength fine adjustment of S507 can be triggered only when the uplink wavelength of the ONU port is not aligned with the center wavelength of the receiving filter. If the upstream wavelength of the ONU port is aligned with the center wavelength of the receiving filter, Then, the step of fine-tuning the upstream wavelength can be omitted.
  • the ONU port receives a registration message from the OLT, where the registration message includes a port number of the ONU port, and an ONU logical identifier assigned by the OLT to the ONU port.
  • the ONU logical identifier may be an ONU ID.
  • the ONU logical identifier may be an LLID.
  • the following table shows one possible format of the Register Message (Register MPCP) received by the ONU port from the OLT:
  • the ONU port sends a registration confirmation message to the OLT, where the registration confirmation message is used to confirm that the ONU port is already registered, and the registration confirmation message carries the port number of the ONU port.
  • the ONU port may also send a registration confirmation message to the OLT, where the registration confirmation message is used for the OLT to confirm the allocation of the ONU logical identifier of the ONU port, and the registration confirmation message includes the Port number of the ONU port.
  • the ONU port receives the discovery authorization from the OLT, sends a registration request to the OLT, and receives the ONU logical identifier of the ONU port from the OLT, thereby providing an efficient ONU registration mechanism, so that the ONU can support more Bandwidth channel to increase bandwidth.
  • FIG. 6 is a structural diagram of an ONU 600 according to an embodiment of the present invention.
  • the ONU 600 includes an ONU port 610.
  • the ONU 600 can include multiple ONU ports.
  • the ONU port 610 is one of multiple ports on the ONU.
  • the ONU port 610 include:
  • the scanning module 601 is configured to scan a downlink wavelength channel
  • the transceiver module 602 is configured to receive a discovery authorization message from the optical line terminal OLT, where the discovery authorization message includes a channel identifier of a downlink wavelength channel where the discovery authorization message is located;
  • the registration message including a port number of the ONU port, and an ONU logical identifier assigned by the OLT to the ONU port.
  • the transceiver module 602 is further configured to send a registration confirmation message to the OLT, where the registration confirmation message is used to confirm that the ONU port is already registered, and the registration confirmation message carries a port number of the ONU port.
  • the function of the scanning module may be specifically implemented by a processor, and the function of the transceiver module may be specifically implemented by a transceiver.
  • the ONU logical identifier may be an ONU ID.
  • the ONU logical identifier may be an LLID.
  • the ONU port 610 can also include a calibration module 603.
  • the transceiver module 602 can be further configured to: receive a recalibration request message from the OLT, where the recalibration request message includes The port number of the ONU port 610, the channel identifier of the upstream wavelength channel in which the ONU port 610 is currently located, the channel identifier of the target upstream wavelength channel and the channel identifier of the target downstream wavelength channel to be calibrated to the ONU port 610;
  • the calibration module 603 is configured to perform calibration according to the channel identifier of the target upstream wavelength channel and the channel identifier of the target downstream wavelength channel that need to be calibrated.
  • the ONU port 610 further includes an adjustment module 604.
  • the ONU port 610 is in an expected upstream wavelength channel, the upstream wavelength of the ONU port 610 is not aligned with the center wavelength of the receive filter, and the transceiver module 602 is further configured to
  • the OLT receives an uplink wavelength fine adjustment request message, where the uplink wavelength fine adjustment request message includes a port number of the ONU port 610, an adjustment direction of an uplink wavelength fine adjustment, and an adjustment amount of an uplink wavelength adjustment; and the adjustment module 604 is configured to use the The adjustment direction of the uplink wavelength fine adjustment and the adjustment amount of the uplink wavelength adjustment are performed, and the uplink wavelength of the ONU port 610 is adjusted.
  • FIG. 7 is a structural diagram of a PON system according to an embodiment of the present invention.
  • the system includes an OLT 710 and an ONU 720.
  • the ONU 720 includes an ONU port, and the ONU port is one of multiple ports on the ONU.
  • the ONU port 701 is configured to: scan a downlink wavelength channel; receive a discovery authorization message from the OLT 710, where the discovery authorization message includes a channel identifier of a downlink wavelength channel where the discovery authorization message is located; and send a registration request to the OLT 710 a message, the registration request message includes a port number of the ONU port 701; receiving a registration message from the OLT 710, the registration message including a port number of the ONU port 701, and the OLT 710 to the ONU port 701 assigned ONU logical identifier.
  • the ONU port 701 can also be used to send a registration confirmation message to the OLT 710, the registration confirmation message is used to confirm that the ONU port 701 has been registered, and the registration confirmation message carries the port number of the ONU port 701.
  • FIG. 8 is a flowchart of a method for registering an ONU port according to another embodiment of the present invention, where the ONU port registration process includes:
  • the OLT sends a discovery authorization message to the ONU port.
  • the message that the ONU port interacts with the OLT may be a message based on the Multiple Point Control Protocol (MPCP), or may be based on an Operation Administration Maintenance (OAM) message, or may be based on physical layer operation management and maintenance.
  • the (Physical Layer Operation Administration Maintenance, PLOAM) message may also be an Operation Management Control Interface (OMCI) message or a customized message format.
  • the discovery authorization message sent by the OLT to the ONU port may be a Gate MPCP message, and the Gate MPCP message may include the port number of the ONU port in addition to the channel identifier of the downlink wavelength channel.
  • S802. Receive a registration request message from an ONU port, where the registration request message includes a port number of the ONU port.
  • the OLT can receive a registration request message from each ONU port of the ONU.
  • the ONU selects a default ONU port for registration, and the OLT receives a registration request message from the selected default ONU port.
  • the ONU port that sends the registration request may be specified by the OLT.
  • the specified ONU port has been previously registered with the OLT.
  • the OLT may use the port number of the ONU port carried in the Gate MPCP message in step S502. Specifies the ONU port that needs to send a registration request to the OLT.
  • the ONU port can carry the registration information of the ONU port in addition to the port number of the ONU port, for example, the channel identifier of the downlink receiving wavelength channel where the ONU port is currently located, and the rate supported by the ONU port. .
  • S803 Send a recalibration request message to the ONU port, where the recalibration request message includes a port number of the ONU port, a channel identifier of the uplink wavelength channel currently in the ONU port, and the target uplink of the ONU port needs to be calibrated.
  • the channel identifier of the wavelength channel and the channel identifier of the target downlink wavelength channel to be calibrated to the ONU port, and the channel identifier of the target upstream wavelength channel and the channel identifier of the target downstream wavelength channel are used to calibrate the ONU port.
  • S804 Send an uplink wavelength fine adjustment request message to the ONU port, where the uplink wavelength fine adjustment request message includes a port number of the ONU port, an adjustment direction of an uplink wavelength fine adjustment, an adjustment amount of an uplink wavelength adjustment, and a fine adjustment of the uplink wavelength.
  • the adjustment direction and the adjustment amount of the uplink wavelength adjustment are used to adjust an uplink wavelength of the ONU port.
  • the OLT finds that the ONU port is in the expected upstream wavelength channel. When the upstream wavelength of the ONU port is not aligned with the center wavelength of the receiving filter, the OLT sends an uplink wavelength fine adjustment request to the ONU.
  • the wavelength channel recalibration in step S803 is triggered when the ONU port is not in the expected wavelength channel. If the ONU port is already in the expected wavelength channel, the wavelength channel recalibration step may not be performed.
  • the uplink wavelength fine adjustment in step S804 can be triggered only when the uplink wavelength of the ONU port is not aligned with the center wavelength of the receiving filter. If the upstream wavelength of the ONU port is aligned with the center wavelength of the receiving filter, There is no need to perform the steps of fine-tuning the upstream wavelength.
  • S805. Send a registration message to the ONU port, where the registration message includes a port number of the ONU port, and an ONU logical identifier assigned by the OLT to the ONU port.
  • the ONU port may also send a registration confirmation message to the OLT, where the registration confirmation message is used for the OLT to confirm the allocation of the ONU logical identifier of the ONU port, and the registration confirmation message includes the Port number of the ONU port.
  • the ONU logical identifier may be an ONU ID.
  • the ONU logical identifier may be an LLID.
  • the ONU port receives the discovery authorization from the OLT, sends a registration request to the OLT, and receives the ONU logical identifier of the ONU port from the OLT, thereby providing an efficient ONU registration mechanism, so that the ONU can support more Bandwidth channel to increase bandwidth.
  • FIG. 9 is a schematic diagram of a passive optical network device according to an embodiment of the present invention, including:
  • the sending module 901 is configured to send a discovery authorization message to the ONU port, where the discovery authorization message includes a channel identifier of a downlink wavelength channel where the discovery authorization message is located, and the ONU port is one of multiple ports on the ONU;
  • the receiving module 902 is configured to receive a registration request message from the ONU port, where the registration request message includes a port number of the ONU port;
  • the sending module 901 is further configured to: send a registration message to the ONU port, where the registration message includes a port number of the ONU port, and a logical link identifier ONU logical identifier assigned to the ONU port.
  • the receiving module 902 is further configured to: receive a registration confirmation message sent by the ONU port, where the registration confirmation message is used to confirm that the ONU port is already registered, and the registration confirmation message carries a port number of the ONU port.
  • the sending module 901 may be further configured to: send a recalibration request message to the ONU port, where the recalibration request message includes a port number of the ONU port, where the ONU port is currently located
  • the channel identifier of the uplink wavelength channel, the channel identifier of the target upstream wavelength channel and the channel identifier of the target downlink wavelength channel to be calibrated to the ONU port, and the channel identifier of the target upstream wavelength channel and the channel identifier of the target downstream wavelength channel.
  • the sending module 901 may be further configured to: send an uplink wavelength fine adjustment request message to the ONU port, where
  • the uplink wavelength fine adjustment request message includes a port number of the ONU port, an adjustment direction of the uplink wavelength fine adjustment, an adjustment amount of the uplink wavelength adjustment, an adjustment direction of the uplink wavelength fine adjustment, and an adjustment amount of the uplink wavelength adjustment for adjusting the The upstream wavelength of the ONU port.
  • the transmitting module 901 can be a transmitter
  • the receiving module 902 can be a receiver
  • the transmitter and receiver can form a transceiver
  • the ONU port receives the discovery authorization from the OLT, sends a registration request to the OLT, and receives the ONU logical identifier of the ONU port from the OLT, and provides an efficient ONU registration mechanism, and the ONU port is used as the ONU. Management and maintenance, enabling ONUs to support more bandwidth channels and increase bandwidth.
  • aspects of the present invention, or possible implementations of various aspects may be embodied as a system, method, or computer program product.
  • aspects of the invention, or possible implementations of various aspects may be in the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, etc.), or a combination of software and hardware aspects. They are collectively referred to herein as "circuits," “modules,” or “systems.”
  • aspects of the invention, or possible implementations of various aspects may take the form of a computer program product, which is a computer readable program code stored in a computer readable medium.
  • the computer readable medium can be a computer readable signal medium or a computer readable storage medium.
  • the computer readable storage medium includes, but is not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing, such as random access memory (RAM), read only memory (ROM), Erase programmable read-only memory (EPROM or flash memory), optical fiber, portable read-only memory (CD-ROM).
  • the processor in the computer reads the computer readable program code stored in the computer readable medium such that the processor is capable of performing the various functional steps specified in each step of the flowchart, or a combination of steps; A device that functions as specified in each block, or combination of blocks.
  • the computer readable program code can execute entirely on the user's computer, partly on the user's computer, as a separate software package, partly on the user's computer and partly on the remote computer, or entirely on the remote computer or server.
  • the functions noted in the various steps in the flowcharts or in the blocks in the block diagrams may not occur in the order noted. For example, two steps, or two blocks, shown in succession may be executed substantially concurrently or the blocks may be executed in the reverse order.

Abstract

本发明实施例提供一种光网络单元ONU注册的方法、装置及系统,该ONU注册方法包括:ONU端口扫描下行波长通道,所述ONU端口为ONU上多个端口中的一个端口;ONU端口从光线路终端OLT接收发现授权消息,所述发现授权消息包括所述发现授权消息所在下行波长通道的通道标识;ONU端口向OLT发送注册请求消息,所述注册请求消息中包括所述ONU端口的端口号;ONU端口从所述OLT接收注册消息,所述注册消息包括所述ONU端口的端口号,以及所述OLT给所述ONU端口分配的ONU逻辑标识。本发明实施例,通过ONU端口从OLT接收发现授权,向OLT发送注册请求,从OLT接收分配该该ONU端口的ONU逻辑标识,提供了一种高效的ONU注册机制,以ONU端口为粒度进行ONU的管理和维护,使得ONU可以支持更多的带宽通道,提高带宽。

Description

一种光网络单元注册的方法、装置及系统 技术领域
本发明实施例涉及光通信技术,尤其涉及一种光网络单元注册的方法、装置及系统。
背景技术
随着光通信技术的迅速发展,无源光网络(Passive Optical Network,简称为“PON”)系统在光通信技术中的应用越来越广。PON系统可以包括时分复用(Time Division Multiplexing,简称为“TDM”)PON:吉比特无源光网络(Gigabit Passive Optical Network,简称为“GPON”)和10G GPON、以太网无源光网络(Ethernet Passive Optical Network,简称为“EPON”)和10GEPON、时分波分复用(Time Wavelength Division Multiplexing,简称为“TWDM”)PON、点对点(Point to Point,简称为“PtP”),波分复用(Wavelength Division Multiplexing,简称为“WDM”)PON等。
如图1所示,对于每种类型的PON系统,该PON系统都可以包括:位于中心局的光线路终端(Optical Line Terminal,简称为“OLT”)、包括无源光器件的光分配网络(Optical Distribution Network,简称为“ODN”)、以及位于用户端的光网络单元(Optical Network Unit,简称为“ONU”)/光网络终端(Optical Network Terminal,简称为“ONT”),其中,可以用ONU指代ONU和/或ONT。
TWDM PON系统是一种点对多点的通信系统,其中局端的光线路终端(Optical Line Terminal,OLT)与用户侧的光网络单元(Optical Network Unit,ONU)之间采用多个波长通道进行数据收发,每个ONU分别工作在其中的一个波长通道。在下行方向,OLT采用每一个波长通道分别对应的下行波长将下行数据广播给工作在该波长通道的多个ONU;在上行方向,每一个波长通道的ONU可以在OLT分配的时隙中采用该波长通道的上行波长向OLT发送上行数据。
GPON由于其具有较高的带宽效率,且其同步定时器机制沿用传统的SDH,采用GEM封装适配不同速率的业务。因而成为各国运营商目前使用最多接入系统。基于GPON点到多点的网络结构,一个OLT同时和多个ONU 通信,为了区分出不同ONU,需要给每个ONU设置一个唯一的ONU-ID作为ONU的标识。由于多个ONU同时向OLT发生数据,可能会引起信号冲突,影响OLT的正常发送,因此OLT需要通过时间片授权的方式协调ONU的发送,保证某一个时间段仅允许一个ONU发送数据,这样可有效避免冲突。为保证ONU上不同业务的QoS,需要设置多个分配单元,每个分配单元对应具有相同流量特征的业务流,因此OLT时间片授权对象是ONU上的分配单元,使用Alloc-ID标识。
EPON相关技术和标准都是在IEEE802.3的基础上发展而来,兼容普遍存在的ETH技术和设备,可重用现有的大量成熟器件和电路,设计实现风险低,技术和产业链相对成熟成本低。因此受到国内电信运营商的喜爱。基于EPON点到多点的网络结构,一个OLT同时和多个ONU通信,为了区分出不同ONU,需要给每个ONU设置一个唯一的LLID(Logical Link Identifier,逻辑链路标识)作为ONU的标识。ONU在和OLT正常通信前,需要首先进行注册,注册过程主要通过MPCP消息交互来完成。OLT首先下发特殊授权discovery Gate,确保所有正常ONU停止发送,从而产生一个空闲时间段(以下简称安静窗)。,新注册的ONU在安静窗内发送携带自己MAC地址的Registe_REQ MPCP消息,OLT在收到该消息后,通过下发Register消MPCP息将分配的LLID下发给ONU,LLID用于标识该ONU。OLT和ONU间的测距是通过双方各自的本地定时器和MPCP中携带的时戳进行计算的,所以OLT不需单独进行测距授权。OLT在收到ONU的Register_ACK MPCP消息后整个注册过程结束,ONU就可以和OLT之间进行正常通信。
在一般的PON中,ONU只具有一个波长通道(一个波长通道包括一个下行波长和一个上行波长),这样ONU的最大带宽只有10Gbps。当前业界提出希望ONU的带宽大于10G的需求,要求每个ONU具有1个以上的波长通道。如何提供一种高效的ONU注册机制使得单个ONU可以支持更多的波长通道,提高带宽是一个迫切需要解决的技术问题。
发明内容
本发明实施例提供一种无源光网络通信的方法、装置和系统,用于解决业界当ONU的带宽需求比较大时,如何使得ONU上的端口独立完成在OLT 上的注册,提高ONU的带宽支持和波长通道支持的技术问题。
本发明实施例提供一种ONU注册方法,包括:ONU端口扫描下行波长通道,ONU端口为ONU上多个端口中的一个端口;ONU端口从光线路终端OLT接收发现授权消息,所述发现授权消息包括所述发现授权消息所在下行波长通道的通道标识;ONU端口向OLT发送注册请求消息,所述注册请求消息中包括所述ONU端口的端口号;ONU端口从所述OLT接收注册消息,所述注册消息包括所述ONU端口的端口号,以及所述OLT给所述ONU端口分配的ONU逻辑标识。
本发明实施例还提供一种ONU注册方法,包括:发送发现授权消息给ONU端口,所述发现授权消息包括所述发现授权消息所在下行波长通道的通道标识,所述ONU端口为ONU上多个端口中的一个端口;从所述ONU端口接收注册请求消息,所述注册请求消息中包括所述ONU端口的端口号;发送注册消息给所述ONU端口,所述注册消息包括所述ONU端口的端口号,以及分配给所述ONU端口的ONU逻辑标识。
本发明实施例还提供一种ONU,包括ONU端口,所述ONU端口为ONU上多个端口中的一个端口,所述ONU端口包括:扫描模块,用于扫描下行波长通道;收发模块,用于从光线路终端OLT接收发现授权消息,所述发现授权消息包括所述发现授权消息所在下行波长通道的通道标识;向OLT发送注册请求消息,所述注册请求消息中包括所述ONU端口的端口号;从所述OLT接收注册消息,所述注册消息包括所述ONU端口的端口号,以及所述OLT给所述ONU端口分配的ONU逻辑标识。
本发明实施例还提供一种无源光网络设备,包括:发送模块,用于发送发现授权消息给ONU端口,所述发现授权消息包括所述发现授权消息所在下行波长通道的通道标识,所述ONU端口为ONU上多个端口中的一个端口;接收模块,用于从所述ONU端口接收注册请求消息,所述注册请求消息中包括所述ONU端口的端口号;所述发送模块还用于:发送注册消息给所述ONU端口,所述注册消息包括所述ONU端口的端口号,以及分配给所述ONU端口的ONU逻辑标识。
本发明实施例还提供一种PON系统,所述系统包括OLT和ONU,所述ONU包括ONU端口,所述ONU端口为ONU上多个端口中的一个端口,所 述ONU端口用于:扫描下行波长通道;从所述OLT接收发现授权消息,所述发现授权消息包括所述发现授权消息所在下行波长通道的通道标识;向所述OLT发送注册请求消息,所述注册请求消息中包括所述ONU端口的端口号;从所述OLT接收注册消息,所述注册消息包括所述ONU端口的端口号,以及所述OLT给所述ONU端口分配的ONU逻辑标识。
本发明实施例,通过ONU端口从OLT接收发现授权,向OLT发送注册请求,从OLT接收分配该该ONU端口的ONU逻辑标识,提供了一种高效的ONU注册机制,以ONU端口为粒度进行ONU的管理和维护,使得ONU可以支持更多的带宽通道,提高带宽。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术提供的一种PON网络结构示意图;
图2为本发明实施例提供的一种TWDM-PON网络结构示意图;
图3为本发明实施例提供的一种NG-EPON网络结构示意图;
图4为本发明一个实施例提供的ONU端口注册方法的流程图;
图5为本发明另一个实施例提供的ONU端口注册方法的流程图;
图6为本发明实施例提供的一种ONU的结构图;
图7为本发明实施例提供的一种PON系统的结构图;
图8为本发明另一个实施例提供的ONU端口注册方法的流程图;
图9为本发明一个实施例提供的一种无源光网络设备。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图2为TWDM-PON系统的网络架构示意图,如图2所示,TWDM-PON系统100包括一个OLT110,多个ONU120和光分配网络(Optical Distribution Network,ODN)130,其中OLT110通过ODN130以点到多点的方式连接到多个ONU120。在TWDM-PON系统100中还可以包括一个以上的OLT。其中多个ONU120共享ODN130的光传输介质。ODN130可以包括主干光纤131、光功率分路模块132和多个分支光纤133。其中光功率分路模块132可以设置在远端节点(Remote Node,RN),其一方面通过主干光纤131连接到OLT110,另一方面通过多个分支光纤133分别连接至多个ONU120。在TWDM-PON系统100中,OLT110和多个ONU120之间的通信链路可以包括多个波长通道,多个波长通道通过WDM方式共享ODN130的光传输介质。每个ONU120可以工作在TWDM-PON系统100的其中一个波长通道,且每个波长通道可以承载一个或多个ONU120的业务。并且,工作在同一个波长通道的ONU120可以通过TDM方式共享该波长通道。在图2中,以TWDM-PON系统100具有四个波长通道为例进行介绍,应当理解,在实际应用时,TWDM-PON系统100的波长通道的数量还可以根据网络需要而定。
为便于描述,在图2中将TWDM-PON系统100的四个波长通道分别命名为波长通道1、波长通道2、波长通道3和波长通道4,其中每个波长通道分别采用一对上下行波长,比如,波长通道1的上行波长和下行波长可以分别为λu1和λd1,波长通道2的上行波长和下行波长可以分别为λu2和λd2,波长通道3的上行波长和下行波长可以分别为λu3和λd3,波长通道4的上行波长和下行波长可以分别为λu4和λd4。每个波长通道可以分别具有对应的波长通道标识(比如,上述四个波长通道的通道号可以分别为1、2、3、4),即波长通道标识与其标识的波长通道的上下行波长具有匹配关系,OLT110和ONU120可以根据波长通道标识获悉波长通道的上行波长和下行波长。
OLT110可以包括光耦合器111、波分复用器112、第二波分复用器113、多个下行光发射器Tx1~Tx4、多个上行光接收器Rx1~Rx4和处理模块114。其中,多个下行光发射器Tx1~Tx4通过波分复用器112连接到光耦合器111,多个上行光接收器Rx1~Rx4通过第二波分复用器113连接到光耦合器111,耦合器111进一步连接到ODN130的主干光纤131。
多个下行光发射器Tx1~Tx4的发射波长各不相同,其中,每一个下行光 发射器Tx1~Tx4可以分别对应TWDM-PON系统100的其中一个波长通道,比如多个下行光发射器Tx1~Tx4的发射波长可以分别λd1~λd4。下行光发射器Tx1~Tx4可以分别利用其发射波长λd1~λd4将下行数据发射到对应的波长通道,以便被工作在对应波长通道的ONU120所接收。相对应地,多个上行光接收器Rx1~Rx4的接收波长可以各不相同,其中每一个上行光接收器Rx1~Rx4同样分别对应TWDM-PON系统100的其中一个波长通道,比如,多个上行光接收器Rx1~Rx4的接收波长可以分别λu1~λu4。上行光接收器Rx1~Rx4可以分别利用其接收波长λu1~λu4接收工作在对应波长通道的ONU120发送的上行数据。
波分复用器112用于将多个下行光发射器Tx1~Tx4发射的波长分别为λd1~λd4的下行数据进行波分复用处理,并通过光耦合器111发送到ODN130的主干光纤131,以通过ODN130将下行数据提供给ONU120。并且,光耦合器111还可以用于将来自多个ONU120且波长分别为λu1~λu4的上行数据提供给第二波分复用器113,第二波分复用器113可以将波长分别为λu1~λu4的上行数据解复用到上行光接收器Rx1~Rx4进行数据接收。
处理模块114可以为媒介接入控制(Media Access Control,MAC)模块,其一方面可以通过波长协商为多个ONU120指定工作波长通道,并根据某个ONU120的工作波长通道,将待发送给ONU120的下行数据提供给与波长通道相对应的下行光发射器Tx1~Tx4,以便下行光发射器Tx1~Tx4将下行数据发射到对应波长通道,另一方面,处理模块114还可以对各个波长通道进行上行发送的动态带宽分配(Dynamic Bandwidth Allocation,DBA),给通过TDM方式复用到同一个波长通道的ONU120分配上行发送时隙,以授权ONU120在指定的时隙通过其对应的波长通道发送上行数据。
每个ONU120的上行发射波长和下行接收波长是可调的,ONU120可以根据OLT110指定的波长通道将其自身的上行发射波长和下行接收波长分别调整到该波长通道的上行波长和下行波长,从而实现通过该波长通道进行上下行数据的发送和接收。比如,如果OLT110在波长协商过程中指示某一个ONU120工作到波长通道1,ONU120可以将其自身的上行发射波长和下行接收波长分别调整到上行波长λu1和下行波长λd1;如果OLT110指示ONU120工作到波长通道3,ONU120可以将其自身的上行发射波长和下行接收波长分 别调整到第三上行波长λu3和下行波长λd3。
ONU120可以包括光耦合器121、下行光接收器122、上行光发射器123和处理模块124。其中,下行光接收器122和上行光发射器123通过光耦合器121连接到ONU120对应的分支光纤133。光耦合器121可以一方面将上行光发射器123发送的上行数据提供到ODN130的分支光纤133,以通过ODN130发送给OLT110;另一方面,光耦合器121还可以将OLT110通过ODN130发送的下行数据提供给下行光接收器122进行数据接收。
处理模块124可以是MAC模块,其可以与OLT110进行波长协商,并根据OLT110指定的波长通道,调整下行光接收器122的接收波长和上行光发射器123的发射波长(即调整ONU120的下行接收波长和上行发射波长),以使得ONU120工作在OLT110指定的波长通道;另外,处理模块124还可以根据OLT110的动态带宽分配结果,控制上行光发射器123在指定的时隙发送上行数据。
当TWDM-PON系统100运行时,如果上线的ONU120数量较多,一种较为理想情况是分别有部分ONU120工作在波长通道1、部分工作在波长通道2、部分工作在波长通道3、部分工作在波长通道4,并且各个波长通道的ONU120的数量基本相等。
如图3所示,在一般的NG-EPON架构中,PON系统共有4个波长通道,在OLT侧,每个波长通道都对应一个独立的带宽调度模块,如图3A所示的OLT中的调度模块1、2、3和4,每个ONU对应一个波长通道。其中,ONU1~3工作在λ1波长通道,ONU4~5工作在λ2波长通道,ONU6和ONU8工作在λ3波长通道,ONU7和ONU9工作在λ4波长通道。图3相当于ONU工作的时隙图,每一个梯形块代表一个时隙,在λ1波长通道下,OLT给ONU1~3分配各三个不同长度的时隙;在λ2波长通道下,OLT给ONU4分配了更多的上行时隙;同理地,在λ3波长通道下,OLT给ONU6分配了更多的上行时隙;在λ4波长通道下,OLT给ONU9分配了更多的上行时隙。在这种架构下,以ONU为单位进行波长的注册,ONU工作在对应的波长通道,OLT给ONU分配时隙,不能进行精细的管理和维护。
图4为本发明一个实施例提供的ONU端口注册方法的流程图,该ONU端口注册流程包括:
S401、ONU端口扫描下行波长通道,所述ONU端口为ONU上多个端口中的一个端口。
在ONU上电初始化时,ONU的各个端口扫描下行波长信号,实现下行波长通道的初始化和校准。ONU端口是PON侧端口,具体是ONU上通过ODN与OLT PON侧端口连接并进行通信的端口。
S402、ONU端口从OLT接收发现授权消息,所述发现授权消息包括所述发现授权所在下行波长通道的通道标识。
在本发明实施例中,ONU端口和OLT交互的消息可以是基于多点控制协议(Multiple Point Control Protocol,MPCP)的消息,还可以是基于操作管理维护(Operation Administration Maintenance,OAM)消息,还可以是基于物理层操作管理维护(Physical Layer Operation Administration Maintenance,PLOAM)消息,还可以是操作管理控制接口(Operation Management Control Interface,OMCI)消息,或者通过自定义的消息格式。在这里,ONU端口从OLT接收的发现授权消息具体可以是Gate(选通)MPCP消息,该Gate MPCP消息除了包括下行波长通道的通道标识之外,还可以包括该ONU端口的端口号。
S403、ONU端口向OLT发送注册请求,所述注册请求中包括所述ONU端口的端口号。
在一种情况下,ONU的每个ONU端口都可以向OLT发送注册请求,在另一种情况下,ONU选择默认的ONU端口进行注册,只有被选择的默认的ONU端口会向OLT发送注册请求。在另一种情况下,发送注册请求的ONU端口可以是OLT指定的,该指定的ONU端口在以前已经在OLT注册过,OLT可以通过步骤S402中Gate MPCP消息中携带的ONU端口的端口号来指定需要向OLT发送注册请求的ONU端口。
ONU中可以存储有下行波长通道的通道标识与上行波长通道的通道标识的对应关系,下行波长通道与上行波长通道组成波长通道组,ONU端口向OLT发送注册请求消息可以包括:ONU端口通过所述上行波长通道向OLT发送注册请求消息。
S404、ONU端口从所述OLT接收注册消息,所述注册消息包括所述ONU端口的端口号,以及所述OLT给所述ONU端口分配的ONU逻辑标识。
ONU端口在从OLT接收到分配给ONU端口的ONU逻辑标识后,还可以给OLT发送注册响应消息,该注册响应消息用于让OLT确认ONU端口ONU逻辑标识的分配情况,该注册响应消息包括该ONU端口的端口号。
当ONU端口所在的ONU为GPON中的ONU时,ONU逻辑标识具体可以是ONU ID。当ONU端口所在的ONU为EPON中的ONU时,ONU逻辑标识具体可以是LLID。
本发明实施例,通过ONU端口从OLT接收发现授权,向OLT发送注册请求,从OLT接收分配该该ONU端口的ONU逻辑标识,提供了一种高效的ONU注册机制,使得ONU可以支持更多的带宽通道,提高带宽。
图5为本发明另一个实施例提供的ONU端口注册方法的流程图,该ONU端口注册流程包括:
S501、ONU端口扫描下行波长通道,所述ONU端口为ONU上多个端口中的一个端口。
在ONU上电初始化时,ONU的各个端口扫描下行波长信号,实现下行波长通道的初始化和校准。ONU的端口可以是PON侧与OLT PON口通信的波长通道终端。
S502、ONU端口从OLT接收发现授权消息,所述发现授权消息包括所述发现授权所在下行波长通道的通道标识。
在本发明实施例中,ONU端口和OLT交互的消息可以是基于多点控制协议(Multiple Point Control Protocol,MPCP)的消息,还可以是基于操作管理维护(Operation Administration Maintenance,OAM)消息,还可以是基于物理层操作管理维护(Physical Layer Operation Administration Maintenance,PLOAM)消息,还可以是操作管理控制接口(Operation Management Control Interface,OMCI)消息,或者通过自定义的消息格式。在这里,ONU端口从OLT接收的发现授权消息具体可以是Gate MPCP消息,该Gate MPCP消息除了包括下行波长通道的通道标识之外,还可以包括该ONU端口的端口号。这里一MPCP消息为例来描述ONU端口和OLT交互的信息格式。MPCP的消息格式可以如下:
字段名称 所占字节
目的地址 6
源地址 6
长度/类型 6
操作码 6
时间标签 4
数据/保留字段 40
帧序列校验 4
表1
表1为现有MPCP协议的帧格式,其中,目的地址(Destination Address,DA),占6个字节,用于标记该报文发送的IP地址;
源地址(Source Address,SA),占6个字节,用于标记该报文由哪个IP地址发出;
报文长度/类型(Length/Type),占2个字节,用于标记该报文的长度和类型;
操作码(Opcode),占2个字节,用于标记该MPCP帧的编号;
时间标签(TimeStamps),占4个字节,用于标记该报文发送的时间;
数据信息/保留字段(Data/Reserved/Pad),占40个字节,用于承载数据信息或作为保留字段,用于扩展使用;
帧序列校验(FCS),占4个字节,校验位。
其中,现有标准记录MPCP帧有5种类型,包括GATE帧、REPORT帧、REGISTER_REQ帧、REGISTER帧和REGISTER_ACK帧。所述5种类型的帧都包含有上述字段,比如目的地址、源地址、长度/类型、操作码、时间标签、数据/保留字段、帧序列校验,不同的帧字段的内容不同。其中,这5种帧的Opcode分别是0002,0003,0004,0005,0006。
Gate MPCP消息的一种可能格式如下:
Figure PCTCN2015090298-appb-000001
Figure PCTCN2015090298-appb-000002
表2
S503、ONU端口向OLT发送注册请求消息,所述注册请求消息中包括所述ONU端口的端口号。
在一种情况下,ONU的每个ONU端口都可以向OLT发送注册请求消息,在另一种情况下,ONU选择默认的ONU端口进行注册,只有被选择的默认的ONU端口会向OLT发送注册请求消息。在另一种情况下,发送注册请求的ONU端口可以是OLT指定的,该指定的ONU端口在以前已经在OLT注册过,OLT可以通过步骤S502中Gate MPCP消息中携带的ONU端口的端口号来指定需要向OLT发送注册请求的ONU端口。
为了便于OLT识别,ONU端口发注册请求时除了携带ONU端口的端口 号,还可以携带该ONU端口相关的属性,例如ONU端口当前所在的下行接收波长通道的通道标识,该ONU端口所支持的速率。下表是ONU端口注册请求(Register_req MPCP)的一种可能格式:
Figure PCTCN2015090298-appb-000003
Figure PCTCN2015090298-appb-000004
表3
S504、ONU端口从OLT接收重校准请求消息,所述重校准请求消息中包括所述ONU端口的端口号,所述ONU端口当前所在上行波长通道的通道标识,所述ONU端口需要校准到的目标上行波长通道的通道标识,和所述ONU端口需要校准到的目标下行波长通道的通道标识。
重校准请求消息可以是在OLT发现ONU端口不在预期的上行波长通道内时,由OLT发送给ONU端口,OLT可以只给不在预期的上行波长通道内的ONU端口发送重校准请求消息。
下表是ONU端口发送的重校准请求消息的一种可能格式:
Figure PCTCN2015090298-appb-000005
表4
S505、ONU端口根据所述需要校准到的目标上行波长通道的通道标识和目标下行波长通道的通道标识进行校准。
重校准后的ONU端口工作在预期的目标上行波长通道和目标下行波长通道。
S506、ONU端口从OLT接收上行波长微调请求消息,所述上行波长微调请求消息包括ONU端口的端口号,上行波长微调的调整方向,上行波长调整的调整量。
OLT发现ONU端口在预期的上行波长通道内,ONU端口的上行波长与接收滤波器的中心波长没有对准的时候,OLT会给ONU发送上行波长微调请求。
下表是ONU端口发送的上行波长微调请求消息(MPCP消息)的一种可能格式:
Figure PCTCN2015090298-appb-000006
表5
S507、ONU端口根据上行波长微调的调整方向和上行波长微调的调整量,调整ONU端口的上行波长。
经过上行波长微调后的ONU端口的上行波长与接收滤波器的中心波长对准。
需要说明的是,步骤S504,S505的波长通道重校准是ONU端口不在预期的波长通道的时候触发,如果ONU端口已经在预期的波长通道,则可以不用执行波长通道重校准的步骤。同理,步骤S506,S507的上行波长微调可以只在ONU端口的上行波长与接收滤波器的中心波长没有对准的时候触发,如果ONU端口的上行波长与接收滤波器的中心波长已经对准,则可以不用执行上行波长微调的步骤。
S508、ONU端口从所述OLT接收注册消息,所述注册消息包括所述ONU端口的端口号,以及所述OLT给所述ONU端口分配的ONU逻辑标识。
当ONU端口所在的ONU为GPON中的ONU时,ONU逻辑标识具体可以是ONU ID。当ONU端口所在的ONU为EPON中的ONU时,ONU逻辑标识具体可以是LLID。
下表是ONU端口从OLT接收的注册消息(Register MPCP)的一种可能格式:
Figure PCTCN2015090298-appb-000007
Figure PCTCN2015090298-appb-000008
表6
S509、ONU端口发送注册确认消息给所述OLT,所述注册确认消息用于确认所述ONU端口已经注册,所述注册确认消息携带所述ONU端口的端口号。
ONU端口在从OLT接收到分配给ONU端口的ONU逻辑标识后,还可以给OLT发送注册确认消息,该注册确认消息用于让OLT确认ONU端口ONU逻辑标识的分配情况,该注册确认消息包括该ONU端口的端口号。
下表是ONU端口发送给OLT的注册确认消息(Register_ack MPCP)的一种可能格式:
Figure PCTCN2015090298-appb-000009
Figure PCTCN2015090298-appb-000010
表7
本发明实施例,通过ONU端口从OLT接收发现授权,向OLT发送注册请求,从OLT接收分配该该ONU端口的ONU逻辑标识,提供了一种高效的ONU注册机制,使得ONU可以支持更多的带宽通道,提高带宽。
图6为本发明一个实施例提供的ONU 600的结构图,该ONU 600包括ONU端口610,ONU 600可以包括多个ONU端口,ONU端口610为ONU上多个端口中的一个端口,ONU端口610包括:
扫描模块601,用于扫描下行波长通道;
收发模块602,用于从光线路终端OLT接收发现授权消息,所述发现授权消息包括所述发现授权消息所在下行波长通道的通道标识;
向OLT发送注册请求消息,所述注册请求消息中包括所述ONU端口的端口号;
从所述OLT接收注册消息,所述注册消息包括所述ONU端口的端口号,以及所述OLT给所述ONU端口分配的ONU逻辑标识。
收发模块602还可以用于发送注册确认消息给所述OLT,所述注册确认消息用于确认所述ONU端口已经注册,所述注册确认消息携带所述ONU端口的端口号。
在这里,扫描模块的功能可以具体由处理器实现,收发模块的功能可以具体由收发器实现。
当ONU端口所在的ONU为GPON中的ONU时,ONU逻辑标识具体可以是ONU ID。当ONU端口所在的ONU为EPON中的ONU时,ONU逻辑标识具体可以是LLID。
ONU端口610还可以包括校准模块603,在ONU端口610不在预期的波长通道中时,所述收发模块602还可以用于:从所述OLT接收重校准请求消息,所述重校准请求消息包括所述ONU端口610的端口号,所述ONU端口610当前所在的上行波长通道的通道标识,所述ONU端口610需要校准到的目标上行波长通道的通道标识和目标下行波长通道的通道标识;所述校准模块603用于根据所述需要校准到的目标上行波长通道的通道标识和目标下行波长通道的通道标识进行校准。
ONU端口610还包括调整模块604,所述ONU端口610在预期的上行波长通道内,所述ONU端口610的上行波长与接收滤波器的中心波长没有对准,所述收发模块602还用于从所述OLT接收上行波长微调请求消息,所述上行波长微调请求消息包括所述ONU端口610的端口号,上行波长微调的调整方向,上行波长调整的调整量;所述调整模块604用于根据所述上行波长微调的调整方向和所述上行波长调整的调整量,调整所述ONU端口610的上行波长。
图7为本发明一个实施例提供的PON系统的结构图,所述系统包括OLT710和ONU 720,其特征在于,所述ONU 720包括ONU端口,所述ONU端口为ONU上多个端口中的一个端口,所述ONU端口701用于:扫描下行波长通道;从所述OLT 710接收发现授权消息,所述发现授权消息包括所述发现授权消息所在下行波长通道的通道标识;向OLT 710发送注册请求消息,所述注册请求消息中包括所述ONU端口701的端口号;从所述OLT 710接收注册消息,所述注册消息包括所述ONU端口701的端口号,以及所述OLT710给所述ONU端口701分配的ONU逻辑标识。
ONU端口701还可以用于发送注册确认消息给OLT 710,所述注册确认消息用于确认所述ONU端口701已经注册,所述注册确认消息携带所述ONU端口701的端口号。
图8为本发明另一个实施例提供的ONU端口注册方法的流程图,该ONU端口注册流程包括:
S801、发送发现授权消息给ONU端口,所述发现授权消息包括所述发现授权消息所在下行波长通道的通道标识,所述ONU端口为ONU上多个端口中的一个端口。
在本发明实施例中,OLT发送发现授权消息给ONU端口。ONU端口和OLT交互的消息可以是基于多点控制协议(Multiple Point Control Protocol,MPCP)的消息,还可以是基于操作管理维护(Operation Administration Maintenance,OAM)消息,还可以是基于物理层操作管理维护(Physical Layer Operation Administration Maintenance,PLOAM)消息,还可以是操作管理控制接口(Operation Management Control Interface,OMCI)消息,或者通过自定义的消息格式。在这里,OLT发送给ONU端口的发现授权消息具体可以是Gate MPCP消息,该Gate MPCP消息除了包括下行波长通道的通道标识之外,还可以包括该ONU端口的端口号。
S802、从ONU端口接收注册请求消息,所述注册请求消息中包括所述ONU端口的端口号。
在一种情况下,OLT可以从ONU的每个ONU端口接收注册请求消息,在另一种情况下,ONU选择默认的ONU端口进行注册,OLT从被选择的默认的ONU端口接收注册请求消息。在另一种情况下,发送注册请求的ONU端口可以是OLT指定的,该指定的ONU端口在以前已经在OLT注册过,OLT可以通过步骤S502中Gate MPCP消息中携带的ONU端口的端口号来指定需要向OLT发送注册请求的ONU端口。
为了便于OLT识别,ONU端口发注册请求时除了携带ONU端口的端口号,还可以携带该ONU端口相关的属性,例如ONU端口当前所在的下行接收波长通道的通道标识,该ONU端口所支持的速率。
S803、发送重校准请求消息给ONU端口,所述重校准请求消息中包括所述ONU端口的端口号,所述ONU端口当前所在上行波长通道的通道标识,所述ONU端口需要校准到的目标上行波长通道的通道标识,和所述ONU端口需要校准到的目标下行波长通道的通道标识,所述目标上行波长通道的通道标识和目标下行波长通道的通道标识用于校准所述ONU端口。
S804、发送上行波长微调请求消息给所述ONU端口,所述上行波长微调请求消息包括所述ONU端口的端口号,上行波长微调的调整方向,上行波长调整的调整量,所述上行波长微调的调整方向和所述上行波长调整的调整量用于调整所述ONU端口的上行波长。
OLT发现ONU端口在预期的上行波长通道内,ONU端口的上行波长与接收滤波器的中心波长没有对准的时候,OLT会给ONU发送上行波长微调请求。
需要说明的是,步骤S803的波长通道重校准是ONU端口不在预期的波长通道的时候触发,如果ONU端口已经在预期的波长通道,则可以不用执行波长通道重校准的步骤。同理,步骤S804的上行波长微调可以只在ONU端口的上行波长与接收滤波器的中心波长没有对准的时候触发,如果ONU端口的上行波长与接收滤波器的中心波长已经对准,则可以不用执行上行波长微调的步骤。
S805、发送注册消息给所述ONU端口,所述注册消息包括所述ONU端口的端口号,以及所述OLT给所述ONU端口分配的ONU逻辑标识。
S806、从ONU端口接收注册确认消息,所述注册确认消息用于确认所述ONU端口已经注册,所述注册确认消息携带所述ONU端口的端口号。
ONU端口在从OLT接收到分配给ONU端口的ONU逻辑标识后,还可以给OLT发送注册确认消息,该注册确认消息用于让OLT确认ONU端口ONU逻辑标识的分配情况,该注册确认消息包括该ONU端口的端口号。
当ONU端口所在的ONU为GPON中的ONU时,ONU逻辑标识具体可以是ONU ID。当ONU端口所在的ONU为EPON中的ONU时,ONU逻辑标识具体可以是LLID。
本发明实施例,通过ONU端口从OLT接收发现授权,向OLT发送注册请求,从OLT接收分配该该ONU端口的ONU逻辑标识,提供了一种高效的ONU注册机制,使得ONU可以支持更多的带宽通道,提高带宽。
图9为本发明一个实施例提供的一种无源光网络设备,包括:
发送模块901,用于发送发现授权消息给ONU端口,所述发现授权消息包括所述发现授权消息所在下行波长通道的通道标识,所述ONU端口为ONU上多个端口中的一个端口;
接收模块902,用于从所述ONU端口接收注册请求消息,所述注册请求消息中包括所述ONU端口的端口号;
所述发送模块901还用于:发送注册消息给所述ONU端口,所述注册消息包括所述ONU端口的端口号,以及分配给所述ONU端口的逻辑链路标识ONU逻辑标识。
所述接收模块902还可以用于:接收所述ONU端口发送的注册确认消息,所述注册确认消息用于确认所述ONU端口已经注册,所述注册确认消息携带所述ONU端口的端口号。
如果ONU端口不在预期的波长通道中,发送模块901还可以用于:发送重校准请求消息给所述ONU端口,所述重校准请求消息包括所述ONU端口的端口号,所述ONU端口当前所在的上行波长通道的通道标识,所述ONU端口需要校准到的目标上行波长通道的通道标识和目标下行波长通道的通道标识,所述目标上行波长通道的通道标识和目标下行波长通道的通道标识用于校准所述ONU端口。
如果ONU端口在预期的上行波长通道内,所述ONU端口的上行波长与接收滤波器的中心波长没有对准,发送模块901还可以用于:发送上行波长微调请求消息给所述ONU端口,所述上行波长微调请求消息包括所述ONU端口的端口号,上行波长微调的调整方向,上行波长调整的调整量,所述上行波长微调的调整方向和所述上行波长调整的调整量用于调整所述ONU端口的上行波长。
在这里,发送模块901可以是一个发送器,接收模块902可以是一个接收器,发送器和接收器可以组成一个收发器。
本发明实施例,通过ONU端口从OLT接收发现授权,向OLT发送注册请求,从OLT接收分配该该ONU端口的ONU逻辑标识,提供了一种高效的ONU注册机制,以ONU端口为粒度进行ONU的管理和维护,使得ONU可以支持更多的带宽通道,提高带宽。
本领域普通技术人员将会理解,本发明的各个方面、或各个方面的可能实现方式可以被具体实施为系统、方法或者计算机程序产品。因此,本发明的各方面、或各个方面的可能实现方式可以采用完全硬件实施例、完全软件实施例(包括固件、驻留软件等等),或者组合软件和硬件方面的实施例的形 式,在这里都统称为“电路”、“模块”或者“系统”。此外,本发明的各方面、或各个方面的可能实现方式可以采用计算机程序产品的形式,计算机程序产品是指存储在计算机可读介质中的计算机可读程序代码。
计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质包含但不限于电子、磁性、光学、电磁、红外或半导体系统、设备或者装置,或者前述的任意适当组合,如随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或者快闪存储器)、光纤、便携式只读存储器(CD-ROM)。
计算机中的处理器读取存储在计算机可读介质中的计算机可读程序代码,使得处理器能够执行在流程图中每个步骤、或各步骤的组合中规定的功能动作;生成实施在框图的每一块、或各块的组合中规定的功能动作的装置。
计算机可读程序代码可以完全在用户的计算机上执行、部分在用户的计算机上执行、作为单独的软件包、部分在用户的计算机上并且部分在远程计算机上,或者完全在远程计算机或者服务器上执行。也应该注意,在某些替代实施方案中,在流程图中各步骤、或框图中各块所注明的功能可能不按图中注明的顺序发生。例如,依赖于所涉及的功能,接连示出的两个步骤、或两个块实际上可能被大致同时执行,或者这些块有时候可能被以相反顺序执行。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (26)

  1. 一种光网络单元ONU注册方法,其特征在于,所述方法包括:
    ONU端口扫描下行波长通道,所述ONU端口为ONU上多个端口中的一个端口;
    所述ONU端口从光线路终端OLT接收发现授权消息,所述发现授权消息包括所述发现授权消息所在下行波长通道的通道标识;
    所述ONU端口向OLT发送注册请求消息,所述注册请求消息中包括所述ONU端口的端口号;
    所述ONU端口从所述OLT接收注册消息,所述注册消息包括所述ONU端口的端口号,以及所述OLT给所述ONU端口分配的ONU逻辑标识。
  2. 如权利要求1所述的方法,其特征在于,还包括:
    所述ONU端口发送注册确认消息给所述OLT,所述注册确认消息用于确认所述ONU端口已经注册,所述注册确认消息携带所述ONU端口的端口号。
  3. 如权利要求1或2所述的方法,其特征在于,所述ONU端口向所述OLT发送的注册请求消息还包括所述ONU端口所在的下行接收波长通道的通道标识,以及所述ONU端口支持的线路速率。
  4. 如权利要求1或2所述的方法,其特征在于,所述ONU端口不在预期的波长通道中,所述方法还包括:
    所述ONU端口从所述OLT接收重校准请求消息,所述重校准请求消息包括所述ONU端口的端口号,所述ONU端口当前所在的上行波长通道的通道标识,所述ONU端口需要校准到的目标上行波长通道的通道标识和目标下行波长通道的通道标识;
    所述ONU端口根据所述需要校准到的目标上行波长通道的通道标识和目标下行波长通道的通道标识进行校准。
  5. 如权利要求1或2所述的方法,其特征在于,所述ONU端口在预期的上行波长通道内,所述ONU端口的上行波长与接收滤波器的中心波长没有对准,所述方法还包括:
    所述ONU端口从所述OLT接收上行波长微调请求消息,所述上行波长微调请求消息包括所述ONU端口的端口号,上行波长微调的调整方向,上行 波长调整的调整量;
    所述ONU端口根据所述上行波长微调的调整方向和所述上行波长调整的调整量,调整所述ONU端口的上行波长。
  6. 如权利要求1-5中任一权利要求所述的方法,其特征在于,所述OLT给所述ONU端口分配的ONU逻辑标识与所述ONU上其他端口的ONU逻辑标识不同。
  7. 如权利要求1或2所述的方法,其特征在于:
    所述发现授权消息还包括所述ONU端口的端口号,所述发现授权消息中所包括的所述端口号用于指示所述ONU端口进行注册;
    所述ONU端口向OLT发送注册请求消息之前还包括,所述ONU端口确认所述ONU端口的端口号包括在所述发现授权消息里。
  8. 如权利要求1-7中任一权利要求所述的方法,其特征在于:所述ONU端口所在的ONU为吉比特无源光网络GPON中的ONU,所述ONU逻辑标识具体为ONU标识ID。
  9. 如权利要求1-7中任一权利要求所述的方法,其特征在于,所述ONU端口所在的ONU为以太网无源光网络EPON中的ONU,所述ONU逻辑标识具体为逻辑链路标识LLID。
  10. 如权利要求1-7中任一权利要求所述的方法,其特征在于,所述ONU中存储有所述下行波长通道的通道标识与上行波长通道的通道标识的对应关系,所述下行波长通道与所述上行波长通道组成波长通道组,所述ONU端口向OLT发送注册请求消息包括:所述ONU端口通过所述上行波长通道向所述OLT发送注册请求消息。
  11. 一种光网络单元ONU注册方法,其特征在于,包括:
    发送发现授权消息给ONU端口,所述发现授权消息包括所述发现授权消息所在下行波长通道的通道标识,所述ONU端口为ONU上多个端口中的一个端口;
    从所述ONU端口接收注册请求消息,所述注册请求消息中包括所述ONU端口的端口号;
    发送注册消息给所述ONU端口,所述注册消息包括所述ONU端口的端口号,以及分配给所述ONU端口的ONU逻辑标识。
  12. 如权利要求11所述的方法,其特征在于,还包括:
    接收所述ONU端口发送的注册确认消息,所述注册确认消息用于确认所述ONU端口已经注册,所述注册确认消息携带所述ONU端口的端口号。
  13. 如权利要求11或12所述的方法,其特征在于,从所述ONU端口接收的注册请求消息还包括所述ONU端口所在的下行接收波长通道的通道标识,以及所述ONU端口支持的线路速率。
  14. 如权利要求11或12所述的方法,其特征在于,所述ONU端口不在预期的波长通道中,所述方法还包括:
    发送重校准请求消息给所述ONU端口,所述重校准请求消息包括所述ONU端口的端口号,所述ONU端口当前所在的上行波长通道的通道标识,所述ONU端口需要校准到的目标上行波长通道的通道标识和目标下行波长通道的通道标识,所述目标上行波长通道的通道标识和目标下行波长通道的通道标识用于校准所述ONU端口。
  15. 如权利要求11或12所述的方法,其特征在于,所述ONU端口在预期的上行波长通道内,所述ONU端口的上行波长与接收滤波器的中心波长没有对准,所述方法还包括:
    发送上行波长微调请求消息给所述ONU端口,所述上行波长微调请求消息包括所述ONU端口的端口号,上行波长微调的调整方向,上行波长调整的调整量,所述上行波长微调的调整方向和所述上行波长调整的调整量用于调整所述ONU端口的上行波长。
  16. 如权利要求11-15中任一权利要求所述的方法,其特征在于,所述给所述ONU端口分配的ONU逻辑标识与所述ONU上其他端口的ONU逻辑标识不同。
  17. 如权利要求11-16中任一权利要求所述的方法,其特征在于:所述ONU端口所在的ONU为吉比特无源光网络GPON中的ONU,所述ONU逻辑标识具体为ONU标识ID。
  18. 如权利要求11-16中任一权利要求所述的方法,其特征在于,所述ONU端口所在的ONU为以太网无源光网络EPON中的ONU,所述ONU逻辑标识具体为逻辑链路标识LLID。
  19. 一种光网络单元ONU,其特征在于,包括ONU端口,所述ONU 端口为ONU上多个端口中的一个端口,所述ONU端口包括:
    扫描模块,用于扫描下行波长通道;
    收发模块,用于从光线路终端OLT接收发现授权消息,所述发现授权消息包括所述发现授权消息所在下行波长通道的通道标识;向OLT发送注册请求消息,所述注册请求消息中包括所述ONU端口的端口号;从所述OLT接收注册消息,所述注册消息包括所述ONU端口的端口号,以及所述OLT给所述ONU端口分配的ONU逻辑标识。
  20. 如权利要求19所述的ONU,其特征在于,所述收发模块还用于:
    发送注册确认消息给所述OLT,所述注册确认消息用于确认所述ONU端口已经注册,所述注册确认消息携带所述ONU端口的端口号。
  21. 如权利要求19或20所述的ONU,其特征在于,所述ONU端口还包括校准模块,所述ONU端口不在预期的波长通道中,所述收发模块还用于:
    从所述OLT接收重校准请求消息,所述重校准请求消息包括所述ONU端口的端口号,所述ONU端口当前所在的上行波长通道的通道标识,所述ONU端口需要校准到的目标上行波长通道的通道标识和目标下行波长通道的通道标识;
    所述校准模块用于根据所述需要校准到的目标上行波长通道的通道标识和目标下行波长通道的通道标识进行校准。
  22. 如权利要求19或20所述的ONU,其特征在于,所述ONU端口还包括调整模块,所述ONU端口在预期的上行波长通道内,所述ONU端口的上行波长与接收滤波器的中心波长没有对准,所述收发模块还用于:
    从所述OLT接收上行波长微调请求消息,所述上行波长微调请求消息包括所述ONU端口的端口号,上行波长微调的调整方向,上行波长调整的调整量;
    所述调整模块用于根据所述上行波长微调的调整方向和所述上行波长调整的调整量,调整所述ONU端口的上行波长。
  23. 一种无源光网络设备,其特征在于,包括:
    发送模块,用于发送发现授权消息给ONU端口,所述发现授权消息包括所述发现授权消息所在下行波长通道的通道标识,所述ONU端口为ONU上多个端口中的一个端口;
    接收模块,用于从所述ONU端口接收注册请求消息,所述注册请求消息中包括所述ONU端口的端口号;
    所述发送模块还用于:发送注册消息给所述ONU端口,所述注册消息包括所述ONU端口的端口号,以及分配给所述ONU端口的ONU逻辑标识。
  24. 如权利要求23所述的无源光网络设备,其特征在于,所述接收模块还用于:
    接收所述ONU端口发送的注册确认消息,所述注册确认消息用于确认所述ONU端口已经注册,所述注册确认消息携带所述ONU端口的端口号。
  25. 一种无源光网络PON系统,所述系统包括光线路终端OLT和光网络单元ONU,其特征在于,所述ONU包括ONU端口,所述ONU端口为ONU上多个端口中的一个端口,所述ONU端口用于:
    扫描下行波长通道;
    从所述OLT接收发现授权消息,所述发现授权消息包括所述发现授权消息所在下行波长通道的通道标识;
    向所述OLT发送注册请求消息,所述注册请求消息中包括所述ONU端口的端口号;
    从所述OLT接收注册消息,所述注册消息包括所述ONU端口的端口号,以及所述OLT给所述ONU端口分配的ONU逻辑标识。
  26. 如权利要求25所述的PON系统,其特征在于,所述ONU端口还用于:
    发送注册确认消息给所述OLT,所述注册确认消息用于确认所述ONU端口已经注册,所述注册确认消息携带所述ONU端口的端口号。
PCT/CN2015/090298 2015-09-22 2015-09-22 一种光网络单元注册的方法、装置及系统 WO2017049460A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580083087.6A CN108028972A (zh) 2015-09-22 2015-09-22 一种光网络单元注册的方法、装置及系统
EP15904347.0A EP3349479A4 (en) 2015-09-22 2015-09-22 Optical network unit registration method, device and system
PCT/CN2015/090298 WO2017049460A1 (zh) 2015-09-22 2015-09-22 一种光网络单元注册的方法、装置及系统
US15/927,964 US20180212705A1 (en) 2015-09-22 2018-03-21 Optical network unit registration method, apparatus, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/090298 WO2017049460A1 (zh) 2015-09-22 2015-09-22 一种光网络单元注册的方法、装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/927,964 Continuation US20180212705A1 (en) 2015-09-22 2018-03-21 Optical network unit registration method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2017049460A1 true WO2017049460A1 (zh) 2017-03-30

Family

ID=58385542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/090298 WO2017049460A1 (zh) 2015-09-22 2015-09-22 一种光网络单元注册的方法、装置及系统

Country Status (4)

Country Link
US (1) US20180212705A1 (zh)
EP (1) EP3349479A4 (zh)
CN (1) CN108028972A (zh)
WO (1) WO2017049460A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020134069A1 (zh) * 2018-12-24 2020-07-02 深圳市中兴微电子技术有限公司 一种pon中实现通道自适应的方法及相关设备

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107147513B (zh) * 2016-03-01 2019-03-15 中兴通讯股份有限公司 一种多波长无源光网络的管理方法及光模块
CA3044720C (en) 2016-11-23 2024-01-02 Huawei Technologies Co., Ltd. Passive optical network system, optical line terminal, and optical network unit
US11039229B2 (en) * 2017-08-29 2021-06-15 Cable Television Laboratories, Inc. Systems and methods for coherent optics ranging and sensing
ES2936458T3 (es) * 2018-08-31 2023-03-17 Huawei Tech Co Ltd Método de transmisión de información, terminación de línea óptica, unidad de red óptica y sistema de comunicación
CN112738659B (zh) * 2019-10-28 2022-06-14 华为技术有限公司 一种基于无源光网络的通信方法、相关设备以及系统
CN111010628B (zh) 2019-11-30 2021-06-29 华为技术有限公司 上行资源授权方法和相关设备及计算机可读存储介质
US11804902B2 (en) * 2022-01-27 2023-10-31 Adtran, Inc. Optical line terminal configured to operate with optical network terminals that require different sets of OMCI parameters
CN115348490B (zh) * 2022-10-18 2023-03-24 武汉长光科技有限公司 一种动态调度业务波长通道方法及相关装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1351449A1 (en) * 2002-04-03 2003-10-08 Samsung Electronics Co., Ltd. Method and system for supporting point-to-point emulation in an Ethernet passive optical network by means of an extended Ethernet frame
CN101729372A (zh) * 2008-10-29 2010-06-09 华为技术有限公司 光通信系统中报文传输的方法、系统和光线路终端
CN101854563A (zh) * 2009-03-31 2010-10-06 普然通讯技术(上海)有限公司 Epon网络中发现进程的处理方法
CN102882801A (zh) * 2012-09-28 2013-01-16 武汉长光科技有限公司 基于twdm-pon的波长自动调谐方法及系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102045610B (zh) * 2011-01-13 2015-09-16 中兴通讯股份有限公司 光信号传输方法、装置及无源光网络
CN103220588B (zh) * 2012-01-18 2016-04-13 中兴通讯股份有限公司 一种光网络单元的注册方法及系统
EP2840742B1 (en) * 2012-04-20 2019-06-26 Mitsubishi Electric Corporation Communication system, master station apparatus, slave station apparatus, control apparatus, and communication control method
RU2581625C1 (ru) * 2012-06-13 2016-04-20 Хуавэй Текнолоджиз Ко., Лтд. Способ и устройство конфигурирования длины волны для пассивной оптической сети с множеством длин волн и система пассивной оптической сети с множеством длин волн
CN103841473B (zh) * 2012-11-23 2019-03-15 中兴通讯股份有限公司 一种光网络单元的注册激活方法、系统及设备
KR20140100163A (ko) * 2013-02-05 2014-08-14 한국전자통신연구원 수동형 광 가입자 망에서 광 가입자 단말의 파장 선택 방법
CN103248431B (zh) * 2013-04-26 2016-04-13 上海交通大学 一种onu可迁移的twdm-pon系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1351449A1 (en) * 2002-04-03 2003-10-08 Samsung Electronics Co., Ltd. Method and system for supporting point-to-point emulation in an Ethernet passive optical network by means of an extended Ethernet frame
CN101729372A (zh) * 2008-10-29 2010-06-09 华为技术有限公司 光通信系统中报文传输的方法、系统和光线路终端
CN101854563A (zh) * 2009-03-31 2010-10-06 普然通讯技术(上海)有限公司 Epon网络中发现进程的处理方法
CN102882801A (zh) * 2012-09-28 2013-01-16 武汉长光科技有限公司 基于twdm-pon的波长自动调谐方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3349479A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020134069A1 (zh) * 2018-12-24 2020-07-02 深圳市中兴微电子技术有限公司 一种pon中实现通道自适应的方法及相关设备

Also Published As

Publication number Publication date
CN108028972A (zh) 2018-05-11
EP3349479A1 (en) 2018-07-18
US20180212705A1 (en) 2018-07-26
EP3349479A4 (en) 2018-08-15

Similar Documents

Publication Publication Date Title
WO2017049460A1 (zh) 一种光网络单元注册的方法、装置及系统
US10091566B2 (en) Method and apparatus for virtualizing passive optical network, and passive optical network virtualization system
TWI725274B (zh) 資料通信系統、光線路終端及基帶單元
WO2015172279A1 (zh) 一种波长切换的方法、装置及系统
CN101569122B (zh) 用于无源光网络的通信装置
TWI488450B (zh) A method for supporting the migration of optical network elements between multiple passive optical networks
JP5404972B2 (ja) 光通信システム、通信装置および帯域制御方法
WO2013082936A1 (zh) 一种无源光网络系统中的上行带宽分配方法及系统
JP7020608B2 (ja) 受動光ネットワーク通信方法及び装置並びにシステム
US9819437B2 (en) Rogue optical network unit mitigation in passive optical networks
WO2021008224A1 (zh) 一种降低无源光网络上行时延的方法及相关设备
WO2008080350A1 (fr) Procédé et dispositif pour ajuster une bande passante dans un réseau d'accès optique de façon dynamique et système apparenté
WO2011150759A1 (zh) 一种pon网络的信号处理方法、装置和系统
US20160072607A1 (en) Method and apparatus for reconfiguring wavelength of optical network unit
JP2008072534A (ja) Ponシステム
WO2009155832A1 (zh) 一种点到多点光接入系统,及其数据传送方法和设备
JP6449060B2 (ja) 波長分離多重装置及び光通信システム並びに波長分離多重方法
WO2012149770A1 (zh) 转换终端设备的标识符的方法、装置和系统
WO2013075507A1 (zh) 数据发送方法及系统
JP2006237769A (ja) 受動型光ネットワークシステム
CN114979838A (zh) 一种通信方法、光网络单元、光线路终端及光通信系统
KR100957046B1 (ko) 기가비트 수동형 광 가입자망의 지이엠 모드에서 버추얼포트기반 스위칭을 위한 이더넷 프레임 구조 및 이를이용한 스위칭 방법
Sharma et al. Passive optical networks: A futuristic approach
JP5368513B2 (ja) Oltおよびフレーム転送方法
WO2019233177A1 (zh) 无源光网络信号的处理方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15904347

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015904347

Country of ref document: EP