WO2017049448A1 - 一种带宽共享方法、相关装置及系统 - Google Patents

一种带宽共享方法、相关装置及系统 Download PDF

Info

Publication number
WO2017049448A1
WO2017049448A1 PCT/CN2015/090217 CN2015090217W WO2017049448A1 WO 2017049448 A1 WO2017049448 A1 WO 2017049448A1 CN 2015090217 W CN2015090217 W CN 2015090217W WO 2017049448 A1 WO2017049448 A1 WO 2017049448A1
Authority
WO
WIPO (PCT)
Prior art keywords
bandwidth
small base
base station
network
allocated
Prior art date
Application number
PCT/CN2015/090217
Other languages
English (en)
French (fr)
Inventor
余明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201580052515.9A priority Critical patent/CN106797588A/zh
Priority to PCT/CN2015/090217 priority patent/WO2017049448A1/zh
Publication of WO2017049448A1 publication Critical patent/WO2017049448A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a bandwidth sharing method, related apparatus, and system.
  • FMC Fixed Mobile Convergence
  • the small cell Small Cell and the FMC of the enterprise network can not only provide better network coverage for the enterprise, but also enhance the absorption of wireless data services and expand the network capacity.
  • the merged system also has the following drawbacks: the enterprise network and the Small Cell are purely physical integrations, which are not related in substance, and each performs relatively independent control, resulting in inability to communicate between the small base station system and the enterprise network system. communicate with.
  • the bandwidth resources allocated by the enterprise network system to the small base station system at the initial time are limited and fixed, that is, each small base station in the small base station system is allocated a static fixed bandwidth at the beginning of establishment, in the small base station. The operation process does not change any more.
  • the bandwidth resources required by each small base station are also dynamically changed, so it is very likely that the initially allocated bandwidth and the current actual situation will occur.
  • the bandwidth requirement does not match.
  • the problem of insufficient bandwidth or waste of the small base station occurs, and the enterprise network system cannot be known and solved in time, which ultimately affects the user experience.
  • the technical problem to be solved by the embodiments of the present invention is to provide a bandwidth sharing method and related equipment.
  • the system is disposed to solve the problem of insufficient bandwidth utilization between the small base station system and the enterprise network system after FMC fusion in the prior art.
  • an embodiment of the present invention provides a bandwidth sharing method, which may include:
  • the total is A portion of the available bandwidth in the bandwidth is allocated to the first bandwidth.
  • the method further includes: when a second bandwidth that is currently allocated according to the enterprise network, and a current second network load of the wired network corresponding to the enterprise network When it is determined that the actual bandwidth requirement of the enterprise network is greater than the second bandwidth, part of the available bandwidth in the total bandwidth is allocated to the second bandwidth according to a preset bandwidth allocation policy.
  • the small base station system includes multiple small base stations; and the received first network load is a first network load corresponding to each of the plurality of small base stations, where the first bandwidth that has been allocated by the small base station is a first bandwidth that is currently allocated and allocated corresponding to each of the multiple small base stations;
  • All of the available bandwidth in the total bandwidth is allocated to the first bandwidth, including:
  • the multiple small base stations are corresponding according to the first allocation policy.
  • a part of the available bandwidth is allocated to the first bandwidth corresponding to the target small base station, and the target small base station is a small base station whose current actual bandwidth requirement is greater than the corresponding first bandwidth.
  • the partial available bandwidth in the total bandwidth is allocated according to a preset bandwidth allocation policy to The first bandwidth includes:
  • the partial available bandwidth in the total bandwidth is allocated to the second bandwidth according to a preset bandwidth allocation policy ,include:
  • part of the available bandwidth in the first bandwidth is allocated to the In the second bandwidth.
  • the total bandwidth corresponding to the multiple small base stations is The available total bandwidth is allocated to the first bandwidth corresponding to each of the plurality of target small base stations according to a ratio between the first network loads corresponding to the plurality of target small base stations.
  • the part of the total bandwidth is used according to a preset bandwidth allocation policy.
  • the method further includes:
  • the triggering is performed when determining that the actual bandwidth requirement of the small base station is greater than the first bandwidth according to the first bandwidth that is currently allocated by the small base station and the first network load. And a step of allocating a portion of the total bandwidth in the total bandwidth to the first bandwidth according to a preset bandwidth allocation policy.
  • the method further includes:
  • the method further includes:
  • an embodiment of the present invention provides a bandwidth sharing method, which may include:
  • the small base station system sends the current first network load of the wireless network corresponding to the small base station to the enterprise network system, and the wireless network corresponding to the small base station accesses and shares the total bandwidth of the wired network corresponding to the enterprise network by using the fixed and mobile convergence FMC mode.
  • the first network load of the wireless network corresponding to the small base station sent by the small base station system is received by the enterprise network system, and the first network bandwidth and the first network load that are currently allocated by the small base station are used to determine the current network load.
  • the actual bandwidth requirement of the small base station is greater than the first bandwidth, part of the available bandwidth in the total bandwidth is allocated to the first bandwidth according to a preset bandwidth allocation policy.
  • the method further includes:
  • the performing quality of service QoS control according to the allocated first bandwidth includes:
  • controlling the number of accessing the user equipment UEs in the small base station, or controlling the accessed UE to start the preset service according to a preset algorithm If not, controlling the number of accessing the user equipment UEs in the small base station, or controlling the accessed UE to start the preset service according to a preset algorithm.
  • an embodiment of the present invention provides a bandwidth sharing apparatus, which may include:
  • a receiving module configured to receive a current first network load of the wireless network corresponding to the small base station sent by the small base station system, where the wireless network corresponding to the small base station accesses and shares the wired network corresponding to the enterprise network by using the fixed and mobile convergence FMC mode Total bandwidth
  • a first allocation module configured to: according to the first bandwidth that is currently allocated by the small base station and the first network load, determine that the actual bandwidth requirement of the small base station is greater than the first bandwidth, according to a preset bandwidth An allocation policy assigns a portion of the total available bandwidth to the first bandwidth.
  • the apparatus further includes:
  • a second allocation module configured to determine, according to the second bandwidth currently allocated by the enterprise network and the current second network load of the wired network corresponding to the enterprise network, that the actual bandwidth requirement of the enterprise network is greater than the first In the case of the second bandwidth, a part of the available bandwidth in the total bandwidth is allocated to the second bandwidth according to a preset bandwidth allocation policy.
  • the small base station system includes multiple small base stations, and the received first network load is a first network load corresponding to each of the plurality of small base stations, where the first bandwidth that has been allocated by the small base station is a first bandwidth that is currently allocated and allocated corresponding to each of the multiple small base stations;
  • the first allocation module is specifically configured to:
  • the multiple small base stations are corresponding according to the first allocation policy.
  • a part of the available bandwidth is allocated to the first bandwidth corresponding to the target small base station, and the target small base station is a small base station whose current actual bandwidth requirement is greater than the corresponding first bandwidth.
  • the device further includes the acquiring module
  • the first allocation module is specifically configured to:
  • the second bandwidth and the current second network load of the wired network corresponding to the enterprise network determine that the actual bandwidth requirement of the enterprise network is smaller than the second bandwidth, according to the second allocation policy, the second bandwidth is used. A portion of the available bandwidth is allocated to the first bandwidth.
  • the second allocation module is specifically configured to:
  • the first allocation module is specifically configured to:
  • the total bandwidth corresponding to the multiple small base stations is The available total bandwidth is allocated to the first bandwidth corresponding to each of the plurality of target small base stations according to a ratio between the first network loads corresponding to the plurality of target small base stations.
  • the apparatus further includes :
  • a first determining module configured to determine whether a preset time point is reached or whether a preset time period is entered
  • a first triggering module configured to: when the determination result is yes, determine to determine, according to the first bandwidth that the small base station has currently allocated and the first network load, determine an actual bandwidth requirement of the small base station When the first bandwidth is greater than the first bandwidth, the part of the total bandwidth is allocated to the first bandwidth according to a preset bandwidth allocation policy.
  • the device further includes:
  • a second determining module configured to determine whether a preset time point is reached or whether a preset time period is entered
  • a second triggering module configured to: when the determination result is yes, determine to perform, according to the second bandwidth currently allocated by the enterprise network and the current second network load of the wired network corresponding to the enterprise network, When the actual bandwidth requirement of the enterprise network is greater than the second bandwidth, the step of allocating part of the available bandwidth in the total bandwidth to the second bandwidth according to a preset bandwidth allocation policy.
  • the device further includes:
  • a feedback module configured to feed back the allocated first bandwidth to the small base station system, so that the small base station system performs quality of service QoS control according to the allocated first bandwidth.
  • the embodiment of the present invention provides a bandwidth sharing device, which may include:
  • a sending module configured to send, by the small base station system, the first network load of the wireless network corresponding to the small base station to the enterprise network system, where the wireless network corresponding to the small base station accesses and shares the cable corresponding to the enterprise network by using the fixed and mobile convergence FMC mode
  • the total bandwidth of the network so that the enterprise network system receives the current first network load of the wireless network corresponding to the small base station sent by the small base station system, when the first bandwidth and the first obtained according to the small base station are currently allocated
  • the network load determines that the actual bandwidth requirement of the small base station is greater than the first bandwidth, a part of the available bandwidth in the total bandwidth is allocated to the first bandwidth according to a preset bandwidth allocation policy.
  • the device further includes:
  • a control module configured to receive the allocated first bandwidth fed back by the enterprise network system, and perform quality of service QoS control according to the allocated first bandwidth.
  • control module includes:
  • a determining unit configured to receive the allocated first bandwidth fed back by the enterprise network system, and according to the Determining, by the current network load of the small base station, whether the allocated first bandwidth meets the current actual bandwidth requirement of the small base station;
  • the control unit is configured to control the number of accessing user equipment UEs in the small base station, or control the accessed UE to start the preset service according to a preset algorithm.
  • an embodiment of the present invention provides a bandwidth sharing control apparatus, which may include: an input device, an output device, a memory, and a processor;
  • the memory is used to store program code
  • the processor is configured to invoke the program code stored in the memory to perform the following steps:
  • the total is A portion of the available bandwidth in the bandwidth is allocated to the first bandwidth.
  • the processor further performs the following steps:
  • the small base station system includes multiple small base stations; and the received first network load is a first network load corresponding to each of the plurality of small base stations, where the first bandwidth that has been allocated by the small base station is a first bandwidth that is currently allocated and allocated corresponding to each of the multiple small base stations;
  • the processor allocates according to a preset bandwidth.
  • a policy of allocating a portion of the total available bandwidth to the first bandwidth including:
  • the multiple small bases A part of the available bandwidth in the total bandwidth of the station is allocated to the first bandwidth corresponding to the target small base station, where the target small base station is a small base station whose current actual bandwidth requirement is greater than the corresponding first bandwidth.
  • the processor uses part of the available bandwidth in the total bandwidth. Allocating to the first bandwidth includes:
  • the processor allocates a part of the available bandwidth in the total bandwidth to the second according to a preset bandwidth allocation policy In the bandwidth, including:
  • part of the available bandwidth in the first bandwidth is allocated to the In the second bandwidth.
  • the processor allocates part of the available bandwidth of the total bandwidth corresponding to the multiple small base stations to the first bandwidth corresponding to the target small base station according to the first allocation policy.
  • the total bandwidth corresponding to the multiple small base stations is The available total bandwidth is allocated to the first bandwidth corresponding to each of the plurality of target small base stations according to a ratio between the first network loads corresponding to the plurality of target small base stations.
  • the processor performs the total bandwidth according to a preset bandwidth allocation policy. Before a portion of the available bandwidth in the bandwidth is allocated to the first bandwidth, the method further includes:
  • the processor when the information is currently allocated according to the enterprise network
  • the processor when the second bandwidth and the current second network load of the wired network corresponding to the enterprise network determine that the actual bandwidth requirement of the enterprise network is greater than the second bandwidth, the processor according to the preset bandwidth allocation policy, Before the partial available bandwidth in the total bandwidth is allocated to the second bandwidth, it also includes:
  • triggering execution of the enterprise is determined according to the second network load that is currently allocated according to the enterprise network and the current second network load of the wired network corresponding to the enterprise network.
  • the step of allocating part of the available bandwidth in the total bandwidth to the second bandwidth according to a preset bandwidth allocation policy is determined according to the second network load that is currently allocated according to the enterprise network and the current second network load of the wired network corresponding to the enterprise network.
  • the processor further performs the following steps:
  • an embodiment of the present invention provides a bandwidth sharing control device, which may include: an input device, an output device, a memory, and a processor;
  • the memory is used to store program code
  • the processor is configured to invoke the program code stored in the memory to perform the following steps:
  • the small base station system transmits the wireless network corresponding to the small base station to the enterprise network system through the output device
  • the current first network load the wireless network corresponding to the small base station accesses and shares the total bandwidth of the wired network corresponding to the enterprise network by using the fixed and mobile fused FMC mode, so that the enterprise network system receives the small transmission by the small base station system.
  • the current first network load of the wireless network corresponding to the base station when it is determined that the actual bandwidth requirement of the small base station is greater than the first bandwidth according to the first bandwidth that is currently allocated by the small base station and the first network load And allocating part of the available bandwidth in the total bandwidth to the first bandwidth according to a preset bandwidth allocation policy.
  • the processor further performs the following steps:
  • the processor performs QoS control according to the allocated first bandwidth, including:
  • controlling the number of accessing the user equipment UEs in the small base station, or controlling the accessed UE to start the preset service according to a preset algorithm If not, controlling the number of accessing the user equipment UEs in the small base station, or controlling the accessed UE to start the preset service according to a preset algorithm.
  • an embodiment of the present invention provides a bandwidth sharing system, which may include an enterprise network controller and a small base station controller, where
  • the enterprise network controller is combined with the fifth aspect, or combined with the first possible implementation manner of the fifth aspect, or with the second possible implementation manner of the fifth aspect, or with the third possibility of the fifth aspect
  • the implementation manner, or the fourth possible implementation manner of the fifth aspect, or the fifth possible implementation manner of the fifth aspect, or the sixth possible implementation manner of the fifth aspect, or the fifth combination a seventh possible implementation of the aspect, or a bandwidth sharing control device in combination with the eighth possible implementation of the fifth aspect;
  • the small base station controller is a bandwidth sharing control device in combination with the sixth aspect, or in combination with the first possible implementation manner of the sixth aspect, or the second possible implementation manner of the sixth aspect.
  • the enterprise network system receives the first network load of the wireless network corresponding to the small base station sent by the small base station system, and the first bandwidth and the first obtained according to the current allocation of the small base station.
  • the network load determines that the actual bandwidth requirement of the small base station is greater than the first bandwidth
  • the part of the available bandwidth in the total bandwidth is allocated to the first bandwidth according to the preset bandwidth allocation policy, where the wireless network corresponding to the small base station is fixed.
  • the total bandwidth of the wired network corresponding to the enterprise network accessed and shared by the mobile convergence FMC mode.
  • the enterprise network system interacts with the small base station system, so that the enterprise network system allocates the available idle bandwidth in the total bandwidth of the wired network to the bandwidth according to a certain allocation policy according to the current bandwidth information and the network load information of the small base station.
  • the insufficient bandwidth of the small base station corresponds to the first bandwidth, so that the total wired bandwidth of the enterprise network can be balancedly allocated according to the current network load of the small base station, which not only utilizes the bandwidth resources reasonably, but also improves the bandwidth resource utilization, and
  • the fused small base station system and enterprise network system provide service quality assurance.
  • FIG. 1 is a schematic diagram of a network architecture of a FMC convergence of a small base station system and an enterprise network system provided by the present invention
  • FIG. 3 is a schematic flow chart of another bandwidth sharing method provided by the present invention.
  • FIG. 5 is a schematic flowchart diagram of still another bandwidth sharing method provided by the present invention.
  • FIG. 6 is a schematic flow chart of still another bandwidth sharing method provided by the present invention.
  • FIG. 8 is a schematic flowchart diagram of still another bandwidth sharing method provided by the present invention.
  • FIG. 10 is a schematic diagram of a specific application scenario of a bandwidth sharing method according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of another specific application scenario of a bandwidth sharing method according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of still another specific application scenario of a bandwidth sharing method according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of still another specific application scenario of a bandwidth sharing method according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic diagram of still another specific application scenario of the bandwidth sharing method in the embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of an embodiment of a bandwidth sharing apparatus provided by the present invention.
  • FIG. 16 is a schematic structural diagram of another embodiment of a bandwidth sharing apparatus provided by the present invention.
  • FIG. 17 is a schematic structural diagram of still another embodiment of a bandwidth sharing apparatus provided by the present invention.
  • FIG. 18 is a schematic structural diagram of still another embodiment of a bandwidth sharing apparatus provided by the present invention.
  • FIG. 19 is a schematic structural diagram of still another embodiment of a bandwidth sharing apparatus provided by the present invention.
  • FIG. 20 is a schematic structural diagram of an embodiment of a bandwidth sharing device provided by the present invention.
  • 21 is a schematic structural diagram of another embodiment of a bandwidth sharing device provided by the present invention.
  • 22 is a schematic structural diagram of a control module provided by the present invention.
  • FIG. 23 is a schematic structural diagram of a bandwidth sharing control apparatus provided by the present invention.
  • 24 is a schematic structural diagram of a bandwidth sharing control device provided by the present invention.
  • FIG. 25 is a schematic structural diagram of a bandwidth sharing system provided by the present invention.
  • FIG. 1 is a schematic diagram of a network architecture of a FMC fusion between a small base station system and an enterprise network system.
  • the small base station system and the enterprise network system are fused by the FMC mode, wherein the small base station system adopts the FMC mode.
  • Accessing and sharing the network resources of the enterprise network system that is, the wireless network corresponding to the small base station accesses and shares the total bandwidth resources of the wired network corresponding to the enterprise network.
  • the small base station and the small base station controller in the small base station system access the enterprise network system through the routing device. It should be noted that the small base station can also access the enterprise network system through the switching device; the enterprise network controller in the enterprise network system Responsible for accessing the Internet or mobile core network through the transport network.
  • the base station controller usually controls multiple small base stations, and its main function is to perform radio resource management. Control and coordination, and control the cell handover of small base stations in the control area. It is to be understood that the specific type of the small base station and the type of the service to be supported in the present invention may be different according to the actual application requirements, and the present invention is not limited thereto.
  • the network architecture in FIG. 1 is only one of the preferred embodiments of the present invention.
  • the network architecture in the embodiment of the present invention includes, but is not limited to, the foregoing network architecture, as long as the small base station system and the enterprise can be implemented.
  • the network architecture of the network system FMC integration is within the scope of protection and coverage of the present invention.
  • the FMC has network level convergence, service level integration, and terminal level integration, including network convergence, service convergence, management support platform integration, operation management mode integration, and control policies. Fusion and so on.
  • the FMC fusion based on the present invention is mainly network convergence, which refers to constructing a single core network and related processors and systems, and is used for both a fixed access network and a mobile access network, and the enterprise network in the present invention corresponds to The wired network is a fixed access network, and the wireless network corresponding to the small base station is a mobile access network.
  • the user equipment UE in the embodiment of the present invention includes, but is not limited to, a smart phone, a tablet computer, a media player, a smart TV, and a smart device that can communicate with a small base station or other network access device through a wireless manner.
  • PDA Personal Digital Assistant
  • the specific application scenarios include, but are not limited to, various application scenarios such as an enterprise network, a campus network, a home local area network, a shopping mall local area network, or a sports center local area network.
  • the enterprise network application scenario is elaborated and explained.
  • FIG. 2 is a schematic flowchart of a bandwidth sharing method according to an embodiment of the present invention. The following description will be made from the enterprise network controller side in the enterprise network system, as shown in FIG. 2, which may include The following steps S201 to S202.
  • S201 Receive a current first network load of the wireless network corresponding to the small base station sent by the small base station system.
  • the enterprise network controller in the enterprise network system receives the small base station controller in the small base station system.
  • the current first network load of the wireless network corresponding to the small base station sent by the information interaction interface.
  • the wireless network corresponding to the small base station accesses and shares the total bandwidth of the wired network corresponding to the enterprise network by using the fixed and mobile convergence FMC mode.
  • the wireless network corresponding to the small base station may include a mobile wireless network and a wireless broadband network, that is, a wireless communication network including LTE, Universal Mobile Telecommunications System (UMTS), and Wi-Fi.
  • the network load is proportional to the actual bandwidth requirement. More specifically, the relevant calculation formula and related parameters can be set to perform specific calculation between the network load and the current bandwidth requirement. The present invention is specific to The calculation method is not specifically limited.
  • the enterprise network controller may further receive other information that the small base station system can reflect the current bandwidth requirement of the small base station, such as the number of access users in the small base station, the request volume of the service data, or the total traffic of the data, or The enterprise network controller can calculate and allocate the bandwidth requirement of the small base station according to the information, by directly receiving the bandwidth requirement value currently calculated by the small base station or the idle available bandwidth value that can be provided.
  • the enterprise network controller can acquire the currently allocated bandwidth of the small base station and the enterprise network at any time, that is, the related bandwidth.
  • Information belongs to the information that the enterprise network itself can obtain. It can be understood that, because the small base station controller is responsible for the management and coordination of the radio resources of the small base station, the first bandwidth that the small base station that it manages has been allocated is known, that is, the information of the first bandwidth may also be small. The base station controller sends it to the enterprise network controller.
  • the enterprise network controller determines, according to the first network load obtained in step S201 and the first bandwidth of the small base station acquired from itself, that the actual bandwidth requirement of the small base station is greater than the first bandwidth, according to the preset bandwidth allocation policy Allocating part or all of the available bandwidth of the wired network of the enterprise network to the first bandwidth by configuring bandwidth parameters of different bandwidth allocation port numbers of different small base stations, thereby generating a reallocation The first bandwidth. More specifically, when there are multiple small base stations, it may be part of the bandwidth of the first bandwidth from other small base stations with free available bandwidth, or may be idle available from the currently allocated bandwidth of the wired network corresponding to the enterprise network. Obtained in bandwidth.
  • the available bandwidth in the total bandwidth may include The idle available bandwidth of the wireless network corresponding to the small base station and the idle available bandwidth in the wired network corresponding to the enterprise network.
  • the allocation policy may be allocated according to the ratio between the network loads, or may be allocated according to the priority of the small base station or the priority of the enterprise network, and may also be estimated in advance by a preset calculation formula for the wireless network or the wired network. Bandwidth value.
  • the execution of the method steps may be performed periodically, or may be performed at a preset time point or a time period, for example, during working hours or meal times, respectively, adjusting the wireless network in a targeted and purpose manner.
  • the bandwidth allocation of the wired network to meet the actual needs of the user in the actual scenario. More specifically, for example, within the company, the network load of the wired network is relatively large during the working period, and the required bandwidth is large; and during the meal period, the network load of the wireless network is large, and the demand bandwidth is large, and the restaurant corresponds to The small base station has the largest wireless network load.
  • the free available bandwidth in the wired network can be more allocated to the wireless network corresponding to the small base station in the restaurant, that is, the judgment of time and the judgment of the network load. Combine to achieve better bandwidth sharing and enhance user experience.
  • the part of the available bandwidth is allocated to the first bandwidth according to the preset allocation policy.
  • the specific allocation policy calculation formula is not specifically limited, as long as the network load can be balanced by bandwidth adjustment.
  • the algorithms are all within the scope of the protection of the present invention.
  • the enterprise network system receives the current first network load of the wireless network corresponding to the small base station sent by the small base station system, and determines the small base station according to the first bandwidth that the small base station has currently allocated and the first network load. If the actual bandwidth requirement is greater than the first bandwidth, the part of the available bandwidth in the total bandwidth is allocated to the first bandwidth according to the preset bandwidth allocation policy, where the wireless network corresponding to the small base station is connected to the mobile convergence FMC mode. Enter and share the total bandwidth of the wired network corresponding to the enterprise network.
  • the enterprise network system interacts with the small base station system, so that the enterprise network system allocates the available idle bandwidth in the total bandwidth of the wired network to the bandwidth according to a certain allocation policy according to the current bandwidth information and the network load information of the small base station.
  • the insufficient bandwidth of the small base station corresponds to the first bandwidth, so that the total wired bandwidth of the enterprise network can be balancedly allocated according to the current network load of the small base station, which not only utilizes the bandwidth resources reasonably, but also improves the bandwidth resource utilization, and
  • the fused small base station system and enterprise network system provide service quality assurance.
  • FIG. 3 it is a schematic flowchart of another bandwidth sharing method in the embodiment of the present invention.
  • the description will be made from the enterprise network controller side in the enterprise network system with reference to FIG. 3.
  • the method may include the following steps S301-S304.
  • Step S301 Receive a current first network load of the wireless network corresponding to the small base station sent by the small base station system.
  • Step S302 When it is determined that the actual bandwidth requirement of the small base station is greater than the first bandwidth according to the first bandwidth that is currently allocated by the small base station and the first network load, according to a preset bandwidth allocation policy, A portion of the total bandwidth is allocated to the first bandwidth.
  • step S301 to step S302 may refer to step S201 to step S202 in the foregoing embodiment of FIG. 2, and details are not described herein again.
  • Step S303 When it is determined that the actual bandwidth requirement of the enterprise network is greater than the second bandwidth according to the second bandwidth that is currently allocated by the enterprise network and the current second network load of the wired network corresponding to the enterprise network, A portion of the total available bandwidth is allocated to the second bandwidth according to a preset bandwidth allocation policy.
  • the enterprise controller in the enterprise network system can also obtain information about the second bandwidth and the current network load that are currently allocated, so that the bandwidth allocation and adjustment can be performed more accurately in the entire merged system. With sharing. Further, the enterprise network controller can also obtain other information that can reflect the current bandwidth requirement of the enterprise network, such as the number of access devices in the enterprise network, the request volume of the service data, or the total traffic of the data, or directly obtain the enterprise. The bandwidth demand value currently calculated by the network or the free available bandwidth value that can be provided, etc., and finally the calculation and allocation of the bandwidth requirement of the enterprise network can be performed according to the above information.
  • the enterprise network controller determines that the actual bandwidth requirement of the enterprise network is greater than the current allocation according to the second bandwidth that is currently allocated by the enterprise network and the current second network load of the wired network corresponding to the enterprise network.
  • the part of the available bandwidth in the total bandwidth is allocated to the second bandwidth according to the preset bandwidth allocation policy.
  • the specific allocation mode is to re-adjust the port number of the bandwidth to be adjusted through the enterprise network controller. Allocate bandwidth parameters. It can be understood that the available bandwidth in the total bandwidth at this time is mainly derived from the available idle bandwidth corresponding to the small base station in the small base station system; it can also be understood that the small base station system and the enterprise network system can be integrated. At the beginning, the reserved spare bandwidth is reserved, and the standby bandwidth can be dynamically allocated when the small base station or the enterprise network needs bandwidth.
  • the execution of the method steps may be performed periodically, or may be performed at a preset time point or a time period.
  • power consumption generated by the execution of actions such as bandwidth calculation allocation may be reduced.
  • step S303 may be performed before the step S301 and/or the step S302, or may be performed at the same time, or may be performed later.
  • the specific execution sequence is not specifically limited in the present invention.
  • the execution of the method steps can not only make the free available bandwidth in the total bandwidth, but also redistribute according to the actual bandwidth requirement between the wireless networks corresponding to the small base stations in the small base station system, and also allow the bandwidth of the wired network corresponding to the enterprise network. It can be redistributed according to the actual bandwidth requirement.
  • the actual required bandwidth can be allocated according to the actual network load of the wired network or the wireless network in the entire FMC-fused system, thereby making the bandwidth actually required.
  • the free available bandwidth in the total bandwidth can be dynamically adjusted based on the actual network load.
  • Step S304 Feeding the allocated first bandwidth to the small base station system, so that the small base station system performs quality of service QoS control according to the allocated first bandwidth.
  • the enterprise network controller feeds back the first bandwidth information adjusted in step S302 to the small base station system, so that the small base station system can use the updated first bandwidth as a parameter to perform quality of service (QoS).
  • QoS quality of service
  • Control for example, controlling the type of service of the user or the number of user accesses, thereby providing better service capabilities for network communication between the enterprise network system and the small base station system, solving problems such as network delay and congestion, and avoiding network overload or congestion. It ensures that important traffic is not delayed or discarded, while ensuring efficient operation of the network.
  • the enterprise network system receives the current first network load of the wireless network corresponding to the small base station sent by the small base station system, and determines the small base station according to the first bandwidth that the small base station has currently allocated and the first network load. If the actual bandwidth requirement is greater than the first bandwidth, the part of the available bandwidth in the total bandwidth is allocated to the first bandwidth according to the preset bandwidth allocation policy, where the wireless network corresponding to the small base station is connected to the mobile convergence FMC mode. Enter and share the total bandwidth of the wired network corresponding to the enterprise network.
  • the enterprise network system interacts with the small base station system, so that the enterprise network system allocates the available idle bandwidth in the total bandwidth of the wired network to the bandwidth according to a certain allocation policy according to the current bandwidth information and the network load information of the small base station.
  • the insufficient bandwidth of the small base station corresponds to the first bandwidth, so that the total wired bandwidth of the enterprise network can be balancedly allocated according to the current network load of the small base station, which not only utilizes the bandwidth resources reasonably, but also improves the bandwidth resource utilization, and Small after fusion
  • the base station system and the enterprise network system provide service quality assurance.
  • FIG. 4 is a schematic flowchart of another method for bandwidth sharing in the embodiment of the present invention. The following description will be made from the controller side of the enterprise network in the enterprise network system with reference to FIG. 4, as shown in FIG. The following steps S401 to S404 are included.
  • Step S401 Receive a current first network load of the wireless network corresponding to the small base station sent by the small base station system.
  • step S401 can refer to step S201 in the foregoing embodiment of FIG. 2, and details are not described herein again.
  • Step S402 When it is determined that the plurality of small base stations include the target small base station according to the first bandwidth that is currently allocated by the small base station and the first network load, according to the first allocation policy, the multiple A part of the available bandwidth in the total bandwidth corresponding to the small base station is allocated to the first bandwidth corresponding to the target small base station.
  • the received first network load is a first network load corresponding to each of the plurality of small base stations
  • the first bandwidth that the small base station currently allocates is a plurality of small
  • Each of the base stations corresponds to a first bandwidth that has been allocated currently obtained.
  • the target small base station is a small base station whose current actual bandwidth requirement is greater than the corresponding first bandwidth.
  • the enterprise network controller determines, according to the first bandwidth and the first network load of the multiple small base stations, that the plurality of small base stations include the target small base station whose current actual bandwidth requirement is greater than the corresponding first bandwidth, The total bandwidth of the wireless network corresponding to the small base station system when the small base station needs to perform bandwidth adjustment, and the total idle bandwidth of all the small base stations in this embodiment, according to the first allocation policy, the total idle Some or even all of the available bandwidth in the available bandwidth is allocated to the target small base station where the current bandwidth is insufficient.
  • the specific allocation policy may be that the total idle bandwidth is allocated according to the proportional value according to the proportion of the network load, or may be allocated according to the preset priority of the small base station. .
  • the idle available bandwidth in the total bandwidth can also be allocated to multiple target small base stations according to the ratio between the network loads of the target small base stations.
  • Step S403 When it is determined that the actual bandwidth requirement of the enterprise network is greater than the second bandwidth according to the second bandwidth that is currently allocated by the enterprise network and the current second network load of the wired network corresponding to the enterprise network, A portion of the total available bandwidth is allocated to the second bandwidth according to a preset bandwidth allocation policy.
  • Step S404 Feeding the allocated first bandwidth to the small base station system, so that the small base station system performs quality of service QoS control according to the allocated first bandwidth.
  • step S403 to step S404 may refer to step S303 to step S304 in the foregoing embodiment of FIG. 3, and details are not described herein again.
  • the enterprise network system receives the current first network load of the wireless network corresponding to the small base station sent by the small base station system, and determines the small base station according to the first bandwidth that the small base station has currently allocated and the first network load. If the actual bandwidth requirement is greater than the first bandwidth, the part of the available bandwidth in the total bandwidth is allocated to the first bandwidth according to the preset bandwidth allocation policy, where the wireless network corresponding to the small base station is connected to the mobile convergence FMC mode. Enter and share the total bandwidth of the wired network corresponding to the enterprise network.
  • the enterprise network system interacts with the small base station system, so that the enterprise network system allocates the available idle bandwidth in the total bandwidth of the wired network to the bandwidth according to a certain allocation policy according to the current bandwidth information and the network load information of the small base station.
  • the insufficient bandwidth of the small base station corresponds to the first bandwidth, so that the total wired bandwidth of the enterprise network can be balancedly allocated according to the current network load of the small base station, which not only utilizes the bandwidth resources reasonably, but also improves the bandwidth resource utilization, and
  • the fused small base station system and enterprise network system provide service quality assurance.
  • FIG. 5 is a schematic flowchart of still another method for bandwidth sharing in the embodiment of the present invention. The following description will be made from the controller side of the enterprise network in the enterprise network system, as shown in FIG. 5, which can be The following steps S501 to S502 are included.
  • Step S501 Receive a current first network load of the wireless network corresponding to the small base station sent by the small base station system.
  • step S501 can refer to step S201 in the foregoing embodiment of FIG. 2, and details are not described herein again.
  • Step S502 When it is determined that the actual bandwidth requirement of the small base station is greater than the first bandwidth according to the first bandwidth that is currently allocated by the small base station and the first network load, and when the enterprise network is currently And when the second bandwidth obtained by the distribution and the current second network load of the wired network corresponding to the enterprise network determine that the actual bandwidth requirement of the enterprise network is smaller than the second bandwidth, according to the second allocation policy, the second A portion of the available bandwidth in the bandwidth is allocated to the first bandwidth.
  • the enterprise network controller receives the first network load of the small base station, and obtains the second bandwidth of the second base station, the second network load, and the first bandwidth of the small base station. At the same time, there may be a sequence, but it is necessary to ensure that the first bandwidth and the first network load and the second bandwidth and the second network load are for the same time point or the same time period, otherwise the real-time information may be lost. Sexual value.
  • the total available bandwidth in the total bandwidth is between the second network load and the first network load corresponding to each of the plurality of target small base stations. a ratio value, allocated to the second bandwidth and the first bandwidth corresponding to each of the plurality of target small base stations;
  • the total available bandwidth in the total bandwidth is allocated to the ratio according to a ratio between the first network loads corresponding to the plurality of target small base stations.
  • Each of the plurality of target small base stations is in a corresponding first bandwidth.
  • the enterprise network system receives the current first network load of the wireless network corresponding to the small base station sent by the small base station system, and determines the small base station according to the first bandwidth that the small base station has currently allocated and the first network load. If the actual bandwidth requirement is greater than the first bandwidth, the part of the available bandwidth in the total bandwidth is allocated to the first bandwidth according to the preset bandwidth allocation policy, where the wireless network corresponding to the small base station is connected to the mobile convergence FMC mode. Enter and share the total bandwidth of the wired network corresponding to the enterprise network.
  • the enterprise network system interacts with the small base station system, so that the enterprise network system allocates the available idle bandwidth in the total bandwidth of the wired network to the bandwidth according to a certain allocation policy according to the current bandwidth information and the network load information of the small base station.
  • the insufficient bandwidth of the small base station corresponds to the first bandwidth, so that the total wired bandwidth of the enterprise network can be balancedly allocated according to the current network load of the small base station, which not only utilizes the bandwidth resources reasonably, but also improves the bandwidth resource utilization, and
  • the fused small base station system and enterprise network system provide service quality assurance.
  • FIG. 6 it is a schematic flowchart of still another bandwidth sharing method in the embodiment of the present invention.
  • the following description will be made from the enterprise network controller side in the enterprise network system with reference to FIG. 6 , as shown in FIG. 6 .
  • the method may include the following steps S601 to S604.
  • Step S601 Receive a current first network load of the wireless network corresponding to the small base station sent by the small base station system.
  • step S601 can refer to step S201 in the foregoing embodiment of FIG. 2, and details are not described herein again.
  • Step S602 When it is determined that the target small base station is included in the multiple small base stations according to the first bandwidth that is currently allocated by the small base station and the first network load, according to the first allocation policy, the multiple A part of the available bandwidth in the total bandwidth corresponding to the small base station is allocated to the first bandwidth corresponding to the target small base station.
  • step S601 to step S602 can refer to step S401 to step S402 in the foregoing embodiment of FIG. 4, and details are not described herein again.
  • Step S603 determining that the actual bandwidth requirement of the enterprise network is greater than the second bandwidth according to the second bandwidth that is currently allocated by the enterprise network and the current second network load of the wired network corresponding to the enterprise network, and When it is determined that the actual bandwidth requirement of the small base station is smaller than the first bandwidth according to the first bandwidth and the first network load, according to the third allocation policy, part of the available bandwidth in the first bandwidth is allocated to the In the second bandwidth.
  • the idle bandwidth in the small base station is The part of the bandwidth or the total free available bandwidth is allocated to the second bandwidth currently allocated by the wired network corresponding to the enterprise network according to the third allocation policy, so as to share the current network load pressure of the enterprise network.
  • first allocation policy, the second allocation policy, or the third allocation policy mentioned in the present invention may be the same or different, and the present invention is not specifically limited.
  • Step S604 Feeding the allocated first bandwidth to the small base station system, so that the small base station system performs quality of service QoS control according to the allocated first bandwidth.
  • step S604 can refer to step S304 in the foregoing embodiment of FIG. 3, and details are not described herein again.
  • the enterprise network system receives the current first network load of the wireless network corresponding to the small base station sent by the small base station system, and determines the small base station according to the first bandwidth that the small base station has currently allocated and the first network load.
  • the actual bandwidth requirement is greater than the first bandwidth
  • a part of the available bandwidth in the total bandwidth is allocated to the first bandwidth according to a preset bandwidth allocation policy, where the small base station corresponds
  • the wireless network accesses and shares the total bandwidth of the wired network corresponding to the enterprise network through the fixed and mobile convergence FMC mode.
  • the enterprise network system interacts with the small base station system, so that the enterprise network system allocates the available idle bandwidth in the total bandwidth of the wired network to the bandwidth according to a certain allocation policy according to the current bandwidth information and the network load information of the small base station.
  • the insufficient bandwidth of the small base station corresponds to the first bandwidth, so that the total wired bandwidth of the enterprise network can be balancedly allocated according to the current network load of the small base station, which not only utilizes the bandwidth resources reasonably, but also improves the bandwidth resource utilization, and
  • the fused small base station system and enterprise network system provide service quality assurance.
  • FIG. 7 is a schematic flowchart of still another bandwidth sharing method in the embodiment of the present invention. The following description will be made from the enterprise network controller side in the enterprise network system with reference to FIG. 7, as shown in FIG. The following steps S701 to S707 are included.
  • Step S701 Receive a current first network load of the wireless network corresponding to the small base station sent by the small base station system.
  • step S701 can refer to step S201 in the foregoing embodiment of FIG. 2, and details are not described herein again.
  • Step S702 It is determined whether a preset time point is reached or whether a preset time period is entered.
  • the enterprise network controller determines whether the preset time point is reached or whether the preset time period is entered.
  • the preset time point and the preset time period may be calculated according to the previous bandwidth requirement history records of the merged system, or may be set according to the observation or common sense of the network management personnel.
  • the settings of the preset time point or preset time period can be flexibly changed and optimized. It should be noted that the execution order of the step S701 and the step S702 can also be flexibly changed. For example, it is determined that the time point or the time period is reached before the action of receiving the first network load is performed, which is not specifically limited in the present invention.
  • Step S703 When the result of the determination is YES, the triggering execution is performed, and when the determination result is YES, the triggering is performed to determine that the first bandwidth and the first network load that are currently allocated according to the small base station are determined. When the actual bandwidth requirement of the small base station is greater than the first bandwidth, the part of the total bandwidth is allocated to the first bandwidth according to a preset bandwidth allocation policy.
  • step S702 when the result is YES, the triggering execution is performed according to the preset bandwidth allocation policy when it is determined that the actual bandwidth requirement of the small base station is greater than the first bandwidth according to the first bandwidth and the first network load.
  • the step of allocating a portion of the available bandwidth in the total bandwidth to the first bandwidth For more details, reference may be made to step S202 in the foregoing embodiment of FIG. 2, and details are not described herein again.
  • the method step is based on the judgment of time, it is applicable to a place where the wireless data service is concentrated at a fixed time point or a time period, and the judgment calculation of the non-preset time point or the time period can be saved, only at a predetermined time point or The bandwidth allocation is judged and calculated in a predetermined period of time, and power consumption and calculation amount of the enterprise network controller and the small base station controller are saved.
  • Step S704 It is determined whether a preset time point is reached or whether a preset time period is entered.
  • the enterprise network controller determines whether the preset time point is reached or whether the preset time period is entered.
  • the preset time point and the preset time period may be calculated according to the previous bandwidth requirement history records of the merged system, or may be set according to the observation or common sense of the network management personnel.
  • the settings of the preset time point or preset time period can be flexibly changed and optimized. It should be noted that the determination of the time point or the time period in the step S704 and the determination of the time point or the time period in the step S702 may be the same step that is performed simultaneously, or may be different steps that are separately performed separately. The invention is not specifically limited.
  • Step S705 When the determination result is yes, triggering execution of the enterprise network according to the second bandwidth currently allocated by the enterprise network and the current second network load of the wired network corresponding to the enterprise network. When the actual bandwidth requirement is greater than the second bandwidth, the partial available bandwidth of the total bandwidth is allocated to the second bandwidth according to a preset bandwidth allocation policy.
  • step S704 when the result is YES, the triggering execution is performed according to the preset bandwidth allocation policy when determining that the actual bandwidth requirement of the enterprise network is greater than the second bandwidth according to the second bandwidth and the second network load.
  • the step of allocating a portion of the available bandwidth in the total bandwidth to the second bandwidth For details, refer to step S303 in the foregoing embodiment of FIG. 3, and details are not described herein again.
  • the method step is based on the judgment of time, it is applicable to a place where the wired data service is concentrated at a fixed time point or a time period, and the judgment calculation of the non-preset time point or the time period can be saved, only at the predetermined time point or The bandwidth allocation is judged and calculated in a predetermined period of time, and power consumption and calculation amount of the enterprise network controller and the small base station controller are saved.
  • Step S706 Feeding the allocated first bandwidth to the small base station system, so that the small base station system performs quality of service QoS control according to the allocated first bandwidth.
  • step S706 can refer to step S304 in the foregoing embodiment of FIG. 3, and details are not described herein again.
  • the enterprise network system receives the first network load of the wireless network corresponding to the small base station sent by the small base station system, and the first bandwidth and the first obtained according to the current allocation of the small base station.
  • the network load determines that the actual bandwidth requirement of the small base station is greater than the first bandwidth
  • the part of the available bandwidth in the total bandwidth is allocated to the first bandwidth according to the preset bandwidth allocation policy, where the wireless network corresponding to the small base station is fixed.
  • the total bandwidth of the wired network corresponding to the enterprise network accessed and shared by the mobile convergence FMC mode.
  • the enterprise network system interacts with the small base station system, so that the enterprise network system allocates the available idle bandwidth in the total bandwidth of the wired network to the bandwidth according to a certain allocation policy according to the current bandwidth information and the network load information of the small base station.
  • the insufficient bandwidth of the small base station corresponds to the first bandwidth, so that the total wired bandwidth of the enterprise network can be balancedly allocated according to the current network load of the small base station, which not only utilizes the bandwidth resources reasonably, but also improves the bandwidth resource utilization, and
  • the fused small base station system and enterprise network system provide service quality assurance.
  • FIG. 8 is a schematic flowchart of still another method for bandwidth sharing according to an embodiment of the present invention.
  • the following is a description of the interaction between the small base station controller in the small base station system and the enterprise network controller in the enterprise network system in conjunction with FIG. 8. Description, as shown in FIG. 8, the method may include the following steps S801 to S804.
  • Step S801 The small base station system sends the current first network load of the wireless network corresponding to the small base station to the enterprise network system.
  • the small base station system sends the current first network load of the wireless network corresponding to the small base station to the enterprise network controller in the enterprise network system by using the small base station controller, and the wireless network corresponding to the small base station passes the fixed and mobile convergence FMC mode. Accessing and sharing the total bandwidth of the wired network corresponding to the enterprise network, so that the enterprise network system receives the current first network load of the wireless network corresponding to the small base station sent by the small base station system, when the base station is currently allocated according to the small base station When the first bandwidth and the first network load determine that the actual bandwidth requirement of the small base station is greater than the first bandwidth, allocate part of the available bandwidth in the total bandwidth to the In the first bandwidth. More specifically, an information interaction interface may be added to the small base station controller and the controller of the enterprise network, respectively. In order to facilitate the interaction of information between the two parties.
  • Step S802 Receive a current first network load of the wireless network corresponding to the small base station sent by the small base station system.
  • Step S803 When it is determined that the actual bandwidth requirement of the small base station is greater than the first bandwidth according to the first bandwidth that is currently allocated by the small base station and the first network load, according to a preset bandwidth allocation policy, A portion of the total bandwidth is allocated to the first bandwidth.
  • Step S804 When it is determined that the actual bandwidth requirement of the enterprise network is greater than the second bandwidth according to the second bandwidth that is currently allocated by the enterprise network and the current second network load of the wired network corresponding to the enterprise network, A portion of the total available bandwidth is allocated to the second bandwidth according to a preset bandwidth allocation policy.
  • steps S802 to S804 may correspond to the implementation manners in the method embodiments in FIG. 2 to FIG. 7 , and details are not described herein again.
  • the small base station system sends the first network load of the wireless network corresponding to the small base station to the enterprise network system, so that the enterprise network system determines that the first bandwidth obtained by the small base station is currently allocated and the first network load.
  • the wireless network corresponding to the small base station is fixed and mobile fused by the FMC mode. Access and share the total bandwidth of the wired network corresponding to the enterprise network.
  • the small base station system interacts with the enterprise network system, so that the enterprise network system allocates the available idle bandwidth in the total bandwidth of the wired network to the bandwidth according to a certain allocation policy according to the current bandwidth information and the network load information of the small base station.
  • the insufficient bandwidth of the small base station corresponds to the first bandwidth, so that the total wired bandwidth of the enterprise network can be balancedly allocated according to the current network load of the small base station, which not only utilizes the bandwidth resources reasonably, but also improves the bandwidth resource utilization, and
  • the fused small base station system and enterprise network system provide service quality assurance.
  • FIG. 9 is a schematic flowchart of still another bandwidth sharing method in the embodiment of the present invention.
  • the following is a description of the interaction between the small base station controller in the small base station system and the enterprise network controller in the enterprise network system in conjunction with FIG. 9. Description, as shown in FIG. 9, the method may include the following steps S901 to S906.
  • Step S901 The small base station system sends the current first network load of the wireless network corresponding to the small base station to the enterprise network system.
  • step S901 can refer to step S801 in the foregoing embodiment of FIG. 8, and details are not described herein again.
  • Step S902 Receive a current first network load of the wireless network corresponding to the small base station sent by the small base station system.
  • Step S903 When it is determined that the actual bandwidth requirement of the small base station is greater than the first bandwidth according to the first bandwidth that is currently allocated by the small base station and the first network load, according to a preset bandwidth allocation policy, A portion of the total bandwidth is allocated to the first bandwidth.
  • Step S904 When it is determined that the actual bandwidth requirement of the enterprise network is greater than the second bandwidth according to the second bandwidth that is currently allocated by the enterprise network and the current second network load of the wired network corresponding to the enterprise network, A portion of the total available bandwidth is allocated to the second bandwidth according to a preset bandwidth allocation policy.
  • Step S905 Feeding the allocated first bandwidth to the small base station system, so that the small base station system performs quality of service QoS control according to the allocated first bandwidth.
  • step S902 to step S905 may correspond to the implementation manner in the method embodiment of FIG. 2 to FIG. 7 , and details are not described herein again.
  • Step S906 Receive the allocated first bandwidth fed back by the enterprise network system, and perform quality of service QoS control according to the allocated first bandwidth.
  • the re-allocated first bandwidth fed back by the enterprise controller in the enterprise network system is received, and the quality of service QoS control is performed according to the allocated first bandwidth. For example, according to the first bandwidth after re-allocation, control of the amount of traffic accessing the UE, control of a service type such as streaming media data, and the like. That is, the small base station controller adjusts the maximum access user parameter of each small base station or the parameter of the access service type according to the constraint information of the wired port bandwidth fed back by the enterprise network controller.
  • the small base station controller determines, according to the current network load of the small base station, whether the allocated first bandwidth meets the current actual bandwidth requirement of the small base station; if the determination result is no, the access user in the small base station is controlled.
  • the number of the UEs of the device, or the preset access to the UE to start the preset service according to the preset algorithm, that is, when the small base station with excessive network load is still unable to be satisfied after reallocating the free available bandwidth The base station controller controls the number of access user equipment UEs, or controls the type of services that have accessed the UE, for example, can control the streaming media data request of the UE.
  • the small base station controller determines whether the first allocated adjusted first bandwidth can satisfy the current first network load of the wireless network of the corresponding small base station; when it is determined that at least one small base station satisfies and at least When a small base station is not satisfied, some UEs in the small base station with insufficient bandwidth are switched to the small base station with idle available bandwidth for data transmission, so as to alleviate the network load of the small base station with insufficient bandwidth.
  • the small base station system sends the first network load of the wireless network corresponding to the small base station to the enterprise network system, so that the enterprise network system determines that the first bandwidth obtained by the small base station is currently allocated and the first network load.
  • a bandwidth allocation policy is configured to allocate a part of the available bandwidth in the total bandwidth to the first bandwidth.
  • the wireless network corresponding to the small base station accesses and shares the total bandwidth of the wired network corresponding to the enterprise network by using the fixed and mobile convergence FMC mode.
  • the small base station system interacts with the enterprise network system, so that the enterprise network system allocates the available idle bandwidth in the total bandwidth of the wired network to the bandwidth according to a certain allocation policy according to the current bandwidth information and the network load information of the small base station.
  • the insufficient bandwidth of the small base station corresponds to the first bandwidth, so that the total wired bandwidth of the enterprise network can be balancedly allocated according to the current network load of the small base station, which not only utilizes the bandwidth resources reasonably, but also improves the bandwidth resource utilization, and
  • the fused small base station system and enterprise network system provide service quality assurance.
  • FIG. 10 it is a schematic diagram of a specific application scenario of the bandwidth sharing method in the embodiment of the present invention.
  • the initial bandwidth allocation of the small base station system and the enterprise network system after FMC fusion is implemented.
  • the initial total bandwidth of the wired network corresponding to the enterprise network is 500M
  • the bandwidth allocated by the corresponding wireless network of the small base station in the small base station system is 100M respectively
  • the bandwidth currently allocated by the wired network corresponding to the enterprise network is 200M
  • the specific bandwidth parameters can be flexibly adjusted according to different application scenarios.
  • FIG. 11 is another schematic application scenario of the bandwidth sharing method in the embodiment of the present invention.
  • the enterprise network controller sends the first according to the information interaction interface.
  • the bandwidth required by the small base station 1 and the small base station 2 in FIG. 11 is larger than the bandwidth currently allocated. If the bandwidth requirement of the small base station 3 is smaller than the bandwidth obtained by the current allocation, then part of the idle bandwidth in the small base station 3 or all the free available bandwidth, for example, 80M, is allocated to the small base station 1 and the small base station 2.
  • the small base station 1 and the small base station 2 in the middle obtain 40M, respectively.
  • the specific allocation method may be allocated according to the actual demand ratio, or may be allocated according to the priority of the small base station, and may also be allocated according to a preset algorithm.
  • the specific allocation method is not specifically limited in this application scenario.
  • FIG. 12 it is a schematic diagram of another specific application scenario of the bandwidth sharing method in the embodiment of the present invention.
  • FIG. 12 when it is determined that there is insufficient bandwidth allocated by the small base station in the small base station system.
  • the wired network corresponding to the enterprise network has free available bandwidth, as shown in FIG.
  • the bandwidth required by the small base station 1 and the small base station 2 is greater than the current allocated bandwidth, and at this time, the enterprise If the bandwidth requirement of the wired network corresponding to the industry network is smaller than the bandwidth obtained by the current allocation, then part of the idle available bandwidth of the enterprise network or all the free available bandwidth, for example, 100M, is allocated to the small base station 1 and the small base station 2, and the small base station in this scenario 1 and the small base station 2 respectively obtain 50M, and may be allocated according to the actual demand ratio, or may be allocated according to the priority of the small base station, and may also be allocated according to a preset algorithm.
  • the specific allocation method is not specifically limited in this application scenario.
  • FIG. 13 it is a schematic diagram of another specific application scenario of the bandwidth sharing method in the embodiment of the present invention.
  • FIG. 13 when it is determined that the bandwidth allocated by the enterprise network is insufficient, and the small base station system If there is free available bandwidth in the network, if the bandwidth required by the enterprise network in FIG. 13 is greater than the bandwidth currently allocated, and the current bandwidth requirement of the small base station 2 and the small base station 3 is smaller than the bandwidth currently allocated, the small base station is used.
  • FIG. 14 it is a schematic diagram of another specific application scenario of the bandwidth sharing method in the embodiment of the present invention.
  • the small cell controller and the enterprise network controller can be merged and controlled by the same control. Entity, not limited to the form of independence or combination, is not limited to the name of the controller.
  • the small base station system and the enterprise network system that are integrated by FMC can be uniformly controlled, and the unified dynamic allocation of bandwidth can be performed.
  • the device 10 can include a receiving module 101 and a first distribution module 106, wherein
  • the receiving module 101 is configured to receive a current first network load of the wireless network corresponding to the small base station sent by the small base station system, where the wireless network corresponding to the small base station accesses and shares the wired network corresponding to the enterprise network by using the fixed and mobile convergence FMC mode. Total bandwidth;
  • the first allocation module 106 is configured to: according to the first bandwidth that is currently allocated by the small base station and the first network load, determine that the actual bandwidth requirement of the small base station is greater than the first bandwidth, according to the preset a bandwidth allocation policy that allocates a portion of the total bandwidth in the total bandwidth to the first bandwidth.
  • the bandwidth sharing device 10 may further include: a second allocation module 107, wherein
  • the second allocation module 107 is configured to determine, according to the second bandwidth that is currently allocated by the enterprise network and the current second network load of the wired network corresponding to the enterprise network, that the actual bandwidth requirement of the enterprise network is greater than the In the second bandwidth, a part of the available bandwidth in the total bandwidth is allocated to the second bandwidth according to a preset bandwidth allocation policy.
  • the small base station system includes a plurality of small base stations;
  • the received first network load is a first network load corresponding to each of the multiple small base stations, and the first bandwidth that the small base station currently allocates is The first plurality of small base stations respectively corresponding to the first allocated bandwidth that is currently allocated;
  • the first allocation module 106 is specifically configured to:
  • the multiple small base stations are corresponding according to the first allocation policy.
  • a part of the available bandwidth is allocated to the first bandwidth corresponding to the target small base station, and the target small base station is a small base station whose current actual bandwidth requirement is greater than the corresponding first bandwidth.
  • the device further includes the acquiring module, and the first allocating module 106 is specifically configured to:
  • the second bandwidth and the current second network load of the wired network corresponding to the enterprise network determine that the actual bandwidth requirement of the enterprise network is smaller than the second bandwidth, according to the second allocation policy, the second bandwidth is used. A portion of the available bandwidth is allocated to the first bandwidth.
  • the second distribution module 108 is specifically configured to:
  • the first allocating module 106 is specifically configured to:
  • the total bandwidth corresponding to the multiple small base stations is allocated to the first bandwidth corresponding to each of the plurality of target small base stations according to a ratio between the first network load corresponding to each of the plurality of target small base stations.
  • the bandwidth sharing device 10 may further include: a first determining module 102 and a first triggering module 103, wherein
  • the first determining module 102 is configured to determine whether a preset time point is reached or whether a preset time period is entered;
  • the first triggering module 103 is configured to, when the determination result is yes, trigger to perform, when determining, the actual bandwidth of the small base station according to the first bandwidth that is currently allocated by the small base station and the first network load. When the demand is greater than the first bandwidth, the part of the total bandwidth is allocated to the first bandwidth according to a preset bandwidth allocation policy.
  • the structure of the bandwidth sharing device provided by the present invention may further include: a second determining module 104 and a second triggering module 105,
  • the second determining module 104 is configured to determine whether a preset time point is reached or whether the preset time period is entered;
  • the second triggering module 105 triggers execution of determining the actual bandwidth requirement of the enterprise network according to the second bandwidth currently allocated by the enterprise network and the current second network load of the wired network corresponding to the enterprise network.
  • the second bandwidth is greater than the second bandwidth, the part of the total bandwidth is allocated to the second bandwidth according to a preset bandwidth allocation policy.
  • the bandwidth sharing apparatus 10 may further include: a feedback module 108, wherein
  • the feedback module 108 is configured to feed back the allocated first bandwidth to the small base station system, so that the small base station system performs quality of service QoS control according to the allocated first bandwidth.
  • the enterprise network system receives, by using the bandwidth sharing device, the current first network load of the wireless network corresponding to the small base station sent by the small base station system, and determines according to the first bandwidth that the small base station has currently allocated and the first network load.
  • the actual bandwidth requirement of the small base station is greater than the first bandwidth, part of the available bandwidth in the total bandwidth is allocated to the first bandwidth according to the preset bandwidth allocation policy, where the wireless network corresponding to the small base station is fixed and mobile.
  • FMC mode access and share enterprise network corresponding The total bandwidth of the wired network.
  • the enterprise network system interacts with the small base station system, so that the enterprise network system allocates the available idle bandwidth in the total bandwidth of the wired network to the bandwidth according to a certain allocation policy according to the current bandwidth information and the network load information of the small base station.
  • the insufficient bandwidth of the small base station corresponds to the first bandwidth, so that the total wired bandwidth of the enterprise network can be balancedly allocated according to the current network load of the small base station, which not only utilizes the bandwidth resources reasonably, but also improves the bandwidth resource utilization, and
  • the fused small base station system and enterprise network system provide service quality assurance.
  • the device 20 can include: a sending module 201, wherein
  • the sending module 201 is configured to send, by the small base station system, the current first network load of the wireless network corresponding to the small base station to the enterprise network system, where the wireless network corresponding to the small base station accesses and shares the corresponding enterprise network through the fixed and mobile convergence FMC mode.
  • the total bandwidth of the wired network such that the enterprise network system receives the current first network load of the wireless network corresponding to the small base station sent by the small base station system, and according to the first bandwidth and the number that are currently allocated according to the small base station
  • a network load determines that the actual bandwidth requirement of the small base station is greater than the first bandwidth, a part of the available bandwidth in the total bandwidth is allocated to the first bandwidth according to a preset bandwidth allocation policy.
  • the bandwidth sharing device 20 may further include: a control module 202, where
  • the control module 202 is configured to receive the allocated first bandwidth fed back by the enterprise network system, and perform quality of service QoS control according to the allocated first bandwidth.
  • control module 202 may include: a determining unit 2021 and a control unit 2022, wherein
  • the determining unit 2021 is configured to receive the allocated first bandwidth that is fed back by the enterprise network system, and determine, according to the current network load of the small base station, whether the allocated first bandwidth meets the current actual bandwidth of the small base station. demand;
  • the control unit 2022 is configured to control the number of accessing the user equipment UE in the small base station if the determination result is no, or control the accessed UE to start the preset service according to a preset algorithm.
  • the bandwidth sharing device in the small base station system sends the current first network load of the wireless network corresponding to the small base station to the enterprise network system, so that the enterprise network system obtains the first bandwidth and the number that are currently allocated according to the small base station.
  • a network load determines that the actual bandwidth requirement of the small base station is greater than the first bandwidth
  • the part of the available bandwidth in the total bandwidth is allocated to the first bandwidth according to the preset bandwidth allocation policy, where the wireless network corresponding to the small base station is fixed and The mobile convergence FMC mode accesses and shares the total bandwidth of the wired network corresponding to the enterprise network.
  • the small base station system interacts with the enterprise network system, so that the enterprise network system allocates the available idle bandwidth in the total bandwidth of the wired network to the bandwidth according to a certain allocation policy according to the current bandwidth information and the network load information of the small base station.
  • the insufficient bandwidth of the small base station corresponds to the first bandwidth, so that the total wired bandwidth of the enterprise network can be balancedly allocated according to the current network load of the small base station, which not only utilizes the bandwidth resources reasonably, but also improves the bandwidth resource utilization, and
  • the fused small base station system and enterprise network system provide service quality assurance.
  • the present invention also provides related apparatus for cooperating with the implementation of the above aspects.
  • the following is a detailed description of the structure of the bandwidth sharing control apparatus provided by the present invention shown in FIG. 23:
  • the bandwidth sharing control device 30 includes an input device 301, an output device 302, a memory 303, and a processor 304 (the number of the processors 304 in the bandwidth sharing control device 30 may be one or more, and one processor in FIG. 23 is taken as an example) .
  • the input device 301, the output device 302, the memory 303, and the processor 304 may be connected by a bus or other means, wherein the bus connection is taken as an example in FIG.
  • the memory 303 is configured to store program code
  • the processor 304 is configured to invoke the program code stored in the memory 303 to perform the following steps:
  • the first network load of the wireless network corresponding to the small base station sent by the small base station system is received by the input device 301, and the wireless network corresponding to the small base station accesses and shares the wired network corresponding to the enterprise network by using the fixed and mobile convergence FMC mode. Total bandwidth;
  • the total is A portion of the available bandwidth in the bandwidth is allocated to the first bandwidth.
  • the processor 304 further performs the following steps:
  • the small base station system includes a plurality of small base stations;
  • the received first network load is a first network load corresponding to each of the multiple small base stations, and the first bandwidth that the small base station currently allocates is The plurality of small base stations respectively corresponding to the first bandwidth that has been allocated currently obtained;
  • the processor allocates according to a preset bandwidth.
  • a policy of allocating a portion of the total available bandwidth to the first bandwidth including:
  • the multiple small base stations are corresponding according to the first allocation policy.
  • a part of the available bandwidth is allocated to the first bandwidth corresponding to the target small base station, and the target small base station is a small base station whose current actual bandwidth requirement is greater than the corresponding first bandwidth.
  • the processor 304 allocates a part of the available bandwidth in the total bandwidth to the first bandwidth according to a preset bandwidth allocation policy, including:
  • the processor 304 allocates a part of the available bandwidth in the total bandwidth to the second bandwidth according to a preset bandwidth allocation policy, including:
  • part of the available bandwidth in the first bandwidth is allocated to the In the second bandwidth.
  • the processor 304 follows the first And allocating a part of the available bandwidth in the total bandwidth corresponding to the multiple small base stations to the first bandwidth corresponding to the target small base station, including:
  • the total bandwidth corresponding to the multiple small base stations is The available total bandwidth is allocated to the first bandwidth corresponding to each of the plurality of target small base stations according to a ratio between the first network loads corresponding to the plurality of target small base stations.
  • the processor 304 is configured to determine that the actual bandwidth requirement of the small base station is greater than the first bandwidth according to the first bandwidth that is currently allocated by the small base station and the first network load. Before allocating a part of the available bandwidth in the total bandwidth to the first bandwidth according to a preset bandwidth allocation policy, the method further includes:
  • the processor 304 determines that the actual bandwidth requirement of the enterprise network is greater than the second according to the second bandwidth currently allocated by the enterprise network and the current second network load of the wired network corresponding to the enterprise network
  • the processor 304 according to the preset bandwidth allocation policy, before all the available bandwidth in the total bandwidth is allocated to the second bandwidth, further includes:
  • triggering execution of the enterprise is determined according to the second network load that is currently allocated according to the enterprise network and the current second network load of the wired network corresponding to the enterprise network.
  • the step of allocating part of the available bandwidth in the total bandwidth to the second bandwidth according to a preset bandwidth allocation policy is determined according to the second network load that is currently allocated according to the enterprise network and the current second network load of the wired network corresponding to the enterprise network.
  • processor 304 further performs the following steps:
  • the enterprise network system receives the current first network load of the wireless network corresponding to the small base station sent by the small base station system by using the bandwidth sharing control device, and is obtained according to the current allocation of the small base station.
  • the first bandwidth and the first network load determine that the actual bandwidth requirement of the small base station is greater than the first bandwidth
  • the part of the available bandwidth in the total bandwidth is allocated to the first bandwidth according to the preset bandwidth allocation policy, where the small bandwidth is small.
  • the wireless network corresponding to the base station accesses and shares the total bandwidth of the wired network corresponding to the enterprise network through the fixed and mobile convergence FMC mode.
  • the enterprise network system interacts with the small base station system, so that the enterprise network system allocates the available idle bandwidth in the total bandwidth of the wired network to the bandwidth according to a certain allocation policy according to the current bandwidth information and the network load information of the small base station.
  • the insufficient bandwidth of the small base station corresponds to the first bandwidth, so that the total wired bandwidth of the enterprise network can be balancedly allocated according to the current network load of the small base station, which not only utilizes the bandwidth resources reasonably, but also improves the bandwidth resource utilization, and
  • the fused small base station system and enterprise network system provide service quality assurance.
  • the present invention also provides related equipment for implementing the above solution.
  • the following is a detailed description of the structure of the bandwidth sharing control device provided by the present invention shown in FIG. 24:
  • the bandwidth sharing control device 40 includes an input device 401, an output device 402, a memory 403, and a processor 404 (the number of processors 404 in the bandwidth sharing control device 40 may be one or more, and one processor in FIG. 24 is taken as an example) .
  • the input device 401, the output device 402, the memory 403, and the processor 404 may be connected by a bus or other means, wherein the bus connection is taken as an example in FIG.
  • the memory 403 is configured to store program code
  • the processor 404 is configured to invoke the program code stored in the memory 403 to perform the following steps:
  • the small base station system sends the current first network load of the wireless network corresponding to the small base station to the enterprise network system by using the output device 402, and the wireless network corresponding to the small base station accesses and shares the corresponding enterprise network through the fixed and mobile convergence FMC mode.
  • the total bandwidth of the wired network such that the enterprise network system receives the current first network load of the wireless network corresponding to the small base station sent by the small base station system, and according to the first bandwidth and the number that are currently allocated according to the small base station
  • a network load determines that the actual bandwidth requirement of the small base station is greater than the first bandwidth, a part of the available bandwidth in the total bandwidth is allocated to the first bandwidth according to a preset bandwidth allocation policy.
  • processor 404 further performs the following steps:
  • processor 404 performs quality of service QoS control according to the allocated first bandwidth, including:
  • controlling the number of accessing the user equipment UEs in the small base station, or controlling the accessed UE to start the preset service according to a preset algorithm If not, controlling the number of accessing the user equipment UEs in the small base station, or controlling the accessed UE to start the preset service according to a preset algorithm.
  • the small base station system sends the first network load of the wireless network corresponding to the small base station to the enterprise network system through the bandwidth sharing control device, so that the enterprise network system obtains the first bandwidth and the number that are currently allocated according to the small base station.
  • a network load determines that the actual bandwidth requirement of the small base station is greater than the first bandwidth
  • the part of the available bandwidth in the total bandwidth is allocated to the first bandwidth according to the preset bandwidth allocation policy, where the wireless network corresponding to the small base station is fixed and
  • the mobile convergence FMC mode accesses and shares the total bandwidth of the wired network corresponding to the enterprise network.
  • the small base station system interacts with the enterprise network system, so that the enterprise network system allocates the available idle bandwidth in the total bandwidth of the wired network to the bandwidth according to a certain allocation policy according to the current bandwidth information and the network load information of the small base station.
  • the insufficient bandwidth of the small base station corresponds to the first bandwidth, so that the total wired bandwidth of the enterprise network can be balancedly allocated according to the current network load of the small base station, which not only utilizes the bandwidth resources reasonably, but also improves the bandwidth resource utilization, and
  • the fused small base station system and enterprise network system provide service quality assurance.
  • FIG. 25 is a schematic structural diagram of a bandwidth sharing system provided by the present invention.
  • the system 50 includes: an enterprise network controller 501 and a small base station controller 502, where
  • the enterprise network controller 501 may be the bandwidth sharing control device 30 in the foregoing embodiment of FIG. 23, and the small cell controller 502 may be the bandwidth sharing device 40 in the above-described embodiment of FIG. It can be understood that the system 50 in the embodiment of the present invention may further include a server, a small base station, an enterprise network device, a routing device, a switching device, and a service center.
  • the enterprise network system receives the first network load of the wireless network corresponding to the small base station sent by the small base station system, and the first bandwidth and the first obtained according to the current allocation of the small base station.
  • the network load determines that the actual bandwidth requirement of the small base station is greater than the first bandwidth
  • the part of the available bandwidth in the total bandwidth is allocated to the first bandwidth according to the preset bandwidth allocation policy, where the wireless network corresponding to the small base station is fixed.
  • the total bandwidth of the wired network corresponding to the enterprise network accessed and shared by the mobile convergence FMC mode.
  • the enterprise network system interacts with the small base station system, so that the enterprise network system allocates the available idle bandwidth in the total bandwidth of the wired network to the bandwidth according to a certain allocation policy according to the current bandwidth information and the network load information of the small base station.
  • the insufficient bandwidth of the small base station corresponds to the first bandwidth, so that the total wired bandwidth of the enterprise network can be balancedly allocated according to the current network load of the small base station, which not only utilizes the bandwidth resources reasonably, but also improves the bandwidth resource utilization, and
  • the fused small base station system and enterprise network system provide service quality assurance.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Abstract

本发明实施例公开了一种带宽共享方法、相关装置及系统,其中的方法可包括:接收小基站系统发送的小基站对应的无线网络当前的第一网络负载,所述小基站对应的无线网络通过固定与移动融合FMC方式接入并共享企业网对应的有线网络的总带宽;当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述小基站的实际带宽需求大于所述第一带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第一带宽中。采用本发明可使得通过FMC融合后的小基站系统和企业网系统之间能根据实际的网络负载实现带宽动态分配,提升带宽利用率。

Description

一种带宽共享方法、相关装置及系统 技术领域
本发明涉及通信技术领域,尤其涉及一种带宽共享方法、相关装置及系统。
背景技术
随着3GPP长期演进(Long term evolution,LTE)技术不断的发展和成熟,产生了固定与移动融合(Fixed Mobile Convergence,FMC)的技术,FMC是指将固定网络与移动网络相融合,基于固定和无线技术相结合的方式提供通信业务。
例如,小基站Small Cell与企业网的FMC融合,不仅可以为企业内部提供了更好的网络覆盖,而且还提升了无线数据业务的吸收、扩大了网络容量。但与此同时,融合后的系统也存在如下缺陷:企业网与Small Cell只是单纯的物理融合,实质上并不相关,各自进行相对独立的控制,导致小基站系统与企业网系统之间无法沟通交流。比如在带宽分配问题上,企业网系统在初始时分配给小基站系统的带宽资源是有限且固定的,即小基站系统中的每个小基站在建立之初被分配静态固定带宽,在小基站运行过程中不再改变,而实际上,在小基站运行过程中由于用户分布的动态变化,使得每个小基站需要的带宽资源也是动态变化的,因此很有可能出现初始分配的带宽与当前实际的带宽需求不匹配的情况,然而由于企业网和小基站之间的相对独立,导致小基站出现带宽资源不足或浪费的问题时,企业网系统无法及时获知并解决,最终影响用户体验。
由上述问题可以得出,如何基于Small Cell和企业网的FMC解决方案进一步提升用户服务质量(Quality of Service,QoS)和体验,成为了Small Cell和企业网的融合过程中亟待解决的问题。
发明内容
本发明实施例所要解决的技术问题在于,提供一种带宽共享方法、相关装 置及系统,解决现有技术中通过FMC融合后的小基站系统和企业网系统之间的带宽利用不充分的问题。
第一方面,本发明实施例提供了一种带宽共享方法,可包括:
接收小基站系统发送的小基站对应的无线网络当前的第一网络负载,所述小基站对应的无线网络通过固定与移动融合FMC方式接入并共享企业网对应的有线网络的总带宽;
当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述小基站的实际带宽需求大于所述第一带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第一带宽中。
结合第一方面,在第一种可能的实现方式中,所述方法还包括:当根据所述企业网当前已分配获得的第二带宽和所述企业网对应的有线网络当前的第二网络负载判断出所述企业网的实际带宽需求大于所述第二带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第二带宽中。
结合第一方面,或者结合第一方面的第一种可能的实现方式,在第二种可能的实现方式中,所述小基站系统包括多个小基站;接收的所述第一网络负载为所述多个小基站各自对应的第一网络负载,所述小基站当前已分配获得的第一带宽为所述多个小基站各自对应的当前已分配获得的第一带宽;
所述当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述小基站的实际带宽需求大于所述第一带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第一带宽中,包括:
当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述多个小基站中包含目标小基站时,按照第一分配策略,将所述多个小基站对应的总带宽中的部分可用带宽分配至所述目标小基站对应的第一带宽中,所述目标小基站为当前实际带宽需求大于对应的第一带宽的小基站。
结合第一方面,或者结合第一方面的第一种可能的实现方式,在第三种可能的实现方式中,所述按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第一带宽中,包括:
当根据所述企业网当前已分配获得的第二带宽和所述企业网对应的有线 网络当前的第二网络负载判断出所述企业网的实际带宽需求小于所述第二带宽时,按照第二分配策略,将所述第二带宽中的部分可用带宽分配至所述第一带宽中。
结合第一方面的第一种可能的实现方式,在第四种可能的实现方式中,所述按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第二带宽中,包括:
当根据所述第一带宽和第一网络负载判断出所述小基站的实际带宽需求小于所述第一带宽时,按照第三分配策略,将所述第一带宽中的部分可用带宽分配至所述第二带宽中。
结合第一方面的第二种可能的实现方式,在第五种可能的实现方式中,所述当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述多个小基站中包含目标小基站时,按照第一分配策略,将所述多个小基站对应的总带宽中的部分可用带宽分配至所述目标小基站对应的第一带宽中,包括:
当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述多个小基站中包含多个目标小基站时,将所述多个小基站对应的总带宽中的可用总带宽,按照所述多个目标小基站各自对应的第一网络负载之间的比例值,分配至所述多个目标小基站各自对应的第一带宽中。
结合第一方面,或者结合第一方面的第一种可能的实现方式,或者,结合第一方面的第四种可能的实现方式,在第六种可能的实现方式中,所述当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述小基站的实际带宽需求大于所述第一带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第一带宽中之前,还包括:
判断是否到达预设时间点或是否进入预设时间段;
当判断结果为是时,则触发执行所述当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述小基站的实际带宽需求大于所述第一带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第一带宽中的步骤。
结合第一方面的第一种可能的实现方式,或者结合第一方面的第四种可能 的实现方式,在第七种可能的实现方式中,所述当根据所述企业网当前已分配获得的第二带宽和所述企业网对应的有线网络当前的第二网络负载判断出所述企业网的实际带宽需求大于所述第二带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第二带宽中之前,还包括:
判断是否到达预设时间点或是否进入预设时间段;
当判断结果为是时,则触发执行所述当根据所述企业网当前已分配获得的第二带宽和所述企业网对应的有线网络当前的第二网络负载判断出所述企业网的实际带宽需求大于所述第二带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第二带宽中的步骤。
结合第一方面,或者结合第一方面的第一种可能的实现方式,或者,结合第一方面的第二种可能的实现方式,或者,结合第一方面的第三种可能的实现方式,或者,结合第一方面的第四种可能的实现方式,或者,结合第一方面的第五种可能的实现方式,或者,结合第一方面的第六种可能的实现方式,或者,结合第一方面的第七种可能的实现方式,在第八种可能的实现方式中,所述方法还包括:
将分配后的第一带宽反馈至所述小基站系统,以使得所述小基站系统根据所述分配后的第一带宽进行服务质量QoS控制。
第二方面,本发明实施例提供了一种带宽共享方法,可包括:
小基站系统向企业网系统发送小基站对应的无线网络当前的第一网络负载,所述小基站对应的无线网络通过固定与移动融合FMC方式接入并共享企业网对应的有线网络的总带宽,以使得所述企业网系统接收小基站系统发送的小基站对应的无线网络当前的第一网络负载,当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述小基站的实际带宽需求大于所述第一带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第一带宽中。
结合第二方面,在第一种可能的实现方式中,所述方法还包括:
接收所述企业网系统反馈的分配后的第一带宽,并根据所述分配后的第一带宽进行服务质量QoS控制。
结合第二方面的第一种可能的实现方式,在第二种可能的实现方式中,所述根据所述分配后的第一带宽进行服务质量QoS控制,包括:
根据所述小基站当前的网络负载判断所述分配后的第一带宽是否满足所述小基站当前的实际带宽需求;
若否,控制所述小基站中接入用户设备UE的数目,或者按照预设算法控制已接入UE启动预设业务。
第三方面,本发明实施例提供了一种带宽共享装置,可包括:
接收模块,用于接收小基站系统发送的小基站对应的无线网络当前的第一网络负载,所述小基站对应的无线网络通过固定与移动融合FMC方式接入并共享企业网对应的有线网络的总带宽;
第一分配模块,用于当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述小基站的实际带宽需求大于所述第一带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第一带宽中。
结合第三方面,在第一种可能的实现方式中,所述装置还包括:
第二分配模块,用于当根据所述企业网当前已分配获得的第二带宽和所述企业网对应的有线网络当前的第二网络负载判断出所述企业网的实际带宽需求大于所述第二带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第二带宽中。
结合第三方面,或者结合第三方面的第一种可能的实现方式,在第二种可能的实现方式中,所述小基站系统包括多个小基站;接收的所述第一网络负载为所述多个小基站各自对应的第一网络负载,所述小基站当前已分配获得的第一带宽为所述多个小基站各自对应的当前已分配获得的第一带宽;
所述第一分配模块,具体用于:
当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述多个小基站中包含目标小基站时,按照第一分配策略,将所述多个小基站对应的总带宽中的部分可用带宽分配至所述目标小基站对应的第一带宽中,所述目标小基站为当前实际带宽需求大于对应的第一带宽的小基站。
结合第三方面,或者结合第三方面的第一种可能的实现方式,在第三种可 能的实现方式中,所述装置还包括所述获取模块;
所述第一分配模块,具体用于:
当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述小基站的实际带宽需求大于所述第一带宽,且当根据所述企业网当前已分配获得的第二带宽和所述企业网对应的有线网络当前的第二网络负载判断出所述企业网的实际带宽需求小于所述第二带宽时,按照第二分配策略,将所述第二带宽中的部分可用带宽分配至所述第一带宽中。
结合第三方面的第一种可能的实现方式,在第四种可能的实现方式中,所述第二分配模块,具体用于:
当根据所述企业网当前已分配获得的第二带宽和所述企业网对应的有线网络当前的第二网络负载判断出所述企业网的实际带宽需求大于所述第二带宽,且当根据所述第一带宽和第一网络负载判断出所述小基站的实际带宽需求小于所述第一带宽时,按照第三分配策略,将所述第一带宽中的部分可用带宽分配至所述第二带宽中。
结合第三方面的第二种可能的实现方式,在第五种可能的实现方式中,所述第一分配模块,具体用于:
当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述多个小基站中包含多个目标小基站时,将所述多个小基站对应的总带宽中的可用总带宽,按照所述多个目标小基站各自对应的第一网络负载之间的比例值,分配至所述多个目标小基站各自对应的第一带宽中。
结合第三方面,或者结合第三方面的第一种可能的实现方式,或者,结合第三方面的第四种可能的实现方式,在第六种可能的实现方式中,所述装置,还包括:
第一判断模块,用于判断是否到达预设时间点或是否进入预设时间段;
第一触发模块,用于当判断结果为是时,则触发执行所述当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述小基站的实际带宽需求大于所述第一带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第一带宽中的步骤。
结合第三方面的第一种可能的实现方式,或者结合第三方面的第四种可能 的实现方式,在第七种可能的实现方式中,所述装置,还包括:
第二判断模块,用于判断是否到达预设时间点或是否进入预设时间段;
第二触发模块,用于当判断结果为是时,则触发执行所述当根据所述企业网当前已分配获得的第二带宽和所述企业网对应的有线网络当前的第二网络负载判断出所述企业网的实际带宽需求大于所述第二带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第二带宽中的步骤。
结合第三方面,或者结合第三方面的第一种可能的实现方式,或者,结合第三方面的第二种可能的实现方式,或者,结合第三方面的第三种可能的实现方式,或者,结合第三方面的第四种可能的实现方式,或者,结合第三方面的第五种可能的实现方式,或者,结合第三方面的第六种可能的实现方式,或者,结合第三方面的第七种可能的实现方式,在第八种可能的实现方式中,所述装置还包括:
反馈模块,用于将分配后的第一带宽反馈至所述小基站系统,以使得所述小基站系统根据所述分配后的第一带宽进行服务质量QoS控制。
第四方面,本发明实施例提供了一种带宽共享设备,可包括:
发送模块,用于小基站系统向企业网系统发送小基站对应的无线网络当前的第一网络负载,所述小基站对应的无线网络通过固定与移动融合FMC方式接入并共享企业网对应的有线网络的总带宽,以使得所述企业网系统接收小基站系统发送的小基站对应的无线网络当前的第一网络负载,当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述小基站的实际带宽需求大于所述第一带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第一带宽中。
结合第四方面,在第一种可能的实现方式中,所述设备还包括:
控制模块,用于接收所述企业网系统反馈的分配后的第一带宽,并根据所述分配后的第一带宽进行服务质量QoS控制。
结合第四方面的第一种可能的实现方式,在第二种可能的实现方式中,所述控制模块,包括:
判断单元,用于接收所述企业网系统反馈的分配后的第一带宽,并根据所 述小基站当前的网络负载判断所述分配后的第一带宽是否满足所述小基站当前的实际带宽需求;
控制单元,用于若判断结果为否,控制所述小基站中接入用户设备UE的数目,或者按照预设算法控制已接入UE启动预设业务。
第五方面,本发明实施例提供了一种带宽共享控制装置,可包括:输入装置、输出装置、存储器和处理器;
其中,所述存储器用于存储程序代码,所述处理器用于调用所述存储器存储的程序代码执行如下步骤:
通过所述输入装置接收小基站系统发送的小基站对应的无线网络当前的第一网络负载,所述小基站对应的无线网络通过固定与移动融合FMC方式接入并共享企业网对应的有线网络的总带宽;
当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述小基站的实际带宽需求大于所述第一带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第一带宽中。
结合第五方面,在第一种可能的实现方式中,所述处理器还执行如下步骤:
当根据所述企业网当前已分配获得的第二带宽和所述企业网对应的有线网络当前的第二网络负载判断出所述企业网的实际带宽需求大于所述第二带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第二带宽中。
结合第五方面,或者结合第五方面的第一种可能的实现方式,在第二种可能的实现方式中,所述小基站系统包括多个小基站;接收的所述第一网络负载为所述多个小基站各自对应的第一网络负载,所述小基站当前已分配获得的第一带宽为所述多个小基站各自对应的当前已分配获得的第一带宽;
所述当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述小基站的实际带宽需求大于所述第一带宽时,所述处理器按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第一带宽中,包括:
当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述多个小基站中包含目标小基站时,按照第一分配策略,将所述多个小基 站对应的总带宽中的部分可用带宽分配至所述目标小基站对应的第一带宽中,所述目标小基站为当前实际带宽需求大于对应的第一带宽的小基站。
结合第五方面,或者结合第五方面的第一种可能的实现方式,在第三种可能的实现方式中,所述处理器按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第一带宽中,包括:
当根据所述企业网当前已分配获得的第二带宽和所述企业网对应的有线网络当前的第二网络负载判断出所述企业网的实际带宽需求小于所述第二带宽时,按照第二分配策略,将所述第二带宽中的部分可用带宽分配至所述第一带宽中。
结合第五方面的第一种可能的实现方式,在第四种可能的实现方式中,所述处理器按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第二带宽中,包括:
当根据所述第一带宽和第一网络负载判断出所述小基站的实际带宽需求小于所述第一带宽时,按照第三分配策略,将所述第一带宽中的部分可用带宽分配至所述第二带宽中。
结合第五方面的第二种可能的实现方式,在第五种可能的实现方式中,所述当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述多个小基站中包含目标小基站时,所述处理器按照第一分配策略,将所述多个小基站对应的总带宽中的部分可用带宽分配至所述目标小基站对应的第一带宽中,包括:
当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述多个小基站中包含多个目标小基站时,将所述多个小基站对应的总带宽中的可用总带宽,按照所述多个目标小基站各自对应的第一网络负载之间的比例值,分配至所述多个目标小基站各自对应的第一带宽中。
结合第五方面,或者结合第五方面的第一种可能的实现方式,或者,结合第五方面的第四种可能的实现方式,在第六种可能的实现方式中,所述当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述小基站的实际带宽需求大于所述第一带宽时,所述处理器按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第一带宽中之前,还包括:
判断是否到达预设时间点或是否进入预设时间段;
当判断结果为是时,则触发执行所述所述当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述小基站的实际带宽需求大于所述第一带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第一带宽中的步骤。
结合第五方面的第一种可能的实现方式,或者结合第五方面的第四种可能的实现方式,在第七种可能的实现方式中,所述当根据所述企业网当前已分配获得的第二带宽和所述企业网对应的有线网络当前的第二网络负载判断出所述企业网的实际带宽需求大于所述第二带宽时,所述处理器按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第二带宽中之前,还包括:
判断是否到达预设时间点或是否进入预设时间段;
当判断结果为是时,则触发执行所述当根据所述当根据所述企业网当前已分配获得的第二带宽和所述企业网对应的有线网络当前的第二网络负载判断出所述企业网的实际带宽需求大于所述第二带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第二带宽中的步骤。
结合第五方面,或者结合第五方面的第一种可能的实现方式,或者,结合第五方面的第二种可能的实现方式,或者,结合第五方面的第三种可能的实现方式,或者,结合第五方面的第四种可能的实现方式,或者,结合第五方面的第五种可能的实现方式,或者,结合第五方面的第六种可能的实现方式,或者,结合第五方面的第七种可能的实现方式,在第八种可能的实现方式中,所述处理器还执行如下步骤:
通过所述输出装置将分配后的第一带宽反馈至所述小基站系统,以使得所述小基站系统根据所述分配后的第一带宽进行服务质量QoS控制。
第六方面,本发明实施例提供了一种带宽共享控制设备,可包括:输入装置、输出装置、存储器和处理器;
其中,所述存储器用于存储程序代码,所述处理器用于调用所述存储器存储的程序代码执行如下步骤:
小基站系统通过所述输出装置向企业网系统发送小基站对应的无线网络 当前的第一网络负载,所述小基站对应的无线网络通过固定与移动融合FMC方式接入并共享企业网对应的有线网络的总带宽,以使得所述企业网系统接收小基站系统发送的小基站对应的无线网络当前的第一网络负载,当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述小基站的实际带宽需求大于所述第一带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第一带宽中。
结合第六方面,在第一种可能的实现方式中,所述处理器还执行如下步骤:
通过所述输入装置接收所述企业网系统反馈的分配后的第一带宽,并根据所述分配后的第一带宽进行服务质量QoS控制。
结合第六方面的第一种可能的实现方式,在第二种可能的实现方式中,所述处理器根据所述分配后的第一带宽进行服务质量QoS控制,包括:
根据所述小基站当前的网络负载判断所述分配后的第一带宽是否满足所述小基站当前的实际带宽需求;
若否,控制所述小基站中接入用户设备UE的数目,或者按照预设算法控制已接入UE启动预设业务。
第七方面,本发明实施例提供了一种带宽共享系统,可包括企业网控制器和小基站控制器,其中
所述企业网控制器为结合第五方面,或者结合第五方面的第一种可能的实现方式、或者结合第五方面的第二种可能的实现方式、或者结合第五方面的第三种可能的实现方式、或者结合第五方面的第四种可能的实现方式、或者结合第五方面的第五种可能的实现方式、或者结合第五方面的第六种可能的实现方式、或者结合第五方面的第七种可能的实现方式、或者结合第五方面的第八种可能的实现方式中的带宽共享控制装置;
所述小基站控制器为结合第六方面,或者结合第六方面的第一种可能的实现方式、或者结合第六方面的第二种可能的实现方式中的带宽共享控制设备。
本发明实施例,企业网系统通过接收小基站系统发送的小基站对应的无线网络当前的第一网络负载,当根据小基站当前已分配获得的第一带宽和该第一 网络负载判断出小基站的实际带宽需求大于该第一带宽时,则按照预设带宽分配策略,将总带宽中的部分可用带宽分配至该第一带宽中,其中小基站对应的无线网络通过固定与移动融合FMC方式接入并共享企业网对应的有线网络的总带宽。即企业网系统通过与小基站系统之间的信息交互,使得企业网系统根据小基站当前的带宽信息和网络负载信息,将有线网络的总带宽中的可用空闲带宽按照一定的分配策略分配到带宽不足的小基站对应的第一带宽中,从而使得企业网络的有线总带宽可以根据小基站当前的网络负载情况得到均衡的分配,不仅合理地利用了带宽资源,提高了带宽资源利用率,而且为融合后的小基站系统和企业网系统提供了服务质量保证。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明提供的小基站系统与企业网系统的FMC融合的网络架构示意图;
图2是本发明提供的一种带宽共享方法的流程示意图;
图3是本发明提供的另一种带宽共享方法流程示意图;
图4是本发明提供的又一种带宽共享方法的流程示意图;
图5是本发明提供的又一种带宽共享方法的流程示意图;
图6是本发明提供的又一种带宽共享方法的流程示意图;
图7是本发明提供的又一种带宽共享方法的流程示意图;
图8是本发明提供的又一种带宽共享方法的流程示意图;
图9是本发明提供的又一种带宽共享方法的流程示意图;
图10是本发明实施例中带宽共享方法的一个具体应用场景示意图;
图11是本发明实施例中带宽共享方法的另一个具体应用场景示意图;
图12是本发明实施例中带宽共享方法的又一个具体应用场景示意图;
图13是本发明实施例中带宽共享方法的又一个具体应用场景示意图;
图14是本发明实施例中带宽共享方法的又一个具体应用场景示意图;
图15是本发明提供的带宽共享装置的一实施例的结构示意图;
图16是本发明提供的带宽共享装置另一实施例的结构示意图;
图17是本发明提供的带宽共享装置又一实施例的结构示意图;
图18是本发明提供的带宽共享装置又一实施例的结构示意图;
图19是本发明提供的带宽共享装置又一实施例的结构示意图;
图20是本发明提供的带宽共享设备的一实施例的结构示意图;
图21是本发明提供的带宽共享设备的另一实施例的结构示意图;
图22是本发明提供的控制模块的结构示意图;
图23是本发明提供的带宽共享控制装置的结构示意图;
图24是本发明提供的带宽共享控制设备的结构示意图;
图25是本发明提供的带宽共享系统的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了便于理解本发明实施例,下面先对本发明实施例所基于的小基站系统与企业网系统的FMC融合的网络构架进行描述。请参阅图1,图1是小基站系统与企业网系统的FMC融合的网络架构示意图,如图1所示,小基站系统和企业网系统通过FMC方式进行融合,其中,小基站系统通过FMC方式接入并共享企业网系统的网络资源,即小基站对应的无线网络接入并共享企业网对应的有线网络的总带宽资源。小基站系统中的小基站和小基站控制器通过路由设备接入企业网系统,需要说明的是,其中小基站也可通过交换设备接入企业网系统;企业网系统中的企业网控制器则负责通过传输网络接入到互联网或移动核心网。其中,基站控制器通常控制多个小基站,其主要功能是进行无线资源的管 理和协同,并为本控制区内的小基站的小区切换进行控制等。可以理解的是,本发明中的小基站的具体类型和所支持的业务类型可根据实际的应用需求不同而不同,本发明不作具体限定。可以理解的是,以上图1中的网络架构只是本发明实施例中较优的一种实施方式,本发明实施例中的网络架构包括但不仅限于以上网络架构,只要能够实现小基站系统与企业网系统FMC融合的网络架构均属于本发明所保护和涵盖的范围。
需要说明的是,现有技术中FMC既有网络层面的融合,也有业务层面的融合,还有终端层面的融合,主要包括网络融合、业务融合、管理支撑平台融合、运营管理方式融合和管制政策融合等。而本发明中的所基于的FMC融合主要为网络融合,是指建设单一的核心网络和相关处理器及系统,同时用于固定接入网和移动接入网,而本发明中的企业网对应的有线网络即为固定接入网,小基站对应的无线网络即为移动接入网。
还需要说明的是,本发明实施例中的用户设备UE包括但不限于可以通过无线方式与小基站或其它网络接入设备进行通信交互的智能手机、平板电脑、媒体播放器、智能电视、智能手环、智能穿戴设备、MP3播放器(Moving Picture Experts Group Audio Layer III,动态影像专家压缩标准音频层面3)、MP4(Moving Picture Experts Group Audio Layer IV,动态影像专家压缩标准音频层面3)播放器、个人数字助理(Personal Digital Assistant,PDA)和膝上型便携计算机等通信设备。
还需要强调说明的是,本发明实施例中,具体的应用场景包括但不仅限于企业网、校园网、家庭局域网、商场局域网或体育中心局域网等各类应用场景,本发明实施例中将主要以企业网应用场景进行详细阐述和说明。
参见图2,是本发明实施例中的一种带宽共享方法的流程示意图,下面将结合附图2从企业网系统中的企业网控制器侧进行描述,如图2所示,该方法可以包括以下步骤S201-步骤S202。
S201:接收小基站系统发送的小基站对应的无线网络当前的第一网络负载。
具体地,企业网系统中的企业网控制器接收小基站系统中小基站控制器通 过信息交互接口发送的小基站对应的无线网络当前的第一网络负载。其中,小基站对应的无线网络通过固定与移动融合FMC方式接入并共享企业网对应的有线网络的总带宽。需要说明的是,小基站对应的无线网络可包括移动无线网络和无线宽带网络,即包含了LTE、通用移动通信系统(Universal Mobile Telecommunications System,UMTS)和Wi-Fi等无线通信网络。还需要说明的是,网络负载与实际带宽需求之间成正比关系,更具体地,可设置相关的计算公式和相关参数,进行网络负载和当前带宽需求之间的具体计算,本发明对具体的计算方式不作具体限定。
进一步地,企业网控制器还可以接收小基站系统发送的其它可以体现小基站当前带宽需求的信息,例如小基站中接入用户的数目、业务数据的请求量或数据的总流量等,或者也可以直接接收小基站当前已计算出的带宽需求值或所能提供的空闲可用带宽值等,企业网控制器便可以根据该信息进行小基站的带宽需求的计算与分配。
S202:当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述小基站的实际带宽需求大于所述第一带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第一带宽中。
具体地,由于小基站的带宽和企业网的带宽都由企业网控制器进行分配和管理,所以企业网控制器可以随时获取小基站和企业网当前的已分配获得的带宽,即相关的带宽的信息都属于企业网自身可获取的信息。可以理解的是,由于小基站控制器负责小基站的无线资源的管理与协同,对于其管理的小基站当前已分配获得的第一带宽是可以获知的,即第一带宽的信息也可以是小基站控制器发送给企业网控制器的。当企业网控制器根据步骤S201中接收获得的第一网络负载和从自身获取的小基站的第一带宽,判断出小基站的实际带宽需求大于第一带宽时,按照预先设置好的带宽分配策略,将企业网的有线网络的总带宽中的部分或者是全部的可用带宽,通过配置不同小基站对应不同的带宽分配端口号的带宽参数的方式,分配到第一带宽中,从而产生重新分配后的第一带宽。更具体地,当有多个小基站时,可以是从其它有空闲可用带宽的小基站的第一带宽中的部分带宽,也可以是从企业网对应的有线网络当前分配的带宽中的空闲可用带宽中获取。还可以理解的是,总带宽中的部分可用带宽可包括 小基站对应的无线网络的空闲可用带宽和企业网对应的有线网络中的空闲可用带宽。分配策略可根据网络负载之间的比例值进行分配,也可以根据小基站的优先级或者是企业网的优先级进行分配,还可以通过预设的计算公式提前估算无线网络或者有线网络所需要的带宽值。
再进一步地,本方法步骤的执行可以是周期性的执行,也可以是在预设时间点或者是时间段才执行,例如在工作时间或者用餐时间,分别有针对性和目的性的调整无线网络和有线网络的带宽分配,从而满足用户在实际场景中的实际需求。更具体地,例如在公司内部,工作时间段内有线网络的网络负载较大,需求的带宽较多;而在用餐时间段内无线网络的网络负载较大,需求带宽较大,而其中餐厅对应的小基站的无线网络负载最大,在此种应用场景中,则可将有线网络中的空闲可用带宽更多的分配给餐厅中的小基站对应的无线网络,即将时间的判断和网络负载的判断进行结合,可达到更好的带宽共享效果,提升用户体验。
需要说明的是,关于具体分配多少的部分可用带宽到第一带宽中,是根据预设分配策略计算得到,本发明对具体的分配策略计算公式不作具体限定,只要是能够通过带宽调整均衡网络负载的算法均属于本发明所保护涵盖的范围。
本发明实施例,企业网系统通过接收小基站系统发送的小基站对应的无线网络当前的第一网络负载,当根据小基站当前已分配获得的第一带宽和该第一网络负载判断出小基站的实际带宽需求大于该第一带宽时,则按照预设带宽分配策略,将总带宽中的部分可用带宽分配至该第一带宽中,其中小基站对应的无线网络通过固定与移动融合FMC方式接入并共享企业网对应的有线网络的总带宽。即企业网系统通过与小基站系统之间的信息交互,使得企业网系统根据小基站当前的带宽信息和网络负载信息,将有线网络的总带宽中的可用空闲带宽按照一定的分配策略分配到带宽不足的小基站对应的第一带宽中,从而使得企业网络的有线总带宽可以根据小基站当前的网络负载情况得到均衡的分配,不仅合理地利用了带宽资源,提高了带宽资源利用率,而且为融合后的小基站系统和企业网系统提供了服务质量保证。
参见图3,是本发明实施例中的另一种带宽共享方法的流程示意图,下面 将结合附图3从企业网系统中的企业网控制器侧进行描述,如图3所示,该方法可以包括以下步骤S301-步骤S304。
步骤S301:接收小基站系统发送的小基站对应的无线网络当前的第一网络负载。
步骤S302:当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述小基站的实际带宽需求大于所述第一带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第一带宽中。
具体地,步骤S301至步骤S302可参考上述图2实施例中的步骤S201至步骤S202,这里不再赘述。
步骤S303:当根据所述企业网当前已分配获得的第二带宽和所述企业网对应的有线网络当前的第二网络负载判断出所述企业网的实际带宽需求大于所述第二带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第二带宽中。
具体地,企业网系统中的企业控制器也可以获取自身的当前已分配获得的第二带宽和当前的网络负载等信息,从而可以更精确地在整个融合后的系统中进行带宽的分配、调整与共享。进一步地,还企业网控制器还可以获取其它可以体现企业网当前带宽需求的信息,例如企业网中接入设备的数目、业务数据的请求量或数据的总流量等,或者也可以直接获取企业网当前已计算出的带宽需求值或所能提供的空闲可用带宽值等,并最终可以根据以上信息进行企业网的带宽需求的计算与分配。
本发明实施例中,当企业网控制器根据企业网当前已分配获得的第二带宽和企业网对应的有线网络当前的第二网络负载,判断出企业网的实际带宽需求大于当前分配获得的第二带宽时,则按照预设带宽分配策略,将总带宽中的部分可用带宽分配至第二带宽中,具体的分配方式则是通过企业网控制器,重新调整需要调整的带宽的端口号对应的分配带宽参数。可以理解的是,此时的总带宽中的可用带宽主要来源于小基站系统中的小基站对应的可用空闲带宽;还可以理解的是,也可以是,在小基站系统和企业网系统融合之初,就预留的部分备用带宽,则可以在小基站或者是企业网需要带宽时将该备用带宽进行动态分配。
再进一步地,本方法步骤的执行可以是周期性的执行,也可以是在预设时间点或者是时间段才执行,在一些应用场景中可以减少带宽计算分配等动作执行产生的功耗。
需要说明的是,步骤S303可以在步骤S301和/或步骤S302之前执行,也可以是同时执行,还可以是之后执行,具体的执行顺序本发明不作具体限定。
本方法步骤的执行不仅可以让总带宽中的空闲可用带宽,在小基站系统中的小基站对应的无线网络的之间根据实际带宽需求得到重新分配,同时也让企业网对应的有线网络的带宽可以根据实际带宽需求得到重新分配,即本发明实施例中,可以在整个FMC融合后的系统中,根据系统中的有线网络或无线网络的实际网络负载,相应的分配实际需要的带宽,从而使得总带宽中的空闲可用带宽可根据实际的网络负载进行动态调整。
步骤S304:将分配后的第一带宽反馈至所述小基站系统,以使得所述小基站系统根据所述分配后的第一带宽进行服务质量QoS控制。
具体地,企业网控制器将步骤S302中调整之后的第一带宽信息反馈至小基站系统,以使得小基站系统可以将更新后的第一带宽作为参数进行服务质量(Quality of Service,QoS)的控制,例如控制用户的业务类型或者是用户接入数量等,从而为企业网系统和小基站系统的网络通信提供更好的服务能力,解决网络延迟和阻塞等问题,避免当网络过载或拥塞时,能确保重要业务量不受延迟或丢弃,同时保证网络的高效运行。
本发明实施例,企业网系统通过接收小基站系统发送的小基站对应的无线网络当前的第一网络负载,当根据小基站当前已分配获得的第一带宽和该第一网络负载判断出小基站的实际带宽需求大于该第一带宽时,则按照预设带宽分配策略,将总带宽中的部分可用带宽分配至该第一带宽中,其中小基站对应的无线网络通过固定与移动融合FMC方式接入并共享企业网对应的有线网络的总带宽。即企业网系统通过与小基站系统之间的信息交互,使得企业网系统根据小基站当前的带宽信息和网络负载信息,将有线网络的总带宽中的可用空闲带宽按照一定的分配策略分配到带宽不足的小基站对应的第一带宽中,从而使得企业网络的有线总带宽可以根据小基站当前的网络负载情况得到均衡的分配,不仅合理地利用了带宽资源,提高了带宽资源利用率,而且为融合后的小 基站系统和企业网系统提供了服务质量保证。
参见图4,是本发明实施例中的又一种带宽共享方法的流程示意图,下面将结合附图4从企业网系统中的企业网控制器侧进行描述,如图4所示,该方法可以包括以下步骤S401-步骤S404。
步骤S401:接收小基站系统发送的小基站对应的无线网络当前的第一网络负载。
具体地,步骤S401可参考上述图2实施例中的步骤S201,这里不再赘述。
步骤S402:当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述多个小基站中包含目标小基站时,按照第一分配策略,将所述多个小基站对应的总带宽中的部分可用带宽分配至所述目标小基站对应的第一带宽中。
具体地,当小基站系统中包含多个小基站时,接收的所述第一网络负载为多个小基站各自对应的第一网络负载,小基站当前已分配获得的第一带宽为多个小基站各自对应的当前已分配获得的第一带宽。所述目标小基站为当前实际带宽需求大于对应的第一带宽的小基站。当企业网控制器根据多个小基站各自对应的第一带宽和第一网络负载判断出多个小基站中包含有当前实际带宽需求大于对应的第一带宽的目标小基站时,即判断出多个小基站中有小基站需要进行带宽调整时,将小基站系统对应的无线网络的总带宽,此实施例中为所有小基站中总的空闲带宽,按照第一分配策略,将该总的空闲可用带宽中的部分甚至全部空闲可用带宽分配到当前带宽不足的目标小基站中。当目标小基站为多个时,具体的分配策略可以是按照网络负载的比例值,将该总的空闲带宽按照比例值进行分配,也可以是按照小基站的预设优先级进行需求先后的分配。
可以理解的是,本发明中也可以将总带宽中的空闲可用带宽按照目标小基站的网络负载之间的比例值,分配至多个目标小基站中。
步骤S403:当根据所述企业网当前已分配获得的第二带宽和所述企业网对应的有线网络当前的第二网络负载判断出所述企业网的实际带宽需求大于所述第二带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第二带宽中。
步骤S404:将分配后的第一带宽反馈至所述小基站系统,以使得所述小基站系统根据所述分配后的第一带宽进行服务质量QoS控制。
具体地,步骤S403至步骤S404可参考上述图3实施例中的步骤S303至步骤S304,这里不再赘述。
本发明实施例,企业网系统通过接收小基站系统发送的小基站对应的无线网络当前的第一网络负载,当根据小基站当前已分配获得的第一带宽和该第一网络负载判断出小基站的实际带宽需求大于该第一带宽时,则按照预设带宽分配策略,将总带宽中的部分可用带宽分配至该第一带宽中,其中小基站对应的无线网络通过固定与移动融合FMC方式接入并共享企业网对应的有线网络的总带宽。即企业网系统通过与小基站系统之间的信息交互,使得企业网系统根据小基站当前的带宽信息和网络负载信息,将有线网络的总带宽中的可用空闲带宽按照一定的分配策略分配到带宽不足的小基站对应的第一带宽中,从而使得企业网络的有线总带宽可以根据小基站当前的网络负载情况得到均衡的分配,不仅合理地利用了带宽资源,提高了带宽资源利用率,而且为融合后的小基站系统和企业网系统提供了服务质量保证。
参见图5,是本发明实施例中的又一种带宽共享方法的流程示意图,下面将结合附图5从企业网系统中的企业网控制器侧进行描述,如图5所示,该方法可以包括以下步骤S501-步骤S502。
步骤S501:接收小基站系统发送的小基站对应的无线网络当前的第一网络负载。
具体地,步骤S501可参考上述图2实施例中的步骤S201,这里不再赘述。
步骤S502:当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述小基站的实际带宽需求大于所述第一带宽,且当根据所述企业网当前已分配获得的第二带宽和所述企业网对应的有线网络当前的第二网络负载判断出所述企业网的实际带宽需求小于所述第二带宽时,按照第二分配策略,将所述第二带宽中的部分可用带宽分配至所述第一带宽中。
具体地,当判断出小基站系统中的小基站带宽不足时,且企业网的带宽有空闲可用时,则可将企业网中的部分甚至全部的空闲可以带宽分配给第一带宽 使用,以均衡网络负载。需要说明的是,本发明实施例中的企业网控制器接收小基站的第一网络负载和获取自身的第二带宽、第二网络负载和小基站的第一带宽的执行顺序不分先后,可以是同时,也可以有先后,但需要保证,第一带宽及第一网络负载和第二带宽及第二网络负载是针对同一个时间点或者同一个时间段的,否则会导致失去了信息的实时性价值。
更进一步地,当根据所述第二带宽和第二网络负载判断出所述企业网的实际带宽需求大于所述第二带宽时,且当根据所述第一带宽和第一网络负载判断出所述多个小基站中包含多个目标小基站时,将所述总带宽中的可用总带宽,按照所述第二网络负载和所述多个目标小基站各自对应的第一网络负载之间的比例值,分配至所述第二带宽和所述多个目标小基站各自对应的第一带宽中;
再进一步地,当根据所述第二带宽和第二网络负载判断出所述企业网的实际带宽需求小于所述第二带宽时,且当根据所述第一带宽和第一网络负载判断出所述多个小基站中包含多个目标小基站时,将所述总带宽中的可用总带宽,按照所述多个目标小基站各自对应的第一网络负载之间的比例值,分配至所述多个所述多个目标小基站各自对应的第一带宽中。
本发明实施例,企业网系统通过接收小基站系统发送的小基站对应的无线网络当前的第一网络负载,当根据小基站当前已分配获得的第一带宽和该第一网络负载判断出小基站的实际带宽需求大于该第一带宽时,则按照预设带宽分配策略,将总带宽中的部分可用带宽分配至该第一带宽中,其中小基站对应的无线网络通过固定与移动融合FMC方式接入并共享企业网对应的有线网络的总带宽。即企业网系统通过与小基站系统之间的信息交互,使得企业网系统根据小基站当前的带宽信息和网络负载信息,将有线网络的总带宽中的可用空闲带宽按照一定的分配策略分配到带宽不足的小基站对应的第一带宽中,从而使得企业网络的有线总带宽可以根据小基站当前的网络负载情况得到均衡的分配,不仅合理地利用了带宽资源,提高了带宽资源利用率,而且为融合后的小基站系统和企业网系统提供了服务质量保证。
参见图6,是本发明实施例中的又一种带宽共享方法的流程示意图,下面将结合附图6从企业网系统中的企业网控制器侧进行描述,如图6所示,该方 法可以包括以下步骤S601-步骤S604。
步骤S601:接收小基站系统发送的小基站对应的无线网络当前的第一网络负载。
具体地,步骤S601可参考上述图2实施例中的步骤S201,这里不再赘述。
步骤S602:当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述多个小基站中包含目标小基站时,按照第一分配策略,将所述多个小基站对应的总带宽中的部分可用带宽分配至所述目标小基站对应的第一带宽中。
具体地,步骤S601至步骤S602可参考上述图4实施例中的步骤S401至步骤S402,这里不再赘述。
步骤S603:当根据所述企业网当前已分配获得的第二带宽和所述企业网对应的有线网络当前的第二网络负载判断出所述企业网的实际带宽需求大于所述第二带宽,且当根据所述第一带宽和第一网络负载判断出所述小基站的实际带宽需求小于所述第一带宽时,按照第三分配策略,将所述第一带宽中的部分可用带宽分配至所述第二带宽中。
具体地,当企业网控制器根据第二带宽和第二网络负载,判断出企业网的带宽不足并且小基站系统中的小基站有空闲可用带宽时,则将该小基站中的空闲带宽种的部分带宽或者全部空闲可用带宽,按照第三分配策略分配给企业网对应的有线网络当前分配获得的第二带宽中,以分担企业网当前的网络负载压力。
可以理解的是,本发明中所提及的第一分配策略、第二分配策略或第三分配策略,可以是相同的也可以是不同的,本发明不做具体限定。
步骤S604:将分配后的第一带宽反馈至所述小基站系统,以使得所述小基站系统根据所述分配后的第一带宽进行服务质量QoS控制。
具体地,步骤S604可参考上述图3实施例中的步骤S304,这里不再赘述。
本发明实施例,企业网系统通过接收小基站系统发送的小基站对应的无线网络当前的第一网络负载,当根据小基站当前已分配获得的第一带宽和该第一网络负载判断出小基站的实际带宽需求大于该第一带宽时,则按照预设带宽分配策略,将总带宽中的部分可用带宽分配至该第一带宽中,其中小基站对应的 无线网络通过固定与移动融合FMC方式接入并共享企业网对应的有线网络的总带宽。即企业网系统通过与小基站系统之间的信息交互,使得企业网系统根据小基站当前的带宽信息和网络负载信息,将有线网络的总带宽中的可用空闲带宽按照一定的分配策略分配到带宽不足的小基站对应的第一带宽中,从而使得企业网络的有线总带宽可以根据小基站当前的网络负载情况得到均衡的分配,不仅合理地利用了带宽资源,提高了带宽资源利用率,而且为融合后的小基站系统和企业网系统提供了服务质量保证。
参见图7,是本发明实施例中的又一种带宽共享方法的流程示意图,下面将结合附图7从企业网系统中的企业网控制器侧进行描述,如图7所示,该方法可以包括以下步骤S701-步骤S707。
步骤S701:接收小基站系统发送的小基站对应的无线网络当前的第一网络负载。
具体地,步骤S701可参考上述图2实施例中的步骤S201,这里不再赘述。
步骤S702:判断是否到达预设时间点或是否进入预设时间段。
具体地,企业网控制器判断是否到达预设时间点或者是否进入预设时间段。该预设时间点和预设时间段可以是根据融合后的系统以往的带宽需求历史记录计算总结得出的,也可以是根据网络管理人员的观察或常识进行设定的。预设时间点或预设时间段的设置可以灵活的改变和优化。需要说明的是,步骤S701和步骤S702的执行顺序也可以灵活变化的,例如先判断是否达到时间点或时间段再执行接收第一网络负载的动作,本发明不作具体限定。
步骤S703:当判断结果为是时,则触发执行所述当判断结果为是时,则触发执行所述当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述小基站的实际带宽需求大于所述第一带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第一带宽中的步骤。
具体地,根据步骤S702的判断结果,当结果为是时,则触发执行当根据第一带宽和第一网络负载判断出小基站的实际带宽需求大于第一带宽时,按照预设带宽分配策略,将总带宽中的部分可用带宽分配至所述第一带宽中的步骤。更具体地,可参考上述图2实施例中的步骤S202,这里不再赘述。
由于本方法步骤是基于对时间的判断,适用于在固定时间点或时间段时无线数据业务比较集中的场所进行,可节约非预设时间点或者时间段的判断计算,只在预定时间点或者预定时间段进行带宽分配的判断和计算,节省企业网控制器和小基站控制器的功耗和计算量等。
步骤S704:判断是否到达预设时间点或是否进入预设时间段。
具体地,企业网控制器判断是否到达预设时间点或者是否进入预设时间段。该预设时间点和预设时间段可以是根据融合后的系统以往的带宽需求历史记录计算总结得出的,也可以是根据网络管理人员的观察或常识进行设定的。预设时间点或预设时间段的设置可以灵活的改变和优化。需要说明的是,本步骤S704中的时间点或时间段的判断和步骤S702中的时间点或时间段的判断可以是属于同时执行的同一个步骤,也可以是分别分开独立执行的不同步骤,本发明不作具体限定。
步骤S705:当判断结果为是时,则触发执行所述当根据所述企业网当前已分配获得的第二带宽和所述企业网对应的有线网络当前的第二网络负载判断出所述企业网的实际带宽需求大于所述第二带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第二带宽中的步骤。
具体地,根据步骤S704的判断结果,当结果为是时,则触发执行当根据第二带宽和第二网络负载判断出企业网的实际带宽需求大于第二带宽时,按照预设带宽分配策略,将总带宽中的部分可用带宽分配至第二带宽中的步骤。更具体地,可参考上述图3实施例中的步骤S303,这里不再赘述。
由于本方法步骤是基于对时间的判断,适用于在固定时间点或时间段时有线数据业务比较集中的场所进行,可节约非预设时间点或者时间段的判断计算,只在预定时间点或者预定时间段进行带宽分配的判断和计算,节省企业网控制器和小基站控制器的功耗和计算量等。
步骤S706:将分配后的第一带宽反馈至所述小基站系统,以使得所述小基站系统根据所述分配后的第一带宽进行服务质量QoS控制。
具体地,步骤S706可参考上述图3实施例中的步骤S304,这里不再赘述。
本发明实施例,企业网系统通过接收小基站系统发送的小基站对应的无线网络当前的第一网络负载,当根据小基站当前已分配获得的第一带宽和该第一 网络负载判断出小基站的实际带宽需求大于该第一带宽时,则按照预设带宽分配策略,将总带宽中的部分可用带宽分配至该第一带宽中,其中小基站对应的无线网络通过固定与移动融合FMC方式接入并共享企业网对应的有线网络的总带宽。即企业网系统通过与小基站系统之间的信息交互,使得企业网系统根据小基站当前的带宽信息和网络负载信息,将有线网络的总带宽中的可用空闲带宽按照一定的分配策略分配到带宽不足的小基站对应的第一带宽中,从而使得企业网络的有线总带宽可以根据小基站当前的网络负载情况得到均衡的分配,不仅合理地利用了带宽资源,提高了带宽资源利用率,而且为融合后的小基站系统和企业网系统提供了服务质量保证。
参见图8,是本发明实施例中的又一种带宽共享方法的流程示意图,下面将结合附图8从小基站系统中的小基站控制器和企业网系统中的企业网控制器的交互侧进行描述,如图8所示,该方法可以包括以下步骤S801-步骤S804。
步骤S801:小基站系统向企业网系统发送小基站对应的无线网络当前的第一网络负载。
具体地,小基站系统通过小基站控制器向企业网系统中的企业网控制器发送小基站对应的无线网络当前的第一网络负载,所述小基站对应的无线网络通过固定与移动融合FMC方式接入并共享企业网对应的有线网络的总带宽,以使得所述企业网系统接收小基站系统发送的小基站对应的无线网络当前的第一网络负载,当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述小基站的实际带宽需求大于所述第一带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第一带宽中。更具体地,可在小基站控制器和企业网的控制器中分别增加信息交互接口。以便于双方的信息交互。
步骤S802:接收小基站系统发送的小基站对应的无线网络当前的第一网络负载。
步骤S803:当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述小基站的实际带宽需求大于所述第一带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第一带宽中。
步骤S804:当根据所述企业网当前已分配获得的第二带宽和所述企业网对应的有线网络当前的第二网络负载判断出所述企业网的实际带宽需求大于所述第二带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第二带宽中。
具体地,步骤S802至步骤S804可以对应参考图2至图7中方法实施例中的实施方式,这里不再赘述。
本发明实施例,小基站系统通过向企业网系统发送小基站对应的无线网络当前的第一网络负载,使得企业网系统在根据小基站当前已分配获得的第一带宽和该第一网络负载判断出小基站的实际带宽需求大于第一带宽时,则按照预设带宽分配策略,将总带宽中的部分可用带宽分配至第一带宽中,其中小基站对应的无线网络通过固定与移动融合FMC方式接入并共享企业网对应的有线网络的总带宽。即小基站系统通过与企业网系统之间的信息交互,使得企业网系统根据小基站当前的带宽信息和网络负载信息,将有线网络的总带宽中的可用空闲带宽按照一定的分配策略分配到带宽不足的小基站对应的第一带宽中,从而使得企业网络的有线总带宽可以根据小基站当前的网络负载情况得到均衡的分配,不仅合理地利用了带宽资源,提高了带宽资源利用率,而且为融合后的小基站系统和企业网系统提供了服务质量保证。
参见图9,是本发明实施例中的又一种带宽共享方法的流程示意图,下面将结合附图9从小基站系统中的小基站控制器和企业网系统中的企业网控制器的交互侧进行描述,如图9所示,该方法可以包括以下步骤S901-步骤S906。
步骤S901:小基站系统向企业网系统发送小基站对应的无线网络当前的第一网络负载。
具体地,步骤S901可参考上述图8实施例中的步骤S801,这里不再赘述。
步骤S902:接收小基站系统发送的小基站对应的无线网络当前的第一网络负载。
步骤S903:当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述小基站的实际带宽需求大于所述第一带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第一带宽中。
步骤S904:当根据所述企业网当前已分配获得的第二带宽和所述企业网对应的有线网络当前的第二网络负载判断出所述企业网的实际带宽需求大于所述第二带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第二带宽中。
步骤S905:将分配后的第一带宽反馈至所述小基站系统,以使得所述小基站系统根据所述分配后的第一带宽进行服务质量QoS控制。
具体地,步骤S902至步骤S905可以对应参考图2至图7的方法实施例中的实施方式,这里不再赘述。
步骤S906:接收所述企业网系统反馈的分配后的第一带宽,并根据所述分配后的第一带宽进行服务质量QoS控制。
具体地,接收企业网系统中的企业控制器反馈的重新分配后的第一带宽,并根据分配后的第一带宽进行服务质量QoS控制。例如,根据重新分配后的第一带宽,对接入UE的业务量的控制、对业务类型如流媒体数据的控制等。即小基站控制器根据企业网控制器反馈的有线端口带宽的约束信息,调整各小基站的最大接入用户参数或者允许接入业务类型的参数等。
进一步地,小基站控制器根据小基站当前的网络负载判断所述分配后的第一带宽是否满足所述小基站当前的实际带宽需求;若判断结果为否,控制所述小基站中接入用户设备UE的数目,或者按照预设算法控制已接入UE启动预设业务,即当通过将空闲可用带宽进行重新分配之后,仍然无法满足此时网络负载过重的小基站时,则可以通过小基站控制器来控制接入用户设备UE的数量,或者是控制已接入UE的业务类型,例如可控制UE的流媒体数据请求等。
再进一步地,小基站控制器判断所述多个分配调整后的第一带宽是否能满足各自对应的小基站的无线网络当前的第一网络负载;当判断出有至少有一个小基站满足和至少一个小基站不满足时,将带宽不足的小基站中的部分UE切换至有空闲可用带宽的小基站中进行数据传输,以减轻带宽不足的小基站的网络负载。
本发明实施例,小基站系统通过向企业网系统发送小基站对应的无线网络当前的第一网络负载,使得企业网系统在根据小基站当前已分配获得的第一带宽和该第一网络负载判断出小基站的实际带宽需求大于第一带宽时,则按照预 设带宽分配策略,将总带宽中的部分可用带宽分配至第一带宽中,其中小基站对应的无线网络通过固定与移动融合FMC方式接入并共享企业网对应的有线网络的总带宽。即小基站系统通过与企业网系统之间的信息交互,使得企业网系统根据小基站当前的带宽信息和网络负载信息,将有线网络的总带宽中的可用空闲带宽按照一定的分配策略分配到带宽不足的小基站对应的第一带宽中,从而使得企业网络的有线总带宽可以根据小基站当前的网络负载情况得到均衡的分配,不仅合理地利用了带宽资源,提高了带宽资源利用率,而且为融合后的小基站系统和企业网系统提供了服务质量保证。
在具体的应用场景中,如图10所示,是本发明实施例中带宽共享方法的一个具体应用场景示意图,图10中,为通过FMC融合后的小基站系统和企业网系统的初始带宽分配情况,例如,企业网对应的有线网络初始的总带宽为500M,小基站系统中的小基站各自对应的无线网络当前分配获得的带宽分别为100M,企业网对应的有线网络当前分配获得的带宽为200M,具体的带宽参数可以根据不同的应用场景进行灵活调整。
在具体的应用场景中,如图11所示,是本发明实施例中带宽共享方法的另一个具体应用场景示意图,在图11中,当企业网控制器根据信息交互接口中发送过来的第一网络负载,判断出小基站系统中有小基站当前分配的带宽不足时,且有小基站有空闲可用带宽时,如图11中小基站1和小基站2当前所需要的带宽大于当前分配获得的带宽,而此时小基站3的带宽需求小于当前分配获得的带宽,则将小基站3中的部分空闲带宽或者是全部的空闲可用带宽,例如是80M分配给小基站1和小基站2,此场景中的小基站1和小基站2分别获得40M。具体的分配方法可以根据实际的需求比例进行分配,也可以按照小基站的优先级进行分配,还可以按照预设算法等进行分配,具体分配方法本应用场景不作具体限定。
在具体的应用场景中,如图12所示,是本发明实施例中带宽共享方法的又一个具体应用场景示意图,在图12中,当判断出小基站系统中有小基站当前分配的带宽不足时,且企业网对应的有线网络有空闲可用带宽时,如图12中小基站1和小基站2当前所需要的带宽大于当前分配获得的带宽,而此时企 业网对应的有线网络的带宽需求小于当前分配获得的带宽,则将企业网的部分空闲可用带宽或者是全部的空闲可用带宽,例如是100M分配给小基站1和小基站2,此场景中小基站1和小基站2分别获得50M,也可以根据实际的需求比例进行分配也可按照小基站的优先级进行分配,还可以按照预设算法等进行分配,具体分配方法本应用场景不作具体限定。
在具体的应用场景中,如图13所示,是本发明实施例中带宽共享方法的又一个具体应用场景示意图,图13中,当判断出企业网当前分配的带宽不足时,且小基站系统中有空闲可用带宽时,如图13中企业网当前所需要的带宽大于当前分配获得的带宽,而此时小基站2和小基站3当前的带宽需求小于当前分配获得的带宽,则将小基站2和小基站3中的部分空闲带宽或者是全部的空闲可用带宽,例如是50M分配给企业网,即企业网一共获得100M,也可以按照预设算法等进行具体带宽值的分配,具体分配方法本应用场景不作具体限定。
在具体的应用场景中,如图14所示,是本发明实施例中带宽共享方法的又一个具体应用场景示意图,图14中,小基站控制器和企业网控制器可以融合并为同一个控制实体,不拘泥于独立或者是合体的形式也不拘泥于控制器的名称,合并后可对通过FMC融合的小基站系统和企业网系统进行统一控制,也可进行带宽的统一动态分配,更具体的实现细节,请参照上述图2-图9中的方法实施例,这里不再赘述。
参见图15,对本发明实施例中的带宽共享装置的一实施例的结构示意图进行详细介绍。该装置10可包括:接收模块101和第一分配模块106,其中
接收模块101,用于接收小基站系统发送的小基站对应的无线网络当前的第一网络负载,所述小基站对应的无线网络通过固定与移动融合FMC方式接入并共享企业网对应的有线网络的总带宽;
第一分配模块106,用于当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述小基站的实际带宽需求大于所述第一带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第一带宽中。
具体地,如图16所示的本发明提供的带宽共享装置的另一实施例的结构 示意图,带宽共享装置10,还可以包括:第二分配模块107,其中
第二分配模块107,用于当根据所述企业网当前已分配获得的第二带宽和所述企业网对应的有线网络当前的第二网络负载判断出所述企业网的实际带宽需求大于所述第二带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第二带宽中。
进一步地,所述小基站系统包括多个小基站;接收的所述第一网络负载为所述多个小基站各自对应的第一网络负载,所述小基站当前已分配获得的第一带宽为所述多个小基站各自对应的当前已分配获得的第一带宽;所述第一分配模块106,具体用于:
当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述多个小基站中包含目标小基站时,按照第一分配策略,将所述多个小基站对应的总带宽中的部分可用带宽分配至所述目标小基站对应的第一带宽中,所述目标小基站为当前实际带宽需求大于对应的第一带宽的小基站。
再进一步地,所述装置还包括所述获取模块;所述第一分配模块106,具体用于:
当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述小基站的实际带宽需求大于所述第一带宽,且当根据所述企业网当前已分配获得的第二带宽和所述企业网对应的有线网络当前的第二网络负载判断出所述企业网的实际带宽需求小于所述第二带宽时,按照第二分配策略,将所述第二带宽中的部分可用带宽分配至所述第一带宽中。
再进一步地,所述第二分配模块108,具体用于:
当根据所述企业网当前已分配获得的第二带宽和所述企业网对应的有线网络当前的第二网络负载判断出所述企业网的实际带宽需求大于所述第二带宽,且当根据所述第一带宽和第一网络负载判断出所述小基站的实际带宽需求小于所述第一带宽时,按照第三分配策略,将所述第一带宽中的部分可用带宽分配至所述第二带宽中。
再进一步地,所述第一分配模块106,具体用于:
当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述多个小基站中包含多个目标小基站时,将所述多个小基站对应的总带宽 中的可用总带宽,按照所述多个目标小基站各自对应的第一网络负载之间的比例值,分配至所述多个目标小基站各自对应的第一带宽中。
再进一步地,如图17所示的本发明提供的带宽共享装置的又一实施例的结构示意图,带宽共享装置10,还可包括:第一判断模块102和第一触发模块103,其中
第一判断模块102,用于判断是否到达预设时间点或是否进入预设时间段;
第一触发模块103,用于当判断结果为是时,则触发执行所述当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述小基站的实际带宽需求大于所述第一带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第一带宽中的步骤。
再进一步地,如图18所示的本发明提供的带宽共享装置的又一实施例的结构示意图,带宽共享装置10,还可包括:第二判断模块104和第二触发模块105,
第二判断模块104,用于判断是否到达预设时间点或是否进入预设时间段;
第二触发模块105,则触发执行所述当根据所述企业网当前已分配获得的第二带宽和所述企业网对应的有线网络当前的第二网络负载判断出所述企业网的实际带宽需求大于所述第二带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第二带宽中的步骤。
再进一步地,如图19所示的本发明提供的带宽共享装置的又一实施例的结构示意图,带宽共享装置10,还可包括:反馈模块108,其中
反馈模块108,用于将分配后的第一带宽反馈至所述小基站系统,以使得所述小基站系统根据所述分配后的第一带宽进行服务质量QoS控制。
可理解的是,带宽共享装置10中各模块的功能可对应参考上述图2至图7中的各方法实施例中的具体实现方式,这里不再赘述。
本发明实施例,企业网系统通过带宽共享装置接收小基站系统发送的小基站对应的无线网络当前的第一网络负载,当根据小基站当前已分配获得的第一带宽和该第一网络负载判断出小基站的实际带宽需求大于该第一带宽时,则按照预设带宽分配策略,将总带宽中的部分可用带宽分配至该第一带宽中,其中小基站对应的无线网络通过固定与移动融合FMC方式接入并共享企业网对应 的有线网络的总带宽。即企业网系统通过与小基站系统之间的信息交互,使得企业网系统根据小基站当前的带宽信息和网络负载信息,将有线网络的总带宽中的可用空闲带宽按照一定的分配策略分配到带宽不足的小基站对应的第一带宽中,从而使得企业网络的有线总带宽可以根据小基站当前的网络负载情况得到均衡的分配,不仅合理地利用了带宽资源,提高了带宽资源利用率,而且为融合后的小基站系统和企业网系统提供了服务质量保证。
参见图20,对本发明实施例中的带宽共享设备的一实施例的结构示意图进行详细介绍。该设备20可包括:发送模块201,其中
发送模块201,用于小基站系统向企业网系统发送小基站对应的无线网络当前的第一网络负载,所述小基站对应的无线网络通过固定与移动融合FMC方式接入并共享企业网对应的有线网络的总带宽,以使得所述企业网系统接收小基站系统发送的小基站对应的无线网络当前的第一网络负载,当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述小基站的实际带宽需求大于所述第一带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第一带宽中。
具体地,如图21所示的本发明提供的带宽共享设备的另一实施例的结构示意图,带宽共享设备20,还可以包括:控制模块202,其中
控制模块202,用于接收所述企业网系统反馈的分配后的第一带宽,并根据所述分配后的第一带宽进行服务质量QoS控制。
进一步地,如图22所示的本发明提供的控制模块的结构示意图,控制模块202,可包括:判断单元2021和控制单元2022,其中
判断单元2021,用于接收所述企业网系统反馈的分配后的第一带宽,并根据所述小基站当前的网络负载判断所述分配后的第一带宽是否满足所述小基站当前的实际带宽需求;
控制单元2022,用于若判断结果为否,控制所述小基站中接入用户设备UE的数目,或者按照预设算法控制已接入UE启动预设业务。
可理解的是,带宽共享设备20中各模块的功能可对应参考上述图8至图9中的各方法实施例中的具体实现方式,这里不再赘述。
本发明实施例,小基站系统中的带宽共享设备向企业网系统发送小基站对应的无线网络当前的第一网络负载,使得企业网系统在根据小基站当前已分配获得的第一带宽和该第一网络负载判断出小基站的实际带宽需求大于第一带宽时,则按照预设带宽分配策略,将总带宽中的部分可用带宽分配至第一带宽中,其中小基站对应的无线网络通过固定与移动融合FMC方式接入并共享企业网对应的有线网络的总带宽。即小基站系统通过与企业网系统之间的信息交互,使得企业网系统根据小基站当前的带宽信息和网络负载信息,将有线网络的总带宽中的可用空闲带宽按照一定的分配策略分配到带宽不足的小基站对应的第一带宽中,从而使得企业网络的有线总带宽可以根据小基站当前的网络负载情况得到均衡的分配,不仅合理地利用了带宽资源,提高了带宽资源利用率,而且为融合后的小基站系统和企业网系统提供了服务质量保证。
为了便于更好地实施本发明实施例的上述方案,本发明还提供了用于配合实施上述方案的相关装置。下面结合图23所示的本发明提供的带宽共享控制装置的结构示意图,进行详细说明:
带宽共享控制装置30包括:输入装置301、输出装置302、存储器303和处理器304(带宽共享控制装置30中的处理器304的数量可以一个或多个,图23中以一个处理器为例)。在本发明的一些实施例中,输入装置301、输出装置302、存储器303和处理器304可通过总线或者其它方式连接,其中,图23中以通过总线连接为例。
其中,所述存储器303用于存储程序代码,所述处理器304用于调用所述存储器303存储的程序代码执行如下步骤:
通过所述输入装置301接收小基站系统发送的小基站对应的无线网络当前的第一网络负载,所述小基站对应的无线网络通过固定与移动融合FMC方式接入并共享企业网对应的有线网络的总带宽;
当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述小基站的实际带宽需求大于所述第一带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第一带宽中。
具体地,所述处理器304还执行如下步骤:
当根据所述企业网当前已分配获得的第二带宽和所述企业网对应的有线网络当前的第二网络负载判断出所述企业网的实际带宽需求大于所述第二带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第二带宽中。
进一步地,所述小基站系统包括多个小基站;接收的所述第一网络负载为所述多个小基站各自对应的第一网络负载,所述小基站当前已分配获得的第一带宽为所述多个小基站各自对应的当前已分配获得的第一带宽;
所述当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述小基站的实际带宽需求大于所述第一带宽时,所述处理器按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第一带宽中,包括:
当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述多个小基站中包含目标小基站时,按照第一分配策略,将所述多个小基站对应的总带宽中的部分可用带宽分配至所述目标小基站对应的第一带宽中,所述目标小基站为当前实际带宽需求大于对应的第一带宽的小基站。
再进一步地,所述处理器304按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第一带宽中,包括:
当根据所述企业网当前已分配获得的第二带宽和所述企业网对应的有线网络当前的第二网络负载判断出所述企业网的实际带宽需求小于所述第二带宽时,按照第二分配策略,将所述第二带宽中的部分可用带宽分配至所述第一带宽中。
再进一步地,所述处理器304按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第二带宽中,包括:
当根据所述第一带宽和第一网络负载判断出所述小基站的实际带宽需求小于所述第一带宽时,按照第三分配策略,将所述第一带宽中的部分可用带宽分配至所述第二带宽中。
再进一步地,所述当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述多个小基站中包含目标小基站时,所述处理器304按照第一分配策略,将所述多个小基站对应的总带宽中的部分可用带宽分配至所述目标小基站对应的第一带宽中,包括:
当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述多个小基站中包含多个目标小基站时,将所述多个小基站对应的总带宽中的可用总带宽,按照所述多个目标小基站各自对应的第一网络负载之间的比例值,分配至所述多个目标小基站各自对应的第一带宽中。
再进一步地,所述当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述小基站的实际带宽需求大于所述第一带宽时,所述处理器304按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第一带宽中之前,还包括:
判断是否到达预设时间点或是否进入预设时间段;
当判断结果为是时,则触发执行所述所述当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述小基站的实际带宽需求大于所述第一带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第一带宽中的步骤。
再进一步地,所述当根据所述企业网当前已分配获得的第二带宽和所述企业网对应的有线网络当前的第二网络负载判断出所述企业网的实际带宽需求大于所述第二带宽时,所述处理器304按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第二带宽中之前,还包括:
判断是否到达预设时间点或是否进入预设时间段;
当判断结果为是时,则触发执行所述当根据所述当根据所述企业网当前已分配获得的第二带宽和所述企业网对应的有线网络当前的第二网络负载判断出所述企业网的实际带宽需求大于所述第二带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第二带宽中的步骤。
再进一步地,所述处理器304还执行如下步骤:
通过所述输出装置302将分配后的第一带宽反馈至所述小基站系统,以使得所述小基站系统根据所述分配后的第一带宽进行服务质量QoS控制。
可理解的是,带宽共享控制装置30中各模块的功能可对应参考上述图2至图7中的各方法实施例中的具体实现方式,这里不再赘述。
本发明实施例,企业网系统通过带宽共享控制装置接收小基站系统发送的小基站对应的无线网络当前的第一网络负载,当根据小基站当前已分配获得的 第一带宽和该第一网络负载判断出小基站的实际带宽需求大于该第一带宽时,则按照预设带宽分配策略,将总带宽中的部分可用带宽分配至该第一带宽中,其中小基站对应的无线网络通过固定与移动融合FMC方式接入并共享企业网对应的有线网络的总带宽。即企业网系统通过与小基站系统之间的信息交互,使得企业网系统根据小基站当前的带宽信息和网络负载信息,将有线网络的总带宽中的可用空闲带宽按照一定的分配策略分配到带宽不足的小基站对应的第一带宽中,从而使得企业网络的有线总带宽可以根据小基站当前的网络负载情况得到均衡的分配,不仅合理地利用了带宽资源,提高了带宽资源利用率,而且为融合后的小基站系统和企业网系统提供了服务质量保证。
为了便于更好地实施本发明实施例的上述方案,本发明还提供了用于配合实施上述方案的相关设备。下面结合图24所示的本发明提供的带宽共享控制设备的结构示意图,进行详细说明:
带宽共享控制设备40包括:输入装置401、输出装置402、存储器403和处理器404(带宽共享控制设备40中的处理器404的数量可以一个或多个,图24中以一个处理器为例)。在本发明的一些实施例中,输入装置401、输出装置402、存储器403和处理器404可通过总线或者其它方式连接,其中,图24中以通过总线连接为例。
其中,所述存储器403用于存储程序代码,所述处理器404用于调用所述存储器403存储的程序代码执行如下步骤:
小基站系统通过所述输出装置402向企业网系统发送小基站对应的无线网络当前的第一网络负载,所述小基站对应的无线网络通过固定与移动融合FMC方式接入并共享企业网对应的有线网络的总带宽,以使得所述企业网系统接收小基站系统发送的小基站对应的无线网络当前的第一网络负载,当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述小基站的实际带宽需求大于所述第一带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第一带宽中。
具体地,所述处理器404还执行如下步骤:
通过所述输入装置接收所述企业网系统反馈的分配后的第一带宽,并根据 所述分配后的第一带宽进行服务质量QoS控制。
进一步地,所述处理器404根据所述分配后的第一带宽进行服务质量QoS控制,包括:
根据所述小基站当前的网络负载判断所述分配后的第一带宽是否满足所述小基站当前的实际带宽需求;
若否,控制所述小基站中接入用户设备UE的数目,或者按照预设算法控制已接入UE启动预设业务。
可以理解的是,带宽共享控制设备40中各功能模块的功能可对应参考上述图8至图9中的各方法实施例中的具体实现方式,这里不再赘述。
本发明实施例,小基站系统通过带宽共享控制设备向企业网系统发送小基站对应的无线网络当前的第一网络负载,使得企业网系统在根据小基站当前已分配获得的第一带宽和该第一网络负载判断出小基站的实际带宽需求大于第一带宽时,则按照预设带宽分配策略,将总带宽中的部分可用带宽分配至第一带宽中,其中小基站对应的无线网络通过固定与移动融合FMC方式接入并共享企业网对应的有线网络的总带宽。即小基站系统通过与企业网系统之间的信息交互,使得企业网系统根据小基站当前的带宽信息和网络负载信息,将有线网络的总带宽中的可用空闲带宽按照一定的分配策略分配到带宽不足的小基站对应的第一带宽中,从而使得企业网络的有线总带宽可以根据小基站当前的网络负载情况得到均衡的分配,不仅合理地利用了带宽资源,提高了带宽资源利用率,而且为融合后的小基站系统和企业网系统提供了服务质量保证。
如图25所示的本发明提供的带宽共享系统的结构示意图,系统50包括:企业网控制器501和小基站控制器502,其中
企业网控制器501可以为上述图23实施例中的带宽共享控制装置30,小基站控制器502可以为上述图24实施例中的带宽共享设备40。可理解的是,本发明实施例中的系统50还可以包括服务器、小基站、企业网设备、路由设备、交换设备和业务中心等设备。
本发明实施例,企业网系统通过接收小基站系统发送的小基站对应的无线网络当前的第一网络负载,当根据小基站当前已分配获得的第一带宽和该第一 网络负载判断出小基站的实际带宽需求大于该第一带宽时,则按照预设带宽分配策略,将总带宽中的部分可用带宽分配至该第一带宽中,其中小基站对应的无线网络通过固定与移动融合FMC方式接入并共享企业网对应的有线网络的总带宽。即企业网系统通过与小基站系统之间的信息交互,使得企业网系统根据小基站当前的带宽信息和网络负载信息,将有线网络的总带宽中的可用空闲带宽按照一定的分配策略分配到带宽不足的小基站对应的第一带宽中,从而使得企业网络的有线总带宽可以根据小基站当前的网络负载情况得到均衡的分配,不仅合理地利用了带宽资源,提高了带宽资源利用率,而且为融合后的小基站系统和企业网系统提供了服务质量保证。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发明之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。

Claims (37)

  1. 一种带宽共享方法,其特征在于,包括:
    接收小基站系统发送的小基站对应的无线网络当前的第一网络负载,所述小基站对应的无线网络通过固定与移动融合FMC方式接入并共享企业网对应的有线网络的总带宽;
    当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述小基站的实际带宽需求大于所述第一带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第一带宽中。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    当根据所述企业网当前已分配获得的第二带宽和所述企业网对应的有线网络当前的第二网络负载判断出所述企业网的实际带宽需求大于所述第二带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第二带宽中。
  3. 如权利要求1或2所述的方法,其特征在于,所述小基站系统包括多个小基站;接收的所述第一网络负载为所述多个小基站各自对应的第一网络负载,所述小基站当前已分配获得的第一带宽为所述多个小基站各自对应的当前已分配获得的第一带宽;
    所述当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述小基站的实际带宽需求大于所述第一带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第一带宽中,包括:
    当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述多个小基站中包含目标小基站时,按照第一分配策略,将所述多个小基站对应的总带宽中的部分可用带宽分配至所述目标小基站对应的第一带宽中,所述目标小基站为当前实际带宽需求大于对应的第一带宽的小基站。
  4. 如权利要求1或2所述的方法,其特征在于,所述按照预设带宽分配 策略,将所述总带宽中的部分可用带宽分配至所述第一带宽中,包括:
    当根据所述企业网当前已分配获得的第二带宽和所述企业网对应的有线网络当前的第二网络负载判断出所述企业网的实际带宽需求小于所述第二带宽时,按照第二分配策略,将所述第二带宽中的部分可用带宽分配至所述第一带宽中。
  5. 如权利要求2所述的方法,其特征在于,所述按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第二带宽中,包括:
    当根据所述第一带宽和第一网络负载判断出所述小基站的实际带宽需求小于所述第一带宽时,按照第三分配策略,将所述第一带宽中的部分可用带宽分配至所述第二带宽中。
  6. 如权利要求3所述的方法,其特征在于,所述当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述多个小基站中包含目标小基站时,按照第一分配策略,将所述多个小基站对应的总带宽中的部分可用带宽分配至所述目标小基站对应的第一带宽中,包括:
    当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述多个小基站中包含多个目标小基站时,将所述多个小基站对应的总带宽中的可用总带宽,按照所述多个目标小基站各自对应的第一网络负载之间的比例值,分配至所述多个目标小基站各自对应的第一带宽中。
  7. 如权利要求1、2或5所述的方法,其特征在于,所述当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述小基站的实际带宽需求大于所述第一带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第一带宽中之前,还包括:
    判断是否到达预设时间点或是否进入预设时间段;
    当判断结果为是时,则触发执行所述当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述小基站的实际带宽需求大于所述第一带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所 述第一带宽中的步骤。
  8. 如权利要求2或5所述的方法,其特征在于,所述当根据所述企业网当前已分配获得的第二带宽和所述企业网对应的有线网络当前的第二网络负载判断出所述企业网的实际带宽需求大于所述第二带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第二带宽中之前,还包括:
    判断是否到达预设时间点或是否进入预设时间段;
    当判断结果为是时,则触发执行所述当根据所述企业网当前已分配获得的第二带宽和所述企业网对应的有线网络当前的第二网络负载判断出所述企业网的实际带宽需求大于所述第二带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第二带宽中的步骤。
  9. 如权利要求1-8任意一项所述的方法,其特征在于,所述方法还包括:
    将分配后的第一带宽反馈至所述小基站系统,以使得所述小基站系统根据所述分配后的第一带宽进行服务质量QoS控制。
  10. 一种带宽共享方法,其特征在于,包括:
    小基站系统向企业网系统发送小基站对应的无线网络当前的第一网络负载,所述小基站对应的无线网络通过固定与移动融合FMC方式接入并共享企业网对应的有线网络的总带宽,以使得所述企业网系统接收小基站系统发送的小基站对应的无线网络当前的第一网络负载,当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述小基站的实际带宽需求大于所述第一带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第一带宽中。
  11. 如权利要求10所述的方法,其特征在于,所述方法还包括:
    接收所述企业网系统反馈的分配后的第一带宽,并根据所述分配后的第一带宽进行服务质量QoS控制。
  12. 如权利要求11所述的方法,其特征在于,所述根据所述分配后的第一带宽进行服务质量QoS控制,包括:
    根据所述小基站当前的网络负载判断所述分配后的第一带宽是否满足所述小基站当前的实际带宽需求;
    若否,控制所述小基站中接入用户设备UE的数目,或者按照预设算法控制已接入UE启动预设业务。
  13. 一种带宽共享装置,其特征在于,包括:
    接收模块,用于接收小基站系统发送的小基站对应的无线网络当前的第一网络负载,所述小基站对应的无线网络通过固定与移动融合FMC方式接入并共享企业网对应的有线网络的总带宽;
    第一分配模块,用于当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述小基站的实际带宽需求大于所述第一带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第一带宽中。
  14. 如权利要求13所述的装置,其特征在于,所述装置还包括:
    第二分配模块,用于当根据所述企业网当前已分配获得的第二带宽和所述企业网对应的有线网络当前的第二网络负载判断出所述企业网的实际带宽需求大于所述第二带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第二带宽中。
  15. 如权利要求13或14所述的装置,其特征在于,所述小基站系统包括多个小基站;接收的所述第一网络负载为所述多个小基站各自对应的第一网络负载,所述小基站当前已分配获得的第一带宽为所述多个小基站各自对应的当前已分配获得的第一带宽;
    所述第一分配模块,具体用于:
    当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述多个小基站中包含目标小基站时,按照第一分配策略,将所述多个小基站对应的总带宽中的部分可用带宽分配至所述目标小基站对应的第一带宽中, 所述目标小基站为当前实际带宽需求大于对应的第一带宽的小基站。
  16. 如权利要求13或14所述的装置,其特征在于,所述第一分配模块,具体用于:
    当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述小基站的实际带宽需求大于所述第一带宽,且当根据所述企业网当前已分配获得的第二带宽和所述企业网对应的有线网络当前的第二网络负载判断出所述企业网的实际带宽需求小于所述第二带宽时,按照第二分配策略,将所述第二带宽中的部分可用带宽分配至所述第一带宽中。
  17. 如权利要求14所述的装置,其特征在于,所述第二分配模块,具体用于:
    当根据所述企业网当前已分配获得的第二带宽和所述企业网对应的有线网络当前的第二网络负载判断出所述企业网的实际带宽需求大于所述第二带宽,且当根据所述第一带宽和第一网络负载判断出所述小基站的实际带宽需求小于所述第一带宽时,按照第三分配策略,将所述第一带宽中的部分可用带宽分配至所述第二带宽中。
  18. 如权利要求15所述的装置,其特征在于,所述第一分配模块,具体用于:
    当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述多个小基站中包含多个目标小基站时,将所述多个小基站对应的总带宽中的可用总带宽,按照所述多个目标小基站各自对应的第一网络负载之间的比例值,分配至所述多个目标小基站各自对应的第一带宽中。
  19. 如权利要求13、14或17所述的装置,其特征在于,所述装置,还包括:
    第一判断模块,用于判断是否到达预设时间点或是否进入预设时间段;
    第一触发模块,用于当判断结果为是时,则触发执行所述当根据所述小基 站当前已分配获得的第一带宽和所述第一网络负载判断出所述小基站的实际带宽需求大于所述第一带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第一带宽中的步骤。
  20. 如权利要求14或17所述的装置,其特征在于,所述装置,还包括:
    第二判断模块,用于判断是否到达预设时间点或是否进入预设时间段;
    第二触发模块,用于当判断结果为是时,则触发执行所述当根据所述企业网当前已分配获得的第二带宽和所述企业网对应的有线网络当前的第二网络负载判断出所述企业网的实际带宽需求大于所述第二带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第二带宽中的步骤。
  21. 如权利要求13-20任意一项所述的装置,其特征在于,所述装置还包括:
    反馈模块,用于将分配后的第一带宽反馈至所述小基站系统,以使得所述小基站系统根据所述分配后的第一带宽进行服务质量QoS控制。
  22. 一种带宽共享设备,其特征在于,包括:
    发送模块,用于小基站系统向企业网系统发送小基站对应的无线网络当前的第一网络负载,所述小基站对应的无线网络通过固定与移动融合FMC方式接入并共享企业网对应的有线网络的总带宽,以使得所述企业网系统接收小基站系统发送的小基站对应的无线网络当前的第一网络负载,当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述小基站的实际带宽需求大于所述第一带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第一带宽中。
  23. 如权利要求22所述的设备,其特征在于,所述设备还包括:
    控制模块,用于接收所述企业网系统反馈的分配后的第一带宽,并根据所述分配后的第一带宽进行服务质量QoS控制。
  24. 如权利要求23所述的设备,其特征在于,所述控制模块,包括:
    判断单元,用于接收所述企业网系统反馈的分配后的第一带宽,并根据所述小基站当前的网络负载判断所述分配后的第一带宽是否满足所述小基站当前的实际带宽需求;
    控制单元,用于若判断结果为否,控制所述小基站中接入用户设备UE的数目,或者按照预设算法控制已接入UE启动预设业务。
  25. 一种带宽共享控制装置,其特征在于,包括:输入装置、输出装置、存储器和处理器;
    其中,所述存储器用于存储程序代码,所述处理器用于调用所述存储器存储的程序代码执行如下步骤:
    通过所述输入装置接收小基站系统发送的小基站对应的无线网络当前的第一网络负载,所述小基站对应的无线网络通过固定与移动融合FMC方式接入并共享企业网对应的有线网络的总带宽;
    当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述小基站的实际带宽需求大于所述第一带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第一带宽中。
  26. 如权利要求25所述的控制装置,其特征在于,所述处理器还执行如下步骤:
    当根据所述企业网当前已分配获得的第二带宽和所述企业网对应的有线网络当前的第二网络负载判断出所述企业网的实际带宽需求大于所述第二带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第二带宽中。
  27. 如权利要求25或26所述的控制装置,其特征在于,所述小基站系统包括多个小基站;接收的所述第一网络负载为所述多个小基站各自对应的第一网络负载,所述小基站当前已分配获得的第一带宽为所述多个小基站各自对应的当前已分配获得的第一带宽;
    所述当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述小基站的实际带宽需求大于所述第一带宽时,所述处理器按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第一带宽中,包括:
    当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述多个小基站中包含目标小基站时,按照第一分配策略,将所述多个小基站对应的总带宽中的部分可用带宽分配至所述目标小基站对应的第一带宽中,所述目标小基站为当前实际带宽需求大于对应的第一带宽的小基站。
  28. 如权利要求25或26所述的控制装置,其特征在于,所述处理器按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第一带宽中,包括:
    当根据所述企业网当前已分配获得的第二带宽和所述企业网对应的有线网络当前的第二网络负载判断出所述企业网的实际带宽需求小于所述第二带宽时,按照第二分配策略,将所述第二带宽中的部分可用带宽分配至所述第一带宽中。
  29. 如权利要求26所述的控制装置,其特征在于,所述处理器按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第二带宽中,包括:
    当根据所述第一带宽和第一网络负载判断出所述小基站的实际带宽需求小于所述第一带宽时,按照第三分配策略,将所述第一带宽中的部分可用带宽分配至所述第二带宽中。
  30. 如权利要求27所述的控制装置,其特征在于,所述当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述多个小基站中包含目标小基站时,所述处理器按照第一分配策略,将所述多个小基站对应的总带宽中的部分可用带宽分配至所述目标小基站对应的第一带宽中,包括:
    当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述多个小基站中包含多个目标小基站时,将所述多个小基站对应的总带宽中的可用总带宽,按照所述多个目标小基站各自对应的第一网络负载之间的比 例值,分配至所述多个目标小基站各自对应的第一带宽中。
  31. 如权利要求25、26或29任意一项所述的控制装置,其特征在于,所述当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述小基站的实际带宽需求大于所述第一带宽时,所述处理器按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第一带宽中之前,还包括:
    判断是否到达预设时间点或是否进入预设时间段;
    当判断结果为是时,则触发执行所述所述当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述小基站的实际带宽需求大于所述第一带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第一带宽中的步骤。
  32. 如权利要求26或29所述的控制装置,其特征在于,所述当根据所述企业网当前已分配获得的第二带宽和所述企业网对应的有线网络当前的第二网络负载判断出所述企业网的实际带宽需求大于所述第二带宽时,所述处理器按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第二带宽中之前,还包括:
    判断是否到达预设时间点或是否进入预设时间段;
    当判断结果为是时,则触发执行所述当根据所述当根据所述企业网当前已分配获得的第二带宽和所述企业网对应的有线网络当前的第二网络负载判断出所述企业网的实际带宽需求大于所述第二带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第二带宽中的步骤。
  33. 如权利要求25-32任意一项所述的控制装置,其特征在于,所述处理器还执行如下步骤:
    通过所述输出装置将分配后的第一带宽反馈至所述小基站系统,以使得所述小基站系统根据所述分配后的第一带宽进行服务质量QoS控制。
  34. 一种带宽共享控制设备,其特征在于,包括:输入装置、输出装置、 存储器和处理器;
    其中,所述存储器用于存储程序代码,所述处理器用于调用所述存储器存储的程序代码执行如下步骤:
    小基站系统通过所述输出装置向企业网系统发送小基站对应的无线网络当前的第一网络负载,所述小基站对应的无线网络通过固定与移动融合FMC方式接入并共享企业网对应的有线网络的总带宽,以使得所述企业网系统接收小基站系统发送的小基站对应的无线网络当前的第一网络负载,当根据所述小基站当前已分配获得的第一带宽和所述第一网络负载判断出所述小基站的实际带宽需求大于所述第一带宽时,按照预设带宽分配策略,将所述总带宽中的部分可用带宽分配至所述第一带宽中。
  35. 如权利要求34所述的控制设备,其特征在于,所述处理器还执行如下步骤:
    通过所述输入装置接收所述企业网系统反馈的分配后的第一带宽,并根据所述分配后的第一带宽进行服务质量QoS控制。
  36. 如权利要求35所述的控制设备,其特征在于,所述处理器根据所述分配后的第一带宽进行服务质量QoS控制,包括:
    根据所述小基站当前的网络负载判断所述分配后的第一带宽是否满足所述小基站当前的实际带宽需求;
    若否,控制所述小基站中接入用户设备UE的数目,或者按照预设算法控制已接入UE启动预设业务。
  37. 一种带宽共享系统,包括企业网控制器和小基站控制器,其中
    所述企业网控制器为如权利要求25-33任一项所述的带宽共享控制装置;
    所述小基站控制器为如权利要求34-36任一项所述的带宽共享控制设备。
PCT/CN2015/090217 2015-09-22 2015-09-22 一种带宽共享方法、相关装置及系统 WO2017049448A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580052515.9A CN106797588A (zh) 2015-09-22 2015-09-22 一种带宽共享方法、相关装置及系统
PCT/CN2015/090217 WO2017049448A1 (zh) 2015-09-22 2015-09-22 一种带宽共享方法、相关装置及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/090217 WO2017049448A1 (zh) 2015-09-22 2015-09-22 一种带宽共享方法、相关装置及系统

Publications (1)

Publication Number Publication Date
WO2017049448A1 true WO2017049448A1 (zh) 2017-03-30

Family

ID=58385506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/090217 WO2017049448A1 (zh) 2015-09-22 2015-09-22 一种带宽共享方法、相关装置及系统

Country Status (2)

Country Link
CN (1) CN106797588A (zh)
WO (1) WO2017049448A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023125256A1 (zh) * 2021-12-31 2023-07-06 华为技术有限公司 调度、参数传输方法、装置、设备、系统及介质
US11956762B2 (en) * 2018-09-28 2024-04-09 At&T Intellectual Property I, L.P. Facilitating improved performance in advanced networks with multiple transmission points

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102149144A (zh) * 2011-04-02 2011-08-10 华为技术有限公司 调整带宽的方法、微基站、家庭网关和系统
EP2642690A1 (en) * 2012-03-22 2013-09-25 ZTE Corporation Single operator managed policy and charging function for fixed mobile convergence networks
CN103596272A (zh) * 2012-08-13 2014-02-19 电信科学技术研究院 一种固定宽带网络的资源分配方法、装置及系统
CN103957566A (zh) * 2014-04-17 2014-07-30 华为技术有限公司 带宽控制方法和带宽控制设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080259841A1 (en) * 2007-04-17 2008-10-23 Parag Deshpande Subscription aggregation and load balancing in a broadband router
US9025534B2 (en) * 2009-05-22 2015-05-05 Broadcom Corporation Hybrid network controller for femtocells and access points
CN102740237B (zh) * 2012-06-28 2015-07-29 华为技术有限公司 小基站信息配置的方法及小基站
CN103796324B (zh) * 2014-03-06 2017-06-06 京信通信系统(中国)有限公司 一种带宽分配装置和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102149144A (zh) * 2011-04-02 2011-08-10 华为技术有限公司 调整带宽的方法、微基站、家庭网关和系统
EP2642690A1 (en) * 2012-03-22 2013-09-25 ZTE Corporation Single operator managed policy and charging function for fixed mobile convergence networks
CN103596272A (zh) * 2012-08-13 2014-02-19 电信科学技术研究院 一种固定宽带网络的资源分配方法、装置及系统
CN103957566A (zh) * 2014-04-17 2014-07-30 华为技术有限公司 带宽控制方法和带宽控制设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11956762B2 (en) * 2018-09-28 2024-04-09 At&T Intellectual Property I, L.P. Facilitating improved performance in advanced networks with multiple transmission points
WO2023125256A1 (zh) * 2021-12-31 2023-07-06 华为技术有限公司 调度、参数传输方法、装置、设备、系统及介质

Also Published As

Publication number Publication date
CN106797588A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
Wang et al. User mobility aware task assignment for mobile edge computing
US10506575B2 (en) Resource allocation method and system, device having base station functionality, and terminal
Ku et al. 5G radio access network design with the fog paradigm: Confluence of communications and computing
US10575300B2 (en) Bandwidth control method and bandwidth control device
US9215619B2 (en) Method and system for application-aware load balancing
Li et al. CaaS: Caching as a service for 5G networks
US10993127B2 (en) Network slice instance management method, apparatus, and system
CN107426797B (zh) 用于接入网侧的切片管控系统和方法
US20200196315A1 (en) Network slice selection based on requested service
JPWO2018016043A1 (ja) リソース管理装置、リソース管理方法及びプログラム
US11146412B2 (en) Bitrate utilization feedback and control in 5G-NSA networks
US20160105894A1 (en) eMBMS Management Method, Multimedia Broadcast Multicast Service Coordination Entity, and Base Station
EP3091693A1 (en) Control method and centralized controller in communication network and wireless communication network system
CN105791355A (zh) 开放式多业务蜂窝网络系统及业务实现方法
CN105764097A (zh) 资源分配方法及装置
US20220053378A1 (en) Role Assignment for Caching
WO2013178108A1 (zh) 一种基于wlan网络的速率控制系统和方法
US10993177B2 (en) Network slice instance creation
WO2017049448A1 (zh) 一种带宽共享方法、相关装置及系统
WO2020256605A1 (en) Evaluating overall network resource congestion before scaling a network slice
US20150163853A1 (en) Mobile communication terminal having multiple communication interfaces, and cooperative data communication method thereof
US20220408353A1 (en) User plane function selection and hosting for real-time applications
US11792692B2 (en) Personalized data throttling in a residential wireless network
WO2019076301A1 (zh) 多集中单元融合方法、设备及系统
WO2016000165A1 (zh) 无线资源的指示方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15904336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15904336

Country of ref document: EP

Kind code of ref document: A1