WO2017048015A1 - Rotary piston pump - Google Patents

Rotary piston pump Download PDF

Info

Publication number
WO2017048015A1
WO2017048015A1 PCT/KR2016/010262 KR2016010262W WO2017048015A1 WO 2017048015 A1 WO2017048015 A1 WO 2017048015A1 KR 2016010262 W KR2016010262 W KR 2016010262W WO 2017048015 A1 WO2017048015 A1 WO 2017048015A1
Authority
WO
WIPO (PCT)
Prior art keywords
check valve
rotor
volume change
change space
discharge check
Prior art date
Application number
PCT/KR2016/010262
Other languages
French (fr)
Korean (ko)
Inventor
고용권
권장순
박정균
지성훈
류지훈
박경우
정수림
김병우
Original Assignee
한국원자력연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국원자력연구원 filed Critical 한국원자력연구원
Priority to MYPI2018701000A priority Critical patent/MY187386A/en
Publication of WO2017048015A1 publication Critical patent/WO2017048015A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C11/00Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C13/00Adaptations of machines or pumps for special use, e.g. for extremely high pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/06Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing

Definitions

  • the present invention relates to a rotary piston pump for collecting ground water located at a specific depth of a borehole.
  • an underwater pump is mainly used to pump groundwater present in a specific depth of a borehole.
  • Submersible pump is applied to the pumping method by centrifugal force generated by rotating the impeller to add rotational force to the water.
  • the submersible pump can pump groundwater to a depth deeper than the ground pump, but as the depth of extraction increases, the capacity and size of the submersible pump must increase, so the capacity and size of the submersible pump are limited to the size of the borehole and thus the submersible pump Increasing the dose and depth of harvesting were practically difficult limitations.
  • the present applicant is inserted into the borehole of the Korean Patent No. 1124075, the groundwater collecting device for collecting ground water, the shell forming a portion of the intake pipe;
  • a plurality of intake holes are formed in the separator for dividing the inside of the ground water, and are provided to be movable upward and downward in the shell to move the ground water in the borehole into the intake pipe as the up and down movements occur;
  • a driving unit provided with an electromagnet at each of the upper and lower portions of the operating unit to vertically move the operating unit;
  • an opening and closing unit provided inside the operation unit and including a blade hinged to the separator so as to open and close the water intake hole according to the vertical movement of the operation unit.
  • the prior art is a kind of reciprocating pump that pumps groundwater by generating pressure while the operation unit moves up and down, and has a problem in that the depth of the borehole (suction head) capable of raising groundwater is limited.
  • an object of the present invention is to maximize the depth of the borehole (suction head) that can raise groundwater, and to provide a rotary piston pump that can maximize the amount of groundwater harvesting It is to provide.
  • the rotary piston pump 1000 includes a rotor housing 100 each having a receiving portion 110 formed therein; First inlet check valves 210 and second inlet check valves 230 installed on the lower surfaces of the rotor housing 100 and opened only at a negative pressure; A first discharge check valve 220 and a second discharge check valve 240 respectively installed on the upper surface of the rotor housing 100 and opened only at a positive pressure and communicating with the ground connection pipe 50; A rotor (300) installed in the accommodating part (110) to partition the accommodating part (110) into a plurality of volume variation spaces; And a motor 400 including a drive shaft 410 that is eccentrically coupled to the rotor 300, wherein a portion of the plurality of volumetric variable spaces is expanded by the rotation of the rotor 300 and the other portion is When the volume change space is expanded, the first inflow check valve 210 or the second inflow check valve 230 in communication with the expanded volume change space is opened and the volume change is expanded.
  • the groundwater of the borehole flows into the accommodating part 110, and when the volume change space is compressed,
  • the first inlet check valve 210 or the second inlet check valve 230 in communication with the compressed volume change space is in a closed state, and the first discharge check valve 220 in communication with the compressed volume change space.
  • the second discharge check valve 240 is an open phase Is a characterized in that the ground water in the storage unit 110 is discharged to the ground connector (50).
  • the rotary piston pump 1000 is installed on the upper side of the rotor housing 100, the motor housing 500 is formed therein the machine room part 510 is accommodated therein;
  • the lower portion of the machine chamber 510 communicates with the first discharge check valve 220 and the second discharge check valve 240, and the upper portion of the machine chamber 510 communicates with the ground connection pipe 50. It is characterized by.
  • the rotor housing 100 is the first inlet check valve 210 and the second inlet check valve 230 is formed in a left and right direction arranged on the lower surface and the first discharge check valve 220 and the second discharge check.
  • the valve 240 is characterized in that formed in the front and rear direction arranged on the upper surface.
  • the rotary piston pump 1000 is a rotor seal 610 which is installed on the outer surface of the rotor 300 in contact with the inner surface of the rotor housing 100; And an elastic member 620 installed between an inner surface of the rotor seal 610 and an inner surface of the rotor 300.
  • the rotor 300 and the rotor housing 100 is characterized in that a plurality of connections in the vertical direction.
  • a plurality of volume change spaces are expanded or compressed by the rotation of the rotor so that the first inlet check valve and the second inlet check valve open the groundwater in which the boreholes are introduced into the storage unit.
  • the first discharge check valve and the second discharge check valve are in a closed state or an open state for discharging the groundwater located in the receiving portion to the ground connection pipe, thereby discharging the groundwater introduced into the rotor housing to the ground.
  • the volumetric variable space expands and compresses repeatedly, and the suction and discharge of groundwater are repeated. This has the advantage of having a high suction force and generating a high pressure.
  • groundwater large volume of groundwater can be pumped because the volumetric fluctuations in the rotor housing occur simultaneously in three compartments. That is, the ground water may be sucked from the ground, and the groundwater may be pumped at a deep depth requiring high pressure, and the groundwater may be maximized.
  • FIG. 1 is a perspective view of a rotary piston pump according to the present invention
  • FIG. 2 is a cross-sectional view of a rotary piston pump according to the present invention
  • FIG. 3 is an exploded perspective view of a rotary piston pump according to the present invention.
  • FIG. 4 is a conceptual diagram showing the driving principle of a rotary piston pump according to the present invention
  • FIG. 5 is a perspective view of a rotor according to the present invention.
  • FIG. 1 is a perspective view of a rotary piston pump according to the present invention
  • Figure 2 is a sectional view of a rotary piston pump according to the present invention
  • Figure 3 is an exploded perspective view of a rotary piston pump according to the present invention.
  • the rotary piston pump 1000 is the rotor housing 100, the first inlet check valve 210, the second inlet check valve 230, the first discharge check And a valve 220, a second discharge check valve 240, a rotor 300, and a motor 400.
  • the rotor housing 100 is disposed at a specific depth of the borehole, is formed in a cylindrical structure, and an accommodating part 110 is formed therein.
  • the accommodating part 110 is formed in an epitrochoid curved structure in the interior (center) of the rotor housing 100.
  • the first inlet check valve 210 and the second inlet check valve 230 are respectively installed on the lower surface of the rotor housing 100 and serve to introduce the groundwater located in the borehole into the accommodating part 110 and underpressure. It is in the open state only at the time of closing and in the closed state at constant pressure.
  • the first discharge check valve 220 and the second discharge check valve 240 are respectively installed on the upper surface of the rotor housing 100 to communicate with the ground connecting pipe 50 and the ground water located in the receiving unit 110. It serves to discharge the above ground pipe and is opened only at positive pressure and is closed at negative pressure.
  • the rotor 300 is installed in the accommodating part 110 and divides the accommodating part 110 into a plurality of volume varying spaces, and part of the plurality of volume changing spaces is expanded by the rotation of the rotor 300.
  • the remaining part is compressed, and when the volume change space is expanded, the first inflow check valve 210 or the second inflow check valve 230 in communication with the volume change space to be expanded is opened and is expanded.
  • the first discharge check valve 220 or the second discharge check valve 240 in communication with the volumetric fluctuation space is in a closed state so that the groundwater of the borehole flows into the accommodating part 110, and the volumetric fluctuation space is compressed.
  • first inflow check valve 210 or the second inflow check valve 230 in communication with the volume change space to be compressed is in a closed state, and the first discharge check in communication with the volume change space to be compressed.
  • Valve 220 or the second discharge check valve ( 240 is in an open state and the groundwater of the accommodating part 110 is discharged to the ground connection pipe 50.
  • the motor 400 includes a drive shaft 410 coupled eccentrically with the rotor 300, and serves to rotate the rotor 300.
  • the drive shaft 410 is rotated eccentrically and friction with the rotor 300 is generated, in order to reduce the friction may be coupled to the bearing between the drive shaft 410 and the rotor 300, the drive shaft 410 ) And the rotor 300 may be geared to each other.
  • FIG. 4 is a conceptual diagram showing a driving principle of a rotary piston pump according to the present invention. 4, the first inlet check valve 210, the second inlet check valve 230, the first discharge check valve 220, and the second discharge check valve 240 are described in more detail. It is shown around the rotor housing 100, the three volumetric variable space partitioned by the rotor 300 in the housing 110, respectively, the first volumetric variable space (A), the second volumetric variable space (B) ) And the third volumetric fluctuation space (C).
  • the motor 400 rotates the rotor 300.
  • the first volume change space (A) is in communication with the first inlet check valve 210 and the first discharge check valve 220
  • the second volume change space (B) is the second inlet check valve In communication with 230
  • the third volume change space C is in communication with the second discharge check valve 240.
  • the rotor 300 is rotated by a predetermined angle to compress the first volume change space A and the third volume change space C, and the second volume change space B is expanded.
  • the first volume change space (A) is in communication with the first inlet check valve 210 and the first discharge check valve 220
  • the second volume change space (B) is the second inlet check In communication with the valve 230
  • the third volume change space (C) is in communication with the second discharge check valve (240).
  • the first inflow check valve 210 is closed, and the first discharge check valve 220 is opened to open the first volume.
  • the fluid located in the variable space A is discharged to the outside of the first volume variable space A (or the ground connecting pipe 50) through the first discharge check valve 220.
  • the second inflow check valve 230 is opened to allow the groundwater located in the borehole through the second inflow check valve 230. 2 flows into the volumetric fluctuation space (B).
  • the second discharge check valve 240 is opened to allow the fluid located in the third volume change space C to be discharged. Through the valve 240 is discharged to the outside (or the ground connecting pipe 50) of the third volume change space (C).
  • the rotor 300 is rotated by a predetermined angle so that the first volume change space A is further compressed and the second volume change space B and the third volume change space C are expanded.
  • the first volume change space (A) is in communication with the first discharge check valve 220
  • the second volume change space (B) is the second inlet check valve 230 and the second discharge check valve
  • the third volume change space C is in communication with the first inlet check valve 210.
  • the first volume change space (A) is further compressed, so that the first discharge check valve (220) is kept open and the fluid located in the first volume change space (A) is the first.
  • the discharge check valve 220 is continuously discharged to the outside (or the ground connecting pipe 50) of the first volume change space (A).
  • the second inflow check valve 230 is opened to the groundwater located in the borehole the second inflow check valve 230 Through the continuous flow into the second volume change space (B), the second discharge check valve 240 is in a closed state.
  • the first inflow check valve 210 is opened so that the groundwater located in the borehole is located through the first inflow check valve 210. It flows into the three volumetric fluctuation space (C).
  • the rotor 300 is rotated by a predetermined angle so that the first volume change space A is further compressed, the second volume change space B is compressed, and the third volume change space C is further expanded.
  • the first volume change space (A) is in communication with the first discharge check valve 220
  • the second volume change space (B) is the second inlet check valve 230 and the second discharge check valve In communication with 240
  • the third volume change space C is in communication with the first inlet check valve 210.
  • the first discharge check valve 220 As the first volume change space A is further compressed, the first discharge check valve 220 is kept open, and the groundwater located in the first volume change space A is stored in the first volume change space A. The first discharge check valve 220 is continuously discharged to the outside (or the ground connecting pipe 50) of the first volume change space (A).
  • the rotor 300 is rotated by a predetermined angle so that the first volume change space A is expanded, the second volume change space B is further compressed, and the third volume change space C is further expanded. do.
  • the first volume change space (A) is in communication with the second inlet check valve 230
  • the second volume change space (B) is in communication with the second discharge check valve 240
  • the first The three volumetric fluctuation space C is in communication with the first inlet check valve 210 and the first discharge check valve 220.
  • the second inflow check valve 230 As the first volume change space A is expanded, the second inflow check valve 230 is opened to allow groundwater located in the borehole through the second inflow check valve 230. It flows into 1 volume fluctuation space (A).
  • the second discharge check valve 240 is opened so that the groundwater which is located in the second volume change space B is discharged. Through the check valve 240 is discharged to the outside (or the ground connecting pipe 50) of the first volume change space (A).
  • the ground water which is located in the borehole while maintaining the open state of the first inlet check valve 210, is formed through the first inlet check valve 210.
  • the first discharge check valve 220 is in a closed state.
  • the first volume change space (A), the second volume change space (B), and the third volume change space (C) are expanded and compressed by the rotation of the rotor (300). Inflow and outflow may be repeated.
  • a part of the plurality of volume change spaces is expanded and the other portion is compressed by the rotation of the rotor 300, and when the volume change space is expanded, the volume is expanded.
  • the first inlet check valve 210 or the second inlet check valve 230 is in an open state and communicates with the volumetric fluctuation space to be expanded, the first discharge check valve 220 is in communication with the volume change space is Alternatively, the second discharge check valve 240 is in a closed state so that the groundwater of the borehole flows into the accommodating part 110, and when the volume change space is compressed, the first flow rate communicates with the volume change space that is compressed.
  • the check valve 210 or the second inflow check valve 230 is in a closed state, and the first discharge check valve 220 or the second discharge check valve 240 in communication with the volume change space to be compressed is in an open state. Will become the edge of the storage unit 110 It can be discharged to the ground connector (50). As the rotor rotates, the volumetric variable space expands and compresses repeatedly, and the suction and discharge of groundwater are repeated. This has the advantage of having a high suction force and generating a high pressure. Furthermore, since the volumetric fluctuations in the rotor housing are simultaneously generated in three compartments, a large amount of groundwater can be sucked, and groundwater can be pumped at a deep depth requiring high pressure, and the groundwater harvesting can be maximized.
  • the rotary piston pump 1000 may further include a motor housing 500.
  • the motor housing 500 is installed on the upper side of the rotor housing 100, and communicates with the first discharge check valve 220 and the second discharge check valve 240, and accommodates the motor 400.
  • the machine room part 510 is formed.
  • the rotor housing 100 has the first inlet check valve 210 and the second inlet check valve 230 are arranged in the left and right directions, the first discharge check valve 220 and the second discharge check valve ( 240 may be arranged in the front-rear direction. That is, the first inlet check valve 210 and the second inlet check valve 230 and the first discharge check valve 220 and the second discharge check valve 240 are arranged in a direction perpendicular to each other.
  • first inlet check valve 210 and the second inlet check valve 230 and the first discharge check valve 220 and the second discharge check valve 240 are formed to be arranged in a direction perpendicular to each other.
  • the rotation of the rotor 300 is preferable because it can effectively utilize the cycle of the expansion and compression of the plurality of volume change space.
  • FIG. 5 is a perspective view of a rotor according to the present invention.
  • the rotary piston pump 1000 may further include a rotor seal 610 and an elastic material 620.
  • the rotor seal 610 is installed at a portion in contact with the inner surface of the rotor housing 100 on the outer circumferential surface of the rotor 300.
  • the rotor seal 610 may be formed in a fusiform in order to maximize the air tightness with the rotor housing 100.
  • the elastic material 620 is installed between the inner surface of the rotor seal 610 and the inner surface of the rotor 300 serves as a kind of spring to absorb the impact applied to the rotor seal 610.
  • the outer circumferential surface of the rotor housing 100 may be applied to three or more epitroid curved surfaces as well as two epitroid curved surfaces, and may be variously modified.
  • the rotor housing 100 is composed of one, the rotor housing 100 including the rotor 300 may be modified to connect a plurality of rotor housings 100 in the vertical direction.
  • the motor housing 500 including the motor 400 may be modified to further connect to the lower portion of the rotor housing 100. This further increases the performance (both pumped and lift) of the rotary piston pump in boreholes with limited installation area.
  • the present invention can be transformed into a fluid transfer device, a high pressure pump, a pressure tester, or a high pressure generator in the ground as well as pumping groundwater, and the structure is simple and can be miniaturized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Reciprocating Pumps (AREA)
  • Rotary Pumps (AREA)

Abstract

The present invention relates to a rotary piston pump for collecting underground water located in a specific depth of a borehole, and the rotary piston pump according to the present invention allows: a plurality of volume varying spaces to be expanded or compressed by the rotation of a rotor such that a first inlet check valve and a second inlet check valve are in a closed state or an opened state of introducing, into a receiving part, underground water located in a borehole; and a first outlet check valve and a second outlet check valve to be in a closed state or in an opened state of discharging, to a ground connection pipe, the underground water located in the receiving part such that the underground water introduced into a rotor housing can be discharged in the ground. Since volume varying spaces are repeatedly expanded and compressed by the rotation of a rotor, the underground water is repeatedly suctioned and discharged, and at this point, high suction power is exhibited and, simultaneously, high pressure can be generated. In addition, since volume variations within a rotor housing simultaneously occur in three divisions, a large quantity of underground water can be drawn.

Description

로터리 피스톤 펌프Rotary piston pump
본 발명은 시추공의 특정심도에 위치하는 지하수를 채취하기 위한 로터리 피스톤 펌프에 관한 것이다.The present invention relates to a rotary piston pump for collecting ground water located at a specific depth of a borehole.
일반적으로 시추공의 특정 심도에 존재하는 지하수를 양수할 때에는 수중펌프가 주로 사용되고 있다.In general, an underwater pump is mainly used to pump groundwater present in a specific depth of a borehole.
수중펌프는 임펠라를 회전시켜 물에 회전력을 부가함으로서 발생하는 원심력작용으로 양수하는 방식이 적용되고 있다.Submersible pump is applied to the pumping method by centrifugal force generated by rotating the impeller to add rotational force to the water.
이 때, 수중펌프는 지상펌프보다 깊은 심도 까지 지하수를 양수할 수 있으나, 채취 심도가 증가할수록 수중펌프의 용량과 크기가 커져야 함으로, 수중펌프의 용량과 크기가 시추공의 크기에 맞춰서 제한되어 수중펌프의 용량 및 채취심도를 증가시키는 것은 실질적으로 어려운 한계점이 있었다.At this time, the submersible pump can pump groundwater to a depth deeper than the ground pump, but as the depth of extraction increases, the capacity and size of the submersible pump must increase, so the capacity and size of the submersible pump are limited to the size of the borehole and thus the submersible pump Increasing the dose and depth of harvesting were practically difficult limitations.
이에 본 출원인은 한국등록특허 제1124075호의 시추공에 삽입되어 지하수를 채취하기 위한 지하수 채취장치에 있어서, 취수관의 일부를 형성하는 쉘; 내부를 분할하는 세퍼레이터에 지하수의 유동을 위한 다수의 취수홀이 형성되고, 상기 쉘 내부에서 상하 방향으로 이동 가능하게 구비되어서 상하로 운동함에 따라 상기 시추공 내의 지하수를 상기 취수관으로 유입시키는 작동유닛; 상기 작동유닛의 상부와 하부에 각각 전자석이 구비되어 상기 작동유닛을 상하 운동시키는 구동유닛; 및 상기 작동유닛 내부에 구비되어 상기 작동유닛의 상하 운동에 따라 상기 취수홀을 개폐하도록 상기 세퍼레이터에 힌지 결합된 블레이드를 포함하는 개폐유닛;을 포함하고, 상기 블레이드는 상기 작동유닛의 상부 이동 시 상기 취수홀을 개방하고 상기 작동유닛의 하부 이동 시에는 상기 취수홀을 폐쇄하여 시추공에서 좀 더 깊은 심도에 위치하는 지하수를 양수할 수 있는 것을 특징으로 하는 전동식 지하수 채취장치를 제시한 적이 있었다.Accordingly, the present applicant is inserted into the borehole of the Korean Patent No. 1124075, the groundwater collecting device for collecting ground water, the shell forming a portion of the intake pipe; A plurality of intake holes are formed in the separator for dividing the inside of the ground water, and are provided to be movable upward and downward in the shell to move the ground water in the borehole into the intake pipe as the up and down movements occur; A driving unit provided with an electromagnet at each of the upper and lower portions of the operating unit to vertically move the operating unit; And an opening and closing unit provided inside the operation unit and including a blade hinged to the separator so as to open and close the water intake hole according to the vertical movement of the operation unit. When opening the water intake hole and the lower movement of the operation unit has been proposed an electric groundwater collection device characterized in that the ground water can be pumped to a deeper depth in the borehole by closing the water intake hole.
그러나 종래기술은 작동유닛이 상하로 이동하면서 압력을 발생시켜 지하수를 양수하는 일종의 왕복펌프로서, 지하수를 끌어 올릴 수 있는 시추공의 심도(흡입 양정)에 한계점이 있는 문제점이 있었다.However, the prior art is a kind of reciprocating pump that pumps groundwater by generating pressure while the operation unit moves up and down, and has a problem in that the depth of the borehole (suction head) capable of raising groundwater is limited.
따라서 상술한 문제점을 해결하기 위한 다양한 지하수 채취 장치의 개발이 필요한 실정이다.Therefore, it is necessary to develop a variety of groundwater extraction apparatus to solve the above problems.
본 발명은 상기한 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 지하수를 끌어 올릴 수 있는 시추공의 심도(흡입 양정)를 최대화할 수 있고, 지하수의 채취량을 최대화할 수 있는 로터리 피스톤 펌프를 제공하기 위한 것이다.The present invention has been made to solve the above problems, an object of the present invention is to maximize the depth of the borehole (suction head) that can raise groundwater, and to provide a rotary piston pump that can maximize the amount of groundwater harvesting It is to provide.
본 발명에 따른 로터리 피스톤 펌프(1000)는 내부에 수납부(110)가 각각 형성되는 로터하우징(100); 상기 로터하우징(100)의 하면에 각각 설치되며 부압시에만 열린 상태가 되는 제1유입체크밸브(210) 및 제2유입체크밸브(230); 상기 로터하우징(100)의 상면에 각각 설치되며 정압시에만 열린 상태가 되며 지상연결관(50)과 연통되는 제1배출체크밸브(220) 및 제2배출체크밸브(240); 상기 수납부(110)에 설치되어 상기 수납부(110)를 다수의 용적변동공간으로 구획하는 로터(300); 및 상기 로터(300)와 편심되게 결합되는 구동축(410)을 포함하는 모터(400);를 포함하며, 상기 로터(300)의 회전에 의해 상기 다수의 용적변동공간 중 일부는 팽창되고 나머지 일부는 압축되며, 상기 용적변동공간이 팽창 시에, 팽창되는 상기 용적변동공간과 연통되는 상기 제1유입체크밸브(210) 또는 제2유입체크밸브(230)는 열린 상태가 되고, 팽창되는 상기 용적변동공간과 연통되는 상기 제1배출체크밸브(220) 또는 제2배출체크밸브(240)는 닫힌 상태가 되어 시추공의 지하수가 상기 수납부(110)로 유입되고, 상기 용적변동공간이 압축 시에, 압축되는 상기 용적변동공간과 연통되는 상기 제1유입체크밸브(210) 또는 제2유입체크밸브(230)는 닫힌 상태가 되고, 압축되는 상기 용적변동공간과 연통되는 상기 제1배출체크밸브(220) 또는 제2배출체크밸브(240)는 열린 상태가 되어 상기 수납부(110)의 지하수가 상기 지상연결관(50)으로 배출되는 것을 특징으로 한다.The rotary piston pump 1000 according to the present invention includes a rotor housing 100 each having a receiving portion 110 formed therein; First inlet check valves 210 and second inlet check valves 230 installed on the lower surfaces of the rotor housing 100 and opened only at a negative pressure; A first discharge check valve 220 and a second discharge check valve 240 respectively installed on the upper surface of the rotor housing 100 and opened only at a positive pressure and communicating with the ground connection pipe 50; A rotor (300) installed in the accommodating part (110) to partition the accommodating part (110) into a plurality of volume variation spaces; And a motor 400 including a drive shaft 410 that is eccentrically coupled to the rotor 300, wherein a portion of the plurality of volumetric variable spaces is expanded by the rotation of the rotor 300 and the other portion is When the volume change space is expanded, the first inflow check valve 210 or the second inflow check valve 230 in communication with the expanded volume change space is opened and the volume change is expanded. When the first discharge check valve 220 or the second discharge check valve 240 in communication with the space is in a closed state, the groundwater of the borehole flows into the accommodating part 110, and when the volume change space is compressed, The first inlet check valve 210 or the second inlet check valve 230 in communication with the compressed volume change space is in a closed state, and the first discharge check valve 220 in communication with the compressed volume change space. ) Or the second discharge check valve 240 is an open phase Is a characterized in that the ground water in the storage unit 110 is discharged to the ground connector (50).
또한, 상기 로터리 피스톤 펌프(1000)는 상기 로터하우징(100)의 상측에 설치되며, 내부에 상기 모터(400)가 수납되는 기계실부(510)가 형성되는 모터하우징(500);을 더 포함하며, 상기 기계실부(510)의 하부는 상기 제1배출체크밸브(220) 및 제2배출체크밸브(240)와 연통되고, 상기 기계실부(510)의 상부는 상기 지상연결관(50)과 연통되는 것을 특징으로 한다.In addition, the rotary piston pump 1000 is installed on the upper side of the rotor housing 100, the motor housing 500 is formed therein the machine room part 510 is accommodated therein; The lower portion of the machine chamber 510 communicates with the first discharge check valve 220 and the second discharge check valve 240, and the upper portion of the machine chamber 510 communicates with the ground connection pipe 50. It is characterized by.
또한, 상기 로터하우징(100)은 상기 제1유입체크밸브(210) 및 제2유입체크밸브(230)가 하면에 좌우방향으로 배열 형성되고 상기 제1배출체크밸브(220) 및 제2배출체크밸브(240)가 상면에 전후방향으로 배열 형성되는 것을 특징으로 한다.In addition, the rotor housing 100 is the first inlet check valve 210 and the second inlet check valve 230 is formed in a left and right direction arranged on the lower surface and the first discharge check valve 220 and the second discharge check. The valve 240 is characterized in that formed in the front and rear direction arranged on the upper surface.
또한, 상기 로터리 피스톤 펌프(1000)는 상기 로터(300)의 외주면에서 상기 로터하우징(100)의 내면에 맞닿는 부위에 설치되는 로터씰(610); 및 상기 로터씰(610)의 내면과 로터(300)의 내면 사이에 설치되는 탄성재(620);를 더 포함하는 것을 특징으로 한다.In addition, the rotary piston pump 1000 is a rotor seal 610 which is installed on the outer surface of the rotor 300 in contact with the inner surface of the rotor housing 100; And an elastic member 620 installed between an inner surface of the rotor seal 610 and an inner surface of the rotor 300.
또한, 상기 로터(300) 및 로터하우징(100)은 서로 상하방향으로 다수개 연결이 가능한 것을 특징으로 한다.In addition, the rotor 300 and the rotor housing 100 is characterized in that a plurality of connections in the vertical direction.
이에 따라, 본 발명에 따른 로터리 피스톤 펌프는 로터의 회전에 의해 다수의 용적변동공간이 팽창 또는 압축되어 제1유입체크밸브 및 제2유입체크밸브가 시추공에 위치하는 지하수를 수납부로 유입하는 열린 상태 또는 닫힌 상태가 되며 제1배출체크밸브 및 제2배출체크밸브가 닫힌 상태 또는 수납부에 위치하는 지하수를 지상연결관으로 배출하는 열린 상태가 됨으로써, 로터하우징으로 유입된 지하수를 지상으로 배출할 수 있다. 로터의 회전에 따라 용적변동공간이 팽창과 압축이 반복되어, 지하수의 흡입과 배출이 반복되는데 이때 높은 흡입력을 갖는 동시에 높은 압력을 발생시킬 수 있는 장점이 있다. 더욱이, 로터하우징 내의 용적변동이 3개 구획에서 동시에 발생되기 때문에 다량의 지하수를 양수할 수 있다. 즉, 지상에서는 지하수를 흡입할 수도 있으며, 고압이 필요한 깊은 심도에서도 지하수를 양수할 수 있을 뿐만 아니라 지하수 채취량을 최대화할 수 있는 장점이 있다.Accordingly, in the rotary piston pump according to the present invention, a plurality of volume change spaces are expanded or compressed by the rotation of the rotor so that the first inlet check valve and the second inlet check valve open the groundwater in which the boreholes are introduced into the storage unit. The first discharge check valve and the second discharge check valve are in a closed state or an open state for discharging the groundwater located in the receiving portion to the ground connection pipe, thereby discharging the groundwater introduced into the rotor housing to the ground. Can be. As the rotor rotates, the volumetric variable space expands and compresses repeatedly, and the suction and discharge of groundwater are repeated. This has the advantage of having a high suction force and generating a high pressure. Moreover, large volume of groundwater can be pumped because the volumetric fluctuations in the rotor housing occur simultaneously in three compartments. That is, the ground water may be sucked from the ground, and the groundwater may be pumped at a deep depth requiring high pressure, and the groundwater may be maximized.
도 1은 본 발명에 따른 로터리 피스톤 펌프의 사시도1 is a perspective view of a rotary piston pump according to the present invention
도 2는 본 발명에 따른 로터리 피스톤 펌프의 단면도2 is a cross-sectional view of a rotary piston pump according to the present invention
도 3은 본 발명에 따른 로터리 피스톤 펌프의 분해사시도3 is an exploded perspective view of a rotary piston pump according to the present invention;
도 4는 본 발명에 따른 로터리 피스톤 펌프의 구동원리를 나타낸 개념도4 is a conceptual diagram showing the driving principle of a rotary piston pump according to the present invention
도 5는 본 발명에 따른 로터의 사시도5 is a perspective view of a rotor according to the present invention;
이하, 본 발명의 기술적 사상을 첨부된 도면을 사용하여 더욱 구체적으로 설명한다.Hereinafter, the technical spirit of the present invention will be described in more detail with reference to the accompanying drawings.
첨부된 도면은 본 발명의 기술적 사상을 더욱 구체적으로 설명하기 위하여 도시한 일예에 불과하므로 본 발명의 기술적 사상이 첨부된 도면의 형태에 한정되는 것은 아니다.The accompanying drawings are only examples to illustrate the technical idea of the present invention in more detail, and thus the technical idea of the present invention is not limited to the forms of the accompanying drawings.
도 1은 본 발명에 따른 로터리 피스톤 펌프의 사시도, 도 2는 본 발명에 따른 로터리 피스톤 펌프의 단면도, 도 3은 본 발명에 따른 로터리 피스톤 펌프의 분해사시도이다.1 is a perspective view of a rotary piston pump according to the present invention, Figure 2 is a sectional view of a rotary piston pump according to the present invention, Figure 3 is an exploded perspective view of a rotary piston pump according to the present invention.
도 1 내지 도 3에 도시된 바와 같이, 본 발명에 따른 로터리 피스톤 펌프(1000)는 로터하우징(100), 제1유입체크밸브(210), 제2유입체크밸브(230), 제1배출체크밸브(220), 제2배출체크밸브(240), 로터(300) 및 모터(400)를 포함한다.As shown in Figures 1 to 3, the rotary piston pump 1000 according to the present invention is the rotor housing 100, the first inlet check valve 210, the second inlet check valve 230, the first discharge check And a valve 220, a second discharge check valve 240, a rotor 300, and a motor 400.
상기 로터하우징(100)은 시추공의 특정 심도에 배치되며, 원통형 구조로 형성되며, 내부에 수납부(110)가 형성된다.The rotor housing 100 is disposed at a specific depth of the borehole, is formed in a cylindrical structure, and an accommodating part 110 is formed therein.
상기 수납부(110)는 상기 로터하우징(100)의 내부(중앙)에 에피트로코이드(epitrochoid) 곡선 구조로 형성된다.The accommodating part 110 is formed in an epitrochoid curved structure in the interior (center) of the rotor housing 100.
상기 제1유입체크밸브(210) 및 제2유입체크밸브(230)는 상기 로터하우징(100)의 하면에 각각 설치되어 시추공에 위치하는 지하수를 상기 수납부(110)로 유입하는 역할을 하며 부압시에만 열린 상태가 되며 정압시에 닫힌 상태가 된다.The first inlet check valve 210 and the second inlet check valve 230 are respectively installed on the lower surface of the rotor housing 100 and serve to introduce the groundwater located in the borehole into the accommodating part 110 and underpressure. It is in the open state only at the time of closing and in the closed state at constant pressure.
상기 제1배출체크밸브(220) 및 제2배출체크밸브(240)는 상기 로터하우징(100)의 상면에 각각 설치되어 지상연결관(50)과 연통되며 상기 수납부(110)에 위치하는 지하수를 상기 지상관으로 배출하는 역할을 하며 정압시에만 열린 상태가 되며 부압시에 닫힌 상태가 된다.The first discharge check valve 220 and the second discharge check valve 240 are respectively installed on the upper surface of the rotor housing 100 to communicate with the ground connecting pipe 50 and the ground water located in the receiving unit 110. It serves to discharge the above ground pipe and is opened only at positive pressure and is closed at negative pressure.
상기 로터(300)는 상기 수납부(110)에 설치되어 상기 수납부(110)를 다수의 용적변동공간으로 구획하며 상기 로터(300)의 회전에 의해 상기 다수의 용적변동공간 중 일부는 팽창되고 나머지 일부는 압축되며, 상기 용적변동공간이 팽창 시에, 팽창되는 상기 용적변동공간과 연통되는 상기 제1유입체크밸브(210) 또는 제2유입체크밸브(230)는 열린 상태가 되고, 팽창되는 상기 용적변동공간과 연통되는 상기 제1배출체크밸브(220) 또는 제2배출체크밸브(240)는 닫힌 상태가 되어 시추공의 지하수가 상기 수납부(110)로 유입되고, 상기 용적변동공간이 압축 시에, 압축되는 상기 용적변동공간과 연통되는 상기 제1유입체크밸브(210) 또는 제2유입체크밸브(230)는 닫힌 상태가 되고, 압축되는 상기 용적변동공간과 연통되는 상기 제1배출체크밸브(220) 또는 제2배출체크밸브(240)는 열린 상태가 되어 상기 수납부(110)의 지하수가 상기 지상연결관(50)으로 배출된다.The rotor 300 is installed in the accommodating part 110 and divides the accommodating part 110 into a plurality of volume varying spaces, and part of the plurality of volume changing spaces is expanded by the rotation of the rotor 300. The remaining part is compressed, and when the volume change space is expanded, the first inflow check valve 210 or the second inflow check valve 230 in communication with the volume change space to be expanded is opened and is expanded. The first discharge check valve 220 or the second discharge check valve 240 in communication with the volumetric fluctuation space is in a closed state so that the groundwater of the borehole flows into the accommodating part 110, and the volumetric fluctuation space is compressed. At the time, the first inflow check valve 210 or the second inflow check valve 230 in communication with the volume change space to be compressed is in a closed state, and the first discharge check in communication with the volume change space to be compressed. Valve 220 or the second discharge check valve ( 240 is in an open state and the groundwater of the accommodating part 110 is discharged to the ground connection pipe 50.
상기 모터(400)는 상기 로터(300)와 편심되게 결합되는 구동축(410)을 포함하며, 상기 로터(300)를 회전시키는 역할을 한다. 상기 구동축(410)은 편심으로 회전되어 상기 로터(300)와 마찰이 발생되며, 상기 마찰을 저감하기 위하여 상기 구동축(410)과 로터(300) 사이에 베어링을 결합시킬 수 있으며, 상기 구동축(410)과 로터(300)가 서로 기어결합 될 수도 있다.The motor 400 includes a drive shaft 410 coupled eccentrically with the rotor 300, and serves to rotate the rotor 300. The drive shaft 410 is rotated eccentrically and friction with the rotor 300 is generated, in order to reduce the friction may be coupled to the bearing between the drive shaft 410 and the rotor 300, the drive shaft 410 ) And the rotor 300 may be geared to each other.
도 4는 본 발명에 따른 로터리 피스톤 펌프의 구동원리를 나타낸 개념도이다. 이 때, 도 4에는 좀 더 간편한 설명을 위하여 상기 제1유입체크밸브(210), 제2유입체크밸브(230), 제1배출체크밸브(220), 제2배출체크밸브(240)가 상기 로터하우징(100)의 둘레에 도시되었으며, 상기 로터(300)에 의해 상기 수납부(110)에 구획된 3개의 용적변동공간을 각각 제1용적변동공간(A), 제2용적변동공간(B), 제3용적변동공간(C)으로 정의하였다.4 is a conceptual diagram showing a driving principle of a rotary piston pump according to the present invention. 4, the first inlet check valve 210, the second inlet check valve 230, the first discharge check valve 220, and the second discharge check valve 240 are described in more detail. It is shown around the rotor housing 100, the three volumetric variable space partitioned by the rotor 300 in the housing 110, respectively, the first volumetric variable space (A), the second volumetric variable space (B) ) And the third volumetric fluctuation space (C).
도 4를 참조하여, 본 발명에 따른 로터리 피스톤 펌프(1000)가 지하수를 채취하는 원리에 대해 설명하기로 한다.Referring to Figure 4, the rotary piston pump 1000 according to the present invention will be described for the principle of collecting ground water.
1)상기 모터(400)가 상기 로터(300)를 회전시킨다. 이때, 상기 제1용적변동공간(A)은 상기 제1유입체크밸브(210) 및 제1배출체크밸브(220)와 연통되며, 상기 제2용적변동공간(B)은 상기 제2유입체크밸브(230)와 연통되며, 상기 제3용적변동공간(C)은 상기 제2배출체크밸브(240)와 연통된다.1) The motor 400 rotates the rotor 300. At this time, the first volume change space (A) is in communication with the first inlet check valve 210 and the first discharge check valve 220, the second volume change space (B) is the second inlet check valve In communication with 230, the third volume change space C is in communication with the second discharge check valve 240.
2)상기 로터(300)가 소정 각도 회전되어 상기 제1용적변동공간(A)과 제3용적변동공간(C)이 압축되고 상기 제2용적변동공간(B)이 팽창된다. 이 때, 상기 제1용적변동공간(A)은 상기 제1유입체크밸브(210) 및 제1배출체크밸브(220)와 연통되며, 상기 제2용적변동공간(B)은 상기 제2유입체크밸브(230)와 연통되며, 상기 제3용적변동공간(C)은 상기 제2배출체크밸브(240)와 연통된다.2) The rotor 300 is rotated by a predetermined angle to compress the first volume change space A and the third volume change space C, and the second volume change space B is expanded. At this time, the first volume change space (A) is in communication with the first inlet check valve 210 and the first discharge check valve 220, the second volume change space (B) is the second inlet check In communication with the valve 230, the third volume change space (C) is in communication with the second discharge check valve (240).
2-1)상기 제1용적변동공간(A)이 압축됨으로써, 상기 제1유입체크밸브(210)가 닫힌 상태가 되며, 상기 제1배출체크밸브(220)가 열린 상태가 되어 상기 제1용적변동공간(A)에 위치하던 유체가 상기 제1배출체크밸브(220)릍 통해 상기 제1용적변동공간(A)의 외부(또는 지상연결관(50))로 배출된다.2-1) As the first volume change space A is compressed, the first inflow check valve 210 is closed, and the first discharge check valve 220 is opened to open the first volume. The fluid located in the variable space A is discharged to the outside of the first volume variable space A (or the ground connecting pipe 50) through the first discharge check valve 220.
2-2)상기 제2용적변동공간(B)이 팽창됨으로써, 상기 제2유입체크밸브(230)가 열린 상태가 되어 시추공에 위치하던 지하수가 상기 제2유입체크밸브(230)를 통해 상기 제2용적변동공간(B)로 유입된다.2-2) As the second volume change space B is expanded, the second inflow check valve 230 is opened to allow the groundwater located in the borehole through the second inflow check valve 230. 2 flows into the volumetric fluctuation space (B).
2-3)상기 제3용적변동공간(C)이 압축됨으로써, 상기 제2배출체크밸브(240)가 열린 상태가 되어 상기 제3용적변동공간(C)에 위치하던 유체가 상기 제2배출체크밸브(240)를 통해 상기 제3용적변동공간(C)의 외부(또는 지상연결관(50))로 배출된다.2-3) As the third volume change space C is compressed, the second discharge check valve 240 is opened to allow the fluid located in the third volume change space C to be discharged. Through the valve 240 is discharged to the outside (or the ground connecting pipe 50) of the third volume change space (C).
3)다시 상기 로터(300)가 소정 각도 회전되어 상기 제1용적변동공간(A)이 더욱 압축되고 상기 제2용적변동공간(B)과 제3용적변동공간(C)이 팽창된다. 이때, 상기 제1용적변동공간(A)은 상기 제1배출체크밸브(220)와 연통되며, 상기 제2용적변동공간(B)은 상기 제2유입체크밸브(230) 및 제2배출체크밸브(240)와 연통되며, 상기 제3용적변동공간(C)은 상기 제1유입체크밸브(210)와 연통된다.3) The rotor 300 is rotated by a predetermined angle so that the first volume change space A is further compressed and the second volume change space B and the third volume change space C are expanded. In this case, the first volume change space (A) is in communication with the first discharge check valve 220, the second volume change space (B) is the second inlet check valve 230 and the second discharge check valve In communication with 240, the third volume change space C is in communication with the first inlet check valve 210.
3-1)상기 제1용적변동공간(A)이 더욱 압축됨으로써, 상기 제1배출체크밸브(220)가 열린 상태를 유지하며 상기 제1용적변동공간(A)에 위치하던 유체가 상기 제1배출체크밸브(220)를 통해 상기 제1용적변동공간(A)의 외부(또는 지상연결관(50))로 지속적으로 배출된다.3-1) The first volume change space (A) is further compressed, so that the first discharge check valve (220) is kept open and the fluid located in the first volume change space (A) is the first. The discharge check valve 220 is continuously discharged to the outside (or the ground connecting pipe 50) of the first volume change space (A).
3-2)상기 제2용적변동공간(B)이 팽창된 상태를 유지함으로써, 상기 제2유입체크밸브(230)가 열린 상태가 되어 시추공에 위치하던 지하수가 상기 제2유입체크밸브(230)를 통해 상기 제2용적변동공간(B)로 지속적으로 유입되며, 상기 제2배출체크밸브(240)가 닫힌 상태가 된다.3-2) By maintaining the second volume change space (B) in an expanded state, the second inflow check valve 230 is opened to the groundwater located in the borehole the second inflow check valve 230 Through the continuous flow into the second volume change space (B), the second discharge check valve 240 is in a closed state.
3-3)상기 제3용적변동공간(C)이 팽창됨으로써, 상기 제1유입체크밸브(210)가 열린 상태가 되어 시추공에 위치하던 지하수가 상기 제1유입체크밸브(210)를 통해 상기 제3용적변동공간(C)로 유입된다.3-3) As the third volume change space C is expanded, the first inflow check valve 210 is opened so that the groundwater located in the borehole is located through the first inflow check valve 210. It flows into the three volumetric fluctuation space (C).
4)다시 상기 로터(300)가 소정 각도 회전되어 상기 제1용적변동공간(A)이 더욱 압축되고 상기 제2용적변동공간(B)이 압축되고 제3용적변동공간(C)이 더욱 팽창된다. 이때, 상기 제1용적변동공간(A)은 상기 제1배출체크밸브(220)와 연통되며, 상기 제2용적변동공간(B)은 상기 제2유입체크밸브(230) 및 제2배출체크밸브(240)와 연통되며, 상기 제3용적변동공간(C)은 상기 제1유입체크밸브(210)와 연통된다.4) The rotor 300 is rotated by a predetermined angle so that the first volume change space A is further compressed, the second volume change space B is compressed, and the third volume change space C is further expanded. . In this case, the first volume change space (A) is in communication with the first discharge check valve 220, the second volume change space (B) is the second inlet check valve 230 and the second discharge check valve In communication with 240, the third volume change space C is in communication with the first inlet check valve 210.
4-1)상기 제1용적변동공간(A)이 더욱 압축됨으로써, 상기 제1배출체크밸브(220)가 열린 상태를 유지하며, 상기 제1용적변동공간(A)에 위치하던 지하수가 상기 제1배출체크밸브(220)를 통해 상기 제1용적변동공간(A)의 외부(또는 지상연결관(50))로 지속적으로 배출된다.4-1) As the first volume change space A is further compressed, the first discharge check valve 220 is kept open, and the groundwater located in the first volume change space A is stored in the first volume change space A. The first discharge check valve 220 is continuously discharged to the outside (or the ground connecting pipe 50) of the first volume change space (A).
4-2)상기 제2용적변동공간(B)이 압축됨으로써, 상기 제2유입체크밸브(230)가 닫힌 상태가 되며, 상기 제2배출체크밸브(240)가 열린 상태가 되어 상기 제2용적변동공간(B)에 위치하던 지하수가 상기 제2배출체크밸브(240)를 통해 상기 제1용적변동공간(A)의 외부(또는 지상연결관(50))로 배출된다.4-2) As the second volume change space B is compressed, the second inflow check valve 230 is closed, and the second discharge check valve 240 is opened to open the second volume. Groundwater located in the variable space (B) is discharged to the outside (or the ground connection pipe 50) of the first volumetric variable space (A) through the second discharge check valve 240.
4-3)상기 제3용적변동공간(C)이 더욱 팽창됨으로써, 상기 제1유입체크밸브(210)가 열린 상태를 유지하며 시추공에 위치하던 지하수가 상기 제1유입체크밸브(210)를 통해 상기 제3용적변동공간(C)로 유입된다.4-3) As the third volume change space C is further expanded, the ground water, which is located in the borehole while maintaining the open state of the first inlet check valve 210, is formed through the first inlet check valve 210. It is introduced into the third volume change space (C).
5)다시 상기 로터(300)가 소정각도 회전되어 상기 제1용적변동공간(A)이 팽창되고 상기 제2용적변동공간(B)이 더욱 압축되고 상기 제3용적변동공간(C)이 더욱 팽창된다. 이때, 상기 제1용적변동공간(A)은 상기 제2유입체크밸브(230)와 연통되며, 상기 제2용적변동공간(B)은 상기 제2배출체크밸브(240)와 연통되며, 상기 제3용적변동공간(C)은 상기 제1유입체크밸브(210) 및 상기 제1배출체크밸브(220)와 연통된다.5) The rotor 300 is rotated by a predetermined angle so that the first volume change space A is expanded, the second volume change space B is further compressed, and the third volume change space C is further expanded. do. In this case, the first volume change space (A) is in communication with the second inlet check valve 230, the second volume change space (B) is in communication with the second discharge check valve 240, the first The three volumetric fluctuation space C is in communication with the first inlet check valve 210 and the first discharge check valve 220.
5-1)상기 제1용적변동공간(A)이 팽창됨으로써, 상기 제2유입체크밸브(230)가 열린 상태가 되어 시추공에 위치하던 지하수가 상기 제2유입체크밸브(230)를 통해 상기 제1용적변동공간(A)으로 유입된다.5-1) As the first volume change space A is expanded, the second inflow check valve 230 is opened to allow groundwater located in the borehole through the second inflow check valve 230. It flows into 1 volume fluctuation space (A).
5-2)상기 제2용적변동공간(B)이 더욱 압축됨으로써, 상기 제2배출체크밸브(240)가 열린 상태가 되어 상기 제2용적변동공간(B)에 위치하던 지하수가 상기 제2배출체크밸브(240)를 통해 상기 제1용적변동공간(A)의 외부(또는 지상연결관(50))로 배출된다.5-2) As the second volume change space B is further compressed, the second discharge check valve 240 is opened so that the groundwater which is located in the second volume change space B is discharged. Through the check valve 240 is discharged to the outside (or the ground connecting pipe 50) of the first volume change space (A).
5-3)상기 제3용적변동공간(C)이 더욱 팽창됨으로써, 상기 제1유입체크밸브(210)가 열린 상태를 유지하며 시추공에 위치하던 지하수가 상기 제1유입체크밸브(210)를 통해 상기 제3용적변동공간(C)로 지속적으로 유입되며, 상기 제1배출체크밸브(220)가 닫힌 상태가 된다.5-3) As the third volume change space (C) is further expanded, the ground water, which is located in the borehole while maintaining the open state of the first inlet check valve 210, is formed through the first inlet check valve 210. Continuously introduced into the third volume change space (C), the first discharge check valve 220 is in a closed state.
상술한 바와 같이, 상기 로터(300)의 회전에 의해 상기 제1용적변동공간(A), 제2용적변동공간(B), 제3용적변동공간(C)이 팽창 및 압축을 반복하면서 지하수의 유입 및 배출이 반복적으로 이루어질 수 있다.As described above, the first volume change space (A), the second volume change space (B), and the third volume change space (C) are expanded and compressed by the rotation of the rotor (300). Inflow and outflow may be repeated.
이에 따라, 본 발명에 따른 로터리 피스톤 펌프(1000)는 상기 로터(300)의 회전에 의해 상기 다수의 용적변동공간 중 일부는 팽창되고 나머지 일부는 압축되며, 상기 용적변동공간이 팽창 시에, 팽창되는 상기 용적변동공간과 연통되는 상기 제1유입체크밸브(210) 또는 제2유입체크밸브(230)는 열린 상태가 되고, 팽창되는 상기 용적변동공간과 연통되는 상기 제1배출체크밸브(220) 또는 제2배출체크밸브(240)는 닫힌 상태가 되어 시추공의 지하수가 상기 수납부(110)로 유입되고, 상기 용적변동공간이 압축 시에, 압축되는 상기 용적변동공간과 연통되는 상기 제1유입체크밸브(210) 또는 제2유입체크밸브(230)는 닫힌 상태가 되고, 압축되는 상기 용적변동공간과 연통되는 상기 제1배출체크밸브(220) 또는 제2배출체크밸브(240)는 열린 상태가 되어 상기 수납부(110)의 지하수가 상기 지상연결관(50)으로 배출된다. 로터의 회전에 따라 용적변동공간이 팽창과 압축이 반복되어, 지하수의 흡입과 배출이 반복되는데 이때 높은 흡입력을 갖는 동시에 높은 압력을 발생시킬 수 있는 장점이 있다. 더욱이, 로터하우징 내의 용적변동이 3개 구획에서 동시에 발생되기 때문에 다량의 지하수를 흡입할 수도 있으며, 고압이 필요한 깊은 심도에서도 지하수를 양수할 수 있을 뿐만 아니라 지하수 채취량을 최대화할 수 있는 장점이 있다.Accordingly, in the rotary piston pump 1000 according to the present invention, a part of the plurality of volume change spaces is expanded and the other portion is compressed by the rotation of the rotor 300, and when the volume change space is expanded, the volume is expanded. The first inlet check valve 210 or the second inlet check valve 230 is in an open state and communicates with the volumetric fluctuation space to be expanded, the first discharge check valve 220 is in communication with the volume change space is Alternatively, the second discharge check valve 240 is in a closed state so that the groundwater of the borehole flows into the accommodating part 110, and when the volume change space is compressed, the first flow rate communicates with the volume change space that is compressed. The check valve 210 or the second inflow check valve 230 is in a closed state, and the first discharge check valve 220 or the second discharge check valve 240 in communication with the volume change space to be compressed is in an open state. Will become the edge of the storage unit 110 It can be discharged to the ground connector (50). As the rotor rotates, the volumetric variable space expands and compresses repeatedly, and the suction and discharge of groundwater are repeated. This has the advantage of having a high suction force and generating a high pressure. Furthermore, since the volumetric fluctuations in the rotor housing are simultaneously generated in three compartments, a large amount of groundwater can be sucked, and groundwater can be pumped at a deep depth requiring high pressure, and the groundwater harvesting can be maximized.
한편, 본 발명에 따른 로터리 피스톤 펌프(1000)는 모터하우징(500)을 더 포함할 수 있다.Meanwhile, the rotary piston pump 1000 according to the present invention may further include a motor housing 500.
상기 모터하우징(500)은 상기 로터하우징(100)의 상측에 설치되며, 내부에 상기 제1배출체크밸브(220) 및 제2배출체크밸브(240)와 연통되며 상기 모터(400)가 수납되는 기계실부(510)가 형성된다.The motor housing 500 is installed on the upper side of the rotor housing 100, and communicates with the first discharge check valve 220 and the second discharge check valve 240, and accommodates the motor 400. The machine room part 510 is formed.
이 때, 상기 기계실부(510)에는 상기 제1배출체크밸브(220) 및 제2배출체크밸브(240)에서 배출된 지하수가 유입되어 상기 모터(400)를 냉각시킬 수 있다.At this time, the groundwater discharged from the first discharge check valve 220 and the second discharge check valve 240 flows into the machine chamber 510 to cool the motor 400.
또한, 상기 로터하우징(100)은 상기 제1유입체크밸브(210) 및 제2유입체크밸브(230)가 좌우방향으로 배열 형성되고 상기 제1배출체크밸브(220) 및 제2배출체크밸브(240)가 전후방향으로 배열 형성될 수 있다. 즉, 상기 제1유입체크밸브(210) 및 제2유입체크밸브(230)와 상기 제1배출체크밸브(220) 및 제2배출체크밸브(240)가 서로 직교하는 방향으로 배열 형성되는 것이다.In addition, the rotor housing 100 has the first inlet check valve 210 and the second inlet check valve 230 are arranged in the left and right directions, the first discharge check valve 220 and the second discharge check valve ( 240 may be arranged in the front-rear direction. That is, the first inlet check valve 210 and the second inlet check valve 230 and the first discharge check valve 220 and the second discharge check valve 240 are arranged in a direction perpendicular to each other.
이 때, 상기 제1유입체크밸브(210) 및 제2유입체크밸브(230)와 상기 제1배출체크밸브(220) 및 제2배출체크밸브(240)가 서로 직교하는 방향으로 배열 형성되는 것이 상기 로터(300)의 회전에 의해 상기 다수의 용적변동공간이 팽창 및 압축되는 주기를 효율적으로 활용할 수 있어서 바람직하다.At this time, the first inlet check valve 210 and the second inlet check valve 230 and the first discharge check valve 220 and the second discharge check valve 240 are formed to be arranged in a direction perpendicular to each other. The rotation of the rotor 300 is preferable because it can effectively utilize the cycle of the expansion and compression of the plurality of volume change space.
도 5는 본 발명에 따른 로터의 사시도이다.5 is a perspective view of a rotor according to the present invention.
도 5에 도시된 바와 같이, 본 발명에 따른 로터리 피스톤 펌프(1000)는 로터씰(610) 및 탄성재(620)를 더 포함할 수 있다.As shown in FIG. 5, the rotary piston pump 1000 according to the present invention may further include a rotor seal 610 and an elastic material 620.
상기 로터씰(610)은 상기 로터(300)의 외주면에서 상기 로터하우징(100)의 내면에 맞닿는 부위에 설치된다.The rotor seal 610 is installed at a portion in contact with the inner surface of the rotor housing 100 on the outer circumferential surface of the rotor 300.
이 때, 상기 로터씰(610)은 상기 로터하우징(100)과의 기밀을 극대화하기 위하여 방추형으로 형성될 수 있다.At this time, the rotor seal 610 may be formed in a fusiform in order to maximize the air tightness with the rotor housing 100.
상기 탄성재(620)는 상기 로터씰(610)의 내면과 로터(300)의 내면 사이에 설치되어 상기 로터씰(610)에 가해지는 충격을 흡수하는 일종의 스프링 역할을 한다.The elastic material 620 is installed between the inner surface of the rotor seal 610 and the inner surface of the rotor 300 serves as a kind of spring to absorb the impact applied to the rotor seal 610.
본 발명은 상기한 실시예에 한정되지 아니하며, 적용범위가 다양함은 물론이고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 다양한 변형 실시가 가능한 것은 물론이다. The present invention is not limited to the above-described embodiments, and the scope of application is not limited, and various modifications can be made without departing from the gist of the present invention as claimed in the claims.
상기 로터하우징(100)의 외주면은 2개의 에피트로코이드 곡면 뿐만 아니라 3개 이상의 에피트로코이드 곡면이 적용될 수 있으며, 다양한 변형 실시가 가능한다.The outer circumferential surface of the rotor housing 100 may be applied to three or more epitroid curved surfaces as well as two epitroid curved surfaces, and may be variously modified.
한편, 도면에는 상기 로터하우징(100)이 1개로 구성되어 있으나, 상기 로터(300)를 포함한 상기 로터하우징(100)은 서로 상하방향으로 다수개 연결하는 변형실시가 가능하다. 또한, 상기 모터(400)를 포함한 상기 모터하우징(500)은 상기 로터하우징(100)의 하부에 추가로 연결하는 변형실시가 가능하다. 이를 통해 설치 면적이 제한되어 있는 시추공 내에서 로터리 피스톤 펌프의 성능(양수량과 양정고)을 더 증가시킬 수 있다. 이와 더불어 본 발명은 지하수의 양수 뿐만 아니라 지상에서 유체이동장치, 고압펌프, 압력테스트기, 또는 고압발생장치로 변형실시할 수 있고 구조가 간단하여 소형화가 가능하다.Meanwhile, although the rotor housing 100 is composed of one, the rotor housing 100 including the rotor 300 may be modified to connect a plurality of rotor housings 100 in the vertical direction. In addition, the motor housing 500 including the motor 400 may be modified to further connect to the lower portion of the rotor housing 100. This further increases the performance (both pumped and lift) of the rotary piston pump in boreholes with limited installation area. In addition, the present invention can be transformed into a fluid transfer device, a high pressure pump, a pressure tester, or a high pressure generator in the ground as well as pumping groundwater, and the structure is simple and can be miniaturized.
[부호의 설명][Description of the code]
1000 : 본 발명에 따른 로터리 피스톤 펌프1000: rotary piston pump according to the present invention
100 : 로터하우징 100: rotor housing
110 : 수납부 110: storage
A : 제1용적변동공간 A: first volumetric variable space
B : 제2용적변동공간 B: second volumetric variable space
C : 제3용적변동공간 C: 3rd volume change space
210 : 제1유입체크밸브 210: first inlet check valve
220 : 제1배출체크밸브 220: first discharge check valve
230 : 제2유입체크밸브 230: second inlet check valve
240 : 제2배출체크밸브 240: second discharge check valve
300 : 로터 300: rotor
400 : 모터 400: motor
410 : 구동축 410 drive shaft
500 : 모터하우징 500: motor housing
510 : 기계실부 510: Machine room part
610 : 로터씰 610: rotor seal
620 : 탄성재 620: elastic material

Claims (5)

  1. 내부에 수납부(110)가 각각 형성되는 로터하우징(100);A rotor housing 100 each having an accommodation part 110 formed therein;
    상기 로터하우징(100)의 하면에 각각 설치되며 부압시에만 열린 상태가 되는 제1유입체크밸브(210) 및 제2유입체크밸브(230);First inlet check valves 210 and second inlet check valves 230 installed on the lower surfaces of the rotor housing 100 and opened only at a negative pressure;
    상기 로터하우징(100)의 상면에 각각 설치되며 정압시에만 열린 상태가 되며 지상연결관(50)과 연통되는 제1배출체크밸브(220) 및 제2배출체크밸브(240);A first discharge check valve 220 and a second discharge check valve 240 respectively installed on the upper surface of the rotor housing 100 and opened only at a positive pressure and communicating with the ground connection pipe 50;
    상기 수납부(110)에 설치되어 상기 수납부(110)를 다수의 용적변동공간으로 구획하는 로터(300); 및A rotor (300) installed in the accommodating part (110) to partition the accommodating part (110) into a plurality of volume variation spaces; And
    상기 로터(300)와 편심되게 결합되는 구동축(410)을 포함하는 모터(400);를 포함하며,It includes; and the motor 400 including a drive shaft 410 is eccentrically coupled to the rotor 300,
    상기 로터(300)의 회전에 의해 상기 다수의 용적변동공간 중 일부는 팽창되고 나머지 일부는 압축되며, Rotation of the rotor 300 causes some of the plurality of volumetric spaces to expand and others to compress,
    상기 용적변동공간이 팽창 시에, 팽창되는 상기 용적변동공간과 연통되는 상기 제1유입체크밸브(210) 또는 제2유입체크밸브(230)는 열린 상태가 되고, 팽창되는 상기 용적변동공간과 연통되는 상기 제1배출체크밸브(220) 또는 제2배출체크밸브(240)는 닫힌 상태가 되어 시추공의 지하수가 상기 수납부(110)로 유입되고, When the volume change space is expanded, the first inflow check valve 210 or the second inflow check valve 230 communicating with the expanded volume change space is in an open state and communicates with the expanded volume change space. The first discharge check valve 220 or the second discharge check valve 240 is in a closed state so that the groundwater of the borehole flows into the accommodating part 110.
    상기 용적변동공간이 압축 시에, 압축되는 상기 용적변동공간과 연통되는 상기 제1유입체크밸브(210) 또는 제2유입체크밸브(230)는 닫힌 상태가 되고, 압축되는 상기 용적변동공간과 연통되는 상기 제1배출체크밸브(220) 또는 제2배출체크밸브(240)는 열린 상태가 되어 상기 수납부(110)의 지하수가 상기 지상연결관(50)으로 배출되는 것을 특징으로 하는 로터리 피스톤 펌프(1000).When the volume change space is compressed, the first inflow check valve 210 or the second inflow check valve 230 in communication with the volume change space to be compressed is in a closed state and communicates with the volume change space to be compressed. The first discharge check valve 220 or the second discharge check valve 240 is an open state of the rotary piston pump, characterized in that the groundwater of the accommodating portion 110 is discharged to the ground connection pipe (50). (1000).
  2. 제1항에 있어서, The method of claim 1,
    상기 로터하우징(100)의 상측에 설치되며, 내부에 상기 모터(400)가 수납되는 기계실부(510)가 형성되는 모터하우징(500);을 더 포함하며,The motor housing 500 is installed on the upper side of the rotor housing 100, the machine chamber portion 510 is formed therein to accommodate the motor 400;
    상기 기계실부(510)의 하부는 상기 제1배출체크밸브(220) 및 제2배출체크밸브(240)와 연통되고, 상기 기계실부(510)의 상부는 상기 지상연결관(50)과 연통되는 것을 특징으로 하는 로터리 피스톤 펌프(1000).The lower part of the machine chamber 510 communicates with the first discharge check valve 220 and the second discharge check valve 240, and the upper part of the machine chamber 510 communicates with the ground connection pipe 50. Rotary piston pump (1000), characterized in that.
  3. 제1항에 있어서, 상기 로터하우징(100)은The method of claim 1, wherein the rotor housing 100
    상기 제1유입체크밸브(210) 및 제2유입체크밸브(230)가 하면에 좌우방향으로 배열 형성되고 상기 제1배출체크밸브(220) 및 제2배출체크밸브(240)가 상면에 전후방향으로 배열 형성되는 것을 특징으로 하는 로터리 피스톤 펌프(1000).The first inflow check valve 210 and the second inflow check valve 230 are arranged in a left-right direction on a lower surface thereof, and the first discharge check valve 220 and the second discharge check valve 240 are in a front-rear direction on an upper surface thereof. Rotary piston pump 1000, characterized in that formed in the arrangement.
  4. 제1항에 있어서, The method of claim 1,
    상기 로터(300)의 외주면에서 상기 로터하우징(100)의 내면에 맞닿는 부위에 설치되는 로터씰(610); 및A rotor seal 610 installed at a portion of the outer surface of the rotor 300 which is in contact with the inner surface of the rotor housing 100; And
    상기 로터씰(610)의 내면과 로터(300)의 내면 사이에 설치되는 탄성재(620);를 더 포함하는 것을 특징으로 하는 로터리 피스톤 펌프(1000).Rotary piston pump (1000), characterized in that it further comprises; an elastic material (620) installed between the inner surface of the rotor seal (610) and the inner surface of the rotor (300).
  5. 제1항에 있어서, The method of claim 1,
    상기 로터(300) 및 로터하우징(100)이 서로 상하방향으로 다수개 연결되는 것을 특징으로 하는 로터리 피스톤 펌프(1000).Rotary rotor pump (1000), characterized in that the rotor 300 and the rotor housing 100 are connected to each other in the vertical direction.
PCT/KR2016/010262 2015-09-16 2016-09-12 Rotary piston pump WO2017048015A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
MYPI2018701000A MY187386A (en) 2015-09-16 2016-09-12 Rotary piston pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150130956A KR101655160B1 (en) 2015-09-16 2015-09-16 Rotary piston pump
KR10-2015-0130956 2015-09-16

Publications (1)

Publication Number Publication Date
WO2017048015A1 true WO2017048015A1 (en) 2017-03-23

Family

ID=56949985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/010262 WO2017048015A1 (en) 2015-09-16 2016-09-12 Rotary piston pump

Country Status (3)

Country Link
KR (1) KR101655160B1 (en)
MY (1) MY187386A (en)
WO (1) WO2017048015A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109944796A (en) * 2019-04-25 2019-06-28 杭州三花研究院有限公司 Oil pump

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101857878B1 (en) 2016-11-11 2018-05-15 주식회사 지엔에스엔지니어링 Fulid path closing type double-acting water pump
WO2018106003A2 (en) * 2016-12-06 2018-06-14 한국원자력연구원 Engine oil pump
KR101978737B1 (en) * 2016-12-06 2019-05-15 한국원자력연구원 Oil pump of engine
KR101833212B1 (en) * 2016-12-15 2018-03-02 한국원자력연구원 High-pressure rotary piston pump
KR101934401B1 (en) 2017-03-31 2019-01-02 한국원자력연구원 Waterproof chamber of high pressure environment
KR101881546B1 (en) 2017-06-09 2018-07-25 한국원자력연구원 Pump having vacuum and self-priming and booster functions
KR20190018359A (en) 2017-08-14 2019-02-22 최병철 Triangular rotary pump equipped with pulsation reducing means
KR101915976B1 (en) 2017-09-12 2018-11-07 한국원자력연구원 Rotary piston pump and driving method thereof
KR101857939B1 (en) 2018-01-29 2018-05-15 주식회사 지엔에스엔지니어링 Fulid path closing type double-acting water pump
KR102014264B1 (en) 2018-03-08 2019-08-27 한국원자력연구원 Rotary pump
KR102003985B1 (en) 2018-07-03 2019-07-25 한국원자력연구원 Fluid transfer device
CN109723424B (en) * 2018-12-11 2022-04-15 中煤科工集团西安研究院有限公司 Method for predicting water discharge amount of underground drilling
KR102254882B1 (en) 2020-06-01 2021-05-24 한국원자력연구원 Fluid transfer device
CN114635676B (en) * 2022-03-08 2023-11-07 山东科技大学 Intermittent pressurized water injection hole inner rotor device and method for low-permeability difficult-to-wet coal seam
KR102511792B1 (en) * 2022-05-13 2023-03-17 김병우 sine rotary engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6346696U (en) * 1986-09-12 1988-03-29
JP2002130150A (en) * 2000-10-18 2002-05-09 Naka Instruments Co Ltd Liquid drive
KR100632243B1 (en) * 2005-01-28 2006-10-12 민병일 Swing Type Oil Free Compressor having Compact Cylinder
KR20070091205A (en) * 2004-12-21 2007-09-07 다이킨 고교 가부시키가이샤 Scroll fluid machine
KR20150075889A (en) * 2013-12-26 2015-07-06 한국원자력연구원 Dual acting electromagnetic pump

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101124075B1 (en) 2009-09-02 2012-03-20 한국수력원자력 주식회사 Electrical picking apparatus for underground water
KR101635371B1 (en) * 2015-06-25 2016-07-08 한국원자력연구원 Groundwater sampling device using a double acting piston

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6346696U (en) * 1986-09-12 1988-03-29
JP2002130150A (en) * 2000-10-18 2002-05-09 Naka Instruments Co Ltd Liquid drive
KR20070091205A (en) * 2004-12-21 2007-09-07 다이킨 고교 가부시키가이샤 Scroll fluid machine
KR100632243B1 (en) * 2005-01-28 2006-10-12 민병일 Swing Type Oil Free Compressor having Compact Cylinder
KR20150075889A (en) * 2013-12-26 2015-07-06 한국원자력연구원 Dual acting electromagnetic pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109944796A (en) * 2019-04-25 2019-06-28 杭州三花研究院有限公司 Oil pump

Also Published As

Publication number Publication date
MY187386A (en) 2021-09-22
KR101655160B1 (en) 2016-09-07

Similar Documents

Publication Publication Date Title
WO2017048015A1 (en) Rotary piston pump
US11809243B2 (en) Heat exchange module and serial pump thereof
WO2009151235A2 (en) Condensate drain pump for an air conditioner
WO2013051804A1 (en) Air vane motor configured with a liner
WO2017034365A1 (en) Dual pumping fluid pump
WO2011062402A2 (en) Compressor
CN114992084A (en) Power equipment and energy storage system
CN110145448B (en) Small-size high-pressure plunger high-pressure water pump based on two-degree-of-freedom motor
CN116447123B (en) Variable frequency partition control compression and vacuum integrated pump
CN202883327U (en) Mini-type water pump provided with water separating sheet
CN205089255U (en) Can follow separation harmful gas's in drilling fluid vacuum degasser
CN217813789U (en) Power equipment and compression assembly
WO2018226009A1 (en) Pump with vacuum, self-priming, and booster functions
CN203534004U (en) Small efficient centrifugal gas-liquid separator and compressor
CN100430605C (en) Vertical pump for mine
WO2011065737A2 (en) Self-priming pump
CN214036267U (en) Self-balancing protection structure of mining multistage centrifugal pump
CN218542212U (en) Hole sealing device for gas drainage
WO2010085041A2 (en) Hermetic compressor
CN207905796U (en) One kind being used for oil gas field deep-well gas-liquid mixture sampler
WO2022119048A1 (en) Rotary piston air compressor
WO2024019431A1 (en) Electric compressor
CN218718246U (en) Bearing seat for transmission system of friction regenerator
WO2019112232A1 (en) Vacuum pump
CN218717467U (en) Oil pump structure and horizontal scroll compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846836

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16846836

Country of ref document: EP

Kind code of ref document: A1