WO2017047822A1 - Vascular lesion onset/growth prediction device and method - Google Patents

Vascular lesion onset/growth prediction device and method Download PDF

Info

Publication number
WO2017047822A1
WO2017047822A1 PCT/JP2016/077757 JP2016077757W WO2017047822A1 WO 2017047822 A1 WO2017047822 A1 WO 2017047822A1 JP 2016077757 W JP2016077757 W JP 2016077757W WO 2017047822 A1 WO2017047822 A1 WO 2017047822A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood flow
blood vessel
blood
vulnerability
malignancy
Prior art date
Application number
PCT/JP2016/077757
Other languages
French (fr)
Japanese (ja)
Inventor
高伸 八木
Original Assignee
イービーエム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イービーエム株式会社 filed Critical イービーエム株式会社
Priority to JP2017540054A priority Critical patent/JP6856937B2/en
Publication of WO2017047822A1 publication Critical patent/WO2017047822A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings

Definitions

  • the present invention relates to an apparatus for predicting the onset of a vascular lesion and its growth risk by computer simulation.
  • cerebral aneurysms and aortic aneurysms can be caused by stimulation of blood flow.
  • a cerebral aneurysm when a cerebral aneurysm is experimentally created, it is empirically known that a cerebral aneurysm occurs on the inner peripheral side of a branch portion of a specific blood vessel.
  • cerebral aneurysms In clinical practice, cerebral aneurysms have been pointed out frequently, and about 60% of them are concentrated in the internal carotid artery-rear traffic artery branch and middle cerebral artery first branch. It is known that cerebral aneurysms occur in such places, but on the other hand, since the onset of cerebral aneurysms increases with aging, there is malignant blood flow that caused the pre-occurrence stage. It is considered that cerebral aneurysm develops due to the synergistic effect of increasing blood vessel vulnerability with aging.
  • stenosis has been pointed out as a frequent blood vessel or site. It is unlikely that there is no blood flow from the pre-stenosis stage. In other words, it is difficult to predict the onset and growth of stenosis only with the malignancy of the blood flow. Therefore, it was found that it is important to include the fragility of blood vessels in addition to the malignancy of blood flow. That is, when the ratio between the malignancy of blood flow and the fragility of blood vessels exceeds a certain threshold, the risk of developing vascular stenosis increases.
  • stabilization means so-called stable plaque formation, and indicates that the plaque tissue has been converted to a state where the risk of plaque rupture is low due to fibrosis.
  • destabilization is so-called unstable plaque formation, and the plaque tissue is composed of rod-shaped tissue such as macrophages and foam cells, or a part of the tissue is composed of a risk of plaque rupture. It has been converted to a high state.
  • the present invention provides an onset / growth risk prediction apparatus for cerebral aneurysms and vascular stenosis based on the above medical insights.
  • the malignancy of blood flow is obtained by computer simulation, and the fragility of blood vessels is obtained by predicting vascular endothelial cell function. Further, it will become clear from the following description that the present invention also provides a standard for the onset, growth, or stabilization / instability conversion of arteriosclerosis.
  • a computer inputs a medical image including an analysis target blood vessel part and information on endothelial cell function, and the computer inputs Blood flow analysis unit that obtains blood vessel shape data from medical data input from the department and performs numerical fluid analysis to obtain blood flow attributes including pressure and velocity fields, and a computer acquired by the blood flow analysis unit
  • a blood flow malignancy calculation unit that determines the blood flow characteristics from the wall shear stress vector based on the blood flow attribute and quantifies the blood flow malignancy
  • the blood vessel vulnerability calculation unit that obtains the blood vessel vulnerability from the information, and the computer calculates the vascular lesion from the blood flow malignancy obtained by the blood flow malignancy calculation unit and the blood vessel vulnerability obtained by the blood vessel vulnerability calculation unit.
  • a risk calculation section that calculates a risk value for the disease, or growth, computer, vascular lesions onset and growth prospects device is provided with an output unit for outputting the calculated risk value.
  • the blood flow analysis unit extracts a blood vessel shape from a medical image, generates a calculation grid, and obtains a pressure field and a flow field while considering fluid properties and boundary conditions.
  • Device the blood flow analysis unit is configured as a device characterized by inputting a blood vessel shape, blood physical properties, boundary conditions and calculation conditions, and outputting a four-dimensional velocity field and pressure field including time. May be.
  • the determination of the blood flow property is performed by obtaining a wall shear stress vector at each position of the blood vessel wall surface of the blood vessel part to be analyzed from the state amount of the blood flow obtained by the blood flow analysis unit, The relative relationship between the direction of the wall shear stress vector at a specific wall position and the direction of the wall shear stress vector at the surrounding wall positions is obtained, and the blood flow characteristics at the wall position are determined from the form, and the determination result is output. It is a device that does.
  • the blood flow property determination unit calculates the rotation amount rot ⁇ and the divergence div ⁇ that are scalar quantities of the vector field ⁇ . It is determined by comparing these values with the threshold value as the degree of randomness to determine whether it is “parallel”, “confluence”, “rotation”, or “divergence”. When the value is negative or positive outside the threshold range, it is determined to be “rotation”, and when the divergence div ⁇ value of the randomness is a negative value outside the predetermined threshold range, it is determined to be “join”, and the randomness is determined.
  • the information on the endothelial cell function is obtained by calculating a diameter change from a blood vessel diameter measurement value at rest and at the time of release of blood transfusion.
  • the risk calculation unit determines whether the blood flow property is “Rotation” or “Merging” and the blood vessel vulnerability is high, and the blood flow property is “collision” and the blood vessel vulnerability is high. If it is determined that there is a risk of onset / growth of a lesion, the apparatus may be used.
  • the blood flow characteristics are determined to be “rotation” or “confluence”, and the vascular vulnerability is determined to be high, the onset / growth of arteriosclerosis
  • the blood flow property is judged as “collision” and the vascular vulnerability is judged to be high, it is judged that there is a risk of onset / growth of cerebral aneurysm Also good.
  • the apparatus is characterized by determining that there is a risk when the ratio of the malignancy of blood flow to the vascular vulnerability exceeds a threshold value.
  • a computer inputs information about a medical image including an analysis target blood vessel region and endothelial cell function;
  • the computer obtains blood vessel shape data from the medical data input in the input process and performs numerical fluid analysis to determine blood flow attributes including pressure and velocity fields, and the computer performs blood flow analysis.
  • the blood flow malignancy calculation step that determines the blood flow malignancy by quantifying the blood flow malignancy from the wall shear stress vector based on the blood flow attributes obtained in the process, and the endothelium input in the input process
  • the computer performs the blood flow malignancy calculated in the blood flow malignancy calculation process and the blood vessel vulnerability calculation process.
  • a blood vessel lesion onset / growth prediction method comprising a risk calculating step for calculating a risk value for the onset or growth of a vascular lesion from the determined vascular vulnerability and an output step for a computer to output the calculated risk value. is there.
  • FIG. 1 is a configuration diagram of an endovascular treatment simulation apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram conceptually showing functions and processes of the vascular lesion onset / growth prediction apparatus according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing a flow of blood flow analysis in one embodiment of the present invention.
  • FIG. 4 is a schematic diagram illustrating fluid shear stress.
  • FIG. 5 is a schematic diagram illustrating fluid shear stress.
  • FIG. 6 is a diagram showing a global coordinate system related to calculation of wall shear stress.
  • FIG. 7 is a diagram illustrating a local coordinate system related to the calculation of the wall shear stress.
  • FIG. 8 is a diagram graphically showing the shear stress vector superimposed on the three-dimensional shape of the blood vessel.
  • FIG. 4 is a schematic diagram illustrating fluid shear stress.
  • FIG. 5 is a schematic diagram illustrating fluid shear stress.
  • FIG. 6 is a diagram showing a global coordinate system related to calculation
  • FIG. 9 is a diagram graphically showing the shear stress vector and the pressure superimposed on the three-dimensional shape of the blood vessel.
  • FIG. 10 is a diagram for explaining calculation of randomness according to an embodiment of the present invention.
  • FIG. 11 is an explanatory diagram relating to the interpretation of the degree of randomness in one embodiment of the present invention.
  • FIG. 12 is a diagram representing the relationship between the degree of randomness and various risks as a map in one embodiment of the present invention.
  • FIG. 13 is a visual representation of the relationship between the vascular malignancy calculated in step I, the vascular vulnerability calculated in step II, and the vascular lesion onset / growth risk determined in step III in an embodiment of the present invention.
  • FIG. 1 shows a configuration diagram of a vascular lesion onset / growth prediction apparatus 10 according to an embodiment of the present invention.
  • a program storage unit 60 and a data storage unit 70 are connected to a bus 50 to which a CPU 20, a memory 30 and an input / output unit 40 are connected.
  • the program storage unit 60 includes a blood flow analysis unit 11, a blood flow property determination unit 12, a blood flow malignancy degree calculation unit 13, a vasodilation response measurement unit 14, a blood vessel vulnerability calculation unit 15, a risk calculation unit 16, and a result output unit 17. Etc.
  • the above configuration requirements (blood flow analysis unit 11, blood flow property determination unit 12, blood flow malignancy calculation unit 13, vasodilation response measurement unit 14, vascular vulnerability calculation unit 15, risk calculation unit 16, result output unit 17, etc.) Is actually constituted by computer software stored in a hard disk, and is read out by the CPU, developed on the memory 30 and executed, thereby functioning as each component of the present invention. .
  • the data storage unit 70 stores 24 calculation condition templates including blood vessel shape information 21, fluid physical properties 22, arterial diameter change information 23, various coefficients and multipliers, and the like.
  • the contents stored in the program storage unit 60 and the data storage unit 70 can be updated as appropriate by inputting from the outside of the apparatus via the input / output unit 40.
  • Various data stored in this manner can be used for later-described numerical fluid analysis (CFD) and vascular dilation analysis (FMD) as an endothelial cell test.
  • the input / output unit 40 is an interface with various devices and communication means.
  • a display means such as a display
  • an operation means such as a keyboard and a mouse
  • an external storage device all not shown
  • FIG. 2 is a diagram conceptually illustrating the functions and processes of the vascular lesion onset / growth prediction apparatus according to an embodiment of the present invention.
  • the result obtained from the numerical fluid analysis (CFD) and the vasodilator analysis (FMD) as the endothelial cell function test is input.
  • CFD in Step I is a blood flow simulation, and obtains a velocity field and a pressure field of a blood flow by calculation using a medical image as described later.
  • blood flow malignancy is calculated and output from the velocity field and pressure field of CFD.
  • the blood flow malignancy is based on the form evaluation of the wall shear stress vector. That is, the shape of the wall shear stress vector is classified into (1) parallel, (2) rotation, (3) merging, and (4) collision (divergence).
  • step II the vascular vulnerability is calculated and output based on the FMD results, such as numerical values for vascular endothelial cell function measured using ultrasound.
  • step III the vascular lesion onset / growth risk calculation unit calculates and outputs a risk related to vascular lesion onset / growth based on the vascular malignancy and vascular vulnerability calculated in steps I and II.
  • the blood flow analysis unit 11 acquires a pressure field / flow velocity field based on a medical image input via the input / output unit 40.
  • a medical image a vascular tomographic image obtained by MRA (magnetic resonance angiography), CTA (computerized tomography), DSA (digital subtraction angiography), or the like may be used.
  • the blood flow analysis unit 11 first receives a medical image (a).
  • a blood vessel shape is extracted based on the received medical image (b)
  • a calculation grid (volume mesh) is generated (c), while taking into account the fluid physical properties of blood and boundary conditions (wall surface).
  • the fluid physical properties of blood considered at this time are density and viscosity.
  • the boundary condition is a flow rate designated for each blood vessel, and an actual measurement value, a statistical value, or an estimated value can be used.
  • the calculation condition is a condition used for the simulation, and a pulsatile flow may be used, or a steady flow that can reduce the load on the computing unit may be used. Based on this set flow rate and pressure, the equation is iteratively calculated (f) to obtain the pressure field / velocity field (g). If it solves it, it will become the pressure field and the velocity field in space and time.
  • blood flow analysis inputs blood vessel shape, blood physical properties, boundary conditions and calculation conditions, and outputs a four-dimensional velocity field and pressure field including time.
  • the blood flow property determination unit 12 is installed with a program that causes a computer to function as the following means. That is, as shown in FIG. 1, the blood flow property determination unit 12 determines the fluid shear stress acting on the blood vessel wall surface by the blood flow and its vector from the pressure field / velocity field of each mesh obtained by the blood flow analysis unit 11. (Hereinafter, simply referred to as “wall shear stress vector”) for each mesh, and a numerical index (disturbance) for determining blood flow properties from the wall shear stress vector calculation unit 121 and the wall shear stress vector.
  • (Wall shear stress vector calculation section) 4 and 5 are schematic diagrams showing a method of determining the shear stress vector ⁇ (x, y, z) based on the flow velocity U and the pressure P determined for each mesh in the wall surface shear stress vector calculation unit 121.
  • FIG. is there.
  • the wall shear stress is a viscous force of a fluid acting in a parallel direction with respect to the minute elements forming the blood vessel lumen
  • the wall shear stress vector is a vector view of the numerical value.
  • the wall shear stress vector and the pressure are orthogonal to each other, and the pressure is a fluid force acting in the surface normal direction with respect to the center of gravity of the microelement.
  • the shear stress acting on the position of the blood vessel wall surface is tangent to the wall surface. It is necessary to convert the pressure and velocity into a local coordinate system based on the blood vessel wall surface in order to obtain the size.
  • the global coordinate system is a single coordinate system for universally indicating the positions of the nodes of the mesh constituting the blood vessel surface and the inside thereof in this system.
  • a calculation target is composed of a set of minute elements (triangle, tetrahedron, hexahedron, etc.). Each element has a vertex called a node, and the position information of each element is (X1g, Y1g, Z1g), (X2g, Y2g, Z2g), (X3g, Y3g, Z3g) using the global coordinate system Hold on.
  • the local coordinate system is a local coordinate system defined for each minute triangle element (polygon) constituting the blood vessel surface.
  • the center of gravity of the minute triangle element is defined as the origin.
  • the surface normal vector as one axis (Z axis).
  • the velocity and pressure at each node are acquired in the global coordinate system from the output of the blood flow analysis unit 11 (i-CFD).
  • the triangular element for which the wall shear stress vector is to be obtained is designated.
  • a local coordinate system is set for the triangular element.
  • the position G where the wall shear stress vector is to be calculated is determined (usually, the distance from the wall is made constant for each triangular element, for example, a point entering 0.1 mm from the wall).
  • the flow velocity at this position G is 0 because it is on the wall surface as shown in FIG.
  • the wall shear stress vector is obtained by calculating the rate of change in the normal direction of the velocity vector parallel to the minute element and multiplying it by the viscosity coefficient of the fluid.
  • the speed at each candidate point can be obtained by installing a plurality of candidate points on the Zl axis and interpolating the speed vector from the surrounding speed vector group.
  • interpolation is performed by setting a weight function for the distance. Since the ambient velocity vector is described in the global coordinate system, the velocity component in the plane parallel direction at each candidate point is calculated by coordinate-transforming the interpolated velocity vector into the local coordinate system.
  • the rate of change in the normal direction it may be calculated as a primary approximation using one candidate point near the wall, or a polynomial approximation is performed using a plurality of candidate points near the wall, Thereafter, a higher-order differentiation process of mathematical differentiation may be performed.
  • ⁇ (Xl) ⁇ ⁇ dUt (Xl) / dZ
  • ⁇ (Yl) ⁇ ⁇ dUt (Yl) / dZ
  • a vector value ⁇ (Xl, Yl) obtained by combining the local coordinate axes becomes a wall shear stress vector.
  • the wall shear stress vector is a vector having an x-direction component and a y-direction component with respect to the surface within the surface in contact with the blood vessel wall.
  • FIG. 8 is a diagram in which the shear stress vector along the blood vessel wall thus obtained is superimposed on the three-dimensional shape model.
  • the force acting on the blood vessel wall acts as a pressure P not only in the direction along the blood vessel wall but also in the direction of collision with the blood vessel wall.
  • This pressure is obtained by applying the pressure at the point G obtained in the global coordinate system to the local coordinate system. It can be obtained as the pressure value in the Zl-axis direction when converted.
  • FIG. 9 shows the pressure values acting on the wall surface in a superimposed manner on FIG. The lighter the color, the higher the pressure.
  • the vector calculation unit 121 obtains the wall shear stress and the vector obtained for each polygon.
  • the randomness calculation unit 122 obtains the randomness as an index obtained by quantifying the shape of the wall shear stress vector group in each mesh.
  • This randomness is a numerical index indicating the degree of whether or not the wall shear stress vector of a certain mesh is aligned in the same direction as compared with the surrounding wall shear stress vector group. That is, each angle formed between the wall shear stress vector of a mesh for which the degree of randomness is obtained (hereinafter referred to as “target mesh”) and the wall shear stress vector of each mesh adjacent to the target mesh.
  • target mesh each angle formed between the wall shear stress vector of a mesh for which the degree of randomness is obtained
  • the degree of randomness is obtained by calculating ⁇ .
  • FIG. 10 shows the relationship between the shear stress vector in the microelement G (approximate to a point for explanation) used in the system of this embodiment and the shear stress vector in the eight microelements surrounding the element G in a grid pattern. It is a thing. In this example, it is only necessary to extract not the magnitude of the shear stress but only the direction, so that the wall shear stress vector is handled as a unit vector. Strictly speaking, each microelement is in a three-dimensional configuration, but adjacent elements are sufficiently close to each other and are handled in two dimensions. That is, the processing is performed in such a way that each wall shear stress vector is projected onto a two-dimensional plane.
  • FIG. 10 shows a state in which the minute element G and surrounding minute elements are mapped onto a two-dimensional orthogonal coordinate system.
  • the form of the wall shear stress vector group is quantified by calculating ⁇ divergence (div) '' and ⁇ rotation (rotation) '' by the vector analysis with respect to the target mesh.
  • a component display at a point G (x, y) obtained by mapping a vector field ⁇ (shear stress vector) of a mesh surrounding a space to the two-dimensional orthogonal coordinate system (x, y) is represented by the following expression.
  • ⁇ (G) ( ⁇ x (x, y), ⁇ y (x, y)) It is expressed.
  • FIG. 11 shows the relationship between the form of the wall shear stress vector group and the values of the “divergence (div)” and “rotation (rot)”.
  • the discriminating unit 123 categorizes the wall shear stress vector group into 1) parallel type, 2) confluence type, 3) rotation type, and 4) collision type.
  • Fig. 12 shows the div and rot values mapped. That is, in this figure, the randomness (div, rot) is obtained for a typical example of the shear stress vector.
  • a typical example is an ideal pattern that can be described mathematically, not experimental data.
  • the degree of randomness has already been standardized, which enables comparison between patients. That is, according to this embodiment, the degree of randomness can be obtained as an index that can be evaluated as an absolute value.
  • the pressure of the target mesh is combined as a weighting factor so that the damage determination to the blood vessel given when the blood flow collides with the blood vessel wall is performed with higher accuracy.
  • a standardized pressure that is, a pressure index is used.
  • a value obtained by dividing each pressure by the average pressure is used as the pressure index after being calculated (multiplied in this example).
  • the combination of the shape of the shear stress vector group and the pressure is effective in improving the accuracy, particularly in predicting the thinned portion of the cerebral aneurysm. That is, there are a plurality of ways of indexing the pressure, and a method of superimposing the pressure on the randomness calculated from the shear stress vector may be a multiplication or a power law, or may be a plurality.
  • the determination unit 123 determines the state of each mesh from the randomness value of each mesh obtained by the randomness calculation unit 122.
  • the wall shear stress vector states here include a “parallel state” that is parallel to the surrounding wall shear stress vector, a “merging state” that extends in a direction approaching the surrounding wall shear stress vector, and a surrounding wall surface. It can be defined as a “rotation state” that rotates with the shear stress vector and a “collision state” in which the direction is radial with respect to the surrounding wall shear stress vector.
  • the blood flow malignancy calculated by the blood flow malignancy calculation unit 13 is based on the form evaluation of the wall shear stress vector performed by the determination unit 123. That is, the form of the wall shear stress vector is divided into the above states and indexed and classified. It should be noted that a coefficient and a multiplier can be added when designing the index.
  • the coefficient and multiplier may be information derived from the wall shear stress or wall pressure, and are, for example, numerical values of the time instability of the wall shear stress and the degree of unevenness of the wall pressure.
  • the merging state may be divided and identified as “low merging type” or “high merging type” according to the threshold according to the magnitude of the curing risk. The same applies to the rotation state and the collision state. The above is the content of the process I in FIG.
  • the vasodilation reaction analysis unit 14 for examining the endothelial cell function processes the result of measuring the change in the vascular diameter of the brachial artery using ultrasound. Specifically, the blood vessel diameter at rest and the change in the brachial artery blood vessel diameter after a predetermined time of blood transfusion are measured in real time by an ultrasonic image, and the result is output to the blood vessel vulnerability calculation unit 15. .
  • the evaluation object in vascular vulnerability is a vascular endothelial cell. It is known that vascular endothelial cells regulate physiological functions by sensing wall shear stress of blood flow. This degree of expansion is known to represent endothelial cell function.
  • Drest indicates the diameter of the blood vessel at rest
  • Dmax indicates the maximum blood vessel diameter after the blood is released. The stronger the degree of vasodilation, the more the endothelial cell function is maintained. The above is the detail of the process II.
  • the vascular lesion onset / growth risk calculator calculates the vascular lesion onset / growth risk based on the blood flow malignancy and vascular vulnerability calculated in steps I and II.
  • the risk may be output as having a risk when the ratio between the blood flow malignancy and the vascular vulnerability exceeds a threshold.
  • the risk of developing a vascular lesion / growth risk is determined and digitized based on the following. That is, when it is determined that the blood flow malignancy is a rotation type or a confluence type and the vascular vulnerability is a high value, it is determined that there is an onset / growth risk of arteriosclerosis, and the risk value is output.
  • the result output unit 17 visualizes the result, transmits it to the input / output unit 40, and displays it on a display (not shown) or the like.
  • the present invention predicts and outputs the onset and growth risk of vascular lesions by computer simulation, including those related to devices, methods, etc., it does not fall under the so-called medical practice or treatment method and is highly industrial With the availability of

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

[Solution] This device, for predicting the onset and growth of lesions in a blood vessel, acquires shape data of a blood vessel by inputting medical images into the device, and performs numerical fluid analysis; the device further calculates blood flow properties by quantifying blood flow grade, discriminating for parallel flow, confluence, rotation and collision; the device further calculates blood vessel fragility from information about endothelial cell function, and, on the basis of the above, calculates a risk value for the onset or growth of a vascular lesion.

Description

血管病変発症・成長予測装置及び方法Apparatus and method for predicting vascular lesion onset / growth
 本発明は、血管病変の発症とその成長リスクをコンピュータシミュレーションにより予測する装置に関する。 The present invention relates to an apparatus for predicting the onset of a vascular lesion and its growth risk by computer simulation.
 脳動脈瘤や大動脈瘤の発症は、血流の刺激が原因の一つになりうることが知られている。例えば、脳動脈瘤を動物実験的に作成した場合、脳動脈瘤が発生するのは特定血管の分岐部の内周側であることが経験的に知られている。臨床現場においても、脳動脈瘤は好発部位が指摘されており、そのおよそ6割が内頚動脈‐後交通動脈分岐と中大脳動脈第一分岐に集中している。このような箇所で脳動脈瘤が発生することは知られているが、他方、脳動脈瘤の発症は加齢とともに増加することから、発生前段階から原因となった悪性血流が存在しており、加齢とともに血管脆弱度が増すことによる互いの相乗効果により脳動脈瘤が発症すると考えられる。 It is known that the onset of cerebral aneurysms and aortic aneurysms can be caused by stimulation of blood flow. For example, when a cerebral aneurysm is experimentally created, it is empirically known that a cerebral aneurysm occurs on the inner peripheral side of a branch portion of a specific blood vessel. In clinical practice, cerebral aneurysms have been pointed out frequently, and about 60% of them are concentrated in the internal carotid artery-rear traffic artery branch and middle cerebral artery first branch. It is known that cerebral aneurysms occur in such places, but on the other hand, since the onset of cerebral aneurysms increases with aging, there is malignant blood flow that caused the pre-occurrence stage. It is considered that cerebral aneurysm develops due to the synergistic effect of increasing blood vessel vulnerability with aging.
 また同様なことが動脈硬化の代表である冠動脈狭窄や頸動脈狭窄にも当てはまる。臨床現場においても、狭窄は好発血管や好発部位が指摘されている。狭窄発生前段階から原因となった血流が存在しないとは考えにくい。言い換えれば、血流の悪性度のみでは狭窄の発症や成長を予測することは困難である。そこで血流の悪性度に加えて、血管の脆弱度を含めることが重要であることがわかった。すなわち、血流の悪性度と血管の脆弱度の比がある閾値を超えると血管狭窄が発症するリスクが高まる。 The same applies to coronary stenosis and carotid stenosis, which are representative of arteriosclerosis. In clinical settings, stenosis has been pointed out as a frequent blood vessel or site. It is unlikely that there is no blood flow from the pre-stenosis stage. In other words, it is difficult to predict the onset and growth of stenosis only with the malignancy of the blood flow. Therefore, it was found that it is important to include the fragility of blood vessels in addition to the malignancy of blood flow. That is, when the ratio between the malignancy of blood flow and the fragility of blood vessels exceeds a certain threshold, the risk of developing vascular stenosis increases.
 上記はプラーク(血管内膜内の肥厚性病変)の発生により一度発症した狭窄が成長し、安定化ないしは不安定化することを識別するための血流の指標化に関しても当てはまる。ここで「安定化」とはいわゆる安定プラーク化の意味であり、プラークの組織性状が線維化することでプラーク破裂のリスクが低いとされる状態に転化したものを示す。一方、「不安定化」とはいわゆる不安定プラーク化であり、プラークの組織性状がマクロファージや泡沫細胞などの粥状組織から構成され、または、一部が構成されることでプラーク破裂のリスクが高いとされる状態に転化したものである。 The above also applies to the indexing of blood flow to identify that stenosis once developed due to the occurrence of plaque (hypertrophic lesion in the intima) grows and stabilizes or destabilizes. Here, “stabilization” means so-called stable plaque formation, and indicates that the plaque tissue has been converted to a state where the risk of plaque rupture is low due to fibrosis. On the other hand, “destabilization” is so-called unstable plaque formation, and the plaque tissue is composed of rod-shaped tissue such as macrophages and foam cells, or a part of the tissue is composed of a risk of plaque rupture. It has been converted to a high state.
特表2009-518097Special table 2009-518097
 本発明は、上記のような医学的見識をもとに、脳動脈瘤や血管狭窄についての発症・成長リスク予測装置を提供する。 The present invention provides an onset / growth risk prediction apparatus for cerebral aneurysms and vascular stenosis based on the above medical insights.
 脳動脈瘤の発症・成長の予測には、血流の悪性度と血管の脆弱度の二つの拮抗を数値化することが必要である。本発明において、血流の悪性度はコンピュータシミュレーションにより、また、血管の脆弱度は血管内皮細胞機能予測により求める。さらに本発明は動脈硬化の発症、成長、ないしは安定化・不安定化の転化の基準をも提供するものであることが以下の記述から明らかになるであろう。 To predict the onset / growth of cerebral aneurysms, it is necessary to quantify the two antagonists of blood flow malignancy and blood vessel vulnerability. In the present invention, the malignancy of blood flow is obtained by computer simulation, and the fragility of blood vessels is obtained by predicting vascular endothelial cell function. Further, it will become clear from the following description that the present invention also provides a standard for the onset, growth, or stabilization / instability conversion of arteriosclerosis.
 上記課題を解決するために、本発明の第1の主要な観点によれば、コンピュータが、解析対象血管部位を含む医用画像及び内皮細胞機能についての情報を入力する入力部と、コンピュータが、入力部から入力された医用データから血管の形状データを取得して数値流体解析を実行し圧力場、速度場を含む血流属性を求める血流解析部と、コンピュータが、血流解析部で取得した血流属性に基づいて壁面せん断応力ベクトルから血流の性状を判別し、血流悪性度を数値化して求める血流悪性度計算部と、コンピュータが、入力部から入力された内皮細胞機能についての情報から血管脆弱度を求める血管脆弱度計算部と、コンピュータが、血流悪性度計算部で求められた血流悪性度と、血管脆弱度計算部で求められた血管脆弱度から血管病変の発症または成長についてのリスク値を算出するリスク算出部と、コンピュータが、算出されたリスク値を出力する出力部とを有する血管病変発症・成長予測装置が提供される。 In order to solve the above-mentioned problem, according to a first main aspect of the present invention, a computer inputs a medical image including an analysis target blood vessel part and information on endothelial cell function, and the computer inputs Blood flow analysis unit that obtains blood vessel shape data from medical data input from the department and performs numerical fluid analysis to obtain blood flow attributes including pressure and velocity fields, and a computer acquired by the blood flow analysis unit A blood flow malignancy calculation unit that determines the blood flow characteristics from the wall shear stress vector based on the blood flow attribute and quantifies the blood flow malignancy, and a computer The blood vessel vulnerability calculation unit that obtains the blood vessel vulnerability from the information, and the computer calculates the vascular lesion from the blood flow malignancy obtained by the blood flow malignancy calculation unit and the blood vessel vulnerability obtained by the blood vessel vulnerability calculation unit. A risk calculation section that calculates a risk value for the disease, or growth, computer, vascular lesions onset and growth prospects device is provided with an output unit for outputting the calculated risk value.
 本発明の一実施態様によれば、血流解析部は、医用画像から血管形状を抽出し、計算格子を生成し、流体物性と境界条件を考慮しつつ圧力場と流速場を得るものである装置である。また、血流解析部は、血管形状と、血液物性と、境界条件と計算条件を入力とし、時間を含めた4次元での速度場及び圧力場を出力することを特徴とする装置として構成してもよい。 According to one embodiment of the present invention, the blood flow analysis unit extracts a blood vessel shape from a medical image, generates a calculation grid, and obtains a pressure field and a flow field while considering fluid properties and boundary conditions. Device. In addition, the blood flow analysis unit is configured as a device characterized by inputting a blood vessel shape, blood physical properties, boundary conditions and calculation conditions, and outputting a four-dimensional velocity field and pressure field including time. May be.
 さらに別の一実施態様によれば、血流の性状の判別は、血流解析部で求めた血流の状態量から、解析対象血管部位の血管壁面の各位置における壁面せん断応力ベクトルを求め、特定の壁面位置における当該壁面せん断応力ベクトルの方向とその周囲の壁面位置における壁面せん断応力ベクトルの方向の相対関係を求め、その形態から当該壁面位置における血流の性状を判別しその判別結果を出力するものである装置である。 According to yet another embodiment, the determination of the blood flow property is performed by obtaining a wall shear stress vector at each position of the blood vessel wall surface of the blood vessel part to be analyzed from the state amount of the blood flow obtained by the blood flow analysis unit, The relative relationship between the direction of the wall shear stress vector at a specific wall position and the direction of the wall shear stress vector at the surrounding wall positions is obtained, and the blood flow characteristics at the wall position are determined from the form, and the determination result is output. It is a device that does.
 血流性状判別部は、特定の壁面位置における壁面せん断応力ベクトルτとその周囲の壁面位置における複数の壁面せん断応力ベクトルの相対角度関係から、ベクトル場τのスカラー量である回転rotτ及び発散divτを求め、それらの値を乱雑度として閾値と比較することで「平行」、「合流」、「回転」、「発散」のいずれにあるかを判別するもので、乱雑度の回転rotτの値が所定の閾値範囲外の負値若しくは正値であるときに「回転」と判別し、乱雑度の発散divτの値が所定の閾値範囲外の負値であるときに「合流」と判別し、乱雑度の発散divτの値が所定の閾値範囲外の正値であるときに「衝突」と判別し、乱雑度の回転rotτの値及び発散divτの値の両方が所定の閾値内にあるときに「平行」と判別するようにしても良い。 From the relative angular relationship between the wall shear stress vector τ at a specific wall position and a plurality of wall shear stress vectors at the surrounding wall positions, the blood flow property determination unit calculates the rotation amount rotτ and the divergence divτ that are scalar quantities of the vector field τ. It is determined by comparing these values with the threshold value as the degree of randomness to determine whether it is “parallel”, “confluence”, “rotation”, or “divergence”. When the value is negative or positive outside the threshold range, it is determined to be “rotation”, and when the divergence divτ value of the randomness is a negative value outside the predetermined threshold range, it is determined to be “join”, and the randomness is determined. When the value of the divergence divτ is a positive value outside the predetermined threshold range, it is determined as “collision”, and when both the value of the rotation rotτ and the value of the divergence divτ are within the predetermined threshold value, You may make it discriminate | determine.
 さらに別の一実施態様によれば、内皮細胞機能についての情報は、安静時と駆血解除時とにおける血管径計測値から径変化を算出したものであることを特徴とする。 According to still another embodiment, the information on the endothelial cell function is obtained by calculating a diameter change from a blood vessel diameter measurement value at rest and at the time of release of blood transfusion.
 リスク算出部は、血流の性状の判別が「回転」、「合流」であり且つ血管脆弱度が高値と判断された場合および血流の性状の判別が「衝突」であり血管脆弱度が高値と判断された場合には、病変の発症・成長リスクがあると判定するものである装置としても良い。 The risk calculation unit determines whether the blood flow property is “Rotation” or “Merging” and the blood vessel vulnerability is high, and the blood flow property is “collision” and the blood vessel vulnerability is high. If it is determined that there is a risk of onset / growth of a lesion, the apparatus may be used.
 この場合、解析対象血管部位が脳動脈であって、血流の性状の判別が「回転」、「合流」であり且つ血管脆弱度が高値と判断された場合には、動脈硬化の発症・成長リスクがあると判断し、血流の性状の判別が「衝突」であり血管脆弱度が高値と判断された場合には、脳動脈瘤の発症・成長リスクがあると判断するものである装置としてもよい。 In this case, if the vascular region to be analyzed is a cerebral artery, the blood flow characteristics are determined to be “rotation” or “confluence”, and the vascular vulnerability is determined to be high, the onset / growth of arteriosclerosis As a device that judges that there is a risk, and if the blood flow property is judged as “collision” and the vascular vulnerability is judged to be high, it is judged that there is a risk of onset / growth of cerebral aneurysm Also good.
 さらに別の一実施態様によれば、血流悪性度と血管脆弱度の比が閾値を超えたときにリスク有りと判断することを特徴とする装置である。 According to yet another embodiment, the apparatus is characterized by determining that there is a risk when the ratio of the malignancy of blood flow to the vascular vulnerability exceeds a threshold value.
 また、本発明の第2の主要な観点によれば、コンピュータにより実行される方法であって、コンピュータが、解析対象血管部位を含む医用画像及び内皮細胞機能についての情報を入力する入力工程と、コンピュータが、入力工程で入力された医用データから血管の形状データを取得して数値流体解析を実行し圧力場、速度場を含む血流属性を求める血流解析工程と、コンピュータが、血流解析工程で得られた血流属性に基づき壁面せん断応力ベクトルから血流の性状を判別し、血流悪性度を数値化して求める血流悪性度計算工程と、コンピュータが、入力工程で入力された内皮細胞機能についての情報から血管脆弱度を求める血管脆弱度計算工程と、コンピュータが、血流悪性度計算工程で求められた血流悪性度と、血管脆弱度計算工程で求められた血管脆弱度とから血管病変の発症または成長についてのリスク値を算出するリスク算出工程と、コンピュータが、算出されたリスク値を出力する出力工程とを有する血管病変発症・成長予測方法である。 According to a second main aspect of the present invention, there is provided a computer-implemented method in which a computer inputs information about a medical image including an analysis target blood vessel region and endothelial cell function; The computer obtains blood vessel shape data from the medical data input in the input process and performs numerical fluid analysis to determine blood flow attributes including pressure and velocity fields, and the computer performs blood flow analysis. The blood flow malignancy calculation step that determines the blood flow malignancy by quantifying the blood flow malignancy from the wall shear stress vector based on the blood flow attributes obtained in the process, and the endothelium input in the input process In the blood vessel vulnerability calculation process to obtain the blood vessel vulnerability from the information about the cell function, the computer performs the blood flow malignancy calculated in the blood flow malignancy calculation process and the blood vessel vulnerability calculation process. A blood vessel lesion onset / growth prediction method comprising a risk calculating step for calculating a risk value for the onset or growth of a vascular lesion from the determined vascular vulnerability and an output step for a computer to output the calculated risk value. is there.
 その他の様々な課題をも解決しうることは、以下に述べる発明の開示により明らかになるであろう。 It will become clear from the disclosure of the invention described below that various other problems can be solved.
図1は、本発明の一実施形態に係る血管内治療シミュレーション装置の構成図である。FIG. 1 is a configuration diagram of an endovascular treatment simulation apparatus according to an embodiment of the present invention. 図2は、本発明の一実施形態における血管病変発症・成長予測装置の機能と工程を概念的に表した図である。FIG. 2 is a diagram conceptually showing functions and processes of the vascular lesion onset / growth prediction apparatus according to an embodiment of the present invention. 図3は、本発明の一実施形態における血流解析の流れを示した図である。FIG. 3 is a diagram showing a flow of blood flow analysis in one embodiment of the present invention. 図4は、流体せん断応力を説明する模式図である。FIG. 4 is a schematic diagram illustrating fluid shear stress. 図5は、流体せん断応力を説明する模式図である。FIG. 5 is a schematic diagram illustrating fluid shear stress. 図6は、壁面せん断応力の算出に関するグローバル座標系を示す図である。FIG. 6 is a diagram showing a global coordinate system related to calculation of wall shear stress. 図7は、壁面せん断応力の算出に関するローカル座標系を示す図である。FIG. 7 is a diagram illustrating a local coordinate system related to the calculation of the wall shear stress. 図8は、せん断応力ベクトルを血管三次元形状に重ねてグラフィカルに示す図である。FIG. 8 is a diagram graphically showing the shear stress vector superimposed on the three-dimensional shape of the blood vessel. 図9は、せん断応力ベクトルと圧力を血管三次元形状に重ねてグラフィカルに示す図である。FIG. 9 is a diagram graphically showing the shear stress vector and the pressure superimposed on the three-dimensional shape of the blood vessel. 図10は、本発明の一実施形態における乱雑度の算出を説明する図である。FIG. 10 is a diagram for explaining calculation of randomness according to an embodiment of the present invention. 図11は、本発明の一実施形態における乱雑度の解釈に関する説明図である。FIG. 11 is an explanatory diagram relating to the interpretation of the degree of randomness in one embodiment of the present invention. 図12は、本発明の一実施形態における乱雑度と各種リスクの関係をマップとして表現した図であるFIG. 12 is a diagram representing the relationship between the degree of randomness and various risks as a map in one embodiment of the present invention. 図13は、本発明の一実施形態における工程Iで計算された血管悪性度と、工程IIで計算された血管脆弱度と、工程IIIで求められる血管病変発症・成長リスクとの関係を視覚的に表した図である。FIG. 13 is a visual representation of the relationship between the vascular malignancy calculated in step I, the vascular vulnerability calculated in step II, and the vascular lesion onset / growth risk determined in step III in an embodiment of the present invention. FIG.
 以下、本発明の一実施形態を図面に基づき具体的に説明する。図1に本発明の一実施形態における血管病変発症・成長予測装置10の構成図を示す。この装置10は、CPU20、メモリ30及び入出力部40が接続されたバス50に、プログラム格納部60とデータ格納部70が接続されている。 Hereinafter, an embodiment of the present invention will be specifically described with reference to the drawings. FIG. 1 shows a configuration diagram of a vascular lesion onset / growth prediction apparatus 10 according to an embodiment of the present invention. In this apparatus 10, a program storage unit 60 and a data storage unit 70 are connected to a bus 50 to which a CPU 20, a memory 30 and an input / output unit 40 are connected.
 プログラム格納部60は、血流解析部11、血流性状判別部12、血流悪性度計算部13、血管拡張反応測定部14,血管脆弱度計算部15、リスク算出部16、結果出力部17等からなる。 The program storage unit 60 includes a blood flow analysis unit 11, a blood flow property determination unit 12, a blood flow malignancy degree calculation unit 13, a vasodilation response measurement unit 14, a blood vessel vulnerability calculation unit 15, a risk calculation unit 16, and a result output unit 17. Etc.
 前記構成要件(血流解析部11、血流性状判別部12、血流悪性度計算部13、血管拡張反応測定部14,血管脆弱度計算部15、リスク算出部16、結果出力部17等)は、実際にはハードディスク内に格納されたコンピュータソフトウェアによって構成され、前記CPUによって読み出されてメモリ30上に展開され実行されることによって、この発明の各構成要素として機能するようになっている。 The above configuration requirements (blood flow analysis unit 11, blood flow property determination unit 12, blood flow malignancy calculation unit 13, vasodilation response measurement unit 14, vascular vulnerability calculation unit 15, risk calculation unit 16, result output unit 17, etc.) Is actually constituted by computer software stored in a hard disk, and is read out by the CPU, developed on the memory 30 and executed, thereby functioning as each component of the present invention. .
 前記データ格納部70には、血管形状情報21、流体物性22、動脈径変化情報23や各種の係数・乗数等を含む計算条件テンプレートが24が記憶されている。 The data storage unit 70 stores 24 calculation condition templates including blood vessel shape information 21, fluid physical properties 22, arterial diameter change information 23, various coefficients and multipliers, and the like.
 こうしたプログラム格納部60やデータ格納部70における記憶内容は、装置外部より前記入出力部40を介して入力することにより適宜更新を行うことが可能である。このように記憶されている各種のデータは後で述べる数値流体解析(CFD)や内皮細胞検査としての血管拡張反応解析(FMD)に用いることができる。入出力部40は、各種機器や通信手段とのインターフェイスであって、通信回線の他、ディスプレイ等の表示手段や、キーボード、マウス等の操作手段、外部記憶デバイス(いずれも図示せず)が接続可能に構成される。 The contents stored in the program storage unit 60 and the data storage unit 70 can be updated as appropriate by inputting from the outside of the apparatus via the input / output unit 40. Various data stored in this manner can be used for later-described numerical fluid analysis (CFD) and vascular dilation analysis (FMD) as an endothelial cell test. The input / output unit 40 is an interface with various devices and communication means. In addition to a communication line, a display means such as a display, an operation means such as a keyboard and a mouse, and an external storage device (all not shown) are connected. Configured to be possible.
 図2は、本発明の一実施形態における血管病変発症・成長予測装置の機能と工程を俯瞰するために概念的に表した図である。数値流体解析(CFD)からと内皮細胞機能検査としての血管拡張反応解析(FMD)から得られた結果を入力する。 FIG. 2 is a diagram conceptually illustrating the functions and processes of the vascular lesion onset / growth prediction apparatus according to an embodiment of the present invention. The result obtained from the numerical fluid analysis (CFD) and the vasodilator analysis (FMD) as the endothelial cell function test is input.
 工程IにおけるCFDは、血流シミュレーションであり、後述するように医用画像を入力として血流の速度場と圧力場を計算により取得する。ここではCFDの速度場と圧力場から血流悪性度を計算し出力する。この実施形態では、血流悪性度は、壁面せん断応力ベクトルの形態評価に基づくものである。すなわち、壁面せん断応力ベクトルの形態を(1)平行、(2)回転、(3)合流、(4)衝突(発散)に指標化して分類する。 CFD in Step I is a blood flow simulation, and obtains a velocity field and a pressure field of a blood flow by calculation using a medical image as described later. Here, blood flow malignancy is calculated and output from the velocity field and pressure field of CFD. In this embodiment, the blood flow malignancy is based on the form evaluation of the wall shear stress vector. That is, the shape of the wall shear stress vector is classified into (1) parallel, (2) rotation, (3) merging, and (4) collision (divergence).
 工程IIでは、超音波を用いて測定する血管内皮細胞機能についての数値など、FMDの結果をもとに血管脆弱度を計算し出力する。 In step II, the vascular vulnerability is calculated and output based on the FMD results, such as numerical values for vascular endothelial cell function measured using ultrasound.
 そして工程IIIでは、血管病変発症・成長リスク算出部が工程I及びIIで計算された血管悪性度および血管脆弱度をもとに血管病変発症・成長に関するリスクを計算し出力を行う。 In step III, the vascular lesion onset / growth risk calculation unit calculates and outputs a risk related to vascular lesion onset / growth based on the vascular malignancy and vascular vulnerability calculated in steps I and II.
 (血流解析部) 
 まず上記工程Iの内容から詳述する。血流解析部11は、入出力部40を経由して入力された医用画像を基に圧力場・流速場を取得するものである。この医用画像はMRA(磁気共鳴血管造影)、CTA(コンピュータ断層造影)、DSA(デジタル・サブトラクション血管造影)などによる血管断層画像を用いてもよい。この血流解析部11は、図3に示されるように、まず医用画像受け取る(a)。次に受け取った医用画像を基に血管形状(サーフェスメッシュ)を抽出し(b)、計算格子(ボリュームメッシュ)を生成し(c)、血液の流体物性と境界条件(壁面)とを考慮しつつ(d)、さらに血流の複数の箇所における流量と流圧を設定する(e)。この際考慮する血液の流体物性は密度と粘度であり、粘度はニュートン流体モデルを用いてもよいし非ニュートンモデルを用いてもよい。また。境界条件は各血管について指定する流量であり、実測値、統計値または推定値を用いることができる。その計算条件はシミュレーションに用いる条件であり拍動流を用いても良いし、演算器負荷の軽減が可能となる定常流を用いても良い。この設定された流量と圧力を基に、方程式を反復演算することで(f)、圧力場・流速場を取得するものである(g)が、この圧力場・流速場は、時間発展型として解法すれば時空間での圧力場・流速場となる。以上の様に、血流解析は、血管形状と、血液物性と、境界条件と計算条件とを入力し、これに時間を含めた4次元での速度場・圧力場を出力する。
(Blood flow analysis section)
First, the contents of step I will be described in detail. The blood flow analysis unit 11 acquires a pressure field / flow velocity field based on a medical image input via the input / output unit 40. As this medical image, a vascular tomographic image obtained by MRA (magnetic resonance angiography), CTA (computerized tomography), DSA (digital subtraction angiography), or the like may be used. As shown in FIG. 3, the blood flow analysis unit 11 first receives a medical image (a). Next, a blood vessel shape (surface mesh) is extracted based on the received medical image (b), a calculation grid (volume mesh) is generated (c), while taking into account the fluid physical properties of blood and boundary conditions (wall surface). (D) Furthermore, the flow rate and flow pressure at a plurality of locations in the blood flow are set (e). The fluid physical properties of blood considered at this time are density and viscosity. For the viscosity, a Newtonian fluid model or a non-Newtonian model may be used. Also. The boundary condition is a flow rate designated for each blood vessel, and an actual measurement value, a statistical value, or an estimated value can be used. The calculation condition is a condition used for the simulation, and a pulsatile flow may be used, or a steady flow that can reduce the load on the computing unit may be used. Based on this set flow rate and pressure, the equation is iteratively calculated (f) to obtain the pressure field / velocity field (g). If it solves it, it will become the pressure field and the velocity field in space and time. As described above, blood flow analysis inputs blood vessel shape, blood physical properties, boundary conditions and calculation conditions, and outputs a four-dimensional velocity field and pressure field including time.
 (血流性状判別部)
 前記血流性状判別部12には、コンピュータを以下の各手段として機能させるプログラムがインストールされている。すなわち、前記血流性状判別部12は、図1に示すように、血流解析部11で求めた各メッシュの圧力場・速度場から、血流によって血管壁面に作用する流体せん断応力及びそのベクトル(以下、単に、「壁面せん断応力ベクトル」と称する。)を各メッシュにそれぞれについて求める壁面せん断応力ベクトル演算部121と、壁面せん断応力ベクトルから、血流の性状を判別するための数値指標(乱雑度)を求める乱雑度演算部122と、前記乱雑度の大きさに応じて各メッシュにおける血流の性状を判別する判別部123とを備えている。
(Blood flow property discrimination part)
The blood flow property determination unit 12 is installed with a program that causes a computer to function as the following means. That is, as shown in FIG. 1, the blood flow property determination unit 12 determines the fluid shear stress acting on the blood vessel wall surface by the blood flow and its vector from the pressure field / velocity field of each mesh obtained by the blood flow analysis unit 11. (Hereinafter, simply referred to as “wall shear stress vector”) for each mesh, and a numerical index (disturbance) for determining blood flow properties from the wall shear stress vector calculation unit 121 and the wall shear stress vector. A randomness calculation unit 122 for determining the degree of blood flow, and a determination unit 123 for determining the property of blood flow in each mesh according to the magnitude of the randomness.
  (壁面せん断応力ベクトル演算部)
 図4、図5は、壁面せん断応力ベクトル演算部121で、上記で各メッシュについて求めた流速U及び圧力Pに基づいてせん断応力ベクトルτ(x、y、z)を求める方法を示す模式図である。
(Wall shear stress vector calculation section)
4 and 5 are schematic diagrams showing a method of determining the shear stress vector τ (x, y, z) based on the flow velocity U and the pressure P determined for each mesh in the wall surface shear stress vector calculation unit 121. FIG. is there.
 図4に示すように、壁面せん断応力とは血管内腔を形成する微小要素に対して平行方向に作用する流体の粘性力であり、壁面せん断応力ベクトルとは、当該数値をベクトル視したものであり、壁面に作用する力の向きを考慮したものである。壁面せん断応力ベクトルと圧力は直交関係にあり、圧力は微小要素の重心に対して面法線方向に作用する流体力である。 
 この図を説明する際には、グローバル座標系とローカル座標系への変換を理解する必要がある。すなわち、せん断応力ベクトルを求めるために使用する圧力P及び速度Uは前述したようにグローバル座標系で求められたものであるのに対して、血管壁面のある位置に作用するせん断応力は壁面の接線方向に向いているものでありその大きさを求めるには上記圧力及び速度を血管壁面を基準としたローカル座標系に変換する必要がある。
As shown in FIG. 4, the wall shear stress is a viscous force of a fluid acting in a parallel direction with respect to the minute elements forming the blood vessel lumen, and the wall shear stress vector is a vector view of the numerical value. Yes, considering the direction of the force acting on the wall surface. The wall shear stress vector and the pressure are orthogonal to each other, and the pressure is a fluid force acting in the surface normal direction with respect to the center of gravity of the microelement.
In explaining this figure, it is necessary to understand the conversion to the global coordinate system and the local coordinate system. That is, while the pressure P and velocity U used to obtain the shear stress vector are obtained in the global coordinate system as described above, the shear stress acting on the position of the blood vessel wall surface is tangent to the wall surface. It is necessary to convert the pressure and velocity into a local coordinate system based on the blood vessel wall surface in order to obtain the size.
 ここで、グローバル座標系とは、図6に示すように、このシステム内で、血管表面および内部を構成するメッシュの節点の位置を普遍的に示すための単一座標系である。有限要素法や有限体積法では、計算対象を微小要素(三角形、四面体、六面体等)の集合から構成する。各要素は節点と呼ばれる頂点を有し、各要素の位置情報は、グローバル座標系を用いて、(X1g、 Y1g、 Z1g)、(X2g、 Y2g、 Z2g)、(X3g、 Y3g、 Z3g)のように保持する。 Here, as shown in FIG. 6, the global coordinate system is a single coordinate system for universally indicating the positions of the nodes of the mesh constituting the blood vessel surface and the inside thereof in this system. In the finite element method and the finite volume method, a calculation target is composed of a set of minute elements (triangle, tetrahedron, hexahedron, etc.). Each element has a vertex called a node, and the position information of each element is (X1g, Y1g, Z1g), (X2g, Y2g, Z2g), (X3g, Y3g, Z3g) using the global coordinate system Hold on.
 そして、ローカル座標系とは、図7に示すように、血管表面を構成する各々の微小三角形要素(ポリゴン)に対して定義される局所座標系であり、通常、上記微小三角形要素の重心を原点とし、面法線ベクトルを一つの軸(Z軸)として構成するものをいう。上記微小要素の各接点の位置をローカル座標系であらわす場合、(X1l、 Y1 l、 Z1 l)、(X2 l、 Y2 l、 Z2 l)、(X3 l、 Y3 l、 Z3 l)となる。グローバル座標系の位置とローカル座標系の位置は、上記微小三角形要素の重心の位置と、面法線ベクトルの方向がわかれば変換可能である。 As shown in FIG. 7, the local coordinate system is a local coordinate system defined for each minute triangle element (polygon) constituting the blood vessel surface. Usually, the center of gravity of the minute triangle element is defined as the origin. And the surface normal vector as one axis (Z axis). When the position of each contact point of the microelement is expressed in the local coordinate system, (X1l, Y1 l, Z1 l), (X2 l, Y2 l, Z2 l), (X3 l, Y3 l, Z3 l). The position of the global coordinate system and the position of the local coordinate system can be converted if the position of the center of gravity of the small triangular element and the direction of the surface normal vector are known.
 次に、具体的に壁面せん断応力を求める方法について説明する。まず、上記血流解析部11(i-CFD)の出力から各節点での速度、圧力をグローバル座標系で取得する。次に、壁面せん断応力ベクトルを求めたい三角形要素を指定する。前記三角形要素に対してローカル座標系を設定する。前記ローカル座標系において、壁面せん断応力ベクトルを算出したい位置Gを決める(通常、各三角形要素に対して壁からの距離を一定にする。例えば壁から0.1mm内部に入った点など)。この位置Gでの流速は、図5に示すように、壁面上であるから0である。 Next, a specific method for determining the wall shear stress will be described. First, the velocity and pressure at each node are acquired in the global coordinate system from the output of the blood flow analysis unit 11 (i-CFD). Next, the triangular element for which the wall shear stress vector is to be obtained is designated. A local coordinate system is set for the triangular element. In the local coordinate system, the position G where the wall shear stress vector is to be calculated is determined (usually, the distance from the wall is made constant for each triangular element, for example, a point entering 0.1 mm from the wall). The flow velocity at this position G is 0 because it is on the wall surface as shown in FIG.
 そして、この壁面の位置Gから法線方向(ローカル座標系のZ方向)に流れの境界層厚みに対して十分に小さい距離t離れた位置での流速をUtとすると、この間の流速Uは、Gからの距離nにほぼ比例し、
 Un=n・dUt/dZ
で表わされる。
If the flow velocity U at a position that is separated from the position G of the wall surface in a normal direction (Z direction of the local coordinate system) by a sufficiently small distance t with respect to the boundary layer thickness of the flow is Ut, Is approximately proportional to the distance n from G,
Un = n · dUt / dZ
It is represented by
 そして、この速度で距離nの点を動かすのに逆らう力と下面を固定するのに必要な力は作用反作用の法則から両者は等しく、いずれも速度Utに比例し、距離Zに反比例する。したがって、流体の接触している点Gにおける単位面積についての力τは次のようになる。
 τ=μ・dUt/dZ
The force against the point of the distance n at this speed and the force required to fix the lower surface are equal to each other from the law of action and reaction, and both are proportional to the speed Ut and inversely proportional to the distance Z. Therefore, the force τ per unit area at the point G where the fluid is in contact is as follows.
τ = μ · dUt / dZ
 すなわち、壁面せん断応力ベクトルとは、微小要素に平行な速度ベクトルの法線方向での変化率を算出し、それに流体の粘性係数を乗じたものである。微小要素に対する平行方向速度ベクトルの法線方向変化率を算出する方法は幾つかの方法が考えられる。例えば、Zl軸上で複数の候補点を設置し、周囲速度ベクトル群から速度ベクトルを補間するという方式で各候補点での速度を得ることができる。なお、この場合、個々の周囲速度ベクトルごとに候補点との距離が異なるため、距離に対して重み関数を設定して補間を行う。周囲速度ベクトルはグローバル座標系で記述されているので、補間後の速度ベクトルをローカル座標系に座標変換することで各候補点での面平行方向の速度成分を算出する。後に、法線方向での変化率を算出する場合は、壁近傍の一つの候補点を用いて一次近似として算出しても良いし、壁近傍の複数の候補点を用いて多項式近似を行い、その後に数学的に微分するという高次の微分処理を行っても良い。 That is, the wall shear stress vector is obtained by calculating the rate of change in the normal direction of the velocity vector parallel to the minute element and multiplying it by the viscosity coefficient of the fluid. There are several methods for calculating the normal direction change rate of the parallel direction velocity vector with respect to the minute element. For example, the speed at each candidate point can be obtained by installing a plurality of candidate points on the Zl axis and interpolating the speed vector from the surrounding speed vector group. In this case, since the distance to the candidate point is different for each ambient velocity vector, interpolation is performed by setting a weight function for the distance. Since the ambient velocity vector is described in the global coordinate system, the velocity component in the plane parallel direction at each candidate point is calculated by coordinate-transforming the interpolated velocity vector into the local coordinate system. Later, when calculating the rate of change in the normal direction, it may be calculated as a primary approximation using one candidate point near the wall, or a polynomial approximation is performed using a plurality of candidate points near the wall, Thereafter, a higher-order differentiation process of mathematical differentiation may be performed.
 これを、上記グローバル座標系の速度U(Xg、Yg、Zg)から求めようとする場合には、距離tの速度Utをローカル座標系(Xl、Yl、Zl)に分解し、それぞれのローカル座標軸のうち壁面に平行軸である(Xl、Yl)(Z軸要素は0となる)についてτ=μ・dUt/dZを解けばよい。 When this is to be obtained from the velocity U (Xg, Yg, Zg) of the global coordinate system, the velocity Ut at the distance t is decomposed into the local coordinate system (Xl, Yl, Zl), and the respective local coordinate axes. Τ = μ · dUt / dZ can be solved for (Xl, Yl) (Z-axis element is 0) that is parallel to the wall surface.
 すなわち、
 τ(Xl)=μ・dUt(Xl)/dZ
 τ(Yl)=μ・dUt(Yl)/dZ
を算出することになる.
 このローカル座標軸を総合したベクトル値τ(Xl、Yl)が壁面せん断応力ベクトルとなる。したがって、壁面せん断応力ベクトルは血管壁に接する面内でその面に対してx方向成分及びy方向成分を持つベクトルとなる。
That is,
τ (Xl) = μ · dUt (Xl) / dZ
τ (Yl) = μ · dUt (Yl) / dZ
Will be calculated.
A vector value τ (Xl, Yl) obtained by combining the local coordinate axes becomes a wall shear stress vector. Accordingly, the wall shear stress vector is a vector having an x-direction component and a y-direction component with respect to the surface within the surface in contact with the blood vessel wall.
 図8は、このようにして求めた血管壁に沿うせん断応力ベクトルを三次元形状モデルに重ね合わせて示した図である。 FIG. 8 is a diagram in which the shear stress vector along the blood vessel wall thus obtained is superimposed on the three-dimensional shape model.
 なお、血管壁に作用する力は血管壁に沿う方向だけではなく、血管壁に衝突する方向に圧力Pとして働く、この圧力は、上記グローバル座標系で求めた点Gにおける圧力をローカル座標系に変換したときのZl軸方向の圧力値として求めることができる。図9は、上記図8に、壁面に作用する上記圧力値を重ねて示したものである。色が薄いところほど高い圧力が作用していることを示している。 The force acting on the blood vessel wall acts as a pressure P not only in the direction along the blood vessel wall but also in the direction of collision with the blood vessel wall. This pressure is obtained by applying the pressure at the point G obtained in the global coordinate system to the local coordinate system. It can be obtained as the pressure value in the Zl-axis direction when converted. FIG. 9 shows the pressure values acting on the wall surface in a superimposed manner on FIG. The lighter the color, the higher the pressure.
 このようにしてベクトル演算部121において、各ポリゴンについて求めた壁面せん断応力及びそのベクトルが求められる。 In this way, the vector calculation unit 121 obtains the wall shear stress and the vector obtained for each polygon.
  (乱雑度演算部)
 次に、前記乱雑度演算部122で、各メッシュにおける壁面せん断応力ベクトル群の形態を数値化した指標としての乱雑度を求める。この乱雑度は、あるメッシュの壁面せん断応力ベクトルが、その周囲の壁面せん断応力ベクトル群と比較して同一方向に整列しているか否かの程度を表す数値指標である。すなわち、乱雑度を求める対象となるメッシュ(以下。「対象メッシュ」と称する。)の壁面せん断応力ベクトルと、対象メッシュの周囲で隣り合う各メッシュの壁面せん断応力ベクトルとの間になすそれぞれの角度θを演算によって求めることで乱雑度となる。
(Randomness calculator)
Next, the randomness calculation unit 122 obtains the randomness as an index obtained by quantifying the shape of the wall shear stress vector group in each mesh. This randomness is a numerical index indicating the degree of whether or not the wall shear stress vector of a certain mesh is aligned in the same direction as compared with the surrounding wall shear stress vector group. That is, each angle formed between the wall shear stress vector of a mesh for which the degree of randomness is obtained (hereinafter referred to as “target mesh”) and the wall shear stress vector of each mesh adjacent to the target mesh. The degree of randomness is obtained by calculating θ.
 図10は、この実施形態のシステムで使用する微小要素G(説明のため点に近似)におけるせん断応力ベクトルと前記要素Gを格子状に囲む周囲の8つの微小要素におけるせん断応力ベクトルの関係を示したものである。この例では,せん断応力の大きさではなく、方向のみを抽出できれば良いので、壁面せん断応力ベクトルを単位ベクトルとして取り扱うように構成されている。また、それぞれの微小要素は厳密には三次元的な立体配置にあるが、隣接する要素群は十分近接であり二次元に取り扱う。すなわち、それぞれの壁面せん断応力ベクトルを二次元平面に投影した形で処理を行う。図10は、微小要素G及びその周囲の微小要素を、二次元の直交座標系に写像した状態を示している。 FIG. 10 shows the relationship between the shear stress vector in the microelement G (approximate to a point for explanation) used in the system of this embodiment and the shear stress vector in the eight microelements surrounding the element G in a grid pattern. It is a thing. In this example, it is only necessary to extract not the magnitude of the shear stress but only the direction, so that the wall shear stress vector is handled as a unit vector. Strictly speaking, each microelement is in a three-dimensional configuration, but adjacent elements are sufficiently close to each other and are handled in two dimensions. That is, the processing is performed in such a way that each wall shear stress vector is projected onto a two-dimensional plane. FIG. 10 shows a state in which the minute element G and surrounding minute elements are mapped onto a two-dimensional orthogonal coordinate system.
 この実施形態では、ベクトル解析による「発散(divergence、以下div)」と「回転(rotation、以下rot)」を対象メッシュに対して算出することで壁面せん断応力ベクトル群の形態を数値化する
 すなわち、空間のあるメッシュの囲のベクトル場τ(せん断応力ベクトル)を前記二次元直交座標系(x、 y)に写像した点G(x、 y)における成分表示を、次の式で表すとする。
 τ(G)=(τx(x、y)、 τy(x、y))
 であらわされる。
In this embodiment, the form of the wall shear stress vector group is quantified by calculating `` divergence (div) '' and `` rotation (rotation) '' by the vector analysis with respect to the target mesh. A component display at a point G (x, y) obtained by mapping a vector field τ (shear stress vector) of a mesh surrounding a space to the two-dimensional orthogonal coordinate system (x, y) is represented by the following expression.
τ (G) = (τx (x, y), τy (x, y))
It is expressed.
 このとき、「ベクトル場τの発散」と呼ばれる「スカラー場divτ」は、次の式で定義される。
 divτ=∂τx /∂x+∂τy /∂y
At this time, “scalar field divτ” called “divergence of vector field τ” is defined by the following equation.
divτ = ∂τx / ∂x + ∂τy / ∂y
 同様に、「ベクトル場τの回転」と呼ばれる「スカラー場rotτ」は、次の式で定義される。
 rotτ=∂τy /∂x-∂τx /∂y
Similarly, a “scalar field rotτ” called “rotation of vector field τ” is defined by the following equation.
rotτ = ∂τy / ∂x-∂τx / ∂y
(判別部)
 図11は、壁面せん断応力ベクトル群の形態と、上記「発散(div)」及び「回転(rot)」の値の関係を示したものである。前記判別部123によって壁面せん断応力ベクトル群の形態により大きく、1)平行型、2)合流型、3)回転型、4)衝突型、に分類される。
(Determination part)
FIG. 11 shows the relationship between the form of the wall shear stress vector group and the values of the “divergence (div)” and “rotation (rot)”. The discriminating unit 123 categorizes the wall shear stress vector group into 1) parallel type, 2) confluence type, 3) rotation type, and 4) collision type.
 平行型では、(div、rot)=(0、0)、合流型では、(div、rot)=(負値、 0)、 回転型では、(div、rot)=(0、 正または負値)、衝突型では(div、rot)=(正値、0)となる。合流型と衝突型ではdivの値の増減に応じてその程度を数値化することができる。すなわち合流型とされた場合、その負値が負方向に増大すれば合流の程度が高まることになり、衝突型とされた場合、その正値が正方向に増大すれば、発散(衝突)の程度が高まることとなる。回転型では、回転方向により正負の値が現れるが、回転の程度をその絶対値の大きさにより数値化することができる。乱雑度をベクトル量D=(div、 rot)として定義すれば、その大きさが乱雑度として使用でき、乱雑度が小さくなるほど、前記対象メッシュの壁面せん断応力ベクトルは、その周囲の各メッシュの壁面せん断応力ベクトルに対して向きが揃うようになることを意味する(平行型)。 (Div, rot) = (0, 0) for parallel type, (div, rot) = (negative value, 0) for merge type, (div, rot) = (0, positive or negative value for rotation type ) In the collision type, (div, rot) = (positive value, 0). In the merge type and the collision type, the degree can be quantified according to the increase / decrease of the value of div. In other words, in the case of the confluence type, if the negative value increases in the negative direction, the degree of confluence increases. In the case of the collision type, if the positive value increases in the positive direction, the divergence (collision) occurs. The degree will increase. In the rotation type, positive and negative values appear depending on the rotation direction, but the degree of rotation can be quantified by the magnitude of the absolute value. If the randomness is defined as a vector quantity D = (div, rot), the magnitude can be used as the randomness, and the smaller the randomness, the more the wall shear stress vector of the target mesh, This means that the orientation is aligned with the shear stress vector (parallel type).
 divとrotの数値をマップ化して示したのが図12である。すなわち、この図は、せん断応力ベクトルの典型例に対して乱雑度(div, rot)を求めたものである。ここで典型例とは数学的に記述しうる理想的なパターンであり、実験データではない。前述の通り,せん断応力ベクトルを大きさ1の単位ベクトルとして発散・回転を算出しているので、乱雑度はすでに規格化されておりこれにより患者間での比較が可能となる。すなわち、この実施例によれば、前記乱雑度は絶対値として評価できる指標として得ることができる。 Fig. 12 shows the div and rot values mapped. That is, in this figure, the randomness (div, rot) is obtained for a typical example of the shear stress vector. Here, a typical example is an ideal pattern that can be described mathematically, not experimental data. As described above, since the divergence / rotation is calculated using the shear stress vector as a unit vector of size 1, the degree of randomness has already been standardized, which enables comparison between patients. That is, according to this embodiment, the degree of randomness can be obtained as an index that can be evaluated as an absolute value.
 なお、この実施形態では、乱雑度として、対象メッシュの圧力を重み係数として組み合わせることで血流が血管壁に衝突する際に与える血管へのダメージ判定をより高精度に行うようにしている。この実施形態では、圧力を使用する場合でも規格化された圧力、すなわち、圧力指標を用いる。この実施形態では、この圧力指標として平均圧力で各圧力を除した値を演算(この例では乗算)して用いる。 In this embodiment, as a degree of randomness, the pressure of the target mesh is combined as a weighting factor so that the damage determination to the blood vessel given when the blood flow collides with the blood vessel wall is performed with higher accuracy. In this embodiment, even when pressure is used, a standardized pressure, that is, a pressure index is used. In this embodiment, a value obtained by dividing each pressure by the average pressure is used as the pressure index after being calculated (multiplied in this example).
 このことにより、例えば、血液の流れが衝突することで衝突型のせん断応力ベクトル群が形成された場合、主流の流れが衝突する場合では、局所的な壁圧の上昇を確認することができるが、主流から剥離した二次流れが衝突する場合、壁圧の上昇は見られない。このような場合、せん断応力ベクトル群の形態と圧力を組み合わせることで高精度化、特に、脳動脈瘤の菲薄部位を予測することに有効となる。すなわち、圧力の指標化には複数のやり方があり、この圧力をせん断応力ベクトルから算出される乱雑度に重ねる方法も、乗算、または、べき乗則としても良いし,複数あり得る。 As a result, for example, when a collision-type shear stress vector group is formed by collision of blood flow, and when a mainstream flow collides, a local increase in wall pressure can be confirmed. When the secondary flow separated from the main stream collides, the wall pressure does not increase. In such a case, the combination of the shape of the shear stress vector group and the pressure is effective in improving the accuracy, particularly in predicting the thinned portion of the cerebral aneurysm. That is, there are a plurality of ways of indexing the pressure, and a method of superimposing the pressure on the randomness calculated from the shear stress vector may be a multiplication or a power law, or may be a plurality.
 つまり、前記判別部123では、前記乱雑度演算部122で求めた各メッシュの乱雑度の値から、各メッシュそれぞれについて、状態を判別する。ここでの壁面せん断応力ベクトルの状態としては、周囲の壁面せん断応力ベクトルに対してパラレルとなる「平行状態」と、周囲の壁面せん断応力ベクトルに近づく方向に伸びる「合流状態と」、周囲の壁面せん断応力ベクトルとともに回転する「回転状態」と、周囲の壁面せん断応力ベクトルに対して向きが放射状になる「衝突状態」として定義できる。 That is, the determination unit 123 determines the state of each mesh from the randomness value of each mesh obtained by the randomness calculation unit 122. The wall shear stress vector states here include a “parallel state” that is parallel to the surrounding wall shear stress vector, a “merging state” that extends in a direction approaching the surrounding wall shear stress vector, and a surrounding wall surface. It can be defined as a “rotation state” that rotates with the shear stress vector and a “collision state” in which the direction is radial with respect to the surrounding wall shear stress vector.
 (血流悪性度計算部)
 血流悪性度計算部13が算出する血流悪性度は、判別部123で行った壁面せん断応力ベクトルの形態評価に基づくものである。すなわち、壁面せん断応力ベクトルの形態を上記の各状態に分けて指標化して分類する。なお、指標の設計に際して、係数や乗数を追加することもできる。係数や乗数は、壁面せん断応力や壁面圧力に由来した情報であってよく、例えば、壁面せん断応力の時間不安定性や壁面圧力の凹凸の程度を数値化したものである。なお、図12に示した様に合流状態を硬化リスクの大きさに応じ閾値に応じて「低合流型」「高合流型」のように分けて識別するようにしても良い。回転状態、衝突状態についても同様である。以上が図2における工程Iの内容である。
(Blood flow malignancy calculator)
The blood flow malignancy calculated by the blood flow malignancy calculation unit 13 is based on the form evaluation of the wall shear stress vector performed by the determination unit 123. That is, the form of the wall shear stress vector is divided into the above states and indexed and classified. It should be noted that a coefficient and a multiplier can be added when designing the index. The coefficient and multiplier may be information derived from the wall shear stress or wall pressure, and are, for example, numerical values of the time instability of the wall shear stress and the degree of unevenness of the wall pressure. Note that, as shown in FIG. 12, the merging state may be divided and identified as “low merging type” or “high merging type” according to the threshold according to the magnitude of the curing risk. The same applies to the rotation state and the collision state. The above is the content of the process I in FIG.
 (血管拡張反応測定部)
 内皮細胞機能を検査するための血管拡張反応解析部14では超音波により上腕動脈の血管径の変化を測定した結果を処理する。具体的には、安静時における血管径と、駆血を所定時間行った後の上腕動脈の血管径の変化をリアルタイムで超音波画像により測定し、その結果を血管脆弱度計算部15に出力する。
(Vascular expansion response measurement unit)
The vasodilation reaction analysis unit 14 for examining the endothelial cell function processes the result of measuring the change in the vascular diameter of the brachial artery using ultrasound. Specifically, the blood vessel diameter at rest and the change in the brachial artery blood vessel diameter after a predetermined time of blood transfusion are measured in real time by an ultrasonic image, and the result is output to the blood vessel vulnerability calculation unit 15. .
 (血管脆弱度計算部)
 血管脆弱度における評価対象は血管内皮細胞である。血管内皮細胞は血流の壁面せん断応力をセンシングして生理的機能を調節していることが知られている。この拡張度合いが内皮細胞機能を表していることが知られている。そこで、本実施形態における血管脆弱度計算部15においては、上記の様に駆血解除後の動脈の径変化をリアルタイム計測することで血管脆弱度を算出する。具体的には、次式により血管脆弱度%FMDを計算する。
 %FMD=(Dmax-Drest)/Drest
(Vessel fragility calculator)
The evaluation object in vascular vulnerability is a vascular endothelial cell. It is known that vascular endothelial cells regulate physiological functions by sensing wall shear stress of blood flow. This degree of expansion is known to represent endothelial cell function. In view of this, the vascular vulnerability calculation unit 15 in the present embodiment calculates the vascular vulnerability by measuring the change in the diameter of the artery after release of blood transfusion in real time as described above. Specifically, the vascular vulnerability degree% FMD is calculated by the following formula.
% FMD = (Dmax-Drest) / Drest
 ここでDrestは安静時における血管径を、そしてDmaxは駆血開放後最大血管径を示す。血管拡張度が強いほど、内皮細胞機能は保たれていることになる。以上が工程IIの詳細である。 Here, Drest indicates the diameter of the blood vessel at rest, and Dmax indicates the maximum blood vessel diameter after the blood is released. The stronger the degree of vasodilation, the more the endothelial cell function is maintained. The above is the detail of the process II.
 (リスク算出部)
 工程IIIでは、血管病変発症・成長リスク算出部が工程I及びIIで計算された血流悪性度および血管脆弱度をもとに血管病変発症・成長リスクを計算する。リスクは血流悪性度および血管脆弱度の比が閾値を超えた場合にリスク有りとして出力してもよい。例えば頭蓋内脳動脈を対象とした場合、その血管病変発症・成長リスクは下記に基づいて判定・数値化する。すなわち、血流悪性度が回転型、合流型であり血管脆弱度が高値と判断された場合には、動脈硬化の発症・成長リスクがあると判定し、そのリスク値を出力する。また、脳血管において血流悪性度が衝突型であり血管脆弱度が高値と判断された場合には、脳動脈瘤の発症・成長リスクがあると判定し、そのリスク値を出力する。結果出力部17ではその結果を可視化して入出力部40に送信され、ディスプレイ(図示せず)等に表示が為される。
(Risk calculation department)
In step III, the vascular lesion onset / growth risk calculator calculates the vascular lesion onset / growth risk based on the blood flow malignancy and vascular vulnerability calculated in steps I and II. The risk may be output as having a risk when the ratio between the blood flow malignancy and the vascular vulnerability exceeds a threshold. For example, in the case of an intracranial cerebral artery, the risk of developing a vascular lesion / growth risk is determined and digitized based on the following. That is, when it is determined that the blood flow malignancy is a rotation type or a confluence type and the vascular vulnerability is a high value, it is determined that there is an onset / growth risk of arteriosclerosis, and the risk value is output. Further, when the blood flow malignancy in the cerebral blood vessel is a collision type and the vascular fragility is determined to be high, it is determined that there is a risk of onset / growth of cerebral aneurysm, and the risk value is output. The result output unit 17 visualizes the result, transmits it to the input / output unit 40, and displays it on a display (not shown) or the like.
 その他、本発明における装置各部の構成は図示構成例に限定されるものではなく、実質的に同様の作用を奏するならば、種々の変更が可能である。 In addition, the configuration of each part of the apparatus according to the present invention is not limited to the illustrated configuration example, and various modifications can be made as long as substantially the same operation is achieved.
 本発明は、装置、方法等に係るものを含め、コンピュータシミュレーションにより血管病変についての発症や成長リスクを予測して出力するものであるので、いわゆる医療行為や治療方法に該当しない上、高い産業上の利用可能性を有する。 Since the present invention predicts and outputs the onset and growth risk of vascular lesions by computer simulation, including those related to devices, methods, etc., it does not fall under the so-called medical practice or treatment method and is highly industrial With the availability of

Claims (12)

  1.  コンピュータが、解析対象血管部位を含む医用画像及び内皮細胞機能についての情報を入力する入力部と、
     コンピュータが、前記入力部から入力された医用データから血管の形状データを取得して数値流体解析を実行し圧力場、速度場を含む血流属性を求める血流解析部と、
     コンピュータが、前記血流解析部で取得した血流属性に基づいて壁面せん断応力ベクトルから血流の性状を判別し、血流悪性度を数値化して求める血流悪性度計算部と、
     コンピュータが、前記入力部から入力された内皮細胞機能についての情報から血管脆弱度を求める血管脆弱度計算部と、
     コンピュータが、前記血流悪性度計算部で求められた血流悪性度と、前記血管脆弱度計算部で求められた血管脆弱度から血管病変の発症または成長についてのリスク値を算出するリスク算出部と、
     コンピュータが、算出された前記リスク値を出力する出力部とを有する血管病変発症・成長予測装置。
    An input unit for inputting information about a medical image including a vascular region to be analyzed and an endothelial cell function;
    A computer that obtains blood vessel shape data from medical data input from the input unit and performs numerical fluid analysis to obtain a blood flow attribute including a pressure field and a velocity field;
    A computer determines a blood flow property from a wall shear stress vector based on a blood flow attribute acquired by the blood flow analysis unit, and calculates a blood flow malignancy by quantifying the blood flow malignancy,
    A blood vessel vulnerability calculating unit for obtaining a blood vessel vulnerability from information on the endothelial cell function input from the input unit;
    A risk calculation unit that calculates a risk value for the onset or growth of a vascular lesion from a blood flow malignancy obtained by the blood flow malignancy calculation unit and a blood vessel vulnerability obtained by the blood vessel vulnerability calculation unit When,
    A blood vessel lesion onset / growth prediction apparatus, wherein the computer has an output unit for outputting the calculated risk value.
  2.  請求項1記載の装置において、
     前記血流解析部は、前記医用画像から血管形状を抽出し、計算格子を生成し、流体物性と境界条件を考慮しつつ圧力場と流速場を得るものである装置。
    The apparatus of claim 1.
    The blood flow analysis unit is an apparatus that extracts a blood vessel shape from the medical image, generates a calculation grid, and obtains a pressure field and a flow field while considering fluid physical properties and boundary conditions.
  3.  請求項1記載の装置において、
     前記血流解析部は、血管形状と、血液物性と、境界条件と計算条件を入力とし、時間を含めた4次元での速度場及び圧力場を出力することを特徴とする装置。
    The apparatus of claim 1.
    The blood flow analysis unit receives a blood vessel shape, blood physical properties, boundary conditions and calculation conditions, and outputs a four-dimensional velocity field and pressure field including time.
  4.  請求項1記載の装置において、
     前記血流の性状の判別は、前記血流解析部で求めた血流の状態量から、前記解析対象血管部位の血管壁面の各位置における壁面せん断応力ベクトルを求め、特定の壁面位置における当該壁面せん断応力ベクトルの方向とその周囲の壁面位置における壁面せん断応力ベクトルの方向の相対関係を求め、その形態から当該壁面位置における前記血流の性状を判別しその判別結果を出力するものである装置。
    The apparatus of claim 1.
    The blood flow property is determined by determining a wall shear stress vector at each position of the blood vessel wall surface of the blood vessel part to be analyzed from the state amount of blood flow obtained by the blood flow analysis unit, and determining the wall surface at a specific wall surface position. A device that obtains the relative relationship between the direction of the shear stress vector and the direction of the wall surface shear stress vector at the surrounding wall surface position, determines the property of the blood flow at the wall surface position from the form, and outputs the determination result.
  5.  請求項4記載の装置において、
     前記血流の性状の判別は、「平行」、「回転」、「合流」、及び「衝突」に指標化して分類するものである装置
    The apparatus of claim 4.
    The blood flow characteristics are discriminated by indexing into “parallel”, “rotation”, “confluence”, and “collision”.
  6.  請求項5記載の装置において、
      前記血流性状判別部は、
     前記特定の壁面位置における壁面せん断応力ベクトルτとその周囲の壁面位置における複数の壁面せん断応力ベクトルの相対角度関係から、ベクトル場τのスカラー量である回転rotτ及び発散divτを求め、それらの値を乱雑度として閾値と比較することで前記「平行」、「合流」、「回転」、「発散」のいずれにあるかを判別するもので、
     前記乱雑度の回転rotτの値が所定の閾値範囲外の負値若しくは正値であるときに「回転」と判別し、
     前記乱雑度の前記発散divτの値が所定の閾値範囲外の負値であるときに「合流」と判別し、
     前記乱雑度の前記発散divτの値が所定の閾値範囲外の正値であるときに「衝突」と判別し、
     前記乱雑度の回転rotτの値及び前記発散divτの値の両方が所定の閾値内にあるときに「平行」と判別する
     ことを特徴とする装置。
    The apparatus of claim 5.
    The blood flow property determination unit
    From the relative angular relationship between the wall shear stress vector τ at the specific wall position and a plurality of wall shear stress vectors at the surrounding wall positions, the rotation rotτ and the divergence divτ, which are scalar quantities of the vector field τ, are obtained, and their values are obtained. By comparing with the threshold as the degree of randomness, it is determined whether it is in the above "parallel", "confluence", "rotation", "divergence",
    When the value of the rotation rotτ of the randomness is a negative value or a positive value outside a predetermined threshold range, it is determined as “rotation”,
    When the value of the divergence divτ of the messiness is a negative value outside a predetermined threshold range, it is determined as “join”,
    When the value of the divergence divτ of the randomness is a positive value outside a predetermined threshold range, it is determined as “collision”,
    The apparatus is characterized in that it is determined as “parallel” when both the value of the rotation rotτ and the value of the divergence divτ are within a predetermined threshold.
  7.  請求項1記載の装置において、
     前記内皮細胞機能についての情報は、安静時と駆血解除時とにおける血管径計測値から径変化を算出したものであることを特徴とする装置。
    The apparatus of claim 1.
    The apparatus is characterized in that the information on the endothelial cell function is obtained by calculating a diameter change from a blood vessel diameter measurement value at rest and at the time of release of blood transfusion.
  8.  請求項1記載の装置において、
     前記リスク算出部は、前記血流の性状の判別が「回転」、「合流」であり且つ血管脆弱度が高値と判断された場合および前記血流の性状の判別が「衝突」であり血管脆弱度が高値と判断された場合には、病変の発症・成長リスクがあると判定するものである装置。
    The apparatus of claim 1.
    The risk calculation unit determines that the blood flow property is “rotation” or “confluence” and the blood vessel vulnerability level is high, and the blood flow property is “collision”. A device that determines that there is a risk of onset / growth of lesions when the degree is determined to be high.
  9.  請求項8記載の装置において、
     前記解析対象血管部位が脳動脈であって、前記血流の性状の判別が「回転」、「合流」であり且つ血管脆弱度が高値と判断された場合には、動脈硬化の発症・成長リスクがあると判断し、前記血流の性状の判別が「衝突」であり血管脆弱度が高値と判断された場合には、脳動脈瘤の発症・成長リスクがあると判断するものである装置。
    The apparatus of claim 8.
    If the blood vessel part to be analyzed is a cerebral artery, the blood flow property determination is “rotation”, “confluence”, and the vascular vulnerability is determined to be high, the risk of onset / growth of arteriosclerosis An apparatus that determines that there is a risk of onset / growth of a cerebral aneurysm when it is determined that the blood flow property is “collision” and the vascular vulnerability is determined to be high.
  10.  請求項1記載の装置において、
     前記血流悪性度と前記血管脆弱度の比が閾値を超えたときにリスク有りと判断することを特徴とする装置。
    The apparatus of claim 1.
    An apparatus for determining that there is a risk when a ratio between the blood flow malignancy and the vascular vulnerability exceeds a threshold value.
  11.  コンピュータにより実行される方法であって、
     コンピュータが、解析対象血管部位を含む医用画像及び内皮細胞機能についての情報を入力する入力工程と、
     コンピュータが、前記入力工程で入力された医用データから血管の形状データを取得して数値流体解析を実行し圧力場、速度場を含む血流属性を求める血流解析工程と、
     コンピュータが、前記血流解析工程で得られた血流属性に基づき壁面せん断応力ベクトルから血流の性状を判別し、血流悪性度を数値化して求める血流悪性度計算工程と、
     コンピュータが、前記入力工程で入力された内皮細胞機能についての情報から血管脆弱度を求める血管脆弱度計算工程と、
     コンピュータが、前記血流悪性度計算工程で求められた血流悪性度と、前記血管脆弱度計算工程で求められた血管脆弱度とから血管病変の発症または成長についてのリスク値を算出するリスク算出工程と、
     コンピュータが、算出された前記リスク値を出力する出力工程と
     を有する血管病変発症・成長予測方法。
    A method performed by a computer,
    An input step in which a computer inputs information about a medical image including an analysis target blood vessel region and endothelial cell function;
    A computer obtains blood vessel shape data from the medical data input in the input step and executes a numerical fluid analysis to obtain a blood flow attribute including a pressure field and a velocity field;
    A blood flow malignancy calculation step for determining a blood flow malignancy by quantifying the blood flow malignancy by determining a property of the blood flow from the wall shear stress vector based on the blood flow attribute obtained in the blood flow analysis step;
    A blood vessel vulnerability calculating step for obtaining a blood vessel vulnerability from information on the endothelial cell function input in the input step;
    Risk calculation in which a computer calculates a risk value for the onset or growth of a vascular lesion from the blood flow malignancy obtained in the blood flow malignancy calculation step and the blood vessel vulnerability obtained in the blood vessel vulnerability calculation step Process,
    A method for predicting vascular lesion onset / growth, wherein the computer has an output step of outputting the calculated risk value.
  12.  コンピュータにより実行されるソフトウェアプログラムであって、次の工程:
     コンピュータが、解析対象血管部位を含む医用画像及び内皮細胞機能についての情報を入力する入力工程と、
     コンピュータが、前記入力工程で入力された医用データから血管の形状データを取得して数値流体解析を実行し圧力場、速度場を含む血流属性を求める血流解析工程と、
     コンピュータが、前記血流解析工程で得られた血流属性に基づき壁面せん断応力ベクトルから血流の性状を判別し、血流悪性度を数値化して求める血流悪性度計算工程と、
     コンピュータが、前記入力工程で入力された内皮細胞機能についての情報から血管脆弱度を求める血管脆弱度計算工程と、
     コンピュータが、前記血流悪性度計算工程で求められた血流悪性度と、前記血管脆弱度計算工程で求められた血管脆弱度とから血管病変の発症または成長についてのリスク値を算出するリスク算出工程と、
     コンピュータが、算出された前記リスク値を出力する出力工程と
     を実行させる命令を含むことを特徴とするソフトウェアプログラム。
    A software program executed by a computer, the following steps:
    An input step in which a computer inputs information about a medical image including an analysis target blood vessel region and endothelial cell function;
    A computer obtains blood vessel shape data from the medical data input in the input step and executes a numerical fluid analysis to obtain a blood flow attribute including a pressure field and a velocity field;
    A blood flow malignancy calculation step for determining a blood flow malignancy by quantifying the blood flow malignancy by determining a property of the blood flow from the wall shear stress vector based on the blood flow attribute obtained in the blood flow analysis step;
    A blood vessel vulnerability calculating step for obtaining a blood vessel vulnerability from information on the endothelial cell function input in the input step;
    Risk calculation in which a computer calculates a risk value for the onset or growth of a vascular lesion from the blood flow malignancy obtained in the blood flow malignancy calculation step and the blood vessel vulnerability obtained in the blood vessel vulnerability calculation step Process,
    A software program comprising: an instruction for causing a computer to execute an output step of outputting the calculated risk value.
PCT/JP2016/077757 2015-09-18 2016-09-20 Vascular lesion onset/growth prediction device and method WO2017047822A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017540054A JP6856937B2 (en) 2015-09-18 2016-09-20 Vascular lesion onset / growth prediction device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562220616P 2015-09-18 2015-09-18
US62/220,616 2015-09-18

Publications (1)

Publication Number Publication Date
WO2017047822A1 true WO2017047822A1 (en) 2017-03-23

Family

ID=58289368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077757 WO2017047822A1 (en) 2015-09-18 2016-09-20 Vascular lesion onset/growth prediction device and method

Country Status (2)

Country Link
JP (1) JP6856937B2 (en)
WO (1) WO2017047822A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020518362A (en) * 2017-05-04 2020-06-25 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. System and method for simultaneous visualization and quantification of wall shear stress in blood vessels

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008212366A (en) * 2007-03-02 2008-09-18 Nagoya Institute Of Technology Evaluation apparatus of luminal body in living body
JP2009538644A (en) * 2006-06-02 2009-11-12 セント マイケルズ ホスピタル Ultrasound evaluation of venous structures
JP2012520102A (en) * 2009-03-13 2012-09-06 キング、ディヴィッド、エイチ. Estimating hemodynamic data
WO2013031741A1 (en) * 2011-08-26 2013-03-07 イービーエム株式会社 System for diagnosing bloodflow characteristics, method thereof, and computer software program
JP2013534154A (en) * 2010-08-12 2013-09-02 ハートフロー, インコーポレイテッド Method and system for patient-specific blood flow modeling

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6162452B2 (en) * 2013-03-28 2017-07-12 東芝メディカルシステムズ株式会社 Blood flow analysis device and blood flow analysis program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009538644A (en) * 2006-06-02 2009-11-12 セント マイケルズ ホスピタル Ultrasound evaluation of venous structures
JP2008212366A (en) * 2007-03-02 2008-09-18 Nagoya Institute Of Technology Evaluation apparatus of luminal body in living body
JP2012520102A (en) * 2009-03-13 2012-09-06 キング、ディヴィッド、エイチ. Estimating hemodynamic data
JP2013534154A (en) * 2010-08-12 2013-09-02 ハートフロー, インコーポレイテッド Method and system for patient-specific blood flow modeling
WO2013031741A1 (en) * 2011-08-26 2013-03-07 イービーエム株式会社 System for diagnosing bloodflow characteristics, method thereof, and computer software program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020518362A (en) * 2017-05-04 2020-06-25 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. System and method for simultaneous visualization and quantification of wall shear stress in blood vessels
JP7232195B2 (en) 2017-05-04 2023-03-02 コーニンクレッカ フィリップス エヌ ヴェ Systems and methods for simultaneous visualization and quantification of intravascular wall shear stress

Also Published As

Publication number Publication date
JPWO2017047822A1 (en) 2018-07-05
JP6856937B2 (en) 2021-04-14

Similar Documents

Publication Publication Date Title
Gallo et al. An insight into the mechanistic role of the common carotid artery on the hemodynamics at the carotid bifurcation
Basciano et al. A relation between near-wall particle-hemodynamics and onset of thrombus formation in abdominal aortic aneurysms
Vorobtsova et al. Effects of vessel tortuosity on coronary hemodynamics: an idealized and patient-specific computational study
Cheng et al. Analysis of flow patterns in a patient-specific aortic dissection model
Jeong et al. Hemodynamics of cerebral aneurysms: computational analyses of aneurysm progress and treatment
Martufi et al. Three-dimensional geometrical characterization of abdominal aortic aneurysms: image-based wall thickness distribution
Taylor et al. Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis
CN107427268B (en) Method and system for fractional flow reserve based on pure geometry machine learning
Torii et al. Influencing factors in image‐based fluid–structure interaction computation of cerebral aneurysms
EP2749225A1 (en) System for diagnosing bloodflow characteristics, method thereof, and computer software program
Chaichana et al. Impact of plaques in the left coronary artery on wall shear stress and pressure gradient in coronary side branches
JP6561349B2 (en) Blood vessel shape construction apparatus, method and computer software program for blood flow simulation
Capellini et al. A novel formulation for the study of the ascending aortic fluid dynamics with in vivo data
Trachet et al. The impact of simplified boundary conditions and aortic arch inclusion on CFD simulations in the mouse aorta: a comparison with mouse-specific reference data
Subramaniam et al. Pulsatile CFD Numerical Simulation to investigate the effect of various degree and position of stenosis on carotid artery hemodynamics
Bhagavan et al. Strongly coupled morphological features of aortic aneurysms drive intraluminal thrombus
Nagargoje et al. Influence of morphological parameters on hemodynamics in internal carotid artery bifurcation aneurysms
Poon et al. Elevated blood viscosity and microrecirculation resulting from coronary stent malapposition
Chen et al. Modeling of coarctation of aorta in human fetuses using 3D/4D fetal echocardiography and computational fluid dynamics
Spazzapan et al. The use of biophysical flow models in the surgical management of patients affected by chronic thromboembolic pulmonary hypertension
Shahid et al. Enhanced 4D flow MRI-based CFD with adaptive mesh refinement for flow dynamics assessment in coarctation of the aorta
Sasaki et al. Numerical analysis of bifurcation angles and branch patterns in intracranial aneurysm formation
JP2024505353A (en) Methods and systems for in vivo strain mapping of aortic dissection
US11967085B2 (en) Image data processing method and apparatus
WO2017047822A1 (en) Vascular lesion onset/growth prediction device and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846693

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017540054

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16846693

Country of ref document: EP

Kind code of ref document: A1