WO2017047754A1 - Sputtering target material - Google Patents

Sputtering target material Download PDF

Info

Publication number
WO2017047754A1
WO2017047754A1 PCT/JP2016/077459 JP2016077459W WO2017047754A1 WO 2017047754 A1 WO2017047754 A1 WO 2017047754A1 JP 2016077459 W JP2016077459 W JP 2016077459W WO 2017047754 A1 WO2017047754 A1 WO 2017047754A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle size
less
sputtering target
target material
powder
Prior art date
Application number
PCT/JP2016/077459
Other languages
French (fr)
Japanese (ja)
Inventor
長谷川 浩之
慶明 松原
Original Assignee
山陽特殊製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016010266A external-priority patent/JP2017057490A/en
Application filed by 山陽特殊製鋼株式会社 filed Critical 山陽特殊製鋼株式会社
Priority to SG11201802203UA priority Critical patent/SG11201802203UA/en
Priority to EP16846625.8A priority patent/EP3351655A4/en
Priority to US15/760,404 priority patent/US20180265963A1/en
Priority to KR1020187006795A priority patent/KR102635337B1/en
Publication of WO2017047754A1 publication Critical patent/WO2017047754A1/en
Priority to US16/986,331 priority patent/US11377726B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering

Definitions

  • the present invention relates to a sputtering target material useful for the production of alloy thin films such as magnetic tunnel junction (MTJ) elements, HDDs, magnetic recording media and the like.
  • MTJ magnetic tunnel junction
  • Magnetic random access memory has a magnetic tunnel junction (MTJ) element.
  • the magnetic tunnel junction (MTJ) element has a structure such as CoFeB / MgO / CoFeB and exhibits characteristics such as a high tunneling magnetoresistance (TMR) signal and a low switching current density (Jc).
  • TMR tunneling magnetoresistance
  • Jc switching current density
  • a CoFeB thin film of a magnetic tunnel junction (MTJ) element is formed by sputtering a CoFeB target.
  • a CoFeB sputtering target material for example, as disclosed in JP-A-2004-346423 (Patent Document 1), a sputtering target material produced by sintering atomized powder is known.
  • Patent Document 1 Although the method of producing a sputtering target material by sintering atomized powder as in Patent Document 1 is an effective technique, it is possible to produce a good target material only by the method described in Patent Document 1. Can not. That is, there is a problem that the strength of the sputtering target material is lowered simply by sintering the atomized powder.
  • the present inventors have intensively developed and found that the mechanical strength of the sputtering target can be improved by reducing the hydrogen content in the sputtering target material.
  • the invention has been completed.
  • the present invention includes the following inventions.
  • B is 10 to 50%, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Ru, Rh, Ir, Ni, Pd, Pt, Cu, Ag Sputtering characterized in that it contains 0 to 20% in total of one or more elements selected from the group consisting of at least one of Co and Fe and unavoidable impurities, and a hydrogen content of 20 ppm or less.
  • Target material [2] at.
  • sputtering target material according to [1] above containing a total of 5 to 20% of elements.
  • sputtering target material according to [1] which has a bending strength of 200 MPa or more.
  • a sputtering target material excellent in mechanical strength is provided.
  • the B content is 10 to 50%.
  • the content of B is less than 10%, the alloy thin film formed at the time of sputtering is not sufficiently amorphous.
  • the hydrogen content is 20 ppm or less.
  • the B content is adjusted to 10 to 50%.
  • the content of B is preferably 20 to 50%.
  • the total content of one or more elements selected from “element group” may be 0 to 20%.
  • the total content of one or more elements selected from the element group means the content of the one element.
  • the strength of the sputtering target material decreases, so that 1 selected from the above element group Content of the element more than a seed
  • the total content of one or more elements selected from the above element group is preferably 12% or less, more preferably 10% or less.
  • the total content is 0%.
  • the sputtering target material according to the present invention contains one or more elements selected from the above element group, the total content can be appropriately adjusted in the range of more than 0 to 20%. is there.
  • the balance consists of at least one of Co and Fe and inevitable impurities.
  • Co and Fe are elements that impart magnetism, and the total content of Co and Fe is 30% or more.
  • the “total content of Co and Fe” means the one content.
  • the total content of Co and Fe is preferably 40% or more, more preferably 50% or more.
  • the hydrogen content is 20 ppm or less.
  • Hydrogen is an element inevitably present in a powder used as a raw material for the sputtering target material (for example, an atomized powder such as a gas atomized powder), but when the content of hydrogen remaining in the sputtering target material exceeds 20 ppm, Since the strength of the sputtering target material is reduced, the hydrogen content is adjusted to 20 ppm or less.
  • the hydrogen content is preferably 10 ppm or less.
  • the sputtering target material according to the present invention may contain other inevitable impurities up to 1000 ppm.
  • Sputtering target material with a hydrogen content of 20 ppm or less is 10 to 50% B, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Ru, Rh, Ir, Ni From an atomized powder of an alloy containing at least one element selected from the group consisting of Pd, Pt, Pt, Cu, and Ag in a total amount of 0 to 20%, with the balance being at least one of Co and Fe and inevitable impurities , Removing coarse particles having a particle size of 500 ⁇ m or more, and then removing fine particles from the powder from which the coarse particles have been removed to prepare a powder satisfying any one of the particle size conditions A, B, and C; , B, and C can be manufactured by sintering.
  • the particle size conditions A, B, and C are defined as follows.
  • the particle size condition A is that, in the particle size distribution of the powder (particle group), the cumulative volume of particles having a particle size of 5 ⁇ m or less is 10% or less, and the cumulative volume of particles having a particle size of 30 ⁇ m or less is 40% or less.
  • the particle size condition B in the particle size distribution of the powder (particle group), the cumulative volume of particles having a particle size of 5 ⁇ m or less is 8% or less, and the cumulative volume of particles having a particle size of 30 ⁇ m or less is 35% or less. Defined.
  • the particle size condition C is that, in the particle size distribution of the powder (particle group), the cumulative volume of particles having a particle size of 5 ⁇ m or less is 5% or less and the cumulative volume of particles having a particle size of 30 ⁇ m or less is 30% or less.
  • the powder satisfying all the particle size conditions A, B, and C is a powder satisfying the particle size condition C
  • the powder satisfying the particle size conditions A and B is a powder satisfying the particle size condition B.
  • “Particle size” and “particle size distribution” mean the particle size and particle size distribution measured by a laser diffraction / scattering particle size distribution measuring device (Microtrack).
  • each particle size condition defines the particle size distribution by two conditions, namely, a first condition relating to the amount of particles having a particle size of 5 ⁇ m or less and a second condition relating to the amount of particles having a particle size of 30 ⁇ m or less.
  • the first condition regulates the cumulative volume of particles having a particle size of 5 ⁇ m or less to 10% or less, and the second condition sets the cumulative volume of particles having a larger particle size of 30 ⁇ m or less to 40% or less. regulate.
  • the particle size condition B the first condition regulates the cumulative volume of particles having a particle size of 5 ⁇ m or less to 8% or less, and the second condition regulates the cumulative volume of particles having a particle size of 30 ⁇ m or less to 35% or less.
  • the first condition regulates the cumulative volume of particles with a particle size of 5 ⁇ m or less to 5% or less
  • the second condition regulates the cumulative volume of particles with a particle size of 30 ⁇ m or less to 30% or less.
  • the particle size conditions A, B, and C regulate the cumulative volume of particles having a particle size of 5 ⁇ m or less to be gradually reduced to 10% or less, 8% or less, and 5% or less.
  • the cumulative volume is regulated so as to decrease stepwise to 40% or less, 35% or less, and 30% or less.
  • the hydrogen content and the bending strength of a sputtering target material manufactured using a gas atomized powder satisfying any of the particle size conditions A, B, and C are shown.
  • the powder satisfying any one of the particle size conditions A, B, and C is obtained by removing coarse particles not suitable for molding having a particle size of 500 ⁇ m or more from a powder (for example, an atomized powder such as a gas atomized powder) as a raw material of a sputtering target material. It can be prepared by removing fine particles from the powder from which coarse particles have been removed.
  • a powder for example, an atomized powder such as a gas atomized powder
  • the atomizing method for producing the atomized powder include a gas atomizing method, a water atomizing method, a disk atomizing method, a plasma atomizing method, and the like, and a gas atomizing method is preferable.
  • Removal of coarse particles having a particle size of 500 ⁇ m or more can be performed by classification using a sieve having an opening of 500 ⁇ m or less, for example, an opening of 250 to 500 ⁇ m. Removal of fine particles for preparing a powder satisfying any of the particle size conditions A, B, and C can be performed by classification using a sieve having an opening of 5 ⁇ m or less and / or an opening of 30 ⁇ m or less.
  • the hydrogen content can be reduced to 20 ppm or less. This can be processed into a disk shape by wire cutting, lathe processing, and planar polishing to produce a sputtering target material.
  • the sputtering target material manufactured in this way has improved strength.
  • the sputtering target material according to the present invention preferably has a bending strength of 200 MPa or more.
  • the bending strength of the sputtering target material according to the present invention is, for example, 210 MPa or more, 220 MPa or more, 230 MPa or more, 240 MPa or more, 250 MPa or more, 260 MPa or more, 270 MPa or more, 280 MPa or more, 290 MPa or more, or 300 MPa or more.
  • the bending strength is measured as follows.
  • the three-point bending test a surface of 4 mm in length and 25 mm in width is squeezed in the thickness direction with a distance between supporting points of 20 mm, the stress (N) at that time is measured, and the three-point bending strength is calculated based on the following formula.
  • Three-point bending strength (MPa) (3 ⁇ stress (N) ⁇ distance between support points (mm) / (2 ⁇ width of test piece (mm) ⁇ (thickness of test piece (mm) 2 )
  • the sputtering target material according to the present invention will be specifically described with reference to examples.
  • the hot water is discharged from a nozzle having a diameter of 8 mm at the bottom of the crucible, Gas atomization was performed with Ar gas.
  • the solidification rate can be controlled by adjusting the Ar gas injection pressure. The greater the injection pressure, the greater the coagulation rate.
  • the particle size distribution of the gas atomized powder can be adjusted by controlling the solidification rate. The faster the solidification rate, the smaller the width of the particle size distribution.
  • the fine particles are removed from the powder from which the coarse particles have been removed.
  • a powder satisfying any of C was prepared. Removal of coarse particles not suitable for molding having a particle size of 500 ⁇ m or more was performed by classification using a sieve having an opening of 500 ⁇ m. Removal of fine particles for preparing a powder satisfying the particle size condition A was performed by classification using a sieve having an opening of 35 ⁇ m. Removal of fine particles for preparing a powder satisfying the particle size condition B was performed by classification using a sieve having an opening of 30 ⁇ m.
  • Removal of fine particles for preparing a powder satisfying the particle size condition C was performed by classification using a sieve having an opening of 25 ⁇ m.
  • Particle size conditions A, B A powder satisfying any one of C was placed in a 110 ° C. oven to perform moisture drying, and the dried powder was used as a raw material powder.
  • the raw material powder was deaerated and charged into an SC can having an outer diameter of 220 mm, an inner diameter of 210 mm, and a length of 200 mm, and the powder-filled billet was sintered under the conditions shown in Table 1 or Table 2 to produce a sintered body. did.
  • dissolved raw materials were weighed for the component compositions shown in the raw material powder column of Tables 3 and 7, and, as in the case of the component compositions shown in Tables 1, 2, 5 and 6, a refractory crucible in a reduced pressure Ar gas atmosphere or vacuum atmosphere After melting by induction heating in the inside, the hot water was discharged from a nozzle having a diameter of 8 mm at the bottom of the crucible and gas atomized with Ar gas.
  • pure Ti, pure B, pure V, and pure Cr are commercially available powders having a powder size of 150 ⁇ m or less.
  • the powder from which the coarse particles have been removed is classified to remove fine particles.
  • a powder satisfying any of C was prepared. Removal of coarse particles and fine particles was performed in the same manner as described above. A powder satisfying any one of the particle size conditions A, B, and C was placed in a 110 ° C. oven to perform moisture drying, and the dried powder was used as a raw material powder.
  • the raw material powder was mixed at a mixing ratio shown in Table 3 for 30 minutes with a V-type mixer to have the composition shown in Table 3, and degassed into an SC can with an outer diameter of 220 mm, an inner diameter of 210 mm, and a length of 200 mm. I entered.
  • the powder-filled billet was sintered under the conditions shown in Table 3 to produce a sintered body.
  • the solidified molded body produced by the above method was processed into a disk shape having a diameter of 180 mm and a thickness of 7 mm by wire cutting, lathe processing, and planar polishing to obtain a sputtering target material.
  • the raw material for melting was weighed and melted by induction heating in a refractory crucible in a reduced pressure Ar gas atmosphere or vacuum atmosphere, then poured out from a nozzle with a diameter of 8 mm at the bottom of the crucible, and Ar gas was used. Gas atomized. From the obtained gas atomized powder, coarse particles having a particle diameter of 500 ⁇ m or more not suitable for molding were removed, and the powder from which the coarse particles were removed was used as a raw material powder without removing fine particles. The raw material powder was deaerated and charged into an SC can having an outer diameter of 220 mm, an inner diameter of 210 mm, and a length of 200 mm.
  • the powder-filled billet was sintered under the conditions shown in Table 4 to produce a sintered body.
  • the solidified molded body produced by the above method was processed into a disk shape having a diameter of 180 mm and a thickness of 7 mm by wire cutting, lathe processing, and planar polishing to obtain a sputtering target material.
  • the particle size distribution of the powder was confirmed by measuring with a laser diffraction / scattering particle size distribution measuring device (Microtrack). Moreover, a shaping
  • molding method is HIP, hot press, SPS, hot extrusion, etc., for example, It does not specifically limit.
  • the hydrogen content was measured by an inert gas melting-non-dispersive infrared absorption method.
  • the mechanical strength (bending strength) was evaluated by a three-point bending test on a test piece having a length of 4 mm, a width of 25 mm, and a thickness of 3 mm determined by a wire.
  • 1-26 and no. Nos. 40 to 87 are sputtering target materials having the component compositions shown in Tables 1, 25 and 6.
  • 27-32 and no. 91 to 106 are sputtering target materials manufactured from a plurality of raw material powders shown in Tables 3 and 7.
  • B is 10 to 50%, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Ru, Rh, Ir, Ni, Pd, Pt, Cu, and Ag.
  • the present invention satisfies the conditions of the present invention in which one or more elements selected from the group consisting of 0 to 20% in total are contained, the balance is at least one of Co and Fe, and inevitable impurities, and the hydrogen content is 20 ppm or less. Therefore, it was possible to achieve a bending strength of 200 MPa or more.
  • Comparative Example No. shown in Table 4 was used.
  • No. 33 has a cumulative volume of particles with a particle size of 5 ⁇ m or less in the particle size distribution of the gas atomized powder used as a raw material for the sputtering target material, 11%, and does not satisfy any of the particle size conditions A to C. Therefore, the hydrogen content is 25 ppm.
  • the bending strength decreased to 150 MPa.
  • Comparative Example No. 34 since the B content is less than 10% and the cumulative volume of particles having a particle size of 30 ⁇ m or less in the particle size distribution of the gas atomized powder used as the raw material of the sputtering target material is 41%, The amount increased to 30 ppm, and the bending strength decreased to 180 MPa.
  • the cumulative volume of particles having a particle size of 5 ⁇ m or less in the particle size distribution of the gas atomized powder used as the raw material for the sputtering target material is 12% and 13%, and none of the particle size conditions A to C is satisfied.
  • the hydrogen content increased to 25 ppm and 23 ppm, and the bending strength decreased to 130 MPa and 150 MPa.
  • Comparative Example No. 36 and 38 the cumulative volume of particles having a particle size of 30 ⁇ m or less in the particle size distribution of the gas atomized powder used as the raw material for the sputtering target material is 42% and 43%, and none of the particle size conditions A to C is satisfied.
  • the hydrogen content increased to 22 ppm and 25 ppm, and the bending strength decreased to 160 MPa and 140 MPa.
  • Comparative Example No. No. 39 is a particle size distribution of the gas atomized powder used as the raw material of the sputtering target material, and the cumulative volume of particles having a particle size of 5 ⁇ m or less and 30 ⁇ m or less is 14% or 45%, and none of the particle size conditions A to C is satisfied.
  • Comparative Example No. 88 to 90 are selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Ru, Rh, Ir, Ni, Pd, Pt, Cu, and Ag. Since the above elements are contained more than 20% in total, it can be seen that the strength is low and brittle.
  • the present invention provides a sputtering target material having improved mechanical strength by reducing the hydrogen content in the sputtering target material to 20 ppm or less.
  • the sputtering target material according to the present invention is a sputtering target material useful for the production of alloy thin films such as MTJ elements, HDDs, magnetic recording media and the like, and exhibits extremely excellent effects.

Abstract

The purpose of the present invention is to improve the mechanical strength of a sputtering target. Provided to achieve this purpose is a sputtering target material that is characterized by containing B in a proportion of 10-50 at.% and at least one element selected from Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Ru, Rh, Ir, Ni, Pd, Pt, Cu, and Ag in a combined proportion of 0-20 at.%, and is further characterized in that the remainder comprises unavoidable impurities and at least one of Co and Fe, and the hydrogen content does not exceed 20 ppm.

Description

スパッタリングターゲット材Sputtering target material
 本発明は、磁気トンネル接合(MTJ)素子、HDD、磁気記録用媒体等の合金薄膜の製造に有用なスパッタリングターゲット材に関する。 The present invention relates to a sputtering target material useful for the production of alloy thin films such as magnetic tunnel junction (MTJ) elements, HDDs, magnetic recording media and the like.
 磁気ランダムアクセスメモリ(MRAM)は、磁気トンネル接合(MTJ)素子を有する。磁気トンネル接合(MTJ)素子は、CoFeB/MgO/CoFeBのような構造を有し、高いトンネル磁気抵抗(TMR)信号、低いスイッチング電流密度(Jc)等の特徴を示す。 Magnetic random access memory (MRAM) has a magnetic tunnel junction (MTJ) element. The magnetic tunnel junction (MTJ) element has a structure such as CoFeB / MgO / CoFeB and exhibits characteristics such as a high tunneling magnetoresistance (TMR) signal and a low switching current density (Jc).
 磁気トンネル接合(MTJ)素子のCoFeB薄膜は、CoFeBターゲットのスパッタリングにより形成される。CoFeBスパッタリングターゲット材としては、例えば、特開2004-346423号公報(特許文献1)に開示されているように、アトマイズ粉末を焼結して作製されたスパッタリングターゲット材が知られている。 A CoFeB thin film of a magnetic tunnel junction (MTJ) element is formed by sputtering a CoFeB target. As a CoFeB sputtering target material, for example, as disclosed in JP-A-2004-346423 (Patent Document 1), a sputtering target material produced by sintering atomized powder is known.
特開2004-346423号公報JP 2004-346423 A
 特許文献1のようにアトマイズ粉末を焼結してスパッタリングターゲット材を作製する方法は、有効な手法ではあるが、単に特許文献1に記載された方法のみでは、良好なターゲット材を作製することはできない。すなわち、単純にアトマイズした粉末を焼結するだけではスパッタリングターゲット材の強度が低下するという問題がある。 Although the method of producing a sputtering target material by sintering atomized powder as in Patent Document 1 is an effective technique, it is possible to produce a good target material only by the method described in Patent Document 1. Can not. That is, there is a problem that the strength of the sputtering target material is lowered simply by sintering the atomized powder.
 上述した問題を解消するために、本発明者らは鋭意開発を進めた結果、スパッタリングターゲット材中の水素含有量を低減させることにより、スパッタリングターゲットの機械強度を改善することができることを見出し、本発明を完成するに至った。 In order to solve the above-mentioned problems, the present inventors have intensively developed and found that the mechanical strength of the sputtering target can be improved by reducing the hydrogen content in the sputtering target material. The invention has been completed.
 本発明は、以下の発明を包含する。
[1]at.%で、Bを10~50%、Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,W,Mn,Re,Ru,Rh,Ir,Ni,Pd,Pt,Cu,Agからなる群から選ばれる1種以上の元素を合計で0~20%含有し、残部がCoおよびFeの少なくとも1種と不可避的不純物とからなり、水素含有量が20ppm以下であることを特徴とする、スパッタリングターゲット材。
[2]at.%で、Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,W,Mn,Re,Ru,Rh,Ir,Ni,Pd,Pt,Cu,Agからなる群から選ばれる1種以上の元素を合計で5~20%含有する、前記[1]に記載のスパッタリングターゲット材。
[3]200MPa以上の抗折強度を有する、前記[1]に記載のスパッタリングターゲット材。
The present invention includes the following inventions.
[1] at. %, B is 10 to 50%, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Ru, Rh, Ir, Ni, Pd, Pt, Cu, Ag Sputtering characterized in that it contains 0 to 20% in total of one or more elements selected from the group consisting of at least one of Co and Fe and unavoidable impurities, and a hydrogen content of 20 ppm or less. Target material.
[2] at. %, At least one selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Ru, Rh, Ir, Ni, Pd, Pt, Cu, Ag The sputtering target material according to [1] above, containing a total of 5 to 20% of elements.
[3] The sputtering target material according to [1], which has a bending strength of 200 MPa or more.
 本発明によれば、機械強度に優れたスパッタリングターゲット材が提供される。 According to the present invention, a sputtering target material excellent in mechanical strength is provided.
 以下、本発明について詳細に説明する。なお、本発明において、「%」は、別段に規定される場合を除いて、at.%を意味する。 Hereinafter, the present invention will be described in detail. In the present invention, “%” means “at.” Unless otherwise specified. Means%.
 本発明に係るスパッタリングターゲット材において、Bの含有量は10~50%である。Bの含有量が10%未満であると、スパッタ時に形成される合金薄膜が十分に非晶質とならず、Bの含有量が50%を超えると、水素の含有量が20ppm以下であっても、スパッタリングターゲット材の強度が低下するため、Bの含有量は10~50%に調整される。Bの含有量は、好ましくは20~50%である。 In the sputtering target material according to the present invention, the B content is 10 to 50%. When the content of B is less than 10%, the alloy thin film formed at the time of sputtering is not sufficiently amorphous. When the content of B exceeds 50%, the hydrogen content is 20 ppm or less. However, since the strength of the sputtering target material decreases, the B content is adjusted to 10 to 50%. The content of B is preferably 20 to 50%.
 本発明に係るスパッタリングターゲット材において、Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,W,Mn,Re,Ru,Rh,Ir,Ni,Pd,Pt,Cu,Agからなる群(以下「元素群」という場合がある)から選ばれる1種以上の元素の合計含有量は0~20%である。なお、上記元素群から選ばれる元素が1種のみである場合、「上記元素群から選ばれる1種以上の元素の合計含有量」は当該1種の元素の含有量を意味する。上記元素群から選ばれる1種以上の元素の合計含有量が20%を超えると、水素含有量が20ppm以下であっても、スパッタリングターゲット材の強度が低下するため、上記元素群から選ばれる1種以上の元素の含有量は20%以下に調整される。上記元素群から選ばれる1種以上の元素の合計含有量は、好ましくは12%以下、さらに好ましくは10%以下である。本発明に係るスパッタリングターゲット材が上記元素群から選ばれる1種以上の元素を含有しない場合、その合計含有量は0%である。本発明に係るスパッタリングターゲット材が上記元素群から選ばれる1種以上の元素を含有する場合、その合計含有量は0超~20%の範囲で適宜調整可能であるが、例えば、5%以上である。 In the sputtering target material according to the present invention, a group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Ru, Rh, Ir, Ni, Pd, Pt, Cu, and Ag ( Hereinafter, the total content of one or more elements selected from “element group” may be 0 to 20%. In addition, when there is only one element selected from the element group, “the total content of one or more elements selected from the element group” means the content of the one element. When the total content of one or more elements selected from the above element group exceeds 20%, even if the hydrogen content is 20 ppm or less, the strength of the sputtering target material decreases, so that 1 selected from the above element group Content of the element more than a seed | species is adjusted to 20% or less. The total content of one or more elements selected from the above element group is preferably 12% or less, more preferably 10% or less. When the sputtering target material according to the present invention does not contain one or more elements selected from the above element group, the total content is 0%. When the sputtering target material according to the present invention contains one or more elements selected from the above element group, the total content can be appropriately adjusted in the range of more than 0 to 20%. is there.
 本発明に係るスパッタリングターゲット材において、残部はCoおよびFeの少なくとも1種と不可避的不純物とからなる。
 CoおよびFeは、磁性を付与する元素であり、CoおよびFeの合計含有量は30%以上である。なお、本発明に係るスパッタリングターゲット材がCoおよびFeの一方のみを含有する場合、「CoおよびFeの合計含有量」は当該一方の含有量を意味する。CoおよびFeの合計含有量は、好ましくは40%以上、さらに好ましくは50%以上である。
In the sputtering target material according to the present invention, the balance consists of at least one of Co and Fe and inevitable impurities.
Co and Fe are elements that impart magnetism, and the total content of Co and Fe is 30% or more. When the sputtering target material according to the present invention contains only one of Co and Fe, the “total content of Co and Fe” means the one content. The total content of Co and Fe is preferably 40% or more, more preferably 50% or more.
 本発明に係るスパッタリングターゲット材において、水素の含有量は20ppm以下である。水素は、スパッタリングターゲット材の原料として用いられる粉末(例えば、ガスアトマイズ粉末等のアトマイズ粉末)中に不可避的に存在する元素であるが、スパッタリングターゲット材に残存する水素の含有量が20ppmを超えると、スパッタリングターゲット材の強度が低下することから、水素の含有量は20ppm以下に調整される。水素の含有量は、好ましくは10ppm以下である。なお、本発明に係るスパッタリングターゲット材は、その他の不可避的不純物を1000ppmまで含んでもよい。 In the sputtering target material according to the present invention, the hydrogen content is 20 ppm or less. Hydrogen is an element inevitably present in a powder used as a raw material for the sputtering target material (for example, an atomized powder such as a gas atomized powder), but when the content of hydrogen remaining in the sputtering target material exceeds 20 ppm, Since the strength of the sputtering target material is reduced, the hydrogen content is adjusted to 20 ppm or less. The hydrogen content is preferably 10 ppm or less. The sputtering target material according to the present invention may contain other inevitable impurities up to 1000 ppm.
 水素の含有量が20ppm以下であるスパッタリングターゲット材は、Bを10~50%、Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,W,Mn,Re,Ru,Rh,Ir,Ni,Pd,Pt,Cu,Agからなる群から選ばれる1種以上の元素を合計で0~20%含有し、残部がCoおよびFeの少なくとも1種と不可避的不純物とからなる合金のアトマイズ粉末から、粒径500μm以上の粗粒子を除去し、次いで、粗粒子が除去された粉末から微細粒子を除去して粒度条件A,B,Cのいずれかを満たす粉末を調製し、次いで、粒度条件A,B,Cのいずれかを満たす粉末を焼結することにより製造することができる。 Sputtering target material with a hydrogen content of 20 ppm or less is 10 to 50% B, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Ru, Rh, Ir, Ni From an atomized powder of an alloy containing at least one element selected from the group consisting of Pd, Pt, Pt, Cu, and Ag in a total amount of 0 to 20%, with the balance being at least one of Co and Fe and inevitable impurities , Removing coarse particles having a particle size of 500 μm or more, and then removing fine particles from the powder from which the coarse particles have been removed to prepare a powder satisfying any one of the particle size conditions A, B, and C; , B, and C can be manufactured by sintering.
 粒度条件A,B,Cは、次のように定義される。
 粒度条件Aは、粉末(粒子群)の粒度分布において、粒径5μm以下の粒子の累積体積が10%以下、かつ、粒径30μm以下の粒子の累積体積が40%以下となっていることと定義される。
 粒度条件Bは、粉末(粒子群)の粒度分布において、粒径5μm以下の粒子の累積体積が8%以下、かつ、粒径30μm以下の粒子の累積体積が35%以下となっていることと定義される。
 粒度条件Cは、粉末(粒子群)の粒度分布において、粒径5μm以下の粒子の累積体積が5%以下、かつ、粒径30μm以下の粒子の累積体積が30%以下となっていることと定義される。
 なお、粒度条件A,B,Cの全てを満たす粉末は、粒度条件Cを満たす粉末とし、粒度条件AおよびBを満たす粉末は、粒度条件Bを満たす粉末とする。また、「粒径」および「粒度分布」は、レーザー回折・散乱式粒子径分布測定装置(マイクロトラック)にて測定される粒径および粒度分布を意味する。
The particle size conditions A, B, and C are defined as follows.
The particle size condition A is that, in the particle size distribution of the powder (particle group), the cumulative volume of particles having a particle size of 5 μm or less is 10% or less, and the cumulative volume of particles having a particle size of 30 μm or less is 40% or less. Defined.
In the particle size condition B, in the particle size distribution of the powder (particle group), the cumulative volume of particles having a particle size of 5 μm or less is 8% or less, and the cumulative volume of particles having a particle size of 30 μm or less is 35% or less. Defined.
The particle size condition C is that, in the particle size distribution of the powder (particle group), the cumulative volume of particles having a particle size of 5 μm or less is 5% or less and the cumulative volume of particles having a particle size of 30 μm or less is 30% or less. Defined.
The powder satisfying all the particle size conditions A, B, and C is a powder satisfying the particle size condition C, and the powder satisfying the particle size conditions A and B is a powder satisfying the particle size condition B. “Particle size” and “particle size distribution” mean the particle size and particle size distribution measured by a laser diffraction / scattering particle size distribution measuring device (Microtrack).
 粒度条件A,B,Cは、いずれも、スパッタリングターゲット材の原料となる粉末(例えば、ガスアトマイズ粉末等のアトマイズ粉末)から、粒径500μm以上の粗粒子を除いた後、粗粒子が除去された粉末から、微細粒子を除くための条件である。各粒度条件は、2条件、すなわち、粒径5μm以下の粒子の量に関する第1条件および粒径30μm以下の粒子の量に関する第2条件により粒度分布を定めている。粒度条件Aにおいて、第1条件は、粒径5μm以下の粒子の累積体積を10%以下と規制し、第2条件は、より粒度の大きい粒径30μm以下の粒子の累積体積を40%以下と規制する。粒度条件Bにおいて、第1条件は、粒径5μm以下の粒子の累積体積を8%以下と規制し、第2条件は、粒径30μm以下の粒子の累積体積を35%以下と規制する。粒度条件Cにおいて、第1条件は、粒径5μm以下の粒子の累積体積を5%以下と規制し、第2条件は、粒径30μm以下の粒子の累積体積を30%以下と規制する。すなわち、粒度条件A,B,Cは、粒径5μm以下の粒子の累積体積を10%以下、8%以下、5%以下と段階的に減少するように規制し、粒径30μm以下の粒子の累積体積を40%以下、35%以下、30%以下と段階的に減少するように規制する。実施例には、粒度条件A,B,Cのいずれかを満たすガスアトマイズ粉末を用いて製造したスパッタリングターゲット材の水素含有量および抗折強度が示されている。 As for the particle size conditions A, B, and C, after removing coarse particles having a particle size of 500 μm or more from powder (for example, atomized powder such as gas atomized powder) as a raw material of the sputtering target material, the coarse particles were removed. This is a condition for removing fine particles from the powder. Each particle size condition defines the particle size distribution by two conditions, namely, a first condition relating to the amount of particles having a particle size of 5 μm or less and a second condition relating to the amount of particles having a particle size of 30 μm or less. In the particle size condition A, the first condition regulates the cumulative volume of particles having a particle size of 5 μm or less to 10% or less, and the second condition sets the cumulative volume of particles having a larger particle size of 30 μm or less to 40% or less. regulate. In the particle size condition B, the first condition regulates the cumulative volume of particles having a particle size of 5 μm or less to 8% or less, and the second condition regulates the cumulative volume of particles having a particle size of 30 μm or less to 35% or less. In the particle size condition C, the first condition regulates the cumulative volume of particles with a particle size of 5 μm or less to 5% or less, and the second condition regulates the cumulative volume of particles with a particle size of 30 μm or less to 30% or less. That is, the particle size conditions A, B, and C regulate the cumulative volume of particles having a particle size of 5 μm or less to be gradually reduced to 10% or less, 8% or less, and 5% or less. The cumulative volume is regulated so as to decrease stepwise to 40% or less, 35% or less, and 30% or less. In the Examples, the hydrogen content and the bending strength of a sputtering target material manufactured using a gas atomized powder satisfying any of the particle size conditions A, B, and C are shown.
 粒度条件A,B,Cのいずれかを満たす粉末は、スパッタリングターゲット材の原料となる粉末(例えば、ガスアトマイズ粉末等のアトマイズ粉末)から、粒径500μm以上の成形に向かない粗粒子を除去した後、粗粒子が除去された粉末から微細粒子を除去することにより調製することができる。アトマイズ粉末を製造するためのアトマイズ法としては、例えば、ガスアトマイズ法、水アトマイズ法、ディスクアトマイズ法、プラズマアトマイズ法等が挙げられるが、ガスアトマイズ法が好ましい。粒径500μm以上の粗粒子の除去は、目開き500μm以下、例えば、目開き250~500μmの篩を用いた分級により行うことができる。粒度条件A,B,Cのいずれかを満たす粉末を調製するための微細粒子の除去は、目開き5μm以下および/または目開き30μm以下の篩を用いた分級により行うことができる。粒度条件A,B,Cのいずれかを満たす粉末を用いて固化成形体を作製することにより、水素の含有量を20ppm以下とすることが可能となる。これを、ワイヤーカット、旋盤加工、平面研磨により、円盤状に加工し、スパッタリングターゲット材を製造することができる。こうして製造されたスパッタリングターゲット材は、その強度が向上している。 The powder satisfying any one of the particle size conditions A, B, and C is obtained by removing coarse particles not suitable for molding having a particle size of 500 μm or more from a powder (for example, an atomized powder such as a gas atomized powder) as a raw material of a sputtering target material. It can be prepared by removing fine particles from the powder from which coarse particles have been removed. Examples of the atomizing method for producing the atomized powder include a gas atomizing method, a water atomizing method, a disk atomizing method, a plasma atomizing method, and the like, and a gas atomizing method is preferable. Removal of coarse particles having a particle size of 500 μm or more can be performed by classification using a sieve having an opening of 500 μm or less, for example, an opening of 250 to 500 μm. Removal of fine particles for preparing a powder satisfying any of the particle size conditions A, B, and C can be performed by classification using a sieve having an opening of 5 μm or less and / or an opening of 30 μm or less. By producing a solidified molded body using a powder that satisfies any of the particle size conditions A, B, and C, the hydrogen content can be reduced to 20 ppm or less. This can be processed into a disk shape by wire cutting, lathe processing, and planar polishing to produce a sputtering target material. The sputtering target material manufactured in this way has improved strength.
 本発明に係るスパッタリングターゲット材は、200MPa以上の抗折強度を有することが好ましい。本発明に係るスパッタリングターゲット材の抗折強度は、例えば、210MPa以上、220MPa以上、230MPa以上、240MPa以上、250MPa以上、260MPa以上、270MPa以上、280MPa以上、290MPa以上または300MPa以上である。 The sputtering target material according to the present invention preferably has a bending strength of 200 MPa or more. The bending strength of the sputtering target material according to the present invention is, for example, 210 MPa or more, 220 MPa or more, 230 MPa or more, 240 MPa or more, 250 MPa or more, 260 MPa or more, 270 MPa or more, 280 MPa or more, 290 MPa or more, or 300 MPa or more.
 抗折強度の測定は、次の通り実施する。焼結合金からワイヤーで割り出した、縦4mm、幅25mm、厚さ3mmの試験片を、三点曲げ試験によって評価し、三点曲げ強度を抗折強度とする。三点曲げ試験は、支点間距離20mmで、縦4mm、幅25mmの面を厚さ方向に圧下し、その時の応力(N)を測定し、次式に基づき、三点曲げ強度を算出する。
三点曲げ強度(MPa)=(3×応力(N)×支点間距離(mm)/(2×試験片の幅(mm)×(試験片の厚さ(mm)2
The bending strength is measured as follows. A test piece having a length of 4 mm, a width of 25 mm, and a thickness of 3 mm, which is indexed with a wire from the sintered alloy, is evaluated by a three-point bending test, and the three-point bending strength is defined as a bending strength. In the three-point bending test, a surface of 4 mm in length and 25 mm in width is squeezed in the thickness direction with a distance between supporting points of 20 mm, the stress (N) at that time is measured, and the three-point bending strength is calculated based on the following formula.
Three-point bending strength (MPa) = (3 × stress (N) × distance between support points (mm) / (2 × width of test piece (mm) × (thickness of test piece (mm) 2 )
 以下、本発明に係るスパッタリングターゲット材について実施例によって具体的に説明する。
 表1、2、5、6に示す成分組成について、溶解原料を秤量し、減圧Arガス雰囲気または真空雰囲気の耐火物坩堝内で誘導加熱溶解した後、坩堝下部の直径8mmのノズルより出湯し、Arガスによりガスアトマイズした。なお、Arガスの噴射圧を調整することにより、凝固速度をコントロールすることができる。噴射圧が大きいほど、凝固速度が大きい。凝固速度のコントロールにより、ガスアトマイズ粉末の粒度分布を調整することができる。凝固速度が速いほど、粒度分布の幅は小さい。
Hereinafter, the sputtering target material according to the present invention will be specifically described with reference to examples.
For the component compositions shown in Tables 1, 2, 5, and 6, after weighing the melting raw material, induction heating and melting in a refractory crucible in a reduced pressure Ar gas atmosphere or vacuum atmosphere, the hot water is discharged from a nozzle having a diameter of 8 mm at the bottom of the crucible, Gas atomization was performed with Ar gas. The solidification rate can be controlled by adjusting the Ar gas injection pressure. The greater the injection pressure, the greater the coagulation rate. The particle size distribution of the gas atomized powder can be adjusted by controlling the solidification rate. The faster the solidification rate, the smaller the width of the particle size distribution.
 得られたガスアトマイズ粉末から、粒径500μm以上の成形に向かない粗粒子を除去した後、粗粒子が除去された粉末から、微細粒子を除去することにより、粒度条件A,B.Cのいずれかを満たす粉末を調製した。粒径500μm以上の成形に向かない粗粒子の除去は、目開き500μmの篩を用いた分級により行った。粒度条件Aを満たす粉末を調製するための微細粒子の除去は、目開き35μmの篩を用いた分級により行った。粒度条件Bを満たす粉末を調製するための微細粒子の除去は、目開き30μmの篩を用いた分級により行った。粒度条件Cを満たす粉末を調製するための微細粒子の除去は、目開き25μmの篩を用いた分級により行った。粒度条件A,B.Cのいずれかを満たす粉末を110℃の炉に入れて水分乾燥を実施し、乾燥後の粉末を原料粉末として用いた。原料粉末を、外径220mm、内径210mm、長さ200mmのSC製の缶に脱気装入し、粉末充填ビレットを表1または表2に示すそれぞれの条件で焼結し、焼結体を作製した。 After removing coarse particles not suitable for molding having a particle size of 500 μm or more from the obtained gas atomized powder, the fine particles are removed from the powder from which the coarse particles have been removed. A powder satisfying any of C was prepared. Removal of coarse particles not suitable for molding having a particle size of 500 μm or more was performed by classification using a sieve having an opening of 500 μm. Removal of fine particles for preparing a powder satisfying the particle size condition A was performed by classification using a sieve having an opening of 35 μm. Removal of fine particles for preparing a powder satisfying the particle size condition B was performed by classification using a sieve having an opening of 30 μm. Removal of fine particles for preparing a powder satisfying the particle size condition C was performed by classification using a sieve having an opening of 25 μm. Particle size conditions A, B. A powder satisfying any one of C was placed in a 110 ° C. oven to perform moisture drying, and the dried powder was used as a raw material powder. The raw material powder was deaerated and charged into an SC can having an outer diameter of 220 mm, an inner diameter of 210 mm, and a length of 200 mm, and the powder-filled billet was sintered under the conditions shown in Table 1 or Table 2 to produce a sintered body. did.
 一方、表3および表7の原料粉末欄に示す成分組成について溶解原料を秤量し、表1、2、5、6に示す成分組成の場合と同様、減圧Arガス雰囲気または真空雰囲気の耐火物坩堝内で誘導加熱溶解した後、坩堝下部の直径8mmのノズルより出湯し、Arガスによりガスアトマイズした。なお、表7に示す原料粉末の内、純Ti、純B、純V、純Crは市販されている、粉末サイズが150μm以下の粉末を用いた。得られたガスアトマイズ粉末から、粒径500μm以上の成形に向かない粗粒子を除去した後、粗粒子が除去された粉末を分級して微細粒子を除去することにより、粒度条件A,B.Cのいずれかを満たす粉末を調製した。粗粒子および微細粒子の除去は、上記と同様に行った。粒度条件A,B,Cのいずれかを満たす粉末を110℃の炉に入れて水分乾燥を実施し、乾燥後の粉末を原料粉末として用いた。原料粉末を、表3に示す混合比の割合で、V型混合器で30分まぜることにより表3に示す組成とし、外径220mm、内径210mm、長さ200mmのSC製の缶に脱気装入した。上記の粉末充填ビレットを表3に示す条件で焼結し、焼結体を作製した。上記の方法で作製した固化成形体を、ワイヤーカット、旋盤加工、平面研磨により、直径180mm、厚さ7mmの円盤状に加工し、スパッタリングターゲット材とした。 On the other hand, dissolved raw materials were weighed for the component compositions shown in the raw material powder column of Tables 3 and 7, and, as in the case of the component compositions shown in Tables 1, 2, 5 and 6, a refractory crucible in a reduced pressure Ar gas atmosphere or vacuum atmosphere After melting by induction heating in the inside, the hot water was discharged from a nozzle having a diameter of 8 mm at the bottom of the crucible and gas atomized with Ar gas. In addition, among the raw material powders shown in Table 7, pure Ti, pure B, pure V, and pure Cr are commercially available powders having a powder size of 150 μm or less. After removing coarse particles that are not suitable for molding having a particle diameter of 500 μm or more from the obtained gas atomized powder, the powder from which the coarse particles have been removed is classified to remove fine particles. A powder satisfying any of C was prepared. Removal of coarse particles and fine particles was performed in the same manner as described above. A powder satisfying any one of the particle size conditions A, B, and C was placed in a 110 ° C. oven to perform moisture drying, and the dried powder was used as a raw material powder. The raw material powder was mixed at a mixing ratio shown in Table 3 for 30 minutes with a V-type mixer to have the composition shown in Table 3, and degassed into an SC can with an outer diameter of 220 mm, an inner diameter of 210 mm, and a length of 200 mm. I entered. The powder-filled billet was sintered under the conditions shown in Table 3 to produce a sintered body. The solidified molded body produced by the above method was processed into a disk shape having a diameter of 180 mm and a thickness of 7 mm by wire cutting, lathe processing, and planar polishing to obtain a sputtering target material.
 次に、表4に示す成分組成について、溶解原料を秤量し、減圧Arガス雰囲気または真空雰囲気の耐火物坩堝内で誘導加熱溶解した後、坩堝下部の直径8mmのノズルより出湯し、Arガスによりガスアトマイズした。得られたガスアトマイズ粉末から、粒径500μm以上の成形に向かない粗粒子を除去し、粗粒子が除去された粉末を、微細粒子を除去することなく原料粉末として用いた。原料粉末を、外径220mm、内径210mm、長さ200mmのSC製の缶に脱気装入した。上記の粉末充填ビレットを表4に示す条件で焼結し、焼結体を作製した。上記の方法で作製した固化成形体を、ワイヤーカット、旋盤加工、平面研磨により、直径180mm、厚さ7mmの円盤状に加工し、スパッタリングターゲット材とした。 Next, with regard to the component composition shown in Table 4, the raw material for melting was weighed and melted by induction heating in a refractory crucible in a reduced pressure Ar gas atmosphere or vacuum atmosphere, then poured out from a nozzle with a diameter of 8 mm at the bottom of the crucible, and Ar gas was used. Gas atomized. From the obtained gas atomized powder, coarse particles having a particle diameter of 500 μm or more not suitable for molding were removed, and the powder from which the coarse particles were removed was used as a raw material powder without removing fine particles. The raw material powder was deaerated and charged into an SC can having an outer diameter of 220 mm, an inner diameter of 210 mm, and a length of 200 mm. The powder-filled billet was sintered under the conditions shown in Table 4 to produce a sintered body. The solidified molded body produced by the above method was processed into a disk shape having a diameter of 180 mm and a thickness of 7 mm by wire cutting, lathe processing, and planar polishing to obtain a sputtering target material.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表1~3に示すNo.1~32ならびに表5~7に示すNo.40~87およびNo.91~106は本発明例であり、表4に示すNo.33~39および表6に示すNo.88~90は比較例である。 No. shown in Tables 1 to 3. Nos. 1-32 and Tables 5-7. 40-87 and no. Nos. 91 to 106 are examples of the present invention. 33-39 and Table 6 Reference numerals 88 to 90 are comparative examples.
 粉末の粒度分布は、レーザー回折・散乱式粒子径分布測定装置(マイクロトラック)にて測定し、確認した。また、成形方法は、例えば、HIP、ホットプレス、SPS、熱間押し出し等であり、特に限定されない。水素含有量は、不活性ガス融解-非分散型赤外線吸収法によって測定した。機械強度(抗折強度)は、ワイヤーで割り出した縦4mm、幅25mm、厚さ3mmの試験片を、三点曲げ試験によって評価した。三点曲げ試験の条件は、支点間距離20mmで実施し、縦4mm、幅25mmの面を厚さ方向に圧下し、その時の応力(N)を測定し、次の式に基づき、三点曲げ強度を算出した。算出した三点曲げ強度を抗折強度(MPa)とした。
三点曲げ強度(MPa)=(3×応力(N)×支点間距離(mm))/(2×試験片の幅(mm)×(試験片の厚さ(mm)2
The particle size distribution of the powder was confirmed by measuring with a laser diffraction / scattering particle size distribution measuring device (Microtrack). Moreover, a shaping | molding method is HIP, hot press, SPS, hot extrusion, etc., for example, It does not specifically limit. The hydrogen content was measured by an inert gas melting-non-dispersive infrared absorption method. The mechanical strength (bending strength) was evaluated by a three-point bending test on a test piece having a length of 4 mm, a width of 25 mm, and a thickness of 3 mm determined by a wire. The three-point bending test was performed at a fulcrum distance of 20 mm, a surface with a length of 4 mm and a width of 25 mm was squeezed in the thickness direction, and the stress (N) at that time was measured. Intensity was calculated. The calculated three-point bending strength was defined as the bending strength (MPa).
Three-point bending strength (MPa) = (3 × stress (N) × distance between supporting points (mm)) / (2 × width of test piece (mm) × (thickness of test piece (mm) 2 )
 本発明例であるNo.1~26およびNo.40~87は、表1、25および6に示す成分組成を有するスパッタリングターゲット材であり、本発明例であるNo.27~32およびNo.91~106は、表3および7に示す複数の原料粉末から製造されたスパッタリングターゲット材である。いずれも、Bを10~50%、Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,W,Mn,Re,Ru,Rh,Ir,Ni,Pd,Pt,Cu,Agからなる群から選ばれる1種以上の元素を合計で0~20%含有し、残部がCoおよびFeの少なくとも1種と不可避的不純物とからなり、水素含有量が20ppm以下であるという本発明の条件を満足することから、抗折強度200MPa以上を達成することが出来た。 No. which is an example of the present invention. 1-26 and no. Nos. 40 to 87 are sputtering target materials having the component compositions shown in Tables 1, 25 and 6. 27-32 and no. 91 to 106 are sputtering target materials manufactured from a plurality of raw material powders shown in Tables 3 and 7. In any case, B is 10 to 50%, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Ru, Rh, Ir, Ni, Pd, Pt, Cu, and Ag. The present invention satisfies the conditions of the present invention in which one or more elements selected from the group consisting of 0 to 20% in total are contained, the balance is at least one of Co and Fe, and inevitable impurities, and the hydrogen content is 20 ppm or less. Therefore, it was possible to achieve a bending strength of 200 MPa or more.
 一方、表4に示す比較例No.33は、スパッタリングターゲット材の原料として用いられたガスアトマイズ粉末の粒度分布における粒径5μm以下の粒子の累積体積が11%であり、粒度条件A~Cのいずれも満たさないため、水素含有量が25ppmに増加し、抗折強度が150MPaに低下した。比較例No.34は、Bの含有量が10%未満であって、かつ、スパッタリングターゲット材の原料として用いられたガスアトマイズ粉末の粒度分布における粒径30μm以下の粒子の累積体積が41%であるため、水素含有量が30ppmに増加し、抗折強度が180MPaに低下した。比較例No.35および37は、スパッタリングターゲット材の原料として用いられたガスアトマイズ粉末の粒度分布における粒径5μm以下の粒子の累積体積が12%、13%であり、粒度条件A~Cのいずれも満たさないため、水素含有量が25ppm、23ppmに増加し、抗折強度が130MPa、150MPaに低下した。 On the other hand, Comparative Example No. shown in Table 4 was used. No. 33 has a cumulative volume of particles with a particle size of 5 μm or less in the particle size distribution of the gas atomized powder used as a raw material for the sputtering target material, 11%, and does not satisfy any of the particle size conditions A to C. Therefore, the hydrogen content is 25 ppm. The bending strength decreased to 150 MPa. Comparative Example No. 34, since the B content is less than 10% and the cumulative volume of particles having a particle size of 30 μm or less in the particle size distribution of the gas atomized powder used as the raw material of the sputtering target material is 41%, The amount increased to 30 ppm, and the bending strength decreased to 180 MPa. Comparative Example No. 35 and 37, the cumulative volume of particles having a particle size of 5 μm or less in the particle size distribution of the gas atomized powder used as the raw material for the sputtering target material is 12% and 13%, and none of the particle size conditions A to C is satisfied. The hydrogen content increased to 25 ppm and 23 ppm, and the bending strength decreased to 130 MPa and 150 MPa.
 比較例No.36および38は、スパッタリングターゲット材の原料として用いられたガスアトマイズ粉末の粒度分布における粒径30μm以下の粒子の累積体積が42%、43%であり、粒度条件A~Cのいずれも満たさないため、水素含有量が22ppm、25ppmに増加し、抗折強度が160MPa、140MPaに低下した。比較例No.39は、スパッタリングターゲット材の原料として用いられたガスアトマイズ粉末の粒度分布における粒径5μm以下、30μm以下の粒子の累積体積が14%、45%であり、粒度条件A~Cのいずれも満たさないため、水素含有量が26ppmに増加し、抗折強度が100MPaに低下した。比較例の強度は極めて悪いことが分かる。表6に示す比較例No.88~90は、Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,W,Mn,Re,Ru,Rh,Ir,Ni,Pd,Pt,Cu,Agからなる群から選ばれる1種以上の元素が合計で20%を超えて含まれているので、強度が低く、脆いことが分かる。 Comparative Example No. 36 and 38, the cumulative volume of particles having a particle size of 30 μm or less in the particle size distribution of the gas atomized powder used as the raw material for the sputtering target material is 42% and 43%, and none of the particle size conditions A to C is satisfied. The hydrogen content increased to 22 ppm and 25 ppm, and the bending strength decreased to 160 MPa and 140 MPa. Comparative Example No. No. 39 is a particle size distribution of the gas atomized powder used as the raw material of the sputtering target material, and the cumulative volume of particles having a particle size of 5 μm or less and 30 μm or less is 14% or 45%, and none of the particle size conditions A to C is satisfied. The hydrogen content increased to 26 ppm and the bending strength decreased to 100 MPa. It turns out that the intensity | strength of a comparative example is very bad. Comparative Example No. 88 to 90 are selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Ru, Rh, Ir, Ni, Pd, Pt, Cu, and Ag. Since the above elements are contained more than 20% in total, it can be seen that the strength is low and brittle.
 以上述べたように、本発明により、スパッタリングターゲット材中の水素含有量を20ppm以下に低減させることで機械強度を改善させたスパッタリングターゲット材が提供される。本発明に係るスパッタリングターゲット材は、MTJ素子、HDD、磁気記録用媒体等の合金薄膜の製造に有用なスパッタリングターゲット材であり、極めて優れた効果を奏するものである。 As described above, the present invention provides a sputtering target material having improved mechanical strength by reducing the hydrogen content in the sputtering target material to 20 ppm or less. The sputtering target material according to the present invention is a sputtering target material useful for the production of alloy thin films such as MTJ elements, HDDs, magnetic recording media and the like, and exhibits extremely excellent effects.

Claims (3)

  1.  at.%で、Bを10~50%、Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,W,Mn,Re,Ru,Rh,Ir,Ni,Pd,Pt,Cu,Agからなる群から選ばれる1種以上の元素を合計で0~20%含有し、残部がCoおよびFeの少なくとも1種と不可避的不純物とからなり、水素含有量が20ppm以下であることを特徴とする、スパッタリングターゲット材。 At. %, B is 10 to 50%, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Ru, Rh, Ir, Ni, Pd, Pt, Cu, Ag Sputtering characterized in that it contains 0 to 20% in total of one or more elements selected from the group consisting of at least one of Co and Fe and unavoidable impurities, and a hydrogen content of 20 ppm or less. Target material.
  2.  at.%で、Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,W,Mn,Re,Ru,Rh,Ir,Ni,Pd,Pt,Cu,Agからなる群から選ばれる1種以上の元素を合計で5~20%含有する、請求項1に記載のスパッタリングターゲット材。 At. %, At least one selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Ru, Rh, Ir, Ni, Pd, Pt, Cu, Ag The sputtering target material according to claim 1, comprising a total of 5 to 20% of elements.
  3.  200MPa以上の抗折強度を有する、請求項1に記載のスパッタリングターゲット材。 The sputtering target material according to claim 1, which has a bending strength of 200 MPa or more.
PCT/JP2016/077459 2015-09-18 2016-09-16 Sputtering target material WO2017047754A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
SG11201802203UA SG11201802203UA (en) 2015-09-18 2016-09-16 Sputtering target material
EP16846625.8A EP3351655A4 (en) 2015-09-18 2016-09-16 Sputtering target material
US15/760,404 US20180265963A1 (en) 2015-09-18 2016-09-16 Sputtering Target Material
KR1020187006795A KR102635337B1 (en) 2015-09-18 2016-09-16 sputtering target material
US16/986,331 US11377726B2 (en) 2015-09-18 2020-08-06 Sputtering target material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015184846 2015-09-18
JP2015-184846 2015-09-18
JP2016010266A JP2017057490A (en) 2015-09-18 2016-01-22 Co-Fe-B based alloy target material
JP2016-010266 2016-01-22

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/760,404 A-371-Of-International US20180265963A1 (en) 2015-09-18 2016-09-16 Sputtering Target Material
US16/986,331 Continuation US11377726B2 (en) 2015-09-18 2020-08-06 Sputtering target material

Publications (1)

Publication Number Publication Date
WO2017047754A1 true WO2017047754A1 (en) 2017-03-23

Family

ID=58289378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077459 WO2017047754A1 (en) 2015-09-18 2016-09-16 Sputtering target material

Country Status (1)

Country Link
WO (1) WO2017047754A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113084150A (en) * 2021-03-24 2021-07-09 河南东微电子材料有限公司 Preparation method of ruthenium-cobalt-rhenium alloy powder

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003226963A (en) * 2002-02-04 2003-08-15 Toshiba Corp Sputtering target
JP2012207274A (en) * 2011-03-30 2012-10-25 Hitachi Metals Ltd Sputtering target for permanent magnet thin film and method for producing the same
WO2015019513A1 (en) * 2013-08-09 2015-02-12 Jx日鉱日石金属株式会社 Process for manufacturing neodymium-iron-boron-based rare earth powder or sputtering target, neodymium-iron-boron-based rare earth powder or sputtering target, and neodymium-iron-boron-based thin film for rare earth magnet or manufacturing process therefor
WO2015080009A1 (en) * 2013-11-28 2015-06-04 Jx日鉱日石金属株式会社 Magnetic material sputtering target and method for producing same
WO2015166762A1 (en) * 2014-05-01 2015-11-05 山陽特殊製鋼株式会社 Soft magnetic alloy for magnetic recording, sputtering target material and magnetic recording medium
WO2016140113A1 (en) * 2015-03-04 2016-09-09 Jx金属株式会社 Magnetic-material sputtering target and method for producing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003226963A (en) * 2002-02-04 2003-08-15 Toshiba Corp Sputtering target
JP2012207274A (en) * 2011-03-30 2012-10-25 Hitachi Metals Ltd Sputtering target for permanent magnet thin film and method for producing the same
WO2015019513A1 (en) * 2013-08-09 2015-02-12 Jx日鉱日石金属株式会社 Process for manufacturing neodymium-iron-boron-based rare earth powder or sputtering target, neodymium-iron-boron-based rare earth powder or sputtering target, and neodymium-iron-boron-based thin film for rare earth magnet or manufacturing process therefor
WO2015080009A1 (en) * 2013-11-28 2015-06-04 Jx日鉱日石金属株式会社 Magnetic material sputtering target and method for producing same
WO2015166762A1 (en) * 2014-05-01 2015-11-05 山陽特殊製鋼株式会社 Soft magnetic alloy for magnetic recording, sputtering target material and magnetic recording medium
WO2016140113A1 (en) * 2015-03-04 2016-09-09 Jx金属株式会社 Magnetic-material sputtering target and method for producing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3351655A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113084150A (en) * 2021-03-24 2021-07-09 河南东微电子材料有限公司 Preparation method of ruthenium-cobalt-rhenium alloy powder
CN113084150B (en) * 2021-03-24 2023-08-25 河南东微电子材料有限公司 Preparation method of ruthenium cobalt rhenium alloy powder

Similar Documents

Publication Publication Date Title
JP7084958B2 (en) Co-Fe-B alloy target material
EP1652960B1 (en) Sputtering target and method for production thereof
CA2584566C (en) Sputtering target for producing metallic glass membrane and manufacturing method thereof
JP6483803B2 (en) Magnetic material sputtering target and manufacturing method thereof
RU2717767C2 (en) Atomised target
KR102620685B1 (en) sputtering target material
JP7382142B2 (en) Alloy suitable for sputtering target material
WO2017047754A1 (en) Sputtering target material
JP5661540B2 (en) Cu-Ga based alloy powder having low oxygen content, Cu-Ga based alloy target material, and method for producing target material
JP7086514B2 (en) Cobalt or cobalt-based alloy sputtering target and its manufacturing method
TWI834821B (en) Alloys suitable for sputtering targets
WO2020255908A1 (en) Seed layer alloy for magnetic recording medium
JP4685059B2 (en) Manganese alloy sputtering target

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846625

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187006795

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15760404

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 11201802203U

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016846625

Country of ref document: EP