WO2017047750A1 - Dna for intracellular penetration, and method for introducing target molecule into cell using said dna - Google Patents

Dna for intracellular penetration, and method for introducing target molecule into cell using said dna Download PDF

Info

Publication number
WO2017047750A1
WO2017047750A1 PCT/JP2016/077449 JP2016077449W WO2017047750A1 WO 2017047750 A1 WO2017047750 A1 WO 2017047750A1 JP 2016077449 W JP2016077449 W JP 2016077449W WO 2017047750 A1 WO2017047750 A1 WO 2017047750A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
intracellular
cells
seq
cell
Prior art date
Application number
PCT/JP2016/077449
Other languages
French (fr)
Japanese (ja)
Inventor
亮 立花
利住 田辺
Original Assignee
公立大学法人大阪市立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人大阪市立大学 filed Critical 公立大学法人大阪市立大学
Priority to JP2017540003A priority Critical patent/JPWO2017047750A1/en
Publication of WO2017047750A1 publication Critical patent/WO2017047750A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers

Definitions

  • the present invention relates to intracellular DNA.
  • the present invention also relates to a composition comprising the DNA and a target molecule to be introduced into a cell, and a method for introducing the target molecule into the cell using the composition.
  • the present invention relates to an intracellular introduction agent of a target molecule and a kit for introduction into the cell, which contain the DNA.
  • technologies for introducing nucleic acids into cells include electroporation methods that electrically open holes in cell membranes and incorporate nucleic acids into cells, microinjection methods that directly inject nucleic acids through glass capillaries, and liposomes that incorporate nucleic acids. And a lipofection method using a virus, and a virus vector method using a virus such as a retrovirus.
  • the electroporation method and the microinjection method physically damage the cells and introduce nucleic acids or the like, so that damage to the cells is large and a dedicated device is required. In the electroporation method, it is necessary to examine introduction conditions according to the cells, which is troublesome.
  • the virus vector method has a problem that it takes time to prepare a vector, and a nucleic acid or protein other than the target may be introduced.
  • a nucleic acid or protein other than the target may be introduced.
  • currently available technologies have many problems in terms of introduction efficiency, cytotoxicity, cost, labor, safety, and the like.
  • nucleic acid drugs that have been rapidly developed in recent years are generally difficult to introduce into the living body, and an efficient drug delivery system needs to be developed.
  • CPP cell membrane permeable peptide
  • Representative cell membrane-penetrating peptides include Tat derived from HIV-1 virus and penetratin derived from Drosophila (Patent Documents 1 and 2).
  • RNA having the property of migrating into cells has been reported (Non-patent Document 1 and Patent Document 3).
  • This RNA is selected from RNA libraries containing random sequences by selecting the RNA that has migrated into the cell and amplifying it multiple times to select only the RNA that migrates into the cell (referred to as the Cell-SELEX method). ).
  • the Cell-SELEX method since RNA is generally easily degraded, there are many problems such as stability in order to put into practical use a technique for introducing other molecules into cells using this intracellularly transferred RNA.
  • the present invention includes a cell translocating DNA, a composition comprising the DNA and a target molecule to be introduced into the cell, a method for introducing the target molecule into the cell using the composition, and the DNA. It is an object of the present invention to provide an intracellular introduction agent of a target molecule and a kit for intracellular introduction.
  • the present invention includes the following.
  • N1 is deleted or T
  • N2 is G or is deleted
  • N5 is C or T
  • N6 is G or C
  • N7 is G or T
  • N14 is G or C
  • N19 is A or G
  • N20 is G or A, N22 is deleted or T
  • N23 is T or A
  • N27 is G, T or A, N28 is T, A or C
  • N29 is deleted or T
  • N31 is G or A
  • N34 is G or is deleted
  • N35 is C or A, N39 is G or T
  • N40 is G or A]
  • Intracellular DNA
  • [6] An agent for introducing a target molecule into the cell which comprises the intracellular transferable DNA according to any one of [1] to [4] or the intracellular transferable DNA multimer according to [5].
  • a kit for introducing a molecule of interest into a cell comprising the intracellular translocation DNA according to any one of [1] to [4] or the intracellular translocation DNA multimer according to [5].
  • a cell-introducing DNA a composition comprising the DNA and a target molecule to be introduced into the cell, a method for introducing the target molecule into the cell using the composition, and the DNA, Intracellular introduction agents of target molecules and kits for intracellular introduction are provided.
  • FIG. 1 shows the structure of the test DNA monomer (QAp1 monomer), and (B) shows the structure of the test DNA trimer (QAp1 trimer as an example).
  • FIG. It is a figure which shows the flow cytometry result of HEK293T cell (A) or HW cell (B) incubated with QAp1 trimer. It is a figure which shows the flow cytometry result of HEK293T cell (A), HB2 cell (B), or HW cell (C) which was incubated with QAp1 trimer, and was treated with trypsin and DNase. It is a figure which shows the flow cytometry result of MCF-7 cell which incubated with the QAp1A monomer (A) or the QAp1AA monomer (B), and was treated with trypsin and DNase.
  • intracellular translocation DNA means DNA having the ability to translocate into cells.
  • intracellularity refers to the ability to migrate from the outside of the cell to the inside of the cell membrane separating the inside and outside of the cell.
  • the inner side of the cell membrane includes the cytosol and any compartment within the cell including, for example, endosomes and vesicles.
  • the transition pathway is not particularly limited, and includes pathways through transport proteins and pathways such as endocytosis, phagocytosis, and pinocytosis.
  • the intracellular DNA of the present invention may first bind to the cell surface and then be taken into the cell by endocytosis.
  • DNA has the ability to move into cells can be appropriately determined by those skilled in the art. For example, it can be determined by adding test DNA bound to a fluorescent substance to cells, incubating, decomposing DNA bound to the cell surface, and then measuring the fluorescence intensity of the cells with a flow cytometer. Alternatively, it can be determined, for example, by adding test DNA bound to a fluorescent substance to cells and incubating them, and then observing fluorescence inside the cells with a confocal laser microscope.
  • the fluorescence intensity of a cell for example, HepG2 cell, HB2 cell, HW cell or HEK293T cell
  • a test DNA conjugated with a fluorescent material for example, FITC
  • the fluorescent material for example, FITC
  • the average fluorescence intensity per cell is larger than the control DNA bound to (for example, 1.2 times or more, 1.3 times or more, 1.4 times or more, 1.5 times or more, 1.6 times or more, 1.7 times or more, 1.8 times or more, 1.9 times or more, 2.0 times or more, 2.1 times or more, 2.2 times or more, 2.3 times or more, 2.4 times or more or 2.5 times or more) and / or when the value of the fluorescence intensity showing the peak of the cell count increases, It can be determined that DNA has the ability to translocate into cells.
  • the control DNA a double-stranded DNA molecule obtained by binding (annealing) a test DNA with a complementary DNA can be used
  • the intracellular transferable DNA of the present invention includes an intracellular transfer region.
  • the intracellular translocation region is a region involved in the intracellular translocation ability of DNA containing the region.
  • the intracellular translocation DNA of the present invention comprises The following nucleotide sequence: 5'-N1-N2-GG-N5-N6-N7-GGTGGT-N14-GGGG-N19-N20-G-N22-N23-TCG-N27-N28-N29-G-N31-AT- N34-N35-GTG-N39-N40-TCG-3 ' [Where N1 is deleted or T, N2 is G or deleted, N5 is C or T, N6 is G or C, N7 is G or T N14 is G or C, N19 is A or G, N20 is G or A, N22 is missing or T, N23 is T or A, and N27 is G , T or A, N28 is T, A or C, N29 is deleted or T, N31 is G or A, N34 is G or is deleted, N35 is C or A, N39 is G or T, and N40 is G or A] (SEQ ID NO: 1) An intracellular translocation region consisting GG
  • the base sequence may be a base sequence in which one or two bases are substituted, deleted, inserted or added in the base sequence shown in any of SEQ ID NOs: 2 to 12.
  • a nucleic acid having a desired property e.g., an aptamer capable of binding to a specific molecule
  • the nucleotide sequence can be changed by substituting, deleting, inserting or adding several nucleotide sequences. Can be optimized.
  • DNA containing a base sequence optimized by substitution, deletion, insertion or addition of one or two bases is also available for cells. It can have internal migration ability.
  • the intracellular translocation DNA of the present invention comprises The following nucleotide sequence: 5'-N1-N2-GG-N5-N6-N7-GGTGGT-N14-GGGG-N19-N20-G-3 ' [Where N1 is deleted or T, N2 is G or deleted, N5 is C or T, N6 is G or C, N7 is G or T N14 is G or C, N19 is A or G, and N20 is G or A] (SEQ ID NO: 13) May contain an intracellular translocation region.
  • Each of the base sequences is preferably 5′-GGGCGGGGTGGTGGGGGAGG-3 ′ (SEQ ID NO: 14), 5′-GGTGGGGTGGTGGGGGAGG-3 ′ (SEQ ID NO: 15), 5′-GGGCGGGGTGGTCGGGGGAG-3 ′ (SEQ ID NO: 16), 5 '-GGCGGGGTGGTGGGGGAGG-3' (SEQ ID NO: 17), 5'-GGGCCGGGTGGTGGGGGAGG-3 '(SEQ ID NO: 18), 5'-TGGGCGGGGTGGTGGGGGAGG-3' (SEQ ID NO: 19), and 5'-GGGCGTGGTGGTGGGGGAGG-3 '(SEQ ID NO: 20 ).
  • each of the base sequences may be a base sequence in which one base is substituted, deleted, inserted or added in the base sequence shown in any of SEQ ID NOs: 14 to 20.
  • the two or more base sequences may be, for example, 2 to 10, 2 to 5, or 2 to 3.
  • Each of the two or more base sequences may be the same or different.
  • the intracellular translocation region includes two of the base sequences, and the two base sequences may both be the base sequence shown in SEQ ID NO: 14, or the base sequence and the sequence shown in SEQ ID NO: 14.
  • the base sequence indicated by number 15 may be used.
  • the base sequences contained in the intracellular translocation region may be adjacent to each other or any other base sequence having a length of 1 to 10, 1 to 5, or 1 to 3 bases (for example, T, TT , Or TTT).
  • Intracellular transferable DNA of the present invention may contain any other nucleotide sequence in addition to the intracellular transfer region.
  • Intracellular DNA of the present invention is, for example, a base sequence involved in the multimerization of DNA described later (multimerization region), a base sequence involved in binding to the target molecule described later, such as a spacer sequence ( For example, via T, TT, or TTT).
  • the length of the intracellular DNA of the present invention is not particularly limited, but is 38 to 400 bases, 38 to 300 bases, 39 to 200 bases, 39 to 100 bases, or 39 to 50 bases long. It's okay.
  • Intracellular DNA of the present invention is a protective group, functional group at the phosphate group, sugar and / or base moiety, or at the 3 'end and / or 5' end, as long as the characteristics of the present invention are not impaired Alternatively, it may be appropriately modified with a substituent (for example, methylation, halogenation) or a labeling substance (for example, a radioisotope such as 32 P, 3 H, 14 C, 13 C, or FITC, DIG, or biotin). .
  • the oxygen atom of the phosphate group in the nucleotide constituting the DNA may be substituted (phosphorothioated) with a sulfur atom.
  • the intracellular migration DNA of the present invention can be produced by a conventional method well known in the art. For example, it can be produced by manual or automated reaction, enzymatically or by chemical synthesis. When chemically synthesizing DNA molecules, a contract manufacturing service of a manufacturer (for example, Thermo Fisher Scientific, Greiner Japan, Sigma Aldrich, etc.) may be used. The synthesized DNA molecules may be purified from the mixture, for example, by extraction with a solvent or resin, precipitation, electrophoresis or chromatography.
  • Intracellular DNA of the present invention may be multimerized by binding two or more.
  • Each of the intracellular DNA contained in the multimer may be the same or different.
  • a multimer in which two or more intracellular transferable DNAs of the present invention are bound is preferable because it has higher intracellular transferability than a single intracellular transferable DNA (monomer).
  • the number of intracellular translocating DNAs of the present invention bound in the multimer is not particularly limited, but may be 2 to 5, 2 to 4, or 2 to 3.
  • the multimer may be a dimer or a trimer.
  • the multimer may be one in which intracellular DNAs are directly bound to each other, or indirectly (for example, via a linker molecule or the intracellular region contained in the intracellular DNA of the present invention). Other than the base sequence (multimerization region) other than the nucleic acid chain (adapter chain) having a complementary base sequence).
  • the multimer may be one in which the intracellular transferable DNAs of the present invention are bound to each other using a biotin-avidin bond (see, for example, JP 2010-158237 A).
  • a multimer may be formed by combining two or more units, each unit containing the intracellularly transferred DNA of the present invention and a scaffold chain.
  • An exemplary structure of the unit is shown in FIG. 1A.
  • the scaffold strand may be any nucleic acid strand.
  • Intracellular DNA may include an intracellular translocation region and a multimerization region involved in multimerization.
  • the multimerization region can bind to the scaffold strand through complementary base pairing.
  • the binding between the multimerization region and the scaffold chain may be direct (e.g., as illustrated in FIG.1A) or indirect (e.g., via the adapter chain) (e.g. As illustrated in FIG. 1B).
  • FIG. 1C shows the structure of a trimer that is a multimer in which three units shown in FIG. 1A are linked via a spacer sequence.
  • FIG. 1D shows the structure of a trimer, which is a multimer in which three units shown in FIG. 1B are linked via a spacer sequence.
  • the intracellular migration region contained in the intracellular migration DNA is preferably single-stranded.
  • the intracellular translocation region is annealed with a nucleic acid containing a complementary or substantially complementary base sequence to become double-stranded, the intracellular translocation ability of the intracellular translocation DNA of the present invention is reduced or ineffective. Because it becomes.
  • the intracellular translocation DNA or multimer thereof of the present invention not only can itself migrate into cells, but also has the property of transferring other molecules bound to the DNA or multimers into cells. Therefore, the intracellular translocation DNA or multimer thereof of the present invention includes a composition for introducing a target molecule into a cell, a method for introducing the target molecule into a cell, and an agent for introducing the target molecule into the cell and the cell. It is useful in a kit for internal introduction.
  • composition comprising the intracellularly transferred DNA of the present invention or a multimer thereof and a target molecule to be introduced into the cell.
  • the composition of the present invention can be used for introducing a target molecule into cells in vitro or in vivo.
  • the composition of the present invention may be a pharmaceutical composition.
  • the target molecule is not limited, for example, nucleic acid, peptide or protein (for example, hormone, growth factor, enzyme, toxin, antibody or antibody fragment, etc.), lipid, sugar, drug (for example, antitumor drug) As well as other synthetic or natural compounds (eg, labeled substances such as FITC, biotin or Cy3).
  • the target molecule may have a functional group selected from an azide group and an alkyne group.
  • the target molecule may preferably be a nucleic acid, peptide, or protein that is poor in cell internalization.
  • the target molecule is more preferably a nucleic acid.
  • the nucleic acid include, but are not limited to, single-stranded or double-stranded DNA, RNA, DNA-RNA chimeric nucleic acid, and the like.
  • Nucleic acids that can be used as target molecules can be miRNAs, siRNAs, antisense nucleic acids, decoy nucleic acids, aptamers, miRNA inhibitors or gapmers.
  • the nucleic acid that can be used as the target molecule can be double-stranded DNA containing an expression cassette (for example, plasmid DNA or double-stranded DNA obtained by linearizing plasmid DNA).
  • an expression cassette can include at least a promoter sequence and a gene coding sequence operably linked thereto.
  • the size of the nucleic acid that can be used as the target molecule is not limited.
  • a high molecular nucleic acid such as plasmid DNA
  • it may be 2,000 to 10,000 bases, 2,000 to 8,000 bases, or 2,000 to 5,000 bases.
  • the size of a nucleic acid that can be used as a target molecule is, for example, 5 to 1,000 bases, 10 to 500 bases, 10 to 300 bases, 10 to 100 bases, or 20 to 30 bases in the case of a low molecular weight nucleic acid such as siRNA. It may be.
  • the cells may be derived from any organism, but eukaryotes such as vertebrates such as mammals (e.g., humans, monkeys, cows, mice, rats), birds, amphibians, It may be a cell derived from a microorganism such as a fish, a plant, or a yeast.
  • the cell may be a cultured cell line such as a cancer cell, or a primary cultured cell isolated from an individual or tissue. Examples of cultured cell lines include HEK293T cells, HeLa cells, 3T3-L1 cells, HepG2 cells, HB2 cells, HW cells, and MCF-7 cells.
  • the cultured cell lines may be HB2 cells and HW cells that have low gene transfer efficiency with commercially available transfection agents.
  • the cells may be stem cells such as pluripotent stem cells (eg, ES cells and iPS cells) or mesenchymal stem cells.
  • the cells may be hepatocytes, kidney cells, cervical cells, adipose precursor cells, brown adipose precursor cells, white adipose precursor cells, or mammary cells, or cells derived from these cells. Further, the cell may be not only a cultured cell or an isolated cell but also a cell in a tissue (preferably taken out of a living body) or in an individual.
  • composition of the present invention can also be used in vivo by administering to a subject.
  • a subject can include a eukaryote, such as a vertebrate, plant, etc. as described above.
  • the target molecule may or may not be bound to intracellular migration DNA or a multimer thereof. Even if the target molecule is not bound to the intracellular DNA or multimer thereof at the time of administration of the composition, the target molecule is mixed and bound with the intracellular DNA or multimer after administration to bind intracellularly.
  • the target molecule can be introduced into the cell by the action of the migratory DNA.
  • the binding between the target molecule and the intracellular translocation DNA of the present invention or a multimer thereof can maintain the binding state in which the target molecule can be introduced into the cell by the action of the intracellular translocation DNA.
  • Any binding mode may be used.
  • the bonding mode include a covalent bond or a non-covalent bond such as a hydrogen bond, an ionic bond, and a van der Waals bond.
  • the binding of the target molecule to the intracellular DNA of the present invention or a multimer thereof may be direct or indirect (for example, via a linker molecule or spacer molecule, or into the intracellular cell of the present invention). Or a nucleic acid chain (adapter chain) having a base sequence complementary to an arbitrary base sequence other than the intracellular translocation region contained in the sex DNA.
  • the target molecule may bind to any position of the intracellular transferable DNA of the present invention or a multimer thereof, for example, may bind to the 5 ′ side and / or 3 ′ side of the intracellular transferable DNA. .
  • the target molecule When the target molecule is a single-stranded nucleic acid, the single-stranded nucleic acid may be present on the same nucleic acid chain as the intracellular DNA of the present invention.
  • the target molecule When the target molecule is a double-stranded nucleic acid, one strand of the double-stranded nucleic acid may be present on the same nucleic acid strand as the intracellular DNA of the present invention.
  • the number of target molecules that bind to the intracellular DNA or multimer thereof of the present invention is not particularly limited, but may be one or more, for example, 1 to 5, 1 to 4, 1 to 3, or 1 to 2. .
  • each target molecule may be the same or different.
  • the number of intracellularly transferred DNAs or multimers thereof of the present invention that bind to the target molecule is not particularly limited, but may be one or more, for example, 1 to 5, 1 to 4, 1 to 3, or 1 to 2. possible.
  • each intracellularly transferred DNA or multimer thereof may be the same or different.
  • the ratio (molar ratio) between the intracellular translocating DNA of the present invention or its multimer and the target molecule in the composition is not particularly limited, but is 1:10 to 10: 1, 1: 5 to 5: 1, Or from 1: 2 to 2: 1, for example 1: 1.
  • the intracellular transfer region contained in the intracellular transferable DNA is preferably single-stranded.
  • the intracellular translocation region is annealed with a nucleic acid containing a complementary or substantially complementary base sequence to become double-stranded, the intracellular translocation ability of the intracellular translocation DNA of the present invention is reduced or ineffective. Because it becomes.
  • the composition of the present invention contains the intracellular migration DNA of the present invention or a multimer thereof as an active ingredient, that is, as a carrier for introducing a target molecule into cells.
  • the composition of the present invention may be composed only of intracellularly-translocating DNA or a multimer thereof, and a target molecule to be introduced into the cell.
  • solvents, additives or pharmaceutically acceptable carriers may be contained as appropriate.
  • the composition of the present invention may contain a suitable solvent for the intracellularly transferred DNA of the present invention, such as water and a buffer (for example, phosphate buffer, carbonate buffer, Tris buffer) and the like.
  • the content of the intracellular translocation DNA of the present invention or the multimer thereof contained in the composition of the present invention can be determined by those skilled in the art from the effect of introducing the target molecule into the cell. It can be determined as appropriate.
  • pharmaceutically acceptable carriers include diluents or excipients such as maltose, mannitol, lactose, xylose, trehalose, sorbitol, gelatin, gum arabic, guar gum, tragacanth, ethanol, physiological Examples include saline and Ringer's solution.
  • the composition of the present invention may contain additives such as stabilizers, buffers, emulsifiers, tonicity agents, preservatives, etc., if necessary, in addition to the above carrier.
  • stabilizer include albumin, gelatin, mannitol, sodium EDTA and the like.
  • buffer include sodium citrate, citric acid, and sodium phosphate.
  • emulsifier include sorbitan fatty acid ester and glycerin fatty acid ester.
  • the isotonic agent include sodium chloride, potassium chloride, saccharides and the like.
  • the preservative include benzalkonium chloride, paraoxybenzoic acid, chlorobutanol and the like.
  • composition of the present invention can also contain other drugs as long as the action of the intracellular DNA of the present invention, which is an active ingredient, is not inhibited.
  • a predetermined amount of antibiotic may be contained.
  • Examples of the dosage form of the composition include parenteral dosage forms such as injections, eye drops, creams, nasal drops, ointments, transmucosal agents, plasters and suppositories, liquids, powders, tablets and granules.
  • Oral dosage forms such as, but not limited to, capsules, sublinguals, lozenges and the like.
  • compositions When a composition is administered to a subject, the specific dosage will depend on the individual subject based on the degree or severity of the disease, general health, age, weight, sex and tolerance to treatment, etc. For example, it is determined by the judgment of a doctor.
  • the administration of the composition of the present invention may be either systemic administration or local administration (for example, direct administration to the affected area).
  • the route of administration may be either parenteral or oral, for example, intraperitoneal, intravenous, intraarterial, intrahepatic, intravaginal, intramuscular, intramedullary, intrathecal, transdermal, subcutaneous, intradermal , Intranasal, intestinal, intrabronchial, intrapulmonary, or sublingual.
  • composition of the present invention is based on a treatment plan determined by a doctor, for example, at regular intervals, for example, 1, 2, 3, 4, 5, 6, 1 week, 2 weeks,
  • the subject can be administered once to several times or several tens of times at intervals of 3 weeks, 1 month, 2 months, 6 months or 1 year.
  • a target molecule can be easily introduced into cells.
  • ⁇ Intracellular introduction method of target molecule> There is also provided a method for introducing a target molecule into cells using the intracellularly transferred DNA of the present invention or a multimer thereof.
  • the method includes the step of contacting the composition of the present invention with a cell.
  • the method of the present invention can be performed in vitro or in vivo.
  • the use concentration of the composition of the present invention is not particularly limited, and those skilled in the art can achieve the effect of introducing the intracellular molecule of the present invention into the cell. It can be determined as appropriate.
  • the time for contacting the composition with the cells is not particularly limited, and may be appropriately set between 30 minutes and 24 hours, for example, 1 to 2 hours.
  • the cells may be appropriately cultured after contacting the composition with the cells.
  • a target molecule can be easily transferred into a cell simply by bringing the composition containing the cell-translocating DNA of the present invention or a multimer thereof and the target molecule to be introduced into the cell into contact with the cell. Can be introduced.
  • agent for introducing a target molecule into the cell which contains the intracellularly transferred DNA of the present invention or a multimer thereof.
  • the agent of the present invention can be used for introducing a target molecule into a cell in vitro or in vivo.
  • the agent of the present invention can be used in vitro as an experimental transfection agent.
  • the agent of the present invention can be used in vivo to deliver a target molecule to a living body for medical purposes.
  • the agent of the present invention contains the intracellular migration DNA of the present invention or a multimer thereof as an active ingredient, that is, as a carrier for introducing a target molecule into cells.
  • the agent of the present invention may consist only of the intracellular translocation DNA of the present invention or a multimer thereof, or other solvents, additives or pharmaceuticals as long as the action of the intracellular translocation DNA of the present invention is not inhibited.
  • An acceptable carrier or the like may be appropriately contained.
  • the agent of the present invention may contain a suitable solvent for the intracellularly transferred DNA of the present invention, such as water and a buffer (for example, phosphate buffer, carbonate buffer, Tris buffer) and the like.
  • the agent of the present invention may contain a target molecule to be introduced into cells.
  • the target molecule may or may not be bound to the intracellular migration DNA of the present invention contained in the agent or a multimer thereof.
  • a person skilled in the art can determine the content of the intracellular translocation DNA of the present invention or a multimer thereof contained in the agent of the present invention, and the intracellular translocation DNA of the present invention has an effect of introducing the target molecule into the cell. Thus, it can be determined as appropriate. With the agent of the present invention, a target molecule can be easily introduced into cells.
  • kits for introducing a molecule of interest into the cell which contains the intracellularly transferred DNA of the present invention or a multimer thereof.
  • the kit of the present invention may further contain a cell culture medium, a cell culture container, and / or instructions describing the protocol used when introducing the target molecule into the cell.
  • a cell culture medium a cell culture container, and / or instructions describing the protocol used when introducing the target molecule into the cell.
  • Each component contained in the kit of the present invention is individually or in a state where some or all of the components are mixed, placed in a suitable container, and packaged as a whole in one or more.
  • the kit may further include a target molecule to be introduced into the cell.
  • the target molecule may or may not be bound to the intracellular translocation DNA of the present invention or a multimer thereof contained in the kit.
  • the target molecule can be easily introduced into cells by the kit of the present invention.
  • HEK293T cells human embryonic kidney cells
  • HeLa cells human cervical cancer cells
  • HepG2 cells human hepatoma cells
  • HW cells human white fat precursor cells
  • HB2 cells human brown fat precursor cells
  • 3T3-L1 Cells human adipose precursor cells
  • MCF-7 cells human breast cancer cells
  • FBS fetal bovine serum
  • PSG penicillin-streptomycin-glutamine
  • the DNA used in this example was synthesized by Thermo Fisher Scientific (formerly Life Technologies) or Greiner Japan.
  • Example 1 Screening for intracellular DNA by Cell SELEX method Intracellular DNA was screened from a single-stranded DNA library using Cell SELEX method. The outline of the Cell SELEX method used in this experiment will be described. In this method, only intracellular transferable DNA was selected by repeating a round of selecting and amplifying DNA transferred into cells from a single-stranded DNA library containing random sequences.
  • Step 1 Preparation of cells (and start library DNA in the first round), Step 2: Incubation with cell DNA library, Step 3: Decomposition of DNA bound to the cell surface by trypsin and DNase treatment (Step 3 was not performed in the first and second rounds in this example), Step 4: Extraction of oligo DNA from cells, Step 5: PCR amplification of the extracted oligo DNA, and Step 6: Purification of the desired single-stranded DNA from the PCR product.
  • steps 1 to 6 were performed using the single-stranded DNA obtained in the preceding round as a DNA library.
  • the PCR product obtained in step 5 was cloned and sequenced. The specific method was based on Magalhaes, M. et al., Mol. Ther., Vol. 20, No. 3, pp. 616-624, 2012.
  • HEK293T cells were used in the first to third rounds, HeLa cells were used in the fourth to sixth rounds, and 3T3-L1 cells were used in the seventh to ninth rounds.
  • steps 1 to 3 are different, and steps 4 to 6 are common. The procedure for each round is described in detail below.
  • Each 1.2 ⁇ L of 5 types of oligo DNA (100 ⁇ M) shown in Table 1 was mixed with 18 ⁇ L of serum-containing D-MEM medium in a 1.5 mL tube in a clean bench to prepare a 24 ⁇ L start library DNA solution. The solution was stored in the refrigerator until use.
  • HEK293T cells were seeded at 2 ⁇ 10 5 cells per well in a 24-well plate and cultured overnight. The HEK293T cells were detached when the entire medium was exchanged. Therefore, the operation was performed while leaving 100 ⁇ L. The medium was removed so that 100 ⁇ L of medium remained per well, 376.7 ⁇ L of fresh medium was added, and the cells were incubated for 10 minutes. (3) 3.3 ⁇ L of tRNA (40 ng / ⁇ L) was added to the medium and incubated at 37 ° C. for 30 minutes.
  • the sample was centrifuged at 12000 ⁇ g and 4 ° C. for 15 minutes. Only the sample supernatant was collected, transferred to a new 1.5 mL tube, and 100 ⁇ L of isopropanol was added to obtain a mixture. After standing at room temperature for 10 minutes, the mixture was centrifuged at 12000 ⁇ g, 4 ° C. for 10 minutes. The supernatant was discarded, and 200 ⁇ L of 75% ethanol was added to the pellet, followed by centrifugation at 7500 ⁇ g and 4 ° C. for 5 minutes. The supernatant was discarded, and the pellet was dried under reduced pressure for 10 minutes. The pellet was dissolved in 10 ⁇ L of MilliQ water to obtain an extracted fraction containing oligo DNA extracted from cells.
  • the extracted fraction containing the oligo DNA extracted from the cells contained total RNA, and in order to inhibit subsequent PCR amplification, the extracted fraction was subjected to RNase treatment, and then PCR was performed. Specifically, a mixture of 10 ⁇ PCR buffer 20 ⁇ L, MilliQ water 157 ⁇ L, RNase 1 ⁇ L, and extracted fraction 2 ⁇ L was incubated at 37 ° C. for 30 minutes, and the extracted fraction was subjected to RNase treatment.
  • PCR amplification was performed by PCR amplification under the following PCR conditions: 25 cycles of 95 ° C. for 20 seconds, 50 ° C. for 20 seconds, and 72 ° C. for 5 seconds. . It was confirmed by 2% agarose gel electrophoresis that the target DNA was amplified.
  • FITC Fluorescence-activated fluorescent-labeled DNA
  • double-stranded DNA DNA strand having the ability to move into the cell contained in the PCR product
  • biotin is bound to the other DNA strand (complementary strand).
  • streptavidin beads By fixing double-stranded DNA to streptavidin beads and dissociating the double-stranded DNA into single-stranded DNA with an alkaline solution, only the biotin-bound strand remains on the bead and the other strand remains in solution. Isolate.
  • the desired single-stranded DNA having the ability to move into cells was purified from the PCR product.
  • the solution containing the target single-stranded DNA was purified by gel filtration using Sephadex® G-50. Specifically, a hole was made with a needle in the bottom of a 1.5 mL tube, and cotton dampened with distilled water was filled in the bottom hole. A new 1.5 mL tube was inserted as a saucer for the perforated tube. 1.5 mL Sephadex® G-50 was placed in a tube with a hole and the tube was centrifuged at 800 ⁇ g for 1 minute at room temperature.
  • TE buffer 10 mM Tris-HCl, 1 mM EDTA pH 8.0
  • TE buffer 10 mM Tris-HCl, 1 mM EDTA pH 8.0
  • the tube was centrifuged at 800 ⁇ g for 1 minute at room temperature to wash Sephadex G-50.
  • Sephadex® G-50 was washed once more.
  • 2 ⁇ L of Orange-G was added to the solution containing the single-stranded DNA and slowly dropped onto the Sephadex® G-50 gel. The tube was centrifuged at 800 x g for 1 minute at room temperature.
  • the bottom tube used as the pan was replaced with a new tube, and 50 ⁇ L of TE buffer was slowly added dropwise to Sephadex® G-50 gel, and the eluate was collected by centrifugation at 800 ⁇ ⁇ g for 1 minute at room temperature. The dropping of TE buffer and the collection of the eluate were repeated until Orange-G eluted in the eluate collected in the lower tube.
  • the solution containing the target single-stranded DNA was further purified by ethanol precipitation.
  • the pellet obtained by ethanol precipitation according to a standard procedure was dissolved in MilliQ water to a desired concentration to obtain a solution containing purified target single-stranded DNA.
  • Table 11 shows the 11 base sequences obtained by the Cell SELEX method. Each base sequence was named QAp1, QAp3, QAp4, QAp7, QAp8, QAp10, QAp11, QAp14, QAp15, QAp16 or QAp19. The 11 base sequences were very similar. In addition, 7 of the 19 nucleotide sequences determined were QAp1 sequences.
  • Example 2 Evaluation of DNA intracellular translocation ability By measuring the fluorescence intensity of cells incubated with FITC fluorescently labeled DNA using a flow cytometer, the intracellular translocation ability of the DNA having the base sequence identified in Example 1 was evaluated. did. (Method) (1) The oligo DNA shown in Table 3 was commissioned to Greiner Japan.
  • oligo DNAs (antiKS-QAp1, antiKS-QAp3, antiKS-QAp4, antiKS-QAp7, antiKS-QAp8, antiKS-QAp10, antiKS-QAp11, antiKS-QAp14, antiKS-QAp15, antiKS-QAp16, and antiKS-QAp19) Is an antiKS sequence (shown in italics) on the 5 ′ side, followed by a spacer sequence (shown in lower case), and on the 3 ′ side, each base sequence identified in Example 1 (QAp1, QAp3, QAp4, QAp7 Sequence, QAp8 sequence, QAp10 sequence, QAp11 sequence, QAp14 sequence, QAp15 sequence, QAp16 sequence or QAp19 sequence) (shown in capital letters).
  • ⁇ ⁇ ⁇ FITC-KS primer (5'-FITC-CTCGAGGTCGACGGTATCG-3 ': SEQ ID NO: 26), which is an oligo DNA having FITC at the 5' end, in the oligo DNA (antiKS-QAp1) shown in Table 3 was annealed to obtain a test DNA monomer (QAp1 monomer).
  • the structure of the QAp1 monomer is shown in FIG. 2A.
  • antiKS-QAp1 SEQ ID NO: 28
  • FITC-KS primer SEQ ID NO: 26
  • D-PBS D-PBS
  • a nucleic acid whose QAp1 sequence forms a double strand with a complementary oligo DNA antiQAp1 (5'-CGACCCACGCATCCACCGAACCTCCCCCACCACCCCGCCC-3 ': SEQ ID NO: 39) is used as a control DNA monomer. Used as.
  • antiKS-QAp1 (SEQ ID NO: 28) (50 ⁇ M) 0.8 ⁇ L
  • antiQAp1 (SEQ ID NO: 39) (50 ⁇ M) 0.8 ⁇ L
  • FITC-KS primer (SEQ ID NO: 26) (50 ⁇ M) 0.8 ⁇ L
  • D-PBS D-PBS 17.6 ⁇ L of was mixed and annealed at 95 ° C., 80 ° C., 70 ° C., 60 ° C., 55 ° C. and 37 ° C. for 5 minutes each, and a control DNA monomer was prepared and stored at 4 ° C.
  • oligo DNA shown in Table 3 are oligo DNA backboneM13Fx3 (5'-TGTAAAACGACGGCCAGTTTGTAAAACGACGGCCAGTTTGTAAAACGACGGCCAGT-3 ': SEQ ID NO: 40), and FITC-KS-antiM13F (5) Annealed with '-FITC-TCGAGGTCGACGGTATCGTACTGGCCGTCGTTTTACA-3': SEQ ID NO: 41) to give test DNA trimers (QAp1 trimer, QAp3 trimer, QAp4 trimer, QAp7 trimer, QAp8 trimer, respectively) , QAp10 trimer, QAp11 trimer, QAp11 trimer, QAp11 trimer, QAp11 trimer, QAp11 trimer, QAp11 trimer, QAp11 trimer, QAp11 trimer, QAp11 trimer, QAp11 trimer, QAp11 trimer, QAp11 trimer, QAp11 trim
  • test DNA trimer (QAp1 trimer as an example) is shown in FIG. 2B.
  • each oligo DNA shown in Table 3 50 ⁇ M) ⁇ 2.4 ⁇ L
  • backboneM13Fx3 SEQ ID NO: 40
  • 50 ⁇ M 0.8 ⁇ L
  • FITC-KS-antiM13F SEQ ID NO: 41
  • D-PBS D-PBS 14.4 ⁇ L of was mixed, annealed at 95 ° C, 80 ° C, 70 ° C, 60 ° C, 55 ° C and 37 ° C for 5 minutes each to prepare a test DNA trimer and stored at 4 ° C .
  • a nucleic acid in which the QAp1 sequence forms a double strand with antiQAp1 (SEQ ID NO: 39), which is a complementary oligo DNA, was used as a control DNA trimer.
  • antiKS-QAp1 SEQ ID NO: 28
  • antiQAp1 SEQ ID NO: 39
  • backboneM13Fx3 SEQ ID NO: 40
  • 50 ⁇ M 0.8 ⁇ L
  • FITC-KS-antiM13F sequence Number 41
  • D-PBS D-PBS
  • the fluorescence intensity of the cells was measured using a flow cytometer.
  • the test DNA monomer or trimer can be regarded as having the ability to translocate into cells.
  • the ratio of average fluorescence intensity ([average fluorescence intensity of cells incubated with test DNA monomer] / [average fluorescence intensity of cells incubated with control DNA monomer] or [cells incubated with test DNA trimer] Mean fluorescence intensity] / [mean fluorescence intensity of cells incubated with control DNA trimer]). When this ratio exceeds 1, for example, when it is 1.5 or more, the test DNA monomer or trimer can be regarded as having the ability to translocate into the cell.
  • FITC fluorescence bound to DNA bound to the cell surface may also be detected. Therefore, in order to eliminate the influence of FITC fluorescence bound to DNA bound to the cell surface, the fluorescence intensity was measured after treating the cells with trypsin and DNase. As a result, in 3T3-L1 cells incubated with QAp1 monomer, it was confirmed that the fluorescence intensity value showing the peak cell count still increased compared to the control (FIG. 4) (average fluorescence intensity). Ratio 4.2). Therefore, it was shown that the QAp1 monomer has the ability to move into cells. From the above results, it was shown that the DNA monomer having the base sequence identified in Example 1 has the ability to migrate into a plurality of cells.
  • QAp1 trimer, QAp3 trimer, QAp4 trimer, QAp7 trimer, QAp8 trimer, QAp10 trimer, QAp11 trimer, QAp14 trimer, QAp15 trimer It has been shown that QAp16 trimer and QAp19 trimer can have intracellular translocation ability. It was also shown that the DNA trimer can translocate into HW cells and HB2 cells with low gene transfer efficiency with a commercially available transfection agent.
  • FITC fluorescence binding to DNA bound to the cell surface may also be detected. Therefore, in order to eliminate the influence of FITC fluorescence bound to DNA bound to the cell surface, the fluorescence intensity was measured after treating the cells with trypsin and DNase. As a result, in HEK293T cells, HB2 cells and HW cells incubated with QAp1 trimer, it was confirmed that the fluorescence intensity value showing the peak cell count still increased compared to the control (FIG. 7) ( Average fluorescence intensity ratios 2.8, 2.1 and 2.6, respectively. Therefore, it was shown that QAp1 trimer has the ability to translocate into cells. From the above results, it was shown that the DNA trimer having the base sequence identified in Example 1 has the ability to migrate into a plurality of cells.
  • Example 3 Further evaluation of intracellular translocation ability The intracellular translocation ability of DNA containing one or two partial base sequences (5′-side halves) of QAp1 was evaluated.
  • Table 4 shows the oligo DNAs used in this example. These oligo DNAs (antiKS-QAp1-A and antiKS-QAp1-AA) are 5′-side antiKS sequences (shown in italics), followed by spacer sequences (shown in lowercase letters), and 3′-side in Example 1 One or two base sequences (indicated by capital letters) of the 5 ′ half of QAp1 identified in 1.
  • oligo DNA shown in Table 4 was annealed with a FITC-KS primer (SEQ ID NO: 26) having FITC at the 5 ′ end to obtain a test DNA monomer (referred to as QAp1A monomer or QAp1AA monomer, respectively) ).
  • a test DNA monomer referred to as QAp1A monomer or QAp1AA monomer, respectively
  • each oligo DNA shown in Table 4 50 ⁇ M
  • FITC-KS primer (SEQ ID NO: 26) 50 ⁇ M
  • D-PBS
  • the test DNA monomers were prepared by annealing at 5 ° C., 70 ° C., 60 ° C., 55 ° C. and 37 ° C. for 5 minutes each, and stored at 4 ° C.
  • FITC-KS primer SEQ ID NO: 26 was used as a control DNA.
  • the cells were incubated with the test DNA monomer or the control DNA, and the fluorescence intensity of the cells was measured using a flow cytometer.
  • the test DNA monomer can be regarded as having the ability to migrate into the cell.
  • the ratio of average fluorescence intensity ([average fluorescence intensity of cells incubated with test DNA monomer] / [average fluorescence intensity of cells incubated with control DNA]) was calculated. When this ratio exceeds 1, for example, when it is 1.5 or more, the test DNA monomer can be regarded as having the ability to translocate into the cell.
  • MCF-7 cells were incubated with each test DNA monomer or control DNA, the cells were treated with trypsin and DNase, and the fluorescence intensity was measured with a flow cytometer.
  • the fluorescence intensity value showing a peak in the cell count number hardly increased (FIG. 8A) (average fluorescence intensity ratio 1.2). Therefore, it was shown that a DNA monomer containing only one 5'-side base sequence of QAp1 does not have the ability to move into cells.
  • the fluorescence intensity value showing the peak cell count increased compared to the control (FIG. 8B) (average fluorescence intensity ratio 2.4). Therefore, it was shown that DNA containing two base sequences of the 5 ′ half of QAp1 has the ability to move into cells.
  • DNA containing two 5′-side base sequences of the base sequence identified in Example 1 has the ability to migrate into cells.

Abstract

The present invention provides: DNA for intracellular penetration; a composition that includes said DNA and a target molecule to be introduced into a cell; a method for introducing the target molecule into the cell using said composition; and an agent and kit for introducing the target molecule into the cell, said agent and kit including said DNA. Provided is DNA for intracellular penetration, said DNA including an intracellular penetration region comprising the following base sequence: 5'-N1-N2-GG-N5-N6-N7-GGTGGT-N14-GGGG-N19-N20-G-N22-N23-TCG-N27-N28-N29-G-N31-AT-N34-N35-GTG-N39-N40-TCG-3' [Herein, N1 is deleted or is T, N2 is G or is deleted, N5 is C or T, N6 is G or C, N7 is G or T, N14 is G or C, N19 is A or G, N20 is G or A, N22 is deleted or is T, N23 is T or A, N27 is G, T, or A, N28 is T, A, or C, N29 is deleted or is T, N31 is G or A, N34 is G or is deleted, N35 is C or A, N39 is G or T, and N40 is G or A] (SEQ ID NO: 1).

Description

細胞内移行性DNA及びそれを用いた目的分子の細胞内導入方法Intracellular DNA and method for introducing a target molecule into the cell using the same
 本発明は、細胞内移行性DNAに関する。本発明はまた、該DNAと細胞内に導入しようとする目的分子とを含む組成物、及び該組成物を用いた目的分子を細胞内に導入する方法に関する。さらに本発明は、該DNAを含む、目的分子の細胞内導入剤及び細胞内導入用キットに関する。 The present invention relates to intracellular DNA. The present invention also relates to a composition comprising the DNA and a target molecule to be introduced into a cell, and a method for introducing the target molecule into the cell using the composition. Furthermore, the present invention relates to an intracellular introduction agent of a target molecule and a kit for introduction into the cell, which contain the DNA.
 核酸やペプチド若しくはタンパク質などの分子を細胞内に導入する技術は、それらの分子の機能の解明又は疾患の治療若しくは病因解明を含めた様々な目的のために重要である。しかし、一般に、タンパク質や核酸などの分子は親水性が高く、通常、細胞膜をほとんど透過しない。そのため、これらの分子を細胞内に導入する技術が多く開発されている。 Techniques for introducing molecules such as nucleic acids, peptides or proteins into cells are important for various purposes including elucidation of the function of these molecules or treatment of disease or pathogenesis. However, in general, molecules such as proteins and nucleic acids are highly hydrophilic and usually hardly permeate cell membranes. For this reason, many techniques for introducing these molecules into cells have been developed.
 例えば、核酸を細胞内に導入する技術としては、電気的に細胞膜に穴を開け核酸を細胞内に取り込ませるエレクトロポレーション法、ガラス毛細管によって核酸を直接注入するマイクロインジェクション法、核酸を取り込んだリポソームを用いるリポフェクション法、レトロウイルスなどのウイルスを利用したウイルスベクター法などが挙げられる。しかし、エレクトロポレーション法及びマイクロインジェクション法は、細胞に物理的に穴を開けて核酸などを導入するため、細胞へのダメージが大きく、また、専用の装置を必要とする。エレクトロポレーション法ではまた、細胞に応じて導入条件の検討が必要となり、手間がかかる。リポフェクション法は、試薬の細胞への毒性が問題となり、また、費用も高い。ウイルスベクター法は、ベクターの調製に時間がかかり、また、目的以外の核酸やタンパク質なども導入される可能性があるという問題がある。すなわち、現在利用可能な技術には、導入効率、細胞毒性、費用、労力、安全性などの点で多くの課題が残されている。 For example, technologies for introducing nucleic acids into cells include electroporation methods that electrically open holes in cell membranes and incorporate nucleic acids into cells, microinjection methods that directly inject nucleic acids through glass capillaries, and liposomes that incorporate nucleic acids. And a lipofection method using a virus, and a virus vector method using a virus such as a retrovirus. However, the electroporation method and the microinjection method physically damage the cells and introduce nucleic acids or the like, so that damage to the cells is large and a dedicated device is required. In the electroporation method, it is necessary to examine introduction conditions according to the cells, which is troublesome. In the lipofection method, the toxicity of the reagent to the cells becomes a problem, and the cost is high. The virus vector method has a problem that it takes time to prepare a vector, and a nucleic acid or protein other than the target may be introduced. In other words, currently available technologies have many problems in terms of introduction efficiency, cytotoxicity, cost, labor, safety, and the like.
 また近年急速に開発が進んでいる核酸医薬も、一般に生体内への導入が困難であり、効率的なドラッグデリバリーシステムの開発が必要である。 In addition, nucleic acid drugs that have been rapidly developed in recent years are generally difficult to introduce into the living body, and an efficient drug delivery system needs to be developed.
 細胞膜透過性ペプチド(CPP)と一般に称される細胞内へ移行する性質を有するペプチドを利用した、タンパク質や核酸などの分子の細胞内への導入方法も知られている。代表的な細胞膜透過性ペプチドとしては、HIV-1ウイルス由来のTat、及びショウジョウバエ由来のペネトラチンが挙げられる(特許文献1及び2)。 There is also known a method for introducing a molecule such as a protein or nucleic acid into a cell using a peptide having a property of moving into a cell, commonly called a cell membrane permeable peptide (CPP). Representative cell membrane-penetrating peptides include Tat derived from HIV-1 virus and penetratin derived from Drosophila (Patent Documents 1 and 2).
 同様に、細胞内に移行する性質を有するRNAが報告されている(非特許文献1及び特許文献3)。このRNAは、ランダム配列を含むRNAライブラリーから、細胞内に移行したRNAを選択し増幅するサイクルを複数回繰り返すことによって、細胞内移行性RNAのみを選別する方法(Cell SELEX法と称される)によって同定された。しかし、RNAは一般に分解されやすいため、この細胞内移行性RNAを用いて他の分子を細胞内に導入する技術を実用化するには、安定性などの多くの課題がある。 Similarly, RNA having the property of migrating into cells has been reported (Non-patent Document 1 and Patent Document 3). This RNA is selected from RNA libraries containing random sequences by selecting the RNA that has migrated into the cell and amplifying it multiple times to select only the RNA that migrates into the cell (referred to as the Cell-SELEX method). ). However, since RNA is generally easily degraded, there are many problems such as stability in order to put into practical use a technique for introducing other molecules into cells using this intracellularly transferred RNA.
特開平10-33186号公報(国際公開第94/04686号)Japanese Patent Laid-Open No. 10-33186 (International Publication No. 94/04686) 特表2002-530059号公報(国際公開第00/29427号)JP-T 2002-530059 Publication (International Publication No.00 / 29427) 国際公開第2008/124798号International Publication No. 2008/124798
 本発明は、細胞内移行性DNA、該DNAと細胞内に導入しようとする目的分子とを含む組成物、該組成物を用いた目的分子を細胞内に導入する方法、並びに該DNAを含む、目的分子の細胞内導入剤及び細胞内導入用キットを提供することを課題とする。 The present invention includes a cell translocating DNA, a composition comprising the DNA and a target molecule to be introduced into the cell, a method for introducing the target molecule into the cell using the composition, and the DNA. It is an object of the present invention to provide an intracellular introduction agent of a target molecule and a kit for intracellular introduction.
 本発明者らは、上記課題を解決するため鋭意検討を重ねた結果、細胞内移行能を有するDNAを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found a DNA having the ability to move into cells and have completed the present invention.
 すなわち、本発明は以下を包含する。
[1] 以下の塩基配列: 
 5'-N1-N2-GG-N5-N6-N7-GGTGGT-N14-GGGG-N19-N20-G-N22-N23-TCG-N27-N28-N29-G-N31-AT-N34-N35-GTG-N39-N40-TCG-3'
[ここで、
 N1は、欠失しているか又はTであり、
 N2は、Gであるか又は欠失しており、
 N5は、C又はTであり、
 N6は、G又はCであり、
 N7は、G又はTであり、
 N14は、G又はCであり、
 N19は、A又はGであり、
 N20は、G又はAであり、
 N22は、欠失しているか又はTであり、
 N23は、T又はAであり、
 N27は、G、T又はAであり、
 N28は、T、A又はCであり、
 N29は、欠失しているか又はTであり、
 N31は、G又はAであり、
 N34は、Gであるか又は欠失しており、
 N35は、C又はAであり、
 N39は、G又はTであり、かつ
 N40は、G又はAである] (配列番号1)
からなる細胞内移行領域を含む、細胞内移行性DNA。
[2] 前記塩基配列が、以下の(a)又は(b)である、[1]に記載の細胞内移行性DNA。
 (a) 5'-GGGCGGGGTGGTGGGGGAGGTTCGGTGGATGCGTGGGTCG-3' (配列番号2)、
 5'-GGTGGGGTGGTGGGGGAGGTTCGTTGGATGCGTGGGTCG-3' (配列番号3)、
 5'-GGGCGGGGTGGTCGGGGGAGTTTCGGTGGATGCGTGGGTCG-3' (配列番号4)、
 5'-GGGCGGGGTGGTGGGGGAGGTTCGTATGGATGCGTGGATCG-3' (配列番号5)、
 5'-GGGCGGGGTGGTGGGGGAGGTTCGATGGATCGTGGGTCG-3' (配列番号6)、
 5'-GGGCGGGGTGGTGGGGGAGGATCGGTGGATGCGTGGGTCG-3' (配列番号7)、
 5'-GGCGGGGTGGTGGGGGAGGTTCGATGGATGAGTGGGTCG-3' (配列番号8)、
 5'-GGGCCGGGTGGTGGGGGAGGTTCGGTGGATGCGTGGGTCG-3' (配列番号9)、
 5'-GGGCGGGGTGGTGGGGGAGGTTCGACGGATGCGTGGGTCG-3' (配列番号10)、
 5'-TGGGCGGGGTGGTGGGGGAGGTTCGGTGAATGCGTGTGTCG-3' (配列番号11)、及び
 5'-GGGCGTGGTGGTGGGGGAGGTTCGGTGGATGCGTGGGTCG-3' (配列番号12)
のいずれかに示される塩基配列
 (b) 配列番号2~12のいずれかに示される塩基配列において、1若しくは2個の塩基が置換、欠失、挿入又は付加された塩基配列
[3] 以下の塩基配列: 
 5'-N1-N2-GG-N5-N6-N7-GGTGGT-N14-GGGG-N19-N20-G-3'
[ここで、
 N1は、欠失しているか又はTであり、
 N2は、Gであるか又は欠失しており、
 N5は、C又はTであり、
 N6は、G又はCであり、
 N7は、G又はTであり、
 N14は、G又はCであり、
 N19は、A又はGであり、かつ
 N20は、G又はAである] (配列番号13)
を2個以上含む細胞内移行領域を含む、細胞内移行性DNA。
[4] 前記塩基配列のそれぞれが、以下の(a)又は(b)である、[3]に記載の細胞内移行性DNA。
 (a) 5'-GGGCGGGGTGGTGGGGGAGG-3' (配列番号14)、
 5'-GGTGGGGTGGTGGGGGAGG-3' (配列番号15)、
 5'-GGGCGGGGTGGTCGGGGGAG-3' (配列番号16)、
 5'-GGCGGGGTGGTGGGGGAGG-3' (配列番号17)、
 5'-GGGCCGGGTGGTGGGGGAGG-3' (配列番号18)、
 5'-TGGGCGGGGTGGTGGGGGAGG-3' (配列番号19)、及び
 5'-GGGCGTGGTGGTGGGGGAGG-3' (配列番号20)
のいずれかに示される塩基配列
 (b) 配列番号14~20のいずれかに示される塩基配列において、1個の塩基が置換、欠失、挿入又は付加された塩基配列
[5] 2個以上の細胞内移行性DNAが結合してなる、細胞内移行性DNAの多量体であって、該細胞内移行性DNAのそれぞれは、[1]~[4]のいずれかに記載の細胞内移行性DNAから選択される、細胞内移行性DNA多量体。
[6] [1]~[4]のいずれかに記載の細胞内移行性DNA又は[5]に記載の細胞内移行性DNA多量体を含む、目的分子の細胞内導入剤。
[7] [1]~[4]のいずれかに記載の細胞内移行性DNA又は[5]に記載の細胞内移行性DNA多量体と、細胞内に導入しようとする目的分子とを含む、組成物。
[8] 目的分子を細胞内に導入する方法であって、[7]に記載の組成物を細胞と接触させることを含む、方法。
[9] [1]~[4]のいずれかに記載の細胞内移行性DNA又は[5]に記載の細胞内移行性DNA多量体を含む、目的分子の細胞内導入用キット。
That is, the present invention includes the following.
[1] The following base sequence:
5'-N1-N2-GG-N5-N6-N7-GGTGGT-N14-GGGG-N19-N20-G-N22-N23-TCG-N27-N28-N29-G-N31-AT-N34-N35-GTG -N39-N40-TCG-3 '
[here,
N1 is deleted or T,
N2 is G or is deleted;
N5 is C or T;
N6 is G or C;
N7 is G or T,
N14 is G or C;
N19 is A or G;
N20 is G or A,
N22 is deleted or T,
N23 is T or A,
N27 is G, T or A,
N28 is T, A or C;
N29 is deleted or T,
N31 is G or A;
N34 is G or is deleted;
N35 is C or A,
N39 is G or T, and N40 is G or A] (SEQ ID NO: 1)
Intracellular DNA comprising an intracellular translocation region consisting of
[2] The intracellular DNA according to [1], wherein the base sequence is the following (a) or (b).
(a) 5'-GGGCGGGGTGGTGGGGGAGGTTCGGTGGATGCGTGGGTCG-3 '(SEQ ID NO: 2),
5'-GGTGGGGTGGTGGGGGAGGTTCGTTGGATGCGTGGGTCG-3 '(SEQ ID NO: 3),
5'-GGGCGGGGTGGTCGGGGGAGTTTCGGTGGATGCGTGGGTCG-3 '(SEQ ID NO: 4),
5'-GGGCGGGGTGGTGGGGGAGGTTCGTATGGATGCGTGGATCG-3 '(SEQ ID NO: 5),
5'-GGGCGGGGTGGTGGGGGAGGTTCGATGGATCGTGGGTCG-3 '(SEQ ID NO: 6),
5'-GGGCGGGGTGGTGGGGGAGGATCGGTGGATGCGTGGGTCG-3 '(SEQ ID NO: 7),
5'-GGCGGGGTGGTGGGGGAGGTTCGATGGATGAGTGGGTCG-3 '(SEQ ID NO: 8),
5'-GGGCCGGGTGGTGGGGGAGGTTCGGTGGATGCGTGGGTCG-3 '(SEQ ID NO: 9),
5'-GGGCGGGGTGGTGGGGGAGGTTCGACGGATGCGTGGGTCG-3 '(SEQ ID NO: 10),
5'-TGGGCGGGGTGGTGGGGGAGGTTCGGTGAATGCGTGTGTCG-3 '(SEQ ID NO: 11), and 5'-GGGCGTGGTGGTGGGGGAGGTTCGGTGGATGCGTGGGTCG-3' (SEQ ID NO: 12)
(B) a base sequence in which one or two bases are substituted, deleted, inserted or added in the base sequence shown in any of SEQ ID NOs: 2 to 12
[3] The following base sequence:
5'-N1-N2-GG-N5-N6-N7-GGTGGT-N14-GGGG-N19-N20-G-3 '
[here,
N1 is deleted or T,
N2 is G or is deleted;
N5 is C or T;
N6 is G or C;
N7 is G or T,
N14 is G or C;
N19 is A or G, and N20 is G or A] (SEQ ID NO: 13)
Intracellular DNA comprising an intracellular translocation region containing 2 or more of.
[4] Intracellular DNA according to [3], wherein each of the base sequences is the following (a) or (b):
(a) 5'-GGGCGGGGTGGTGGGGGAGG-3 '(SEQ ID NO: 14),
5'-GGTGGGGTGGTGGGGGAGG-3 '(SEQ ID NO: 15),
5'-GGGCGGGGTGGTCGGGGGAG-3 '(SEQ ID NO: 16),
5'-GGCGGGGTGGTGGGGGAGG-3 '(SEQ ID NO: 17),
5'-GGGCCGGGTGGTGGGGGAGG-3 '(SEQ ID NO: 18),
5'-TGGGCGGGGTGGTGGGGGAGG-3 '(SEQ ID NO: 19), and 5'-GGGCGTGGTGGTGGGGGAGG-3' (SEQ ID NO: 20)
(B) a base sequence in which one base is substituted, deleted, inserted or added in the base sequence shown in any of SEQ ID NOS: 14 to 20
[5] A multimer of intracellular translocating DNA formed by binding two or more intracellular translocating DNAs, each of the intracellular translocating DNA being any one of [1] to [4] Intracellular DNA multimer selected from the intracellular translocation DNA described in 1.
[6] An agent for introducing a target molecule into the cell, which comprises the intracellular transferable DNA according to any one of [1] to [4] or the intracellular transferable DNA multimer according to [5].
[7] Intracellular DNA according to any one of [1] to [4] or intracellular multimer DNA according to [5], and a target molecule to be introduced into the cell, Composition.
[8] A method for introducing a target molecule into a cell, comprising contacting the composition according to [7] with a cell.
[9] A kit for introducing a molecule of interest into a cell, comprising the intracellular translocation DNA according to any one of [1] to [4] or the intracellular translocation DNA multimer according to [5].
 本明細書は本願の優先権の基礎となる日本国特許出願番号2015-185295号の開示内容を包含する。 This specification includes the disclosure of Japanese Patent Application No. 2015-185295, which is the basis of the priority of the present application.
 本発明により、細胞内移行性DNA、該DNAと細胞内に導入しようとする目的分子とを含む組成物、該組成物を用いた目的分子を細胞内に導入する方法、並びに該DNAを含む、目的分子の細胞内導入剤及び細胞内導入用キットが提供される。 According to the present invention, a cell-introducing DNA, a composition comprising the DNA and a target molecule to be introduced into the cell, a method for introducing the target molecule into the cell using the composition, and the DNA, Intracellular introduction agents of target molecules and kits for intracellular introduction are provided.
細胞内移行性DNA多量体の例示的構造を示す模式図である。(A)は細胞内移行性DNAが足場鎖に直接的に結合しているユニットの構造を示し、(B)は細胞内移行性DNAが足場鎖に間接的に(アダプター鎖を介して)結合しているユニットの構造を示す。(C)及び(D)は、それぞれ、(A)及び(B)に示すユニットの三量体の構造を示す。It is a schematic diagram which shows the exemplary structure of a cell transferable DNA multimer. (A) shows the structure of a unit in which intracellular DNA is directly bound to the scaffold strand, (B) shows indirect binding of intracellular DNA to the scaffold strand (via the adapter strand) The structure of the unit is shown. (C) and (D) show the structures of the trimers of the units shown in (A) and (B), respectively. 実施例2で使用した被験DNAの構造を示す模式図である。(A)は被験DNA単量体(QAp1単量体)の構造を示し、(B)は被験DNA三量体(一例としてQAp1三量体)の構造を示す。2 is a schematic diagram showing the structure of a test DNA used in Example 2. FIG. (A) shows the structure of the test DNA monomer (QAp1 monomer), and (B) shows the structure of the test DNA trimer (QAp1 trimer as an example). QAp1単量体とインキュベートしたHepG2細胞(A)又は3T3-L1細胞(B)のフローサイトメトリー結果を示す図である。It is a figure which shows the flow cytometry result of HepG2 cell (A) or 3T3-L1 cell (B) incubated with the QAp1 monomer. QAp1単量体とインキュベートし、トリプシン及びDNase処理した3T3-L1細胞のフローサイトメトリー結果を示す図である。It is a figure which shows the flow cytometry result of 3T3-L1 cell which incubated with the QAp1 monomer, and was treated with trypsin and DNase. QAp1三量体(A)、QAp3三量体(B)、QAp4三量体(C)、QAp7三量体(D)、QAp8三量体(E)又はQAp10三量体(F)とインキュベートしたHB2細胞のフローサイトメトリー結果を示す図である。Incubated with QAp1 trimer (A), QAp3 trimer (B), QAp4 trimer (C), QAp7 trimer (D), QAp8 trimer (E) or QAp10 trimer (F) It is a figure which shows the flow cytometry result of HB2 cell. QAp11三量体(G)、QAp14三量体(H)、QAp15三量体(I)、QAp16三量体(J)又はQAp19三量体(K)とインキュベートしたHB2細胞のフローサイトメトリー結果を示す図である。Flow cytometry results of HB2 cells incubated with QAp11 trimer (G), QAp14 trimer (H), QAp15 trimer (I), QAp16 trimer (J) or QAp19 trimer (K) FIG. QAp1三量体とインキュベートしたHEK293T細胞(A)又はHW細胞(B)のフローサイトメトリー結果を示す図である。It is a figure which shows the flow cytometry result of HEK293T cell (A) or HW cell (B) incubated with QAp1 trimer. QAp1三量体とインキュベートし、トリプシン及びDNase処理したHEK293T細胞(A)、HB2細胞(B)又はHW細胞(C)のフローサイトメトリー結果を示す図である。It is a figure which shows the flow cytometry result of HEK293T cell (A), HB2 cell (B), or HW cell (C) which was incubated with QAp1 trimer, and was treated with trypsin and DNase. QAp1A単量体(A)又はQAp1AA単量体(B)とインキュベートし、トリプシン及びDNase処理したMCF-7細胞のフローサイトメトリー結果を示す図である。It is a figure which shows the flow cytometry result of MCF-7 cell which incubated with the QAp1A monomer (A) or the QAp1AA monomer (B), and was treated with trypsin and DNase.
 以下、本発明を詳細に説明する。
<細胞内移行性DNA>
 本発明は、細胞内移行性DNAに関する。本明細書において、細胞内移行性DNAは、細胞内に移行する能力を有するDNAを意味する。
Hereinafter, the present invention will be described in detail.
<Intracellular DNA>
The present invention relates to intracellular DNA. In the present specification, intracellular translocation DNA means DNA having the ability to translocate into cells.
 本明細書において「細胞内移行性」又は「細胞内移行能」とは、細胞外部から、細胞の内部と外部とを隔てている細胞膜の内側へ移行し得ることを指す。細胞膜の内側は、細胞質ゾル、並びに例えば、エンドソーム及び小胞などを含めた細胞内の任意の区画を含む。移行の経路としては、特に限定されないが、輸送タンパク質を通した経路、並びにエンドサイトーシス、ファゴサイトーシス及びピノサイトーシスなどの経路がある。例えば、本発明の細胞内移行性DNAは、まず細胞表面へ結合し、その後、エンドサイトーシスによって細胞内へ取り込まれてもよい。 In this specification, “intracellularity” or “intracellularity” refers to the ability to migrate from the outside of the cell to the inside of the cell membrane separating the inside and outside of the cell. The inner side of the cell membrane includes the cytosol and any compartment within the cell including, for example, endosomes and vesicles. The transition pathway is not particularly limited, and includes pathways through transport proteins and pathways such as endocytosis, phagocytosis, and pinocytosis. For example, the intracellular DNA of the present invention may first bind to the cell surface and then be taken into the cell by endocytosis.
 DNAが細胞内移行能を有するかどうかは、当業者であれば適宜決定できる。例えば、蛍光物質と結合した被験DNAを細胞に添加し、インキュベーションした後に、細胞表面に結合しているDNAを分解し、その後、フローサイトメーターで細胞の蛍光強度を測定することによって決定できる。あるいは、例えば、蛍光物質と結合した被験DNAを細胞に添加し、インキュベーションした後に、共焦点レーザー顕微鏡で細胞内部の蛍光を観察することによって決定できる。例えば、蛍光物質(例えば、FITC)と結合した被験DNAを添加しインキュベートした細胞(例えば、HepG2細胞、HB2細胞、HW細胞又はHEK293T細胞)の蛍光強度をフローサイトメーターで測定したときに、蛍光物質と結合した対照DNAに比べて、細胞1個あたりの平均蛍光強度が大きい(例えば、1.2倍以上、1.3倍以上、1.4倍以上、1.5倍以上、1.6倍以上、1.7倍以上、1.8倍以上、1.9倍以上、2.0倍以上、2.1倍以上、2.2倍以上、2.3倍以上、2.4倍以上又は2.5倍以上大きい)場合及び/又は細胞カウント数がピークを示す蛍光強度の値が増加する場合、当該DNAは細胞内移行能を有すると判断し得る。対照DNAとしては、被験DNAを、それと相補的なDNAと結合(アニーリング)させた二本鎖DNA分子を使用し得る。 Whether or not DNA has the ability to move into cells can be appropriately determined by those skilled in the art. For example, it can be determined by adding test DNA bound to a fluorescent substance to cells, incubating, decomposing DNA bound to the cell surface, and then measuring the fluorescence intensity of the cells with a flow cytometer. Alternatively, it can be determined, for example, by adding test DNA bound to a fluorescent substance to cells and incubating them, and then observing fluorescence inside the cells with a confocal laser microscope. For example, when the fluorescence intensity of a cell (for example, HepG2 cell, HB2 cell, HW cell or HEK293T cell) that has been added and incubated with a test DNA conjugated with a fluorescent material (for example, FITC) is measured with a flow cytometer, the fluorescent material The average fluorescence intensity per cell is larger than the control DNA bound to (for example, 1.2 times or more, 1.3 times or more, 1.4 times or more, 1.5 times or more, 1.6 times or more, 1.7 times or more, 1.8 times or more, 1.9 times or more, 2.0 times or more, 2.1 times or more, 2.2 times or more, 2.3 times or more, 2.4 times or more or 2.5 times or more) and / or when the value of the fluorescence intensity showing the peak of the cell count increases, It can be determined that DNA has the ability to translocate into cells. As the control DNA, a double-stranded DNA molecule obtained by binding (annealing) a test DNA with a complementary DNA can be used.
 本発明の細胞内移行性DNAは、細胞内移行領域を含む。本明細書において、細胞内移行領域は、該領域を含むDNAの細胞内移行能に関与する領域である。 The intracellular transferable DNA of the present invention includes an intracellular transfer region. In the present specification, the intracellular translocation region is a region involved in the intracellular translocation ability of DNA containing the region.
 一実施形態において、本発明の細胞内移行性DNAは、
 以下の塩基配列: 5'-N1-N2-GG-N5-N6-N7-GGTGGT-N14-GGGG-N19-N20-G-N22-N23-TCG-N27-N28-N29-G-N31-AT-N34-N35-GTG-N39-N40-TCG-3'
[ここで、N1は欠失しているか又はTであり、N2はGであるか又は欠失しており、N5はC又はTであり、N6はG又はCであり、N7はG又はTであり、N14はG又はCであり、N19はA又はGであり、N20はG又はAであり、N22は欠失しているか又はTであり、N23はT又はAであり、N27はG、T又はAであり、N28はT、A又はCであり、N29は欠失しているか又はTであり、N31はG又はAであり、N34はGであるか又は欠失しており、N35はC又はAであり、N39はG又はTであり、かつN40はG又はAである] (配列番号1)
からなる、細胞内移行領域を含み得る。該塩基配列は、好ましくは、5'-GGGCGGGGTGGTGGGGGAGGTTCGGTGGATGCGTGGGTCG-3' (配列番号2)、5'-GGTGGGGTGGTGGGGGAGGTTCGTTGGATGCGTGGGTCG-3' (配列番号3)、5'-GGGCGGGGTGGTCGGGGGAGTTTCGGTGGATGCGTGGGTCG-3' (配列番号4)、5'-GGGCGGGGTGGTGGGGGAGGTTCGTATGGATGCGTGGATCG-3' (配列番号5)、5'-GGGCGGGGTGGTGGGGGAGGTTCGATGGATCGTGGGTCG-3' (配列番号6)、5'-GGGCGGGGTGGTGGGGGAGGATCGGTGGATGCGTGGGTCG-3' (配列番号7)、5'-GGCGGGGTGGTGGGGGAGGTTCGATGGATGAGTGGGTCG-3' (配列番号8)、5'-GGGCCGGGTGGTGGGGGAGGTTCGGTGGATGCGTGGGTCG-3' (配列番号9)、5'-GGGCGGGGTGGTGGGGGAGGTTCGACGGATGCGTGGGTCG-3' (配列番号10)、5'-TGGGCGGGGTGGTGGGGGAGGTTCGGTGAATGCGTGTGTCG-3' (配列番号11)、及び5'-GGGCGTGGTGGTGGGGGAGGTTCGGTGGATGCGTGGGTCG-3' (配列番号12)のいずれかに示される塩基配列であってよい。あるいは、該塩基配列は、配列番号2~12のいずれかに示される塩基配列において、1若しくは2個の塩基が置換、欠失、挿入又は付加された塩基配列であってもよい。一般的に、所望の特性を有する核酸(例えば、特定の分子への結合能を有するアプタマーなど)を取得した場合、数個の塩基配列を置換、欠失、挿入又は付加することによって塩基配列を最適化することができる。このように、配列番号2~12のいずれかに示される塩基配列において、1若しくは2個の塩基が置換、欠失、挿入又は付加されたことによって最適化された塩基配列を含むDNAも、細胞内移行能を有することができる。
In one embodiment, the intracellular translocation DNA of the present invention comprises
The following nucleotide sequence: 5'-N1-N2-GG-N5-N6-N7-GGTGGT-N14-GGGG-N19-N20-G-N22-N23-TCG-N27-N28-N29-G-N31-AT- N34-N35-GTG-N39-N40-TCG-3 '
[Where N1 is deleted or T, N2 is G or deleted, N5 is C or T, N6 is G or C, N7 is G or T N14 is G or C, N19 is A or G, N20 is G or A, N22 is missing or T, N23 is T or A, and N27 is G , T or A, N28 is T, A or C, N29 is deleted or T, N31 is G or A, N34 is G or is deleted, N35 is C or A, N39 is G or T, and N40 is G or A] (SEQ ID NO: 1)
An intracellular translocation region consisting of The base sequence is preferably 5'-GGGCGGGGTGGTGGGGGAGGTTCGGTGGATGCGTGGGTCG-3 '(SEQ ID NO: 2), 5'-GGTGGGGTGGTGGGGGAGGTTCGTTGGATGCGTGGGTCG-3' (SEQ ID NO: 3), 5'-GGGCGGGGTGGTCGGGGGAGTTTCGGTGGATGCGTGGGTCG-3 ' GGGCGGGGTGGTGGGGGAGGTTCGTATGGATGCGTGGATCG-3 '(SEQ ID NO: 5), 5'-GGGCGGGGTGGTGGGGGAGGTTCGATGGATCGTGGGTCG-3' (SEQ ID NO: 6), 5'-GGGCGGGGTGGTGGGGGAGGATCGGTGGATGCGTGGGTGT, GG '-GGGCCGGGTGGTGGGGGAGGTTCGGTGGATGCGTGGGTCG-3' (SEQ ID NO: 9), 5'-GGGCGGGGTGGTGGGGGAGGTTCGACGGATGCGTGGGTCG-3 '(SEQ ID NO: 10), 5'-TGGGCGGGGTGGTGGGGGAGGTTCGGTGAATGCGTGTGGCG' ). Alternatively, the base sequence may be a base sequence in which one or two bases are substituted, deleted, inserted or added in the base sequence shown in any of SEQ ID NOs: 2 to 12. In general, when a nucleic acid having a desired property (e.g., an aptamer capable of binding to a specific molecule) is obtained, the nucleotide sequence can be changed by substituting, deleting, inserting or adding several nucleotide sequences. Can be optimized. Thus, in the base sequence shown in any one of SEQ ID NOs: 2 to 12, DNA containing a base sequence optimized by substitution, deletion, insertion or addition of one or two bases is also available for cells. It can have internal migration ability.
 別の実施形態において、本発明の細胞内移行性DNAは、
 以下の塩基配列: 5'-N1-N2-GG-N5-N6-N7-GGTGGT-N14-GGGG-N19-N20-G-3'
[ここで、N1は欠失しているか又はTであり、N2はGであるか又は欠失しており、N5はC又はTであり、N6はG又はCであり、N7はG又はTであり、N14はG又はCであり、N19はA又はGであり、かつN20はG又はAである] (配列番号13)
を2個以上含む、細胞内移行領域を含み得る。該塩基配列のそれぞれは、好ましくは、5'-GGGCGGGGTGGTGGGGGAGG-3' (配列番号14)、5'-GGTGGGGTGGTGGGGGAGG-3' (配列番号15)、5'-GGGCGGGGTGGTCGGGGGAG-3' (配列番号16)、5'-GGCGGGGTGGTGGGGGAGG-3' (配列番号17)、5'-GGGCCGGGTGGTGGGGGAGG-3' (配列番号18)、5'-TGGGCGGGGTGGTGGGGGAGG-3' (配列番号19)、及び5'-GGGCGTGGTGGTGGGGGAGG-3' (配列番号20)のいずれかに示される塩基配列であってよい。あるいは、該塩基配列のそれぞれは、配列番号14~20のいずれかに示される塩基配列において、1個の塩基が置換、欠失、挿入又は付加された塩基配列であってもよい。該2個以上の塩基配列は、例えば、2~10個、2~5個又は2~3個であってよい。該2個以上の塩基配列のそれぞれは、同じでも異なってもよい。例えば、細胞内移行領域が該塩基配列を2個含み、2個の塩基配列は、両者とも配列番号14に示される塩基配列であってもよいし、又は配列番号14に示される塩基配列と配列番号15に示される塩基配列であってもよい。細胞内移行領域に含まれる該塩基配列は、互いに隣接していてもよいし、又は、任意の他の、例えば1~10、1~5又は1~3塩基長の塩基配列(例えばT、TT、又はTTT)によって隔てられて存在してもよい。
In another embodiment, the intracellular translocation DNA of the present invention comprises
The following nucleotide sequence: 5'-N1-N2-GG-N5-N6-N7-GGTGGT-N14-GGGG-N19-N20-G-3 '
[Where N1 is deleted or T, N2 is G or deleted, N5 is C or T, N6 is G or C, N7 is G or T N14 is G or C, N19 is A or G, and N20 is G or A] (SEQ ID NO: 13)
May contain an intracellular translocation region. Each of the base sequences is preferably 5′-GGGCGGGGTGGTGGGGGAGG-3 ′ (SEQ ID NO: 14), 5′-GGTGGGGTGGTGGGGGAGG-3 ′ (SEQ ID NO: 15), 5′-GGGCGGGGTGGTCGGGGGAG-3 ′ (SEQ ID NO: 16), 5 '-GGCGGGGTGGTGGGGGAGG-3' (SEQ ID NO: 17), 5'-GGGCCGGGTGGTGGGGGAGG-3 '(SEQ ID NO: 18), 5'-TGGGCGGGGTGGTGGGGGAGG-3' (SEQ ID NO: 19), and 5'-GGGCGTGGTGGTGGGGGAGG-3 '(SEQ ID NO: 20 ). Alternatively, each of the base sequences may be a base sequence in which one base is substituted, deleted, inserted or added in the base sequence shown in any of SEQ ID NOs: 14 to 20. The two or more base sequences may be, for example, 2 to 10, 2 to 5, or 2 to 3. Each of the two or more base sequences may be the same or different. For example, the intracellular translocation region includes two of the base sequences, and the two base sequences may both be the base sequence shown in SEQ ID NO: 14, or the base sequence and the sequence shown in SEQ ID NO: 14. The base sequence indicated by number 15 may be used. The base sequences contained in the intracellular translocation region may be adjacent to each other or any other base sequence having a length of 1 to 10, 1 to 5, or 1 to 3 bases (for example, T, TT , Or TTT).
 本発明の細胞内移行性DNAは、細胞内移行領域に加えて、任意の他の塩基配列を含んでよい。本発明の細胞内移行性DNAは、例えば、後述するDNAの多量体化に関与する塩基配列(多量体化領域)や、後述する目的分子との結合に関与する塩基配列を、例えばスペーサー配列(例えばT、TT、又はTTT)を介して、含んでよい。 The intracellular transferable DNA of the present invention may contain any other nucleotide sequence in addition to the intracellular transfer region. Intracellular DNA of the present invention is, for example, a base sequence involved in the multimerization of DNA described later (multimerization region), a base sequence involved in binding to the target molecule described later, such as a spacer sequence ( For example, via T, TT, or TTT).
 本発明の細胞内移行性DNAの長さは、特に限定されないが、38~400塩基長、38~300塩基長、39~200塩基長、39~100塩基長、又は39~50塩基長であってよい。 The length of the intracellular DNA of the present invention is not particularly limited, but is 38 to 400 bases, 38 to 300 bases, 39 to 200 bases, 39 to 100 bases, or 39 to 50 bases long. It's okay.
 本発明の細胞内移行性DNAは、本発明の特徴を損なわない範囲において、リン酸基、糖及び/又は塩基部分において、あるいは、3'末端及び/又は5'末端において、保護基、官能基若しくは置換基(例えば、メチル化、ハロゲン化)又は標識物質(例えば、32P、3H、14C、13Cなどの放射性同位体又はFITC、DIG若しくはビオチン)などで適宜修飾されていてもよい。また、本発明の細胞内移行性DNAは、DNAを構成するヌクレオチドにおけるリン酸基の酸素原子が硫黄原子で置換(ホスホロチオエート化)されていてもよい。 Intracellular DNA of the present invention is a protective group, functional group at the phosphate group, sugar and / or base moiety, or at the 3 'end and / or 5' end, as long as the characteristics of the present invention are not impaired Alternatively, it may be appropriately modified with a substituent (for example, methylation, halogenation) or a labeling substance (for example, a radioisotope such as 32 P, 3 H, 14 C, 13 C, or FITC, DIG, or biotin). . Further, in the intracellular DNA of the present invention, the oxygen atom of the phosphate group in the nucleotide constituting the DNA may be substituted (phosphorothioated) with a sulfur atom.
 本発明の細胞内移行性DNAは、当技術分野で周知の慣用法によって製造できる。例えば、手動又は自動の反応により、酵素的に又は化学合成によって製造することができる。DNA分子を化学合成する場合、メーカー(例えば、サーモフィッシャーサイエンティフィック、グライナー・ジャパン、シグマアルドリッチなど)の受託製造サービスを利用してもよい。合成されたDNA分子は、例えば溶媒又は樹脂を用いる抽出、沈降、電気泳動又はクロマトグラフィーなどによって、混合物から精製してよい。 The intracellular migration DNA of the present invention can be produced by a conventional method well known in the art. For example, it can be produced by manual or automated reaction, enzymatically or by chemical synthesis. When chemically synthesizing DNA molecules, a contract manufacturing service of a manufacturer (for example, Thermo Fisher Scientific, Greiner Japan, Sigma Aldrich, etc.) may be used. The synthesized DNA molecules may be purified from the mixture, for example, by extraction with a solvent or resin, precipitation, electrophoresis or chromatography.
<多量体>
 本発明の細胞内移行性DNAは、2個以上が結合することにより多量体化されていてもよい。多量体に含まれる細胞内移行性DNAのそれぞれは、同じでも異なってもよい。本発明の細胞内移行性DNAが2個以上結合している多量体は、単一の細胞内移行性DNA(単量体)よりも細胞内移行能が高いため、好ましい。多量体において結合している本発明の細胞内移行性DNAの数は、特に限定されないが、2~5、2~4又は2~3個であってよい。例えば、多量体は、二量体又は三量体であってよい。
<Multimer>
Intracellular DNA of the present invention may be multimerized by binding two or more. Each of the intracellular DNA contained in the multimer may be the same or different. A multimer in which two or more intracellular transferable DNAs of the present invention are bound is preferable because it has higher intracellular transferability than a single intracellular transferable DNA (monomer). The number of intracellular translocating DNAs of the present invention bound in the multimer is not particularly limited, but may be 2 to 5, 2 to 4, or 2 to 3. For example, the multimer may be a dimer or a trimer.
 多量体は、細胞内移行性DNA同士が直接結合したものであってもよいし、間接的に(例えば、リンカー分子を介して、又は本発明の細胞内移行性DNAに含まれる細胞内移行領域以外の任意の塩基配列(多量体化領域)に相補的な塩基配列を有する核酸鎖(アダプター鎖)を介して)結合されたものであってもよい。あるいは、多量体は、ビオチン-アビジン結合を利用して本発明の細胞内移行性DNA同士が結合されたものであってもよい(例えば、特開2010-158237号公報を参照のこと)。 The multimer may be one in which intracellular DNAs are directly bound to each other, or indirectly (for example, via a linker molecule or the intracellular region contained in the intracellular DNA of the present invention). Other than the base sequence (multimerization region) other than the nucleic acid chain (adapter chain) having a complementary base sequence). Alternatively, the multimer may be one in which the intracellular transferable DNAs of the present invention are bound to each other using a biotin-avidin bond (see, for example, JP 2010-158237 A).
 例えば、多量体は、各ユニットが本発明の細胞内移行性DNA及び足場鎖を含む、2個以上のユニットが結合することによって形成されてもよい。ユニットの例示的構造を図1Aに示す。足場鎖は、任意の核酸鎖であってよい。細胞内移行性DNAは、細胞内移行領域、及び多量体化に関与する多量体化領域を含み得る。多量体化領域は、相補的塩基対合を介して足場鎖と結合し得る。多量体化領域と足場鎖との結合は、直接的であってもよく(例えば図1Aに例示されるように)、又は間接的(例えば、アダプター鎖を介して)であってもよい(例えば図1Bに例示されるように)。2個以上のユニットは、足場鎖同士が結合することによって直接的に、又は間接的に(例えばT、TT、又はTTTなどのスペーサー配列を介して)結合し得る。例えば、図1Aに示されるユニットがスペーサー配列を介して3個結合した多量体である三量体の構造を図1Cに示す。また、図1Bに示されるユニットがスペーサー配列を介して3個結合した多量体である三量体の構造を図1Dに示す。 For example, a multimer may be formed by combining two or more units, each unit containing the intracellularly transferred DNA of the present invention and a scaffold chain. An exemplary structure of the unit is shown in FIG. 1A. The scaffold strand may be any nucleic acid strand. Intracellular DNA may include an intracellular translocation region and a multimerization region involved in multimerization. The multimerization region can bind to the scaffold strand through complementary base pairing. The binding between the multimerization region and the scaffold chain may be direct (e.g., as illustrated in FIG.1A) or indirect (e.g., via the adapter chain) (e.g. As illustrated in FIG. 1B). Two or more units can be linked directly or indirectly (eg, via a spacer sequence such as T, TT, or TTT) by binding the scaffold chains together. For example, FIG. 1C shows the structure of a trimer that is a multimer in which three units shown in FIG. 1A are linked via a spacer sequence. FIG. 1D shows the structure of a trimer, which is a multimer in which three units shown in FIG. 1B are linked via a spacer sequence.
 本発明において、細胞内移行性DNAに含まれる細胞内移行領域は、一本鎖であることが好ましい。細胞内移行領域が、それに相補的又は実質的に相補的な塩基配列を含む核酸とアニーリングして二本鎖になると、本発明の細胞内移行性DNAが有する細胞内移行能が低下する又は無効になるからである。 In the present invention, the intracellular migration region contained in the intracellular migration DNA is preferably single-stranded. When the intracellular translocation region is annealed with a nucleic acid containing a complementary or substantially complementary base sequence to become double-stranded, the intracellular translocation ability of the intracellular translocation DNA of the present invention is reduced or ineffective. Because it becomes.
 本発明の細胞内移行性DNA又はその多量体は、それ自体が細胞内に移行し得るだけでなく、該DNA又は多量体と結合した他の分子を細胞内に移行させる性質を有する。したがって、本発明の細胞内移行性DNA又はその多量体は、目的分子を細胞内に導入するための組成物、及び目的分子を細胞内に導入する方法、並びに目的分子の細胞内導入剤及び細胞内導入用キットにおいて有用である。 The intracellular translocation DNA or multimer thereof of the present invention not only can itself migrate into cells, but also has the property of transferring other molecules bound to the DNA or multimers into cells. Therefore, the intracellular translocation DNA or multimer thereof of the present invention includes a composition for introducing a target molecule into a cell, a method for introducing the target molecule into a cell, and an agent for introducing the target molecule into the cell and the cell. It is useful in a kit for internal introduction.
<組成物>
 本発明の細胞内移行性DNA又はその多量体と、細胞内に導入しようとする目的分子とを含む、組成物も提供される。本発明の組成物は、目的分子をin vitro又はin vivoで細胞内に導入するために使用できる。本発明の組成物は、医薬組成物であってもよい。
<Composition>
There is also provided a composition comprising the intracellularly transferred DNA of the present invention or a multimer thereof and a target molecule to be introduced into the cell. The composition of the present invention can be used for introducing a target molecule into cells in vitro or in vivo. The composition of the present invention may be a pharmaceutical composition.
 本明細書において、目的分子は、限定されないが、例えば、核酸、ペプチド若しくはタンパク質(例えば、ホルモン、成長因子、酵素、毒素、抗体若しくは抗体断片など)、脂質、糖、薬物(例えば、抗腫瘍薬など)並びにその他の合成若しくは天然化合物(例えば、FITC、ビオチン若しくはCy3などの標識物質)などを含む。目的分子は、アジド基及びアルキン基から選択される官能基を有していてもよい。目的分子は、好ましくは、細胞内移行性に乏しい核酸、ペプチド又はタンパク質であり得る。 In the present specification, the target molecule is not limited, for example, nucleic acid, peptide or protein (for example, hormone, growth factor, enzyme, toxin, antibody or antibody fragment, etc.), lipid, sugar, drug (for example, antitumor drug) As well as other synthetic or natural compounds (eg, labeled substances such as FITC, biotin or Cy3). The target molecule may have a functional group selected from an azide group and an alkyne group. The target molecule may preferably be a nucleic acid, peptide, or protein that is poor in cell internalization.
 目的分子は、核酸であることがより好ましい。核酸としては、限定されないが、一本鎖又は二本鎖の、DNA、RNA、DNAとRNAのキメラ核酸などがある。目的分子として使用し得る核酸は、miRNA、siRNA、アンチセンス核酸、デコイ核酸、アプタマー、miRNA阻害剤又はギャップマー(gapmer)であり得る。あるいは、目的分子として使用し得る核酸は、発現カセットを含む二本鎖DNA(例えば、プラスミドDNA、若しくはプラスミドDNAを直鎖化した二本鎖DNAなど)であり得る。典型的には、発現カセットは、プロモーター配列と、それに作動可能に連結された遺伝子コード配列とを少なくとも含み得る。 The target molecule is more preferably a nucleic acid. Examples of the nucleic acid include, but are not limited to, single-stranded or double-stranded DNA, RNA, DNA-RNA chimeric nucleic acid, and the like. Nucleic acids that can be used as target molecules can be miRNAs, siRNAs, antisense nucleic acids, decoy nucleic acids, aptamers, miRNA inhibitors or gapmers. Alternatively, the nucleic acid that can be used as the target molecule can be double-stranded DNA containing an expression cassette (for example, plasmid DNA or double-stranded DNA obtained by linearizing plasmid DNA). Typically, an expression cassette can include at least a promoter sequence and a gene coding sequence operably linked thereto.
 目的分子として使用し得る核酸の大きさは、限定されないが、例えばプラスミドDNAなどの高分子核酸の場合は、2,000~10,000塩基、2,000~8,000塩基又は2,000~5,000塩基などであってよい。目的分子として使用し得る核酸の大きさは、siRNAなどの低分子核酸の場合は、例えば5~1,000塩基、10~500塩基、10~300塩基、10~100塩基、又は20~30塩基などであってよい。 The size of the nucleic acid that can be used as the target molecule is not limited. For example, in the case of a high molecular nucleic acid such as plasmid DNA, it may be 2,000 to 10,000 bases, 2,000 to 8,000 bases, or 2,000 to 5,000 bases. The size of a nucleic acid that can be used as a target molecule is, for example, 5 to 1,000 bases, 10 to 500 bases, 10 to 300 bases, 10 to 100 bases, or 20 to 30 bases in the case of a low molecular weight nucleic acid such as siRNA. It may be.
 本明細書において、細胞は、いずれの生物に由来するものであってもよいが、真核生物、例えば脊椎動物、例えば哺乳動物(例えばヒト、サル、ウシ、マウス、ラット)、鳥類、両生類、魚類など、植物、酵母などの微生物に由来する細胞であり得る。細胞は、癌細胞などの培養細胞株であっても、個体や組織から単離された初代培養細胞であってもよい。培養細胞株としては、HEK293T細胞、HeLa細胞、3T3-L1細胞、HepG2細胞、HB2細胞、HW細胞、MCF-7細胞が挙げられる。培養細胞株は、市販のトランスフェクション剤による遺伝子導入効率が低いHB2細胞及びHW細胞であってもよい。細胞は、多能性幹細胞(例えばES細胞及びiPS細胞)又は間葉系幹細胞などの幹細胞であってもよい。細胞は、肝細胞、腎細胞、子宮頸部細胞、脂肪前駆細胞、褐色脂肪前駆細胞、白色脂肪前駆細胞、又は乳腺細胞、あるいはこれらの細胞に由来する細胞であってもよい。また、細胞は、培養されている細胞若しくは単離された細胞だけでなく、組織内(好ましくは、生体外に取り出された)又は個体内の細胞であってもよい。 As used herein, the cells may be derived from any organism, but eukaryotes such as vertebrates such as mammals (e.g., humans, monkeys, cows, mice, rats), birds, amphibians, It may be a cell derived from a microorganism such as a fish, a plant, or a yeast. The cell may be a cultured cell line such as a cancer cell, or a primary cultured cell isolated from an individual or tissue. Examples of cultured cell lines include HEK293T cells, HeLa cells, 3T3-L1 cells, HepG2 cells, HB2 cells, HW cells, and MCF-7 cells. The cultured cell lines may be HB2 cells and HW cells that have low gene transfer efficiency with commercially available transfection agents. The cells may be stem cells such as pluripotent stem cells (eg, ES cells and iPS cells) or mesenchymal stem cells. The cells may be hepatocytes, kidney cells, cervical cells, adipose precursor cells, brown adipose precursor cells, white adipose precursor cells, or mammary cells, or cells derived from these cells. Further, the cell may be not only a cultured cell or an isolated cell but also a cell in a tissue (preferably taken out of a living body) or in an individual.
 本発明の組成物は、被験体に投与することによりin vivoで使用することも可能である。本明細書において、被験体は、真核生物、例えば前述の脊椎動物、植物などを含み得る。 The composition of the present invention can also be used in vivo by administering to a subject. As used herein, a subject can include a eukaryote, such as a vertebrate, plant, etc. as described above.
 本発明の組成物において、目的分子は、細胞内移行性DNA又はその多量体と結合していても、していなくてもよい。組成物の投与時点で目的分子が細胞内移行性DNA又はその多量体と結合していなくても、投与後に目的分子が細胞内移行性DNA又はその多量体と混合されて、結合し、細胞内移行性DNAの作用により目的分子が細胞内に導入されることが可能である。 In the composition of the present invention, the target molecule may or may not be bound to intracellular migration DNA or a multimer thereof. Even if the target molecule is not bound to the intracellular DNA or multimer thereof at the time of administration of the composition, the target molecule is mixed and bound with the intracellular DNA or multimer after administration to bind intracellularly. The target molecule can be introduced into the cell by the action of the migratory DNA.
 本明細書において、目的分子と、本発明の細胞内移行性DNA又はその多量体との結合は、目的分子が、細胞内移行性DNAの作用により細胞内へ導入され得る結合状態を保持できるものであれば、いずれの結合様式であってもよい。結合様式としては、共有結合、又は非共有結合、例えば水素結合、イオン結合、ファンデルワールス結合などが挙げられる。目的分子と、本発明の細胞内移行性DNA又はその多量体との結合は、直接的であっても、又は間接的(例えば、リンカー分子若しくはスペーサー分子を介して、又は本発明の細胞内移行性DNAに含まれる細胞内移行領域以外の任意の塩基配列に相補的な塩基配列を有する核酸鎖(アダプター鎖)を介して)であってもよい。 In the present specification, the binding between the target molecule and the intracellular translocation DNA of the present invention or a multimer thereof can maintain the binding state in which the target molecule can be introduced into the cell by the action of the intracellular translocation DNA. Any binding mode may be used. Examples of the bonding mode include a covalent bond or a non-covalent bond such as a hydrogen bond, an ionic bond, and a van der Waals bond. The binding of the target molecule to the intracellular DNA of the present invention or a multimer thereof may be direct or indirect (for example, via a linker molecule or spacer molecule, or into the intracellular cell of the present invention). Or a nucleic acid chain (adapter chain) having a base sequence complementary to an arbitrary base sequence other than the intracellular translocation region contained in the sex DNA.
 目的分子は、本発明の細胞内移行性DNA又はその多量体のいずれの位置に結合してもよく、例えば、細胞内移行性DNAの5'側及び/又は3'側に結合してもよい。 The target molecule may bind to any position of the intracellular transferable DNA of the present invention or a multimer thereof, for example, may bind to the 5 ′ side and / or 3 ′ side of the intracellular transferable DNA. .
 目的分子が一本鎖核酸である場合、該一本鎖核酸は、本発明の細胞内移行性DNAと同一の核酸鎖上に存在してもよい。目的分子が二本鎖核酸である場合、該二本鎖核酸の一本の鎖が、本発明の細胞内移行性DNAと同一の核酸鎖上に存在してもよい。 When the target molecule is a single-stranded nucleic acid, the single-stranded nucleic acid may be present on the same nucleic acid chain as the intracellular DNA of the present invention. When the target molecule is a double-stranded nucleic acid, one strand of the double-stranded nucleic acid may be present on the same nucleic acid strand as the intracellular DNA of the present invention.
 本発明の細胞内移行性DNA又はその多量体に結合する目的分子の数は、特に限定されないが、1つ以上、例えば1~5、1~4、1~3又は1~2個であり得る。本発明の細胞内移行性DNA又はその多量体に結合する目的分子の数が2個以上である場合、それぞれの目的分子は同じでも異なってもよい。また、目的分子に結合する本発明の細胞内移行性DNA又はその多量体の数は、特に限定されないが、1つ以上、例えば1~5、1~4、1~3又は1~2個であり得る。目的分子に結合する本発明の細胞内移行性DNA又はその多量体の数が2個以上である場合、それぞれの細胞内移行性DNA又はその多量体は同じでも異なってもよい。 The number of target molecules that bind to the intracellular DNA or multimer thereof of the present invention is not particularly limited, but may be one or more, for example, 1 to 5, 1 to 4, 1 to 3, or 1 to 2. . When the number of target molecules that bind to the intracellular DNA or multimer thereof of the present invention is 2 or more, each target molecule may be the same or different. Further, the number of intracellularly transferred DNAs or multimers thereof of the present invention that bind to the target molecule is not particularly limited, but may be one or more, for example, 1 to 5, 1 to 4, 1 to 3, or 1 to 2. possible. When the number of intracellularly transferred DNAs or multimers thereof of the present invention that bind to the target molecule is 2 or more, each intracellularly transferred DNA or multimer thereof may be the same or different.
 組成物中の本発明の細胞内移行性DNA又はその多量体と、目的分子との比率(モル比)は、特に限定されないが、1:10~10:1、1:5~5:1、又は1:2~2:1、例えば1:1であってよい。 The ratio (molar ratio) between the intracellular translocating DNA of the present invention or its multimer and the target molecule in the composition is not particularly limited, but is 1:10 to 10: 1, 1: 5 to 5: 1, Or from 1: 2 to 2: 1, for example 1: 1.
 本発明の細胞内移行性DNA又はその多量体が目的分子と結合している状態において、細胞内移行性DNAに含まれる細胞内移行領域は、一本鎖であることが好ましい。細胞内移行領域が、それに相補的又は実質的に相補的な塩基配列を含む核酸とアニーリングして二本鎖になると、本発明の細胞内移行性DNAが有する細胞内移行能が低下する又は無効になるからである。 In the state where the intracellular transferable DNA of the present invention or a multimer thereof is bound to the target molecule, the intracellular transfer region contained in the intracellular transferable DNA is preferably single-stranded. When the intracellular translocation region is annealed with a nucleic acid containing a complementary or substantially complementary base sequence to become double-stranded, the intracellular translocation ability of the intracellular translocation DNA of the present invention is reduced or ineffective. Because it becomes.
 本発明の組成物は、本発明の細胞内移行性DNA又はその多量体を、有効成分として、すなわち目的分子を細胞内に導入するためのキャリアとして含有する。本発明の組成物は、細胞内移行性DNA若しくはその多量体並びに細胞内に導入しようとする目的分子のみからなってもよいし、本発明の細胞内移行性DNAの作用を阻害しない限り、その他の溶媒、添加剤又は製薬上許容可能な担体などを適宜含有してもよい。例えば、本発明の組成物は、本発明の細胞内移行性DNAの適切な溶媒、例えば、水及び緩衝液(例えばリン酸緩衝液、炭酸緩衝液、トリス緩衝液)などを含んでもよい。 The composition of the present invention contains the intracellular migration DNA of the present invention or a multimer thereof as an active ingredient, that is, as a carrier for introducing a target molecule into cells. The composition of the present invention may be composed only of intracellularly-translocating DNA or a multimer thereof, and a target molecule to be introduced into the cell. These solvents, additives or pharmaceutically acceptable carriers may be contained as appropriate. For example, the composition of the present invention may contain a suitable solvent for the intracellularly transferred DNA of the present invention, such as water and a buffer (for example, phosphate buffer, carbonate buffer, Tris buffer) and the like.
 本発明の組成物に含まれる本発明の細胞内移行性DNA又はその多量体の含有量は、当業者であれば、本発明の細胞内移行性DNAが目的分子を細胞内へ導入する効果を奏するように、適宜決定できる。 The content of the intracellular translocation DNA of the present invention or the multimer thereof contained in the composition of the present invention can be determined by those skilled in the art from the effect of introducing the target molecule into the cell. It can be determined as appropriate.
 本明細書において、製薬上許容可能な担体には、希釈剤又は賦形剤が含まれ、例えば、マルトース、マンニトール、ラクトース、キシロース、トレハロース、ソルビトール、ゼラチン、アラビアガム、グアーガム、トラガカント、エタノール、生理食塩水、リンゲル液などが挙げられる。 As used herein, pharmaceutically acceptable carriers include diluents or excipients such as maltose, mannitol, lactose, xylose, trehalose, sorbitol, gelatin, gum arabic, guar gum, tragacanth, ethanol, physiological Examples include saline and Ringer's solution.
 本発明の組成物は、上記担体に加えて、必要に応じて安定化剤、緩衝剤、乳化剤、等張化剤、防腐剤などの添加剤を含んでもよい。安定化剤としては、例えば、アルブミン、ゼラチン、マンニトール、EDTAナトリウムなどが挙げられる。緩衝剤としては、例えば、クエン酸ナトリウム、クエン酸、リン酸ナトリウムなどが挙げられる。乳化剤としては、例えば、ソルビタン脂肪酸エステル、グリセリン脂肪酸エステルなどが挙げられる。等張化剤としては、例えば、塩化ナトリウム、塩化カリウム、糖類などが挙げられる。防腐剤としては、例えば、塩化ベンザルコニウム、パラオキシ安息香酸、クロロブタノールなどが挙げられる。 The composition of the present invention may contain additives such as stabilizers, buffers, emulsifiers, tonicity agents, preservatives, etc., if necessary, in addition to the above carrier. Examples of the stabilizer include albumin, gelatin, mannitol, sodium EDTA and the like. Examples of the buffer include sodium citrate, citric acid, and sodium phosphate. Examples of the emulsifier include sorbitan fatty acid ester and glycerin fatty acid ester. Examples of the isotonic agent include sodium chloride, potassium chloride, saccharides and the like. Examples of the preservative include benzalkonium chloride, paraoxybenzoic acid, chlorobutanol and the like.
 本発明の組成物は、有効成分である本発明の細胞内移行性DNAの作用を阻害しない限り、他の薬剤を含有することもできる。例えば、注射剤の場合であれば、抗生物質を所定量含有していてもよい。 The composition of the present invention can also contain other drugs as long as the action of the intracellular DNA of the present invention, which is an active ingredient, is not inhibited. For example, in the case of an injection, a predetermined amount of antibiotic may be contained.
 組成物の剤形としては、例えば、注射剤、点眼剤、クリーム剤、点鼻剤、軟膏剤、経粘膜剤、硬膏剤及び座剤などの非経口剤形又は液剤、散剤、錠剤、顆粒剤、カプセル剤、舌下剤、トローチ剤などの経口剤形が挙げられるが、これらに限定されない。 Examples of the dosage form of the composition include parenteral dosage forms such as injections, eye drops, creams, nasal drops, ointments, transmucosal agents, plasters and suppositories, liquids, powders, tablets and granules. Oral dosage forms such as, but not limited to, capsules, sublinguals, lozenges and the like.
 組成物を被験体に投与する場合、具体的な投与量は、個々の被験体に応じて、疾患の進行度若しくは重症度、全身の健康状態、年齢、体重、性別及び治療に対する耐性などに基づき、例えば医師の判断により決定される。 When a composition is administered to a subject, the specific dosage will depend on the individual subject based on the degree or severity of the disease, general health, age, weight, sex and tolerance to treatment, etc. For example, it is determined by the judgment of a doctor.
 本発明の組成物の投与は、全身投与又は局所投与(例えば、患部への直接投与)のいずれであってもよい。投与経路は、非経口又は経口のいずれであってもよく、例えば、腹腔内、静脈内、動脈内、肝臓内、膣内、筋肉内、骨髄内、髄腔内、経皮、皮下、皮内、鼻腔内、腸内、気管支内、肺臓内又は舌下などが挙げられる。 The administration of the composition of the present invention may be either systemic administration or local administration (for example, direct administration to the affected area). The route of administration may be either parenteral or oral, for example, intraperitoneal, intravenous, intraarterial, intrahepatic, intravaginal, intramuscular, intramedullary, intrathecal, transdermal, subcutaneous, intradermal , Intranasal, intestinal, intrabronchial, intrapulmonary, or sublingual.
 また本発明の組成物は、例えば医師が決定した治療計画に基づいて、一定の時間間隔、例えば、1日、2日、3日、4日、5日、6日、1週間、2週間、3週間、1ヶ月、2ヶ月、6ヶ月又は1年などの間隔で、被験体に対して、1~数回又は数十回に分けて投与することができる。
 本発明の組成物により、簡便に目的分子を細胞内へ導入することができる。
Further, the composition of the present invention is based on a treatment plan determined by a doctor, for example, at regular intervals, for example, 1, 2, 3, 4, 5, 6, 1 week, 2 weeks, The subject can be administered once to several times or several tens of times at intervals of 3 weeks, 1 month, 2 months, 6 months or 1 year.
With the composition of the present invention, a target molecule can be easily introduced into cells.
<目的分子の細胞内導入方法>
 本発明の細胞内移行性DNA又はその多量体を用いた、目的分子を細胞内に導入する方法も提供される。本方法は、本発明の上記組成物を細胞と接触させる工程を含む。本発明の方法は、in vitro又はin vivoで実施できる。
<Intracellular introduction method of target molecule>
There is also provided a method for introducing a target molecule into cells using the intracellularly transferred DNA of the present invention or a multimer thereof. The method includes the step of contacting the composition of the present invention with a cell. The method of the present invention can be performed in vitro or in vivo.
 本発明の方法において、本発明の組成物の使用濃度は、特に限定されず、当業者であれば、本発明の細胞内移行性DNAが目的分子を細胞内へ導入する効果を奏するように、適宜決定できる。in vitroの場合、組成物を細胞と接触させる時間は、特に限定されず、30分~24時間の間で適宜設定してよいが、例えば1時間~2時間であってよい。in vitroの場合、組成物を細胞と接触させた後に、適宜細胞を培養してもよい。 In the method of the present invention, the use concentration of the composition of the present invention is not particularly limited, and those skilled in the art can achieve the effect of introducing the intracellular molecule of the present invention into the cell. It can be determined as appropriate. In the case of in vitro, the time for contacting the composition with the cells is not particularly limited, and may be appropriately set between 30 minutes and 24 hours, for example, 1 to 2 hours. In the case of in vitro, the cells may be appropriately cultured after contacting the composition with the cells.
 本発明の方法により、本発明の細胞内移行性DNA又はその多量体と細胞内に導入しようとする目的分子とを含む組成物を、細胞と接触させるだけで、簡便に目的分子を細胞内へ導入することができる。 According to the method of the present invention, a target molecule can be easily transferred into a cell simply by bringing the composition containing the cell-translocating DNA of the present invention or a multimer thereof and the target molecule to be introduced into the cell into contact with the cell. Can be introduced.
<剤>
 本発明の細胞内移行性DNA又はその多量体を含む、目的分子の細胞内導入剤も提供される。本発明の剤は、目的分子をin vitro又はin vivoで細胞内へ導入するために使用できる。例えば本発明の剤は、実験用のトランスフェクション剤としてin vitroで使用できる。あるいは、本発明の剤は、医療目的で目的分子を生体へ送達するためにin vivoで使用できる。
<Agent>
There is also provided an agent for introducing a target molecule into the cell, which contains the intracellularly transferred DNA of the present invention or a multimer thereof. The agent of the present invention can be used for introducing a target molecule into a cell in vitro or in vivo. For example, the agent of the present invention can be used in vitro as an experimental transfection agent. Alternatively, the agent of the present invention can be used in vivo to deliver a target molecule to a living body for medical purposes.
 本発明の剤は、本発明の細胞内移行性DNA又はその多量体を、有効成分として、すなわち目的分子を細胞内に導入するためのキャリアとして含有する。本発明の剤は、本発明の細胞内移行性DNA又はその多量体のみからなってもよいし、本発明の細胞内移行性DNAの作用を阻害しない限り、その他の溶媒、添加剤又は製薬上許容可能な担体などを適宜含有してもよい。例えば、本発明の剤は、本発明の細胞内移行性DNAの適切な溶媒、例えば、水及び緩衝液(例えばリン酸緩衝液、炭酸緩衝液、トリス緩衝液)などを含んでもよい。 The agent of the present invention contains the intracellular migration DNA of the present invention or a multimer thereof as an active ingredient, that is, as a carrier for introducing a target molecule into cells. The agent of the present invention may consist only of the intracellular translocation DNA of the present invention or a multimer thereof, or other solvents, additives or pharmaceuticals as long as the action of the intracellular translocation DNA of the present invention is not inhibited. An acceptable carrier or the like may be appropriately contained. For example, the agent of the present invention may contain a suitable solvent for the intracellularly transferred DNA of the present invention, such as water and a buffer (for example, phosphate buffer, carbonate buffer, Tris buffer) and the like.
 本発明の剤は、細胞内に導入しようとする目的分子を含んでもよい。目的分子は、剤に含まれる本発明の細胞内移行性DNA又はその多量体と結合していても、していなくてもよい。 The agent of the present invention may contain a target molecule to be introduced into cells. The target molecule may or may not be bound to the intracellular migration DNA of the present invention contained in the agent or a multimer thereof.
 本発明の剤に含まれる本発明の細胞内移行性DNA又はその多量体の含有量は、当業者であれば、本発明の細胞内移行性DNAが目的分子を細胞内へ導入する効果を奏するように、適宜決定できる。
 本発明の剤により、簡便に目的分子を細胞内へ導入することができる。
A person skilled in the art can determine the content of the intracellular translocation DNA of the present invention or a multimer thereof contained in the agent of the present invention, and the intracellular translocation DNA of the present invention has an effect of introducing the target molecule into the cell. Thus, it can be determined as appropriate.
With the agent of the present invention, a target molecule can be easily introduced into cells.
<キット>
 本発明の細胞内移行性DNA又はその多量体を含む、目的分子の細胞内導入用キットも提供される。
<Kit>
There is also provided a kit for introducing a molecule of interest into the cell, which contains the intracellularly transferred DNA of the present invention or a multimer thereof.
 本発明のキットは、目的分子を細胞内へ導入する際に使用される細胞培養用培地、細胞培養容器、及び/又はプロトコールが記載された指示書などをさらに含んでよい。本発明のキットに含まれる各構成成分は、それぞれ別個に又は一部若しくは全ての構成成分を混合した状態で、適切な容器内に入れられ、全体が1つ又は複数にパッケージされる。本キットは、細胞内に導入しようとする目的分子をさらに含んでもよい。目的分子は、キットに含まれる、本発明の細胞内移行性DNA又はその多量体と結合していても、していなくてもよい。 The kit of the present invention may further contain a cell culture medium, a cell culture container, and / or instructions describing the protocol used when introducing the target molecule into the cell. Each component contained in the kit of the present invention is individually or in a state where some or all of the components are mixed, placed in a suitable container, and packaged as a whole in one or more. The kit may further include a target molecule to be introduced into the cell. The target molecule may or may not be bound to the intracellular translocation DNA of the present invention or a multimer thereof contained in the kit.
 本発明のキットにより、簡便に目的分子を細胞内へ導入することができる。 The target molecule can be easily introduced into cells by the kit of the present invention.
 以下、実施例を用いて本発明をさらに具体的に説明する。但し、本発明の技術的範囲はこれら実施例に限定されるものではない。
(材料)
 HEK293T細胞(ヒト胎児腎細胞)、HeLa細胞(ヒト子宮頚癌細胞)、HepG2細胞(ヒト肝癌細胞)、HW細胞(マウス白色脂肪前駆細胞)、HB2細胞(マウス褐色脂肪前駆細胞)、3T3-L1細胞(マウス脂肪前駆細胞)、及びMCF-7細胞(ヒト乳腺癌細胞)を実施例で使用した。これらの細胞は、国立研究開発法人理化学研究所バイオリソースセンター又は独立行政法人医薬基盤研究所JCRB細胞バンクなどから入手した。特に記述がない限り、細胞は、10%ウシ胎児血清(FBS、CCB)、及び1%PSG(ペニシリン-ストレプトマイシン-グルタミン)含有D-MEM培地で、37℃/5%CO2加湿インキュベーター内で増殖させた。MCF-7細胞の細胞培養液に加えるFBSはシグマから入手した。
Hereinafter, the present invention will be described more specifically with reference to examples. However, the technical scope of the present invention is not limited to these examples.
(material)
HEK293T cells (human embryonic kidney cells), HeLa cells (human cervical cancer cells), HepG2 cells (human hepatoma cells), HW cells (mouse white fat precursor cells), HB2 cells (mouse brown fat precursor cells), 3T3-L1 Cells (mouse adipose precursor cells) and MCF-7 cells (human breast cancer cells) were used in the examples. These cells were obtained from the National Institute of Physical and Chemical Research Bioresource Center or the National Institute of Biomedical Innovation JCRB Cell Bank. Unless otherwise stated, cells are grown in D-MEM medium containing 10% fetal bovine serum (FBS, CCB) and 1% PSG (penicillin-streptomycin-glutamine) in a 37 ° C / 5% CO 2 humidified incubator. I let you. FBS added to the cell culture solution of MCF-7 cells was obtained from Sigma.
 本実施例で使用したDNAは、サーモフィッシャーサイエンティフィック社(旧ライフテクノロジーズ社)又はグライナー・ジャパン社に合成を依頼した。 The DNA used in this example was synthesized by Thermo Fisher Scientific (formerly Life Technologies) or Greiner Japan.
[実施例1]
Cell SELEX法による細胞内移行性DNAのスクリーニング
 Cell SELEX法を用いて、一本鎖DNAライブラリーから細胞内移行性DNAをスクリーニングした。本実験で用いたCell SELEX法の概要を説明する。本方法では、ランダム配列を含む一本鎖DNAライブラリーから、細胞内に移行したDNAを選択し増幅するラウンドを複数回繰り返すことによって、細胞内移行性DNAのみを選別した。1つのラウンドは、
 工程1: 細胞(及び第1ラウンドではスタートライブラリーDNA)の調製、
 工程2: 細胞のDNAライブラリーとのインキュベーション、
 工程3: トリプシン及びDNase処理による、細胞表面に結合したDNAの分解(本実施例において第1及び第2ラウンドでは工程3を行わなかった)、
 工程4: オリゴDNAの細胞からの抽出、
 工程5: 抽出したオリゴDNAのPCR増幅、及び
 工程6: PCR産物からの目的一本鎖DNAの精製
を含む。第2ラウンド以降では、先行するラウンドで得られた一本鎖DNAをDNAライブラリーとして用いて、工程1~6を行った。第9ラウンドでは、工程5で得られたPCR産物をクローニングし、配列決定した。具体的な方法は、Magalhaes, M. et al., Mol. Ther., Vol. 20, No. 3, pp. 616-624, 2012に準じた。
[Example 1]
Screening for intracellular DNA by Cell SELEX method Intracellular DNA was screened from a single-stranded DNA library using Cell SELEX method. The outline of the Cell SELEX method used in this experiment will be described. In this method, only intracellular transferable DNA was selected by repeating a round of selecting and amplifying DNA transferred into cells from a single-stranded DNA library containing random sequences. One round
Step 1: Preparation of cells (and start library DNA in the first round),
Step 2: Incubation with cell DNA library,
Step 3: Decomposition of DNA bound to the cell surface by trypsin and DNase treatment (Step 3 was not performed in the first and second rounds in this example),
Step 4: Extraction of oligo DNA from cells,
Step 5: PCR amplification of the extracted oligo DNA, and Step 6: Purification of the desired single-stranded DNA from the PCR product. In the second and subsequent rounds, steps 1 to 6 were performed using the single-stranded DNA obtained in the preceding round as a DNA library. In the ninth round, the PCR product obtained in step 5 was cloned and sequenced. The specific method was based on Magalhaes, M. et al., Mol. Ther., Vol. 20, No. 3, pp. 616-624, 2012.
 本実施例のCell SELEX法では、第1~第3ラウンドではHEK293T細胞、第4~第6ラウンドではHeLa細胞、及び第7~第9ラウンドでは3T3-L1細胞を使用した。普遍的にどの細胞内にも導入し得るDNAをスクリーニングするために、このように多種類の細胞を使用した。
 各ラウンドでは、工程1~3の手順が異なり、工程4~6は共通する。以下に各ラウンドの手順を詳細に記載する。
In the Cell SELEX method of this example, HEK293T cells were used in the first to third rounds, HeLa cells were used in the fourth to sixth rounds, and 3T3-L1 cells were used in the seventh to ninth rounds. In order to screen for DNA that can be universally introduced into any cell, multiple types of cells were used in this way.
In each round, steps 1 to 3 are different, and steps 4 to 6 are common. The procedure for each round is described in detail below.
(第1ラウンド)
 第1及び第2ラウンドはスタートライブラリーDNAから幅広く候補DNAを得るために、細胞内に移行したDNAだけでなく、細胞表面に結合したDNAも次のラウンドに使用した。そのため、第1及び第2ラウンドでは、トリプシン及びDNase処理を行わなかった。
(Round 1)
In the first and second rounds, in order to obtain a wide range of candidate DNA from the start library DNA, not only DNA transferred into cells but also DNA bound to the cell surface was used in the next round. Therefore, trypsin and DNase treatment were not performed in the first and second rounds.
 (1) スタートライブラリーDNAとして、39又は40塩基長の様々な塩基配列と、その両端に19又は21塩基長のプライマー領域とを含むオリゴDNAを含む、一本鎖DNAライブラリーを用いた。一本鎖DNAライブラリーの調製に用いた5種類のオリゴDNAを表1に示す。 (1) As the start library DNA, a single-stranded DNA library containing various DNA sequences of 39 or 40 bases in length and oligo DNA containing 19 or 21 bases in length at both ends was used. Table 1 shows the five types of oligo DNAs used for the preparation of single-stranded DNA libraries.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示される5種類のオリゴDNA(100μM)各1.2μLを、クリーンベンチ内で1.5mL容チューブ中で血清含有D-MEM培地18μLと混合し、24μLのスタートライブラリーDNA溶液を調製した。該溶液は使用するまで冷蔵庫で保存した。 Each 1.2 μL of 5 types of oligo DNA (100 μM) shown in Table 1 was mixed with 18 μL of serum-containing D-MEM medium in a 1.5 mL tube in a clean bench to prepare a 24 μL start library DNA solution. The solution was stored in the refrigerator until use.
 (2) HEK293T細胞を24穴プレートにウェル1つあたり細胞2×105個で播種し、一晩培養した。HEK293T細胞は、培地などを全量交換すると剥離してしまうので、100μLを残すようにして操作を行った。培地をウェル1つあたり100μLの培地が残るように取り除き、新しい培地を376.7μL加え、細胞を10分間インキュベートした。
 (3) 培地に、tRNA(40ng/μL)を3.3μL加え、30分間37℃でインキュベートした。
(2) HEK293T cells were seeded at 2 × 10 5 cells per well in a 24-well plate and cultured overnight. The HEK293T cells were detached when the entire medium was exchanged. Therefore, the operation was performed while leaving 100 μL. The medium was removed so that 100 μL of medium remained per well, 376.7 μL of fresh medium was added, and the cells were incubated for 10 minutes.
(3) 3.3 μL of tRNA (40 ng / μL) was added to the medium and incubated at 37 ° C. for 30 minutes.
 (4) 培地に、スタートライブラリーDNA溶液24μLのうち20μLを加え、1時間37℃でインキュベートした。
 (5) 培地を400μL取り除き、細胞を、滅菌ダルベッコPBS(D-PBS(-))(137mM NaCl、2.7mM KCl、8.1mM Na2HPO4、1.47mM KH2PO4) 400μLで2回洗浄した。
 (6) 細胞に、滅菌D-PBS(-)400μLを加え、残存する溶液全てを取り除いた。
(4) 20 μL of 24 μL of the start library DNA solution was added to the medium, and incubated at 37 ° C. for 1 hour.
(5) Remove 400 μL of medium and wash the cells twice with 400 μL of sterile Dulbecco's PBS (D-PBS (-)) (137 mM NaCl, 2.7 mM KCl, 8.1 mM Na 2 HPO 4 , 1.47 mM KH 2 PO 4 ) .
(6) 400 μL of sterilized D-PBS (−) was added to the cells, and all remaining solutions were removed.
 (7) 以下に記載のように、オリゴDNAの細胞からの抽出、抽出したオリゴDNAのPCR増幅、及びPCR産物からの目的一本鎖DNAの精製を行い、一本鎖DNA溶液を得た。
(オリゴDNAの細胞からの抽出)
 オリゴDNAを、TRIzol(サーモフィッシャーサイエンティフィック)を用いて細胞から抽出した。抽出方法は全RNAの抽出法に準じて行った。具体的には、TRIzol 200μLを細胞に滴下し、数回ピペッティングを行った後、全サンプルを1.5mL容チューブに移した。室温で10分間静置後、サンプルにクロロホルムを40μL加え、15秒間ボルテックスで撹拌した。室温で2分30秒間静置後、サンプルを12000x g、4℃で15分間遠心分離した。サンプルの上清のみを回収し、新しい1.5mL容チューブに移し、イソプロパノールを100μL加えて混合物を得た。室温で10分間静置後、混合物を12000x g、4℃で10分間遠心分離した。上清を捨て、ペレットに75%エタノールを200μL加え、7500x g、4℃で5分間遠心分離した。上清を捨て、ペレットを10分間減圧乾燥した。MilliQ水10μLにペレットを溶解し、細胞から抽出したオリゴDNAを含む抽出画分を得た。
(7) As described below, extraction of oligo DNA from cells, PCR amplification of the extracted oligo DNA, and purification of the target single-stranded DNA from the PCR product were performed to obtain a single-stranded DNA solution.
(Extraction of oligo DNA from cells)
Oligo DNA was extracted from the cells using TRIzol (Thermo Fisher Scientific). The extraction method was performed according to the extraction method of total RNA. Specifically, 200 μL of TRIzol was dropped onto the cells, pipetting was performed several times, and then all samples were transferred to 1.5 mL tubes. After standing at room temperature for 10 minutes, 40 μL of chloroform was added to the sample, and the mixture was vortexed for 15 seconds. After standing at room temperature for 2 minutes and 30 seconds, the sample was centrifuged at 12000 × g and 4 ° C. for 15 minutes. Only the sample supernatant was collected, transferred to a new 1.5 mL tube, and 100 μL of isopropanol was added to obtain a mixture. After standing at room temperature for 10 minutes, the mixture was centrifuged at 12000 × g, 4 ° C. for 10 minutes. The supernatant was discarded, and 200 μL of 75% ethanol was added to the pellet, followed by centrifugation at 7500 × g and 4 ° C. for 5 minutes. The supernatant was discarded, and the pellet was dried under reduced pressure for 10 minutes. The pellet was dissolved in 10 μL of MilliQ water to obtain an extracted fraction containing oligo DNA extracted from cells.
(抽出したオリゴDNAのPCR増幅)
 細胞から抽出したオリゴDNAを含む上記抽出画分は全RNAを含み、以降のPCR増幅を阻害するため、上記抽出画分をRNase処理し、その後、PCRを行った。具体的には、10x PCRバッファー 20μL、MilliQ水 157μL、RNase 1μL、及び抽出画分2μLの混合物を37℃で30分間インキュベートし、上記抽出画分をRNase処理した。上記混合物に、dNTP 16μL、FITC-KSプライマー(5'-FITC-CTCGAGGTCGACGGTATCG-3': 配列番号26) 2μL、ビオチン-ラムダgt10プライマー(5'-Biotin-AGCAAGTTCAGCCTGGTTAAG-3': 配列番号27) 2μL、及びPaq5000 DNAポリメラーゼ(アジレントテクノロジー) 1μLを加え(200μLスケール)、以下のPCR条件: 25サイクルの95℃ 20秒、50℃ 20秒、及び72℃ 5秒でPCR増幅を行い、PCR産物を得た。2%アガロースゲル電気泳動により、目的のDNAが増幅されたことを確認した。
(PCR amplification of extracted oligo DNA)
The extracted fraction containing the oligo DNA extracted from the cells contained total RNA, and in order to inhibit subsequent PCR amplification, the extracted fraction was subjected to RNase treatment, and then PCR was performed. Specifically, a mixture of 10 × PCR buffer 20 μL, MilliQ water 157 μL, RNase 1 μL, and extracted fraction 2 μL was incubated at 37 ° C. for 30 minutes, and the extracted fraction was subjected to RNase treatment. In the above mixture, dNTP 16 μL, FITC-KS primer (5′-FITC-CTCGAGGTCGACGGTATCG-3 ′: SEQ ID NO: 26) 2 μL, biotin-lambda gt10 primer (5′-Biotin-AGCAAGTTCAGCCTGGTTAAG-3 ′: SEQ ID NO: 27) 2 μL, And Paq5000 DNA Polymerase (Agilent Technology) 1 μL (200 μL scale), PCR amplification was performed by PCR amplification under the following PCR conditions: 25 cycles of 95 ° C. for 20 seconds, 50 ° C. for 20 seconds, and 72 ° C. for 5 seconds. . It was confirmed by 2% agarose gel electrophoresis that the target DNA was amplified.
(PCR産物からの目的一本鎖DNAの精製)
 上記PCR産物(二本鎖DNA)に含まれる、目的とする細胞内移行能を有するDNA鎖にはFITCが結合し、他方のDNA鎖(相補鎖)にはビオチンが結合している。ストレプトアビジンビーズに二本鎖DNAを固定し、アルカリ溶液で二本鎖DNAを一本鎖DNAに解離させることによって、ビオチンが結合した鎖のみがビーズ上に残り、もう一方の鎖は溶液中に単離する。この方法によって、上記PCR産物から、目的とする細胞内移行能を有する一本鎖DNAを精製した。
(Purification of target single-stranded DNA from PCR products)
FITC is bound to the DNA strand having the ability to move into the cell contained in the PCR product (double-stranded DNA), and biotin is bound to the other DNA strand (complementary strand). By fixing double-stranded DNA to streptavidin beads and dissociating the double-stranded DNA into single-stranded DNA with an alkaline solution, only the biotin-bound strand remains on the bead and the other strand remains in solution. Isolate. By this method, the desired single-stranded DNA having the ability to move into cells was purified from the PCR product.
 具体的には、まず、PCR産物から磁気ビーズによって二本鎖DNAを単離した。Dynabeads(登録商標) MyOneTMStreptavidin C1(サーモフィッシャーサイエンティフィック)をボルテックスで30秒間懸濁し、40μLを1.5mL容チューブに移した。チューブに、1x Binding and Wash buffer (B&Wバッファー)を1mL加え、ボルテックスで30秒間懸濁した。チューブを、16-Position Magnetic Stand(サーモフィッシャーサイエンティフィック)に立てて30秒間静置させた後、上清を捨て、ビーズを洗浄した。ビーズをさらに2回洗浄した。チューブに、2x B&Wバッファー180μL及びPCR産物180μLを加えた。チューブを回転させながら室温で15分間インキュベートした。16-Position Magnetic Standに2分間チューブを立てて、上清を捨て、ビーズを洗浄した。ビーズをさらに3回洗浄して、二本鎖DNAが結合したビーズを得た。次に、ビーズに、50μLの0.2M NaOHを加え、ボルテックスし、室温で1時間インキュベートした。上清を新しいチューブに移し、目的一本鎖DNAを含む溶液を得た。 Specifically, first, double-stranded DNA was isolated from the PCR product by magnetic beads. Dynabeads (registered trademark) MyOne Streptavidin C1 (Thermo Fisher Scientific) was suspended by vortex for 30 seconds, and 40 μL was transferred to a 1.5 mL tube. 1 mL of 1x Binding and Wash buffer (B & W buffer) was added to the tube, and suspended by vortex for 30 seconds. The tube was placed on 16-Position Magnetic Stand (Thermo Fisher Scientific) and allowed to stand for 30 seconds, then the supernatant was discarded and the beads were washed. The beads were washed twice more. To the tube, 2 × B & W buffer 180 μL and PCR product 180 μL were added. The tube was incubated for 15 minutes at room temperature while rotating. A tube was placed on the 16-Position Magnetic Stand for 2 minutes, the supernatant was discarded, and the beads were washed. The beads were further washed 3 times to obtain beads to which double-stranded DNA was bound. Next, 50 μL of 0.2 M NaOH was added to the beads, vortexed and incubated for 1 hour at room temperature. The supernatant was transferred to a new tube to obtain a solution containing the target single-stranded DNA.
 次に、目的一本鎖DNAを含む溶液を、Sephadex G-50を用いてゲル濾過によって精製した。具体的には、1.5mL容チューブの底に針で穴をあけ、蒸留水で湿らせた綿を底の穴に詰めた。新しい1.5mL容チューブを、穴をあけたチューブの受け皿として差し込んだ。1.5mLのSephadex G-50を、穴をあけたチューブに入れ、チューブを800x g、室温で1分間遠心分離した。300μLのTEバッファー(10mM Tris-HCl、1mM EDTA pH 8.0)をチューブに入れ、チューブを800x g、室温で1分間遠心分離して、Sephadex G-50を洗浄した。Sephadex G-50をもう一度洗浄した。上記一本鎖DNAを含む溶液に2μLのOrange-Gを加え、Sephadex G-50ゲルの上にゆっくりと滴下した。チューブを800x g、室温で1分間遠心分離した。受け皿とした下のチューブを新しいチューブに取り換え、Sephadex G-50ゲルにTEバッファーを50μLゆっくり滴下し、800x g、室温で1分間遠心分離して、溶出液を回収した。下のチューブに回収された溶出液にOrange-Gが溶出するまで、TEバッファーの滴下と溶出液の回収を繰り返した。各溶出液のFITC(励起波長488nm、蛍光波長530nm)の蛍光強度を蛍光プレートリーダーで計測し、(蛍光強度の値)>1となる溶出液を混合して、目的一本鎖DNAを含む溶液を得た。 Next, the solution containing the target single-stranded DNA was purified by gel filtration using Sephadex® G-50. Specifically, a hole was made with a needle in the bottom of a 1.5 mL tube, and cotton dampened with distilled water was filled in the bottom hole. A new 1.5 mL tube was inserted as a saucer for the perforated tube. 1.5 mL Sephadex® G-50 was placed in a tube with a hole and the tube was centrifuged at 800 × g for 1 minute at room temperature. 300 μL of TE buffer (10 mM Tris-HCl, 1 mM EDTA pH 8.0) was placed in a tube, and the tube was centrifuged at 800 × g for 1 minute at room temperature to wash Sephadex G-50. Sephadex® G-50 was washed once more. 2 μL of Orange-G was added to the solution containing the single-stranded DNA and slowly dropped onto the Sephadex® G-50 gel. The tube was centrifuged at 800 x g for 1 minute at room temperature. The bottom tube used as the pan was replaced with a new tube, and 50 μL of TE buffer was slowly added dropwise to Sephadex® G-50 gel, and the eluate was collected by centrifugation at 800 × 室温 g for 1 minute at room temperature. The dropping of TE buffer and the collection of the eluate were repeated until Orange-G eluted in the eluate collected in the lower tube. Measure the fluorescence intensity of FITC (excitation wavelength: 488 nm, fluorescence wavelength: 530 nm) of each eluate with a fluorescence plate reader, and mix the eluate with (fluorescence intensity value)> 1 to contain the target single-stranded DNA Got.
 続いて、エタノール沈殿によって目的一本鎖DNAを含む溶液をさらに精製した。標準的な手順にしたがってエタノール沈殿によって得られたペレットを、MilliQ水で所望の濃度になるように溶解させ、精製された目的一本鎖DNAを含む溶液を得た。 Subsequently, the solution containing the target single-stranded DNA was further purified by ethanol precipitation. The pellet obtained by ethanol precipitation according to a standard procedure was dissolved in MilliQ water to a desired concentration to obtain a solution containing purified target single-stranded DNA.
(第2ラウンド)
 (1) 第1ラウンドの(2)~(3)を同様に行った。
 (2) 培地に、第1ラウンドで得た一本鎖DNA溶液を20μL加え、1時間37℃でインキュベートした。
 (3) 第1ラウンドの(5)~(6)を同様に行った。
 (4) 第1ラウンドに記載したように、オリゴDNAの細胞からの抽出、抽出したオリゴDNAのPCR増幅、及びPCR産物からの目的一本鎖DNAの精製を行い、一本鎖DNA溶液を得た。
(2nd round)
(1) The first round (2) to (3) was performed in the same manner.
(2) 20 μL of the single-stranded DNA solution obtained in the first round was added to the medium and incubated at 37 ° C. for 1 hour.
(3) The first round (5) to (6) was performed in the same manner.
(4) As described in the first round, extraction of oligo DNA from cells, PCR amplification of the extracted oligo DNA, and purification of the target single-stranded DNA from the PCR product yielded a single-stranded DNA solution. It was.
(第3ラウンド)
 第3ラウンド以降は、細胞内に移行したDNAのみを得るため、DNAと細胞のインキュベーション後に、細胞をトリプシン及びDNaseで処理した。
 (1) 第2ラウンドの(1)~(3)を同様に行った。
 (2) 細胞に、トリプシンを170μL加え、3分間37℃でインキュベートした。
 (3) 細胞に、D-MEM培地を750μL加え、細胞を含む溶液を1.5mL容チューブに移した。
 (4) チューブを1000rpm、室温で3分間遠心分離した。
(3rd round)
From the third round onwards, in order to obtain only the DNA transferred into the cells, the cells were treated with trypsin and DNase after the incubation of the DNA and the cells.
(1) The second round (1) to (3) was performed in the same manner.
(2) To the cells, 170 μL of trypsin was added and incubated at 37 ° C. for 3 minutes.
(3) 750 μL of D-MEM medium was added to the cells, and the solution containing the cells was transferred to a 1.5 mL tube.
(4) The tube was centrifuged at 1000 rpm for 3 minutes at room temperature.
 (5) 上清を捨て、細胞にD-MEM培地を50μL加え、懸濁し、細胞懸濁液を得た。
 (6) 細胞懸濁液にDNaseであるBenzonase(Merck Millipore)溶液を0.5μL加えた。
 (7) 細胞懸濁液を30分間37℃でインキュベートした。
 (8) 細胞懸濁液を1000rpm、室温で3分間遠心分離した。
 (9) 上清を捨て、細胞に滅菌D-PBS(-)を100μL加え、1000rpm、室温で3分間遠心分離した。
 (10) 上清を捨てた。
 (11) 第1ラウンドに記載したように、オリゴDNAの細胞からの抽出、抽出したオリゴDNAのPCR増幅、及びPCR産物からの目的一本鎖DNAの精製を行い、一本鎖DNA溶液を得た。
(5) The supernatant was discarded, and 50 μL of D-MEM medium was added to the cells and suspended to obtain a cell suspension.
(6) 0.5 μL of DNase Benzonase (Merck Millipore) solution was added to the cell suspension.
(7) The cell suspension was incubated for 30 minutes at 37 ° C.
(8) The cell suspension was centrifuged at 1000 rpm at room temperature for 3 minutes.
(9) The supernatant was discarded, and 100 μL of sterilized D-PBS (−) was added to the cells, followed by centrifugation at 1000 rpm at room temperature for 3 minutes.
(10) The supernatant was discarded.
(11) As described in the first round, extraction of oligo DNA from cells, PCR amplification of the extracted oligo DNA, and purification of the target single-stranded DNA from the PCR product yielded a single-stranded DNA solution. It was.
(第4及び第5ラウンド)
 HEK293T細胞の代わりにHeLa細胞を使用したことを除いて、第3ラウンドと同様の操作を繰り返した。
(4th and 5th round)
The same operation as in the third round was repeated except that HeLa cells were used instead of HEK293T cells.
(第6ラウンド)
 (1) HeLa細胞を細胞培養用25cm2フラスコでコンフルエントになるまで培養した。
 (2) 5mM EDTAを含むD-PBS(-)1mLを(1)のフラスコに加え、3分間37℃でインキュベートした。
 (3) 細胞に、D-MEM培地を5mL加え、15mL容チューブに移し、1000rpm、室温で3分間遠心分離した。
 (4) 上清を捨て、細胞にD-MEM培地を4mL加え、懸濁した。
 (5) 細胞数を血球計算盤で数えた。
(6th round)
(1) HeLa cells were cultured in a 25 cm 2 flask for cell culture until they became confluent.
(2) 1 mL of D-PBS (−) containing 5 mM EDTA was added to the flask of (1) and incubated at 37 ° C. for 3 minutes.
(3) 5 mL of D-MEM medium was added to the cells, transferred to a 15 mL tube, and centrifuged at 1000 rpm at room temperature for 3 minutes.
(4) The supernatant was discarded, and 4 mL of D-MEM medium was added to the cells and suspended.
(5) The number of cells was counted with a hemocytometer.
 (6) 細胞4×106個を1.5mL容チューブに移した。
 (7) チューブを1000rpm、室温で3分間遠心分離し、上清を捨て、細胞にD-MEM培地を100μL加え、懸濁し、細胞懸濁液を得た。
 (8) 細胞懸濁液にtRNA(40ng/μL)を1μL加え、10分間37℃で転倒混和しながらインキュベートした。
 (9) 細胞懸濁液に前ラウンドで得た一本鎖DNA溶液を20μL加え、1時間37℃でインキュベートした。
(6) 4 × 10 6 cells were transferred to a 1.5 mL tube.
(7) The tube was centrifuged at 1000 rpm at room temperature for 3 minutes, the supernatant was discarded, and 100 μL of D-MEM medium was added to the cells and suspended to obtain a cell suspension.
(8) 1 μL of tRNA (40 ng / μL) was added to the cell suspension and incubated at 37 ° C. for 10 minutes with inversion mixing.
(9) 20 μL of the single-stranded DNA solution obtained in the previous round was added to the cell suspension and incubated at 37 ° C. for 1 hour.
 (10) 細胞懸濁液を1000rpm、室温で3分間遠心分離し、上清を捨てた。
 (11) 細胞に、1μLのBenzonaseを及び100μLのトリプシンの混合液を加え、3分間37℃でインキュベートした。
 (12) 細胞に、D-MEM培地を500μL加え、1000rpm、室温で3分間遠心分離し、上清を捨てた。
 (13) 細胞を滅菌D-PBS(-)400μLで2回洗浄し、滅菌D-PBS(-)を全て取り除いた。
 (14) 第1ラウンドに記載したように、オリゴDNAの細胞からの抽出、抽出したオリゴDNAのPCR増幅、及びPCR産物からの目的一本鎖DNAの精製を行い、一本鎖DNA溶液を得た。
(10) The cell suspension was centrifuged at 1000 rpm at room temperature for 3 minutes, and the supernatant was discarded.
(11) A mixture of 1 μL Benzonase and 100 μL trypsin was added to the cells, and the cells were incubated at 37 ° C. for 3 minutes.
(12) 500 μL of D-MEM medium was added to the cells, centrifuged at 1000 rpm at room temperature for 3 minutes, and the supernatant was discarded.
(13) The cells were washed twice with 400 μL of sterile D-PBS (−) to remove all of the sterile D-PBS (−).
(14) As described in the first round, extraction of oligo DNA from cells, PCR amplification of the extracted oligo DNA, and purification of the target single-stranded DNA from the PCR product yielded a single-stranded DNA solution. It was.
(第7及び第8ラウンド)
 HeLa細胞の代わりに3T3-L1細胞を使用したことを除いて、第6ラウンドと同様の操作を繰り返した。
(Rounds 7 and 8)
The same operation as in the sixth round was repeated except that 3T3-L1 cells were used instead of HeLa cells.
(第9ラウンド)
 PCR増幅まで第8ラウンドと同様の操作を行い、得られたPCR産物を、標準的な手順によって、SmaI消化したpUC18ベクターにクローニングし、塩基配列を決定した。
(9th round)
The same operation as in the eighth round was performed until PCR amplification, and the obtained PCR product was cloned into a SmaI-digested pUC18 vector by a standard procedure, and the nucleotide sequence was determined.
(結果)
 Cell SELEX法によって得られた11種の塩基配列を表2に示す。各塩基配列を、QAp1、QAp3、QAp4、QAp7、QAp8、QAp10、QAp11、QAp14、QAp15、QAp16又はQAp19と名付けた。11種の塩基配列は非常によく類似していた。また、配列決定した19個の塩基配列のうち7個はQAp1配列であった。
(result)
Table 11 shows the 11 base sequences obtained by the Cell SELEX method. Each base sequence was named QAp1, QAp3, QAp4, QAp7, QAp8, QAp10, QAp11, QAp14, QAp15, QAp16 or QAp19. The 11 base sequences were very similar. In addition, 7 of the 19 nucleotide sequences determined were QAp1 sequences.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[実施例2]
DNAの細胞内移行能の評価
 FITCで蛍光標識したDNAとインキュベートした細胞の蛍光強度をフローサイトメーターで測定することによって、実施例1で同定された塩基配列を有するDNAの細胞内移行能を評価した。
(方法)
 (1) 表3に示されるオリゴDNAをグライナー・ジャパン社に合成依頼した。これらのオリゴDNA(antiKS-QAp1、antiKS-QAp3、antiKS-QAp4、antiKS-QAp7、antiKS-QAp8、antiKS-QAp10、antiKS-QAp11、antiKS-QAp14、antiKS-QAp15、antiKS-QAp16、及びantiKS-QAp19)は、5'側にantiKS配列(斜体で示す)、続いてスペーサー配列(小文字で示す)、及び3'側に、実施例1で同定した各塩基配列(QAp1配列、QAp3配列、QAp4配列、QAp7配列、QAp8配列、QAp10配列、QAp11配列、QAp14配列、QAp15配列、QAp16配列若しくはQAp19配列)(大文字で示す)を有する。
[Example 2]
Evaluation of DNA intracellular translocation ability By measuring the fluorescence intensity of cells incubated with FITC fluorescently labeled DNA using a flow cytometer, the intracellular translocation ability of the DNA having the base sequence identified in Example 1 was evaluated. did.
(Method)
(1) The oligo DNA shown in Table 3 was commissioned to Greiner Japan. These oligo DNAs (antiKS-QAp1, antiKS-QAp3, antiKS-QAp4, antiKS-QAp7, antiKS-QAp8, antiKS-QAp10, antiKS-QAp11, antiKS-QAp14, antiKS-QAp15, antiKS-QAp16, and antiKS-QAp19) Is an antiKS sequence (shown in italics) on the 5 ′ side, followed by a spacer sequence (shown in lower case), and on the 3 ′ side, each base sequence identified in Example 1 (QAp1, QAp3, QAp4, QAp7 Sequence, QAp8 sequence, QAp10 sequence, QAp11 sequence, QAp14 sequence, QAp15 sequence, QAp16 sequence or QAp19 sequence) (shown in capital letters).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 単量体の調製: 表3に示されるオリゴDNA(antiKS-QAp1)に、FITCを5'末端に有するオリゴDNAであるFITC-KSプライマー(5'-FITC-CTCGAGGTCGACGGTATCG-3': 配列番号26)をアニーリングさせ、被験DNA単量体(QAp1単量体)とした。QAp1単量体の構造を図2Aに示す。具体的には、antiKS-QAp1(配列番号28)(50μM) 0.8μL、FITC-KSプライマー(配列番号26)(50μM) 0.8μL及びD-PBS(-) 18.4μLを混合し、95℃、80℃、70℃、60℃、55℃及び37℃で各5分の処理によってアニーリングさせ、被験DNA単量体(QAp1単量体)を調製し、4℃で保存した。 Preparation of monomer: オ リ ゴ FITC-KS primer (5'-FITC-CTCGAGGTCGACGGTATCG-3 ': SEQ ID NO: 26), which is an oligo DNA having FITC at the 5' end, in the oligo DNA (antiKS-QAp1) shown in Table 3 Was annealed to obtain a test DNA monomer (QAp1 monomer). The structure of the QAp1 monomer is shown in FIG. 2A. Specifically, antiKS-QAp1 (SEQ ID NO: 28) (50 μM) 0.8 μL, FITC-KS primer (SEQ ID NO: 26) (50 μM) 0.8 μL, and D-PBS (−) 18.4 μL were mixed at 95 ° C., 80 The test DNA monomer (QAp1 monomer) was prepared by annealing at 5 ° C., 70 ° C., 60 ° C., 55 ° C. and 37 ° C. for 5 minutes each, and stored at 4 ° C.
 また、QAp1単量体において、QAp1配列が、相補的なオリゴDNAであるantiQAp1(5'-CGACCCACGCATCCACCGAACCTCCCCCACCACCCCGCCC-3': 配列番号39)と二本鎖を形成している核酸を、対照DNA単量体として用いた。具体的には、antiKS-QAp1(配列番号28)(50μM) 0.8μL、antiQAp1(配列番号39)(50μM) 0.8μL、FITC-KSプライマー(配列番号26)(50μM) 0.8μL及びD-PBS(-) 17.6μLを混合し、95℃、80℃、70℃、60℃、55℃及び37℃で各5分の処理によってアニーリングさせ、対照DNA単量体を調製し、4℃で保存した。 In addition, in the QAp1 monomer, a nucleic acid whose QAp1 sequence forms a double strand with a complementary oligo DNA antiQAp1 (5'-CGACCCACGCATCCACCGAACCTCCCCCACCACCCCGCCC-3 ': SEQ ID NO: 39) is used as a control DNA monomer. Used as. Specifically, antiKS-QAp1 (SEQ ID NO: 28) (50 μM) 0.8 μL, antiQAp1 (SEQ ID NO: 39) (50 μM) 0.8 μL, FITC-KS primer (SEQ ID NO: 26) (50 μM) 0.8 μL and D-PBS ( -) 17.6 μL of was mixed and annealed at 95 ° C., 80 ° C., 70 ° C., 60 ° C., 55 ° C. and 37 ° C. for 5 minutes each, and a control DNA monomer was prepared and stored at 4 ° C.
 三量体の調製: 表3に示される各オリゴDNA(antiKS-QAp1、antiKS-QAp3、antiKS-QAp4、antiKS-QAp7、antiKS-QAp8、antiKS-QAp10、antiKS-QAp11、antiKS-QAp14、antiKS-QAp15、antiKS-QAp16、及びantiKS-QAp19)を、オリゴDNAであるbackboneM13Fx3(5'-TGTAAAACGACGGCCAGTTTGTAAAACGACGGCCAGTTTGTAAAACGACGGCCAGT-3': 配列番号40)、及びFITCを5'末端に有するオリゴDNAであるFITC-KS-antiM13F(5'-FITC-TCGAGGTCGACGGTATCGTACTGGCCGTCGTTTTACA-3': 配列番号41)とアニーリングさせ、被験DNA三量体とした(それぞれ、QAp1三量体、QAp3三量体、QAp4三量体、QAp7三量体、QAp8三量体、QAp10三量体、QAp11三量体、QAp14三量体、QAp15三量体、QAp16三量体又はQAp19三量体と称する)。被験DNA三量体(一例としてQAp1三量体)の構造を図2Bに示す。具体的には、表3に示される各オリゴDNA(50μM) 2.4μL、backboneM13Fx3(配列番号40)(50μM) 0.8μL、FITC-KS-antiM13F(配列番号41)(50μM) 2.4μL及びD-PBS(-) 14.4μLを混合し、95℃、80℃、70℃、60℃、55℃及び37℃で各5分の処理によってアニーリングさせ、被験DNA三量体を調製し、4℃で保存した。 Trimer preparation: Each oligo DNA shown in Table 3 (antiKS-QAp1, antiKS-QAp3, antiKS-QAp4, antiKS-QAp7, antiKS-QAp8, antiKS-QAp10, antiKS-QAp11, antiKS-QAp14, antiKS-QAp15 , AntiKS-QAp16, and antiKS-QAp19) are oligo DNA backboneM13Fx3 (5'-TGTAAAACGACGGCCAGTTTGTAAAACGACGGCCAGTTTGTAAAACGACGGCCAGT-3 ': SEQ ID NO: 40), and FITC-KS-antiM13F (5) Annealed with '-FITC-TCGAGGTCGACGGTATCGTACTGGCCGTCGTTTTACA-3': SEQ ID NO: 41) to give test DNA trimers (QAp1 trimer, QAp3 trimer, QAp4 trimer, QAp7 trimer, QAp8 trimer, respectively) , QAp10 trimer, QAp11 trimer, QAp14 trimer, QAp15 trimer, QAp16 trimer or QAp19 trimer). The structure of the test DNA trimer (QAp1 trimer as an example) is shown in FIG. 2B. Specifically, each oligo DNA shown in Table 3 (50 μM) 、 2.4 μL, backboneM13Fx3 (SEQ ID NO: 40) (50 μM) 0.8 μL, FITC-KS-antiM13F (SEQ ID NO: 41) (50 μM) 2.4 μL and D-PBS (-) 14.4 μL of was mixed, annealed at 95 ° C, 80 ° C, 70 ° C, 60 ° C, 55 ° C and 37 ° C for 5 minutes each to prepare a test DNA trimer and stored at 4 ° C .
 また、QAp1三量体において、QAp1配列が、相補的なオリゴDNAであるantiQAp1(配列番号39)と二本鎖を形成している核酸を、対照DNA三量体として用いた。具体的には、antiKS-QAp1(配列番号28)(50μM) 2.4μL、antiQAp1(配列番号39)(50μM) 2.4μL、backboneM13Fx3(配列番号40)(50μM) 0.8μL、FITC-KS-antiM13F(配列番号41)(50μM) 2.4μL及びD-PBS(-) 12μLを混合し、95℃、80℃、70℃、60℃、55℃及び37℃で各5分の処理によってアニーリングさせ、対照DNA三量体とした。 In addition, in the QAp1 trimer, a nucleic acid in which the QAp1 sequence forms a double strand with antiQAp1 (SEQ ID NO: 39), which is a complementary oligo DNA, was used as a control DNA trimer. Specifically, antiKS-QAp1 (SEQ ID NO: 28) (50 μM) 2.4 μL, antiQAp1 (SEQ ID NO: 39) (50 μM) 2.4 μL, backboneM13Fx3 (SEQ ID NO: 40) (50 μM) 0.8 μL, FITC-KS-antiM13F (sequence) Number 41) (50 μM) 2.4 μL and D-PBS (−) 12 μL were mixed and annealed at 95 ° C., 80 ° C., 70 ° C., 60 ° C., 55 ° C. and 37 ° C. for 5 minutes each, It was taken as a mass.
 (2) 25cm2細胞培養用フラスコ内の培地をアスピレーターで除き、細胞を滅菌D-PBS(-)1mLで洗浄した。
 (3) 0.5mM EDTAを含むD-PBS(-)又はトリプシンを1mL入れて37℃で細胞が剥離するまでインキュベートした。
 (4) 10%FBS及び1%PSG含有D-MEM培地を5mL加え、細胞を懸濁し、15mL容チューブに移した。
 (5) チューブを1000rpm、室温で3分間遠心分離し、上清を捨てた。
 (6) 細胞数が所望の数になるように血清含有培地又は血清不含培地で懸濁し、細胞懸濁液を得た。
(2) The medium in the 25 cm 2 cell culture flask was removed with an aspirator, and the cells were washed with 1 mL of sterile D-PBS (−).
(3) 1 mL of D-PBS (−) containing 0.5 mM EDTA or trypsin was added and incubated at 37 ° C. until the cells were detached.
(4) 5 mL of D-MEM medium containing 10% FBS and 1% PSG was added, the cells were suspended, and transferred to a 15 mL tube.
(5) The tube was centrifuged at 1000 rpm for 3 minutes at room temperature, and the supernatant was discarded.
(6) The cells were suspended in a serum-containing medium or a serum-free medium so that the desired number of cells was obtained to obtain a cell suspension.
 (7) 細胞懸濁液を1.5mL容チューブに80μlずつ分注した。
 (8) 細胞懸濁液に、(1)で調製した被験DNA単量体若しくは三量体、又は対照DNA単量体若しくは三量体を加え、37℃で1時間インキュベートした。
 (9) 1000rpm、室温で3分間遠心分離し、上清を捨てた。
 (10) 細胞にトリプシンを100μL、及びBenzonase 25Uを加え、3分間37℃でインキュベートした後、細胞にD-MEM培地を500μL加え、1000rpm、室温で3分間遠心分離し、上清を捨てた。但し、この工程(トリプシン及びBenzonase(DNase)処理)は、「結果」の項で明記する場合にのみ実施した。
 (11) 細胞に滅菌D-PBS(-)を500μL加え、細胞を懸濁した。
(7) 80 μl of cell suspension was dispensed into a 1.5 mL tube.
(8) The test DNA monomer or trimer prepared in (1) or the control DNA monomer or trimer was added to the cell suspension and incubated at 37 ° C. for 1 hour.
(9) The mixture was centrifuged at 1000 rpm for 3 minutes at room temperature, and the supernatant was discarded.
(10) After adding 100 μL of trypsin and Benzonase 25U to the cells and incubating at 37 ° C. for 3 minutes, 500 μL of D-MEM medium was added to the cells, centrifuged at 1000 rpm for 3 minutes at room temperature, and the supernatant was discarded. However, this step (trypsin and Benzonase (DNase) treatment) was performed only when specified in the “Results” section.
(11) 500 μL of sterilized D-PBS (−) was added to the cells to suspend the cells.
 (12) フローサイトメーターを用いて細胞の蛍光強度を測定した。細胞カウント数がピークを示す蛍光強度値が、被験DNA単量体において対照DNA単量体と比較して増加した場合、又は被験DNA三量体において対照DNA三量体と比較して増加した場合、被験DNA単量体又は三量体は細胞内移行能を有するとみなすことができる。また、平均蛍光強度の比率([被験DNA単量体とインキュベートした細胞の平均蛍光強度]/[対照DNA単量体とインキュベートした細胞の平均蛍光強度]又は[被験DNA三量体とインキュベートした細胞の平均蛍光強度]/[対照DNA三量体とインキュベートした細胞の平均蛍光強度])を計算した。この比率が1を越える場合、例えば1.5以上である場合、被験DNA単量体又は三量体は細胞内移行能を有するとみなすことができる。 (12) The fluorescence intensity of the cells was measured using a flow cytometer. When the fluorescence intensity value at which the cell count reaches a peak is increased in the test DNA monomer compared to the control DNA monomer, or in the test DNA trimer compared to the control DNA trimer The test DNA monomer or trimer can be regarded as having the ability to translocate into cells. In addition, the ratio of average fluorescence intensity ([average fluorescence intensity of cells incubated with test DNA monomer] / [average fluorescence intensity of cells incubated with control DNA monomer] or [cells incubated with test DNA trimer] Mean fluorescence intensity] / [mean fluorescence intensity of cells incubated with control DNA trimer]). When this ratio exceeds 1, for example, when it is 1.5 or more, the test DNA monomer or trimer can be regarded as having the ability to translocate into the cell.
(単量体の結果)
 QAp1単量体とインキュベートしたHepG2細胞において、対照と比較して、細胞カウント数がピークを示す蛍光強度値は増加した(図3A)(平均蛍光強度の比率7.2)。QAp1単量体とインキュベートした3T3-L1細胞においても、対照と比較して、細胞カウント数がピークを示す蛍光強度値は増加した(図3B)(平均蛍光強度の比率4.6)。したがって、QAp1単量体は、細胞内移行能を有し得ることが示された。
(Monomer results)
In HepG2 cells incubated with QAp1 monomer, the fluorescence intensity value showing a peak cell count increased compared to the control (FIG. 3A) (average fluorescence intensity ratio 7.2). Also in 3T3-L1 cells incubated with QAp1 monomer, the fluorescence intensity value showing a peak cell count increased compared to the control (FIG. 3B) (average fluorescence intensity ratio 4.6). Therefore, it was shown that the QAp1 monomer can have intracellular translocation ability.
 図3に結果を示した実験では、細胞表面に結合したDNAに結合しているFITC蛍光も検出している可能性がある。そこで次に細胞表面に結合したDNAに結合しているFITC蛍光の影響を排除するため、細胞をトリプシン及びDNase処理してから蛍光強度を測定した。その結果、QAp1単量体とインキュベートした3T3-L1細胞において、対照と比較して、細胞カウント数がピークを示す蛍光強度値は依然として増加することが確認できた(図4)(平均蛍光強度の比率4.2)。よって、QAp1単量体は細胞内移行能を有することが示された。
 以上の結果から、実施例1で同定された塩基配列を有するDNA単量体は、複数の細胞の細胞内に移行する能力を有することが示された。
In the experiment whose result is shown in FIG. 3, FITC fluorescence bound to DNA bound to the cell surface may also be detected. Therefore, in order to eliminate the influence of FITC fluorescence bound to DNA bound to the cell surface, the fluorescence intensity was measured after treating the cells with trypsin and DNase. As a result, in 3T3-L1 cells incubated with QAp1 monomer, it was confirmed that the fluorescence intensity value showing the peak cell count still increased compared to the control (FIG. 4) (average fluorescence intensity). Ratio 4.2). Therefore, it was shown that the QAp1 monomer has the ability to move into cells.
From the above results, it was shown that the DNA monomer having the base sequence identified in Example 1 has the ability to migrate into a plurality of cells.
(三量体の結果)
 QAp1三量体、QAp3三量体、QAp4三量体、QAp7三量体、QAp8三量体、QAp10三量体、QAp11三量体、QAp14三量体、QAp15三量体、QAp16三量体又はQAp19三量体のいずれとインキュベートしたHB2細胞においても、対照と比較して、細胞カウント数がピークを示す蛍光強度値は増加した(図5)(平均蛍光強度の比率: QAp1三量体 3.1、QAp3三量体 1.8、QAp4三量体 2.0、QAp7三量体 2.0、QAp8三量体 3.0、QAp10三量体 2.9、QAp11三量体 2.6、QAp14三量体 1.7、QAp15三量体 2.6、QAp16三量体 2.7及びQAp19三量体 1.8)。
(Trimer results)
QAp1 trimer, QAp3 trimer, QAp4 trimer, QAp7 trimer, QAp8 trimer, QAp10 trimer, QAp11 trimer, QAp14 trimer, QAp15 trimer, QAp16 trimer or In HB2 cells incubated with any of the QAp19 trimers, the fluorescence intensity value showing the peak cell count increased compared to the control (FIG. 5) (ratio of average fluorescence intensity: QAp1 trimer 3.1, QAp3 trimer 1.8, QAp4 trimer 2.0, QAp7 trimer 2.0, QAp8 trimer 3.0, QAp10 trimer 2.9, QAp11 trimer 2.6, QAp14 trimer 1.7, QAp15 trimer 2.6, QAp16 trimer Mer 2.7 and QAp19 trimer 1.8).
 QAp1三量体を、さらにHEK293T細胞及びHW細胞とインキュベートしたところ、いずれの細胞においても、対照と比較して、細胞カウント数がピークを示す蛍光強度値は増加した(図6)(それぞれ、平均蛍光強度の比率2.5及び3.8)。 When QAp1 trimer was further incubated with HEK293T cells and HW cells, the fluorescence intensity value showing a peak cell count increased in each cell as compared to the control (FIG. 6) (each average Fluorescence intensity ratio 2.5 and 3.8).
 以上のことから、QAp1三量体、QAp3三量体、QAp4三量体、QAp7三量体、QAp8三量体、QAp10三量体、QAp11三量体、QAp14三量体、QAp15三量体、QAp16三量体及びQAp19三量体は、細胞内移行能を有し得ることが示された。また、該DNA三量体は、市販のトランスフェクション剤による遺伝子導入効率が低いHW細胞及びHB2細胞においても細胞内移行し得ることが示された。 From the above, QAp1 trimer, QAp3 trimer, QAp4 trimer, QAp7 trimer, QAp8 trimer, QAp10 trimer, QAp11 trimer, QAp14 trimer, QAp15 trimer, It has been shown that QAp16 trimer and QAp19 trimer can have intracellular translocation ability. It was also shown that the DNA trimer can translocate into HW cells and HB2 cells with low gene transfer efficiency with a commercially available transfection agent.
 図5及び6に結果を示した実験では、細胞表面に結合したDNAに結合しているFITC蛍光も検出している可能性がある。そこで次に細胞表面に結合したDNAに結合しているFITC蛍光の影響を排除するため、細胞をトリプシン及びDNase処理してから蛍光強度を測定した。その結果、QAp1三量体とインキュベートしたHEK293T細胞、HB2細胞及びHW細胞において、対照と比較して、細胞カウント数がピークを示す蛍光強度値は依然として増加することが確認できた(図7)(それぞれ、平均蛍光強度の比率2.8、2.1及び2.6)。よって、QAp1三量体は細胞内移行能を有することが示された。
 以上の結果から、実施例1で同定された塩基配列を有するDNA三量体は、複数の細胞の細胞内に移行する能力を有することが示された。
In the experiments whose results are shown in FIGS. 5 and 6, FITC fluorescence binding to DNA bound to the cell surface may also be detected. Therefore, in order to eliminate the influence of FITC fluorescence bound to DNA bound to the cell surface, the fluorescence intensity was measured after treating the cells with trypsin and DNase. As a result, in HEK293T cells, HB2 cells and HW cells incubated with QAp1 trimer, it was confirmed that the fluorescence intensity value showing the peak cell count still increased compared to the control (FIG. 7) ( Average fluorescence intensity ratios 2.8, 2.1 and 2.6, respectively. Therefore, it was shown that QAp1 trimer has the ability to translocate into cells.
From the above results, it was shown that the DNA trimer having the base sequence identified in Example 1 has the ability to migrate into a plurality of cells.
[実施例3]
さらなる細胞内移行能の評価
 QAp1の一部の塩基配列(5'側半分)を1個又は2個含むDNAの細胞内移行能を評価した。
(方法)
 本実施例に使用したオリゴDNAを表4に示す。これらのオリゴDNA(antiKS-QAp1-A及びantiKS-QAp1-AA)は、5'側にantiKS配列(斜体で示す)、続いてスペーサー配列(小文字で示す)、及び3'側に、実施例1で同定したQAp1の5'側半分の塩基配列(大文字で示す)を1個又は2個有する。
[Example 3]
Further evaluation of intracellular translocation ability The intracellular translocation ability of DNA containing one or two partial base sequences (5′-side halves) of QAp1 was evaluated.
(Method)
Table 4 shows the oligo DNAs used in this example. These oligo DNAs (antiKS-QAp1-A and antiKS-QAp1-AA) are 5′-side antiKS sequences (shown in italics), followed by spacer sequences (shown in lowercase letters), and 3′-side in Example 1 One or two base sequences (indicated by capital letters) of the 5 ′ half of QAp1 identified in 1.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示されるオリゴDNAに、FITCを5'末端に有するFITC-KSプライマー(配列番号26)をアニーリングさせ、被験DNA単量体とした(それぞれ、QAp1A単量体又はQAp1AA単量体と称する)。具体的には、表4に示される各オリゴDNA(50μM) 0.8μL、FITC-KSプライマー(配列番号26)(50μM) 0.8μL及びD-PBS(-) 18.4μLを混合し、95℃、80℃、70℃、60℃、55℃及び37℃で各5分の処理によってアニーリングさせ、被験DNA単量体を調製し、4℃で保存した。 An oligo DNA shown in Table 4 was annealed with a FITC-KS primer (SEQ ID NO: 26) having FITC at the 5 ′ end to obtain a test DNA monomer (referred to as QAp1A monomer or QAp1AA monomer, respectively) ). Specifically, each oligo DNA shown in Table 4 (50 μM) 0.8 μL, FITC-KS primer (SEQ ID NO: 26) (50 μM) 0.8 μL and D-PBS (−) 18.4 μL were mixed, 95 ° C., 80 The test DNA monomers were prepared by annealing at 5 ° C., 70 ° C., 60 ° C., 55 ° C. and 37 ° C. for 5 minutes each, and stored at 4 ° C.
 また、FITC-KSプライマー(配列番号26)を対照DNAとして用いた。 In addition, FITC-KS primer (SEQ ID NO: 26) was used as a control DNA.
 実施例2の(2)~(12)と同様の手順で、細胞を被験DNA単量体又は対照DNAとインキュベートし、フローサイトメーターを用いて細胞の蛍光強度を測定した。細胞カウント数がピークを示す蛍光強度値が、被験DNA単量体において対照DNAと比較して増加した場合、被験DNA単量体は細胞内移行能を有するとみなすことができる。また、平均蛍光強度の比率([被験DNA単量体とインキュベートした細胞の平均蛍光強度]/[対照DNAとインキュベートした細胞の平均蛍光強度])を計算した。この比率が1を越える場合、例えば1.5以上である場合、被験DNA単量体は細胞内移行能を有するとみなすことができる。 In the same procedure as in (2) to (12) of Example 2, the cells were incubated with the test DNA monomer or the control DNA, and the fluorescence intensity of the cells was measured using a flow cytometer. When the fluorescence intensity value at which the cell count reaches a peak increases in the test DNA monomer as compared to the control DNA, the test DNA monomer can be regarded as having the ability to migrate into the cell. The ratio of average fluorescence intensity ([average fluorescence intensity of cells incubated with test DNA monomer] / [average fluorescence intensity of cells incubated with control DNA]) was calculated. When this ratio exceeds 1, for example, when it is 1.5 or more, the test DNA monomer can be regarded as having the ability to translocate into the cell.
(結果)
 MCF-7細胞を各被験DNA単量体又は対照DNAとインキュベートし、細胞をトリプシン及びDNase処理し、フローサイトメーターで蛍光強度を測定したところ、QAp1A単量体とインキュベートしたMCF-7細胞において、対照と比較して、細胞カウント数がピークを示す蛍光強度値はほとんど増加しなかった(図8A)(平均蛍光強度の比率1.2)。よって、QAp1の5'側半分の塩基配列を1個だけ含むDNA単量体は細胞内移行能を有さないことが示された。一方、QAp1AA単量体とインキュベートしたMCF-7細胞において、対照と比較して、細胞カウント数がピークを示す蛍光強度値は増加した(図8B)(平均蛍光強度の比率2.4)。よって、QAp1の5'側半分の塩基配列を2個含むDNAは、細胞内移行能を有することが示された。
(result)
MCF-7 cells were incubated with each test DNA monomer or control DNA, the cells were treated with trypsin and DNase, and the fluorescence intensity was measured with a flow cytometer. In MCF-7 cells incubated with QAp1A monomer, Compared with the control, the fluorescence intensity value showing a peak in the cell count number hardly increased (FIG. 8A) (average fluorescence intensity ratio 1.2). Therefore, it was shown that a DNA monomer containing only one 5'-side base sequence of QAp1 does not have the ability to move into cells. On the other hand, in the MCF-7 cells incubated with the QAp1AA monomer, the fluorescence intensity value showing the peak cell count increased compared to the control (FIG. 8B) (average fluorescence intensity ratio 2.4). Therefore, it was shown that DNA containing two base sequences of the 5 ′ half of QAp1 has the ability to move into cells.
 以上のことから、実施例1で同定された塩基配列の5'側半分の塩基配列を2個含むDNAは、細胞内移行能を有することが示された。 From the above, it was shown that DNA containing two 5′-side base sequences of the base sequence identified in Example 1 has the ability to migrate into cells.
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。 All publications, patents and patent applications cited in this specification are incorporated herein by reference in their entirety.

Claims (9)

  1.  以下の塩基配列: 
     5'-N1-N2-GG-N5-N6-N7-GGTGGT-N14-GGGG-N19-N20-G-N22-N23-TCG-N27-N28-N29-G-N31-AT-N34-N35-GTG-N39-N40-TCG-3'
    [ここで、
     N1は、欠失しているか又はTであり、
     N2は、Gであるか又は欠失しており、
     N5は、C又はTであり、
     N6は、G又はCであり、
     N7は、G又はTであり、
     N14は、G又はCであり、
     N19は、A又はGであり、
     N20は、G又はAであり、
     N22は、欠失しているか又はTであり、
     N23は、T又はAであり、
     N27は、G、T又はAであり、
     N28は、T、A又はCであり、
     N29は、欠失しているか又はTであり、
     N31は、G又はAであり、
     N34は、Gであるか又は欠失しており、
     N35は、C又はAであり、
     N39は、G又はTであり、かつ
     N40は、G又はAである] (配列番号1)
    からなる細胞内移行領域を含む、細胞内移行性DNA。
    The following base sequence:
    5'-N1-N2-GG-N5-N6-N7-GGTGGT-N14-GGGG-N19-N20-G-N22-N23-TCG-N27-N28-N29-G-N31-AT-N34-N35-GTG -N39-N40-TCG-3 '
    [here,
    N1 is deleted or T,
    N2 is G or is deleted;
    N5 is C or T;
    N6 is G or C;
    N7 is G or T,
    N14 is G or C;
    N19 is A or G;
    N20 is G or A,
    N22 is deleted or T,
    N23 is T or A,
    N27 is G, T or A,
    N28 is T, A or C;
    N29 is deleted or T,
    N31 is G or A;
    N34 is G or is deleted;
    N35 is C or A,
    N39 is G or T, and N40 is G or A] (SEQ ID NO: 1)
    Intracellular DNA comprising an intracellular translocation region consisting of
  2.  前記塩基配列が、以下の(a)又は(b)である、請求項1に記載の細胞内移行性DNA。
     (a) 5'-GGGCGGGGTGGTGGGGGAGGTTCGGTGGATGCGTGGGTCG-3' (配列番号2)、
     5'-GGTGGGGTGGTGGGGGAGGTTCGTTGGATGCGTGGGTCG-3' (配列番号3)、
     5'-GGGCGGGGTGGTCGGGGGAGTTTCGGTGGATGCGTGGGTCG-3' (配列番号4)、
     5'-GGGCGGGGTGGTGGGGGAGGTTCGTATGGATGCGTGGATCG-3' (配列番号5)、
     5'-GGGCGGGGTGGTGGGGGAGGTTCGATGGATCGTGGGTCG-3' (配列番号6)、
     5'-GGGCGGGGTGGTGGGGGAGGATCGGTGGATGCGTGGGTCG-3' (配列番号7)、
     5'-GGCGGGGTGGTGGGGGAGGTTCGATGGATGAGTGGGTCG-3' (配列番号8)、
     5'-GGGCCGGGTGGTGGGGGAGGTTCGGTGGATGCGTGGGTCG-3' (配列番号9)、
     5'-GGGCGGGGTGGTGGGGGAGGTTCGACGGATGCGTGGGTCG-3' (配列番号10)、
     5'-TGGGCGGGGTGGTGGGGGAGGTTCGGTGAATGCGTGTGTCG-3' (配列番号11)、及び
     5'-GGGCGTGGTGGTGGGGGAGGTTCGGTGGATGCGTGGGTCG-3' (配列番号12)
    のいずれかに示される塩基配列
     (b) 配列番号2~12のいずれかに示される塩基配列において、1若しくは2個の塩基が置換、欠失、挿入又は付加された塩基配列
    The intracellular transferable DNA according to claim 1, wherein the base sequence is the following (a) or (b).
    (a) 5'-GGGCGGGGTGGTGGGGGAGGTTCGGTGGATGCGTGGGTCG-3 '(SEQ ID NO: 2),
    5'-GGTGGGGTGGTGGGGGAGGTTCGTTGGATGCGTGGGTCG-3 '(SEQ ID NO: 3),
    5'-GGGCGGGGTGGTCGGGGGAGTTTCGGTGGATGCGTGGGTCG-3 '(SEQ ID NO: 4),
    5'-GGGCGGGGTGGTGGGGGAGGTTCGTATGGATGCGTGGATCG-3 '(SEQ ID NO: 5),
    5'-GGGCGGGGTGGTGGGGGAGGTTCGATGGATCGTGGGTCG-3 '(SEQ ID NO: 6),
    5'-GGGCGGGGTGGTGGGGGAGGATCGGTGGATGCGTGGGTCG-3 '(SEQ ID NO: 7),
    5'-GGCGGGGTGGTGGGGGAGGTTCGATGGATGAGTGGGTCG-3 '(SEQ ID NO: 8),
    5'-GGGCCGGGTGGTGGGGGAGGTTCGGTGGATGCGTGGGTCG-3 '(SEQ ID NO: 9),
    5'-GGGCGGGGTGGTGGGGGAGGTTCGACGGATGCGTGGGTCG-3 '(SEQ ID NO: 10),
    5'-TGGGCGGGGTGGTGGGGGAGGTTCGGTGAATGCGTGTGTCG-3 '(SEQ ID NO: 11), and 5'-GGGCGTGGTGGTGGGGGAGGTTCGGTGGATGCGTGGGTCG-3' (SEQ ID NO: 12)
    (B) a base sequence in which one or two bases are substituted, deleted, inserted or added in the base sequence shown in any of SEQ ID NOs: 2 to 12
  3.  以下の塩基配列: 
     5'-N1-N2-GG-N5-N6-N7-GGTGGT-N14-GGGG-N19-N20-G-3'
    [ここで、
     N1は、欠失しているか又はTであり、
     N2は、Gであるか又は欠失しており、
     N5は、C又はTであり、
     N6は、G又はCであり、
     N7は、G又はTであり、
     N14は、G又はCであり、
     N19は、A又はGであり、かつ
     N20は、G又はAである] (配列番号13)
    を2個以上含む細胞内移行領域を含む、細胞内移行性DNA。
    The following base sequence:
    5'-N1-N2-GG-N5-N6-N7-GGTGGT-N14-GGGG-N19-N20-G-3 '
    [here,
    N1 is deleted or T,
    N2 is G or is deleted;
    N5 is C or T;
    N6 is G or C;
    N7 is G or T,
    N14 is G or C;
    N19 is A or G, and N20 is G or A] (SEQ ID NO: 13)
    Intracellular DNA comprising an intracellular translocation region containing 2 or more of.
  4.  前記塩基配列のそれぞれが、以下の(a)又は(b)である、請求項3に記載の細胞内移行性DNA。
     (a) 5'-GGGCGGGGTGGTGGGGGAGG-3' (配列番号14)、
     5'-GGTGGGGTGGTGGGGGAGG-3' (配列番号15)、
     5'-GGGCGGGGTGGTCGGGGGAG-3' (配列番号16)、
     5'-GGCGGGGTGGTGGGGGAGG-3' (配列番号17)、
     5'-GGGCCGGGTGGTGGGGGAGG-3' (配列番号18)、
     5'-TGGGCGGGGTGGTGGGGGAGG-3' (配列番号19)、及び
     5'-GGGCGTGGTGGTGGGGGAGG-3' (配列番号20)
    のいずれかに示される塩基配列
     (b) 配列番号14~20のいずれかに示される塩基配列において、1個の塩基が置換、欠失、挿入又は付加された塩基配列
    The intracellular DNA according to claim 3, wherein each of the base sequences is the following (a) or (b).
    (a) 5'-GGGCGGGGTGGTGGGGGAGG-3 '(SEQ ID NO: 14),
    5'-GGTGGGGTGGTGGGGGAGG-3 '(SEQ ID NO: 15),
    5'-GGGCGGGGTGGTCGGGGGAG-3 '(SEQ ID NO: 16),
    5'-GGCGGGGTGGTGGGGGAGG-3 '(SEQ ID NO: 17),
    5'-GGGCCGGGTGGTGGGGGAGG-3 '(SEQ ID NO: 18),
    5'-TGGGCGGGGTGGTGGGGGAGG-3 '(SEQ ID NO: 19), and 5'-GGGCGTGGTGGTGGGGGAGG-3' (SEQ ID NO: 20)
    (B) a base sequence in which one base is substituted, deleted, inserted or added in the base sequence shown in any of SEQ ID NOS: 14 to 20
  5.  2個以上の細胞内移行性DNAが結合してなる、細胞内移行性DNAの多量体であって、該細胞内移行性DNAのそれぞれは、請求項1~4のいずれか一項に記載の細胞内移行性DNAから選択される、細胞内移行性DNA多量体。 A multimer of intracellular translocating DNA formed by binding two or more intracellular translocating DNAs, each of the intracellular translocating DNAs according to any one of claims 1 to 4. Intracellular DNA multimer selected from intracellular translocation DNA.
  6.  請求項1~4のいずれか一項に記載の細胞内移行性DNA又は請求項5に記載の細胞内移行性DNA多量体を含む、目的分子の細胞内導入剤。 5. An agent for introducing a target molecule into the cell, comprising the intracellular transferable DNA according to any one of claims 1 to 4 or the intracellular transferable DNA multimer according to claim 5.
  7.  請求項1~4のいずれか一項に記載の細胞内移行性DNA又は請求項5に記載の細胞内移行性DNA多量体と、細胞内に導入しようとする目的分子とを含む、組成物。 5. A composition comprising the intracellular transferable DNA according to any one of claims 1 to 4 or the intracellular transferable DNA multimer according to claim 5 and a target molecule to be introduced into the cell.
  8.  目的分子を細胞内に導入する方法であって、請求項7に記載の組成物を細胞と接触させることを含む、方法。 A method for introducing a target molecule into a cell, comprising contacting the composition according to claim 7 with the cell.
  9.  請求項1~4のいずれか一項に記載の細胞内移行性DNA又は請求項5に記載の細胞内移行性DNA多量体を含む、目的分子の細胞内導入用キット。 A kit for introducing a target molecule into the cell, comprising the intracellular transferable DNA according to any one of claims 1 to 4 or the intracellular transferable DNA multimer according to claim 5.
PCT/JP2016/077449 2015-09-18 2016-09-16 Dna for intracellular penetration, and method for introducing target molecule into cell using said dna WO2017047750A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017540003A JPWO2017047750A1 (en) 2015-09-18 2016-09-16 Intracellular DNA and method for introducing a target molecule into the cell using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-185295 2015-09-18
JP2015185295 2015-09-18

Publications (1)

Publication Number Publication Date
WO2017047750A1 true WO2017047750A1 (en) 2017-03-23

Family

ID=58289337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077449 WO2017047750A1 (en) 2015-09-18 2016-09-16 Dna for intracellular penetration, and method for introducing target molecule into cell using said dna

Country Status (2)

Country Link
JP (1) JPWO2017047750A1 (en)
WO (1) WO2017047750A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010523157A (en) * 2007-04-09 2010-07-15 ボード オブ リージェンツ, ザ ユニバーシティ オブ テキサス システム Methods for selecting cells that have internalized nucleic acids
WO2013024763A1 (en) * 2011-08-12 2013-02-21 独立行政法人理化学研究所 Production method for nucleic acid aptamer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010523157A (en) * 2007-04-09 2010-07-15 ボード オブ リージェンツ, ザ ユニバーシティ オブ テキサス システム Methods for selecting cells that have internalized nucleic acids
WO2013024763A1 (en) * 2011-08-12 2013-02-21 独立行政法人理化学研究所 Production method for nucleic acid aptamer

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
DATABASE GenBank [O] 15 July 2013 (2013-07-15), PAN, W. ET AL.: "ORIGIN", XP055378373, retrieved from NCBI Database accession no. HQ441578 *
DATABASE GenBank [o] 16 March 2008 (2008-03-16), MCLAREN, S.: "ORIGIN", Database accession no. CU 633917 *
DATABASE GenBank [O] 18 November 2009 (2009-11-18), HUMPHRAY, S. J. ET AL.: "ORIGIN", XP055378377, retrieved from NCBI Database accession no. HE194499 *
DATABASE GenBank [O] 30 June 2012 (2012-06-30), CHEN, J. ET AL.: "ORIGIN", XP055378390, retrieved from NCBI Database accession no. JP761789 *
DATABASE GenBank [O] LIU, Y. ET AL.: "ORIGIN", XP055378371, retrieved from NCBI Database accession no. AC222312 *
DATABASE GenBank 3 April 2008 (2008-04-03), LIU, Y. ET AL.: "ORIGIN", XP055378369, retrieved from NCBI Database accession no. AC222661 *
MAGALHAES, M. L. B. ET AL.: "A General RNA Motif for Cellular Transfection", MOL. THER., vol. 20, 2012, pages 616 - 624, XP055378392 *
XIAO, Z. ET AL.: "cell-Specific Internalization Study of an Aptamer from Whole Cell Selection", CHEM. EUR. J., vol. 14, no. 6, 2008, pages 1769 - 1775, XP055378397 *

Also Published As

Publication number Publication date
JPWO2017047750A1 (en) 2018-07-05

Similar Documents

Publication Publication Date Title
CN109804070B (en) Peptide nucleic acid complexes with improved cell permeability and pharmaceutical compositions comprising the same
JP2022017514A (en) Compositions and methods for modulating apolipoprotein (a) expression
Kubo et al. Amino-modified and lipid-conjugated dicer-substrate siRNA enhances RNAi efficacy
Le et al. Evaluation of anhydrohexitol nucleic acid, cyclohexenyl nucleic acid and d-altritol nucleic acid-modified 2′-O-methyl RNA mixmer antisense oligonucleotides for exon skipping in vitro
US20210246180A1 (en) Methods for expressing proteins in axons
JP2021524245A (en) Use in tRNA / premiRNA compositions and cancer treatment
JP2020504096A (en) Use of a biological RNA scaffold with in vitro selection to generate a robust small molecule binding aptamer for a genetically codeable biosensor
US20210322456A1 (en) Benzimidazoles that enhance the activity of oligonucleotides
JP2022061987A (en) Dna aptamer binding to cancer cell
Jirka et al. Cyclic peptides to improve delivery and exon skipping of antisense oligonucleotides in a mouse model for duchenne muscular dystrophy
JP2023553935A (en) Polynucleotides, compositions, and methods for genome editing with deamination
US20230172964A1 (en) Nucleoporins as Drug Targets for Anti-Proliferative Therapeutics
Detzer et al. Increased RNAi is related to intracellular release of siRNA via a covalently attached signal peptide
JP6948660B2 (en) Method of introducing foreign substances into cells and materials used for the method
Lu et al. Targeting cancer gene dependencies with anthrax-mediated delivery of peptide nucleic acids
Mahato et al. RNA-mediated restoration of mitochondrial function in cells harboring a Kearns Sayre Syndrome mutation
CN110384801B (en) Application of miRNA552 cluster microRNA in treatment of LDLC related metabolic diseases
WO2021095842A1 (en) Library of barcoded extracellular vesicles
WO2017047750A1 (en) Dna for intracellular penetration, and method for introducing target molecule into cell using said dna
Kubiczek et al. Aptamers as promising agents in diagnostic and therapeutic applications
Cohen et al. Mitochondria serve as axonal shuttle for Cox7c mRNA through mechanism that involves its mitochondrial targeting signal
CN114574496A (en) Aptamer sgc8 modified by nucleoside derivative
CN112430596A (en) Application of small RNA molecules and analogs thereof in anti-aging
WO2024010028A1 (en) Circular rna molecule, and translation control method, translation activation system and pharmaceutical composition using same
TW201326195A (en) Nuclear localization signal peptides derived from VP2 protein of chicken anemia virus and uses of said peptides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846621

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017540003

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16846621

Country of ref document: EP

Kind code of ref document: A1