WO2017047484A1 - Cartridge vane pump - Google Patents

Cartridge vane pump Download PDF

Info

Publication number
WO2017047484A1
WO2017047484A1 PCT/JP2016/076378 JP2016076378W WO2017047484A1 WO 2017047484 A1 WO2017047484 A1 WO 2017047484A1 JP 2016076378 W JP2016076378 W JP 2016076378W WO 2017047484 A1 WO2017047484 A1 WO 2017047484A1
Authority
WO
WIPO (PCT)
Prior art keywords
side plate
vane pump
rotor
cartridge
adapter
Prior art date
Application number
PCT/JP2016/076378
Other languages
French (fr)
Japanese (ja)
Inventor
義之 牧
杉原 雅道
智行 中川
考司 義村
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Priority to US15/758,161 priority Critical patent/US20180252212A1/en
Priority to CN201680049898.9A priority patent/CN107949702A/en
Priority to MX2018003386A priority patent/MX2018003386A/en
Priority to EP16846355.2A priority patent/EP3327288A1/en
Publication of WO2017047484A1 publication Critical patent/WO2017047484A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C2/3446Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along more than one line or surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • F01C21/104Stators; Members defining the outer boundaries of the working chamber
    • F01C21/108Stators; Members defining the outer boundaries of the working chamber with an axial surface, e.g. side plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0003Sealing arrangements in rotary-piston machines or pumps
    • F04C15/0023Axial sealings for working fluid
    • F04C15/0026Elements specially adapted for sealing of the lateral faces of intermeshing-engagement type machines or pumps, e.g. gear machines or pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/06Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0003Sealing arrangements in rotary-piston machines or pumps
    • F04C15/0023Axial sealings for working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/20Manufacture essentially without removing material
    • F04C2230/22Manufacture essentially without removing material by sintering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/10Stators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/805Fastening means, e.g. bolts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/10Geometry of the inlet or outlet
    • F04C2250/102Geometry of the inlet or outlet of the outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/50Inlet or outlet
    • F05B2250/502Outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/10Inorganic materials, e.g. metals
    • F05B2280/102Light metals
    • F05B2280/1021Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/90Alloys not otherwise provided for
    • F05C2201/903Aluminium alloy, e.g. AlCuMgPb F34,37

Definitions

  • the present invention relates to a cartridge type vane pump.
  • JP 2003-301781A describes a cartridge-type vane pump configured to be detachable from a main body fixed to a base or a frame.
  • An object of the present invention is to provide a cartridge type vane pump capable of reducing the cost while adapting the discharge port of the side plate to the discharge flow path of the fluid pressure device.
  • a cartridge-type vane pump that is detachably accommodated in a body of a fluid pressure device has a rotor that is connected to a drive shaft and is driven to rotate, and an opening on the outer periphery of the rotor.
  • a plurality of slits formed in each of the slits, a vane that is slidably inserted into each slit, a cam ring having an inner peripheral cam surface with which the tip of the vane is in sliding contact, and a rotor and a vane adjacent to the cam ring.
  • a pump chamber a cover member that is in contact with one end surface of the rotor and the cam ring, a side plate that is in contact with the other end surface of the rotor and the cam ring, and a side plate that is formed on the side plate and discharged from the pump chamber.
  • FIG. 1 is a front view of a cartridge type vane pump according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the cartridge type vane pump according to the embodiment of the present invention as viewed from the cover member side.
  • FIG. 3 is an exploded perspective view seen from the adapter side of the cartridge type vane pump according to the embodiment of the present invention.
  • FIG. 4 is a sectional view in the axial direction of the cartridge type vane pump according to the embodiment of the present invention.
  • FIG. 5 is an enlarged view of a fastening member of the cartridge type vane pump according to the embodiment of the present invention.
  • FIG. 6 is a plan view of the adapter of the cartridge type vane pump according to the embodiment of the present invention.
  • FIG. 7 is a rear view of the adapter of the cartridge type vane pump according to the embodiment of the present invention.
  • the cartridge type vane pump 100 is used as a fluid pressure supply source for a fluid pressure device mounted on a vehicle, for example, a power steering device or a transmission.
  • the working fluid is hydraulic oil or other water-soluble alternative liquid.
  • the cartridge-type vane pump 100 (hereinafter simply referred to as “vane pump 100”) is detachably accommodated in an accommodating recess 91 formed in the body 90 of the fluid pressure device in a pre-assembled state (the state shown in FIG. 1). (See FIG. 4).
  • the power of an engine (not shown) is transmitted to the end of the drive shaft 1, and the rotor 2 connected to the drive shaft 1 rotates.
  • the vane pump 100 includes a rotor 2 that is connected to the drive shaft 1 and is driven to rotate, and a plurality of slits 2 a that are radially formed with openings on the outer periphery of the rotor 2.
  • a plurality of vanes 3 that are slidably inserted into the respective slits 2 a and are provided so as to be capable of reciprocating in the radial direction with respect to the rotor 2.
  • the rotor 2 is housed and the tip of the vane 3 slides as the rotor 2 rotates.
  • a cam ring 4 having a moving inner peripheral cam surface 4a.
  • a back pressure chamber 5 into which the discharge pressure of the pump is guided is defined on the base end side of the slit 2a.
  • the vane 3 is pressed in the direction of coming out of the slit 2 a by the pressure of the back pressure chamber 5, and the tip part comes into contact with the inner peripheral cam surface 4 a of the cam ring 4.
  • a plurality of pump chambers 6 are defined inside the cam ring 4 by the outer peripheral surface of the rotor 2, the inner peripheral cam surface 4 a of the cam ring, and the adjacent vanes 3.
  • the cam ring 4 is an annular member having an inner circumferential cam surface 4 a that is substantially elliptical, and includes a suction region that expands the volume of the pump chamber 6 as the rotor 2 rotates and a discharge region that contracts the volume of the pump chamber 6. Have Each pump chamber 6 expands and contracts as the rotor 2 rotates.
  • the vane pump 100 is a so-called balanced vane pump in which the cam ring 4 has two suction regions and two discharge regions.
  • the cam ring 4 is formed with notches 4e that communicate the outside and the inside of the cam ring 4 on both end faces at positions corresponding to the two suction regions.
  • the vane pump 100 has a cover-side side plate 10 that abuts on one end surface (upper side in FIGS. 1 and 4) of the rotor 2 and the cam ring 4, and the other end surface (lower side in FIGS. 1 and 4) of the rotor 2 and the cam ring 4. It further includes a body-side side plate 20 that abuts and a cover 30 that abuts against the cover-side side plate 10 and is fixed to the body 90 of the fluid pressure device.
  • a cover member is constituted by the cover side plate 10 and the cover 30.
  • the cover side plate 10 and the body side plate 20 are disposed so as to sandwich the rotor 2 and the cam ring 4.
  • the cover chamber side plate 10 and the body side plate 20 sandwich the both end surfaces of the rotor 2 and the cam ring 4 to seal the pump chamber 6.
  • the cover-side side plate 10 is formed so as to cut out a part of the outer edge portion, and has a suction port 11 that guides hydraulic oil into the pump chamber 6 and positions corresponding to the two discharge regions.
  • Each includes a discharge recess 12 and a through hole 13 through which the drive shaft 1 is inserted.
  • the suction port 11 is formed at a position corresponding to two suction areas. Each suction port 11 is formed in an arc shape with the through hole 13 as the center. The suction port 11 communicates with the tank through a suction space 70 formed in an annular shape between the cam ring 4 shown in FIG. 4 and the body 90 of the fluid pressure device, and a suction flow path 92 formed in the body 90.
  • the discharge recess 12 is formed in a groove shape and at positions corresponding to the two discharge areas. Each discharge recess 12 is formed in an arc shape centered on the through hole 13.
  • the discharge recess 12 is provided so as to face first and second through holes 21a and 21b formed in a body side plate 20 to be described later with the vane 3 interposed therebetween. Since the discharge recess 12 communicates with the first and second through holes 21 a and 21 b through the pump chamber 6, the same pressure as the first and second through holes 21 a and 21 b acts on the discharge recess 12. Therefore, the force acting on the vane 3 due to the pressure in the first and second through holes 21 a and 21 b is offset by the pressure of the discharge recess 12, and the vane 3 can be prevented from being pressed against the cover-side side plate 10.
  • the body side plate 20 is formed on the slidable contact surface 20a in which the other end surface of the rotor 2 is in slidable contact with the two discharge regions, and is operated on the pump chamber 6.
  • First and second through holes 21 a and 21 b that discharge oil, a through hole 22 through which the drive shaft 1 is inserted, and a suction recess 23 that allows the suction space 70 and the pump chamber 6 to communicate with each other.
  • the first and second through holes 21 a and 21 b are provided at symmetrical positions with the through hole 22 as the center.
  • the first and second through holes 21 a and 21 b are formed in an arc shape with the through hole 22 as the center, and are formed through the body side plate 20.
  • the suction recess 23 is formed on the sliding contact surface 20a so as to correspond to the two suction regions.
  • the outer peripheral edge of each suction recess 23 reaches the outer peripheral surface of the body side plate 20 and is formed in a concave shape that opens radially outward.
  • An outer notch 26 and an inner notch 27 which are grooves extending from the first and second through holes 21a and 21b toward the rear in the rotation direction of the rotor 2 are formed on the sliding contact surface 20a of the body side plate 20.
  • the outer notch 26 is disposed on the outer peripheral side of the inner notch 27 and is longer in the rotational direction of the rotor 2 than the inner notch 27.
  • Both the outer notch 26 and the inner notch 27 are formed in a tapered shape in which the dimension in the radial direction of the rotor 2 decreases as going from the first and second through holes 21a, 21b to the rear in the rotational direction of the rotor 2. Further, the outer notch 26 and the inner notch 27 are disposed on the outer peripheral side of the outer peripheral surface of the rotor 2 and on the inner peripheral side of the inner peripheral cam surface 4 a of the cam ring 4.
  • a pair of first back pressure grooves 24a are formed in the sliding contact surface 20a of the body side plate 20 at symmetrical positions with the through hole 22 as a center, and the through holes 22 are formed with respect to the pair of first back pressure grooves 24a.
  • a pair of second back pressure grooves 24b are formed at positions shifted by approximately 90 ° from the center.
  • the first back pressure groove 24 a is formed in an arc shape with the through hole 22 as the center, and communicates with the back pressure chamber 5.
  • the first back pressure groove 24a communicates the plurality of back pressure chambers 5 opened to the first back pressure groove 24a.
  • the second back pressure groove 24 b is formed in an arc shape with the through hole 22 as the center, and communicates with the back pressure chamber 5.
  • the second back pressure groove 24b communicates the plurality of back pressure chambers 5 opened to the second back pressure groove 24b.
  • the body-side side plate 20 opens to the end surface opposite to the sliding contact surface 20a, and communicates with the first and second through holes 21a and 21b. 25b, the first and second arc grooves 25a, 25b and the second back pressure groove 24b, the communication hole 28 formed through the body side plate 20, the first and second arc grooves 25a, O-rings 83a and 83b as sealing members that surround and seal the outer periphery of 25b.
  • the O-rings 83a and 83b are mounted in grooves formed on the outer periphery of the first and second arc grooves 25a and 25b of the body side plate 20 and compressed between the body side plate 20 and an adapter 40 described later. Provided in the state.
  • the first and second arc grooves 25a and 25b are formed in an arc shape with the through hole 22 as the center.
  • a first through hole 21a and a communication hole 28 are opened at the bottom surface of the first arc groove 25a, and a second through hole 21b and a communication hole 28 are opened at the bottom surface of the second arc groove 25b. Accordingly, the first through hole 21a and the communication hole 28 communicate with each other through the first arc groove 25a, and the second through hole 21b and the communication hole 28 communicate with each other through the second arc groove 25b.
  • the first through hole 21a and the first arc groove 25a constitute the first discharge port 7a
  • the second through hole 21b and the second arc groove 25b constitute the second discharge port 7b.
  • the cover 30 is formed with a through hole 31 that supports the end of the drive shaft 1 via a sleeve.
  • the cover 30 is fixed to the body 90 by inserting bolts (not shown) through a plurality of through holes 33 formed in the outer peripheral portion of the cover 30.
  • the vane pump 100 includes first and second discharge ports 7a and 7b formed in the body side plate 20 and two first and second discharge passages 93a and 93b (see FIG. 4) formed in the body 90. It further includes an adapter 40 in which first and second connection flow paths 41a and 41b are respectively connected.
  • the adapter 40 includes a main body portion 40b having an abutment surface 40a that abuts on the body side plate 20 and an annular surface 40f that faces a bottom surface of a third recess 91c of an accommodation recess 91 described later.
  • a cylindrical portion 40c having a smaller diameter than the main body portion 40b and extending in the axial direction from the main body portion 40b, and a boss portion 40d extending into the cylindrical portion 40c from the main body portion 40b and forming a support hole 42 for supporting the end of the drive shaft 1.
  • an annular groove 47 formed in the annular surface 40f of the main body portion 40b.
  • the main body 40b is formed in a disc shape.
  • An annular O-ring 81 that prevents leakage of hydraulic fluid between the main body 40b and the body 90 is provided on the outer periphery of the main body 40b.
  • the cylindrical portion 40c is formed coaxially with the main body portion 40b and has an internal space 40e inside.
  • An annular O-ring 82 that blocks communication between the first connection flow path 41a and the second connection flow path 42b is provided on the outer periphery of the cylindrical portion 40c.
  • the first connection channel 41a is formed so as to penetrate the main body portion 40b between the contact surface 40a and the annular surface 40f, and connects the first discharge port 7a and the first discharge channel 93a.
  • the first connection channel 41a includes an arc-shaped first opening 44a that opens to the contact surface 40a, a groove 47 that opens to the annular surface 40f, and a first opening 44a and a groove 47.
  • a through hole 45a that communicates with each other.
  • the first opening 44 a is formed at a position facing the first arc groove 25 a of the body side plate 20.
  • the through hole 45a is formed in an arc shape along the outer peripheral surface of the cylindrical portion 40c (see FIGS. 6 and 7).
  • the concave groove 47 is formed in an annular shape, even if the first connection flow path 41a of the vane pump 100 and the first discharge flow path 93a of the fluid pressure device are not provided at positions facing each other, the first discharge flow If the path 93 a is open toward the concave groove 47, the first connection flow path 41 a and the first discharge flow path 93 a communicate with each other through the concave groove 47.
  • the second connection flow path 41b is formed to penetrate the main body portion 40b and communicate with the internal space 40e of the cylindrical portion 40c, and connects the second discharge port 7b and the second discharge flow path 93b.
  • the second connection flow path 41b includes an arc-shaped second opening 44b that opens to the contact surface 40a, an internal space 40e of the cylindrical portion 40c, and an interior of the second opening 44b and the cylindrical portion 40c. And a through hole 45b communicating with the space 40e.
  • the second opening 44b is formed at a position facing the second arc groove 25b of the body side plate 20.
  • the through hole 45b is formed in an arc shape along the outer peripheral surface of the boss portion 40d (see FIGS. 6 and 7).
  • the second connection flow path 41 b communicates with a second discharge flow path 93 b formed in the body 90.
  • the dowel pin 60 is press-fitted into the insertion hole 34 formed in the cover 30. Then, the dowel pins 60 are sequentially inserted into the through holes 15 formed in the cover side plate 10, the through holes 4 c formed in the cam ring 4, and the through holes 29 b formed in the body side plate 20, and finally It is inserted into the insertion hole 46 formed in the adapter 40. As a result, the cover 30, the cover side plate 10, the cam ring 4, the body side plate 20, and the adapter 40 are stacked. The drive shaft 1, the rotor 2, and the vane 3 are incorporated into the cam ring 4 when the cam ring 4 is inserted.
  • the dowel pin 60 penetrates the cam ring 4 and is supported at both ends by the cover 30 and the adapter 40, and the relative rotation of the cover 30, the cover side plate 10, the body side plate 20 and the adapter 40 with respect to the cam ring 4.
  • the dowel pin 60 functions as a positioning of these members during assembly, and also functions as a rotation stopper that prevents relative rotation of the cover side plate 10 and the body side plate 20 with respect to the cam ring 4 after assembly.
  • the cover 30, the cover side plate 10, the cam ring 4, the body side plate 20, and the adapter 40 stacked in this way are integrally held by two head pins 50 as coupling members.
  • the head pin 50 will be specifically described below.
  • the head pin 50 includes a shaft portion 51 whose tip is fixed to an engagement hole 43 formed in the adapter 40, and a restricting portion that is larger in diameter than the shaft portion 51 and formed at the proximal end. 52.
  • the shaft portion 51 includes a through hole 32 formed in the cover 30, a through hole 14 formed in the cover side plate 10, a through hole 4 b formed in the cam ring 4, and a through hole formed in the body side plate 20. 29a is penetrated and a front-end
  • the cover 30, the cover side plate 10, the cam ring 4, and the body side plate 20 are held in an integrated state between the restriction portion 52 of the head pin 50 and the adapter 40.
  • Two head pins 50 are provided at symmetrical positions around the drive shaft 1.
  • the head pin 50 may be fixed to the adapter 40 by providing a male screw at the tip of the shaft 51 and screwing with a female screw formed in the engagement hole 43.
  • the vane pump 100 is held in an integrated state by the head pins 50. Accordingly, when the vane pump 100 is attached to the body 90, specifically, when the vane pump 100 is transported to be attached to the body 90, or when the vane pump 100 is attached to the accommodating recess 91 of the body 90, the vane pump 100 is separated. Can be prevented. Therefore, the mounting property is improved. Further, when the vane pump 100 is removed from the body 90, the vane pump 100 is held in an integrated state, and therefore can be easily removed.
  • the vane pump 100 When the vane pump 100 is attached to the body 90 of the fluid pressure device, specifically, when the vane pump 100 is housed in the housing recess 91 of the body 90 and the cover 30 is fixed to the body 90, as shown in FIG. In addition, a gap S exists between the cover 30 and the restriction portion 52 of the head pin 50. When the vane pump 100 is driven and a high pressure is generated in the pump chamber 6, the vicinity of the center of the cover 30 may be bent so as to be bent (deform). In the vane pump 100, since the gap S exists between the cover 30 and the restriction portion 52 of the head pin 50, such a deflection of the cover 30 can be allowed.
  • the present invention is not limited to this, and the head pins 50 may be more (about 3 to 6) as long as a space can be secured.
  • the holding force for maintaining the state in which the vane pump 100 is integrated is improved accordingly.
  • the size can be reduced accordingly.
  • the head pin 50 is configured such that the tip portion thereof is press-fitted into the engagement hole 43, so that it is not necessary to thread the head pin 50 and the engagement hole 43.
  • the vane pump 100 assembled in this way is fixed to the body 90 by being attached to the housing recess 91 of the body 90 and screwing the bolt inserted into the through hole 33 of the cover 30 into the body 90.
  • the housing recess 91 of the body 90 includes, in order from the bottom surface side, a first recess 91 a in which the second discharge channel 93 b opens on the bottom surface and a diameter larger than that of the first recess 91 a.
  • the second recess 91b in which one discharge channel 93a is opened, the third recess 91c having a larger diameter than the second recess 91b and into which the main body 40b of the adapter 40 is inserted, and having a larger diameter than the third recess 91c.
  • a fourth recess 91d in which the suction space 70 described above is formed between the vane pump 100 and the vane pump 100.
  • the cylindrical portion 40c of the adapter 40 is fitted into the first recess 91a, and the main body 40b of the adapter 40 is fitted into the third recess 91c.
  • the annular surface 40f of the main body portion 40b faces the bottom surface of the third recess 91c.
  • the body-side side plate 20, the cam ring 4, and the cover-side side plate 10 are accommodated in the fourth recess 91d, and the fourth recess 91d is closed by attaching the cover 30 to the body 90.
  • an annular suction space 70 that communicates with the suction flow path 92 is formed.
  • Rotating the drive shaft 1 with the power of a drive device such as an engine (not shown) causes the rotor 2 to rotate.
  • a drive device such as an engine (not shown) causes the rotor 2 to rotate.
  • the pump chamber 6 located in the two suction areas expands.
  • the hydraulic oil in the tank is sucked into the pump chamber 6 through the suction flow path 92, the suction space 70, the notch 4 e, the suction port 11, and the suction recess 23.
  • the pump chamber 6 located in the two discharge regions contracts as the rotor 2 rotates.
  • the hydraulic oil in the pump chamber 6 in the one discharge region flows into the first discharge port 7a (the first through hole 21a and the first arc groove 25a), the first connection flow path 41a (the first opening 44a, Through the through hole 45a and the concave groove 47), the high pressure chamber 94, and the first discharge flow passage 93a, hydraulic oil in the pump chamber 6 in the other discharge region is supplied to a hydraulic device (not shown) and is discharged into the second discharge region.
  • second connection flow path 41b second opening 44b, through-hole 45b, and internal space 40e
  • second discharge flow path 93b hydraulic pressure not shown. Supplied to the equipment.
  • each pump chamber 6 repeats suction and discharge of hydraulic oil twice while the rotor 2 rotates once.
  • first and second arc grooves 25a and 25b Part of the hydraulic oil discharged to the first and second discharge ports 7a and 7b (first and second arc grooves 25a and 25b) enters the back pressure chamber 5 through the communication hole 28 and the second back pressure groove 24b, respectively.
  • the base end portion 3b of the vane 3 is pressed toward the inner peripheral cam surface 4a. Therefore, the vane 3 is urged in the direction protruding from the slit 2 a by the fluid pressure of the back pressure chamber 5 that presses the base end portion 3 b and the centrifugal force that works in accordance with the rotation of the rotor 2.
  • the tip 3 a of the vane 3 rotates while being in sliding contact with the inner peripheral cam surface 4 a of the cam ring 4, so that the hydraulic oil in the pump chamber 6 flows into the tip 3 a of the vane 3 and the inner peripheral cam surface 4 a of the cam ring 4.
  • the liquid is discharged from the pump chamber 6 without leaking from between the two.
  • the main body 40 b of the adapter 40 is in contact with the bottom surface of the third recess 91 c of the housing recess 91. Furthermore, O-rings 83a and 83b are provided in a compressed state between the adapter 40 and the body side plate 20. Accordingly, the body side plate 20 is always pressed against the end surface of the rotor 2 by the elastic force of the O-rings 83a and 83b, so that leakage of hydraulic oil from between the body side plate 20 and the rotor 2 can be prevented. Therefore, the discharge efficiency of the vane pump 100 is improved.
  • the O-rings 83a and 83b always urge the body side plate 20 to the end surface of the rotor 2 in addition to the function as a sealing member that surrounds and seals the outer periphery of the first and second arc grooves 25a and 25b. It has a function as an urging member to be performed.
  • the body side plate 20 When the pump chamber 6 is at a high pressure, the body side plate 20 cannot be pressed sufficiently toward the rotor 2 only by the elastic force of the O-rings 83a and 83b. However, when the pump chamber 6 is at a high pressure, the body side plate 20 is operated by the pressure of the hydraulic oil in the first and second arc grooves 25a and 25b and the adapter in addition to the urging force by the elasticity of the O-rings 83a and 83b. It is pressed against the rotor 2 also by the pressure of the hydraulic oil acting on 40. Therefore, it is possible to prevent leakage of hydraulic oil from between the body side plate 20 and the rotor 2 even at high pressure.
  • the adapter 40 is pressed against the body side plate 20 so that the O-rings 83a and 83b are connected to the adapter 40 and the body side plate 20 with each other. Compressed strongly between. Thereby, even if the hydraulic oil in the 1st, 2nd circular-arc groove 25a, 25b becomes high pressure, it can prevent that O-ring 83a, 83b protrudes from a groove
  • the vane pump 100 includes a body side plate 20 that contacts the other end surfaces of the rotor 2 and the cam ring 4, first and second discharge ports 7 a and 7 b formed on the body side plate 20, and a first formed on the body 90. And adapters for forming first and second connection flow paths 41a and 41b for connecting the second discharge flow paths 93a and 93b.
  • the first and second discharge ports 7a and 7b can be connected to the first and second discharge flow paths 93a and 93b regardless of the deviation or the difference in shape.
  • the first and second discharge channels 93a and 93b of the body 90 do not have to be formed in accordance with the shape and position of the first and second arc grooves 25a and 25b, the degree of design freedom is improved.
  • the cartridge type vane pump is installed in various fluid pressure devices. For this reason, the arrangement of the first and second discharge channels 93a and 93b may differ depending on the fluid pressure device.
  • the body-side side plate 20 is made of an iron-based sintered metal having excellent durability because it slides on the rotor 2. Such an iron-based sintered metal is poor in workability and high in material itself. Therefore, if it is manufactured in conformity with the positions of the first and second discharge flow paths 93a and 93b, the cost increases. Therefore, in the vane pump 100, the first and second discharge ports 7a and 7b formed in the body side plate 20 and the first and second discharge channels 93a and 93b formed in the body 90 are connected to the body.
  • the adapter 40 is configured as an adapter 40 different from the side side plate 20 and is formed of an aluminum alloy having excellent workability. Thereby, even if arrangement
  • the vane pump 100 When the vane pump 100 is started, since the pressure on the discharge side is low, the body side plate 20 cannot be pressed sufficiently against the end surface of the rotor 2 depending on the pressure on the discharge side. Thereby, the hydraulic oil in the pump chamber 6 leaks from between the body-side side plate 20 and the rotor 2, and the discharge efficiency of the pump decreases. Therefore, in the vane pump 100, the O-rings 83a and 83b are compressed and provided between the adapter 40 and the body side plate 20. Thereby, the body side plate 20 is pressed against the end surface of the rotor 2 by the elastic force of the O-rings 83a and 83b, so that leakage between the body side plate 20 and the rotor 2 can be prevented even at a low pressure. Furthermore, since the O-rings 83a and 83b also function as seal members for the first and second arc grooves 25a and 25b, the number of parts can be reduced.
  • the head pins 50 can be made thinner or the number thereof can be reduced.
  • the vane pump 100 by providing the O-rings 83a and 83b, a dimensional error of each member constituting the vane pump 100 can be allowed. Specifically, the sum of the axial dimensions of the drive shaft 1 of the body 40 b of the adapter 40, the body side plate 20, the cam ring 4, the cover side plate 10, and the portion inserted into the housing recess 91 of the cover 30. Is smaller than the depth to the bottom surface of the third recess 91c, it is possible to allow only the amount of compression of the O-rings 83a and 83b.
  • the urging member is not limited to the O-ring but may be a member such as a disc spring.
  • an annular high-pressure chamber 94 into which high-pressure hydraulic oil discharged from the pump chamber 6 is guided is defined between the adapter 40 and the bottom surface of the body 90. Since the high pressure discharged from the pump chamber 6 acts on the entire annular surface 40f of the main body 40b, the body side plate 20 can be strongly pressed against the end surface of the rotor 2.
  • the main body portion 40b of the adapter 40 is formed in a disc shape, and the cylindrical portion 40c is formed in a cylindrical shape.
  • the O-rings 81 and 82 provided in the main body portion 40b and the cylindrical portion 40c can be formed in an annular shape. Therefore, the shapes of the O-rings 81 and 82 are simplified, and the O-rings 81 and 82 can be easily manufactured. Furthermore, if the main body portion 40b and the cylindrical portion 40c are formed coaxially, the processing of the adapter 40 can be simplified and the processing accuracy can be improved.
  • the O-ring 81 is provided on the outer periphery of the cylindrical portion 40c, it is not necessary to seal the cylindrical portion 40c against the bottom surface of the first concave portion 91a of the body. do not need. Thereby, processing time can be shortened. Further, since the O-rings 81 and 82 are provided on the outer circumferences of the main body portion 40b and the cylindrical portion 40c, respectively, it is possible to prevent the O-rings 81 and 82 from dropping off when the vane pump 100 is attached to the body 90.
  • the cartridge-type vane pump 100 includes a rotor 2 that is connected to a drive shaft 1 and is driven to rotate, a plurality of slits 2 a that are radially formed with openings on the outer periphery of the rotor 2, and are slidable in the slits 2 a.
  • Adapter 40 to be formed.
  • the first and second discharge channels 93a formed in the body 90 and the first and second discharge ports 7a and 7b formed in the body side plate 20 are formed.
  • the first and second discharge ports 7a and 7b and the first and second discharge flow paths 93a and 93b can be connected regardless of the positional shift and the shape difference from the first and second discharge channels 7a and 93b.
  • the body side plate 20 on which the rotor 2 slides can be shared. Accordingly, the first and second discharge ports 7a and 7b of the body side plate 20 can be adapted to the first and second discharge flow paths 93a and 93b of the fluid pressure device, and the cost can be reduced.
  • the cartridge-type vane pump 100 further includes urging members (O-rings 83a and 83b) that constantly urge the body side plate 20 toward the rotor 2.
  • the body side plate 20 is constantly urged toward the rotor 2 by the urging members (O-rings 83a and 83b), so that leakage from between the body side plate 20 and the rotor 2 is prevented. it can. Therefore, the discharge efficiency of the pump is improved.
  • the urging members (O-rings 83a and 83b) are compressed between the adapter 40 and the body side plate 20 and are formed on the body side plate 20 in the first, It is a sealing member that surrounds and seals the outer periphery of the second discharge ports 7a and 7b.
  • the seal members (O-rings 83a and 83b) that prevent leakage from the first and second discharge ports 7a and 7b function as urging members (O-rings 83a and 83b). Thereby, the number of parts can be reduced.
  • the adapter 40 is a circle to which the high-pressure working fluid discharged from the pump chamber 6 is guided between the adapter 40 and the bottom surface of the body 90 in a state where the cartridge type vane pump 100 is accommodated in the body 90.
  • An annular high-pressure chamber 94 is defined, and the body side plate 20 is urged toward the rotor 2 by a high-pressure working fluid guided to the high-pressure chamber 94.
  • the body side plate 20 when the pressure is high, the body side plate 20 is biased toward the rotor 2 by the high pressure working fluid guided to the high pressure chamber 94. Leakage between the two can be prevented.
  • the body side plate 20 is made of sintered metal
  • the adapter 40 is made of aluminum alloy.
  • the body side plate 20 is formed of an iron-based sintered metal, so durability is improved and seizure with the rotor 2 is prevented.
  • the adapter 40 is formed of an aluminum alloy that is lighter than an iron-based sintered metal, the weight can be reduced. Furthermore, since the aluminum alloy has good workability, the adapter 40 can be easily manufactured.
  • the cover 30 may be formed integrally with the cover side plate 10. If the high pressure chamber 94 is formed, the concave groove 47 may not be formed.
  • the body 90 is provided with two discharge channels (first and second discharge channels 93a and 93b), but there may be one discharge channel.
  • first and second connection flow paths 41 a and 41 b can be merged in the high-pressure chamber 94 by not providing the adapter 40 with the cylindrical portion 40 c.

Abstract

This cartridge vane pump (100) is provided with: a body-side side plate (20) that makes contact with an end surface of a cam ring (4) and a rotor (2); first and second discharge ports (7a), (7b) that are formed in the body-side side plate (20); and an adaptor 40 in which first connecting channels (41a), (41b), which connect the first and second discharge ports (7a), (7b) formed in the body-side side plate (20) and first and second discharge channels (93a), (93b) formed in a body (90), is formed.

Description

カートリッジ式ベーンポンプCartridge vane pump
 本発明は、カートリッジ式ベーンポンプに関するものである。 The present invention relates to a cartridge type vane pump.
 JP2003-301781Aには、基台やフレームなどに固定される本体部に対して着脱可能に構成されるカートリッジ式ベーンポンプが記載されている。 JP 2003-301781A describes a cartridge-type vane pump configured to be detachable from a main body fixed to a base or a frame.
 このようなカートリッジ式ベーンポンプを流体圧装置に取り付けるためには、サイドプレートに設けられた吐出ポートの位置や形状を、流体圧装置に設けられた吐出流路に適合するように製作する必要がある。しかしながら、サイドプレートは、ロータと摺動するため耐久性に優れた材料を使用して形成される。このような材料は、加工性が悪くコストも高いため、サイドプレートを吐出流路の異なる流体圧装置それぞれに適合するように製作することは、コストの上昇を招くおそれがあった。 In order to attach such a cartridge type vane pump to a fluid pressure device, it is necessary to make the position and shape of the discharge port provided in the side plate so as to match the discharge flow path provided in the fluid pressure device. . However, since the side plate slides with the rotor, the side plate is formed using a material having excellent durability. Since such a material has poor processability and high cost, manufacturing the side plate so as to be compatible with each of the fluid pressure devices having different discharge flow paths may cause an increase in cost.
 本発明は、サイドプレートの吐出ポートを流体圧装置の吐出流路に適合させつつ、コスト低減を図ることができるカートリッジ式ベーンポンプを提供することを目的とする。 An object of the present invention is to provide a cartridge type vane pump capable of reducing the cost while adapting the discharge port of the side plate to the discharge flow path of the fluid pressure device.
 本発明のある態様によれば、流体圧装置のボディ内に着脱可能に収容されるカートリッジ式ベーンポンプは、駆動軸に連結され回転駆動されるロータと、ロータの外周に開口部を有して放射状に形成される複数のスリットと、各スリットに摺動自在に挿入されるベーンと、ベーンの先端部が摺接する内周カム面を有するカムリングと、ロータとカムリングと隣り合うベーンとの間に区画されるポンプ室と、ロータ及びカムリングの一端面に当接するとともに、ボディに固定されるカバー部材と、ロータ及びカムリングの他端面に当接するサイドプレートと、サイドプレートに形成されポンプ室から吐出される作動流体が導かれる吐出ポートと、サイドプレートに形成された吐出ポートとボディに形成された吐出流路とを接続する接続流路が形成されるアダプタと、を備える。 According to an aspect of the present invention, a cartridge-type vane pump that is detachably accommodated in a body of a fluid pressure device has a rotor that is connected to a drive shaft and is driven to rotate, and an opening on the outer periphery of the rotor. A plurality of slits formed in each of the slits, a vane that is slidably inserted into each slit, a cam ring having an inner peripheral cam surface with which the tip of the vane is in sliding contact, and a rotor and a vane adjacent to the cam ring. A pump chamber, a cover member that is in contact with one end surface of the rotor and the cam ring, a side plate that is in contact with the other end surface of the rotor and the cam ring, and a side plate that is formed on the side plate and discharged from the pump chamber. There is a connection flow path that connects the discharge port through which the working fluid is guided to the discharge port formed in the side plate and the discharge flow path formed in the body. Includes an adapter to be made, the.
図1は、本発明の実施形態に係るカートリッジ式ベーンポンプの正面図である。FIG. 1 is a front view of a cartridge type vane pump according to an embodiment of the present invention. 図2は、本発明の実施形態に係るカートリッジ式ベーンポンプのカバー部材側から見た分解斜視図である。FIG. 2 is an exploded perspective view of the cartridge type vane pump according to the embodiment of the present invention as viewed from the cover member side. 図3は、本発明の実施形態に係るカートリッジ式ベーンポンプのアダプタ側から見た分解斜視図である。FIG. 3 is an exploded perspective view seen from the adapter side of the cartridge type vane pump according to the embodiment of the present invention. 図4は、本発明の実施形態に係るカートリッジ式ベーンポンプの軸方向における断面図である。FIG. 4 is a sectional view in the axial direction of the cartridge type vane pump according to the embodiment of the present invention. 図5は、本発明の実施形態に係るカートリッジ式ベーンポンプの締結部材の拡大図である。FIG. 5 is an enlarged view of a fastening member of the cartridge type vane pump according to the embodiment of the present invention. 図6は、本発明の実施形態に係るカートリッジ式ベーンポンプのアダプタの平面図である。FIG. 6 is a plan view of the adapter of the cartridge type vane pump according to the embodiment of the present invention. 図7は、本発明の実施形態に係るカートリッジ式ベーンポンプのアダプタの背面図である。FIG. 7 is a rear view of the adapter of the cartridge type vane pump according to the embodiment of the present invention.
 以下、図面を参照して、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 本発明の実施形態に係るカートリッジ式ベーンポンプ100は、車両に搭載される流体圧装置、例えば、パワーステアリング装置や変速機等の流体圧供給源として用いられる。作動流体は、作動油やその他の水溶性代替液等である。 The cartridge type vane pump 100 according to the embodiment of the present invention is used as a fluid pressure supply source for a fluid pressure device mounted on a vehicle, for example, a power steering device or a transmission. The working fluid is hydraulic oil or other water-soluble alternative liquid.
 カートリッジ式ベーンポンプ100(以下、単に「ベーンポンプ100」という。)は、あらかじめ組み立てられた状態(図1に示す状態)で、流体圧装置のボディ90に形成された収容凹部91内に着脱可能に収容される(図4参照)。駆動軸1の端部には、エンジン(図示せず)の動力が伝達され、駆動軸1に連結されたロータ2が回転する。 The cartridge-type vane pump 100 (hereinafter simply referred to as “vane pump 100”) is detachably accommodated in an accommodating recess 91 formed in the body 90 of the fluid pressure device in a pre-assembled state (the state shown in FIG. 1). (See FIG. 4). The power of an engine (not shown) is transmitted to the end of the drive shaft 1, and the rotor 2 connected to the drive shaft 1 rotates.
 図1から図4に示すように、ベーンポンプ100は、駆動軸1に連結され回転駆動されるロータ2と、ロータ2の外周に開口部を有して放射状に形成される複数のスリット2aと、各スリット2aに摺動自在に挿入されロータ2に対して径方向に往復動可能に設けられる複数のベーン3と、ロータ2を収容すると共にロータ2の回転に伴ってベーン3の先端部が摺動する内周カム面4aを有するカムリング4と、を備える。 As shown in FIGS. 1 to 4, the vane pump 100 includes a rotor 2 that is connected to the drive shaft 1 and is driven to rotate, and a plurality of slits 2 a that are radially formed with openings on the outer periphery of the rotor 2. A plurality of vanes 3 that are slidably inserted into the respective slits 2 a and are provided so as to be capable of reciprocating in the radial direction with respect to the rotor 2. The rotor 2 is housed and the tip of the vane 3 slides as the rotor 2 rotates. And a cam ring 4 having a moving inner peripheral cam surface 4a.
 スリット2aの基端側には、ポンプの吐出圧が導かれる背圧室5が区画される。ベーン3は、背圧室5の圧力によってスリット2aから抜け出る方向に押圧され、先端部がカムリング4の内周カム面4aに当接する。これにより、カムリング4の内部には、ロータ2の外周面、カムリングの内周カム面4a、及び隣り合うベーン3によって複数のポンプ室6が区画される。 A back pressure chamber 5 into which the discharge pressure of the pump is guided is defined on the base end side of the slit 2a. The vane 3 is pressed in the direction of coming out of the slit 2 a by the pressure of the back pressure chamber 5, and the tip part comes into contact with the inner peripheral cam surface 4 a of the cam ring 4. As a result, a plurality of pump chambers 6 are defined inside the cam ring 4 by the outer peripheral surface of the rotor 2, the inner peripheral cam surface 4 a of the cam ring, and the adjacent vanes 3.
 カムリング4は、内周カム面4aが略楕円形状をした環状の部材であり、ロータ2の回転に伴ってポンプ室6の容積を拡張する吸込領域とポンプ室6の容積を収縮する吐出領域とを有する。各ポンプ室6は、ロータ2の回転に伴って拡縮する。ベーンポンプ100は、カムリング4が2つの吸込領域と2つの吐出領域とを有する、いわゆる平衡型のベーンポンプである。カムリング4には、2つの吸込領域に対応する位置の両端面に、カムリング4の外側と内側とを連通する切欠き4eが形成される。 The cam ring 4 is an annular member having an inner circumferential cam surface 4 a that is substantially elliptical, and includes a suction region that expands the volume of the pump chamber 6 as the rotor 2 rotates and a discharge region that contracts the volume of the pump chamber 6. Have Each pump chamber 6 expands and contracts as the rotor 2 rotates. The vane pump 100 is a so-called balanced vane pump in which the cam ring 4 has two suction regions and two discharge regions. The cam ring 4 is formed with notches 4e that communicate the outside and the inside of the cam ring 4 on both end faces at positions corresponding to the two suction regions.
 ベーンポンプ100は、ロータ2及びカムリング4の一端面(図1及び図4では上側)に当接するカバー側サイドプレート10と、ロータ2及びカムリング4の他端面(図1及び図4では下側)に当接するボディ側サイドプレート20と、カバー側サイドプレート10に当接し流体圧装置のボディ90に固定されるカバー30と、をさらに備える。カバー側サイドプレート10及びカバー30によってカバー部材が構成される。 The vane pump 100 has a cover-side side plate 10 that abuts on one end surface (upper side in FIGS. 1 and 4) of the rotor 2 and the cam ring 4, and the other end surface (lower side in FIGS. 1 and 4) of the rotor 2 and the cam ring 4. It further includes a body-side side plate 20 that abuts and a cover 30 that abuts against the cover-side side plate 10 and is fixed to the body 90 of the fluid pressure device. A cover member is constituted by the cover side plate 10 and the cover 30.
 カバー側サイドプレート10とボディ側サイドプレート20は、ロータ2及びカムリング4を挟持するように配置される。カバー側サイドプレート10とボディ側サイドプレート20とが、ロータ2及びカムリング4の両端面を挟み込むことによりポンプ室6は密閉される。 The cover side plate 10 and the body side plate 20 are disposed so as to sandwich the rotor 2 and the cam ring 4. The cover chamber side plate 10 and the body side plate 20 sandwich the both end surfaces of the rotor 2 and the cam ring 4 to seal the pump chamber 6.
 図3に示すように、カバー側サイドプレート10は、外縁部の一部を切り欠くようにして形成され作動油をポンプ室6内に導く吸込ポート11と、2つの吐出領域に対応した位置にそれぞれ形成される吐出用凹部12と、駆動軸1が挿通する貫通孔13と、を備える。 As shown in FIG. 3, the cover-side side plate 10 is formed so as to cut out a part of the outer edge portion, and has a suction port 11 that guides hydraulic oil into the pump chamber 6 and positions corresponding to the two discharge regions. Each includes a discharge recess 12 and a through hole 13 through which the drive shaft 1 is inserted.
 吸込ポート11は、2つの吸込領域に対応する位置にそれぞれ形成される。各吸込ポート11は、貫通孔13を中心とした円弧状に形成される。吸込ポート11は、図4に示すカムリング4と流体圧装置のボディ90との間に円環状に区画形成される吸込空間70、及びボディ90に形成された吸込流路92を通じてタンクに連通する。 The suction port 11 is formed at a position corresponding to two suction areas. Each suction port 11 is formed in an arc shape with the through hole 13 as the center. The suction port 11 communicates with the tank through a suction space 70 formed in an annular shape between the cam ring 4 shown in FIG. 4 and the body 90 of the fluid pressure device, and a suction flow path 92 formed in the body 90.
 吐出用凹部12は、溝状に形成され2つの吐出領域に対応する位置にそれぞれ形成される。各吐出用凹部12は、貫通孔13を中心とした円弧状に形成される。吐出用凹部12は、ベーン3を挟んで、後述するボディ側サイドプレート20に形成された第1、第2貫通孔21a、21bと対向するように設けられる。吐出用凹部12はポンプ室6を通じて第1、第2貫通孔21a、21bと連通するので、吐出用凹部12には、第1、第2貫通孔21a、21bと同じ圧力が作用する。したがって、第1、第2貫通孔21a、21b内の圧力によってベーン3に作用する力は、吐出用凹部12の圧力によって相殺され、ベーン3がカバー側サイドプレート10に押し付けられることを防止できる。 The discharge recess 12 is formed in a groove shape and at positions corresponding to the two discharge areas. Each discharge recess 12 is formed in an arc shape centered on the through hole 13. The discharge recess 12 is provided so as to face first and second through holes 21a and 21b formed in a body side plate 20 to be described later with the vane 3 interposed therebetween. Since the discharge recess 12 communicates with the first and second through holes 21 a and 21 b through the pump chamber 6, the same pressure as the first and second through holes 21 a and 21 b acts on the discharge recess 12. Therefore, the force acting on the vane 3 due to the pressure in the first and second through holes 21 a and 21 b is offset by the pressure of the discharge recess 12, and the vane 3 can be prevented from being pressed against the cover-side side plate 10.
 図2に示すように、ボディ側サイドプレート20は、ロータ2の他端面が摺接する摺接面20aと、2つの吐出領域それぞれに対応するように摺接面20aに形成されポンプ室6の作動油を吐出する第1、第2貫通孔21a、21bと、駆動軸1が挿通する貫通孔22と、吸込空間70とポンプ室6とを連通する吸込用凹部23と、を備える。 As shown in FIG. 2, the body side plate 20 is formed on the slidable contact surface 20a in which the other end surface of the rotor 2 is in slidable contact with the two discharge regions, and is operated on the pump chamber 6. First and second through holes 21 a and 21 b that discharge oil, a through hole 22 through which the drive shaft 1 is inserted, and a suction recess 23 that allows the suction space 70 and the pump chamber 6 to communicate with each other.
 第1、第2貫通孔21a、21bは、貫通孔22を中心として対称位置に設けられる。第1、第2貫通孔21a、21bは、貫通孔22を中心とした円弧状に形成されるとともに、ボディ側サイドプレート20を貫通して形成される。 The first and second through holes 21 a and 21 b are provided at symmetrical positions with the through hole 22 as the center. The first and second through holes 21 a and 21 b are formed in an arc shape with the through hole 22 as the center, and are formed through the body side plate 20.
 吸込用凹部23は、2つの吸込領域に対応するように摺接面20aに形成される。各吸込用凹部23の外周端はボディ側サイドプレート20の外周面まで達しており、径方向外側に開口する凹形状に形成される。 The suction recess 23 is formed on the sliding contact surface 20a so as to correspond to the two suction regions. The outer peripheral edge of each suction recess 23 reaches the outer peripheral surface of the body side plate 20 and is formed in a concave shape that opens radially outward.
 ボディ側サイドプレート20の摺接面20aには、第1、第2貫通孔21a、21bからロータ2の回転方向後方へ向けて延びる溝である外側ノッチ26及び内側ノッチ27が形成される。外側ノッチ26は、内側ノッチ27より外周側に配置され、かつ内側ノッチ27よりロータ2の回転方向の長さが長い。 An outer notch 26 and an inner notch 27 which are grooves extending from the first and second through holes 21a and 21b toward the rear in the rotation direction of the rotor 2 are formed on the sliding contact surface 20a of the body side plate 20. The outer notch 26 is disposed on the outer peripheral side of the inner notch 27 and is longer in the rotational direction of the rotor 2 than the inner notch 27.
 外側ノッチ26及び内側ノッチ27は、いずれも第1、第2貫通孔21a、21bからロータ2の回転方向後方へ行くほどロータ2の径方向の寸法が小さくなる先細り形状に形成される。また、外側ノッチ26及び内側ノッチ27は、ロータ2の外周面より外周側であってカムリング4の内周カム面4aより内周側に配置される。 Both the outer notch 26 and the inner notch 27 are formed in a tapered shape in which the dimension in the radial direction of the rotor 2 decreases as going from the first and second through holes 21a, 21b to the rear in the rotational direction of the rotor 2. Further, the outer notch 26 and the inner notch 27 are disposed on the outer peripheral side of the outer peripheral surface of the rotor 2 and on the inner peripheral side of the inner peripheral cam surface 4 a of the cam ring 4.
 ボディ側サイドプレート20の摺接面20aには、貫通孔22を中心として対称位置に一対の第1背圧溝24aが形成されるとともに、一対の第1背圧溝24aに対して貫通孔22を中心として略90°ずれた位置に一対の第2背圧溝24bが形成される。 A pair of first back pressure grooves 24a are formed in the sliding contact surface 20a of the body side plate 20 at symmetrical positions with the through hole 22 as a center, and the through holes 22 are formed with respect to the pair of first back pressure grooves 24a. A pair of second back pressure grooves 24b are formed at positions shifted by approximately 90 ° from the center.
 第1背圧溝24aは、貫通孔22を中心とした円弧状に形成され、背圧室5に連通する。第1背圧溝24aは、第1背圧溝24aに開口する複数の背圧室5どうしを連通する。 The first back pressure groove 24 a is formed in an arc shape with the through hole 22 as the center, and communicates with the back pressure chamber 5. The first back pressure groove 24a communicates the plurality of back pressure chambers 5 opened to the first back pressure groove 24a.
 第2背圧溝24bは、貫通孔22を中心とした円弧状に形成され、背圧室5に連通する。第2背圧溝24bは、第2背圧溝24bに開口する複数の背圧室5どうしを連通する。 The second back pressure groove 24 b is formed in an arc shape with the through hole 22 as the center, and communicates with the back pressure chamber 5. The second back pressure groove 24b communicates the plurality of back pressure chambers 5 opened to the second back pressure groove 24b.
 図3に示すように、ボディ側サイドプレート20は、摺接面20aとは反対側の端面に開口し、第1、第2貫通孔21a、21bに連通する第1、第2円弧溝25a、25bと、第1、第2円弧溝25a、25bと第2背圧溝24bとを連通しボディ側サイドプレート20を貫通して形成される連通孔28と、第1、第2円弧溝25a、25bの外周をそれぞれ囲んでシールするシール部材としてのOリング83a、83bと、をさらに備える。Oリング83a、83bは、ボディ側サイドプレート20の第1、第2円弧溝25a、25bの外周に形成された溝内に装着され、ボディ側サイドプレート20と後述するアダプタ40との間に圧縮された状態で設けられる。 As shown in FIG. 3, the body-side side plate 20 opens to the end surface opposite to the sliding contact surface 20a, and communicates with the first and second through holes 21a and 21b. 25b, the first and second arc grooves 25a, 25b and the second back pressure groove 24b, the communication hole 28 formed through the body side plate 20, the first and second arc grooves 25a, O- rings 83a and 83b as sealing members that surround and seal the outer periphery of 25b. The O- rings 83a and 83b are mounted in grooves formed on the outer periphery of the first and second arc grooves 25a and 25b of the body side plate 20 and compressed between the body side plate 20 and an adapter 40 described later. Provided in the state.
 第1、第2円弧溝25a、25bは、貫通孔22を中心とした円弧状に形成される。第1円弧溝25aの底面には、第1貫通孔21a及び連通孔28が開口し、第2円弧溝25bの底面には、第2貫通孔21b及び連通孔28が開口する。これにより、第1貫通孔21a及び連通孔28は、第1円弧溝25aを通じて連通し、第2貫通孔21b及び連通孔28は、第2円弧溝25bを通じて連通する。ベーンポンプ100では、第1貫通孔21a及び第1円弧溝25aが第1吐出ポート7aを構成し、第2貫通孔21b及び第2円弧溝25bが第2吐出ポート7bを構成する。 The first and second arc grooves 25a and 25b are formed in an arc shape with the through hole 22 as the center. A first through hole 21a and a communication hole 28 are opened at the bottom surface of the first arc groove 25a, and a second through hole 21b and a communication hole 28 are opened at the bottom surface of the second arc groove 25b. Accordingly, the first through hole 21a and the communication hole 28 communicate with each other through the first arc groove 25a, and the second through hole 21b and the communication hole 28 communicate with each other through the second arc groove 25b. In the vane pump 100, the first through hole 21a and the first arc groove 25a constitute the first discharge port 7a, and the second through hole 21b and the second arc groove 25b constitute the second discharge port 7b.
 カバー30には、駆動軸1の端部をスリーブを介して支持する貫通孔31が形成される。カバー30は、カバー30の外周部分に形成された複数の貫通孔33に図示しないボルトを挿通してボディ90に固定される。 The cover 30 is formed with a through hole 31 that supports the end of the drive shaft 1 via a sleeve. The cover 30 is fixed to the body 90 by inserting bolts (not shown) through a plurality of through holes 33 formed in the outer peripheral portion of the cover 30.
 ベーンポンプ100は、ボディ側サイドプレート20に形成された第1、第2吐出ポート7a、7bとボディ90に形成された2つの第1、第2吐出流路93a、93b(図4参照)とをそれぞれ接続する第1、第2接続流路41a、41bが形成されるアダプタ40をさらに備える。 The vane pump 100 includes first and second discharge ports 7a and 7b formed in the body side plate 20 and two first and second discharge passages 93a and 93b (see FIG. 4) formed in the body 90. It further includes an adapter 40 in which first and second connection flow paths 41a and 41b are respectively connected.
 図4に示すように、アダプタ40は、ボディ側サイドプレート20に当接する当接面40aと後述する収容凹部91の第3凹部91cの底面に対向する環状面40fとを有する本体部40bと、本体部40bよりも小径で本体部40bから軸方向に延びる円筒部40cと、本体部40bから円筒部40c内に延び駆動軸1の端部を支持する支持孔42が形成されるボス部40dと、本体部40bの環状面40fに形成される円環状の凹溝47と、を備える。 As shown in FIG. 4, the adapter 40 includes a main body portion 40b having an abutment surface 40a that abuts on the body side plate 20 and an annular surface 40f that faces a bottom surface of a third recess 91c of an accommodation recess 91 described later. A cylindrical portion 40c having a smaller diameter than the main body portion 40b and extending in the axial direction from the main body portion 40b, and a boss portion 40d extending into the cylindrical portion 40c from the main body portion 40b and forming a support hole 42 for supporting the end of the drive shaft 1. And an annular groove 47 formed in the annular surface 40f of the main body portion 40b.
 本体部40bは、円板状に形成される。本体部40bの外周には、本体部40bとボディ90との間の作動油の漏れを防止する円環状のOリング81が設けられる。 The main body 40b is formed in a disc shape. An annular O-ring 81 that prevents leakage of hydraulic fluid between the main body 40b and the body 90 is provided on the outer periphery of the main body 40b.
 円筒部40cは、本体部40bと同軸状に形成され、内側に内部空間40eを有する。円筒部40cの外周には、第1接続流路41aと第2接続流路42bとの連通を遮断する円環状のOリング82が設けられる。 The cylindrical portion 40c is formed coaxially with the main body portion 40b and has an internal space 40e inside. An annular O-ring 82 that blocks communication between the first connection flow path 41a and the second connection flow path 42b is provided on the outer periphery of the cylindrical portion 40c.
 第1接続流路41aは、当接面40aと環状面40fとの間で本体部40bを貫通するように形成され、第1吐出ポート7aと第1吐出流路93aとを接続する。具体的には、第1接続流路41aは、当接面40aに開口する円弧状の第1開口部44aと、環状面40fに開口する凹溝47と、第1開口部44aと凹溝47とを連通する貫通孔45aと、によって構成される。第1開口部44aは、ボディ側サイドプレート20の第1円弧溝25aと対向する位置に形成される。貫通孔45aは、円筒部40cの外周面に沿う円弧状に形成される(図6及び図7参照)。凹溝47は円環状に形成されるので、ベーンポンプ100の第1接続流路41aと流体圧装置の第1吐出流路93aとは互いに対向した位置に設けられていなくても、第1吐出流路93aが凹溝47に向かって開口していれば、第1接続流路41aと第1吐出流路93aとは、凹溝47を通じて連通する。 The first connection channel 41a is formed so as to penetrate the main body portion 40b between the contact surface 40a and the annular surface 40f, and connects the first discharge port 7a and the first discharge channel 93a. Specifically, the first connection channel 41a includes an arc-shaped first opening 44a that opens to the contact surface 40a, a groove 47 that opens to the annular surface 40f, and a first opening 44a and a groove 47. And a through hole 45a that communicates with each other. The first opening 44 a is formed at a position facing the first arc groove 25 a of the body side plate 20. The through hole 45a is formed in an arc shape along the outer peripheral surface of the cylindrical portion 40c (see FIGS. 6 and 7). Since the concave groove 47 is formed in an annular shape, even if the first connection flow path 41a of the vane pump 100 and the first discharge flow path 93a of the fluid pressure device are not provided at positions facing each other, the first discharge flow If the path 93 a is open toward the concave groove 47, the first connection flow path 41 a and the first discharge flow path 93 a communicate with each other through the concave groove 47.
 図4に示すように、第2接続流路41bは、本体部40bを貫通し円筒部40cの内部空間40eに連通して形成され、第2吐出ポート7bと第2吐出流路93bとを接続する。具体的には、第2接続流路41bは、当接面40aに開口する円弧状の第2開口部44bと、円筒部40cの内部空間40eと、第2開口部44bと円筒部40cの内部空間40eとを連通する貫通孔45bと、によって構成される。第2開口部44bは、ボディ側サイドプレート20の第2円弧溝25bと対向する位置に形成される。貫通孔45bは、ボス部40dの外周面に沿うように円弧状に形成される(図6及び図7参照)。第2接続流路41bは、ボディ90に形成された第2吐出流路93bに連通する。 As shown in FIG. 4, the second connection flow path 41b is formed to penetrate the main body portion 40b and communicate with the internal space 40e of the cylindrical portion 40c, and connects the second discharge port 7b and the second discharge flow path 93b. To do. Specifically, the second connection flow path 41b includes an arc-shaped second opening 44b that opens to the contact surface 40a, an internal space 40e of the cylindrical portion 40c, and an interior of the second opening 44b and the cylindrical portion 40c. And a through hole 45b communicating with the space 40e. The second opening 44b is formed at a position facing the second arc groove 25b of the body side plate 20. The through hole 45b is formed in an arc shape along the outer peripheral surface of the boss portion 40d (see FIGS. 6 and 7). The second connection flow path 41 b communicates with a second discharge flow path 93 b formed in the body 90.
 次に、ベーンポンプ100の組立方法について説明する。 Next, a method for assembling the vane pump 100 will be described.
 まず、カバー30に形成された挿入孔34にダウエルピン60を圧入する。そして、このダウエルピン60を、カバー側サイドプレート10に形成された貫通孔15、カムリング4に形成された貫通孔4c、及びボディ側サイドプレート20に形成された貫通孔29bに順次挿入し、最後にアダプタ40に形成された挿入孔46に挿入する。これにより、カバー30、カバー側サイドプレート10、カムリング4、ボディ側サイドプレート20及びアダプタ40は、積層された状態になる。なお、駆動軸1、ロータ2、及びベーン3は、カムリング4を挿入するときに、カムリング4の内部に組み込まれる。このようにして、ダウエルピン60は、カムリング4を貫通しカバー30及びアダプタ40に両端が支持されるとともに、カムリング4に対するカバー30、カバー側サイドプレート10、ボディ側サイドプレート20及びアダプタ40の相対回転を防止する。つまり、ダウエルピン60は、組立時にはこれらの部材の位置決めとして機能するとともに、組立後にはカムリング4に対するカバー側サイドプレート10及びボディ側サイドプレート20の相対回転を防止する回り止めとして機能する。 First, the dowel pin 60 is press-fitted into the insertion hole 34 formed in the cover 30. Then, the dowel pins 60 are sequentially inserted into the through holes 15 formed in the cover side plate 10, the through holes 4 c formed in the cam ring 4, and the through holes 29 b formed in the body side plate 20, and finally It is inserted into the insertion hole 46 formed in the adapter 40. As a result, the cover 30, the cover side plate 10, the cam ring 4, the body side plate 20, and the adapter 40 are stacked. The drive shaft 1, the rotor 2, and the vane 3 are incorporated into the cam ring 4 when the cam ring 4 is inserted. In this way, the dowel pin 60 penetrates the cam ring 4 and is supported at both ends by the cover 30 and the adapter 40, and the relative rotation of the cover 30, the cover side plate 10, the body side plate 20 and the adapter 40 with respect to the cam ring 4. To prevent. That is, the dowel pin 60 functions as a positioning of these members during assembly, and also functions as a rotation stopper that prevents relative rotation of the cover side plate 10 and the body side plate 20 with respect to the cam ring 4 after assembly.
 このようにして積層されたカバー30、カバー側サイドプレート10、カムリング4、ボディ側サイドプレート20及びアダプタ40は、結合部材としての2本のヘッドピン50によって、一体に保持される。以下に、ヘッドピン50について具体的に説明する。 The cover 30, the cover side plate 10, the cam ring 4, the body side plate 20, and the adapter 40 stacked in this way are integrally held by two head pins 50 as coupling members. The head pin 50 will be specifically described below.
 図2及び図3に示すように、ヘッドピン50は、先端がアダプタ40に形成された係合孔43に固定される軸部51と、軸部51より大径で基端に形成された規制部52と、を有する。軸部51は、カバー30に形成された貫通孔32、カバー側サイドプレート10に形成された貫通孔14、カムリング4に形成された貫通孔4b、及びボディ側サイドプレート20に形成された貫通孔29aを貫通し、先端が係合孔43に圧入される。これにより、ヘッドピン50の規制部52とアダプタ40との間にカバー30、カバー側サイドプレート10、カムリング4及びボディ側サイドプレート20が一体化された状態に保持される。ヘッドピン50は、駆動軸1を中心として対称位置に2本設けられる。なお、軸部51の先端部に雄ねじを設け、係合孔43に形成した雌ねじと螺合させることによってヘッドピン50をアダプタ40に固定してもよい。 As shown in FIGS. 2 and 3, the head pin 50 includes a shaft portion 51 whose tip is fixed to an engagement hole 43 formed in the adapter 40, and a restricting portion that is larger in diameter than the shaft portion 51 and formed at the proximal end. 52. The shaft portion 51 includes a through hole 32 formed in the cover 30, a through hole 14 formed in the cover side plate 10, a through hole 4 b formed in the cam ring 4, and a through hole formed in the body side plate 20. 29a is penetrated and a front-end | tip is press-fitted in the engagement hole 43. FIG. Thus, the cover 30, the cover side plate 10, the cam ring 4, and the body side plate 20 are held in an integrated state between the restriction portion 52 of the head pin 50 and the adapter 40. Two head pins 50 are provided at symmetrical positions around the drive shaft 1. The head pin 50 may be fixed to the adapter 40 by providing a male screw at the tip of the shaft 51 and screwing with a female screw formed in the engagement hole 43.
 このように、ベーンポンプ100は、ヘッドピン50によって一体化された状態に保持される。これにより、ベーンポンプ100をボディ90に取り付ける時、具体的には、ベーンポンプ100をボディ90に取り付けるために運搬している時や、ボディ90の収容凹部91に装着する時に、ベーンポンプ100がバラバラになってしまうことを防止できる。したがって、取り付け性が向上する。また、ベーンポンプ100をボディ90から取り外す時にも、ベーンポンプ100が一体化された状態に保持されるので、簡単に取り外すことができる。 Thus, the vane pump 100 is held in an integrated state by the head pins 50. Accordingly, when the vane pump 100 is attached to the body 90, specifically, when the vane pump 100 is transported to be attached to the body 90, or when the vane pump 100 is attached to the accommodating recess 91 of the body 90, the vane pump 100 is separated. Can be prevented. Therefore, the mounting property is improved. Further, when the vane pump 100 is removed from the body 90, the vane pump 100 is held in an integrated state, and therefore can be easily removed.
 ベーンポンプ100が流体圧装置のボディ90に取り付けられた状態、具体的には、ベーンポンプ100がボディ90の収容凹部91に収容され、カバー30がボディ90に固定された状態では、図5に示すように、カバー30とヘッドピン50の規制部52との間には隙間Sが存在する。ベーンポンプ100が駆動してポンプ室6内に高圧が発生したときに、カバー30の中央付近が持ち上げられるようにして撓んでしまう(変形してしまう)ことがある。ベーンポンプ100では、カバー30とヘッドピン50の規制部52との間には隙間Sが存在するので、このようなカバー30の撓みを許容することができる。つまり、カバー30が撓んで、ヘッドピン50の規制部52にヘッドピン50を引き抜くような力が作用しないので、ヘッドピン50の抜けや破損が防止される。このように、ベーンポンプ100はヘッドピン50によって一体化された状態に保持されるので、ベーンポンプ100を取り外すときにベーンポンプ100がバラバラになってしまうことがない。 When the vane pump 100 is attached to the body 90 of the fluid pressure device, specifically, when the vane pump 100 is housed in the housing recess 91 of the body 90 and the cover 30 is fixed to the body 90, as shown in FIG. In addition, a gap S exists between the cover 30 and the restriction portion 52 of the head pin 50. When the vane pump 100 is driven and a high pressure is generated in the pump chamber 6, the vicinity of the center of the cover 30 may be bent so as to be bent (deform). In the vane pump 100, since the gap S exists between the cover 30 and the restriction portion 52 of the head pin 50, such a deflection of the cover 30 can be allowed. That is, since the cover 30 is bent and a force for pulling out the head pin 50 does not act on the restricting portion 52 of the head pin 50, the head pin 50 is prevented from being detached or damaged. Thus, since the vane pump 100 is hold | maintained at the state integrated with the head pin 50, when removing the vane pump 100, the vane pump 100 does not fall apart.
 上記実施形態では、ヘッドピン50は、2本であることを例にして説明したが、これに限らず、ヘッドピン50は、スペースを確保できればさらに多くても(3~6本程度)もよい。ヘッドピン50の本数が多くなれば、その分ベーンポンプ100を一体化した状態を保持する保持力が向上する。逆に、ヘッドピン50の本数が少なければ、その分小型化することができる。ヘッドピン50を駆動軸を中心として対称位置に2本設けることで、最低限の本数で安定して保持することができる。また、ヘッドピン50は、その先端部が係合孔43に圧入されるように構成することで、ヘッドピン50と係合孔43のねじ加工を不要とすることができる。 In the above embodiment, the description has been given by taking the case where there are two head pins 50 as an example. However, the present invention is not limited to this, and the head pins 50 may be more (about 3 to 6) as long as a space can be secured. As the number of head pins 50 increases, the holding force for maintaining the state in which the vane pump 100 is integrated is improved accordingly. Conversely, if the number of head pins 50 is small, the size can be reduced accordingly. By providing two head pins 50 at symmetrical positions with the drive shaft as the center, a minimum number of head pins 50 can be stably held. Further, the head pin 50 is configured such that the tip portion thereof is press-fitted into the engagement hole 43, so that it is not necessary to thread the head pin 50 and the engagement hole 43.
 このようにして組み立てられたベーンポンプ100は、ボディ90の収容凹部91に装着され、カバー30の貫通孔33に挿通されたボルトをボディ90に螺合することによりボディ90に固定される。 The vane pump 100 assembled in this way is fixed to the body 90 by being attached to the housing recess 91 of the body 90 and screwing the bolt inserted into the through hole 33 of the cover 30 into the body 90.
 次に、ボディ90の収容凹部91について説明する。 Next, the housing recess 91 of the body 90 will be described.
 図4に示すように、ボディ90の収容凹部91は、底面側から順に、底面に第2吐出流路93bが開口する第1凹部91aと、第1凹部91aより大径に形成され底面に第1吐出流路93aが開口する第2凹部91bと、第2凹部91bより大径に形成されアダプタ40の本体部40bが挿入される第3凹部91cと、第3凹部91cより大径に形成されベーンポンプ100との間に上述した吸込空間70が形成される第4凹部91dと、を有する。 As shown in FIG. 4, the housing recess 91 of the body 90 includes, in order from the bottom surface side, a first recess 91 a in which the second discharge channel 93 b opens on the bottom surface and a diameter larger than that of the first recess 91 a. The second recess 91b in which one discharge channel 93a is opened, the third recess 91c having a larger diameter than the second recess 91b and into which the main body 40b of the adapter 40 is inserted, and having a larger diameter than the third recess 91c. And a fourth recess 91d in which the suction space 70 described above is formed between the vane pump 100 and the vane pump 100.
 ベーンポンプ100が収容凹部91内に収容された状態では、第1凹部91aにはアダプタ40の円筒部40cが嵌合され、第3凹部91cにはアダプタ40の本体部40bが嵌合される。このとき、本体部40bの環状面40fは第3凹部91cの底面に対向する。これにより、第2凹部91bと第3凹部91cとアダプタ40の本体部40bと円筒部40cの外周とによって、つまり、第2凹部91b及び第3凹部91cの底面とアダプタ40の本体部40bとの間に円環状の高圧室94が区画される。高圧室94には、ポンプ室6から吐出された高圧の作動油が、第1貫通孔21a、第1円弧溝25a、第1開口部44a、貫通孔45a及び凹溝47を通じて導かれる。高圧室94内に導かれた作動油は、第1吐出流路93aに流出する。 When the vane pump 100 is housed in the housing recess 91, the cylindrical portion 40c of the adapter 40 is fitted into the first recess 91a, and the main body 40b of the adapter 40 is fitted into the third recess 91c. At this time, the annular surface 40f of the main body portion 40b faces the bottom surface of the third recess 91c. Thereby, by the 2nd recessed part 91b, the 3rd recessed part 91c, the main-body part 40b of the adapter 40, and the outer periphery of the cylindrical part 40c, ie, the bottom face of the 2nd recessed part 91b and the 3rd recessed part 91c, and the main-body part 40b of the adapter 40 An annular high pressure chamber 94 is defined between them. The high pressure hydraulic oil discharged from the pump chamber 6 is guided to the high pressure chamber 94 through the first through hole 21 a, the first arc groove 25 a, the first opening 44 a, the through hole 45 a, and the concave groove 47. The hydraulic fluid guided into the high pressure chamber 94 flows out to the first discharge flow path 93a.
 第4凹部91dには、ボディ側サイドプレート20、カムリング4、カバー側サイドプレート10が収容され、第4凹部91dは、カバー30がボディ90に取り付けられることによって閉塞される。第4凹部91dとベーンポンプ100(ボディ側サイドプレート20、カムリング4及びカバー側サイドプレート10)との間には、上記した吸込流路92に連通する円環状の吸込空間70が形成される。 The body-side side plate 20, the cam ring 4, and the cover-side side plate 10 are accommodated in the fourth recess 91d, and the fourth recess 91d is closed by attaching the cover 30 to the body 90. Between the fourth recess 91d and the vane pump 100 (the body side plate 20, the cam ring 4, and the cover side plate 10), an annular suction space 70 that communicates with the suction flow path 92 is formed.
 次に、ベーンポンプ100の動作について説明する。 Next, the operation of the vane pump 100 will be described.
 図示しないエンジンなどの駆動装置の動力によって駆動軸1が回転駆動されることで、ロータ2が回転する。ロータ2の回転に伴って、2つの吸込領域に位置するポンプ室6は拡張する。これにより、タンク内の作動油が、吸込流路92、吸込空間70、切欠き4e、吸込ポート11及び吸込用凹部23を通ってポンプ室6に吸い込まれる。また、2つの吐出領域に位置するポンプ室6は、ロータ2の回転に伴って収縮する。これにより、一方の吐出領域にあるポンプ室6内の作動油が、第1吐出ポート7a(第1貫通孔21a及び第1円弧溝25a)、第1接続流路41a(第1開口部44a、貫通孔45a、及び凹溝47)、高圧室94、及び第1吐出流路93aを通じて、図示しない油圧機器へと供給され、他方の吐出領域にあるポンプ室6内の作動油が、第2吐出ポート7b(第2貫通孔21b及び第2円弧溝25b)、第2接続流路41b(第2開口部44b、貫通孔45b、及び内部空間40e)及び第2吐出流路93bを通じて、図示しない油圧機器へと供給される。ベーンポンプ100では、ロータ2が1回転する間に、各ポンプ室6が作動油の吸込、吐出を2度繰り返す。 Rotating the drive shaft 1 with the power of a drive device such as an engine (not shown) causes the rotor 2 to rotate. As the rotor 2 rotates, the pump chamber 6 located in the two suction areas expands. As a result, the hydraulic oil in the tank is sucked into the pump chamber 6 through the suction flow path 92, the suction space 70, the notch 4 e, the suction port 11, and the suction recess 23. Further, the pump chamber 6 located in the two discharge regions contracts as the rotor 2 rotates. As a result, the hydraulic oil in the pump chamber 6 in the one discharge region flows into the first discharge port 7a (the first through hole 21a and the first arc groove 25a), the first connection flow path 41a (the first opening 44a, Through the through hole 45a and the concave groove 47), the high pressure chamber 94, and the first discharge flow passage 93a, hydraulic oil in the pump chamber 6 in the other discharge region is supplied to a hydraulic device (not shown) and is discharged into the second discharge region. Through the port 7b (second through-hole 21b and second arc groove 25b), second connection flow path 41b (second opening 44b, through-hole 45b, and internal space 40e) and second discharge flow path 93b, hydraulic pressure not shown. Supplied to the equipment. In the vane pump 100, each pump chamber 6 repeats suction and discharge of hydraulic oil twice while the rotor 2 rotates once.
 第1、第2吐出ポート7a、7b(第1、第2円弧溝25a、25b)に吐出された作動油の一部は、それぞれ連通孔28及び第2背圧溝24bを通じて背圧室5に供給され、ベーン3の基端部3bを内周カム面4aに向かって押圧する。したがって、ベーン3は、基端部3bを押圧する背圧室5の流体圧力と、ロータ2の回転に伴って働く遠心力と、によってスリット2aから突出する方向に付勢される。これにより、ベーン3の先端部3aがカムリング4の内周カム面4aに摺接しながら回転するので、ポンプ室6内の作動油は、ベーン3の先端部3aとカムリング4の内周カム面4aとの間から漏れることなくポンプ室6から吐出される。 Part of the hydraulic oil discharged to the first and second discharge ports 7a and 7b (first and second arc grooves 25a and 25b) enters the back pressure chamber 5 through the communication hole 28 and the second back pressure groove 24b, respectively. The base end portion 3b of the vane 3 is pressed toward the inner peripheral cam surface 4a. Therefore, the vane 3 is urged in the direction protruding from the slit 2 a by the fluid pressure of the back pressure chamber 5 that presses the base end portion 3 b and the centrifugal force that works in accordance with the rotation of the rotor 2. As a result, the tip 3 a of the vane 3 rotates while being in sliding contact with the inner peripheral cam surface 4 a of the cam ring 4, so that the hydraulic oil in the pump chamber 6 flows into the tip 3 a of the vane 3 and the inner peripheral cam surface 4 a of the cam ring 4. The liquid is discharged from the pump chamber 6 without leaking from between the two.
 ベーンポンプ100は、ボディ90の収容凹部91に収容された状態では、アダプタ40の本体部40bが、収容凹部91の第3凹部91cの底面に当接している。さらに、アダプタ40とボディ側サイドプレート20との間には、Oリング83a、83bが圧縮した状態で設けられている。これにより、Oリング83a、83bの弾性力によって、ボディ側サイドプレート20が常時ロータ2の端面に押し付けられるので、ボディ側サイドプレート20とロータ2との間からの作動油の漏れを防止できる。したがって、ベーンポンプ100の吐出効率が向上する。このように、Oリング83a、83bは、第1、第2円弧溝25a、25bの外周を囲んでシールするシール部材としての機能に加え、ボディ側サイドプレート20をロータ2の端面に常時付勢されるための付勢部材としての機能を有する。 When the vane pump 100 is housed in the housing recess 91 of the body 90, the main body 40 b of the adapter 40 is in contact with the bottom surface of the third recess 91 c of the housing recess 91. Furthermore, O- rings 83a and 83b are provided in a compressed state between the adapter 40 and the body side plate 20. Accordingly, the body side plate 20 is always pressed against the end surface of the rotor 2 by the elastic force of the O- rings 83a and 83b, so that leakage of hydraulic oil from between the body side plate 20 and the rotor 2 can be prevented. Therefore, the discharge efficiency of the vane pump 100 is improved. As described above, the O- rings 83a and 83b always urge the body side plate 20 to the end surface of the rotor 2 in addition to the function as a sealing member that surrounds and seals the outer periphery of the first and second arc grooves 25a and 25b. It has a function as an urging member to be performed.
 ポンプ室6から高圧の作動油が吐出されるようになると、第1、第2円弧溝25a、25b内の作動油の圧力も高圧になる。これにより、ボディ側サイドプレート20がロータ2の端面に押し付けられる。さらに、ポンプ室6から高圧の作動油が、第1吐出ポート7a及び第1接続流路41aを通じて高圧室94内にも導かれる。これにより、高圧室94内の作動油の圧力によって、アダプタ40が第3凹部91cの底面から離間しボディ側サイドプレート20に押し付けられる。これにより、アダプタ40は、高圧室94に導かれた高圧の作動油によってボディ側サイドプレート20をロータ2に向けて付勢し、ボディ側サイドプレート20をロータ2の端面に押し付ける。 When high-pressure hydraulic oil is discharged from the pump chamber 6, the pressure of the hydraulic oil in the first and second arc grooves 25a and 25b also becomes high. As a result, the body side plate 20 is pressed against the end surface of the rotor 2. Further, high-pressure hydraulic oil is introduced from the pump chamber 6 into the high-pressure chamber 94 through the first discharge port 7a and the first connection flow path 41a. Accordingly, the adapter 40 is separated from the bottom surface of the third recess 91c and pressed against the body side plate 20 by the pressure of the hydraulic oil in the high pressure chamber 94. Thereby, the adapter 40 urges the body side plate 20 toward the rotor 2 by the high pressure hydraulic oil guided to the high pressure chamber 94, and presses the body side plate 20 against the end surface of the rotor 2.
 ポンプ室6が高圧になると、Oリング83a、83bの弾性力だけではボディ側サイドプレート20をロータ2に向かって充分に押し付けることができない。しかしながら、ポンプ室6が高圧になると、ボディ側サイドプレート20は、Oリング83a、83bの弾性による付勢力に加えて、第1、第2円弧溝25a、25b内の作動油の圧力、及びアダプタ40に作用する作動油の圧力によってもロータ2に押し付けられることになる。したがって、高圧時においてもボディ側サイドプレート20とロータ2との間からの作動油の漏れを防止できる。 When the pump chamber 6 is at a high pressure, the body side plate 20 cannot be pressed sufficiently toward the rotor 2 only by the elastic force of the O- rings 83a and 83b. However, when the pump chamber 6 is at a high pressure, the body side plate 20 is operated by the pressure of the hydraulic oil in the first and second arc grooves 25a and 25b and the adapter in addition to the urging force by the elasticity of the O- rings 83a and 83b. It is pressed against the rotor 2 also by the pressure of the hydraulic oil acting on 40. Therefore, it is possible to prevent leakage of hydraulic oil from between the body side plate 20 and the rotor 2 even at high pressure.
 また、内部空間40eや高圧室94内に高圧の作動油が導かれた状態では、アダプタ40がボディ側サイドプレート20に押し付けられるので、Oリング83a、83bはアダプタ40とボディ側サイドプレート20との間で強く圧縮される。これにより、第1、第2円弧溝25a、25b内の作動油が高圧になっても、Oリング83a、83bが溝からはみ出してしまうことを防止できる。 Further, in a state where the high-pressure hydraulic oil is guided into the internal space 40e or the high-pressure chamber 94, the adapter 40 is pressed against the body side plate 20 so that the O- rings 83a and 83b are connected to the adapter 40 and the body side plate 20 with each other. Compressed strongly between. Thereby, even if the hydraulic oil in the 1st, 2nd circular- arc groove 25a, 25b becomes high pressure, it can prevent that O- ring 83a, 83b protrudes from a groove | channel.
 以上の実施形態によれば、以下に示す効果を奏する。 According to the above embodiment, the following effects are obtained.
 ベーンポンプ100は、ロータ2及びカムリング4の他端面に当接するボディ側サイドプレート20と、ボディ側サイドプレート20に形成された第1、第2吐出ポート7a、7bとボディ90に形成された第1、第2吐出流路93a、93bとを接続する第1、第2接続流路41a、41bが形成されるアダプタと、を備える。アダプタ40を適宜変更することで、ボディ側サイドプレート20に形成された第1、第2吐出ポート7a、7bとボディ90に形成された第1、第2吐出流路93a、93bとの位置のずれや形状の違いにかかわらず、第1、第2吐出ポート7a、7bと第1、第2吐出流路93a、93bとを接続させることができる。さらに、ボディ90の第1、第2吐出流路93a、93bを第1、第2円弧溝25a、25bの形状や位置に合わせて形成しなくてもよいので、設計の自由度が向上する。 The vane pump 100 includes a body side plate 20 that contacts the other end surfaces of the rotor 2 and the cam ring 4, first and second discharge ports 7 a and 7 b formed on the body side plate 20, and a first formed on the body 90. And adapters for forming first and second connection flow paths 41a and 41b for connecting the second discharge flow paths 93a and 93b. By appropriately changing the adapter 40, the positions of the first and second discharge ports 7a and 7b formed in the body side plate 20 and the first and second discharge flow paths 93a and 93b formed in the body 90 are changed. The first and second discharge ports 7a and 7b can be connected to the first and second discharge flow paths 93a and 93b regardless of the deviation or the difference in shape. Furthermore, since the first and second discharge channels 93a and 93b of the body 90 do not have to be formed in accordance with the shape and position of the first and second arc grooves 25a and 25b, the degree of design freedom is improved.
 カートリッジ式ベーンポンプは、様々な流体圧装置に装着される。このため、第1、第2吐出流路93a、93bの配置は、流体圧装置によって異なることがある。また、ボディ側サイドプレート20は、ロータ2と摺動するため耐久性に優れた鉄系の焼結金属によって形成される。このような鉄系の焼結金属は、加工性が悪く、材料自体も高いため第1、第2吐出流路93a、93bとの位置に適合させて製作すると、コストの上昇を招く。そこで、ベーンポンプ100では、ボディ側サイドプレート20に形成された第1、第2吐出ポート7a、7bとボディ90に形成された第1、第2吐出流路93a、93bと接続する部材を、ボディ側サイドプレート20とは別のアダプタ40として構成し、さらに加工性に優れたアルミニウム合金で形成する。これにより、流体圧装置の第1、第2吐出流路93a、93bの配置や形状が異なっても、ボディ側サイドプレート20を共通化することができる。さらに、アルミニウム合金を用いることで、加工時間を短縮できるのでアダプタ40を簡単に製作することができるとともに、材料費を抑制できるのでコストの上昇を抑えることができる。また、鉄に比べて比重の軽いアルミニウム合金を用いることで、ベーンポンプ100の軽量化を図ることができる。また、ボディ側サイドプレート20は鉄系の焼結金属によって形成されるので、耐久性が向上し、ロータ2との焼き付きが防止される。 The cartridge type vane pump is installed in various fluid pressure devices. For this reason, the arrangement of the first and second discharge channels 93a and 93b may differ depending on the fluid pressure device. The body-side side plate 20 is made of an iron-based sintered metal having excellent durability because it slides on the rotor 2. Such an iron-based sintered metal is poor in workability and high in material itself. Therefore, if it is manufactured in conformity with the positions of the first and second discharge flow paths 93a and 93b, the cost increases. Therefore, in the vane pump 100, the first and second discharge ports 7a and 7b formed in the body side plate 20 and the first and second discharge channels 93a and 93b formed in the body 90 are connected to the body. The adapter 40 is configured as an adapter 40 different from the side side plate 20 and is formed of an aluminum alloy having excellent workability. Thereby, even if arrangement | positioning and shape of the 1st, 2nd discharge flow paths 93a and 93b of a fluid pressure apparatus differ, the body side side plate 20 can be shared. Further, by using an aluminum alloy, the processing time can be shortened, so that the adapter 40 can be easily manufactured and the material cost can be suppressed, so that an increase in cost can be suppressed. Moreover, the weight reduction of the vane pump 100 can be achieved by using an aluminum alloy whose specific gravity is lighter than iron. Further, since the body side plate 20 is formed of iron-based sintered metal, durability is improved and seizure with the rotor 2 is prevented.
 ベーンポンプ100の始動時は、吐出側の圧力が低圧であるので、吐出側の圧力によっては、ボディ側サイドプレート20をロータ2の端面に充分に押し付けることができない。これにより、ポンプ室6内の作動油がボディ側サイドプレート20とロータ2との間から漏れてしまい、ポンプの吐出効率が低下する。そこで、ベーンポンプ100では、アダプタ40とボディ側サイドプレート20との間にOリング83a、83bが圧縮して設けられる。これにより、Oリング83a、83bの弾性力によって、ボディ側サイドプレート20はロータ2の端面に押し付けられるので、ボディ側サイドプレート20とロータ2との間の漏れを低圧時にも防止できる。さらに、Oリング83a、83bは、第1、第2円弧溝25a、25bのシール部材としても機能するので、部品点数を少なくすることができる。 When the vane pump 100 is started, since the pressure on the discharge side is low, the body side plate 20 cannot be pressed sufficiently against the end surface of the rotor 2 depending on the pressure on the discharge side. Thereby, the hydraulic oil in the pump chamber 6 leaks from between the body-side side plate 20 and the rotor 2, and the discharge efficiency of the pump decreases. Therefore, in the vane pump 100, the O- rings 83a and 83b are compressed and provided between the adapter 40 and the body side plate 20. Thereby, the body side plate 20 is pressed against the end surface of the rotor 2 by the elastic force of the O- rings 83a and 83b, so that leakage between the body side plate 20 and the rotor 2 can be prevented even at a low pressure. Furthermore, since the O- rings 83a and 83b also function as seal members for the first and second arc grooves 25a and 25b, the number of parts can be reduced.
 また、Oリング83a、83bの弾性力によって、ボディ側サイドプレート20はロータ2の端面に常時押し付けられるので、ヘッドピン50によってボディ側サイドプレート20をロータ2に押し付ける力を発生させる必要がない。したがって、ヘッドピン50を細くしたり、本数を少なくしたりすることができる。 Further, since the body side plate 20 is constantly pressed against the end face of the rotor 2 by the elastic force of the O- rings 83a and 83b, it is not necessary to generate a force for pressing the body side plate 20 against the rotor 2 by the head pin 50. Therefore, the head pins 50 can be made thinner or the number thereof can be reduced.
 ベーンポンプ100では、Oリング83a、83bを設けることによって、ベーンポンプ100を構成する各部材の寸法誤差を許容できる。具体的には、アダプタ40の本体部40b、ボディ側サイドプレート20、カムリング4、カバー側サイドプレート10、及びカバー30の収容凹部91に挿入される部位の駆動軸1の軸方向の寸法の合計が第3凹部91cの底面までの深さ寸法より小さくても、Oリング83a、83bの圧縮分だけ許容することができる。 In the vane pump 100, by providing the O- rings 83a and 83b, a dimensional error of each member constituting the vane pump 100 can be allowed. Specifically, the sum of the axial dimensions of the drive shaft 1 of the body 40 b of the adapter 40, the body side plate 20, the cam ring 4, the cover side plate 10, and the portion inserted into the housing recess 91 of the cover 30. Is smaller than the depth to the bottom surface of the third recess 91c, it is possible to allow only the amount of compression of the O- rings 83a and 83b.
 なお、Oリング83a、83bに代えて、付勢部材を、例えば、アダプタ40の本体部40bとボディ90の第3凹部91cの底面との間に設けることもできる。この場合、付勢部材として、Oリングに限らず、皿ばねなどの部材を採用することもできる。 In addition, it can replace with O- ring 83a, 83b, and can also provide an urging member between the main-body part 40b of the adapter 40, and the bottom face of the 3rd recessed part 91c of the body 90, for example. In this case, the urging member is not limited to the O-ring but may be a member such as a disc spring.
 ベーンポンプ100では、アダプタ40とボディ90の底面との間でポンプ室6から吐出された高圧の作動油が導かれる円環状の高圧室94が区画される。ポンプ室6から吐出された高圧は、本体部40bの環状面40f全体に作用するので、ボディ側サイドプレート20をロータ2の端面に強く押し付けることができる。 In the vane pump 100, an annular high-pressure chamber 94 into which high-pressure hydraulic oil discharged from the pump chamber 6 is guided is defined between the adapter 40 and the bottom surface of the body 90. Since the high pressure discharged from the pump chamber 6 acts on the entire annular surface 40f of the main body 40b, the body side plate 20 can be strongly pressed against the end surface of the rotor 2.
 ベーンポンプ100では、アダプタ40の本体部40bは円板状に形成され、円筒部40cは円筒状に形成される。これにより、本体部40b及び円筒部40cに設けられるOリング81、82は円環状で構成できる。したがって、Oリング81、82の形状が単純になり、Oリング81、82を簡単に製作することができる。さらに、本体部40b及び円筒部40cを同軸状に形成すれば、アダプタ40の加工が簡単になるとともに加工精度を向上することができる。 In the vane pump 100, the main body portion 40b of the adapter 40 is formed in a disc shape, and the cylindrical portion 40c is formed in a cylindrical shape. Thereby, the O- rings 81 and 82 provided in the main body portion 40b and the cylindrical portion 40c can be formed in an annular shape. Therefore, the shapes of the O- rings 81 and 82 are simplified, and the O- rings 81 and 82 can be easily manufactured. Furthermore, if the main body portion 40b and the cylindrical portion 40c are formed coaxially, the processing of the adapter 40 can be simplified and the processing accuracy can be improved.
 また、Oリング81が円筒部40cの外周に設けられることにより、円筒部40cをボディの第1凹部91aの底面に当接させてシールする必要がないので、アダプタ40の軸方向の加工精度を必要としない。これにより、加工時間を短縮できる。また、Oリング81、82は、それぞれ本体部40b及び円筒部40cの外周に設けられるので、ベーンポンプ100のボディ90への取り付け時などにOリング81、82が脱落することを防止できる。 Further, since the O-ring 81 is provided on the outer periphery of the cylindrical portion 40c, it is not necessary to seal the cylindrical portion 40c against the bottom surface of the first concave portion 91a of the body. do not need. Thereby, processing time can be shortened. Further, since the O- rings 81 and 82 are provided on the outer circumferences of the main body portion 40b and the cylindrical portion 40c, respectively, it is possible to prevent the O- rings 81 and 82 from dropping off when the vane pump 100 is attached to the body 90.
 以上のように構成された本発明の実施形態の構成、作用、及び効果をまとめて説明する。 The configuration, operation, and effect of the embodiment of the present invention configured as described above will be described together.
 カートリッジ式ベーンポンプ100は、駆動軸1に連結され回転駆動されるロータ2と、ロータ2の外周に開口部を有して放射状に形成される複数のスリット2aと、各スリット2aに摺動自在に挿入されるベーン3と、ベーン3の先端部が摺接する内周カム面4aを有するカムリング4と、ロータ2とカムリング4と隣り合うベーン3との間に区画されるポンプ室6と、ロータ2及びカムリング4の一端面に当接するとともに、ボディ90に固定されるカバー部材(カバー30及びカバー側サイドプレート10)と、ロータ2及びカムリング4の他端面に当接するボディ側サイドプレート20と、ボディ側サイドプレート20に形成されポンプ室6から吐出される作動流体が導かれる第1、第2吐出ポート7a、7bと、ボディ側サイドプレート20に形成された第1、第2吐出ポート7a、7bとボディ90に形成された第1、第2吐出流路93a、93bとを接続する第1、第2接続流路41a、41bが形成されるアダプタ40と、を備える。 The cartridge-type vane pump 100 includes a rotor 2 that is connected to a drive shaft 1 and is driven to rotate, a plurality of slits 2 a that are radially formed with openings on the outer periphery of the rotor 2, and are slidable in the slits 2 a. A vane 3 to be inserted; a cam ring 4 having an inner circumferential cam surface 4a in which the tip of the vane 3 is in sliding contact; a pump chamber 6 partitioned between the rotor 2 and the vane 3 adjacent to the cam ring 4; And a cover member (cover 30 and cover-side side plate 10) fixed to the body 90, a body-side side plate 20 contacting the rotor 2 and the other end surface of the cam ring 4, and a body First and second discharge ports 7a and 7b formed in the side side plate 20 through which the working fluid discharged from the pump chamber 6 is guided; First and second connection flow paths 41a and 41b connecting the first and second discharge ports 7a and 7b formed at the rate 20 and the first and second discharge flow paths 93a and 93b formed in the body 90 are provided. Adapter 40 to be formed.
 この構成によれば、アダプタ40を適宜変更することで、ボディ側サイドプレート20に形成された第1、第2吐出ポート7a、7bとボディ90に形成された第1、第2吐出流路93a、93bとの位置のずれや形状の違いにかかわらず、第1、第2吐出ポート7a、7bと第1、第2吐出流路93a、93bとを接続させることができる。さらに、ロータ2が摺動するボディ側サイドプレート20を共通化することができる。したがって、ボディ側サイドプレート20の第1、第2吐出ポート7a、7bを流体圧装置の第1、第2吐出流路93a、93bに適合させつつ、コスト低減を図ることができる。 According to this configuration, by appropriately changing the adapter 40, the first and second discharge channels 93a formed in the body 90 and the first and second discharge ports 7a and 7b formed in the body side plate 20 are formed. The first and second discharge ports 7a and 7b and the first and second discharge flow paths 93a and 93b can be connected regardless of the positional shift and the shape difference from the first and second discharge channels 7a and 93b. Furthermore, the body side plate 20 on which the rotor 2 slides can be shared. Accordingly, the first and second discharge ports 7a and 7b of the body side plate 20 can be adapted to the first and second discharge flow paths 93a and 93b of the fluid pressure device, and the cost can be reduced.
 また、カートリッジ式ベーンポンプ100は、ボディ側サイドプレート20をロータ2に向けて常時付勢する付勢部材(Oリング83a、83b)をさらに備える。 The cartridge-type vane pump 100 further includes urging members (O- rings 83a and 83b) that constantly urge the body side plate 20 toward the rotor 2.
 この構成によれば、付勢部材(Oリング83a、83b)によってボディ側サイドプレート20はロータ2に向けて常時付勢されるので、ボディ側サイドプレート20とロータ2の間からの漏れを防止できる。したがって、ポンプの吐出効率が向上する。 According to this configuration, the body side plate 20 is constantly urged toward the rotor 2 by the urging members (O- rings 83a and 83b), so that leakage from between the body side plate 20 and the rotor 2 is prevented. it can. Therefore, the discharge efficiency of the pump is improved.
 また、カートリッジ式ベーンポンプ100では、付勢部材(Oリング83a、83b)は、アダプタ40とボディ側サイドプレート20との間に圧縮して設けられ、ボディ側サイドプレート20に形成された第1、第2吐出ポート7a、7bの外周を囲んでシールするシール部材である。 Further, in the cartridge type vane pump 100, the urging members (O- rings 83a and 83b) are compressed between the adapter 40 and the body side plate 20 and are formed on the body side plate 20 in the first, It is a sealing member that surrounds and seals the outer periphery of the second discharge ports 7a and 7b.
 この構成によれば、第1、第2吐出ポート7a、7bからの漏れを防止するシール部材(Oリング83a、83b)が、付勢部材(Oリング83a、83b)として機能する。これにより、部品点数を少なくできる。 According to this configuration, the seal members (O- rings 83a and 83b) that prevent leakage from the first and second discharge ports 7a and 7b function as urging members (O- rings 83a and 83b). Thereby, the number of parts can be reduced.
 また、カートリッジ式ベーンポンプ100では、アダプタ40は、カートリッジ式ベーンポンプ100がボディ90内に収容された状態において、ボディ90の底面との間でポンプ室6から吐出された高圧の作動流体が導かれる円環状の高圧室94を区画し、高圧室94に導かれた高圧の作動流体によってボディ側サイドプレート20をロータ2に向けて付勢する。 Further, in the cartridge type vane pump 100, the adapter 40 is a circle to which the high-pressure working fluid discharged from the pump chamber 6 is guided between the adapter 40 and the bottom surface of the body 90 in a state where the cartridge type vane pump 100 is accommodated in the body 90. An annular high-pressure chamber 94 is defined, and the body side plate 20 is urged toward the rotor 2 by a high-pressure working fluid guided to the high-pressure chamber 94.
 この構成によれば、高圧時には、ボディ側サイドプレート20は、高圧室94に導かれた高圧の作動流体によってロータ2に向けて付勢されるので、高圧時においてもボディ側サイドプレート20とロータ2の間からの漏れを防止できる。 According to this configuration, when the pressure is high, the body side plate 20 is biased toward the rotor 2 by the high pressure working fluid guided to the high pressure chamber 94. Leakage between the two can be prevented.
 また、カートリッジ式ベーンポンプ100では、ボディ側サイドプレート20は、焼結金属によって形成され、アダプタ40は、アルミニウム合金によって形成される。 Further, in the cartridge type vane pump 100, the body side plate 20 is made of sintered metal, and the adapter 40 is made of aluminum alloy.
 この構成によれば、ボディ側サイドプレート20は、鉄系の焼結金属によって形成されるので耐久性が向上し、ロータ2との焼き付きが防止される。また、アダプタ40は、鉄系の焼結金属よりも軽いアルミニウム合金によって形成されるので、軽量化を図ることができる。さらに、アルミニウム合金は加工性が良いので、アダプタ40を簡単に製作することができる。 According to this configuration, the body side plate 20 is formed of an iron-based sintered metal, so durability is improved and seizure with the rotor 2 is prevented. Further, since the adapter 40 is formed of an aluminum alloy that is lighter than an iron-based sintered metal, the weight can be reduced. Furthermore, since the aluminum alloy has good workability, the adapter 40 can be easily manufactured.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.
 ベーンポンプ100では、吐出ポートを2つ設けたが、1つであってもよい。また、カバー30は、カバー側サイドプレート10と一体に形成されていてもよい。高圧室94が形成されていれば、凹溝47は形成されなくてもよい。 In the vane pump 100, two discharge ports are provided, but one discharge port may be provided. Further, the cover 30 may be formed integrally with the cover side plate 10. If the high pressure chamber 94 is formed, the concave groove 47 may not be formed.
 ボディ90には、2つの吐出流路(第1、第2吐出流路93a、93b)が設けられているが、吐出流路は1つであってもよい。この場合には、例えば、アダプタ40に円筒部40cを設けないことで、第1、第2接続流路41a、41bを高圧室94で合流させることができる。 The body 90 is provided with two discharge channels (first and second discharge channels 93a and 93b), but there may be one discharge channel. In this case, for example, the first and second connection flow paths 41 a and 41 b can be merged in the high-pressure chamber 94 by not providing the adapter 40 with the cylindrical portion 40 c.
 本願は、2015年9月18日に日本国特許庁に出願された特願2015-185584号に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2015-185584 filed with the Japan Patent Office on September 18, 2015, the entire contents of which are incorporated herein by reference.

Claims (5)

  1.  流体圧装置のボディ内に着脱可能に収容されるカートリッジ式ベーンポンプであって、
     駆動軸に連結され回転駆動されるロータと、
     前記ロータの外周に開口部を有して放射状に形成される複数のスリットと、
     前記各スリットに摺動自在に挿入されるベーンと、
     前記ベーンの先端部が摺接する内周カム面を有するカムリングと、
     前記ロータと前記カムリングと隣り合う前記ベーンとの間に区画されるポンプ室と、
     前記ロータ及び前記カムリングの一端面に当接するとともに、前記ボディに固定されるカバー部材と、
     前記ロータ及び前記カムリングの他端面に当接するサイドプレートと、
     前記サイドプレートに形成され前記ポンプ室から吐出される作動流体が導かれる吐出ポートと、
     前記サイドプレートに形成された前記吐出ポートと前記ボディに形成された吐出流路とを接続する接続流路が形成されるアダプタと、を備えるカートリッジ式ベーンポンプ。
    A cartridge type vane pump that is detachably accommodated in a body of a fluid pressure device,
    A rotor coupled to the drive shaft and driven to rotate;
    A plurality of slits formed radially with openings on the outer periphery of the rotor;
    A vane slidably inserted into each of the slits;
    A cam ring having an inner circumferential cam surface with which the tip of the vane is in sliding contact;
    A pump chamber defined between the rotor and the vane adjacent to the cam ring;
    A cover member that contacts the one end surface of the rotor and the cam ring and is fixed to the body;
    A side plate in contact with the other end face of the rotor and the cam ring;
    A discharge port formed in the side plate and through which a working fluid discharged from the pump chamber is guided;
    A cartridge-type vane pump comprising: an adapter having a connection flow path connecting the discharge port formed in the side plate and a discharge flow path formed in the body.
  2.  請求項1に記載のカートリッジ式ベーンポンプであって、
     前記サイドプレートを前記ロータに向けて常時付勢する付勢部材をさらに備えるカートリッジ式ベーンポンプ。
    The cartridge type vane pump according to claim 1,
    A cartridge-type vane pump further comprising a biasing member that constantly biases the side plate toward the rotor.
  3.  請求項2に記載のカートリッジ式ベーンポンプであって、
     前記付勢部材は、前記アダプタと前記サイドプレートとの間に圧縮して設けられ、前記サイドプレートに形成された前記吐出ポートの外周を囲んでシールするシール部材であるカートリッジ式ベーンポンプ。
    The cartridge type vane pump according to claim 2,
    The cartridge-type vane pump, wherein the urging member is a seal member that is compressed between the adapter and the side plate and seals the outer periphery of the discharge port formed on the side plate.
  4.  請求項1に記載のカートリッジ式ベーンポンプであって、
     前記アダプタは、前記カートリッジ式ベーンポンプが前記ボディ内に収容された状態において、前記ボディの底面との間で前記ポンプ室から吐出された高圧の作動流体が導かれる円環状の高圧室を区画し、前記高圧室に導かれた高圧の作動流体によって前記サイドプレートを前記ロータに向けて付勢するカートリッジ式ベーンポンプ。
    The cartridge type vane pump according to claim 1,
    The adapter defines an annular high-pressure chamber to which a high-pressure working fluid discharged from the pump chamber is guided with the bottom surface of the body in a state where the cartridge-type vane pump is accommodated in the body. A cartridge-type vane pump that urges the side plate toward the rotor by a high-pressure working fluid guided to the high-pressure chamber.
  5.  請求項1に記載のカートリッジ式ベーンポンプであって、
     前記サイドプレートは、焼結金属によって形成され、
     前記アダプタは、アルミニウム合金によって形成されるカートリッジ式ベーンポンプ。
    The cartridge type vane pump according to claim 1,
    The side plate is formed of sintered metal,
    The adapter is a cartridge type vane pump formed of an aluminum alloy.
PCT/JP2016/076378 2015-09-18 2016-09-08 Cartridge vane pump WO2017047484A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/758,161 US20180252212A1 (en) 2015-09-18 2016-09-08 Cartridge vane pump
CN201680049898.9A CN107949702A (en) 2015-09-18 2016-09-08 Cartridge type vane pump
MX2018003386A MX2018003386A (en) 2015-09-18 2016-09-08 Cartridge vane pump.
EP16846355.2A EP3327288A1 (en) 2015-09-18 2016-09-08 Cartridge vane pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015185584A JP2017057833A (en) 2015-09-18 2015-09-18 Cartridge type vane pump
JP2015-185584 2015-09-18

Publications (1)

Publication Number Publication Date
WO2017047484A1 true WO2017047484A1 (en) 2017-03-23

Family

ID=58289233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076378 WO2017047484A1 (en) 2015-09-18 2016-09-08 Cartridge vane pump

Country Status (6)

Country Link
US (1) US20180252212A1 (en)
EP (1) EP3327288A1 (en)
JP (1) JP2017057833A (en)
CN (1) CN107949702A (en)
MX (1) MX2018003386A (en)
WO (1) WO2017047484A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106837787A (en) * 2017-04-07 2017-06-13 湖北大旗液压有限公司 A kind of gear pump case being made up of iron aluminium composite material and its manufacture method
CN107387404A (en) * 2017-09-09 2017-11-24 湖南机油泵股份有限公司 A kind of high-efficiency blade pump
WO2018207611A1 (en) * 2017-05-11 2018-11-15 Kyb株式会社 Cartridge-type vane pump and pump device with same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3645654A (en) * 1970-05-01 1972-02-29 Sperry Rand Corp Power transmission
JPH0176582U (en) * 1987-11-09 1989-05-24
JPH06159258A (en) * 1992-07-27 1994-06-07 Vickers Inc Hydraulic vane pump in which axial pressure balance and flowing characteristic are improved

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4505654A (en) * 1983-09-01 1985-03-19 Vickers Incorporated Rotary vane device with two pressure chambers for each vane
US5017098A (en) * 1989-03-03 1991-05-21 Vickers, Incorporated Power transmission
US5876194A (en) * 1995-12-26 1999-03-02 Vickers, Inc. Fixed-displacement vane-type hydraulic machine
JP2001248568A (en) * 2000-03-02 2001-09-14 Kayaba Ind Co Ltd Vane pump
JP2006002646A (en) * 2004-06-17 2006-01-05 Kayaba Ind Co Ltd Vane pump
JP5300040B2 (en) * 2007-09-07 2013-09-25 株式会社ジェイテクト Rotating equipment and oil pump
CN102996439B (en) * 2012-12-11 2014-03-12 全兴精工集团有限公司 Combined pump integrating automobile steering power and lubricating oil transportation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3645654A (en) * 1970-05-01 1972-02-29 Sperry Rand Corp Power transmission
JPH0176582U (en) * 1987-11-09 1989-05-24
JPH06159258A (en) * 1992-07-27 1994-06-07 Vickers Inc Hydraulic vane pump in which axial pressure balance and flowing characteristic are improved

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106837787A (en) * 2017-04-07 2017-06-13 湖北大旗液压有限公司 A kind of gear pump case being made up of iron aluminium composite material and its manufacture method
WO2018207611A1 (en) * 2017-05-11 2018-11-15 Kyb株式会社 Cartridge-type vane pump and pump device with same
JP2018189066A (en) * 2017-05-11 2018-11-29 Kyb株式会社 Cartridge type vane pump and pump device equipped with the same
CN110637160A (en) * 2017-05-11 2019-12-31 Kyb株式会社 Insertion type vane pump and pump device comprising same
CN107387404A (en) * 2017-09-09 2017-11-24 湖南机油泵股份有限公司 A kind of high-efficiency blade pump

Also Published As

Publication number Publication date
MX2018003386A (en) 2018-06-06
JP2017057833A (en) 2017-03-23
CN107949702A (en) 2018-04-20
US20180252212A1 (en) 2018-09-06
EP3327288A1 (en) 2018-05-30

Similar Documents

Publication Publication Date Title
US9366251B2 (en) Vane pump with a vane ring, a vane ring housing chamber and vane ring opposite pressure chambers
WO2017047484A1 (en) Cartridge vane pump
WO2017047486A1 (en) Cartridge-type vane pump
US20150211396A1 (en) Lubricating oil supply structure
EP2746583A1 (en) Vane pump
WO2017047487A1 (en) Cartridge-type vane pump
US9611848B2 (en) Variable displacement vane pump having connection groove communicating with suction-side back pressure port thereof
US11773848B2 (en) Cartridge vane pump and pump device including same
WO2017051797A1 (en) Vane pump
WO2018092645A1 (en) Vane pump
CN110612395B (en) Insertion type vane pump and pump device
WO2018105415A1 (en) Variable displacement vane pump
WO2017047363A1 (en) Vane pump
WO2020203025A1 (en) Cartridge-type vane pump and pump device
JP2010001810A (en) Variable displacement vane pump
WO2017043392A1 (en) Vane pump
JP2019138281A (en) Vane pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846355

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15758161

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/003386

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE