WO2017047329A1 - Ultrasonic probe and ultrasonic diagnosing device - Google Patents

Ultrasonic probe and ultrasonic diagnosing device Download PDF

Info

Publication number
WO2017047329A1
WO2017047329A1 PCT/JP2016/074372 JP2016074372W WO2017047329A1 WO 2017047329 A1 WO2017047329 A1 WO 2017047329A1 JP 2016074372 W JP2016074372 W JP 2016074372W WO 2017047329 A1 WO2017047329 A1 WO 2017047329A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
signal
delay
delay circuit
delayed
Prior art date
Application number
PCT/JP2016/074372
Other languages
French (fr)
Japanese (ja)
Inventor
梶山 新也
樹生 中川
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2017539794A priority Critical patent/JP6423543B2/en
Publication of WO2017047329A1 publication Critical patent/WO2017047329A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52079Constructional features
    • G01S7/5208Constructional features with integration of processing functions inside probe or scanhead
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8925Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array the array being a two-dimensional transducer configuration, i.e. matrix or orthogonal linear arrays

Definitions

  • the present invention is mounted on an ultrasonic probe that is a component of an ultrasonic diagnostic apparatus, and transmits signals to array transducers arranged repeatedly one-dimensionally or two-dimensionally.
  • the present invention relates to a technique for delaying a received signal.
  • the ultrasonic diagnostic apparatus is a highly safe medical diagnostic apparatus that is non-invasive to the human body and has a smaller apparatus scale than other medical image diagnostic apparatuses such as an X-ray diagnostic apparatus and an MRI (Magnetic Resonance Imaging) apparatus.
  • medical image diagnostic apparatuses such as an X-ray diagnostic apparatus and an MRI (Magnetic Resonance Imaging) apparatus.
  • MRI Magnetic Resonance Imaging
  • it is a device that can display in real time the state of movement of the test object, such as the pulsation of the heart or the movement of the fetus, by simply operating the ultrasound probe from the body surface, Plays an important role.
  • an ultrasonic wave is transmitted into a subject by supplying a high-voltage drive signal to each of a plurality of transducers built in the ultrasonic probe.
  • a reflected ultrasonic wave generated by the difference in acoustic impedance of the living tissue in the subject is received by each of the plurality of vibration elements, and an image is generated based on the reflected wave received by the ultrasonic probe.
  • the transmitter circuit that supplies high-voltage drive signals to each transducer built in the ultrasound probe is composed of high-voltage devices so that it can generate high-voltage signals of tens to hundreds of Vpeak to peak. Is done.
  • a high-voltage MOSFET Metal-Oxide-Semiconductor Field Effect Transistor
  • LDMOS Laterally Diffused MOS
  • a delay circuit is required in the transmission / reception circuit connected to each vibrator. Since an analog delay circuit is usually realized using a capacitor, there is a problem that the circuit area increases. In particular, in order to increase the maximum delay amount determined by the focus and beam scanning angle, it is necessary to increase the number of capacitors, and the circuit area of the analog delay circuit is determined by the maximum delay amount determined by system requirements. Even when a digital signal is delayed, a shift register and a FIFO (First-In First-Out) memory are required, and a large number of flip-flops are required, which requires a large area.
  • FIFO First-In First-Out
  • an ultrasonic diagnostic apparatus capable of obtaining a three-dimensional stereoscopic image has been developed, and inspection efficiency can be improved by obtaining a tomographic image by specifying an arbitrary cross section from the three-dimensional stereoscopic image.
  • the transducers in the ultrasonic probe For three-dimensional imaging, it is necessary to change the transducers in the ultrasonic probe from a conventional one-dimensional array to a two-dimensional array, that is, a 2D array, and the number of transducers is a conventional ultrasonic probe. Increases by the square of. In this case, since it is impossible to increase the number of cables connecting the ultrasonic probe and the main unit by the square, the received signal with the number reduced by phasing addition in the ultrasonic probe is reduced. It must be transferred to the main unit via a cable.
  • the function of transmission / reception and phasing addition is realized as a beamformer IC, and a transmission / reception circuit is arranged for each transducer in the IC. It is necessary to be electrically connected to the vibrator on a one-to-one basis.
  • the transducers and the transmission / reception circuits connected to the transducers need to be arranged at the same pitch in an array, and the transducers and ICs are stacked and mounted on the tip of the ultrasonic probe.
  • the pitch of the transducers arranged in the array is usually determined by the restriction that the influence of the grating lobe does not occur within the scanning angle of the transmission beam. That is, the diffraction of the ultrasonic wave produces an unwanted beam in a direction different from the desired main lobe, but this angle is determined by the ultrasonic frequency and the transducer pitch.
  • the upper limit of the transducer pitch for preventing the grating lobe from appearing within the scanning angle is determined. Therefore, it is necessary to accommodate the transmission / reception circuit area per transducer at the same pitch as the target transducer pitch.
  • a method of dividing the delay circuit into two or more stages and performing hierarchical phasing within the IC can be considered.
  • the delay circuit is divided into two or more stages, and during reception, delay addition within the array is performed with a group of multiple transducers, and this output is extracted to the outside of the array together with the output of the group of other multiple transducers.
  • This is a phasing method in which delay addition is performed.
  • T the desired maximum delay
  • the maximum delay of the first delay circuit in the array is T / 2
  • the maximum delay of the delay circuit outside the array is T / 2.
  • the area of the delay circuit in the array is 1 ⁇ 2.
  • Non-Patent Document 1 proposes a 2D array IC shown in FIG. Note that FIG. 13 is shown in FIG. This is a comparative example in which 5 is redrawn from the viewpoint of the inventor.
  • the comparative example shown in FIG. 13 relates to a receiving IC for a CMUT (Capacitive Micro-machined Ultrasonic Transducers) 2D array using hybrid phasing combining analog phasing and digital phasing.
  • CMUT Capacitive Micro-machined Ultrasonic Transducers
  • a configuration is shown in which the vibration from the Focal point is received and processed by the CMUT vibrator 130.
  • the analog delay circuit 131 delays the received analog signal from the CMUT vibrator 130 and adds it by the analog adder 132. Thereafter, the first-stage phasing output is converted into a digital signal by an analog / digital converter ADC (Analog to Digital Converter) 133, delayed by the FIFO 134 memory, and added by the digital adder 135.
  • ADC Analog to Digital Converter
  • the delay is performed in two stages of an analog delay circuit and a FIFO which is a digital delay circuit, and the maximum delay amount of the analog delay circuit is obtained by giving a part of the delay to the FIFO while maintaining a desired maximum delay amount.
  • a transmission circuit is added to the configuration of FIG. 13, a beam forming circuit for transmission is required separately from reception. Even if it is considered that the delay circuit is shared between transmission and reception as much as possible, in the case of transmission, it is not shown in addition to the ADC, considering that the signal flow is in the direction from right to left in FIG. A DAC (Digital to Analog Converter) is required. That is, it is necessary to add a DAC only for the transmission operation, and there is a problem that the entire circuit area increases.
  • a DAC Digital to Analog Converter
  • One aspect of the present invention for solving the above problems includes a plurality of circuit units, an addition circuit that adds outputs from the plurality of circuit units, and an input terminal that inputs a common signal to the plurality of circuit units. It is an ultrasonic probe.
  • each circuit unit includes a reception circuit and a transmission circuit connected to the ultrasonic transducer, and a first delay circuit.
  • the signal is received by the ultrasonic transducer
  • the signal received from the ultrasonic transducer is received by the receiving circuit
  • the signal from the receiving circuit is delayed by the first delay circuit, and the signal delayed by the first delay circuit.
  • the adder circuit is delayed by the second delay circuit.
  • the signal from the input terminal is delayed by the second delay circuit, and the signal delayed by the second delay circuit is branched and input to a plurality of circuit units.
  • the signal delayed by the delay circuit is delayed by the first delay circuit in each of a plurality of circuit units, and the signal delayed by the first delay circuit is input to the transmission circuit.
  • a plurality of circuit units are arranged in a grid pattern to form an array region, and the second delay circuit is arranged outside the array region.
  • the second delay circuit can also be configured in an array.
  • Another aspect of the present invention provides a plurality of first delay circuits connected to a plurality of ultrasonic transducers on a one-to-one basis, an adder circuit that adds outputs of the plurality of first delay circuits, and an adder circuit And a second delay circuit connected to the first delay circuit, the received delay signal from the ultrasonic transducer is delayed by the first delay circuit and the second delay circuit, and the transmission signal to the ultrasonic transducer is The ultrasonic probe is delayed by one delay circuit and a second delay circuit.
  • the ultrasonic probe includes a plurality of circuit units, a first addition circuit that adds outputs from the plurality of circuit units, and an input terminal that inputs a common signal to the plurality of circuit units.
  • Each circuit unit includes a reception circuit and a transmission circuit connected to the ultrasonic transducer, and a first delay circuit.
  • the signal added by the first adder circuit is delayed by the second delay circuit.
  • the signal from the input terminal is delayed by the second delay circuit, and the signal delayed by the second delay circuit is branched and input to a plurality of circuit units.
  • the signal delayed by the second delay circuit is delayed by the first delay circuit, and the signal delayed by the first delay circuit is input to the transmission circuit.
  • the apparatus main body uses the signal delayed by the second delay circuit as a detection signal, forms an imaging signal based on the detection signal, and generates a signal at the ultrasonic transducer.
  • a transmission signal is supplied to the input terminal.
  • a plurality of circuit units are arranged in a lattice pattern to form an array region, and the second delay circuit is arranged outside the array region.
  • the first delay circuit and the second delay circuit are analog delay circuits, and each of the analog delay circuits includes a plurality of capacitors that hold an input signal, and a plurality of writes that control write timing of the plurality of capacitors.
  • the delay time is controlled by a signal and a plurality of readout signals for controlling the output timings of the plurality of capacitors.
  • the write signal and read supply lines for the first delay circuit in the circuit unit are arranged in a grid pattern, and the write signal and the read signal for controlling the timing of the first delay circuit are Are controlled independently of the write signal and read signal that control the timing of the delay circuit.
  • analog delay circuits are connected in multiple stages, the first-stage delay circuits are arranged in the transmission / reception circuits in the array, and the others These delay circuits are arranged outside the array to reduce the area of the transmission / reception circuit per transducer. Furthermore, the delay circuit is shared between the transmission operation and the reception operation, and beam forming and phasing operations are realized with a minimum circuit configuration and circuit area that do not require an analog / digital converter and a digital / analog converter.
  • a transmission delay operation can be realized regardless of whether the transmission circuit is a linear amplifier or a pulser.
  • Hierarchical phasing that reduces the increase in circuit area while sharing the delay circuit for transmission and reception is possible while supporting both transmission and reception operations.
  • FIG. 4 is a block diagram showing an extracted circuit that operates only during the reception operation of the configuration of FIG. 3 for explaining the reception operation of the embodiment of FIG. 3;
  • FIG. 4 is a block diagram showing an extracted circuit that operates only during the transmission operation of the configuration of FIG. 3 for explaining the transmission operation of the embodiment of FIG. 3;
  • FIG. 7 is a timing chart illustrating the operation of the analog delay circuit in FIG. 6.
  • FIG. 9 is a plan view in which an analog delay circuit write / read control circuit and control signal wiring are added to the layout of FIG. 8;
  • 1 is a diagram showing an ultrasonic probe having a two-dimensional array transducer for three-dimensional imaging and a system configuration to which the present invention is applied as a system embodiment 1.
  • FIG. It is a block diagram at the time of employ
  • FIG. 5 is a diagram showing an ultrasonic probe having a two-dimensional array transducer for three-dimensional imaging and a system configuration as a second embodiment of the system to which the present invention is applied.
  • FIG. It is a block diagram at the time of employ
  • FIG. It is a block diagram of the comparative example which redrawn 5 from the viewpoint of the inventor.
  • notations such as “first”, “second”, and “third” are attached to identify the constituent elements, and do not necessarily limit the number or order.
  • a number for identifying a component is used for each context, and a number used in one context does not necessarily indicate the same configuration in another context. Further, it does not preclude that a component identified by a certain number also functions as a component identified by another number.
  • delay circuits are connected in multiple stages, and the delay circuit is shared for transmission and reception operations. At the time of reception, phasing is performed inside the array and then phasing outside the array, and two or more hierarchical phasing is performed.
  • An embodiment will be described in which transmission signals to a plurality of transducers are collectively delayed outside the array, and then beam forming is further delayed for each transducer within the array.
  • FIG. 1 shows the principle of the receiving operation in the present invention.
  • 10 is not particularly limited, but is an ultrasonic vibrator realized by PUT (lead zirconate titanate) or CMUT made of silicon material, which converts electrical signals into sound during transmission, and in receiving operation.
  • PUT lead zirconate titanate
  • CMUT silicon material
  • a transducer that converts sound from a Focal point into an electrical signal.
  • the reception signal converted into an electric signal in the vibrator 10 is delayed through the analog delay circuit (DLY0) 11, and the phases of the reception signals from the plurality of vibrators are aligned and added by the adder circuit 12. This is further delayed by the analog delay circuit (DLY1) 13 at the second stage to align the phases and added by the adder circuit 14.
  • the maximum delay is the sum of the maximum delay amount of DLY0 and the maximum delay amount of DLY1. Therefore, if only DLY0 is arranged in the array and DLY1 is arranged outside the array, the area of the analog delay circuit in the array can be reduced while maintaining the maximum delay amount necessary for the system. Further, the delay amount for each transducer 10 can be set by changing the delay amount of DLY0.
  • FIG. 2 shows the principle of the transmission operation in the present invention. Contrary to the reception operation of FIG. 1, the signal flow is from right to left in the figure.
  • the transmission signal input to the IC is delayed by the analog delay circuit (DLY1) 13. Furthermore, an independent delay is given to each vibrator 10 by the analog delay circuit (DLY0) 11 as the delay of the second stage.
  • the maximum delay difference between the transducers 10 is the sum of the maximum delay amount of DLY0 and the maximum delay amount of DLY1.
  • the sound from each transducer 10 can be concentrated at, for example, Focal point by controlling the delay amount.
  • FIG. 3 shows the configuration of an embodiment for carrying out the present invention.
  • the configuration for sharing the analog delay circuits DLY0 and DLY1 in the reception operation of FIG. 1 also for the transmission operation of FIG. 2 is shown in FIG.
  • an ultrasonic probe used in an ultrasonic diagnostic apparatus will be described as an example.
  • Reference numeral 32 denotes a receiving circuit, specifically, a low noise amplifier LNA (Low Noise Amplifier).
  • the transmission circuit 31 drives the vibrator 10 during transmission and irradiates the subject with ultrasonic waves.
  • the receiving circuit 32 receives a signal from the vibrator 10 at the time of reception.
  • a multiplexer 33 is arranged so that the signal path can be switched between transmission and reception.
  • Reference numeral 12 denotes an adder circuit that operates during reception.
  • Reference numeral 36 denotes a signal path switching multiplexer for sharing the second-stage analog delay circuit (DLY1) 13 for transmission and reception.
  • Reference numeral 14 denotes an adder circuit for second-stage phasing that operates during reception.
  • it is set as 2 steps
  • the reception output RxOUT transmits a reception signal from the ultrasonic probe to an ultrasonic diagnostic apparatus main body (not shown).
  • the transmission input TxIN transmits a transmission signal from the ultrasonic diagnostic apparatus main body to the ultrasonic probe.
  • FIG. 4 is a diagram showing a configuration in which a circuit that operates only during the reception operation of the configuration of FIG. 3 is extracted for explaining the operation of the embodiment of FIG.
  • An electric signal from the vibrator 10 is amplified by the receiving circuit 32.
  • the multiplexer 33 selects the reception path, and the reception signal is delayed by the analog delay circuit (DLY0) 11.
  • the delayed received signals having the same phase are added by the adder circuit 12 and then delayed by the second-stage analog delay circuit (DLY1) 13 through the multiplexer 36 that has selected the receiving path, so that the phases are adjusted.
  • the signals are added by the adder circuit 14 and output as a reception output from RxOUT to the main body side of the ultrasonic diagnostic apparatus.
  • FIG. 5 shows the configuration extracted from the circuit that operates only during the transmission operation of the configuration of FIG. 3, as in FIG.
  • the analog transmission signal input from the transmission input TxIN passes through the multiplexer 36 whose transmission path is selected, and is delayed by the analog delay circuit (DLY0) 11.
  • the delayed transmission signal passes through the multiplexer 33 whose transmission path is selected, is delayed for each transducer independently by the second-stage analog delay circuit (DLY0) 11, and is transmitted by the transmission circuit 31 to the transducer 10. Is driven.
  • FIG. 6 is an implementation example of the analog delay circuit DLY0 or DLY1 shown in FIGS. With such an analog ring memory configuration, it is possible to delay the analog signal with clock cycle resolution by sampling / holding in synchronization with the clock.
  • the input analog voltage Vin is written and held in the capacitor Cs by turning on the write side switch controlled by ⁇ * w. Thereafter, the Read side switch controlled by ⁇ * r is turned on and output after a certain period of time.
  • the time from writing Write to reading Read is a delay time.
  • * is 0 and a natural number.
  • FIG. 6 a plurality of capacitor Cs and switch pairs having numbers from 0 to N sequentially sample and hold.
  • the maximum amount of delay is determined by clock cycle x number of capacitors Cs parallel N.
  • FIG. 7 shows a timing chart for explaining the operation of FIG.
  • An N-phase signal having a clock cycle ⁇ N cycle as shown in the figure from the reference clock is generated for each of Write and Read.
  • the write control signal ⁇ * w is set to high level to turn on the write side switch, and the input analog voltage is written and held in the capacitor.
  • the read control signal ⁇ * r is set to the high level to turn on the read side switch and obtain an output.
  • the number of clock cycles from writing to reading is the delay time. In the example of FIG. 7, the delay is 3 clock cycles.
  • the maximum delay amount is determined by the parallel number N of switches and capacitors in FIG. That is, if an attempt is made to increase the maximum delay amount, the number of in-circuit switches and capacitors increases, resulting in an increase in the area of the delay circuit in the transmission / reception circuit of one transducer.
  • the delay circuit is arranged outside the array while realizing a desired maximum delay amount by dividing the delay into two or more stages by hierarchical beam forming and phasing of two or more stages shown in FIGS. It is effective to reduce the vibrator pitch by cutting out a part of.
  • FIG. 8 shows an example of a layout in which the embodiment circuit for configuring the ultrasonic probe shown in FIG. 3 is physically arranged.
  • FIG. 8 shows a circuit arrangement of a phasing unit called a subarray.
  • the circuit of FIG. 8 constitutes one IC or a part thereof.
  • a configuration is shown in which 64 transducers are delayed and added by 16 transducers in the array during reception, and further delayed and added by 4 groups outside the array and output to RxOUT.
  • 64 transmission / reception circuits 80 are arranged in an 8 ⁇ 8 array in the subarray 100.
  • One of the transmission / reception circuits 80 is extracted and shown in a circle 800 indicated by a dotted line.
  • Analog delay circuit (DLY0) 11 is arranged in transmission / reception circuit 80 connected to one oscillator (not shown).
  • the outputs of the 16 transducers are added and wired to the outside of the array by one wiring 89.
  • the outputs of the four wires 89 phased by 16 transducers are respectively delayed and added by analog delay circuits (DLY1) 13a, 3b, 13c, and 13d outside the array.
  • the phasing output thus delayed and added in two steps is output from the IC as a reception output RxOUT by the cable buffer BUF indicated by 86, and transmitted to the main body side of the ultrasonic diagnostic apparatus via the cable.
  • FIG. 8 13a. a3b. 13c.
  • An off-array analog delay circuit (DLY1) other than 13d is shown, which will be described. Since a plurality of, for example, 128 subarrays are arranged in the IC, if the subarray consisting of the 64 transducers shown in FIG. 8 is arranged at the end of the array, in fact, although not shown on the left and right, subarrays are arranged.
  • DLY1 off-array analog delay circuit
  • the phasing output wiring from the 16 transducers in the upper subarray (not shown) is routed on the array from the top to the bottom of the figure, and delay addition is performed to bundle four wires outside the array. For this reason, if eight subarrays are arranged from end to end at the top and bottom of the entire array, 4 ⁇ 8 32 analog delay circuits must be arranged outside the array. A layout is required in which these 32 analog delay circuits outside the array are accommodated in the horizontal width of the sub-array as shown in FIG. However, there is no need for a transmission circuit and a reception circuit connected to one transducer outside the array, and there may be a small circuit such as an analog delay circuit (DLY1), an addition circuit, and other multiplexers. A simple layout is easily realizable.
  • DLY1 analog delay circuit
  • FIG. 9 is a diagram in which the analog delay circuit write / read control circuit and control signal wiring are added to the layout of FIG.
  • the write control circuit shown in 92 performs writing to the capacitors in the analog delay circuit (DLY0) 11 in the array
  • the read control circuit shown in 93 reads from the capacitors in the analog delay circuit (DLY0) 11 in the array.
  • the write control circuit 94 performs writing to the capacitor in the off-array analog delay circuit (DLY1) 13
  • the read control circuit 95 performs reading from the capacitor in the off-array analog delay circuit (DLY1) 13.
  • the subarray shown in FIG. 9 is located at the bottom right of the array.
  • the plurality of write control lines 96 are controlled independently for each row, and the plurality of read control lines 97 are controlled independently for each column. Since the time from writing to reading is a delay time, by performing independent writing and reading control for each row and column, an independent delay is applied to each transducer of the unit indicated by 80. Can do. In addition, independence of delay control can be ensured not only in the subarray but also in the control line extending across the subarray. In other words, the write / read control lines 96 and 97 with arrows shown in FIG. 9 can independently control the delay of all the transducers even if they are wired across the sub-array from end to end of the array. Can do.
  • a delay delay circuit with a small area can be provided.
  • a delay phasing circuit capable of reducing the transmission / reception circuit area per transducer in the 2D array transducer.
  • the Write Control circuit 92 and the Read Control circuit 93 in FIG. 9 control the delay amount of the in-array analog delay circuit (DLY0) 11 as the first-stage delay control.
  • the write control circuit 94 and the read control circuit 95 control the delay amount of the off-array analog delay circuit (DLY1) 13 as the second-stage delay control by the plurality of write control lines 98 and the plurality of read control lines 99.
  • the delay given to the first stage is calculated from the delay profile of the subarray, and the delay given to the second stage is calculated and controlled by the respective write control lines 96 and 98 and read control lines 97 and 99.
  • the reference clock frequency must naturally be the same in the first stage and the second stage.
  • ⁇ 0w shown in the timing chart of FIG. 7 does not need to be at a high level at the same timing in the first-stage analog delay circuit and the second-stage analog delay circuit. It is sufficient that the control signal circulates as an N-phase signal in both the first stage and the second stage, and there is no problem even if the start and end of the circulation are shifted. Only the number of clock cycles between writing and reading, that is, the amount of delay, becomes a problem.
  • FIG. 10 shows an embodiment of an ultrasonic probe 1000 having a two-dimensional array transducer for three-dimensional imaging and a system configuration to which the present invention is applied.
  • a transmission / reception circuit 80 is arranged for each transducer 10, and the reception output is an analog delay circuit (DLY 0) in the array in the transmission / reception circuit 80, an adder circuit 12, an analog delay circuit outside the array ( DLY 1) 13 and the adder circuit 14 adjust the phase in two stages and send it to the AFE (analog front end) 107 of the main unit.
  • the sub-array 100 is a grouping unit of transducer channels to be added.
  • the transmission circuit in the transmission / reception circuit 80 is assumed to be a linear amplifier. That is, an analog transmission waveform is transmitted from the main unit to the main unit by a digital-analog converter DAC denoted by reference numeral 106, amplified in two steps by a linear amplifier, and the vibrator 10 is voltage-driven. All signal paths for transmission and reception are analog.
  • Transmission amplitude and reception gain settings are transmitted as digital data from the processor 108 of the main unit 1001 to the IC control logic circuit 109 in the ultrasonic probe, and the IC control logic circuit 109 is built in the IC in the ultrasonic probe. Set the parameters of each circuit.
  • FIG. 11 shows an embodiment in which the transmission circuit in the transmission / reception circuit 80 for driving each transducer 10 in the ultrasonic probe is a pulser in the system configuration of FIG.
  • the transmission data is transmitted as digital data from the main body apparatus 1001 to the ultrasonic probe 1000, so that the DAC 106 of FIG. 10 is not necessary.
  • the transmission waveform data is transmitted from the processor 117 of the main body apparatus 1001 to the IC control logic circuit 118 in the ultrasonic probe 1000 and stored in the waveform memory 119.
  • the digital data is delayed in two stages by the analog delay circuit outside the array (DLY1) 13 and the analog delay circuit (DLY0) in the transmission / reception circuit 80, and the transmission pulser in the transmission / reception circuit 80 is corrected according to the digital data.
  • a ternary voltage of a voltage, a negative voltage, and a GND voltage is output.
  • the analog delay circuit can delay the analog waveform
  • the digital data can be delayed by passing the waveform of the digital data of 0 through the analog delay circuit as it is.
  • a pulser that outputs ternary values of a positive voltage, a negative voltage, and a GND voltage
  • the analog delay circuit it is possible to realize beam forming that can correspond to any transmission circuit system of a linear amplifier that can realize an arbitrary transmission waveform and a pulser that is excellent in terms of low power consumption.
  • FIG. 12 shows a configuration example in the transmission / reception circuit 80 connected to one vibrator 10.
  • the transmission / reception circuit 80 per transducer is composed of a high-voltage MOS, a linear amplifier or pulsar transmission circuit 31 that generates a high-voltage signal and drives the transducer, and a reception-system circuit that handles a low-voltage signal during transmission.
  • a transmission / reception separation switch 123 for separating from a signal, a low-voltage reception low-noise amplifier LNA 32, a first-stage analog delay circuit (DLY0) 11 for delaying a transmission signal, performing beamforming, and delaying a reception signal Is included.
  • the reception signals delayed by the analog delay circuit 125 are added by the adder circuit 12 and transmitted to the second-stage off-array analog delay circuit (DLY1) outside the array inside the IC.
  • DLY1 second-stage off-array analog delay circuit
  • beam forming, beam scanning, and reception signals from each transducer are delayed independently for each transducer by delaying a transmission signal independently for each ultrasonic transducer.
  • a technique has been described in which delay-added phasing for focusing is realized with a small-area circuit, and the pitch of the transducer array can be reduced.
  • analog delay circuits necessary for both transmission beamforming and reception phasing are cascaded in a plurality of stages, and only the first-stage delay circuit is arranged in the transmission / reception circuit per transducer for transmission. The area of the transducer array can be reduced, and the pitch of the transducer array can be reduced without sacrificing the maximum delay amount.
  • the above embodiment is effective as a technique for realizing a desired ultrasonic beam characteristic with a limited circuit area.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • It can be mounted on an IC in an ultrasonic probe connected to an ultrasonic diagnostic apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

Provided is a small area delay phasing circuit. An ultrasonic probe comprises a plurality of circuit units, an adder circuit to add the output from the plurality of circuit units, and an input terminal to input shared signals to the plurality of circuit units. With this ultrasonic probe, each circuit unit comprises a receiving circuit and transmitting circuit that are connected to an ultrasonic transducer, and a first delay circuit. When a signal is received in the ultrasonic transducer, the receiving circuit receives a signal from the ultrasonic transducer, the first delay circuit delays the signal from the receiving circuit, the signal delayed by the first delay circuit is added by the adder circuit, and the signal added by the adder circuit is delayed by a second delay circuit. When a signal is transmitted in the ultrasonic transducer, a signal from the input terminal is delayed by the second delay circuit, the signal delayed by the second delay circuit is split and input to the plurality of circuit units, the signal delayed by the second delay circuit is delayed by the first delay circuit in each of the plurality of circuit units, and the signals delayed by the first delay circuit are input to the transmitting circuit.

Description

超音波探触子および超音波診断装置Ultrasonic probe and ultrasonic diagnostic apparatus
 本発明は、超音波診断装置の構成要素である超音波探触子に搭載されて、1次元あるいは2次元に繰り返し配置されたアレイ状の各振動子への送信信号及び、各振動子からの受信信号を遅延させる技術に関するものである。 The present invention is mounted on an ultrasonic probe that is a component of an ultrasonic diagnostic apparatus, and transmits signals to array transducers arranged repeatedly one-dimensionally or two-dimensionally. The present invention relates to a technique for delaying a received signal.
 超音波診断装置は人体に非侵襲で安全性の高い医療診断機器であり、X線診断装置、MRI(Magnetic Resonance Imaging)装置などの他の医用画像診断装置に比べ、装置規模が小さい。また、超音波探触子を体表から当てるだけの簡便な操作により、例えば、心臓の脈動や胎児の動きといった検査対象の動きの様子をリアルタイムで表示可能な装置であることから、今日の医療において重要な役割を果たしている。 The ultrasonic diagnostic apparatus is a highly safe medical diagnostic apparatus that is non-invasive to the human body and has a smaller apparatus scale than other medical image diagnostic apparatuses such as an X-ray diagnostic apparatus and an MRI (Magnetic Resonance Imaging) apparatus. In addition, since it is a device that can display in real time the state of movement of the test object, such as the pulsation of the heart or the movement of the fetus, by simply operating the ultrasound probe from the body surface, Plays an important role.
 超音波診断装置においては、超音波探触子に内蔵されている複数の振動子それぞれに高電圧の駆動信号を供給することで、超音波を被検体内に送信する。被検体内において生体組織の音響インピーダンスの差異によって生ずる超音波の反射波を複数の振動素子それぞれにて受信し、超音波探触子が受信した反射波に基づいて画像を生成する。 In the ultrasonic diagnostic apparatus, an ultrasonic wave is transmitted into a subject by supplying a high-voltage drive signal to each of a plurality of transducers built in the ultrasonic probe. A reflected ultrasonic wave generated by the difference in acoustic impedance of the living tissue in the subject is received by each of the plurality of vibration elements, and an image is generated based on the reflected wave received by the ultrasonic probe.
 超音波探触子に内蔵されているそれぞれの振動子に高電圧の駆動信号を供給する送信回路は、数十~百数十Vpeak to peakの高圧信号を生成できるように高耐圧のデバイスで構成される。通常、高耐圧MOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)にはLDMOS(Laterally Diffused MOS)といったドレインとゲート間の電界強度を緩和する構造のデバイスが使用され、ドレイン-ゲート間のドリフト領域の確保のために非常に大きな面積を要する。このため、送信回路をシリコン上に集積回路(IC:Integrated Circuit)として実現する場合、大きな面積を要する。 The transmitter circuit that supplies high-voltage drive signals to each transducer built in the ultrasound probe is composed of high-voltage devices so that it can generate high-voltage signals of tens to hundreds of Vpeak to peak. Is done. Usually, a high-voltage MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor) uses a device with a structure that relaxes the electric field strength between the drain and the gate, such as LDMOS (Laterally Diffused MOS), and ensures a drift region between the drain and gate. Requires a very large area. For this reason, when a transmission circuit is realized as an integrated circuit (IC: Integrated Circuit) on silicon, a large area is required.
 さらに、送信信号、受信信号を各振動子毎に遅延させ、送信時、受信時ともにフォーカス動作を行う必要がある。このためには各振動子毎に接続される送受信回路内に遅延回路が必要である。通常アナログ遅延回路はキャパシタを用いて実現されるために、回路面積が大きくなるという問題がある。とくに、フォーカスやビームの走査角で決まる最大遅延量を大きくするには、キャパシタ数を増加させる必要があり、システム要求から決まる最大遅延量で、アナログ遅延回路の回路面積が決まる。デジタル信号を遅延させる場合にも、シフトレジスタやFIFO(First-In First-Out)メモリが必要となり、多数のフリップフロップが必要となるために大きな面積を要する。 Furthermore, it is necessary to delay the transmission signal and the reception signal for each transducer and perform the focusing operation during transmission and reception. For this purpose, a delay circuit is required in the transmission / reception circuit connected to each vibrator. Since an analog delay circuit is usually realized using a capacitor, there is a problem that the circuit area increases. In particular, in order to increase the maximum delay amount determined by the focus and beam scanning angle, it is necessary to increase the number of capacitors, and the circuit area of the analog delay circuit is determined by the maximum delay amount determined by system requirements. Even when a digital signal is delayed, a shift register and a FIFO (First-In First-Out) memory are required, and a large number of flip-flops are required, which requires a large area.
 近年、3次元立体画像を得られる超音波診断装置が開発されてきており、3次元立体画像から任意の断面を特定して断層像を得ることで、検査効率を向上させることが出来る。3次元の撮像のためには、超音波探触子内の振動子を、従来の1次元配列から2次元配列、すなわち2Dアレイとする必要があり、振動子数が従来の超音波探触子に対して2乗で増加する。この場合に、超音波探触子と本体装置を接続するケーブルの本数を2乗で増やすことは不可能であるため、超音波探触子内で整相加算して本数を減らした受信信号を本体装置にケーブルを介して転送する必要がある。このような超音波探触子内での整相加算を実現するには、送受信と整相加算の機能をビームフォーマーICとして実現し、IC内には振動子毎に送受信回路を配置して振動子と電気的に1対1で接続する必要がある。 Recently, an ultrasonic diagnostic apparatus capable of obtaining a three-dimensional stereoscopic image has been developed, and inspection efficiency can be improved by obtaining a tomographic image by specifying an arbitrary cross section from the three-dimensional stereoscopic image. For three-dimensional imaging, it is necessary to change the transducers in the ultrasonic probe from a conventional one-dimensional array to a two-dimensional array, that is, a 2D array, and the number of transducers is a conventional ultrasonic probe. Increases by the square of. In this case, since it is impossible to increase the number of cables connecting the ultrasonic probe and the main unit by the square, the received signal with the number reduced by phasing addition in the ultrasonic probe is reduced. It must be transferred to the main unit via a cable. In order to realize such phasing addition in the ultrasonic probe, the function of transmission / reception and phasing addition is realized as a beamformer IC, and a transmission / reception circuit is arranged for each transducer in the IC. It is necessary to be electrically connected to the vibrator on a one-to-one basis.
 この場合、振動子と、振動子に接続される送受信回路はアレイ状に同じピッチで並べる必要があり、振動子とICは積層して超音波探触子の先端部に実装される。アレイに並べられた振動子のピッチは通常、送信ビームの走査角内にグレーティングローブの影響が出ないための制約から決まる。すなわち、超音波の回折により、所望のビームであるメインローブと異なる方向に不要なビームが出てしまうが、この角度は超音波の周波数と振動子ピッチで決まるため、所望の超音波周波数と走査角を決めると、走査角内にグレーティングローブが出ないための振動子ピッチ上限が決まる。よって、目標の振動子ピッチと同じピッチに、1振動子あたりの送受信回路面積を収める必要が生じる。 In this case, the transducers and the transmission / reception circuits connected to the transducers need to be arranged at the same pitch in an array, and the transducers and ICs are stacked and mounted on the tip of the ultrasonic probe. The pitch of the transducers arranged in the array is usually determined by the restriction that the influence of the grating lobe does not occur within the scanning angle of the transmission beam. That is, the diffraction of the ultrasonic wave produces an unwanted beam in a direction different from the desired main lobe, but this angle is determined by the ultrasonic frequency and the transducer pitch. When the angle is determined, the upper limit of the transducer pitch for preventing the grating lobe from appearing within the scanning angle is determined. Therefore, it is necessary to accommodate the transmission / reception circuit area per transducer at the same pitch as the target transducer pitch.
 前記の高耐圧デバイスを用いた送信回路、多数のキャパシタを用いたアナログ遅延回路または多数のフリップフロップを用いたデジタル遅延回路を目標の回路面積に収めることは回路設計上の重要な課題である。 It is an important issue in circuit design to fit a transmission circuit using the high voltage device, an analog delay circuit using a large number of capacitors, or a digital delay circuit using a large number of flip-flops into a target circuit area.
 この解決策としては、遅延回路を2段以上に分けて、IC内で階層的な整相を行う方法が考えられる。すなわち、遅延回路を2段以上に分けて、受信時は複数振動子のグループでアレイ内の遅延加算を行い、この出力を他の複数振動子からなるグループの出力とともにアレイ外に引き出し、アレイ外で遅延加算するという整相方法である。これにより、所望の最大遅延をTとした場合、たとえば1段目のアレイ内遅延回路の最大遅延をT/2、アレイ外の遅延回路の最大遅延をT/2とする2段階の整相により、アレイ内遅延回路の面積は1/2となる。この方法により、アレイ外の遅延回路は必要になるものの、アレイ内送受信回路の面積を縮小できる。 As this solution, a method of dividing the delay circuit into two or more stages and performing hierarchical phasing within the IC can be considered. In other words, the delay circuit is divided into two or more stages, and during reception, delay addition within the array is performed with a group of multiple transducers, and this output is extracted to the outside of the array together with the output of the group of other multiple transducers. This is a phasing method in which delay addition is performed. As a result, when the desired maximum delay is T, for example, the maximum delay of the first delay circuit in the array is T / 2, and the maximum delay of the delay circuit outside the array is T / 2. The area of the delay circuit in the array is ½. Although this method requires a delay circuit outside the array, the area of the in-array transmission / reception circuit can be reduced.
 このような階層的整相の例として、図13に示す2DアレイICが非特許文献1により提案されている。なお、図13は、非特許文献1のFig.5を発明者の視点で描き直した比較例である。 As an example of such hierarchical phasing, Non-Patent Document 1 proposes a 2D array IC shown in FIG. Note that FIG. 13 is shown in FIG. This is a comparative example in which 5 is redrawn from the viewpoint of the inventor.
 図13に示す比較例は、アナログ整相とデジタル整相を組み合わせたハイブリッド整相を用いたCMUT(Capacitive Micro-machined Ultrasonic Transducers)2Dアレイ用受信ICに関する。 The comparative example shown in FIG. 13 relates to a receiving IC for a CMUT (Capacitive Micro-machined Ultrasonic Transducers) 2D array using hybrid phasing combining analog phasing and digital phasing.
 図13の例においては、Focal pointからの振動をCMUT振動子130で受信し、処理する構成が示されている。1段目の整相として、CMUT振動子130からの受信アナログ信号をアナログ遅延回路131で遅延させ、アナログ加算器132で加算する。その後1段目整相出力をアナログ/デジタル変換器ADC(Analog to Digital Converter)133によりデジタル信号に変換し、FIFO134メモリで遅延させた後デジタル加算器135により加算する。 In the example of FIG. 13, a configuration is shown in which the vibration from the Focal point is received and processed by the CMUT vibrator 130. As the first-stage phasing, the analog delay circuit 131 delays the received analog signal from the CMUT vibrator 130 and adds it by the analog adder 132. Thereafter, the first-stage phasing output is converted into a digital signal by an analog / digital converter ADC (Analog to Digital Converter) 133, delayed by the FIFO 134 memory, and added by the digital adder 135.
 本構成により、遅延はアナログ遅延回路、およびデジタル遅延回路であるFIFOの2段で行い、所望の最大遅延量を維持しながら遅延の一部をFIFOにもたせることで、アナログ遅延回路の最大遅延量を緩和できる。すなわちアナログ遅延回路の面積を低減することが可能となる。 With this configuration, the delay is performed in two stages of an analog delay circuit and a FIFO which is a digital delay circuit, and the maximum delay amount of the analog delay circuit is obtained by giving a part of the delay to the FIFO while maintaining a desired maximum delay amount. Can be relaxed. That is, the area of the analog delay circuit can be reduced.
 しかしながら、超音波を送受信するという目的においては、受信だけでなく送信においても遅延動作を必要とする。図13の構成は受信回路だけなので送信動作は実現出来ない。 However, for the purpose of transmitting and receiving ultrasonic waves, a delay operation is required not only for reception but also for transmission. Since the configuration of FIG. 13 is only a receiving circuit, a transmission operation cannot be realized.
 仮に図13の構成に送信回路を加える場合、受信とは別に送信用のビームフォーミング回路が必要となる。遅延回路を送信と受信で極力共用することを考えた場合でも、送信の場合は信号の流れが図13の右から左へ向かう方向となることを考えると、ADCに加えて、図示されていないDAC(Digital to Analog Converter)が必要となる。すなわち送信動作だけのためにDACを追加する必要が生じ、全体の回路面積が増加する問題がある。 If a transmission circuit is added to the configuration of FIG. 13, a beam forming circuit for transmission is required separately from reception. Even if it is considered that the delay circuit is shared between transmission and reception as much as possible, in the case of transmission, it is not shown in addition to the ADC, considering that the signal flow is in the direction from right to left in FIG. A DAC (Digital to Analog Converter) is required. That is, it is necessary to add a DAC only for the transmission operation, and there is a problem that the entire circuit area increases.
 このような点から、送信、受信動作の両方に対応しながら、遅延回路を送信と受信で共用しつつ回路面積の増加を低減するような階層整相を行う必要がある。このような課題は特に、目標の振動子ピッチと同じピッチに、1振動子あたりの送受信回路を収める必要が生じる超音波探触子では重要である。 From such a point, it is necessary to perform hierarchical phasing so as to reduce the increase in circuit area while sharing the delay circuit for transmission and reception while supporting both transmission and reception operations. Such a problem is particularly important in an ultrasonic probe that requires the transmission / reception circuits per transducer to be accommodated at the same pitch as the target transducer pitch.
 本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。 The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.
 上記課題を解決するための本願発明の一側面は、複数の回路単位と、複数の回路単位からの出力を加算する加算回路と、複数の回路単位へ共通の信号を入力する入力端子と、を有する超音波探触子である。この超音波探触子では、回路単位の其々は、超音波振動子に接続される受信回路および送信回路と、第1の遅延回路を備える。超音波振動子での信号の受信時には、超音波振動子からの信号を受信回路が受信し、受信回路からの信号を第1の遅延回路が遅延させ、第1の遅延回路が遅延させた信号を加算回路で加算し、加算回路で加算された信号を第2の遅延回路で遅延させる。超音波振動子での信号の送信時には、入力端子からの信号を第2の遅延回路で遅延させ、第2の遅延回路で遅延させた信号を分岐して複数の回路単位へ入力し、第2の遅延回路で遅延させた信号を、複数の回路単位の其々において第1の遅延回路で遅延させ、第1の遅延回路で遅延させた信号を送信回路に入力する。 One aspect of the present invention for solving the above problems includes a plurality of circuit units, an addition circuit that adds outputs from the plurality of circuit units, and an input terminal that inputs a common signal to the plurality of circuit units. It is an ultrasonic probe. In this ultrasonic probe, each circuit unit includes a reception circuit and a transmission circuit connected to the ultrasonic transducer, and a first delay circuit. When the signal is received by the ultrasonic transducer, the signal received from the ultrasonic transducer is received by the receiving circuit, the signal from the receiving circuit is delayed by the first delay circuit, and the signal delayed by the first delay circuit. Are added by the adder circuit, and the signal added by the adder circuit is delayed by the second delay circuit. At the time of signal transmission by the ultrasonic transducer, the signal from the input terminal is delayed by the second delay circuit, and the signal delayed by the second delay circuit is branched and input to a plurality of circuit units. The signal delayed by the delay circuit is delayed by the first delay circuit in each of a plurality of circuit units, and the signal delayed by the first delay circuit is input to the transmission circuit.
 上記本発明に適用して好適な具体的な回路配置としては、複数の回路単位は格子状に配置されてアレイ領域を形成し、第2の遅延回路はアレイ領域の外部に配置されている。第2の遅延回路もアレイ状に構成することができる。 As a specific circuit arrangement suitable for application to the present invention, a plurality of circuit units are arranged in a grid pattern to form an array region, and the second delay circuit is arranged outside the array region. The second delay circuit can also be configured in an array.
 本発明の他の一側面は、複数の超音波振動子に1対1で接続される複数の第1の遅延回路と、複数の第1の遅延回路の出力を加算する加算回路と、加算回路に接続される第2の遅延回路と、を有し、超音波振動子からの受信信号を第1の遅延回路と第2の遅延回路で遅延させるとともに、超音波振動子への送信信号を第1の遅延回路と第2の遅延回路で遅延させる超音波探触子である。 Another aspect of the present invention provides a plurality of first delay circuits connected to a plurality of ultrasonic transducers on a one-to-one basis, an adder circuit that adds outputs of the plurality of first delay circuits, and an adder circuit And a second delay circuit connected to the first delay circuit, the received delay signal from the ultrasonic transducer is delayed by the first delay circuit and the second delay circuit, and the transmission signal to the ultrasonic transducer is The ultrasonic probe is delayed by one delay circuit and a second delay circuit.
 本発明の他の一側面は、超音波探触子と装置本体からなる超音波診断装置である。ここで、超音波探触子は、複数の回路単位と、複数の回路単位からの出力を加算する第1の加算回路と、複数の回路単位へ共通の信号を入力する入力端子と、を有する。また、回路単位の其々は、超音波振動子に接続される受信回路および送信回路と、第1の遅延回路を備える。超音波振動子での信号の受信時には、超音波振動子からの信号を受信回路が受信し、受信回路からの信号を第1の遅延回路が遅延させ、第1の遅延回路が遅延させた信号を第1の加算回路で加算し、第1の加算回路で加算された信号を第2の遅延回路で遅延させる。超音波振動子での信号の送信時には、入力端子からの信号を第2の遅延回路で遅延させ、第2の遅延回路で遅延させた信号を分岐して複数の回路単位へ入力し、複数の回路単位の其々において第2の遅延回路で遅延させた信号を第1の遅延回路で遅延させ、第1の遅延回路で遅延させた信号を送信回路に入力する。また、装置本体は、超音波振動子での信号の受信時には、第2の遅延回路で遅延させた信号を検出信号とし、検出信号に基づいて撮像信号を形成し、超音波振動子での信号の送信時には、入力端子に対して送信信号を供給する。 Another aspect of the present invention is an ultrasonic diagnostic apparatus including an ultrasonic probe and an apparatus main body. Here, the ultrasonic probe includes a plurality of circuit units, a first addition circuit that adds outputs from the plurality of circuit units, and an input terminal that inputs a common signal to the plurality of circuit units. . Each circuit unit includes a reception circuit and a transmission circuit connected to the ultrasonic transducer, and a first delay circuit. When the signal is received by the ultrasonic transducer, the signal received from the ultrasonic transducer is received by the receiving circuit, the signal from the receiving circuit is delayed by the first delay circuit, and the signal delayed by the first delay circuit. Are added by the first adder circuit, and the signal added by the first adder circuit is delayed by the second delay circuit. At the time of signal transmission by the ultrasonic transducer, the signal from the input terminal is delayed by the second delay circuit, and the signal delayed by the second delay circuit is branched and input to a plurality of circuit units. In each circuit unit, the signal delayed by the second delay circuit is delayed by the first delay circuit, and the signal delayed by the first delay circuit is input to the transmission circuit. In addition, when receiving a signal at the ultrasonic transducer, the apparatus main body uses the signal delayed by the second delay circuit as a detection signal, forms an imaging signal based on the detection signal, and generates a signal at the ultrasonic transducer. During transmission, a transmission signal is supplied to the input terminal.
 本発明のより具体的な構成を例示すると、複数の回路単位は格子状に配置されてアレイ領域を形成し、第2の遅延回路はアレイ領域の外部に配置されている。また、第1の遅延回路および第2の遅延回路はアナログ遅延回路であり、アナログ遅延回路のそれぞれは、入力信号を保持する複数のキャパシタを備え、複数のキャパシタの書き込みタイミングを制御する複数の書き込み信号と、複数のキャパシタの出力タイミングを制御する複数の読み出し信号により、遅延時間を制御するものである。さらに具体的には、回路単位内の第1の遅延回路に対する、書き込み信号及び読み出しの供給線が格子状に配置され、第1の遅延回路のタイミングを制御する書き込み信号および読み出し信号は、第2の遅延回路のタイミングを制御する書き込み信号および読み出し信号と別個独立に制御される。 To illustrate a more specific configuration of the present invention, a plurality of circuit units are arranged in a lattice pattern to form an array region, and the second delay circuit is arranged outside the array region. The first delay circuit and the second delay circuit are analog delay circuits, and each of the analog delay circuits includes a plurality of capacitors that hold an input signal, and a plurality of writes that control write timing of the plurality of capacitors. The delay time is controlled by a signal and a plurality of readout signals for controlling the output timings of the plurality of capacitors. More specifically, the write signal and read supply lines for the first delay circuit in the circuit unit are arranged in a grid pattern, and the write signal and the read signal for controlling the timing of the first delay circuit are Are controlled independently of the write signal and read signal that control the timing of the delay circuit.
 本願の他の側面の概要を簡単に説明すれば、下記の通りである。 The outline of other aspects of the present application will be briefly described as follows.
 超音波振動子に1対1で接続される送受信回路をアレイ状に配置したICにおいて、アナログ遅延回路を複数段従属接続し、初段の遅延回路はアレイ内の送受信回路内に配置し、それ以外の遅延回路はアレイ外に配置することで1振動子あたりの送受信回路の面積を低減する。さらに遅延回路を送信動作と受信動作で共用し、アナログ/デジタル変換器およびデジタル/アナログ変換機が不要な最小限の回路構成、回路面積でビームフォーミング、整相動作を実現する。 In an IC in which transmission / reception circuits connected to ultrasonic transducers in a one-to-one manner are arranged in an array, analog delay circuits are connected in multiple stages, the first-stage delay circuits are arranged in the transmission / reception circuits in the array, and the others These delay circuits are arranged outside the array to reduce the area of the transmission / reception circuit per transducer. Furthermore, the delay circuit is shared between the transmission operation and the reception operation, and beam forming and phasing operations are realized with a minimum circuit configuration and circuit area that do not require an analog / digital converter and a digital / analog converter.
 さらに、アナログ遅延回路にアナログ信号またはデジタル信号のいずれかを通すことにより、送信回路がリニアアンプであってもパルサであっても、送信遅延動作を実現できる。 Furthermore, by passing either an analog signal or a digital signal through the analog delay circuit, a transmission delay operation can be realized regardless of whether the transmission circuit is a linear amplifier or a pulser.
 送信、受信動作の両方に対応しながら、遅延回路を送信と受信で共用しつつ回路面積の増加を低減するような階層整相が可能となる。上記した以外の課題、構成、及び効果は、以下の実施形態の説明により明らかにされる。 Hierarchical phasing that reduces the increase in circuit area while sharing the delay circuit for transmission and reception is possible while supporting both transmission and reception operations. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
本発明における受信動作の原理を示したブロック図である。It is the block diagram which showed the principle of the reception operation | movement in this invention. 本発明における送信動作の原理を示したブロック図である。It is the block diagram which showed the principle of the transmission operation | movement in this invention. 本発明を実施するための実施例の構成を示したブロック図である。It is the block diagram which showed the structure of the Example for implementing this invention. 図3の実施例の受信動作説明のため、図3の構成の受信動作時のみ動作する回路を抜き出して示したブロック図である。FIG. 4 is a block diagram showing an extracted circuit that operates only during the reception operation of the configuration of FIG. 3 for explaining the reception operation of the embodiment of FIG. 3; 図3の実施例の送信動作説明のため、図3の構成の送信動作時のみ動作する回路を抜き出して示したブロック図である。FIG. 4 is a block diagram showing an extracted circuit that operates only during the transmission operation of the configuration of FIG. 3 for explaining the transmission operation of the embodiment of FIG. 3; アナログリングメモリ構成によるアナログ遅延回路の実現例を示した回路図である。It is the circuit diagram which showed the implementation example of the analog delay circuit by an analog ring memory structure. 図6のアナログ遅延回路の動作を説明するタイミングチャート図である。FIG. 7 is a timing chart illustrating the operation of the analog delay circuit in FIG. 6. 図3に示す本発明を実施するための実施例回路を物理的に配置したレイアウトの例を示した平面図である。It is the top view which showed the example of the layout which has physically arrange | positioned the Example circuit for implementing this invention shown in FIG. 図8のレイアウトにアナログ遅延回路の書き込み、読み出し制御回路および制御信号配線を加えた平面図である。FIG. 9 is a plan view in which an analog delay circuit write / read control circuit and control signal wiring are added to the layout of FIG. 8; システムの実施例1として、この発明が適用される、3次元撮像のための2次元アレイ振動子を持つ超音波探触子とシステム構成を示した図である。送信回路にリニアアンプを採用した場合のブロック図である。1 is a diagram showing an ultrasonic probe having a two-dimensional array transducer for three-dimensional imaging and a system configuration to which the present invention is applied as a system embodiment 1. FIG. It is a block diagram at the time of employ | adopting a linear amplifier for a transmission circuit. システムの実施例2として、この発明が適用される、3次元撮像のための2次元アレイ振動子を持つ超音波探触子とシステム構成を示した図である。送信回路にパルサを採用した場合のブロック図である。FIG. 5 is a diagram showing an ultrasonic probe having a two-dimensional array transducer for three-dimensional imaging and a system configuration as a second embodiment of the system to which the present invention is applied. It is a block diagram at the time of employ | adopting a pulsar in a transmission circuit. 1振動子に接続される送受信回路の構成を示した図である。It is the figure which showed the structure of the transmission / reception circuit connected to 1 vibrator | oscillator. 非特許文献1のFig.5を発明者の視点で描き直した比較例のブロック図である。FIG. It is a block diagram of the comparative example which redrawn 5 from the viewpoint of the inventor.
 実施の形態について、図面を用いて詳細に説明する。ただし、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。本発明の思想ないし趣旨から逸脱しない範囲で、その具体的構成を変更し得ることは当業者であれば容易に理解される。 Embodiments will be described in detail with reference to the drawings. However, the present invention is not construed as being limited to the description of the embodiments below. Those skilled in the art will readily understand that the specific configuration can be changed without departing from the spirit or the spirit of the present invention.
 以下に説明する発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、重複する説明は省略することがある。 In the structure of the invention described below, the same portions or portions having similar functions are denoted by the same reference numerals in different drawings, and redundant description may be omitted.
 本明細書等における「第1」、「第2」、「第3」などの表記は、構成要素を識別するために付するものであり、必ずしも、数または順序を限定するものではない。また、構成要素の識別のための番号は文脈毎に用いられ、一つの文脈で用いた番号が、他の文脈で必ずしも同一の構成を示すとは限らない。また、ある番号で識別された構成要素が、他の番号で識別された構成要素の機能を兼ねることを妨げるものではない。 In this specification and the like, notations such as “first”, “second”, and “third” are attached to identify the constituent elements, and do not necessarily limit the number or order. In addition, a number for identifying a component is used for each context, and a number used in one context does not necessarily indicate the same configuration in another context. Further, it does not preclude that a component identified by a certain number also functions as a component identified by another number.
 図面等において示す各構成の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面等に開示された位置、大きさ、形状、範囲などに限定されない。 The position, size, shape, range, etc. of each component shown in the drawings and the like may not represent the actual position, size, shape, range, etc. in order to facilitate understanding of the invention. For this reason, the present invention is not necessarily limited to the position, size, shape, range, and the like disclosed in the drawings and the like.
 本明細書において単数形で表される構成要素は、特段文脈で明らかに示されない限り、複数形を含むものとする。 In this specification, a component expressed in the singular shall include the plural unless specifically indicated otherwise.
 以下では、遅延回路を多段に従属接続し、かつ遅延回路を送信と受信動作で共用する。受信時はアレイ内で整相してからアレイ外で整相し、2段階以上の階層整相を行う。送信時はアレイ外で複数振動子への送信信号をまとめて遅延させてから、アレイ内で振動子毎にさらに遅延させ、ビームフォーミングを行う実施例を説明する。 In the following, delay circuits are connected in multiple stages, and the delay circuit is shared for transmission and reception operations. At the time of reception, phasing is performed inside the array and then phasing outside the array, and two or more hierarchical phasing is performed. An embodiment will be described in which transmission signals to a plurality of transducers are collectively delayed outside the array, and then beam forming is further delayed for each transducer within the array.
 図1に本発明における受信動作の原理を示す。図中10は特に制限されないが、PZT(チタン酸ジルコン酸鉛)やシリコン材料によるCMUTなどにより実現される超音波振動子であり、送信時においては電気信号を音に変換し、受信動作においては、例えばFocal pointからの音を電気信号に変換するトランスデューサである。 FIG. 1 shows the principle of the receiving operation in the present invention. In the figure, 10 is not particularly limited, but is an ultrasonic vibrator realized by PUT (lead zirconate titanate) or CMUT made of silicon material, which converts electrical signals into sound during transmission, and in receiving operation. For example, a transducer that converts sound from a Focal point into an electrical signal.
 振動子10において電気信号に変換された受信信号をアナログ遅延回路(DLY0)11を通して遅延させ、複数の振動子からの受信信号の位相をそろえて加算回路12により加算する。これをさらに2段目のアナログ遅延回路(DLY1)13で遅延させて位相をそろえ、加算回路14で加算する。 The reception signal converted into an electric signal in the vibrator 10 is delayed through the analog delay circuit (DLY0) 11, and the phases of the reception signals from the plurality of vibrators are aligned and added by the adder circuit 12. This is further delayed by the analog delay circuit (DLY1) 13 at the second stage to align the phases and added by the adder circuit 14.
 このような2段階の整相において、最大遅延はDLY0の最大遅延量とDLY1の最大遅延量の和になる。このため、DLY0のみをアレイ内に配置し、DLY1をアレイ外に配置すれば、システムとして必要な最大遅延量を維持しながらアレイ内のアナログ遅延回路の面積を低減できる。また、振動子10毎の遅延量は、DLY0の遅延量を変えることにより設定が可能である。 In such two-stage phasing, the maximum delay is the sum of the maximum delay amount of DLY0 and the maximum delay amount of DLY1. Therefore, if only DLY0 is arranged in the array and DLY1 is arranged outside the array, the area of the analog delay circuit in the array can be reduced while maintaining the maximum delay amount necessary for the system. Further, the delay amount for each transducer 10 can be set by changing the delay amount of DLY0.
 図2に本発明における送信動作の原理を示す。図1の受信動作とは反対に、信号の流れは図の右から左方向となる。ICに入力された送信信号をアナログ遅延回路(DLY1)13で遅延させる。さらに2段目の遅延として、アナログ遅延回路(DLY0)11で振動子10毎に独立な遅延を与える。振動子10間の最大遅延差はDLY0の最大遅延量とDLY1の最大遅延量の和になる。各振動子10からの音は、遅延量を制御することにより、例えばFocal pointに集中することができる。 FIG. 2 shows the principle of the transmission operation in the present invention. Contrary to the reception operation of FIG. 1, the signal flow is from right to left in the figure. The transmission signal input to the IC is delayed by the analog delay circuit (DLY1) 13. Furthermore, an independent delay is given to each vibrator 10 by the analog delay circuit (DLY0) 11 as the delay of the second stage. The maximum delay difference between the transducers 10 is the sum of the maximum delay amount of DLY0 and the maximum delay amount of DLY1. The sound from each transducer 10 can be concentrated at, for example, Focal point by controlling the delay amount.
 図3に本発明を実施するための実施例の構成を示す。図1の受信動作におけるアナログ遅延回路DLY0およびDLY1を図2の送信動作にも共用するための構成が図3となる。ここでは、超音波診断装置に用いる超音波探触子を例に説明する。 FIG. 3 shows the configuration of an embodiment for carrying out the present invention. The configuration for sharing the analog delay circuits DLY0 and DLY1 in the reception operation of FIG. 1 also for the transmission operation of FIG. 2 is shown in FIG. Here, an ultrasonic probe used in an ultrasonic diagnostic apparatus will be described as an example.
 31は送信回路であり、具体的には入力送信波形を線形に増幅するリニアアンプ、またはデジタル信号入力から正電圧、負電圧、GND電圧の3値を出力するパルサを想定する。32は受信回路であり、具体的には低雑音増幅器LNA(Low Noise Amplifier)である。送信回路31は、送信時には振動子10を駆動し、被検体に超音波を照射する。また、受信回路32は、受信時に振動子10からの信号を受信する。 31 is a transmission circuit, and specifically, a linear amplifier that linearly amplifies an input transmission waveform or a pulser that outputs three values of a positive voltage, a negative voltage, and a GND voltage from a digital signal input is assumed. Reference numeral 32 denotes a receiving circuit, specifically, a low noise amplifier LNA (Low Noise Amplifier). The transmission circuit 31 drives the vibrator 10 during transmission and irradiates the subject with ultrasonic waves. The receiving circuit 32 receives a signal from the vibrator 10 at the time of reception.
 アナログ遅延回路(DLY0)11を送信、受信で共用するために、33で示すマルチプレクサを配置し、送信時と受信時で信号パスを切り替え可能とする。12は受信時に動作する加算回路である。36は2段目のアナログ遅延回路(DLY1)13を送信、受信で共用するための信号パス切り替え用マルチプレクサである。14が受信時に動作する2段目整相用の加算回路である。なお、実施例として2段階の遅延加算整相としているが、これに限定されるものではない。3段階以上の整相も可能であるが、制御が複雑になるため現実的にはIC内の整相は2段階が実用的である。 In order to share the analog delay circuit (DLY0) 11 for transmission and reception, a multiplexer 33 is arranged so that the signal path can be switched between transmission and reception. Reference numeral 12 denotes an adder circuit that operates during reception. Reference numeral 36 denotes a signal path switching multiplexer for sharing the second-stage analog delay circuit (DLY1) 13 for transmission and reception. Reference numeral 14 denotes an adder circuit for second-stage phasing that operates during reception. In addition, although it is set as 2 steps | paragraphs of delay addition phasing as an Example, it is not limited to this. Although three or more stages of phasing are possible, since the control becomes complicated, two stages of phasing in the IC are practical in practice.
 受信出力RxOUTは、超音波探触子から図示しない超音波診断装置本体へ受信信号を送信する。送信入力TxINは、超音波診断装置本体から超音波探触子へ送信信号を送信する。 The reception output RxOUT transmits a reception signal from the ultrasonic probe to an ultrasonic diagnostic apparatus main body (not shown). The transmission input TxIN transmits a transmission signal from the ultrasonic diagnostic apparatus main body to the ultrasonic probe.
 図4は、図3の実施例の動作説明のため、図3の構成の受信動作時のみ動作する回路を抜き出して示した構成を示す図である。振動子10からの電気信号を受信回路32で増幅する。マルチプレクサ33は受信パスを選択しており、受信信号がアナログ遅延回路(DLY0)11で遅延される。遅延されて位相がそろった受信信号は加算回路12で加算された後、受信パスを選択したマルチプレクサ36を通って2段目のアナログ遅延回路(DLY1)13で遅延されて位相がそろえられる。加算回路14で加算され、受信出力としてRxOUTから超音波診断装置の本体側に出力される。 FIG. 4 is a diagram showing a configuration in which a circuit that operates only during the reception operation of the configuration of FIG. 3 is extracted for explaining the operation of the embodiment of FIG. An electric signal from the vibrator 10 is amplified by the receiving circuit 32. The multiplexer 33 selects the reception path, and the reception signal is delayed by the analog delay circuit (DLY0) 11. The delayed received signals having the same phase are added by the adder circuit 12 and then delayed by the second-stage analog delay circuit (DLY1) 13 through the multiplexer 36 that has selected the receiving path, so that the phases are adjusted. The signals are added by the adder circuit 14 and output as a reception output from RxOUT to the main body side of the ultrasonic diagnostic apparatus.
 図5は図4同様に、図3の構成の送信動作時のみ動作する回路を抜き出して示した構成である。送信入力TxINから入力されたアナログ送信信号は、送信パスが選択されたマルチプレクサ36を通り、アナログ遅延回路(DLY0)11により遅延される。遅延された送信信号は、送信パスが選択されたマルチプレクサ33を通過して、2段目のアナログ遅延回路(DLY0)11により振動子毎に独立に遅延をかけられ、送信回路31により振動子10が駆動される。 FIG. 5 shows the configuration extracted from the circuit that operates only during the transmission operation of the configuration of FIG. 3, as in FIG. The analog transmission signal input from the transmission input TxIN passes through the multiplexer 36 whose transmission path is selected, and is delayed by the analog delay circuit (DLY0) 11. The delayed transmission signal passes through the multiplexer 33 whose transmission path is selected, is delayed for each transducer independently by the second-stage analog delay circuit (DLY0) 11, and is transmitted by the transmission circuit 31 to the transducer 10. Is driven.
 図6は、図1,2,3,4,5に示したアナログ遅延回路DLY0またはDLY1の実現例である。このようなアナログリングメモリの構成により、クロックに同期してサンプル/ホールドを行ってアナログ信号をクロックサイクル分解能で遅延させることが可能である。 FIG. 6 is an implementation example of the analog delay circuit DLY0 or DLY1 shown in FIGS. With such an analog ring memory configuration, it is possible to delay the analog signal with clock cycle resolution by sampling / holding in synchronization with the clock.
 入力アナログ電圧Vinはφ*wで制御されるWrite側スイッチをオンさせてキャパシタCsに書き込まれ、保持される。その後一定時間経過後にφ*rで制御されるRead側スイッチをオンさせて出力させる。書き込みWriteから読み出しReadまでの時間が遅延時間となる。ここで*は0および自然数で、図6の場合は、0からNまでの番号を持つ複数のキャパシタCsとスイッチの組が、順番にサンプル・ホールドを行う。 The input analog voltage Vin is written and held in the capacitor Cs by turning on the write side switch controlled by φ * w. Thereafter, the Read side switch controlled by φ * r is turned on and output after a certain period of time. The time from writing Write to reading Read is a delay time. Here, * is 0 and a natural number. In the case of FIG. 6, a plurality of capacitor Cs and switch pairs having numbers from 0 to N sequentially sample and hold.
 最大遅延量は、クロック周期×キャパシタCs並列数Nで決まる。特に制限はないが、出力につながる配線負荷や、送信時に次段となる送信回路、受信時に次段となる加算回路の入力容量を駆動するために、出力用バッファBUFを設けることが望ましい。 The maximum amount of delay is determined by clock cycle x number of capacitors Cs parallel N. Although there is no particular limitation, it is desirable to provide an output buffer BUF in order to drive the wiring load connected to the output, the input capacity of the transmission circuit that is the next stage at the time of transmission, and the addition circuit that is the next stage at the time of reception.
 図7に、図6の動作を説明するタイミングチャートを示す。基準クロックから図示されるようなクロック周期×Nの周期をもつN相の信号を、Write用、Read用それぞれで生成する。書き込み制御信号φ*wをハイレベルにして書き込み側スイッチをオンさせ、キャパシタに入力アナログ電圧を書き込んで保持する。所定クロックサイクル後に、読み出し制御信号φ*rをハイレベルにして読み出し側スイッチをオンさせ、出力を得る。書き込んでから読み出すまでのクロックサイクル数が遅延時間となる。図7の例では遅延はクロック3サイクルである。 FIG. 7 shows a timing chart for explaining the operation of FIG. An N-phase signal having a clock cycle × N cycle as shown in the figure from the reference clock is generated for each of Write and Read. The write control signal φ * w is set to high level to turn on the write side switch, and the input analog voltage is written and held in the capacitor. After a predetermined clock cycle, the read control signal φ * r is set to the high level to turn on the read side switch and obtain an output. The number of clock cycles from writing to reading is the delay time. In the example of FIG. 7, the delay is 3 clock cycles.
 Write、Readともにサフィックス0~Nの制御信号が循環し、φNwがハイレベルになった後はφ0wがハイレベルに上がる。このためNサイクルより長いクロックサイクルでアナログ電圧を保持しておけないので、最大遅延量は図6のスイッチおよびキャパシタの並列数Nで決まる。すなわち、最大遅延量を長く取ろうとすれば、回路内スイッチおよびキャパシタの数が増加し、1振動子の送受信回路内遅延回路の面積増大を招く。このために、図1から図5に示した2段以上の階層化ビームフォーミング、整相によって遅延を2段以上に分割して、所望の最大遅延量を実現しながら、アレイの外に遅延回路の一部をくくりだすことが振動子ピッチの縮小に有効となる。 ∙ Control signals with suffixes 0 to N circulate in both Write and Read, and after φNw becomes high level, φ0w rises to high level. Therefore, since the analog voltage cannot be held in a clock cycle longer than N cycles, the maximum delay amount is determined by the parallel number N of switches and capacitors in FIG. That is, if an attempt is made to increase the maximum delay amount, the number of in-circuit switches and capacitors increases, resulting in an increase in the area of the delay circuit in the transmission / reception circuit of one transducer. For this purpose, the delay circuit is arranged outside the array while realizing a desired maximum delay amount by dividing the delay into two or more stages by hierarchical beam forming and phasing of two or more stages shown in FIGS. It is effective to reduce the vibrator pitch by cutting out a part of.
 図8に、図3に示す超音波探触子を構成するための実施例回路を物理的に配置したレイアウトの例を示す。図8はサブアレイと呼ばれる整相の単位の回路配置を示している。図8の回路は例えば、一つのICまたはその一部分を構成する。ここでは受信時に64振動子が、アレイ内で16振動子分遅延加算され、さらにアレイ外で4グループ分遅延加算されてRxOUTに出力される構成を例として示している。 FIG. 8 shows an example of a layout in which the embodiment circuit for configuring the ultrasonic probe shown in FIG. 3 is physically arranged. FIG. 8 shows a circuit arrangement of a phasing unit called a subarray. For example, the circuit of FIG. 8 constitutes one IC or a part thereof. Here, as an example, a configuration is shown in which 64 transducers are delayed and added by 16 transducers in the array during reception, and further delayed and added by 4 groups outside the array and output to RxOUT.
 図8の例では、サブアレイ100内に64個の送受信回路80が8×8のアレイ状に配置されている。点線で示す円800内に、送受信回路80の一つを抜き出して示した。 In the example of FIG. 8, 64 transmission / reception circuits 80 are arranged in an 8 × 8 array in the subarray 100. One of the transmission / reception circuits 80 is extracted and shown in a circle 800 indicated by a dotted line.
 1振動子(図示しない)に接続される送受信回路80内にアナログ遅延回路(DLY0)11が配置される。16振動子の出力は加算されて1本の配線89でアレイ外まで布線される。16振動子分整相された4本の配線89の出力が、アレイ外のアナログ遅延回路(DLY1)13a、3b、13c、13dにより其々遅延されて加算される。このようにして2段階で遅延加算された整相出力が86で示されるケーブル用バッファBUFによりICから受信出力RxOUTとして出力され、ケーブルを介して超音波診断装置の本体側に伝送される。 Analog delay circuit (DLY0) 11 is arranged in transmission / reception circuit 80 connected to one oscillator (not shown). The outputs of the 16 transducers are added and wired to the outside of the array by one wiring 89. The outputs of the four wires 89 phased by 16 transducers are respectively delayed and added by analog delay circuits (DLY1) 13a, 3b, 13c, and 13d outside the array. The phasing output thus delayed and added in two steps is output from the IC as a reception output RxOUT by the cable buffer BUF indicated by 86, and transmitted to the main body side of the ultrasonic diagnostic apparatus via the cable.
 なお、図8には、13nに代表される、13a.a3b.13c.13d以外のアレイ外アナログ遅延回路(DLY1)を図示してあるが、これについて説明する。ICには複数の、例えば128個のサブアレイが配置されるため、図8に示された64個の振動子からなるサブアレイがアレイの端に配置されているとした場合、実際はこのサブアレイの上や左右にも図示されていないがサブアレイが配置されることになる。 In FIG. 8, 13a. a3b. 13c. An off-array analog delay circuit (DLY1) other than 13d is shown, which will be described. Since a plurality of, for example, 128 subarrays are arranged in the IC, if the subarray consisting of the 64 transducers shown in FIG. 8 is arranged at the end of the array, in fact, Although not shown on the left and right, subarrays are arranged.
 図示されていない上側のサブアレイ内16振動子からの整相出力配線はアレイ上を、図の上から下に布線され、アレイ外で4本を束ねる遅延加算がなされる。このため、アレイ全体の上下で端から端まで8個のサブアレイが配置されるとすれば、アレイ外には4×8で32個のアナログ遅延回路が配置されなければならない。この32個のアレイ外アナログ遅延回路を図8のようにサブアレイの横幅に収めるようなレイアウトが必要となる。ただし、アレイ外には、1振動子と接続される送信回路、受信回路は必要でなく、アナログ遅延回路(DLY1)と加算回路、その他マルチプレクサ等の小規模な回路があればよいので、このようなレイアウトは容易に実現可能である。 The phasing output wiring from the 16 transducers in the upper subarray (not shown) is routed on the array from the top to the bottom of the figure, and delay addition is performed to bundle four wires outside the array. For this reason, if eight subarrays are arranged from end to end at the top and bottom of the entire array, 4 × 8 32 analog delay circuits must be arranged outside the array. A layout is required in which these 32 analog delay circuits outside the array are accommodated in the horizontal width of the sub-array as shown in FIG. However, there is no need for a transmission circuit and a reception circuit connected to one transducer outside the array, and there may be a small circuit such as an analog delay circuit (DLY1), an addition circuit, and other multiplexers. A simple layout is easily realizable.
 図9には図8のレイアウトにアナログ遅延回路の書き込み、読み出し制御回路および制御信号配線を加えた図を示す。92に示すWrite Control回路でアレイ内アナログ遅延回路(DLY0)11内のキャパシタへの書き込みを、93に示すRead Control回路でアレイ内アナログ遅延回路(DLY0)11内のキャパシタからの読み出しを行う。同様にWrite Control回路94でアレイ外アナログ遅延回路(DLY1)13内のキャパシタへの書き込みを、Read Control回路95でアレイ外アナログ遅延回路(DLY1)13内のキャパシタからの読み出しを行う。 FIG. 9 is a diagram in which the analog delay circuit write / read control circuit and control signal wiring are added to the layout of FIG. The write control circuit shown in 92 performs writing to the capacitors in the analog delay circuit (DLY0) 11 in the array, and the read control circuit shown in 93 reads from the capacitors in the analog delay circuit (DLY0) 11 in the array. Similarly, the write control circuit 94 performs writing to the capacitor in the off-array analog delay circuit (DLY1) 13, and the read control circuit 95 performs reading from the capacitor in the off-array analog delay circuit (DLY1) 13.
 図9に示されているサブアレイは、アレイの最右下に配置されていると仮定する。複数の書き込み制御線96は、行毎に独立に制御され、複数の読み出し制御線97は列毎に独立に制御される。書き込んでから読み出すまでの時間が遅延時間となるため、このような行、列毎に独立な書き込み、読み出し制御を行うことで、80で示される単位の各振動子毎に独立な遅延をかけることができる。また、サブアレイ内だけでなくサブアレイをまたがって制御線を布線しても遅延制御の独立性を担保できる。すなわち図9に図示されている矢印付きの書き込み、読み出し制御線96,97は、アレイの端から端まで、サブアレイをまたがって布線しても、すべての振動子の遅延を独立に制御することができる。 Suppose that the subarray shown in FIG. 9 is located at the bottom right of the array. The plurality of write control lines 96 are controlled independently for each row, and the plurality of read control lines 97 are controlled independently for each column. Since the time from writing to reading is a delay time, by performing independent writing and reading control for each row and column, an independent delay is applied to each transducer of the unit indicated by 80. Can do. In addition, independence of delay control can be ensured not only in the subarray but also in the control line extending across the subarray. In other words, the write / read control lines 96 and 97 with arrows shown in FIG. 9 can independently control the delay of all the transducers even if they are wired across the sub-array from end to end of the array. Can do.
 以上のような回路配置により、小面積な遅延整相回路を提供することができる。とくに、2Dアレイ振動子における振動子あたりの送受信回路面積を低減可能な遅延整相回路を提供することができる。これにより、アレイ状に繰り返し並べられる振動子のピッチを縮小し、グレーティングローブの影響を抑えた良好な超音波ビーム特性を得ることができる。 With the circuit arrangement as described above, a delay delay circuit with a small area can be provided. In particular, it is possible to provide a delay phasing circuit capable of reducing the transmission / reception circuit area per transducer in the 2D array transducer. Thereby, it is possible to reduce the pitch of the transducers repeatedly arranged in an array and to obtain a good ultrasonic beam characteristic in which the influence of the grating lobe is suppressed.
 図9のWrite Control回路92,Read Control回路93は、1段目の遅延制御として、アレイ内アナログ遅延回路(DLY0)11の遅延量を制御する。Write Control回路94,Read Control回路95は、複数の書き込み制御線98と複数の読み出し制御線99によって、2段目の遅延制御として、アレイ外アナログ遅延回路(DLY1)13の遅延量を制御する。 The Write Control circuit 92 and the Read Control circuit 93 in FIG. 9 control the delay amount of the in-array analog delay circuit (DLY0) 11 as the first-stage delay control. The write control circuit 94 and the read control circuit 95 control the delay amount of the off-array analog delay circuit (DLY1) 13 as the second-stage delay control by the plurality of write control lines 98 and the plurality of read control lines 99.
 サブアレイの遅延プロファイルから、1段目に与える遅延、2段目に与える遅延を計算してそれぞれの書き込み制御線96,98、読み出し制御線97,99で制御する。図6、図7のようなアナログリングメモリを遅延回路に用いる場合は、基準クロック周波数は当然1段目と2段目で同一でなければならない。ただし、例えば図7のタイミングチャートに示すφ0wが1段目アナログ遅延回路と2段目アナログ遅延回路で同じタイミングでハイレベルになる必要はない。1段目も2段目も、制御信号はN相の信号として循環していればよく、循環の始まり、終わりがずれていても問題はない。書き込みと読み出しの間のクロックサイクル数、すなわち遅延量だけが問題となる。 The delay given to the first stage is calculated from the delay profile of the subarray, and the delay given to the second stage is calculated and controlled by the respective write control lines 96 and 98 and read control lines 97 and 99. When the analog ring memory as shown in FIGS. 6 and 7 is used for the delay circuit, the reference clock frequency must naturally be the same in the first stage and the second stage. However, for example, φ0w shown in the timing chart of FIG. 7 does not need to be at a high level at the same timing in the first-stage analog delay circuit and the second-stage analog delay circuit. It is sufficient that the control signal circulates as an N-phase signal in both the first stage and the second stage, and there is no problem even if the start and end of the circulation are shifted. Only the number of clock cycles between writing and reading, that is, the amount of delay, becomes a problem.
 このような制御の自由度から考えると、たとえばシリコン上のレイアウト要因により、すべてのキャパシタの上空に同様に配線を布線することができないような場合、N個のキャパシタの1つに容量カップリングノイズが乗ってクロック周波数/Nの周波数で周期的なスプリアスノイズが発生することが考えられる。1段目のアナログ遅延回路で発生するスプリアスノイズと2段目のアナログ遅延回路で発生するスプリアスノイズのタイミングが重なってノイズ電圧が2倍にならないよう、1段目と2段目の制御信号のタイミングを相対的にクロック単位でずらして調整することが可能であり、スプリアス低減に有効な手段となる。このように、配線カップリングによる周期的な雑音がアレイ内遅延回路とアレイ外遅延回路で、同位相で重ならないように、これらの制御信号の位相関係を調整可能とすることが望ましい。 Considering such a degree of freedom of control, for example, when wiring cannot be laid out over all capacitors due to layout factors on silicon, capacitive coupling to one of N capacitors. It is conceivable that periodic spurious noise is generated at a clock frequency / N frequency due to noise. The control signals of the first and second stages are controlled so that the spurious noise generated in the first stage analog delay circuit and the spurious noise generated in the second stage analog delay circuit overlap and the noise voltage does not double. The timing can be adjusted by relatively shifting in units of clocks, which is an effective means for reducing spurious. Thus, it is desirable to be able to adjust the phase relationship of these control signals so that periodic noise due to wiring coupling does not overlap in the same phase in the in-array delay circuit and the out-of-array delay circuit.
 図10にはこの発明が適用される、3次元撮像のための2次元アレイ振動子を持つ超音波探触子1000とシステム構成の一実施例を示している。超音波探触子1000内には各振動子10に対して送受信回路80が配置され、受信出力は送受信回路80内のアレイ内アナログ遅延回路(DLY0)、加算回路12、アレイ外アナログ遅延回路(DLY1)13、加算回路14により2段階に整相されて本体装置のAFE(アナログフロントエンド)107に送られる。加算される振動子チャネルのグルーピング単位がサブアレイ100である。 FIG. 10 shows an embodiment of an ultrasonic probe 1000 having a two-dimensional array transducer for three-dimensional imaging and a system configuration to which the present invention is applied. In the ultrasonic probe 1000, a transmission / reception circuit 80 is arranged for each transducer 10, and the reception output is an analog delay circuit (DLY 0) in the array in the transmission / reception circuit 80, an adder circuit 12, an analog delay circuit outside the array ( DLY 1) 13 and the adder circuit 14 adjust the phase in two stages and send it to the AFE (analog front end) 107 of the main unit. The sub-array 100 is a grouping unit of transducer channels to be added.
 図10では送受信回路80中の送信回路はリニアアンプを想定している。すなわちアナログ送信波形を本体装置から106で示すデジタル-アナログ変換器DACで本体に伝送し、これに2段階に遅延をかけてリニアアンプで増幅し、振動子10を電圧駆動する。送信も受信も信号パスはすべてアナログである。 In FIG. 10, the transmission circuit in the transmission / reception circuit 80 is assumed to be a linear amplifier. That is, an analog transmission waveform is transmitted from the main unit to the main unit by a digital-analog converter DAC denoted by reference numeral 106, amplified in two steps by a linear amplifier, and the vibrator 10 is voltage-driven. All signal paths for transmission and reception are analog.
 送信振幅や受信利得の設定などは本体装置1001のプロセッサ108から超音波探触子内のIC制御論理回路109にデジタルデータとして伝送され、IC制御論理回路109が超音波探触子内ICに内蔵された各回路のパラメータ設定を行う。 Transmission amplitude and reception gain settings are transmitted as digital data from the processor 108 of the main unit 1001 to the IC control logic circuit 109 in the ultrasonic probe, and the IC control logic circuit 109 is built in the IC in the ultrasonic probe. Set the parameters of each circuit.
 図11には、図10のシステム構成において、超音波探触子内の各振動子10を駆動する送受信回路80内の送信回路をパルサにした場合の実施例を示している。この場合、図10と異なり、送信データはデジタルデータとして本体装置1001から超音波探触子1000に伝送されるため、図10のDAC106が不要となる。送信波形データは本体装置1001のプロセッサ117から超音波探触子1000内のIC制御論理回路118に伝送され、波形メモリ119に記憶される。その後デジタルデータとしてアレイ外アナログ遅延回路(DLY1)13、送受信回路80内のアレイ内アナログ遅延回路(DLY0)で2段階に遅延され、送受信回路80内の送信パルサがデジタルデータに応じて、たとえば正電圧、負電圧、GND電圧の3値電圧を出力する。 FIG. 11 shows an embodiment in which the transmission circuit in the transmission / reception circuit 80 for driving each transducer 10 in the ultrasonic probe is a pulser in the system configuration of FIG. In this case, unlike FIG. 10, the transmission data is transmitted as digital data from the main body apparatus 1001 to the ultrasonic probe 1000, so that the DAC 106 of FIG. 10 is not necessary. The transmission waveform data is transmitted from the processor 117 of the main body apparatus 1001 to the IC control logic circuit 118 in the ultrasonic probe 1000 and stored in the waveform memory 119. Thereafter, the digital data is delayed in two stages by the analog delay circuit outside the array (DLY1) 13 and the analog delay circuit (DLY0) in the transmission / reception circuit 80, and the transmission pulser in the transmission / reception circuit 80 is corrected according to the digital data. A ternary voltage of a voltage, a negative voltage, and a GND voltage is output.
 ここで、アナログ遅延回路を用いた場合、アナログ送信波形だけでなく、デジタル送信データを遅延できる点に利点があることを説明する。シフトレジスタやFIFOはデジタルデータを遅延させることができるが、アナログ波形を遅延させることはできない。アナログ波形をデジタルで遅延させようとすれば、ADCでデジタルに変換してからシフトレジスタやFIFOを用いて遅延させ、DACでアナログ波形に戻すことになる。 Here, it will be explained that when an analog delay circuit is used, there is an advantage in that not only an analog transmission waveform but also digital transmission data can be delayed. Shift registers and FIFOs can delay digital data, but not analog waveforms. If an analog waveform is digitally delayed, it is converted to digital by an ADC, then delayed using a shift register or FIFO, and returned to an analog waveform by a DAC.
 アナログ遅延回路はアナログ波形を遅延させることができるので、1,0のデジタルデータの波形をそのままアナログ遅延回路に通してやることでデジタルデータの遅延が可能となる。正電圧、負電圧、GND電圧の3値を出力するパルサの場合だと、3値を2bitに割り当てて2つのアナログ遅延回路にそれぞれ1bitずつ割り当ててそれぞれ並列に遅延させることが可能である。このように、アナログ遅延回路を用いることで、任意の送信波形を実現出来るリニアアンプ、低消費電力の点で優れるパルサのいずれの送信回路方式にも対応可能なビームフォーミングを実現できる。 Since the analog delay circuit can delay the analog waveform, the digital data can be delayed by passing the waveform of the digital data of 0 through the analog delay circuit as it is. In the case of a pulser that outputs ternary values of a positive voltage, a negative voltage, and a GND voltage, it is possible to assign the ternary value to 2 bits and assign 1 bit to each of the two analog delay circuits to delay them in parallel. As described above, by using the analog delay circuit, it is possible to realize beam forming that can correspond to any transmission circuit system of a linear amplifier that can realize an arbitrary transmission waveform and a pulser that is excellent in terms of low power consumption.
 図12には1振動子10に接続される送受信回路80内の構成例が示されている。1振動子あたりの送受信回路80には、高耐圧MOSで構成され、高圧信号を生成し振動子を駆動するリニアアンプまたはパルサ方式の送信回路31、低圧系信号を扱う受信系回路を送信時に高圧信号から分離するための送受分離スイッチ123、低圧系の受信低雑音増幅器LNA32、送信信号を遅延させビームフォーミングを行い、さらには受信信号を遅延させる1段目のアレイ内アナログ遅延回路(DLY0)11が含まれる。アナログ遅延回路125で遅延された受信信号は加算回路12で加算されてIC内アレイ外の2段目のアレイ外アナログ遅延回路(DLY1)に伝送される。 FIG. 12 shows a configuration example in the transmission / reception circuit 80 connected to one vibrator 10. The transmission / reception circuit 80 per transducer is composed of a high-voltage MOS, a linear amplifier or pulsar transmission circuit 31 that generates a high-voltage signal and drives the transducer, and a reception-system circuit that handles a low-voltage signal during transmission. A transmission / reception separation switch 123 for separating from a signal, a low-voltage reception low-noise amplifier LNA 32, a first-stage analog delay circuit (DLY0) 11 for delaying a transmission signal, performing beamforming, and delaying a reception signal Is included. The reception signals delayed by the analog delay circuit 125 are added by the adder circuit 12 and transmitted to the second-stage off-array analog delay circuit (DLY1) outside the array inside the IC.
 以上説明した本発明の実施例では、特に、送信信号を超音波振動子毎に独立に遅延させることによるビームフォーミング、ビーム走査、および各振動子からの受信信号を振動子毎に独立に遅延させフォーカスを行う遅延加算整相を、小面積の回路で実現し、振動子アレイのピッチ縮小を可能にする技術を説明した。本実施例によれば、送信ビームフォーミング、受信の整相の両方で必要となるアナログ遅延回路を複数段に縦続接続し、初段遅延回路のみを1振動子あたりの送受信回路内に配置して送信と受信で共用することで小面積化し、最大遅延量を犠牲にすることなく、振動子アレイのピッチを縮小できる。 In the embodiments of the present invention described above, in particular, beam forming, beam scanning, and reception signals from each transducer are delayed independently for each transducer by delaying a transmission signal independently for each ultrasonic transducer. A technique has been described in which delay-added phasing for focusing is realized with a small-area circuit, and the pitch of the transducer array can be reduced. According to this embodiment, analog delay circuits necessary for both transmission beamforming and reception phasing are cascaded in a plurality of stages, and only the first-stage delay circuit is arranged in the transmission / reception circuit per transducer for transmission. The area of the transducer array can be reduced, and the pitch of the transducer array can be reduced without sacrificing the maximum delay amount.
 これにより、回折によるグレーティングローブの影響を低減し、走査角内で良好な超音波ビーム特性を得ることが出来る。 This makes it possible to reduce the influence of the grating lobe due to diffraction and to obtain good ultrasonic beam characteristics within the scanning angle.
 さらに、アナログ遅延回路に送信アナログ信号または送信デジタル信号を通すことにより、送信回路がリニアアンプであってもパルサであっても送信信号の遅延を実現でき、回路設計の自由度を確保することが可能となる。 Furthermore, by passing a transmission analog signal or a transmission digital signal through the analog delay circuit, it is possible to realize a delay of the transmission signal regardless of whether the transmission circuit is a linear amplifier or a pulsar, and to ensure flexibility in circuit design. It becomes possible.
 また以上の実施例は、所望の超音波ビーム特性を限られた回路面積で実現するための技術として効果を発揮する。 In addition, the above embodiment is effective as a technique for realizing a desired ultrasonic beam characteristic with a limited circuit area.
 本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることが可能である。また、各実施例の構成の一部について、他の実施例の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiment, and includes various modifications. For example, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace the configurations of other embodiments with respect to a part of the configurations of the embodiments.
 超音波診断装置に接続される超音波探触子内のICに搭載することができる。 It can be mounted on an IC in an ultrasonic probe connected to an ultrasonic diagnostic apparatus.
DLY0、DLY1   アナログ遅延回路
Tx     送信回路
Rx     受信回路
TxIN   送信入力
RxOUT  受信出力
VIN    電圧入力
VOUT   電圧出力
Cs     アナログリングメモリ内電圧保持用キャパシタ
BUF    バッファ
φ*w    アナログリングメモリ書き込み制御信号
φ*r    アナログリングメモリ読み出し制御信号
CLK    基準クロック
EL     振動子
DAC    Digital to Analog Converter
       デジタル/アナログ変換器
AFE    アナログフロントエンド
IC     Integrated Circuit 集積回路
T/R-SW 送受分離スイッチ
LNA    Low Noise Amplifier 低雑音増幅器
ADC    Analog to Digital Converter
       アナログ/デジタル変換器
FIFO   First-In First-Out 先入れ先出しメモリ
DLY0, DLY1 Analog delay circuit Tx Transmission circuit Rx Reception circuit TxIN Transmission input RxOUT Reception output VIN Voltage input VOUT Voltage output Cs Analog ring memory internal voltage holding capacitor BUF Buffer φ * w Analog ring memory write control signal φ * r Analog ring memory Read control signal CLK Reference clock EL Oscillator DAC Digital to Analog Converter
Digital / Analog Converter AFE Analog Front End IC Integrated Circuit Integrated Circuit T / R-SW Transmission / Reception Separation Switch LNA Low Noise Amplifier Low Noise Amplifier ADC Analog to Digital Converter
Analog / digital converter FIFO First-In First-Out First-in first-out memory

Claims (15)

  1.  複数の回路単位と、
     前記複数の回路単位からの出力を加算する加算回路と、
     前記複数の回路単位へ共通の信号を入力する入力端子と、
     を有し、
     前記回路単位の其々は、
     超音波振動子に接続される受信回路および送信回路と、第1の遅延回路を備え、
     前記超音波振動子での信号の受信時には、
     前記超音波振動子からの信号を前記受信回路が受信し、
     前記受信回路からの信号を前記第1の遅延回路が遅延させ、
     前記第1の遅延回路が遅延させた信号を前記加算回路で加算し、
     前記加算回路で加算された信号を第2の遅延回路で遅延させ、
     前記超音波振動子での信号の送信時には、
     前記入力端子からの信号を前記第2の遅延回路で遅延させ、
     前記第2の遅延回路で遅延させた信号を分岐して複数の前記回路単位へ入力し、
     前記第2の遅延回路で遅延させた信号を、前記複数の回路単位の其々において前記第1の遅延回路で遅延させ、
     前記第1の遅延回路で遅延させた信号を前記送信回路に入力する、
     超音波探触子。
    Multiple circuit units;
    An adder circuit for adding outputs from the plurality of circuit units;
    An input terminal for inputting a common signal to the plurality of circuit units;
    Have
    Each of the circuit units is
    A receiving circuit and a transmitting circuit connected to the ultrasonic transducer, and a first delay circuit;
    When receiving signals with the ultrasonic transducer,
    The receiving circuit receives a signal from the ultrasonic transducer,
    The first delay circuit delays the signal from the receiving circuit;
    The signal delayed by the first delay circuit is added by the adder circuit,
    A signal added by the adder circuit is delayed by a second delay circuit;
    When transmitting a signal with the ultrasonic transducer,
    A signal from the input terminal is delayed by the second delay circuit;
    Branching the signal delayed by the second delay circuit and inputting it to the plurality of circuit units;
    The signal delayed by the second delay circuit is delayed by the first delay circuit in each of the plurality of circuit units,
    Inputting the signal delayed by the first delay circuit to the transmission circuit;
    Ultrasonic probe.
  2.  前記複数の回路単位は格子状に配置されてアレイ領域を形成し、
     前記第2の遅延回路は前記アレイ領域の外部に配置されている、
     請求項1記載の超音波探触子。
    The plurality of circuit units are arranged in a lattice form to form an array region,
    The second delay circuit is disposed outside the array region;
    The ultrasonic probe according to claim 1.
  3.  前記複数の回路単位をn×m個(ただし、n、mは自然数)備え、
     前記加算回路と前記第2の遅延回路を各m個備え、
     n個の前記回路単位で1つの前記加算回路と前記第2の遅延回路を共有し、
     m個の前記第2の遅延回路が格子状に配置されている、
     請求項2記載の超音波探触子。
    N × m (where n and m are natural numbers) including the plurality of circuit units,
    M each of the adder circuit and the second delay circuit;
    The n delay units share one adder circuit and the second delay circuit in units of n circuits,
    m second delay circuits are arranged in a grid pattern;
    The ultrasonic probe according to claim 2.
  4.  前記第1の遅延回路および前記第2の遅延回路はアナログ遅延回路であり、
     該アナログ遅延回路は、
     入力信号を保持する複数のキャパシタを備え、
     前記複数のキャパシタの書き込みタイミングを制御する複数の書き込み信号と、前記複数のキャパシタの出力タイミングを制御する複数の読み出し信号により、遅延時間を制御するものである、
     請求項3記載の超音波探触子。
    The first delay circuit and the second delay circuit are analog delay circuits;
    The analog delay circuit is:
    It has a plurality of capacitors to hold the input signal,
    The delay time is controlled by a plurality of write signals for controlling the write timings of the plurality of capacitors and a plurality of read signals for controlling the output timings of the plurality of capacitors.
    The ultrasonic probe according to claim 3.
  5.  前記回路単位内の前記第1の遅延回路に対する、前記書き込み信号の供給線及び前記読み出し信号の供給線が格子状に配置され、
     前記第2の遅延回路に対する、前記書き込み信号の供給線及び前記読み出し信号の供給線が格子状に配置されており、
     前記第1の遅延回路に対する前記書き込み信号の供給線と、前記第2の遅延回路に対する前記書き込み信号の供給線は、独立に構成されており、
     前記第1の遅延回路に対する前記読み出し信号の供給線と、前記第2の遅延回路に対する前記読み出し信号の供給線は、独立に構成されている、
     請求項4記載の超音波探触子。
    The write signal supply line and the read signal supply line for the first delay circuit in the circuit unit are arranged in a grid pattern,
    The write signal supply line and the read signal supply line for the second delay circuit are arranged in a grid pattern,
    The write signal supply line for the first delay circuit and the write signal supply line for the second delay circuit are configured independently,
    The read signal supply line for the first delay circuit and the read signal supply line for the second delay circuit are configured independently.
    The ultrasonic probe according to claim 4.
  6.  複数の超音波振動子に1対1で接続される複数の第1の遅延回路と、
     前記複数の第1の遅延回路の出力を加算する加算回路と、
     前記加算回路に接続される第2の遅延回路と、
     を有し、
     前記超音波振動子からの受信信号を前記第1の遅延回路と前記第2の遅延回路で遅延させるとともに、
     前記超音波振動子への送信信号を前記第1の遅延回路と前記第2の遅延回路で遅延させる超音波探触子。
    A plurality of first delay circuits connected to the plurality of ultrasonic transducers on a one-to-one basis;
    An adder circuit for adding the outputs of the plurality of first delay circuits;
    A second delay circuit connected to the adder circuit;
    Have
    The received signal from the ultrasonic transducer is delayed by the first delay circuit and the second delay circuit,
    An ultrasonic probe that delays a transmission signal to the ultrasonic transducer by the first delay circuit and the second delay circuit.
  7.  前記第1及び第2の遅延回路はアナログ遅延回路であり、
     単一の前記超音波振動子に接続される送信リニアアンプ回路に、遅延させたアナログ送信信号を出力する請求項6記載の超音波探触子。
    The first and second delay circuits are analog delay circuits;
    The ultrasonic probe according to claim 6, wherein a delayed analog transmission signal is output to a transmission linear amplifier circuit connected to the single ultrasonic transducer.
  8.  前記第1及び第2の遅延回路はアナログ遅延回路であり、
     単一の前記超音波振動子に接続される送信パルサ回路に、遅延させたデジタル信号を出力する請求項6記載の超音波探触子。
    The first and second delay circuits are analog delay circuits;
    The ultrasonic probe according to claim 6, wherein a delayed digital signal is output to a transmission pulser circuit connected to the single ultrasonic transducer.
  9.  前記第1の遅延回路は、前記複数の前記超音波振動子に1対1で接続される送受信回路内に配置され、
     複数の前記送受信回路は、繰り返し配置された1次元あるいは2次元アレイを構成し、
     前記第2の遅延回路は、前記1次元あるいは2次元アレイの外側に配置された、請求項6記載の超音波探触子。
    The first delay circuit is disposed in a transmission / reception circuit connected to the plurality of ultrasonic transducers on a one-to-one basis,
    The plurality of transmission / reception circuits constitute a one-dimensional or two-dimensional array arranged repeatedly,
    The ultrasonic probe according to claim 6, wherein the second delay circuit is arranged outside the one-dimensional or two-dimensional array.
  10.  送信時は前記第2の遅延回路で送信信号を遅延した後、それぞれの前記送受信回路内の前記第1の遅延回路でさらに送信信号を遅延させる請求項9記載の超音波探触子。 10. The ultrasonic probe according to claim 9, wherein during transmission, the transmission signal is delayed by the second delay circuit, and then the transmission signal is further delayed by the first delay circuit in each of the transmission / reception circuits.
  11.  受信時はそれぞれの前記送受信回路内の前記第1の遅延回路で受信信号を遅延し、前記加算回路で加算した後、前記第2の遅延回路で信号をさらに遅延する請求項9記載の超音波探触子。 10. The ultrasonic wave according to claim 9, wherein at the time of reception, the received signal is delayed by the first delay circuit in each of the transmission / reception circuits, added by the adder circuit, and then further delayed by the second delay circuit. 11. Transducer.
  12.  前記第1の遅延回路の制御信号は、アレイ外から供給され、
     前記第2の遅延回路の制御信号は前記第1の遅延回路の制御信号とは独立にアレイ外から供給され、
     これらの制御信号の位相関係が調整可能である請求項9記載の超音波探触子。
    The control signal of the first delay circuit is supplied from outside the array,
    The control signal of the second delay circuit is supplied from outside the array independently of the control signal of the first delay circuit,
    The ultrasonic probe according to claim 9, wherein a phase relationship between these control signals is adjustable.
  13.  超音波探触子と装置本体からなる超音波診断装置であって、
     前記超音波探触子は、
     複数の回路単位と、
     前記複数の回路単位からの出力を加算する第1の加算回路と、
     前記複数の回路単位へ共通の信号を入力する入力端子と、
     を有し、
     前記回路単位の其々は、
     超音波振動子に接続される受信回路および送信回路と、第1の遅延回路を備え、
     前記超音波振動子での信号の受信時には、
     前記超音波振動子からの信号を前記受信回路が受信し、
     前記受信回路からの信号を前記第1の遅延回路が遅延させ、
     前記第1の遅延回路が遅延させた信号を前記第1の加算回路で加算し、
     前記第1の加算回路で加算された信号を第2の遅延回路で遅延させ、
     前記超音波振動子での信号の送信時には、
     前記入力端子からの信号を前記第2の遅延回路で遅延させ、
     前記第2の遅延回路で遅延させた信号を分岐して複数の前記回路単位へ入力し、
     前記複数の回路単位の其々において前記第2の遅延回路で遅延させた信号を前記第1の遅延回路で遅延させ、
     前記第1の遅延回路で遅延させた信号を前記送信回路に入力する、
     構成であり、
     前記装置本体は、
     前記超音波振動子での信号の受信時には、
     前記第2の遅延回路で遅延させた信号を検出信号とし、該検出信号に基づいて撮像信号を形成し、
     前記超音波振動子での信号の送信時には、
     前記入力端子に対して送信信号を供給する、
     超音波診断装置。
    An ultrasonic diagnostic apparatus comprising an ultrasonic probe and an apparatus main body,
    The ultrasonic probe is
    Multiple circuit units;
    A first addition circuit for adding outputs from the plurality of circuit units;
    An input terminal for inputting a common signal to the plurality of circuit units;
    Have
    Each of the circuit units is
    A receiving circuit and a transmitting circuit connected to the ultrasonic transducer, and a first delay circuit;
    When receiving signals with the ultrasonic transducer,
    The receiving circuit receives a signal from the ultrasonic transducer,
    The first delay circuit delays the signal from the receiving circuit;
    The signal delayed by the first delay circuit is added by the first adder circuit,
    A signal added by the first adder circuit is delayed by a second delay circuit;
    When transmitting a signal with the ultrasonic transducer,
    A signal from the input terminal is delayed by the second delay circuit;
    Branching the signal delayed by the second delay circuit and inputting it to the plurality of circuit units;
    In each of the plurality of circuit units, the signal delayed by the second delay circuit is delayed by the first delay circuit,
    Inputting the signal delayed by the first delay circuit to the transmission circuit;
    Configuration,
    The device body is
    When receiving signals with the ultrasonic transducer,
    A signal delayed by the second delay circuit is used as a detection signal, and an imaging signal is formed based on the detection signal.
    When transmitting a signal with the ultrasonic transducer,
    Supplying a transmission signal to the input terminal;
    Ultrasound diagnostic device.
  14.  前記複数の回路単位は格子状に配置されてアレイ領域を形成し、
     前記第2の遅延回路は前記アレイ領域の外部に配置されており、
     前記第1の遅延回路および前記第2の遅延回路はアナログ遅延回路であり、
     前記アナログ遅延回路のそれぞれは、
     入力信号を保持する複数のキャパシタを備え、
     前記複数のキャパシタの書き込みタイミングを制御する複数の書き込み信号と、前記複数のキャパシタの出力タイミングを制御する複数の読み出し信号により、遅延時間を制御するものであり、
     前記回路単位内の前記第1の遅延回路に対する、前記書き込み信号及び前記読み出しの供給線が格子状に配置され、
     前記第1の遅延回路のタイミングを制御する書き込み信号および読み出し信号は、前記第2の遅延回路のタイミングを制御する書き込み信号および読み出し信号と別個独立に制御される、
     請求項13記載の超音波診断装置。
    The plurality of circuit units are arranged in a lattice form to form an array region,
    The second delay circuit is disposed outside the array region;
    The first delay circuit and the second delay circuit are analog delay circuits;
    Each of the analog delay circuits is
    It has a plurality of capacitors to hold the input signal,
    The delay time is controlled by a plurality of write signals for controlling the write timing of the plurality of capacitors and a plurality of read signals for controlling the output timing of the plurality of capacitors.
    The write signal and the read supply line for the first delay circuit in the circuit unit are arranged in a grid pattern,
    The write signal and read signal that control the timing of the first delay circuit are controlled independently of the write signal and read signal that control the timing of the second delay circuit,
    The ultrasonic diagnostic apparatus according to claim 13.
  15.  前記第2の遅延回路が複数あり、
     前記装置本体は、
     前記超音波振動子での信号の受信時には、
     複数の前記第2の遅延回路で遅延させた信号を加算して検出信号とし、該検出信号に基づいて撮像信号を形成し、
     前記超音波振動子での信号の送信時には、
     前記入力端子に対して供給された送信信号を、複数の前記第2の遅延回路に対して並列に供給する、
     請求項14記載の超音波診断装置。
    A plurality of the second delay circuits;
    The apparatus main body is
    When receiving signals with the ultrasonic transducer,
    A signal delayed by a plurality of the second delay circuits is added to form a detection signal, and an imaging signal is formed based on the detection signal,
    When transmitting a signal with the ultrasonic transducer,
    A transmission signal supplied to the input terminal is supplied in parallel to the plurality of second delay circuits.
    The ultrasonic diagnostic apparatus according to claim 14.
PCT/JP2016/074372 2015-09-15 2016-08-22 Ultrasonic probe and ultrasonic diagnosing device WO2017047329A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017539794A JP6423543B2 (en) 2015-09-15 2016-08-22 Ultrasonic probe and ultrasonic diagnostic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-182291 2015-09-15
JP2015182291 2015-09-15

Publications (1)

Publication Number Publication Date
WO2017047329A1 true WO2017047329A1 (en) 2017-03-23

Family

ID=58288994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074372 WO2017047329A1 (en) 2015-09-15 2016-08-22 Ultrasonic probe and ultrasonic diagnosing device

Country Status (2)

Country Link
JP (1) JP6423543B2 (en)
WO (1) WO2017047329A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019208939A (en) * 2018-06-06 2019-12-12 キヤノンメディカルシステムズ株式会社 Ultrasonic probe, ultrasonic diagnostic device, and determination method
CN110731796A (en) * 2018-07-19 2020-01-31 株式会社日立制作所 Ultrasonic diagnostic apparatus and ultrasonic probe
CN110833432A (en) * 2018-08-15 2020-02-25 深南电路股份有限公司 Ultrasonic simulation front-end device and ultrasonic imaging equipment
CN113796893A (en) * 2020-06-16 2021-12-17 株式会社日立制作所 Two-dimensional array ultrasonic probe and addition operation circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006102391A (en) * 2004-10-08 2006-04-20 Matsushita Electric Ind Co Ltd Ultrasonic diagnostic equipment
JP2008514335A (en) * 2004-09-30 2008-05-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Transducer structure for microbeam formation
JP2014113490A (en) * 2012-12-05 2014-06-26 Toshiba Corp Ultrasonic diagnostic device and ultrasonic probe

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5405225B2 (en) * 2009-07-29 2014-02-05 日立アロカメディカル株式会社 Ultrasonic diagnostic equipment
JP2011030908A (en) * 2009-08-05 2011-02-17 Aloka Co Ltd Ultrasonic diagnostic apparatus
JP6085614B2 (en) * 2012-12-07 2017-02-22 株式会社日立製作所 Ultrasonic probe and ultrasonic diagnostic apparatus
JP6305752B2 (en) * 2013-12-17 2018-04-04 キヤノンメディカルシステムズ株式会社 Ultrasonic diagnostic apparatus and ultrasonic probe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008514335A (en) * 2004-09-30 2008-05-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Transducer structure for microbeam formation
JP2006102391A (en) * 2004-10-08 2006-04-20 Matsushita Electric Ind Co Ltd Ultrasonic diagnostic equipment
JP2014113490A (en) * 2012-12-05 2014-06-26 Toshiba Corp Ultrasonic diagnostic device and ultrasonic probe

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019208939A (en) * 2018-06-06 2019-12-12 キヤノンメディカルシステムズ株式会社 Ultrasonic probe, ultrasonic diagnostic device, and determination method
JP7224785B2 (en) 2018-06-06 2023-02-20 キヤノンメディカルシステムズ株式会社 ULTRASOUND PROBE, ULTRASOUND DIAGNOSTIC DEVICE, AND DETERMINATION METHOD
CN110731796A (en) * 2018-07-19 2020-01-31 株式会社日立制作所 Ultrasonic diagnostic apparatus and ultrasonic probe
US11298107B2 (en) 2018-07-19 2022-04-12 Fujifilm Healthcare Corporation Ultrasonic diagnostic device and ultrasonic probe
CN110833432A (en) * 2018-08-15 2020-02-25 深南电路股份有限公司 Ultrasonic simulation front-end device and ultrasonic imaging equipment
CN113796893A (en) * 2020-06-16 2021-12-17 株式会社日立制作所 Two-dimensional array ultrasonic probe and addition operation circuit
CN113796893B (en) * 2020-06-16 2023-12-05 富士胶片医疗健康株式会社 Two-dimensional array ultrasonic probe and addition operation circuit

Also Published As

Publication number Publication date
JPWO2017047329A1 (en) 2018-03-08
JP6423543B2 (en) 2018-11-14

Similar Documents

Publication Publication Date Title
EP3132441B1 (en) Architecture of single substrate ultrasonic imaging devices, related apparatuses
US10755692B2 (en) Mesh-based digital microbeamforming for ultrasound applications
JP6423543B2 (en) Ultrasonic probe and ultrasonic diagnostic apparatus
US10613206B2 (en) Ultrasound probe and ultrasound imaging apparatus using the same
US6126602A (en) Phased array acoustic systems with intra-group processors
KR101792590B1 (en) Beamforming method, apparatus for performing the same, and medical imaging system
EP1797456A1 (en) Microbeamforming transducer architecture
US20050131299A1 (en) Differential partial beamforming
JP3977827B2 (en) Ultrasonic diagnostic equipment
US20200405266A1 (en) Methods and apparatuses for processing ultrasound signals
EP3389500A1 (en) Ultrasound beamforming system and method with reconfigurable aperture
JP7059258B6 (en) Ultrasonic probe including multi-line digital microbeam former
KR20190035851A (en) Ultrasonic system front-end circuit for 128-element array probes
US11933892B2 (en) Ultrasound imaging system and method
US11534144B2 (en) Ultrasonic probe and ultrasonic diagnostic apparatus for image noise reduction by switching noise of the switching power supply to transmission
JP2020010895A (en) Ultrasound diagnosis apparatus and ultrasound probe
JP2014076093A (en) Acoustic wave measurement apparatus
JP2018121807A (en) Transmission and reception method using ultrasonic probe, ultrasonic transducer, and ultrasonic diagnosis apparatus
WO2017026019A1 (en) Ultrasonic imaging device and ultrasonic probe
WO2016132478A1 (en) Ultrasonic probe and ultrasonic diagnostic apparatus to which same is connected
Liou et al. An intelligence data encoding algorithm for low noise interference multi-channel medical ultrasound
WO2016151705A1 (en) Ultrasound signal receive circuit and apparatus, and ultrasonic imaging apparatus
JP2011010827A (en) Ultrasonic wave probe and ultrasonic diagnostic device
JP2019208939A (en) Ultrasonic probe, ultrasonic diagnostic device, and determination method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846200

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017539794

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16846200

Country of ref document: EP

Kind code of ref document: A1