WO2017047171A1 - Traveling plan generation apparatus, vehicle, traveling plan generation system, and computer program - Google Patents

Traveling plan generation apparatus, vehicle, traveling plan generation system, and computer program Download PDF

Info

Publication number
WO2017047171A1
WO2017047171A1 PCT/JP2016/067247 JP2016067247W WO2017047171A1 WO 2017047171 A1 WO2017047171 A1 WO 2017047171A1 JP 2016067247 W JP2016067247 W JP 2016067247W WO 2017047171 A1 WO2017047171 A1 WO 2017047171A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
unit
travel plan
vehicle
route
Prior art date
Application number
PCT/JP2016/067247
Other languages
French (fr)
Japanese (ja)
Inventor
光司 荒井
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2017047171A1 publication Critical patent/WO2017047171A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a travel plan generation device, a vehicle, a travel plan generation system, and a computer program.
  • This application claims priority based on Japanese Patent Application No. 2015-183105 filed on Sep. 16, 2015, and incorporates all the content described in the above Japanese application.
  • the fuel efficiency of the engine (internal combustion engine) of the vehicle is, for example, the most efficient when the engine speed is maintained at a certain value.
  • the vehicle starts and stops when low-speed running continues.
  • fuel efficiency can be improved by torque assisting with the motor.
  • fuel efficiency is improved by optimizing power generation.
  • the energy consumption of vehicle equipment mounted on the vehicle is predicted, a control plan for the vehicle equipment is drawn up based on the predicted value, and a relatively large amount of power is used to drive the vehicle.
  • a vehicle energy management device is disclosed in which the output of the air conditioner is reduced and the output of the air conditioner is increased when relatively little electric power is used to travel the vehicle (see Patent Document 1). .
  • the travel plan generation device of the present disclosure is a travel plan generation device that generates a travel plan of a vehicle having a storage battery, the traffic information acquisition unit that acquires traffic information on a route from the current location of the vehicle to a destination, Based on a road information acquisition unit that acquires road information including a slope of a road related to the route, traffic information acquired by the traffic information acquisition unit, and a running state of the vehicle according to the road information acquired by the road information acquisition unit A power estimation unit for estimating the discharge power and generated power on the route, and calculating the necessary generated power and the recommended discharge power on the route based on the discharge power and generated power estimated by the power estimation unit.
  • a power calculation unit a remaining power calculation unit that calculates remaining power on the path of the storage battery based on a calculation result in the required power calculation unit, and the calculation result in the required power calculation unit
  • a generation unit which generates a travel plan including a remaining power on the route calculated in the running mode and the remaining power calculation unit on at the path of both.
  • the vehicle of the present disclosure is a vehicle equipped with the above-described travel plan generation device.
  • the travel plan generation system of the present disclosure includes the above-described travel plan generation device and a vehicle, and the travel plan generation device provides the generated travel schedule to the vehicle.
  • a computer program according to the present disclosure is a computer program for causing a computer to generate a travel plan for a vehicle having a storage battery, the computer including traffic information on a route from the current location of the vehicle to a destination and a road associated with the route.
  • a power estimation unit that estimates discharge power and generated power on the route based on the traveling state of the vehicle according to road information including a slope of the vehicle, and based on the discharge power and generated power estimated by the power estimation unit
  • a required power calculation unit that calculates necessary generated power and recommended discharge power on the path, and a remaining power calculation unit that calculates remaining power on the path of the storage battery based on a calculation result in the required power calculation unit
  • the travel mode on the route of the vehicle according to the calculation result in the required power calculation unit and the route calculated in the remaining power calculation unit.
  • Patent Document 1 can control vehicle equipment so as to improve energy efficiency, the fuel consumption of the engine greatly depends not only on the power consumption of the vehicle-mounted device but also on the running state of the vehicle. . For this reason, it is desired to provide a vehicle travel plan that optimizes energy consumption by preventing deterioration of fuel consumption.
  • a travel plan generation device capable of providing a travel plan for a vehicle that optimizes energy consumption, a vehicle including the travel plan generation device, a travel plan generation system, and a computer program for realizing the travel plan generation device The purpose is to provide.
  • the travel plan generation device is a travel plan generation device that generates a travel plan for a vehicle having a storage battery, and a traffic information acquisition unit that acquires traffic information on a route from the current location of the vehicle to a destination
  • a road information acquisition unit that acquires road information including a slope of the road related to the route, and the vehicle traveling according to the traffic information acquired by the traffic information acquisition unit and the road information acquired by the road information acquisition unit.
  • a required power calculation unit to be calculated a remaining power calculation unit for calculating a remaining power on the path of the storage battery based on a calculation result in the required power calculation unit, and a calculation result in the required power calculation unit.
  • a generator for generating a travel plan including a travel mode and remaining power on the route calculated by the remaining power calculation unit on the route of the vehicle.
  • the vehicle according to the present embodiment is a vehicle equipped with the travel plan generation device according to the above-described embodiment.
  • the travel plan generation system includes the travel plan generation device according to the above-described embodiment and a vehicle, and the travel plan generation device provides the generated travel plan to the vehicle.
  • the computer program according to the present embodiment is a computer program for causing a computer to generate a travel plan for a vehicle having a storage battery, and the computer is used to transmit traffic information on the route from the current location of the vehicle to the destination and the route.
  • a power estimation unit that estimates discharge power and generated power on the route based on a traveling state of the vehicle according to road information including road gradient, and the discharge power and generated power estimated by the power estimation unit.
  • the required power calculation unit that calculates the required generated power and the recommended discharge power on the route based on the remaining power, and the remaining power that calculates the remaining power on the route of the storage battery based on the calculation result in the required power calculation unit
  • the power calculation unit, the travel mode on the route of the vehicle according to the calculation result in the required power calculation unit, and the remaining power calculation unit To function as a generator for generating a travel plan including a remaining power of the street.
  • the route with the shortest travel time can be specified from among a plurality of routes from the current location (departure location) to the destination, but is not limited to this. Instead, traffic jam information and road regulation information can be taken into account.
  • the travel time can be obtained from, for example, traffic information such as VICS (registered trademark), probe information obtained from a probe vehicle, and the like.
  • the traffic information acquisition unit acquires traffic information on the route.
  • the traffic information includes, for example, information such as a traffic jam point and traffic jam length, information such as an estimated vehicle speed or travel time in a predetermined section on the road.
  • the road information acquisition unit acquires road information including a road gradient related to the route.
  • the road information can include road curvature, a position of a tunnel, map information, weather information on a route, and the like in addition to the road gradient.
  • the power estimation unit estimates the discharge power and generated power on the route based on the travel state of the vehicle according to the acquired traffic information and road information.
  • the discharged power is power consumed by supplying the power stored in the storage battery to the vehicle-mounted product, and includes, for example, power consumed by an air conditioner, ECU, audio product, wiper, headlight, etc., power consumed by torque assist, and the like.
  • torque assist occurs when the vehicle accelerates
  • torque assist occurs when climbing
  • headlights are used when passing through the tunnel, Since it is possible to estimate a running state such as using a headlight at night and using a wiper in case of rain, discharge power can be estimated based on the estimated running state.
  • Parameters used for power estimation such as power consumption and transmission efficiency of each electrical component can be determined in advance.
  • the generated power is charging power to the storage battery by regenerative power (regenerative energy), and the generated power can be estimated from, for example, a running state in which regenerative power is generated during downhill.
  • the required power calculation unit calculates the required generated power and recommended discharge power on the path based on the discharge power and generated power estimated by the power estimation unit.
  • the remaining power of the storage battery can be estimated based on the discharged power and generated power estimated by the power estimation unit.
  • the estimated remaining power is also referred to as estimated remaining power.
  • the remaining power of the storage battery decreases in the section (or period) in which the discharge power is estimated on the path, and the remaining power of the storage battery increases in the section (or period) in which the generated power is estimated on the path. Accordingly, it is possible to estimate the transition of the remaining power indicating how the remaining power (initial value) of the storage battery at the current location of the vehicle decreases and increases in the process of traveling on the route of the vehicle.
  • Necessary generated power is calculated as power that indicates how much the estimated remaining power of the storage battery is below the predetermined lower limit value
  • recommended discharge power is calculated as power that indicates how much the estimated remaining power of the storage battery exceeds the specified upper limit value can do.
  • a lower limit is a lower limit of the value which shows the charge ratio of a storage battery, and is a value which must charge a storage battery.
  • an upper limit is an upper limit of the value which shows the charge ratio of a storage battery, and is a value which should not be charged any more.
  • the remaining power calculation unit calculates the remaining power on the path of the storage battery based on the calculation result in the required power calculation unit.
  • the remaining power is calculated based on the required generated power calculated by the required power calculation unit based on the required section on the route, and based on the recommended discharge power calculated by the required power calculation unit. This can be done by discharging in the section.
  • the estimated remaining power increases by generating power in the required section, the estimated remaining power decreases by discharging in the required section, and the resulting remaining power is a range defined by the lower limit value and the upper limit value. Can be a value within
  • the generation unit generates a travel plan including the travel mode on the vehicle route according to the calculation result by the required power calculation unit and the remaining power on the route calculated by the remaining power calculation unit.
  • the travel mode includes, for example, states such as driving only by the engine, driving only by the motor (electric motor), driving by both the engine and the motor, presence / absence of power generation, presence / absence of regeneration, and the like. For example, when generating power in a required section in order to secure necessary generated power, driving by the engine and power generation are performed simultaneously. When power generation is performed, deterioration of fuel consumption can be prevented by avoiding high load traveling (for example, climbing).
  • the required power calculation unit is configured such that the estimated remaining power on the route of the storage battery is less than a predetermined lower limit value based on an estimation result in the power estimation unit, and is a minimum value. In this case, the difference between the lower limit value and the minimum value is calculated as the required generated power.
  • the required power calculation unit calculates the difference between the lower limit value and the minimum value when the estimated remaining power on the storage battery path based on the estimation result in the power estimation unit becomes a minimum value below a predetermined lower limit value. Calculate as Since the estimated remaining power of the storage battery continues to decrease in the discharge section where the discharge power (power consumption) is estimated on the route, and the storage battery is charged when reaching the start point of the charging section where the generated power is estimated, The estimated remaining power of the storage battery becomes a minimum value at a point where the discharge section moves to the charging section. Thereby, it turns out that power generation is required in the section before the point where the estimated remaining power of the storage battery is below the lower limit value.
  • the required power calculation unit is configured such that the estimated remaining power on the path of the storage battery exceeds a predetermined upper limit value based on an estimation result in the power estimation unit, and is a maximum value. In this case, the difference between the maximum value and the upper limit value is calculated as recommended discharge power.
  • the required power calculation unit calculates the difference between the maximum value and the upper limit value as the recommended discharge power when the estimated remaining power on the path of the storage battery exceeds the predetermined upper limit value based on the estimation result of the power estimation unit. Calculate as In the charging section where the generated power is estimated on the route, the estimated remaining power of the storage battery continues to increase, and the storage battery is discharged when it reaches the starting point of the discharging section where the discharged power is estimated. The estimated remaining power of the storage battery reaches a maximum value at the point of transition to the section. Thereby, it turns out that discharge is required in the section before the point where the estimated remaining power of the storage battery exceeds the upper limit value.
  • the travel plan generation apparatus is configured so that the remaining power calculated by the remaining power calculation unit is within a range determined by the lower limit value and the upper limit value, and the fuel consumption of the vehicle satisfies a predetermined condition.
  • a setting unit that sets, on the route, at least one of a power generation section that charges the storage battery and a discharge section that consumes power of the storage battery, and the generation unit is configured to perform the travel plan based on a setting result of the setting unit. Is generated.
  • the setting unit is configured to charge the storage battery and the power of the storage battery so that the remaining power calculated by the remaining power calculation unit is within a range determined by the lower limit value and the upper limit value, and the fuel consumption of the vehicle satisfies a predetermined condition.
  • At least one of the discharge sections that consumes is set on the path.
  • the predetermined condition can be, for example, a condition that minimizes fuel consumption (fuel consumption).
  • at least one of the power generation section and the discharge section can be set so that the remaining power of the storage battery does not fall below the lower limit value, does not exceed the upper limit value, and the fuel consumption becomes the best.
  • the generation unit generates a travel plan based on the setting result of the setting unit. As a result, it is possible to generate a travel plan in which the remaining power of the storage battery does not fall below the lower limit value, does not exceed the upper limit value, and the fuel consumption becomes the best.
  • the travel plan generation device divides the power generation candidate section from the current location of the vehicle to the position where the estimated remaining power becomes the minimum value into a plurality of subsections, and the division section. Based on the estimated vehicle speed and the road gradient in each small section divided by the dividing section, the power generation possible amount calculation section that calculates the power generation possible amount in each small section, and the non-power generation during the power generation in each small section A fuel consumption calculation unit that calculates a fuel consumption amount at the time, and the setting unit has a power generation possible amount calculated by the power generation possible amount calculation unit equal to a difference between the lower limit value and the minimum value, and the fuel consumption One or a plurality of small sections among the small sections are set as the power generation section so that the fuel consumption calculated by the calculation unit is minimized.
  • the dividing unit divides the power generation candidate section from the current location of the vehicle to a position where the estimated remaining power becomes a minimum value into a plurality of small sections.
  • the small section can be, for example, about several tens to 100 m, but is not limited to this.
  • the power generation possible amount calculation unit calculates the power generation possible amount in each small section divided by the division unit. If the estimated vehicle speed of the vehicle can be obtained from the road information and traffic information on the route, the engine speed can be obtained from the estimated vehicle speed, and the motor speed can be obtained from the engine speed. The amount of power that can be generated can be calculated based on the characteristics of the motor (rotation speed-power map or the like).
  • the fuel consumption calculation unit calculates the fuel consumption during power generation and non-power generation in each small section based on the estimated vehicle speed and road gradient in each small section divided by the dividing unit. Based on the estimated vehicle speed, road gradient, predetermined parameters, and the like, the vehicle travel load (for example, load due to gradient, load due to rolling resistance, load due to air resistance, load due to acceleration, etc.) can be obtained. The engine torque can be obtained based on the traveling load. The fuel consumption can be calculated using a fuel consumption map based on the engine speed and the engine torque.
  • the setting unit is configured so that the power generation possible amount calculated by the power generation possible amount calculation unit is equal to the difference between the lower limit value and the minimum value, and the fuel consumption calculated by the fuel consumption calculation unit is minimized.
  • One or a plurality of small sections is set as a power generation section.
  • a method for calculating the combination for example, mathematical programming can be used.
  • the small section is a section where torque assist is performed
  • the total of the power consumption reduction amount (power that should have been consumed by torque assist) and the generated power by not performing torque assist satisfies the required generated power.
  • the travel plan generation device divides the candidate discharge section from the current location of the vehicle to the position where the estimated remaining power reaches the maximum value into a plurality of subsections, and the division section.
  • a fuel consumption calculation unit that calculates a fuel consumption amount at the time of discharging in each small section, and the setting unit includes the fuel consumption amount calculated by the fuel consumption calculation unit so that the fuel consumption amount is minimized.
  • One or a plurality of small sections are set as the discharge section.
  • the dividing unit divides a discharge candidate section from the current location of the vehicle to a position where the estimated remaining power reaches a maximum value into a plurality of small sections.
  • the small section can be, for example, about several tens to 100 m, but is not limited to this.
  • the fuel consumption calculation unit calculates the fuel consumption during discharge in each small section divided by the dividing unit. For example, fuel consumption is calculated when torque assist is performed in each small section where torque assist is not performed (during discharging).
  • the setting unit sets one or more small sections of each small section as a discharge section so that the fuel consumption calculated by the fuel consumption calculation section is minimized.
  • the discharge section can be set by combining one or a plurality of small sections so that the fuel consumption is minimized.
  • mathematical programming can be used as a method for calculating the combination.
  • torque assist can be appropriately performed so that fuel consumption does not deteriorate.
  • the travel plan generation device includes an actual measurement value acquisition unit that acquires an actual measurement value of the remaining power of the storage battery, and the generation unit generates the travel plan generated with the actual measurement value acquired by the actual measurement value acquisition unit.
  • the absolute value of the difference from the remaining power of the storage battery included in the vehicle exceeds a predetermined threshold value, a travel plan is generated again.
  • the actual value acquisition unit acquires the actual value of the remaining power of the storage battery. That is, when the vehicle starts traveling from the departure place, an actual measurement value of the remaining power of the storage battery during traveling is acquired.
  • the measured value of residual electric power can be acquired by monitoring the input electric power (charge electric power) and output electric power (discharge electric power) of a storage battery, for example.
  • the generation unit generates the travel plan again when the absolute value of the difference between the actual measurement value acquired by the actual measurement value acquisition unit and the remaining power of the storage battery included in the generated travel plan exceeds a predetermined threshold.
  • a deviation from the travel plan generated due to various conditions for example, temperature, deterioration of parts, operation method, etc.
  • Due to a deviation from the travel plan (for example, a deviation in the remaining power of the storage battery), power is insufficient in a section where torque assist is desired, and power generation is required, resulting in a deterioration in fuel consumption.
  • the absolute value (deviation) of the difference between the measured value of the remaining power and the planned value (the calculated value of the remaining power included in the travel plan) exceeds a predetermined threshold, Generate travel plans.
  • the parameters fed back include, for example, power consumption, power generation efficiency, transmission efficiency, travel load, and the like of the electrical components.
  • the travel plan generation apparatus includes a power determination unit that determines whether there is a change in discharge power or generated power estimated by the power estimation unit based on traffic information acquired by the traffic information acquisition unit.
  • the generation unit generates a travel plan again when the power determination unit determines that there is a change.
  • the power determination unit determines whether there is a change in the discharge power or generated power estimated by the power estimation unit based on the acquired traffic information. After the vehicle departs from the departure place, the vehicle can acquire traffic information, for example, when the vehicle passes near the information distribution device or periodically. When traffic congestion occurs on the route or in the vicinity of the route due to an accident or the like, the estimated vehicle speed (travel time) may change. When the estimated vehicle speed changes by a predetermined value or more, the running state changes, and the discharge power or generated power estimated by the power estimation unit changes.
  • the generation unit determines that there is a change, the generation unit generates a travel plan again. Thereby, the travel plan based on the latest traffic information can be generated.
  • the travel plan generation apparatus includes a collection unit that collects data including power consumption of electrical components mounted on a vehicle and environmental information when the electrical components are used, and the power estimation unit includes The discharge power is estimated based on the data collected by the collecting unit.
  • the collection unit collects data including the power consumption of electrical components mounted on the vehicle and environmental information when the electrical components are used. For example, data such as temperature and humidity when using an air conditioner or a defroster, ambient brightness when using a headlight, and rainfall when using a wiper are collected as learning data.
  • the power estimation unit estimates the discharge power based on the data collected by the collection unit. As a result, it is possible to learn how to drive unique to the driver and more accurately estimate the discharge power (power consumption).
  • the travel plan generation device includes an output unit that outputs driving support information based on the travel plan generated by the generation unit.
  • the output unit outputs driving support information based on the travel plan generated by the generation unit.
  • driving support information can be output based on the driving mode included in the generated driving plan (including output by voice, display by characters, drawings, etc.).
  • the driving support information includes, for example, stepping on an accelerator, applying a brake, vehicle speed, and the like. Thereby, driving
  • the travel plan generation device includes a travel control unit that performs travel control of the vehicle based on the travel plan generated by the generation unit.
  • the travel control unit performs vehicle travel control based on the travel plan generated by the generation unit.
  • the accelerator and the brake can be controlled based on the travel mode included in the generated travel plan. Thereby, driving
  • FIG. 1 is a block diagram showing an example of a configuration of a vehicle 100 equipped with a travel plan generation device according to the present embodiment.
  • FIG. 2 shows a configuration of a travel plan generation unit 50 as a travel plan generation device according to the present embodiment. It is a block diagram which shows an example.
  • a vehicle 100 includes a travel plan generation unit 50, a generator 1, an internal combustion engine (engine) 2, a storage battery 3, a BMS (Battery Management System) 4, an electrical component 5, and an HMI (Human Machine Interface) 6. , An accelerator 7, a brake 8, and the like.
  • engine internal combustion engine
  • BMS Battery Management System
  • HMI Human Machine Interface
  • the generator 1 is, for example, an ISG (Integrated Starter Generator) and an alternator that also functions as a motor (electric motor).
  • the generator 1 is not limited to ISG or MG, and may be a simple alternator.
  • the generator 1 can perform power assist (torque assist) when starting the engine from the idling stop state, starting, and accelerating.
  • torque assist is performing power assistance at the time of starting and acceleration with electric power using ISG or a driving motor (in the case of HV).
  • ISG Integrated Starter Generator
  • HV driving motor
  • the generator 1 outputs information such as the number of rotations of the motor, the amount of power generation, and the power generation voltage to the travel plan generation unit 50.
  • the internal combustion engine 2 outputs information such as the engine speed to the travel plan generation unit 50.
  • the storage battery 3 is, for example, a lead battery, and supplies power for starting the engine.
  • the storage battery 3 stores (charges) the power generated by the generator 1 and supplies (discharges) the power to the electrical component 5.
  • the BMS 4 is an input power (charging power), output power (discharging power), SOC (State of Charge: a value indicating the charging rate of the storage battery 3), SOH (State of Health: a value indicating the degree of deterioration of the storage battery 3). ), Monitoring the voltage of the storage battery 3 and the like.
  • the SOC is 1 for full charge and 0 for complete discharge.
  • the BMS 4 outputs information to be monitored to the travel plan generation unit 50.
  • the electrical component 5 includes, for example, an air conditioner, an audio product, a car navigation product, a head lamp, a tail lamp, a brake lamp, a wiper, an ECU, and the like.
  • the HMI 6 has a function as an output unit, for example, and includes an audio output, a display panel, an operation panel, and the like.
  • the travel plan generation unit 50 includes a control unit 51, a route identification unit 52, a communication unit 53, a power estimation unit 54, a required power calculation unit 55, a remaining power calculation unit 56, a storage unit 57, and an interface unit. 58, a generation unit 59, a setting unit 60, a power generation possible amount calculation unit 61, a fuel consumption calculation unit 62, a travel control unit 63, and the like.
  • the route specifying unit 52 specifies a route from the current location of the vehicle to the destination.
  • the route specification can specify, for example, a route having the shortest travel time among a plurality of routes from the current location (departure point) to the destination, but is not limited to this. It is also possible to take into account regulatory information.
  • the travel time can be obtained from, for example, traffic information such as VICS, probe information obtained from a probe vehicle, and the like.
  • the communication unit 53 has a function as a traffic information acquisition unit, and acquires traffic information on the route specified by the route specification unit 52.
  • the traffic information includes, for example, information such as a traffic jam point and traffic jam length, information such as an estimated vehicle speed or travel time in a predetermined section on the road.
  • the communication unit 53 has a function as a road information acquisition unit, and acquires road information including a road gradient related to the route specified by the route specifying unit 52.
  • the road information can include road curvature, a position of a tunnel, map information, weather information on a route, and the like in addition to the road gradient.
  • the power estimation unit 54 estimates the discharge power and the generated power on the route based on the traveling state of the vehicle according to the traffic information and road information acquired by the communication unit 53.
  • Discharged power is power consumed by supplying the power stored in the storage battery 3 to an in-vehicle product such as the electrical component 5, for example, power consumed by an air conditioner, ECU, audio product, wiper, headlight, etc., and torque assist. Includes power consumption.
  • the discharge power can be estimated based on the estimated running state. Parameters used for power estimation such as power consumption and transmission efficiency of each electrical component can be determined in advance.
  • the generated power is charging power to the storage battery 3 by regenerative power (regenerative energy), and the generated power can be estimated based on, for example, a traveling state in which regenerative power is generated during downhill.
  • the required power calculation unit 55 calculates the required generated power and recommended discharge power on the path based on the discharge power and the generated power estimated by the power estimation unit 54.
  • the remaining power of the storage battery 3 can be estimated based on the discharged power and generated power estimated by the power estimation unit 54.
  • the estimated remaining power is also referred to as estimated remaining power.
  • the remaining power of the storage battery 3 decreases in the section (or period) in which the discharge power is estimated on the path, and the remaining power of the storage battery 3 increases in the section (or period) in which the generated power is estimated on the path.
  • the transition of the remaining power indicating how the remaining power (initial value) of the storage battery 3 at the current location of the vehicle decreases and increases in the process of traveling on the route.
  • the required generated power is power indicating how much the estimated remaining power of the storage battery 3 is below a predetermined lower limit value
  • the recommended discharge power is power indicating how much the estimated remaining power of the storage battery 3 is above the predetermined upper limit value.
  • the lower limit value is a lower limit value of a value indicating the charging rate of the storage battery 3 and is a value that the storage battery 3 must be charged.
  • an upper limit is an upper limit of the value which shows the charge ratio of the storage battery 3, and is a value which should not be charged any more.
  • the remaining power calculation unit 56 calculates the remaining power on the path of the storage battery 3 based on the calculation result in the required power calculation unit 55.
  • the calculation of the remaining power is based on the required generated power calculated by the required power calculating unit 55, generating power in a required section on the route, and based on the recommended discharge power calculated by the required power calculating unit 55, This can be done by discharging in the required section.
  • the estimated remaining power increases by generating power in the required section, the estimated remaining power decreases by discharging in the required section, and the resulting remaining power is a range defined by the lower limit value and the upper limit value. Can be a value within
  • the generation unit 59 generates a travel plan that includes the travel mode on the route of the vehicle according to the calculation result of the required power calculation unit 55 and the remaining power on the route calculated by the remaining power calculation unit 56.
  • the travel mode includes, for example, states such as driving only by the engine, driving only by the motor (electric motor), driving by both the engine and the motor, presence / absence of power generation, presence / absence of regeneration, and the like.
  • the interface unit 58 has an interface function with the generator 1, the internal combustion engine 2, the BMS 4, the electrical component 5, the HMI 6, the accelerator 7, the brake 8, and the like.
  • the setting unit 60 includes a power generation section for charging the storage battery 3 so that the remaining power calculated by the remaining power calculation unit 56 is within a range determined by the lower limit value and the upper limit value, and the fuel consumption of the vehicle satisfies a predetermined condition. At least one of the discharge sections in which the power of the storage battery 3 is consumed is set on the path.
  • the predetermined condition can be, for example, a condition that minimizes fuel consumption (fuel consumption). Details of the setting unit 60 will be described later.
  • the control unit 51 has a function as a dividing unit, and divides a power generation candidate section from the current position of the vehicle to a position where the estimated remaining power becomes a minimum value into a plurality of small sections. Moreover, the control part 51 divides
  • the small section can be, for example, about several tens to 100 m, but is not limited to this.
  • the power generation possible amount calculation unit 61 calculates the power generation possible amount in each small section divided by the control unit 51. If the estimated vehicle speed of the vehicle can be obtained from the road information and traffic information on the route, the engine speed can be obtained from the estimated vehicle speed, and the motor speed can be obtained from the engine speed. The amount of power that can be generated can be calculated based on the characteristics of the motor (rotation speed-power map or the like).
  • the fuel consumption calculation unit 62 calculates the fuel consumption during power generation and non-power generation in each small section based on the estimated vehicle speed and road gradient in each small section divided by the control unit 51. Based on the estimated vehicle speed, road gradient, predetermined parameters, and the like, the vehicle travel load (for example, load due to gradient, load due to rolling resistance, load due to air resistance, load due to acceleration, etc.) can be obtained. The engine torque can be obtained based on the traveling load. The fuel consumption can be calculated using a fuel consumption map based on the engine speed and the engine torque.
  • the fuel consumption calculation unit 62 calculates the fuel consumption during discharge in each small section divided by the control unit 51. For example, fuel consumption is calculated when torque assist is performed in each small section where torque assist is not performed (during discharging).
  • the travel control unit 63 performs vehicle travel control based on the travel plan generated by the generation unit 59.
  • the accelerator 7 and the brake 8 can be controlled based on the travel mode included in the generated travel plan.
  • the storage unit 57 has a function as a collection unit, and collects data including power consumption of the electrical component 5 mounted on the vehicle and environmental information when the electrical component 5 is used.
  • FIG. 3 is a schematic diagram illustrating an example of a method for estimating discharge power and generated power by the travel plan generation unit 50 according to the present embodiment. Since the discharge power is power that is supplied from the battery 3 to the electrical component 5 or the like, it can also be referred to as power consumption. In the present embodiment, discharge power and power consumption are treated as synonymous.
  • the upper diagram in FIG. 3 schematically shows road information on the position on the route from the starting point (current location) of the vehicle to the destination. For convenience, the route from the departure point to the destination is divided into sections L1 to L15.
  • the middle diagram of FIG. 3 represents the estimated average vehicle speed of the vehicle based on the traffic information.
  • the lower diagram of FIG. 3 represents the estimation of the power consumption (discharge power) of the vehicle and the generated power on the path, and schematically represents the estimated power value and the generation section of the estimated power.
  • section L1 since the vehicle is started, it is possible to estimate power consumption by torque assist during acceleration. In addition, constant power consumption by the ECU, the air conditioner, the audio product, and the like occurs between the section L1 and the section L15.
  • section L3 the vehicle is accelerated in order to move from the residential area to the urban area, so that it is possible to estimate the power consumption by torque assist during acceleration.
  • section L9 since it passes through the tunnel, it is possible to estimate the power consumption due to the use of headlights.
  • the vehicle moves from the highway in the section L14 to the city area and when the vehicle is stopped at the destination in the section L15, the vehicle is decelerated, so that the power generated by the regenerative power can be estimated.
  • the time of traveling in the section L15 is nighttime, it is possible to estimate the power consumption due to the use of the headlight.
  • the power estimation unit 54 uses the power consumption on the route based on the traveling state of the vehicle according to traffic information on the route, road information, weather information, passage time (time at the time of traveling), and the like. Estimate generated power.
  • FIG. 4 is a schematic diagram illustrating an example of a method for calculating the required generated power by the travel plan generation unit 50 according to the present embodiment.
  • the upper diagram in FIG. 4 is a copy of the lower diagram in FIG. 3.
  • the lower diagram of FIG. 4 shows the transition of the remaining power (estimated remaining power) of the storage value 3 estimated according to the estimation of the discharge power and the generated power.
  • the estimated remaining power of the storage battery 3 continues to decrease, and in the power generation section where the generated power is estimated, the estimated remaining power of the storage battery 3 continues to increase.
  • the estimated remaining power becomes a minimum value at the timing of transition from the discharge section to the power generation section.
  • the estimated remaining power reaches a maximum value at the timing of transition from the power generation section to the discharge section.
  • the estimated remaining power of the storage battery 3 falls below the lower limit value in the middle of the discharge section L5 + L6, and becomes a minimum value at the start point of the power generation section L8. That is, since the estimated remaining power of the storage battery 3 is lower than the lower limit value in the discharge section, the power becomes insufficient and becomes impossible.
  • the estimated remaining power of the storage battery 3 falls below the lower limit value in the middle of the discharge section L11, and becomes a minimum value at the power generation start point in the section L14. That is, since the estimated remaining power of the storage battery 3 is lower than the lower limit value in the discharge section, the power becomes insufficient and becomes impossible.
  • the estimated remaining power of the storage battery 3 is lower than the upper limit value in the power generation section, it is possible without the need for discharging.
  • the required power calculation unit 55 has a lower limit value and a minimum value. Is calculated as necessary generated power (power indicated by an arrow in FIG. 4).
  • the estimated remaining power of the storage battery continues to decrease in the discharge section where the discharge power (power consumption) is estimated on the route, and the storage battery 3 is charged when reaching the start point of the charging section where the generated power is estimated.
  • the estimated remaining power of the storage battery 3 becomes a minimum value at a point where the discharge section moves to the charging section. Thereby, it turns out that electric power generation is needed in the section before the point where the presumed residual electric power of storage battery 3 is less than a lower limit.
  • the required power calculation unit 55 determines the maximum value and the upper limit when the estimated remaining power on the path of the storage battery 3 based on the estimation result in the power estimation unit 54 exceeds the predetermined upper limit value and becomes the maximum value. The difference from the value is calculated as the recommended discharge power.
  • the estimated remaining power of the storage battery 3 continues to increase in the charging section where the generated power is estimated on the route, and the storage battery 3 is discharged when reaching the starting point of the discharging section where the discharged power is estimated.
  • the estimated remaining power of the storage battery 3 reaches a maximum value at a point where the battery moves to the discharge section. Thereby, it turns out that discharge is required in the section before the point where the estimated remaining power of the storage battery 3 exceeds the upper limit value.
  • FIG. 5 is a schematic diagram illustrating an example of a method for calculating the remaining power of the storage battery 3 by the travel plan generation unit 50 according to the present embodiment.
  • FIG. 5 shows the transition of the remaining power calculated by the remaining power calculation unit 56.
  • the power generation section is set in a section before the position where the estimated remaining power of the storage battery 3 is lower than the lower limit value for the required generated power calculated by the required power calculation section 55.
  • the power generation section is set in a part of the section L2 and the section L4.
  • the position for generating power is set so that the fuel consumption becomes the best based on the travel load at each position on the route, the vehicle speed, the engine fuel consumption map, and the like.
  • the remaining power calculation unit 56 calculates the remaining power of the storage battery 3 when power is generated in the set power generation section. By setting the power generation section and generating power, the calculated remaining power does not fall below the lower limit, and power shortage can be prevented. As shown in FIG. 5, in order to avoid running out of the battery, it is also possible to increase the remaining power of the storage battery 3 by performing power limitation (power consumption limitation) before the end of traveling (near the destination).
  • power limitation power consumption limitation
  • the setting unit 60 generates power for charging the storage battery 3 so that the remaining power calculated by the remaining power calculating unit 56 falls within a range determined by the lower limit value and the upper limit value, and the fuel consumption of the vehicle satisfies a predetermined condition. At least one of the section and the discharge section that consumes the power of the storage battery 3 is set on the path.
  • the predetermined condition can be, for example, a condition that minimizes fuel consumption (fuel consumption). Thereby, it is possible to set at least one of the power generation section and the discharge section so that the remaining power of the storage battery 3 does not fall below the lower limit value, does not exceed the upper limit value, and the fuel consumption becomes the best.
  • the generation unit 59 generates a travel plan based on the setting result of the setting unit 60. As a result, it is possible to generate a travel plan in which the remaining power of the storage battery does not fall below the lower limit value, does not exceed the upper limit value, and the fuel consumption becomes the best.
  • FIG. 6 is a schematic diagram illustrating an example of a travel plan generated by the travel plan generation unit 50 according to the present embodiment.
  • the upper diagram in FIG. 6 shows the transition of the remaining power and the transition of the remaining fuel on the path of the storage battery 3 calculated by the remaining power calculator 56. Further, the lower diagram of FIG. 6 shows the traveling mode of the vehicle.
  • the motor (electric motor) is used only for driving.
  • the section L2 is set as a power generation section, and driving by the engine and power generation are performed at the same time in order to secure electric power required by the torque assist in the section L5 + L6 that is the uphill.
  • section L3 in order to avoid deterioration of fuel consumption due to acceleration, torque assist by a motor (electric motor) is performed and driving by both the engine and the motor is performed.
  • a motor electric motor
  • the first half of the section L4 it is set as a power generation section, and driving by the engine and power generation are performed at the same time in order to secure electric power required by the torque assist in the section L5 + L6 that becomes the uphill. Further, in the second half of the section L4, since the vehicle is traveling at a relatively high vehicle speed in an urban area, only the engine is driven.
  • coasting refers to coasting with the engine and transmission separated during traveling. Since the resistance of the engine is eliminated, the mileage can be extended with the accelerator off, and the fuel efficiency can be improved.
  • section L11 in order to avoid deterioration of fuel consumption due to acceleration, torque assist by a motor (electric motor) is performed and driving by both the engine and the motor is performed.
  • a motor electric motor
  • section L12 the engine is driven only because it is traveling at a relatively fast vehicle speed in the suburbs.
  • section L13 in order to avoid deterioration in fuel consumption due to acceleration, torque assist by a motor (electric motor) is performed and driving by both the engine and the motor is performed.
  • a motor electric motor
  • section L14 only the engine is driven because it is traveling at high speed on the highway. Further, near the end of the section L14, the regenerative electric power due to the deceleration is collected to generate power.
  • section L15 the engine is driven only because it is traveling at a relatively high speed in the city. Further, near the end of the section L15, the regenerative electric power due to the deceleration is recovered and generated.
  • the HMI 6 outputs driving support information based on the travel plan generated by the generating unit 59.
  • driving support information can be output based on the driving mode included in the generated driving plan (including output by voice, display by characters, drawings, etc.).
  • the driving support information includes, for example, stepping on an accelerator, applying a brake, vehicle speed, and the like. Thereby, driving
  • the travel control unit 63 performs vehicle travel control based on the travel plan generated by the generation unit 59.
  • the accelerator and the brake can be controlled based on the travel mode included in the generated travel plan. Thereby, driving
  • FIG. 7 is a schematic diagram showing an example of a method for setting a power generation section by the travel plan generation unit 50 of the present embodiment.
  • the upper diagram of FIG. 7 is a copy of the lower diagram of FIG.
  • the lower diagram in FIG. 7 shows a state where the power generation candidate section is divided into a plurality of small sections and the power generation section is selected.
  • the power generation candidate section is a section from the current location of the vehicle to a position where the estimated remaining power becomes a minimum value (the end of the discharge where the estimated remaining power of the storage battery 3 becomes lower than the lower limit value).
  • the power generation candidate section is divided into appropriate small sections.
  • the small section can be, for example, about several tens to 100 m, but is not limited to this.
  • Information on travel load and fuel consumption based on estimated vehicle speed, road gradient, estimated vehicle speed and gradient, etc. in each small section is calculated.
  • the fuel consumption without torque assist and the power consumption reduction amount that should have been consumed with torque assist are calculated.
  • the amount of power that can be generated in each small section and the amount of fuel consumed during power generation are calculated from the generator characteristics (rotation speed-power map, etc.).
  • a power generation possible amount when generating power without torque assist and a fuel consumption amount during power generation are calculated.
  • Traveling load can be calculated as follows.
  • the traveling load includes a load Fg due to a gradient, a load Fr due to rolling resistance, a load Fai due to air resistance, a load Fac due to acceleration, and the like.
  • the load Fg due to the gradient can be calculated by the equation (1).
  • m is the longitudinal length of the vehicle
  • g is the gravitational acceleration
  • is the gradient of the route.
  • the load Fr due to the rolling resistance can be calculated by Expression (2).
  • Cr is a rolling resistance coefficient of the tire.
  • the load Fai due to air resistance can be calculated by Expression (3).
  • is the air density
  • Cc is the air resistance coefficient of the vehicle body
  • S is the front projected area
  • V is the vehicle speed.
  • the load Fac due to acceleration can be calculated by Expression (4).
  • the power consumption of electrical components such as air conditioners, ECUs, audio products, wipers, and headlights can be set in advance. Moreover, since it is thought that the speed of a wiper changes according to rainfall data, power consumption can be changed according to rainfall data. Similarly, the difference between high beam and low beam of headlights is considered to vary depending on road attributes (residential area, city, suburb, etc.), traffic volume, etc., so power consumption can be reduced according to road attributes and traffic volume. Can be changed.
  • the audio product can change the power consumption according to the set volume
  • the air conditioner can change the power consumption according to the set temperature, the temperature in each place, and the like.
  • Engine fuel efficiency can be calculated as follows. First, the engine torque TRe can be calculated by Expression (5).
  • Rt is the tire diameter
  • Rg is the total reduction ratio of the transmission and the differential
  • is the transmission efficiency
  • Trm is the motor torque
  • TRn is the other load torque.
  • the other load torque TRn is a torque for power generation and driving of the compressor, and can be calculated by Expression (6).
  • Pn is the power of each load (power generation amount and compressor power)
  • ⁇ n is the transmission efficiency to each load
  • Ne is the engine speed.
  • the engine speed Ne can be calculated by the equation (7).
  • the motor torque TRm and the motor power consumption Pm can be calculated from the motor characteristic map using the motor rotation speed Nm.
  • the rotational speed Nm of the motor can be calculated by equation (8).
  • Rp is a pulley ratio.
  • FIG. 8 is a schematic diagram showing an example of an engine fuel consumption measurement result.
  • the horizontal axis represents the engine speed (rpm), and the vertical axis represents the engine torque (Nm).
  • the fuel consumption rate (g / kWh) of the engine that is, the fuel consumption can be calculated using the engine fuel consumption rate (fuel consumption map) illustrated in FIG. 8 using the engine torque and the engine speed.
  • the gear ratio can be determined from the mission control conditions.
  • the gear with the best fuel efficiency can be selected based on each gear ratio, vehicle speed, and travel load.
  • the torque assist can determine the presence or absence of operation according to certain conditions (necessary torque, vehicle speed, motor characteristics, etc.) for each vehicle.
  • the setting unit 60 sets each small electric power generation amount calculated by the electric power generation amount calculation unit 61 so that the electric power generation amount calculated by the fuel consumption calculation unit 62 becomes the minimum and the fuel consumption amount calculated by the fuel consumption calculation unit 62 becomes the same as the difference between the lower limit value and the minimum value.
  • One or more small sections of the section are set as the power generation section. In addition, it is possible to consider a restriction condition that power generation is not possible in a certain section after torque assist.
  • the fuel consumption is minimized.
  • a method for calculating the combination for example, mathematical programming can be used.
  • the small section is a section where torque assist is performed, the total of the power consumption reduction amount (power that should have been consumed by torque assist) and the generated power by not performing torque assist satisfies the required generated power. You can also set the power generation section. Fuel consumption can be further improved by reducing torque assist and equivalently reducing required power generation and reducing power generation.
  • a discharge section can also be set. That is, the setting unit 60 sets one or a plurality of small sections of each small section as a discharge section so that the fuel consumption calculated by the fuel consumption calculation section 62 is minimized.
  • a method for calculating the combination for example, mathematical programming can be used. Thereby, torque assist can be appropriately performed so that fuel consumption does not deteriorate.
  • the interface unit 58 has a function as an actual measurement value acquisition unit, and acquires an actual measurement value of the remaining power of the storage battery 3. That is, when the vehicle starts traveling from the departure place, an actual measurement value of the remaining power of the storage battery 3 during traveling is acquired.
  • the actually measured value of the remaining power can be acquired by monitoring the input power (charging power) and the output power (discharging power) of the storage battery 3, for example.
  • the generation unit 59 generates the travel plan again when the absolute value of the difference between the actual measurement value acquired by the interface unit 58 and the remaining power of the storage battery included in the generated travel plan exceeds a predetermined threshold value.
  • FIG. 9 is a schematic diagram illustrating an example of a state of deviation between the planned value and the actual measurement value based on the travel plan generated by the travel plan generation unit 50 according to the present embodiment.
  • a deviation from the travel plan generated due to various conditions for example, temperature, deterioration of parts, operation method, etc.
  • Due to a deviation from the travel plan (for example, a deviation in the remaining power of the storage battery), power is insufficient in a section where torque assist is desired, and power generation is required, resulting in a deterioration in fuel consumption.
  • the section L7 is a section where torque assist is performed as shown in FIG. 6, the remaining power of the storage battery 3 has a lower limit value during the travel as shown in FIG. Since it is below, torque assist cannot be performed, and on the contrary, it is necessary to generate electric power, and fuel consumption deteriorates.
  • the section L7 must be climbed, and although it is a high travel load road, power generation is required and fuel consumption is deteriorated.
  • FIG. 10 is a schematic diagram showing an example of a travel plan generated again by the travel plan generation unit 50 of the present embodiment. If the absolute value (deviation) of the difference between the measured value of the remaining power and the planned value (the calculated value of the remaining power included in the travel plan) exceeds a predetermined threshold, the travel plan is again determined based on the measured value of the remaining power. Is generated. In addition, when generating a travel plan again, what is necessary is just to calculate required electric power generation amount (required electric power generation) and to set an electric power generation area according to required electric power generation amount. Further, when the travel plan is generated again, the parameters fed back include, for example, power consumption of the electrical equipment, power generation efficiency, transmission efficiency, travel load, and the like.
  • the cause of the deviation from the original travel plan is a deviation in parameters for creating a travel plan, such as power generation / transmission efficiency and power consumption of electrical components
  • the actual value and travel plan Deviation from the planned value will increase. For example, by monitoring the power consumption, generated power, etc. of each electrical component, find the deviation from the parameters when generating the travel plan, set a predetermined threshold for these deviation amounts, and the deviation amount exceeds the threshold In such a case, the travel plan may be generated again.
  • control unit 51 has a function as a power determination unit, and determines whether or not there is a change in the discharge power or generated power estimated by the power estimation unit 54 based on the acquired traffic information.
  • the vehicle can acquire traffic information, for example, when the vehicle passes near the information distribution device or periodically.
  • the estimated vehicle speed travel time
  • the running state changes and the discharge power or generated power estimated by the power estimation unit 54 changes.
  • the generation unit 59 When the control unit 51 determines that there is a change, the generation unit 59 generates a travel plan again. Thereby, the travel plan based on the latest traffic information can be generated.
  • the storage unit 57 collects data including the power consumption of the electrical components mounted on the vehicle and environmental information when the electrical components are used. For example, data such as temperature and humidity when using an air conditioner or a defroster, ambient brightness when using a headlight, and rainfall when using a wiper are collected as learning data.
  • the power estimation unit 54 estimates the discharge power based on the data collected by the storage unit 57. As a result, it is possible to learn how to drive unique to the driver and more accurately estimate the discharge power (power consumption).
  • FIG. 11 is a flowchart illustrating an example of a processing procedure before the vehicle starts traveling by the travel plan generation unit 50 according to the present embodiment.
  • the processing subject will be described as the control unit 51 for convenience.
  • the control unit 51 sets a destination (S11) and specifies a route from the departure point to the destination (S12).
  • the control unit 51 acquires traffic information and road information on or near the identified route (S13), and estimates the discharge power (power consumption) and generated power on the route (S14).
  • the control unit 51 acquires the charging rate (initial value of remaining power) of the storage battery 3 (S15), and calculates necessary generated power and recommended discharge power on the route (S16).
  • the control unit 51 calculates the remaining power on the path of the storage battery 3 based on the calculated necessary generated power and recommended discharge power (S17), generates a travel plan (S18), and ends the process.
  • FIG. 12 is a flowchart showing an example of a processing procedure during travel of the vehicle by the travel plan generation unit 50 of the present embodiment.
  • the control unit 51 acquires an actual measurement value of the remaining power of the storage battery 3 (S31), and determines whether or not the absolute value of the difference between the actual measurement value and the remaining power of the travel plan is greater than a predetermined threshold (S32). When the absolute value is larger than the threshold (YES in S32), the control unit 51 corrects the power consumption of each load (S33), estimates the discharge power (power consumption) on the path, and the generated power (S34).
  • the control unit 51 acquires the charging rate (residual power) of the storage battery 3 (S35), and calculates the necessary generated power and recommended discharge power on the route (S36).
  • the control unit 51 calculates the remaining power on the path of the storage battery 3 based on the calculated required generated power and recommended discharge power (S37), and generates a travel plan (S38). That is, the control unit 51 generates a travel plan again.
  • the control unit 51 performs driving support based on the generated travel plan (S39), and determines whether or not the destination has been reached (S40). If the destination has not been reached (NO in S40), the control unit 51 repeats the processing from step S31 onward, and if the destination has been reached (YES in S40), the processing is terminated.
  • step S32 when the absolute value is not larger than the threshold value (NO in S32), the control unit 51 determines whether or not the traffic information is acquired (S41), and when the traffic information is acquired (YES in S41), It is determined whether there is a need to change the estimated value of the discharge power (power consumption) and generated power on the route (S42).
  • control unit 51 If there is a need to change the estimated value (YES in S42), the control unit 51 performs the processing after step S34. When the traffic information has not been acquired (NO in S41), or when there is no need to change the estimated value (NO in S42), the control unit 51 does not generate the travel plan again, and the processes after step S39. I do.
  • the travel plan generation device (travel plan generation unit 50) of the present embodiment can also be realized using a general-purpose computer including a CPU (processor), a RAM, and the like. That is, as shown in FIG. 11 and FIG. 12, a computer program that defines the procedure of each process is loaded into a RAM provided in the computer, and the computer program is executed by a CPU (processor), whereby a travel plan is executed on the computer.
  • a generation device (travel plan generation unit 50) can be realized.
  • the vehicle is configured to include the travel plan generation unit 50.
  • the travel plan generation unit 50 may be provided in a server such as an information providing device.
  • the vehicle may transmit information such as the generator 1, the internal combustion engine 2, and the storage battery 3 to the server, generate a travel plan by the server, and transmit the generated travel plan to the vehicle.

Abstract

A traveling plan generation apparatus according to the present invention comprises a route determination unit that determines a route from the present location of a vehicle to a destination, a traffic information acquisition unit that acquires traffic information for the determined route, a road information acquisition unit that acquires road information that includes the gradients of the roads on the route, a power estimation unit that estimates a discharge power and a generated power on the route on the basis of the traveling state of the vehicle according to the acquired traffic information and road information, a required power calculation unit that calculates a required generated power and recommended discharge power on the route on the basis of the estimated discharge power and generated power, a remaining power calculation unit that calculates residual power of a storage battery along the route on the basis of the calculation result, and a generation unit that generates a travel plan including a travel mode on the route of the vehicle according to the calculation result and the calculated residual power on the route.

Description

走行計画生成装置、車両、走行計画生成システム及びコンピュータプログラムTravel plan generation device, vehicle, travel plan generation system, and computer program
 本発明は、走行計画生成装置、車両、走行計画生成システム及びコンピュータプログラムに関する。
 本出願は、2015年9月16日出願の日本出願第2015-183105号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
The present invention relates to a travel plan generation device, a vehicle, a travel plan generation system, and a computer program.
This application claims priority based on Japanese Patent Application No. 2015-183105 filed on Sep. 16, 2015, and incorporates all the content described in the above Japanese application.
 車両のエンジン(内燃機関)の燃費は、例えば、エンジンの回転数がある一定の値に保たれている状態で最も効率が良く、回転数が高くなる場合、低速走行が続く場合、発進及び停止などで加速や減速が多い場合、登り坂で大きな駆動力を必要とする場合等には燃費が悪化する。そこで、エンジンとモータを動力源とする車両では、モータでトルクアシストすることにより、燃費を向上させることができる。また、モータを搭載しない車両でも、発電を最適化することにより、燃費を向上させている。 The fuel efficiency of the engine (internal combustion engine) of the vehicle is, for example, the most efficient when the engine speed is maintained at a certain value. When the engine speed increases, the vehicle starts and stops when low-speed running continues. For example, when there is a lot of acceleration or deceleration due to, for example, when a large driving force is required on an uphill, the fuel consumption deteriorates. Thus, in a vehicle using an engine and a motor as power sources, fuel efficiency can be improved by torque assisting with the motor. Even in a vehicle not equipped with a motor, fuel efficiency is improved by optimizing power generation.
 また、燃費の悪化を防止するため、車両に搭載された車両機器のエネルギー消費量を予測し、予測値に基づいて車両機器の制御計画を立案し、車両の走行に比較的多くの電力を使用する場合には、エアコンの出力を下げ、車両の走行に比較的少ない電力を使用する場合には、エアコンの出力を上げるようにした車両用エネルギーマネジメント装置が開示されている(特許文献1参照)。 In addition, in order to prevent deterioration of fuel consumption, the energy consumption of vehicle equipment mounted on the vehicle is predicted, a control plan for the vehicle equipment is drawn up based on the predicted value, and a relatively large amount of power is used to drive the vehicle. In such a case, a vehicle energy management device is disclosed in which the output of the air conditioner is reduced and the output of the air conditioner is increased when relatively little electric power is used to travel the vehicle (see Patent Document 1). .
特許第5642253号公報Japanese Patent No. 5642253
 本開示の走行計画生成装置は、蓄電池を有する車両の走行計画を生成する走行計画生成装置であって、車両の現在地から目的地までの経路上の交通情報を取得する交通情報取得部と、前記経路に係る道路の勾配を含む道路情報を取得する道路情報取得部と、前記交通情報取得部で取得した交通情報及び前記道路情報取得部で取得した道路情報に応じた前記車両の走行状態に基づいて前記経路上での放電電力及び発電電力を推定する電力推定部と、該電力推定部で推定した放電電力及び発電電力に基づいて前記経路上での必要発電電力及び推奨放電電力を算出する必要電力算出部と、該必要電力算出部での算出結果に基づいて前記蓄電池の前記経路上での残存電力を算出する残存電力算出部と、前記必要電力算出部での算出結果に応じた前記車両の前記経路上での走行モード及び前記残存電力算出部で算出した前記経路上での残存電力を含む走行計画を生成する生成部とを備える。 The travel plan generation device of the present disclosure is a travel plan generation device that generates a travel plan of a vehicle having a storage battery, the traffic information acquisition unit that acquires traffic information on a route from the current location of the vehicle to a destination, Based on a road information acquisition unit that acquires road information including a slope of a road related to the route, traffic information acquired by the traffic information acquisition unit, and a running state of the vehicle according to the road information acquired by the road information acquisition unit A power estimation unit for estimating the discharge power and generated power on the route, and calculating the necessary generated power and the recommended discharge power on the route based on the discharge power and generated power estimated by the power estimation unit. A power calculation unit, a remaining power calculation unit that calculates remaining power on the path of the storage battery based on a calculation result in the required power calculation unit, and the calculation result in the required power calculation unit And a generation unit which generates a travel plan including a remaining power on the route calculated in the running mode and the remaining power calculation unit on at the path of both.
 本開示の車両は、前述の開示の走行計画生成装置を搭載した車両。 The vehicle of the present disclosure is a vehicle equipped with the above-described travel plan generation device.
 本開示の走行計画生成システムは、前述の開示の走行計画生成装置と、車両とを備え、前記走行計画生成装置は、生成した走行経計画を前記車両へ提供する。 The travel plan generation system of the present disclosure includes the above-described travel plan generation device and a vehicle, and the travel plan generation device provides the generated travel schedule to the vehicle.
 本開示のコンピュータプログラムは、コンピュータに、蓄電池を有する車両の走行計画を生成させるためのコンピュータプログラムであって、コンピュータを、車両の現在地から目的地までの経路上の交通情報及び前記経路に係る道路の勾配を含む道路情報に応じた前記車両の走行状態に基づいて前記経路上での放電電力及び発電電力を推定する電力推定部と、該電力推定部で推定した放電電力及び発電電力に基づいて前記経路上での必要発電電力及び推奨放電電力を算出する必要電力算出部と、該必要電力算出部での算出結果に基づいて前記蓄電池の前記経路上での残存電力を算出する残存電力算出部と、前記必要電力算出部での算出結果に応じた前記車両の前記経路上での走行モード及び前記残存電力算出部で算出した前記経路上での残存電力を含む走行計画を生成する生成部として機能させる。 A computer program according to the present disclosure is a computer program for causing a computer to generate a travel plan for a vehicle having a storage battery, the computer including traffic information on a route from the current location of the vehicle to a destination and a road associated with the route. A power estimation unit that estimates discharge power and generated power on the route based on the traveling state of the vehicle according to road information including a slope of the vehicle, and based on the discharge power and generated power estimated by the power estimation unit A required power calculation unit that calculates necessary generated power and recommended discharge power on the path, and a remaining power calculation unit that calculates remaining power on the path of the storage battery based on a calculation result in the required power calculation unit And the travel mode on the route of the vehicle according to the calculation result in the required power calculation unit and the route calculated in the remaining power calculation unit. To function as a generator for generating a travel plan including the presence power.
本実施の形態の走行計画生成装置を搭載した車両の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the vehicle carrying the travel plan production | generation apparatus of this Embodiment. 本実施の形態の走行計画生成装置としての走行計画生成部の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the travel plan production | generation part as a travel plan production | generation apparatus of this Embodiment. 本実施の形態の走行計画生成部による放電電力及び発電電力の推定方法の一例を示す模式図である。It is a schematic diagram which shows an example of the estimation method of the discharge electric power and generated electric power by the travel plan production | generation part of this Embodiment. 本実施の形態の走行計画生成部による必要発電電力の算出方法の一例を示す模式図である。It is a schematic diagram which shows an example of the calculation method of the required generated electric power by the travel plan production | generation part of this Embodiment. 本実施の形態の走行計画生成部による蓄電池の残存電力の算出方法の一例を示す模式図である。It is a schematic diagram which shows an example of the calculation method of the residual electric power of a storage battery by the travel plan production | generation part of this Embodiment. 本実施の形態の走行計画生成部が生成する走行計画の一例を示す模式図である。It is a schematic diagram which shows an example of the travel plan which the travel plan production | generation part of this Embodiment produces | generates. 本実施の形態の走行計画生成部による発電区間の設定方法の一例を示す模式図である。It is a schematic diagram which shows an example of the setting method of the electric power generation area by the travel plan production | generation part of this Embodiment. エンジンの燃料消費測定結果の一例を示す模式図である。It is a schematic diagram which shows an example of the fuel consumption measurement result of an engine. 本実施の形態の走行計画生成部が生成した走行計画による計画値と実測値との乖離の様子の一例を示す模式図である。It is a schematic diagram which shows an example of the mode of deviation with the plan value and actual value by the travel plan which the travel plan production | generation part of this Embodiment produced | generated. 本実施の形態の走行計画生成部が再度生成した走行計画の一例を示す模式図である。It is a schematic diagram which shows an example of the travel plan which the travel plan production | generation part of this Embodiment produced | generated again. 本実施の形態の走行計画生成部による車両の走行開始前の処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the process sequence before the travel start of the vehicle by the travel plan production | generation part of this Embodiment. 本実施の形態の走行計画生成部による車両の走行中の処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the process sequence in driving | running | working of the vehicle by the travel plan production | generation part of this Embodiment.
[本開示が解決しようとする課題]
 特許文献1の装置は、エネルギー効率が良くなるように車両機器の制御を行うことが可能であるものの、エンジンの燃費は、車載器の電力消費だけでなく、車両の走行状態にも大きく依存する。このため、燃費の悪化を防止してエネルギー消費を最適化する車両の走行計画を提供することが望まれている。
[Problems to be solved by the present disclosure]
Although the device of Patent Document 1 can control vehicle equipment so as to improve energy efficiency, the fuel consumption of the engine greatly depends not only on the power consumption of the vehicle-mounted device but also on the running state of the vehicle. . For this reason, it is desired to provide a vehicle travel plan that optimizes energy consumption by preventing deterioration of fuel consumption.
 そこで、エネルギー消費を最適化する車両の走行計画を提供することができる走行計画生成装置、該走行計画生成装置を備える車両及び走行計画生成システム並びに前記走行計画生成装置を実現するためのコンピュータプログラムを提供することを目的とする。
[本開示の効果]
Therefore, a travel plan generation device capable of providing a travel plan for a vehicle that optimizes energy consumption, a vehicle including the travel plan generation device, a travel plan generation system, and a computer program for realizing the travel plan generation device The purpose is to provide.
[Effects of the present disclosure]
 本開示によれば、エネルギー消費を最適化する車両の走行計画を提供することができる。 According to the present disclosure, it is possible to provide a vehicle travel plan that optimizes energy consumption.
[本願発明の実施形態の説明]
 本実施の形態に係る走行計画生成装置は、蓄電池を有する車両の走行計画を生成する走行計画生成装置であって、車両の現在地から目的地までの経路上の交通情報を取得する交通情報取得部と、前記経路に係る道路の勾配を含む道路情報を取得する道路情報取得部と、前記交通情報取得部で取得した交通情報及び前記道路情報取得部で取得した道路情報に応じた前記車両の走行状態に基づいて前記経路上での放電電力及び発電電力を推定する電力推定部と、該電力推定部で推定した放電電力及び発電電力に基づいて前記経路上での必要発電電力及び推奨放電電力を算出する必要電力算出部と、該必要電力算出部での算出結果に基づいて前記蓄電池の前記経路上での残存電力を算出する残存電力算出部と、前記必要電力算出部での算出結果に応じた前記車両の前記経路上での走行モード及び前記残存電力算出部で算出した前記経路上での残存電力を含む走行計画を生成する生成部とを備える。
[Description of Embodiment of Present Invention]
The travel plan generation device according to the present embodiment is a travel plan generation device that generates a travel plan for a vehicle having a storage battery, and a traffic information acquisition unit that acquires traffic information on a route from the current location of the vehicle to a destination A road information acquisition unit that acquires road information including a slope of the road related to the route, and the vehicle traveling according to the traffic information acquired by the traffic information acquisition unit and the road information acquired by the road information acquisition unit. A power estimator for estimating discharge power and generated power on the path based on the state, and a required generated power and recommended discharge power on the path based on the discharge power and generated power estimated by the power estimator. A required power calculation unit to be calculated, a remaining power calculation unit for calculating a remaining power on the path of the storage battery based on a calculation result in the required power calculation unit, and a calculation result in the required power calculation unit. And and a generator for generating a travel plan including a travel mode and remaining power on the route calculated by the remaining power calculation unit on the route of the vehicle.
 本実施の形態に係る車両は、前述の実施の形態に係る走行計画生成装置を搭載した車両。 The vehicle according to the present embodiment is a vehicle equipped with the travel plan generation device according to the above-described embodiment.
 本実施の形態に係る走行計画生成システムは、前述の実施の形態に係る走行計画生成装置と、車両とを備え、前記走行計画生成装置は、生成した走行計画を前記車両へ提供する。 The travel plan generation system according to the present embodiment includes the travel plan generation device according to the above-described embodiment and a vehicle, and the travel plan generation device provides the generated travel plan to the vehicle.
 本実施の形態に係るコンピュータプログラムは、コンピュータに、蓄電池を有する車両の走行計画を生成させるためのコンピュータプログラムであって、コンピュータを、車両の現在地から目的地までの経路上の交通情報及び前記経路に係る道路の勾配を含む道路情報に応じた前記車両の走行状態に基づいて前記経路上での放電電力及び発電電力を推定する電力推定部と、該電力推定部で推定した放電電力及び発電電力に基づいて前記経路上での必要発電電力及び推奨放電電力を算出する必要電力算出部と、該必要電力算出部での算出結果に基づいて前記蓄電池の前記経路上での残存電力を算出する残存電力算出部と、前記必要電力算出部での算出結果に応じた前記車両の前記経路上での走行モード及び前記残存電力算出部で算出した前記経路上での残存電力を含む走行計画を生成する生成部として機能させる。 The computer program according to the present embodiment is a computer program for causing a computer to generate a travel plan for a vehicle having a storage battery, and the computer is used to transmit traffic information on the route from the current location of the vehicle to the destination and the route. A power estimation unit that estimates discharge power and generated power on the route based on a traveling state of the vehicle according to road information including road gradient, and the discharge power and generated power estimated by the power estimation unit The required power calculation unit that calculates the required generated power and the recommended discharge power on the route based on the remaining power, and the remaining power that calculates the remaining power on the route of the storage battery based on the calculation result in the required power calculation unit The power calculation unit, the travel mode on the route of the vehicle according to the calculation result in the required power calculation unit, and the remaining power calculation unit To function as a generator for generating a travel plan including a remaining power of the street.
 車両の現在地から目的地までの経路は、例えば、現在地(出発地)から目的地までの複数の経路のうち、旅行時間が最短となる経路を特定することができるが、これに限定されるものではなく、渋滞情報や道路規制情報などを加味することもできる。旅行時間は、例えば、VICS(登録商標)等の交通情報、プローブ車両から得られるプローブ情報等により求めることができる。 As for the route from the current location of the vehicle to the destination, for example, the route with the shortest travel time can be specified from among a plurality of routes from the current location (departure location) to the destination, but is not limited to this. Instead, traffic jam information and road regulation information can be taken into account. The travel time can be obtained from, for example, traffic information such as VICS (registered trademark), probe information obtained from a probe vehicle, and the like.
 交通情報取得部は、経路上の交通情報を取得する。交通情報は、例えば、渋滞地点及び渋滞長などの情報、道路上の所定区間での推定車速又は旅行時間などの情報を含む。道路情報取得部は、経路に係る道路の勾配を含む道路情報を取得する。道路情報は、道路の勾配の他、道路の曲率、トンネル等の位置、地図情報、経路での天候情報などを含むこともできる。 The traffic information acquisition unit acquires traffic information on the route. The traffic information includes, for example, information such as a traffic jam point and traffic jam length, information such as an estimated vehicle speed or travel time in a predetermined section on the road. The road information acquisition unit acquires road information including a road gradient related to the route. The road information can include road curvature, a position of a tunnel, map information, weather information on a route, and the like in addition to the road gradient.
 電力推定部は、取得した交通情報及び道路情報に応じた車両の走行状態に基づいて経路上での放電電力及び発電電力を推定する。放電電力は、蓄電池に蓄えられた電力を車載品へ供給することによる消費電力であり、例えば、エアコン、ECU、オーディオ製品、ワイパー、ヘッドライトなどの消費電力、トルクアシストによる消費電力などを含む。経路上位置での交通情報及び道路情報に応じて、車両が加速する場合にはトルクアシストが所要時間発生し、登坂時にはトルクアシストが発生し、トンネルを通過する場合にはヘッドライトを使用し、夜間にはヘッドライトを使用し、雨天の場合にはワイパーを使用する等の走行状態を推定することができるので、推定した走行状態により放電電力を推定することができる。なお、各電装品の消費電力及び伝達効率などの電力推定に用いるパラメータは予め定めておくことができる。発電電力は、回生電力(回生エネルギー)による蓄電池への充電電力であり、例えば、降坂時の回生電力が発生する等の走行状態により発電電力を推定することができる。 The power estimation unit estimates the discharge power and generated power on the route based on the travel state of the vehicle according to the acquired traffic information and road information. The discharged power is power consumed by supplying the power stored in the storage battery to the vehicle-mounted product, and includes, for example, power consumed by an air conditioner, ECU, audio product, wiper, headlight, etc., power consumed by torque assist, and the like. Depending on traffic information and road information on the route, torque assist occurs when the vehicle accelerates, torque assist occurs when climbing, and headlights are used when passing through the tunnel, Since it is possible to estimate a running state such as using a headlight at night and using a wiper in case of rain, discharge power can be estimated based on the estimated running state. Parameters used for power estimation such as power consumption and transmission efficiency of each electrical component can be determined in advance. The generated power is charging power to the storage battery by regenerative power (regenerative energy), and the generated power can be estimated from, for example, a running state in which regenerative power is generated during downhill.
 必要電力算出部は、電力推定部で推定した放電電力及び発電電力に基づいて経路上での必要発電電力及び推奨放電電力を算出する。電力推定部で推定した放電電力及び発電電力に基づいて蓄電池の残存電力を推定することができる。なお、推定された残存電力を推定残存電力とも称する。例えば、経路上で放電電力が推定される区間(又は期間)では蓄電池の残存電力は減少し、また経路上で発電電力が推定される区間(又は期間)では蓄電池の残存電力は増加する。これにより、車両が経路上を走行する過程で、車両の現在地における蓄電池の残存電力(初期値)が、どのように減少及び増加するかを示す残存電力の推移を推定することができる。必要発電電力は、蓄電池の推定残存電力が所定の下限値からどの程度下回ったかを示す電力として、推奨放電電力は、蓄電池の推定残存電力が所定の上限値からどの程度上回ったかを示す電力として算出することができる。ここで、下限値は、蓄電池の充電割合を示す値の下限値であり、蓄電池を充電しなければならない値である。また、上限値は、蓄電池の充電割合を示す値の上限値であり、これ以上充電してはいけない値である。 The required power calculation unit calculates the required generated power and recommended discharge power on the path based on the discharge power and generated power estimated by the power estimation unit. The remaining power of the storage battery can be estimated based on the discharged power and generated power estimated by the power estimation unit. The estimated remaining power is also referred to as estimated remaining power. For example, the remaining power of the storage battery decreases in the section (or period) in which the discharge power is estimated on the path, and the remaining power of the storage battery increases in the section (or period) in which the generated power is estimated on the path. Accordingly, it is possible to estimate the transition of the remaining power indicating how the remaining power (initial value) of the storage battery at the current location of the vehicle decreases and increases in the process of traveling on the route of the vehicle. Necessary generated power is calculated as power that indicates how much the estimated remaining power of the storage battery is below the predetermined lower limit value, and recommended discharge power is calculated as power that indicates how much the estimated remaining power of the storage battery exceeds the specified upper limit value can do. Here, a lower limit is a lower limit of the value which shows the charge ratio of a storage battery, and is a value which must charge a storage battery. Moreover, an upper limit is an upper limit of the value which shows the charge ratio of a storage battery, and is a value which should not be charged any more.
 残存電力算出部は、必要電力算出部での算出結果に基づいて蓄電池の経路上での残存電力を算出する。残存電力の算出は、必要電力算出部で算出した必要発電電力に基づいて、経路上の所要の区間で発電し、また必要電力算出部で算出した推奨放電電力に基づいて、経路上の所要の区間で放電することにより行うことができる。所要の区間で発電することにより推定残存電力は増加し、所要の区間で放電することにより推定残存電力は減少し、結果として算出された残存電力は、下限値と上限値とで画定される範囲内の値にすることができる。 The remaining power calculation unit calculates the remaining power on the path of the storage battery based on the calculation result in the required power calculation unit. The remaining power is calculated based on the required generated power calculated by the required power calculation unit based on the required section on the route, and based on the recommended discharge power calculated by the required power calculation unit. This can be done by discharging in the section. The estimated remaining power increases by generating power in the required section, the estimated remaining power decreases by discharging in the required section, and the resulting remaining power is a range defined by the lower limit value and the upper limit value. Can be a value within
 生成部は、必要電力算出部での算出結果に応じた車両の経路上での走行モード及び残存電力算出部で算出した経路上での残存電力を含む走行計画を生成する。走行モードは、例えば、エンジンのみによる駆動、モータ(電動機)のみによる駆動、エンジン及びモータの両方による駆動、発電の有無、回生の有無などの状態を含む。例えば、必要発電電力を確保するために、所要の区間で発電する場合には、エンジンによる駆動と発電とを同時に行う。発電を行う場合には、高負荷走行時(例えば、登坂時など)を避けることにより、燃費の悪化を防止することができる。また、予めトルクアシストが推奨される区間が分かっているので、トルクアシストする際の電力が不足しないように、前もってトルクアシスト用の電力確保のため発電することにより、トルクアシストを行う際に発電する事態を防止して、燃費の悪化を防止することができる。これにより、エネルギー消費を最適化する車両の走行計画を提供することができる。 The generation unit generates a travel plan including the travel mode on the vehicle route according to the calculation result by the required power calculation unit and the remaining power on the route calculated by the remaining power calculation unit. The travel mode includes, for example, states such as driving only by the engine, driving only by the motor (electric motor), driving by both the engine and the motor, presence / absence of power generation, presence / absence of regeneration, and the like. For example, when generating power in a required section in order to secure necessary generated power, driving by the engine and power generation are performed simultaneously. When power generation is performed, deterioration of fuel consumption can be prevented by avoiding high load traveling (for example, climbing). In addition, since the section in which torque assist is recommended is known in advance, power is generated when torque assist is performed by generating power in advance to secure power for torque assist so that power for torque assist is not insufficient. The situation can be prevented and deterioration of fuel consumption can be prevented. Thereby, it is possible to provide a vehicle travel plan that optimizes energy consumption.
 本実施の形態に係る走行計画生成装置は、前記必要電力算出部は、前記電力推定部での推定結果に基づく前記蓄電池の前記経路上での推定残存電力が所定の下限値を下回って極小値となる場合、前記下限値と極小値との差分を必要発電電力として算出する。 In the travel plan generation device according to the present exemplary embodiment, the required power calculation unit is configured such that the estimated remaining power on the route of the storage battery is less than a predetermined lower limit value based on an estimation result in the power estimation unit, and is a minimum value. In this case, the difference between the lower limit value and the minimum value is calculated as the required generated power.
 必要電力算出部は、電力推定部での推定結果に基づく蓄電池の経路上での推定残存電力が所定の下限値を下回って極小値となる場合、下限値と極小値との差分を必要発電電力として算出する。経路上で放電電力(消費電力)が推定されている放電区間では蓄電池の推定残存電力は減少し続け、発電電力が推定されている充電区間の始点に到達する時点で蓄電池が充電されるので、放電区間から充電区間に移る地点で蓄電池の推定残存電力は極小値となる。これにより、蓄電池の推定残存電力が下限値を下回る地点より手前の区間で発電が必要となることがわかる。 The required power calculation unit calculates the difference between the lower limit value and the minimum value when the estimated remaining power on the storage battery path based on the estimation result in the power estimation unit becomes a minimum value below a predetermined lower limit value. Calculate as Since the estimated remaining power of the storage battery continues to decrease in the discharge section where the discharge power (power consumption) is estimated on the route, and the storage battery is charged when reaching the start point of the charging section where the generated power is estimated, The estimated remaining power of the storage battery becomes a minimum value at a point where the discharge section moves to the charging section. Thereby, it turns out that power generation is required in the section before the point where the estimated remaining power of the storage battery is below the lower limit value.
 本実施の形態に係る走行計画生成装置は、前記必要電力算出部は、前記電力推定部での推定結果に基づく前記蓄電池の前記経路上での推定残存電力が所定の上限値を上回って極大値となる場合、前記極大値と上限値との差分を推奨放電電力として算出する。 In the travel plan generation device according to the present embodiment, the required power calculation unit is configured such that the estimated remaining power on the path of the storage battery exceeds a predetermined upper limit value based on an estimation result in the power estimation unit, and is a maximum value. In this case, the difference between the maximum value and the upper limit value is calculated as recommended discharge power.
 必要電力算出部は、電力推定部での推定結果に基づく蓄電池の経路上での推定残存電力が所定の上限値を上回って極大値となる場合、極大値と上限値との差分を推奨放電電力として算出する。経路上で発電電力が推定されている充電区間では蓄電池の推定残存電力は増加し続け、放電電力が推定されている放電区間の始点に到達する時点で蓄電池が放電されるので、充電区間から放電区間に移る地点で蓄電池の推定残存電力は極大値となる。これにより、蓄電池の推定残存電力が上限値を上回る地点より手前の区間で放電が必要となることがわかる。 The required power calculation unit calculates the difference between the maximum value and the upper limit value as the recommended discharge power when the estimated remaining power on the path of the storage battery exceeds the predetermined upper limit value based on the estimation result of the power estimation unit. Calculate as In the charging section where the generated power is estimated on the route, the estimated remaining power of the storage battery continues to increase, and the storage battery is discharged when it reaches the starting point of the discharging section where the discharged power is estimated. The estimated remaining power of the storage battery reaches a maximum value at the point of transition to the section. Thereby, it turns out that discharge is required in the section before the point where the estimated remaining power of the storage battery exceeds the upper limit value.
 本実施の形態に係る走行計画生成装置は、前記残存電力算出部で算出した残存電力が前記下限値及び上限値で定められる範囲内となり、かつ前記車両の燃料消費が所定条件を充足するように、前記蓄電池を充電する発電区間及び該蓄電池の電力を消費させる放電区間の少なくとも一方を前記経路上に設定する設定部を備え、前記生成部は、前記設定部の設定結果に基づいて前記走行計画を生成する。 The travel plan generation apparatus according to the present embodiment is configured so that the remaining power calculated by the remaining power calculation unit is within a range determined by the lower limit value and the upper limit value, and the fuel consumption of the vehicle satisfies a predetermined condition. A setting unit that sets, on the route, at least one of a power generation section that charges the storage battery and a discharge section that consumes power of the storage battery, and the generation unit is configured to perform the travel plan based on a setting result of the setting unit. Is generated.
 設定部は、残存電力算出部で算出した残存電力が下限値及び上限値で定められる範囲内となり、かつ車両の燃料消費が所定条件を充足するように、蓄電池を充電する発電区間及び蓄電池の電力を消費させる放電区間の少なくとも一方を経路上に設定する。所定条件は、例えば、燃料消費(燃費)が最小となる条件とすることができる。これにより、蓄電池の残存電力が下限値を下回ることなく、上限値を上回ることなく、かつ燃費が最も良くなるように発電区間及び放電区間の少なくとも一方を設定することができる。 The setting unit is configured to charge the storage battery and the power of the storage battery so that the remaining power calculated by the remaining power calculation unit is within a range determined by the lower limit value and the upper limit value, and the fuel consumption of the vehicle satisfies a predetermined condition. At least one of the discharge sections that consumes is set on the path. The predetermined condition can be, for example, a condition that minimizes fuel consumption (fuel consumption). Thus, at least one of the power generation section and the discharge section can be set so that the remaining power of the storage battery does not fall below the lower limit value, does not exceed the upper limit value, and the fuel consumption becomes the best.
 生成部は、設定部の設定結果に基づいて走行計画を生成する。これにより、蓄電池の残存電力が下限値を下回ることなく、上限値を上回ることなく、かつ燃費が最も良くなるような走行計画を生成することができる。 The generation unit generates a travel plan based on the setting result of the setting unit. As a result, it is possible to generate a travel plan in which the remaining power of the storage battery does not fall below the lower limit value, does not exceed the upper limit value, and the fuel consumption becomes the best.
 本実施の形態に係る走行計画生成装置は、車両の現在地から前記推定残存電力が前記極小値となる位置までの発電候補区間を複数の小区間に分割する分割部と、該分割部で分割した各小区間での発電可能量を算出する発電可能量算出部と、前記分割部で分割した各小区間での推定車速及び道路の勾配に基づいて、該各小区間での発電時及び非発電時の燃料消費量を算出する燃費算出部とを備え、前記設定部は、前記発電可能量算出部で算出した発電可能量が前記下限値と前記極小値との差分と等しくなり、かつ前記燃費算出部で算出した燃料消費量が最小となるように、前記各小区間のうちの1又は複数の小区間を前記発電区間として設定する。 The travel plan generation device according to the present embodiment divides the power generation candidate section from the current location of the vehicle to the position where the estimated remaining power becomes the minimum value into a plurality of subsections, and the division section. Based on the estimated vehicle speed and the road gradient in each small section divided by the dividing section, the power generation possible amount calculation section that calculates the power generation possible amount in each small section, and the non-power generation during the power generation in each small section A fuel consumption calculation unit that calculates a fuel consumption amount at the time, and the setting unit has a power generation possible amount calculated by the power generation possible amount calculation unit equal to a difference between the lower limit value and the minimum value, and the fuel consumption One or a plurality of small sections among the small sections are set as the power generation section so that the fuel consumption calculated by the calculation unit is minimized.
 分割部は、車両の現在地から推定残存電力が極小値となる位置までの発電候補区間を複数の小区間に分割する。小区間は、例えば、数十m~100m程度とすることができるが、これに限定されるものではない。 The dividing unit divides the power generation candidate section from the current location of the vehicle to a position where the estimated remaining power becomes a minimum value into a plurality of small sections. The small section can be, for example, about several tens to 100 m, but is not limited to this.
 発電可能量算出部は、分割部で分割した各小区間での発電可能量を算出する。経路上の道路情報及び交通情報から車両の推定車速を求めることができると、推定車速からエンジンの回転数を求めることができ、エンジンの回転数からモータの回転数を求めることができる。発電可能量は、モータの特性(回転数-電力マップ等)に基づいて算出することができる。 The power generation possible amount calculation unit calculates the power generation possible amount in each small section divided by the division unit. If the estimated vehicle speed of the vehicle can be obtained from the road information and traffic information on the route, the engine speed can be obtained from the estimated vehicle speed, and the motor speed can be obtained from the engine speed. The amount of power that can be generated can be calculated based on the characteristics of the motor (rotation speed-power map or the like).
 燃費算出部は、分割部で分割した各小区間での推定車速及び道路の勾配に基づいて、各小区間での発電時及び非発電時の燃料消費量を算出する。推定車速及び道路の勾配、所定のパラメータ等に基づいて車両の走行負荷(例えば、勾配による負荷、転がり抵抗による負荷、空気抵抗による負荷、加速による負荷など)を求めることができる。エンジントルクは、走行負荷に基づいて求めることができる。燃費は、エンジンの回転数及びエンジントルクに基づく燃費マップを用いて算出することができる。 The fuel consumption calculation unit calculates the fuel consumption during power generation and non-power generation in each small section based on the estimated vehicle speed and road gradient in each small section divided by the dividing unit. Based on the estimated vehicle speed, road gradient, predetermined parameters, and the like, the vehicle travel load (for example, load due to gradient, load due to rolling resistance, load due to air resistance, load due to acceleration, etc.) can be obtained. The engine torque can be obtained based on the traveling load. The fuel consumption can be calculated using a fuel consumption map based on the engine speed and the engine torque.
 設定部は、発電可能量算出部で算出した発電可能量が下限値と極小値との差分と等しくなり、かつ燃費算出部で算出した燃料消費量が最小となるように、各小区間のうちの1又は複数の小区間を発電区間として設定する。これにより、発電電力が必要発電電力を満たし(例えば、発電電力=必要発電電力)、かつ燃料消費が最小となるように、1又は複数の小区間を組み合わせて発電区間を設定することができる。組合せの算出方法として、例えば、数理計画法を用いることができる。また、小区間がトルクアシストを行う区間である場合、トルクアシストをしないことによる電力消費低減量(トルクアシストで消費するはずであった電力)と発電電力との合計が必要発電電力を満たすようにして発電区間を設定することもできる。トルクアシストを減らして等価的に必要発電電力を減らし発電を減らすことにより燃費をさらに向上させることができる。 The setting unit is configured so that the power generation possible amount calculated by the power generation possible amount calculation unit is equal to the difference between the lower limit value and the minimum value, and the fuel consumption calculated by the fuel consumption calculation unit is minimized. One or a plurality of small sections is set as a power generation section. Thereby, the power generation section can be set by combining one or a plurality of small sections so that the generated power satisfies the necessary generated power (for example, generated power = necessary generated power) and the fuel consumption is minimized. As a method for calculating the combination, for example, mathematical programming can be used. In addition, when the small section is a section where torque assist is performed, the total of the power consumption reduction amount (power that should have been consumed by torque assist) and the generated power by not performing torque assist satisfies the required generated power. You can also set the power generation section. Fuel consumption can be further improved by reducing torque assist and equivalently reducing required power generation and reducing power generation.
 本実施の形態に係る走行計画生成装置は、車両の現在地から前記推定残存電力が前記極大値となる位置までの放電候補区間を複数の小区間に分割する分割部と、該分割部で分割した各小区間での放電時の燃料消費量を算出する燃費算出部とを備え、前記設定部は、前記燃費算出部で算出した燃料消費量が最小となるように、前記各小区間のうちの1又は複数の小区間を前記放電区間として設定する。 The travel plan generation device according to the present embodiment divides the candidate discharge section from the current location of the vehicle to the position where the estimated remaining power reaches the maximum value into a plurality of subsections, and the division section. A fuel consumption calculation unit that calculates a fuel consumption amount at the time of discharging in each small section, and the setting unit includes the fuel consumption amount calculated by the fuel consumption calculation unit so that the fuel consumption amount is minimized. One or a plurality of small sections are set as the discharge section.
 分割部は、車両の現在地から推定残存電力が極大値となる位置までの放電候補区間を複数の小区間に分割する。小区間は、例えば、数十m~100m程度とすることができるが、これに限定されるものではない。 The dividing unit divides a discharge candidate section from the current location of the vehicle to a position where the estimated remaining power reaches a maximum value into a plurality of small sections. The small section can be, for example, about several tens to 100 m, but is not limited to this.
 燃費算出部は、分割部で分割した各小区間での放電時の燃料消費量を算出する。例えば、トルクアシストを行っていない各小区間でトルクアシストした(放電時)場合の燃料消費を算出する。 The fuel consumption calculation unit calculates the fuel consumption during discharge in each small section divided by the dividing unit. For example, fuel consumption is calculated when torque assist is performed in each small section where torque assist is not performed (during discharging).
 設定部は、燃費算出部で算出した燃料消費量が最小となるように、各小区間のうちの1又は複数の小区間を放電区間として設定する。これにより、燃料消費が最小となるように、1又は複数の小区間を組み合わせて放電区間を設定することができる。組合せの算出方法として、例えば、数理計画法を用いることができる。これにより、燃費が悪化しないようにトルクアシストを適切に行うことができる。 The setting unit sets one or more small sections of each small section as a discharge section so that the fuel consumption calculated by the fuel consumption calculation section is minimized. Thereby, the discharge section can be set by combining one or a plurality of small sections so that the fuel consumption is minimized. As a method for calculating the combination, for example, mathematical programming can be used. Thereby, torque assist can be appropriately performed so that fuel consumption does not deteriorate.
 本実施の形態に係る走行計画生成装置は、前記蓄電池の残存電力の実測値を取得する実測値取得部を備え、前記生成部は、前記実測値取得部で取得した実測値と生成した走行計画に含まれる前記蓄電池の残存電力との差の絶対値が所定の閾値を超えた場合、再度走行計画を生成する。 The travel plan generation device according to the present embodiment includes an actual measurement value acquisition unit that acquires an actual measurement value of the remaining power of the storage battery, and the generation unit generates the travel plan generated with the actual measurement value acquired by the actual measurement value acquisition unit. When the absolute value of the difference from the remaining power of the storage battery included in the vehicle exceeds a predetermined threshold value, a travel plan is generated again.
 実測値取得部は、蓄電池の残存電力の実測値を取得する。すなわち、車両が出発地から走行を開始した場合、走行中での蓄電池の残存電力の実測値を取得する。なお、残存電力の実測値は、例えば、蓄電池の入力電力(充電電力)及び出力電力(放電電力)を監視することにより取得することができる。 The actual value acquisition unit acquires the actual value of the remaining power of the storage battery. That is, when the vehicle starts traveling from the departure place, an actual measurement value of the remaining power of the storage battery during traveling is acquired. In addition, the measured value of residual electric power can be acquired by monitoring the input electric power (charge electric power) and output electric power (discharge electric power) of a storage battery, for example.
 生成部は、実測値取得部で取得した実測値と生成した走行計画に含まれる蓄電池の残存電力との差の絶対値が所定の閾値を超えた場合、再度走行計画を生成する。実際の走行では、様々な条件(例えば、温度、部品の劣化、運転の仕方等)によって生成した走行計画とのずれが生ずる。走行計画とのずれ(例えば、蓄電池の残存電力のずれ)により、トルクアシストしたい区間で電力が不足し、発電が必要となり燃費が悪化する。そこで、残存電力の実測値と計画値(走行計画に含まれる残存電力の算出値)との差分の絶対値(乖離)が所定の閾値を超えた場合、残存電力の実測値に基づいて、再度走行計画を生成する。なお、走行計画を再度生成する場合、フィードバックされるパラメータには、例えば、電装品の消費電力、発電効率、伝達効率、走行負荷などが含まれる。 The generation unit generates the travel plan again when the absolute value of the difference between the actual measurement value acquired by the actual measurement value acquisition unit and the remaining power of the storage battery included in the generated travel plan exceeds a predetermined threshold. In actual travel, a deviation from the travel plan generated due to various conditions (for example, temperature, deterioration of parts, operation method, etc.) occurs. Due to a deviation from the travel plan (for example, a deviation in the remaining power of the storage battery), power is insufficient in a section where torque assist is desired, and power generation is required, resulting in a deterioration in fuel consumption. Therefore, when the absolute value (deviation) of the difference between the measured value of the remaining power and the planned value (the calculated value of the remaining power included in the travel plan) exceeds a predetermined threshold, Generate travel plans. Note that when the travel plan is generated again, the parameters fed back include, for example, power consumption, power generation efficiency, transmission efficiency, travel load, and the like of the electrical components.
 これにより、トルクアシストすべき区間でトルクアシストができない事態、高走行負荷の状態で発電を行う事態などを未然に予見して、再度走行計画を生成することにより、トルクアシストを適切に行い、また高走行負荷の状態での発電を避けることができ、燃費の悪化を防止することができる。 As a result, it is possible to predict the situation where torque assist cannot be performed in the section where torque assist should be performed, the situation where power generation is performed in a state of high travel load, etc., and generate the travel plan again, so that torque assist can be performed appropriately. It is possible to avoid power generation under a high traveling load state and to prevent deterioration of fuel consumption.
 本実施の形態に係る走行計画生成装置は、前記交通情報取得部で取得した交通情報に基づいて前記電力推定部で推定する放電電力又は発電電力に変更があるか否かを判定する電力判定部を備え、前記生成部は、前記電力判定部で変更があると判定した場合、再度走行計画を生成する。 The travel plan generation apparatus according to the present embodiment includes a power determination unit that determines whether there is a change in discharge power or generated power estimated by the power estimation unit based on traffic information acquired by the traffic information acquisition unit. The generation unit generates a travel plan again when the power determination unit determines that there is a change.
 電力判定部は、取得した交通情報に基づいて電力推定部で推定する放電電力又は発電電力に変更があるか否かを判定する。車両が出発地を出発した後、車両は、例えば、情報配信装置付近を通過した場合、あるいは定期的に交通情報を取得することができる。経路上又は経路付近において事故等により渋滞が発生した場合、推定車速(旅行時間)が変わる場合がある。推定車速が所定値以上変化すると、走行状態が変わり電力推定部で推定する放電電力又は発電電力が変化することになる。 The power determination unit determines whether there is a change in the discharge power or generated power estimated by the power estimation unit based on the acquired traffic information. After the vehicle departs from the departure place, the vehicle can acquire traffic information, for example, when the vehicle passes near the information distribution device or periodically. When traffic congestion occurs on the route or in the vicinity of the route due to an accident or the like, the estimated vehicle speed (travel time) may change. When the estimated vehicle speed changes by a predetermined value or more, the running state changes, and the discharge power or generated power estimated by the power estimation unit changes.
 生成部は、電力判定部で変更があると判定した場合、再度走行計画を生成する。これにより、最新の交通情報に基づいた走行計画を生成することができる。 If the power generation unit determines that there is a change, the generation unit generates a travel plan again. Thereby, the travel plan based on the latest traffic information can be generated.
 本実施の形態に係る走行計画生成装置は、車両に搭載された電装品の電力消費量及び該電装品を使用した場合の環境情報を含むデータを収集する収集部を備え、前記電力推定部は、前記収集部で収集したデータに基づいて、放電電力を推定する。 The travel plan generation apparatus according to the present embodiment includes a collection unit that collects data including power consumption of electrical components mounted on a vehicle and environmental information when the electrical components are used, and the power estimation unit includes The discharge power is estimated based on the data collected by the collecting unit.
 収集部は、車両に搭載された電装品の電力消費量及び電装品を使用した場合の環境情報を含むデータを収集する。例えば、エアコン又はデフロスターを使用する場合の気温及び湿度、ヘッドライトを使用した場合の周囲の明るさ、ワイパーを使用した場合の降雨量などのデータを学習データとして収集する。電力推定部は、収集部で収集したデータに基づいて、放電電力を推定する。これにより、運転者固有の運転の仕方を学習して、放電電力(消費電力)の推定をより正確に行うことができる。 The collection unit collects data including the power consumption of electrical components mounted on the vehicle and environmental information when the electrical components are used. For example, data such as temperature and humidity when using an air conditioner or a defroster, ambient brightness when using a headlight, and rainfall when using a wiper are collected as learning data. The power estimation unit estimates the discharge power based on the data collected by the collection unit. As a result, it is possible to learn how to drive unique to the driver and more accurately estimate the discharge power (power consumption).
 本実施の形態に係る走行計画生成装置は、前記生成部で生成した走行計画に基づいて運転支援情報を出力する出力部を備える。 The travel plan generation device according to the present embodiment includes an output unit that outputs driving support information based on the travel plan generated by the generation unit.
 出力部は、生成部で生成した走行計画に基づいて運転支援情報を出力する。例えば、生成した走行計画に含まれる走行モードに基づいて運転支援情報を出力(音声による出力、文字又は図等による表示を含む)することができる。運転支援情報には、例えば、アクセルを踏むこと、ブレーキをかけること、車速などが含まれる。これにより、燃費の良い走行を支援することができる。 The output unit outputs driving support information based on the travel plan generated by the generation unit. For example, driving support information can be output based on the driving mode included in the generated driving plan (including output by voice, display by characters, drawings, etc.). The driving support information includes, for example, stepping on an accelerator, applying a brake, vehicle speed, and the like. Thereby, driving | running | working with favorable fuel consumption can be supported.
 本実施の形態に係る走行計画生成装置は、前記生成部で生成した走行計画に基づいて前記車両の走行制御を行う走行制御部を備える。 The travel plan generation device according to the present embodiment includes a travel control unit that performs travel control of the vehicle based on the travel plan generated by the generation unit.
 走行制御部は、生成部で生成した走行計画に基づいて車両の走行制御を行う。例えば、生成した走行計画に含まれる走行モードに基づいて、アクセル及びブレーキの制御を行うことができる。これにより、燃費の良い走行を支援することができる。 The travel control unit performs vehicle travel control based on the travel plan generated by the generation unit. For example, the accelerator and the brake can be controlled based on the travel mode included in the generated travel plan. Thereby, driving | running | working with favorable fuel consumption can be supported.
[本願発明の実施形態の詳細]
 以下、本発明に係る車両走行案内装置の実施の形態を示す図面に基づいて説明する。なお、以下に記載する実施の形態の少なくとも一部を任意に組み合わせることができる。図1は本実施の形態の走行計画生成装置を搭載した車両100の構成の一例を示すブロック図であり、図2は本実施の形態の走行計画生成装置としての走行計画生成部50の構成の一例を示すブロック図である。
[Details of the embodiment of the present invention]
Hereinafter, a vehicle travel guide device according to an embodiment of the present invention will be described with reference to the drawings. Note that at least some of the embodiments described below can be arbitrarily combined. FIG. 1 is a block diagram showing an example of a configuration of a vehicle 100 equipped with a travel plan generation device according to the present embodiment. FIG. 2 shows a configuration of a travel plan generation unit 50 as a travel plan generation device according to the present embodiment. It is a block diagram which shows an example.
 図1に示すように、車両100は、走行計画生成部50、発電機1、内燃機関(エンジン)2、蓄電池3、BMS(Battery Management System)4、電装品5、HMI(Human Machine Interface)6、アクセル7、ブレーキ8などを備える。 As shown in FIG. 1, a vehicle 100 includes a travel plan generation unit 50, a generator 1, an internal combustion engine (engine) 2, a storage battery 3, a BMS (Battery Management System) 4, an electrical component 5, and an HMI (Human Machine Interface) 6. , An accelerator 7, a brake 8, and the like.
 発電機1は、例えば、ISG(Integrated Starter Generator)であり、モータ(電動機)としても機能するオルタネータである。また、発電機1は、ISGやMGに限らず、単純なオルタネータでもよい。発電機1は、アイドリングストップ状態からのエンジン始動、発進時及び加速時の動力補助(トルクアシスト)を行うことができる。なお、トルクアシストとは、ISG又は駆動用モータ(HVの場合)を用いて、電力で発進時及び加速時の動力補助を行うことである。エンジンが低効率(燃費悪化)になる領域を電力で補うことにより燃料消費を低減し、燃費を向上させることができる。発電機1は、モータの回転数、発電量、発電電圧等の情報を走行計画生成部50へ出力する。 The generator 1 is, for example, an ISG (Integrated Starter Generator) and an alternator that also functions as a motor (electric motor). The generator 1 is not limited to ISG or MG, and may be a simple alternator. The generator 1 can perform power assist (torque assist) when starting the engine from the idling stop state, starting, and accelerating. In addition, torque assist is performing power assistance at the time of starting and acceleration with electric power using ISG or a driving motor (in the case of HV). By supplementing the area where the engine becomes inefficient (deteriorating fuel consumption) with electric power, fuel consumption can be reduced and fuel efficiency can be improved. The generator 1 outputs information such as the number of rotations of the motor, the amount of power generation, and the power generation voltage to the travel plan generation unit 50.
 内燃機関2は、エンジン回転数などの情報を走行計画生成部50へ出力する。 The internal combustion engine 2 outputs information such as the engine speed to the travel plan generation unit 50.
 蓄電池3は、例えば、鉛バッテリであり、エンジンの始動用電力を供給する。また、蓄電池3は、発電機1で発電した電力を蓄え(充電)、電装品5へ電力を供給(放電)する。 The storage battery 3 is, for example, a lead battery, and supplies power for starting the engine. The storage battery 3 stores (charges) the power generated by the generator 1 and supplies (discharges) the power to the electrical component 5.
 BMS4は、蓄電池3の入力電力(充電電力)、出力電力(放電電力)、SOC(State of Charge:蓄電池3の充電割合を示す値)、SOH(State of Health:蓄電池3の劣化度合を示す値)、蓄電池3の電圧などを監視する。SOCは、1で満充電、0で完全放電を表す。SOHは、1を新品状態の容量とした場合の現在の容量がどの程度であるかを示すものであり、例えば、SOH=0.8の場合、満充電状態で新品時の80%の電力容量であることを表す。BMS4は、監視する情報を走行計画生成部50へ出力する。 The BMS 4 is an input power (charging power), output power (discharging power), SOC (State of Charge: a value indicating the charging rate of the storage battery 3), SOH (State of Health: a value indicating the degree of deterioration of the storage battery 3). ), Monitoring the voltage of the storage battery 3 and the like. The SOC is 1 for full charge and 0 for complete discharge. SOH indicates the current capacity when 1 is the capacity of a new state. For example, when SOH = 0.8, the power capacity of 80% when fully charged and new. It represents that. The BMS 4 outputs information to be monitored to the travel plan generation unit 50.
 電装品5は、例えば、エアコン、オーディオ製品、カーナビ製品、ヘッドランプ、テールランプ、ブレーキランプ、ワイパー、ECUなどを含む。 The electrical component 5 includes, for example, an air conditioner, an audio product, a car navigation product, a head lamp, a tail lamp, a brake lamp, a wiper, an ECU, and the like.
 HMI6は、例えば、出力部としての機能を有し、音声出力、表示パネル、操作パネルなどを含む。 The HMI 6 has a function as an output unit, for example, and includes an audio output, a display panel, an operation panel, and the like.
 図2に示すように、走行計画生成部50は、制御部51、経路特定部52、通信部53、電力推定部54、必要電力算出部55、残存電力算出部56、記憶部57、インタフェース部58、生成部59、設定部60、発電可能量算出部61、燃費算出部62、走行制御部63などを備える。 As shown in FIG. 2, the travel plan generation unit 50 includes a control unit 51, a route identification unit 52, a communication unit 53, a power estimation unit 54, a required power calculation unit 55, a remaining power calculation unit 56, a storage unit 57, and an interface unit. 58, a generation unit 59, a setting unit 60, a power generation possible amount calculation unit 61, a fuel consumption calculation unit 62, a travel control unit 63, and the like.
 経路特定部52は、車両の現在地から目的地までの経路を特定する。経路特定は、例えば、現在地(出発地)から目的地までの複数の経路のうち、旅行時間が最短となる経路を特定することができるが、これに限定されるものではなく、渋滞情報や道路規制情報などを加味することもできる。旅行時間は、例えば、VICS等の交通情報、プローブ車両から得られるプローブ情報等により求めることができる。 The route specifying unit 52 specifies a route from the current location of the vehicle to the destination. The route specification can specify, for example, a route having the shortest travel time among a plurality of routes from the current location (departure point) to the destination, but is not limited to this. It is also possible to take into account regulatory information. The travel time can be obtained from, for example, traffic information such as VICS, probe information obtained from a probe vehicle, and the like.
 通信部53は、交通情報取得部としての機能を有し、経路特定部52で特定した経路上の交通情報を取得する。交通情報は、例えば、渋滞地点及び渋滞長などの情報、道路上の所定区間での推定車速又は旅行時間などの情報を含む。また、通信部53は、道路情報取得部としての機能を有し、経路特定部52で特定した経路に係る道路の勾配を含む道路情報を取得する。道路情報は、道路の勾配の他、道路の曲率、トンネル等の位置、地図情報、経路での天候情報などを含むこともできる。 The communication unit 53 has a function as a traffic information acquisition unit, and acquires traffic information on the route specified by the route specification unit 52. The traffic information includes, for example, information such as a traffic jam point and traffic jam length, information such as an estimated vehicle speed or travel time in a predetermined section on the road. The communication unit 53 has a function as a road information acquisition unit, and acquires road information including a road gradient related to the route specified by the route specifying unit 52. The road information can include road curvature, a position of a tunnel, map information, weather information on a route, and the like in addition to the road gradient.
 電力推定部54は、通信部53で取得した交通情報及び道路情報に応じた車両の走行状態に基づいて経路上での放電電力及び発電電力を推定する。放電電力は、蓄電池3に蓄えられた電力を電装品5などの車載品へ供給することによる消費電力であり、例えば、エアコン、ECU、オーディオ製品、ワイパー、ヘッドライトなどの消費電力、トルクアシストによる消費電力などを含む。 The power estimation unit 54 estimates the discharge power and the generated power on the route based on the traveling state of the vehicle according to the traffic information and road information acquired by the communication unit 53. Discharged power is power consumed by supplying the power stored in the storage battery 3 to an in-vehicle product such as the electrical component 5, for example, power consumed by an air conditioner, ECU, audio product, wiper, headlight, etc., and torque assist. Includes power consumption.
 特定した経路上位置での交通情報及び道路情報に応じて、車両が加速する場合にはトルクアシストが所要時間発生し、登坂時にはトルクアシストが発生し、トンネルを通過する場合にはヘッドライトを使用し、夜間にはヘッドライトを使用し、雨天の場合にはワイパーを使用する等の走行状態を推定することができるので、推定した走行状態により放電電力を推定することができる。なお、各電装品の消費電力及び伝達効率などの電力推定に用いるパラメータは予め定めておくことができる。発電電力は、回生電力(回生エネルギー)による蓄電池3への充電電力であり、例えば、降坂時の回生電力が発生する等の走行状態により発電電力を推定することができる。 Depending on the traffic information and road information on the specified route, torque assist occurs when the vehicle accelerates, torque assist occurs when climbing, and headlights are used when passing through the tunnel. In addition, since it is possible to estimate a running state such as using a headlight at night and using a wiper in case of rain, the discharge power can be estimated based on the estimated running state. Parameters used for power estimation such as power consumption and transmission efficiency of each electrical component can be determined in advance. The generated power is charging power to the storage battery 3 by regenerative power (regenerative energy), and the generated power can be estimated based on, for example, a traveling state in which regenerative power is generated during downhill.
 必要電力算出部55は、電力推定部54で推定した放電電力及び発電電力に基づいて経路上での必要発電電力及び推奨放電電力を算出する。電力推定部54で推定した放電電力及び発電電力に基づいて蓄電池3の残存電力を推定することができる。なお、推定された残存電力を推定残存電力とも称する。 The required power calculation unit 55 calculates the required generated power and recommended discharge power on the path based on the discharge power and the generated power estimated by the power estimation unit 54. The remaining power of the storage battery 3 can be estimated based on the discharged power and generated power estimated by the power estimation unit 54. The estimated remaining power is also referred to as estimated remaining power.
 例えば、経路上で放電電力が推定される区間(又は期間)では蓄電池3の残存電力は減少し、また経路上で発電電力が推定される区間(又は期間)では蓄電池3の残存電力は増加する。これにより、車両が経路上を走行する過程で、車両の現在地における蓄電池3の残存電力(初期値)が、どのように減少及び増加するかを示す残存電力の推移を推定することができる。必要発電電力は、蓄電池3の推定残存電力が所定の下限値からどの程度下回ったかを示す電力として、推奨放電電力は、蓄電池3の推定残存電力が所定の上限値からどの程度上回ったかを示す電力として算出することができる。ここで、下限値は、蓄電池3の充電割合を示す値の下限値であり、蓄電池3を充電しなければならない値である。また、上限値は、蓄電池3の充電割合を示す値の上限値であり、これ以上充電してはいけない値である。 For example, the remaining power of the storage battery 3 decreases in the section (or period) in which the discharge power is estimated on the path, and the remaining power of the storage battery 3 increases in the section (or period) in which the generated power is estimated on the path. . Accordingly, it is possible to estimate the transition of the remaining power indicating how the remaining power (initial value) of the storage battery 3 at the current location of the vehicle decreases and increases in the process of traveling on the route. The required generated power is power indicating how much the estimated remaining power of the storage battery 3 is below a predetermined lower limit value, and the recommended discharge power is power indicating how much the estimated remaining power of the storage battery 3 is above the predetermined upper limit value. Can be calculated as Here, the lower limit value is a lower limit value of a value indicating the charging rate of the storage battery 3 and is a value that the storage battery 3 must be charged. Moreover, an upper limit is an upper limit of the value which shows the charge ratio of the storage battery 3, and is a value which should not be charged any more.
 残存電力算出部56は、必要電力算出部55での算出結果に基づいて蓄電池3の経路上での残存電力を算出する。残存電力の算出は、必要電力算出部55で算出した必要発電電力に基づいて、経路上の所要の区間で発電し、また必要電力算出部55で算出した推奨放電電力に基づいて、経路上の所要の区間で放電することにより行うことができる。所要の区間で発電することにより推定残存電力は増加し、所要の区間で放電することにより推定残存電力は減少し、結果として算出された残存電力は、下限値と上限値とで画定される範囲内の値にすることができる。 The remaining power calculation unit 56 calculates the remaining power on the path of the storage battery 3 based on the calculation result in the required power calculation unit 55. The calculation of the remaining power is based on the required generated power calculated by the required power calculating unit 55, generating power in a required section on the route, and based on the recommended discharge power calculated by the required power calculating unit 55, This can be done by discharging in the required section. The estimated remaining power increases by generating power in the required section, the estimated remaining power decreases by discharging in the required section, and the resulting remaining power is a range defined by the lower limit value and the upper limit value. Can be a value within
 生成部59は、必要電力算出部55での算出結果に応じた車両の経路上での走行モード及び残存電力算出部56で算出した経路上での残存電力を含む走行計画を生成する。走行モードは、例えば、エンジンのみによる駆動、モータ(電動機)のみによる駆動、エンジン及びモータの両方による駆動、発電の有無、回生の有無などの状態を含む。 The generation unit 59 generates a travel plan that includes the travel mode on the route of the vehicle according to the calculation result of the required power calculation unit 55 and the remaining power on the route calculated by the remaining power calculation unit 56. The travel mode includes, for example, states such as driving only by the engine, driving only by the motor (electric motor), driving by both the engine and the motor, presence / absence of power generation, presence / absence of regeneration, and the like.
 例えば、必要発電電力を確保するために、所要の区間で発電する場合には、エンジンによる駆動と発電とを同時に行う。発電を行う場合には、高負荷走行時(例えば、登坂時など)を避けることにより、燃費の悪化を防止することができる。また、予めトルクアシストが推奨される区間が分かっているので、トルクアシストする際の電力が不足しないように、前もってトルクアシスト用の電力確保のため発電することにより、トルクアシストを行う際に発電する事態を防止して、燃費の悪化を防止することができる。これにより、エネルギー消費を最適化する車両の走行計画を提供することができる。 For example, when power is generated in a required section in order to secure necessary generated power, driving by the engine and power generation are performed simultaneously. When power generation is performed, deterioration of fuel consumption can be prevented by avoiding high load traveling (for example, climbing). In addition, since the section in which torque assist is recommended is known in advance, power is generated when torque assist is performed by generating power in advance to secure power for torque assist so that power for torque assist is not insufficient. The situation can be prevented and deterioration of fuel consumption can be prevented. Thereby, it is possible to provide a vehicle travel plan that optimizes energy consumption.
 インタフェース部58は、発電機1、内燃機関2、BMS4、電装品5、HMI6、アクセル7、ブレーキ8などとの間のインタフェース機能を有する。 The interface unit 58 has an interface function with the generator 1, the internal combustion engine 2, the BMS 4, the electrical component 5, the HMI 6, the accelerator 7, the brake 8, and the like.
 設定部60は、残存電力算出部56で算出した残存電力が下限値及び上限値で定められる範囲内となり、かつ車両の燃料消費が所定条件を充足するように、蓄電池3を充電する発電区間及び蓄電池3の電力を消費させる放電区間の少なくとも一方を経路上に設定する。所定条件は、例えば、燃料消費(燃費)が最小となる条件とすることができる。なお、設定部60の詳細は後述する。 The setting unit 60 includes a power generation section for charging the storage battery 3 so that the remaining power calculated by the remaining power calculation unit 56 is within a range determined by the lower limit value and the upper limit value, and the fuel consumption of the vehicle satisfies a predetermined condition. At least one of the discharge sections in which the power of the storage battery 3 is consumed is set on the path. The predetermined condition can be, for example, a condition that minimizes fuel consumption (fuel consumption). Details of the setting unit 60 will be described later.
 制御部51は、分割部としての機能を有し、車両の現在地から推定残存電力が極小値となる位置までの発電候補区間を複数の小区間に分割する。また、制御部51は、車両の現在地から推定残存電力が極大値となる位置までの放電候補区間を複数の小区間に分割する。小区間は、例えば、数十m~100m程度とすることができるが、これに限定されるものではない。 The control unit 51 has a function as a dividing unit, and divides a power generation candidate section from the current position of the vehicle to a position where the estimated remaining power becomes a minimum value into a plurality of small sections. Moreover, the control part 51 divides | segments the discharge candidate area from the present location of a vehicle to the position where estimated residual electric power becomes a maximum value into a some small area. The small section can be, for example, about several tens to 100 m, but is not limited to this.
 発電可能量算出部61は、制御部51で分割した各小区間での発電可能量を算出する。経路上の道路情報及び交通情報から車両の推定車速を求めることができると、推定車速からエンジンの回転数を求めることができ、エンジンの回転数からモータの回転数を求めることができる。発電可能量は、モータの特性(回転数-電力マップ等)に基づいて算出することができる。 The power generation possible amount calculation unit 61 calculates the power generation possible amount in each small section divided by the control unit 51. If the estimated vehicle speed of the vehicle can be obtained from the road information and traffic information on the route, the engine speed can be obtained from the estimated vehicle speed, and the motor speed can be obtained from the engine speed. The amount of power that can be generated can be calculated based on the characteristics of the motor (rotation speed-power map or the like).
 燃費算出部62は、制御部51で分割した各小区間での推定車速及び道路の勾配に基づいて、各小区間での発電時及び非発電時の燃料消費量を算出する。推定車速及び道路の勾配、所定のパラメータ等に基づいて車両の走行負荷(例えば、勾配による負荷、転がり抵抗による負荷、空気抵抗による負荷、加速による負荷など)を求めることができる。エンジントルクは、走行負荷に基づいて求めることができる。燃費は、エンジンの回転数及びエンジントルクに基づく燃費マップを用いて算出することができる。 The fuel consumption calculation unit 62 calculates the fuel consumption during power generation and non-power generation in each small section based on the estimated vehicle speed and road gradient in each small section divided by the control unit 51. Based on the estimated vehicle speed, road gradient, predetermined parameters, and the like, the vehicle travel load (for example, load due to gradient, load due to rolling resistance, load due to air resistance, load due to acceleration, etc.) can be obtained. The engine torque can be obtained based on the traveling load. The fuel consumption can be calculated using a fuel consumption map based on the engine speed and the engine torque.
 また、燃費算出部62は、制御部51で分割した各小区間での放電時の燃料消費量を算出する。例えば、トルクアシストを行っていない各小区間でトルクアシストした(放電時)場合の燃料消費を算出する。 Further, the fuel consumption calculation unit 62 calculates the fuel consumption during discharge in each small section divided by the control unit 51. For example, fuel consumption is calculated when torque assist is performed in each small section where torque assist is not performed (during discharging).
 走行制御部63は、生成部59で生成した走行計画に基づいて車両の走行制御を行う。例えば、生成した走行計画に含まれる走行モードに基づいて、アクセル7及びブレーキ8の制御を行うことができる。 The travel control unit 63 performs vehicle travel control based on the travel plan generated by the generation unit 59. For example, the accelerator 7 and the brake 8 can be controlled based on the travel mode included in the generated travel plan.
 記憶部57は、収集部としての機能を有し、車両に搭載された電装品5の電力消費量及び電装品5を使用した場合の環境情報を含むデータを収集する。 The storage unit 57 has a function as a collection unit, and collects data including power consumption of the electrical component 5 mounted on the vehicle and environmental information when the electrical component 5 is used.
 以下、本実施の形態の走行計画生成部50の動作について詳細に説明する。図3は本実施の形態の走行計画生成部50による放電電力及び発電電力の推定方法の一例を示す模式図である。放電電力は、蓄電地3から電装品5などへ供給させる電力であるので、消費電力ということもできる。本実施の形態では、放電電力と消費電力は同義として扱う。 Hereinafter, the operation of the travel plan generation unit 50 of the present embodiment will be described in detail. FIG. 3 is a schematic diagram illustrating an example of a method for estimating discharge power and generated power by the travel plan generation unit 50 according to the present embodiment. Since the discharge power is power that is supplied from the battery 3 to the electrical component 5 or the like, it can also be referred to as power consumption. In the present embodiment, discharge power and power consumption are treated as synonymous.
 図3の上段の図は、車両の出発地(現在地)から目的地までの経路上位置の道路情報を模式的に表したものである。便宜上、出発地から目的地までの経路をL1~L15の区間に分けている。図3の中段の図は、交通情報に基づく車両の推定平均車速を表している。また、図3の下段の図は、車両の消費電力(放電電力)及び発電電力の経路上の推定を表し、推定電力値及び推定電力の発生区間を模式的に表す。 The upper diagram in FIG. 3 schematically shows road information on the position on the route from the starting point (current location) of the vehicle to the destination. For convenience, the route from the departure point to the destination is divided into sections L1 to L15. The middle diagram of FIG. 3 represents the estimated average vehicle speed of the vehicle based on the traffic information. Further, the lower diagram of FIG. 3 represents the estimation of the power consumption (discharge power) of the vehicle and the generated power on the path, and schematically represents the estimated power value and the generation section of the estimated power.
 区間L1では、車両を発進させるので加速時のトルクアシストによる電力消費を推定することができる。また、区間L1から区間L15までの間では、ECU、エアコン及びオーディオ製品等による恒常的な電力消費が発生する。 In section L1, since the vehicle is started, it is possible to estimate power consumption by torque assist during acceleration. In addition, constant power consumption by the ECU, the air conditioner, the audio product, and the like occurs between the section L1 and the section L15.
 区間L3では、住宅街から市街地へ移るために車両を加速させるので加速時のトルクアシストによる電力消費を推定することができる。 In section L3, the vehicle is accelerated in order to move from the residential area to the urban area, so that it is possible to estimate the power consumption by torque assist during acceleration.
 区間L5から区間L7では、登坂のためのトルクアシストによる電力消費を推定することができる。 From section L5 to section L7, power consumption by torque assist for climbing can be estimated.
 区間L7から区間L8では、雨天のためワイパーの使用による電力消費を推定することができる。 From section L7 to section L8, power consumption due to the use of the wiper can be estimated due to rain.
 区間L8から区間L9では、降坂のため回生電力による発電電力を推定することができる。 From section L8 to section L9, the power generated by regenerative power can be estimated because of the downhill.
 区間L9では、トンネルを通過するので、ヘッドライトの使用による電力消費を推定することができる。 In section L9, since it passes through the tunnel, it is possible to estimate the power consumption due to the use of headlights.
 区間L11、L13では、車両を加速させるので加速時のトルクアシストによる電力消費を推定することができる。 In the sections L11 and L13, since the vehicle is accelerated, it is possible to estimate the power consumption by torque assist during acceleration.
 区間L14の高速道路から市街地へ移る際、及び区間L15の目的地で車両を停止させる際には車両の減速が行われるので回生電力による発電電力を推定することができる。 When the vehicle moves from the highway in the section L14 to the city area and when the vehicle is stopped at the destination in the section L15, the vehicle is decelerated, so that the power generated by the regenerative power can be estimated.
 また、区間L15を走行する時刻は夜間となるので、ヘッドライトの使用による電力消費を推定することができる。 Also, since the time of traveling in the section L15 is nighttime, it is possible to estimate the power consumption due to the use of the headlight.
 上述のように、電力推定部54は、経路上での交通情報、道路情報、天候情報、通過時刻(走行時の時刻)などに応じた車両の走行状態に基づいて経路上での消費電力及び発電電力を推定する。 As described above, the power estimation unit 54 uses the power consumption on the route based on the traveling state of the vehicle according to traffic information on the route, road information, weather information, passage time (time at the time of traveling), and the like. Estimate generated power.
 図4は本実施の形態の走行計画生成部50による必要発電電力の算出方法の一例を示す模式図である。図4の上段の図は、図3の下段の図を書き写したものであり、経路上位置に応じて放電電力の推定値と放電電力が生じる区間、及び経路上位置に応じて発電電力の推定値と発電電力が生じる区間を表す。図4の下段の図は、放電電力及び発電電力の推定に応じて推定される蓄電値3の残存電力(推定残存電力)の推移を示す。 FIG. 4 is a schematic diagram illustrating an example of a method for calculating the required generated power by the travel plan generation unit 50 according to the present embodiment. The upper diagram in FIG. 4 is a copy of the lower diagram in FIG. 3. The estimated value of the discharge power and the section where the discharge power is generated according to the position on the path, and the estimation of the generated power according to the position on the path. It represents the section where the value and generated power occur. The lower diagram of FIG. 4 shows the transition of the remaining power (estimated remaining power) of the storage value 3 estimated according to the estimation of the discharge power and the generated power.
 図4に示すように、放電電力が推定される放電区間では、蓄電池3の推定残存電力は減少し続け、発電電力が推定される発電区間では、蓄電池3の推定残存電力は増加し続ける。また、放電区間から発電区間へ移行するタイミングでは、推定残存電力は極小値となる。なお、図4では図示していないが、発電区間から放電区間へ移行するタイミングでは、推定残存電力は極大値となる。 As shown in FIG. 4, in the discharge section where the discharge power is estimated, the estimated remaining power of the storage battery 3 continues to decrease, and in the power generation section where the generated power is estimated, the estimated remaining power of the storage battery 3 continues to increase. In addition, the estimated remaining power becomes a minimum value at the timing of transition from the discharge section to the power generation section. Although not shown in FIG. 4, the estimated remaining power reaches a maximum value at the timing of transition from the power generation section to the discharge section.
 また、図4に示すように、放電区間L5+L6の途中で蓄電池3の推定残存電力が下限値を下回り、発電区間L8の開始地点で極小値となる。すなわち、放電区間で蓄電池3の推定残存電力が下限値を下回るので電力不足となり不可となる。同様に、放電区間L11の途中で蓄電池3の推定残存電力が下限値を下回り、区間L14の発電開始地点で極小値となる。すなわち、放電区間で蓄電池3の推定残存電力が下限値を下回るので電力不足となり不可となる。なお、発電区間で蓄電池3の推定残存電力が上限値を下回っているので放電の必要なく可となる。 Further, as shown in FIG. 4, the estimated remaining power of the storage battery 3 falls below the lower limit value in the middle of the discharge section L5 + L6, and becomes a minimum value at the start point of the power generation section L8. That is, since the estimated remaining power of the storage battery 3 is lower than the lower limit value in the discharge section, the power becomes insufficient and becomes impossible. Similarly, the estimated remaining power of the storage battery 3 falls below the lower limit value in the middle of the discharge section L11, and becomes a minimum value at the power generation start point in the section L14. That is, since the estimated remaining power of the storage battery 3 is lower than the lower limit value in the discharge section, the power becomes insufficient and becomes impossible. In addition, since the estimated remaining power of the storage battery 3 is lower than the upper limit value in the power generation section, it is possible without the need for discharging.
 上述のとおり、必要電力算出部55は、電力推定部54での推定結果に基づく蓄電池3の経路上での推定残存電力が所定の下限値を下回って極小値となる場合、下限値と極小値との差分を必要発電電力として算出する(図4の矢印で示す電力)。経路上で放電電力(消費電力)が推定されている放電区間では蓄電池の推定残存電力は減少し続け、発電電力が推定されている充電区間の始点に到達する時点で蓄電池3が充電されるので、放電区間から充電区間に移る地点で蓄電池3の推定残存電力は極小値となる。これにより、蓄電池3の推定残存電力が下限値を下回る地点より手前の区間で発電が必要となることがわかる。 As described above, when the required remaining power on the path of the storage battery 3 based on the estimation result in the power estimation unit 54 becomes a minimum value below a predetermined lower limit value, the required power calculation unit 55 has a lower limit value and a minimum value. Is calculated as necessary generated power (power indicated by an arrow in FIG. 4). The estimated remaining power of the storage battery continues to decrease in the discharge section where the discharge power (power consumption) is estimated on the route, and the storage battery 3 is charged when reaching the start point of the charging section where the generated power is estimated. The estimated remaining power of the storage battery 3 becomes a minimum value at a point where the discharge section moves to the charging section. Thereby, it turns out that electric power generation is needed in the section before the point where the presumed residual electric power of storage battery 3 is less than a lower limit.
 また、同様に、必要電力算出部55は、電力推定部54での推定結果に基づく蓄電池3の経路上での推定残存電力が所定の上限値を上回って極大値となる場合、極大値と上限値との差分を推奨放電電力として算出する。経路上で発電電力が推定されている充電区間では蓄電池3の推定残存電力は増加し続け、放電電力が推定されている放電区間の始点に到達する時点で蓄電池3が放電されるので、充電区間から放電区間に移る地点で蓄電池3の推定残存電力は極大値となる。これにより、蓄電池3の推定残存電力が上限値を上回る地点より手前の区間で放電が必要となることがわかる。 Similarly, the required power calculation unit 55 determines the maximum value and the upper limit when the estimated remaining power on the path of the storage battery 3 based on the estimation result in the power estimation unit 54 exceeds the predetermined upper limit value and becomes the maximum value. The difference from the value is calculated as the recommended discharge power. The estimated remaining power of the storage battery 3 continues to increase in the charging section where the generated power is estimated on the route, and the storage battery 3 is discharged when reaching the starting point of the discharging section where the discharged power is estimated. The estimated remaining power of the storage battery 3 reaches a maximum value at a point where the battery moves to the discharge section. Thereby, it turns out that discharge is required in the section before the point where the estimated remaining power of the storage battery 3 exceeds the upper limit value.
 図5は本実施の形態の走行計画生成部50による蓄電池3の残存電力の算出方法の一例を示す模式図である。図5は、残存電力算出部56で算出した残存電力の推移を表す。必要電力算出部55で算出した必要発電電力を、蓄電池3の推定残存電力が下限値を下回る位置より手前の区間で発電区間を設定する。図5の例では、区間L2及び区間L4の一部に発電区間を設定している。なお、後述するように、発電区間を設定する場合には、経路上の各位置での走行負荷、車速、エンジン燃費マップ等に基づいて燃費が最も良くなるように発電を行う位置を設定する。 FIG. 5 is a schematic diagram illustrating an example of a method for calculating the remaining power of the storage battery 3 by the travel plan generation unit 50 according to the present embodiment. FIG. 5 shows the transition of the remaining power calculated by the remaining power calculation unit 56. The power generation section is set in a section before the position where the estimated remaining power of the storage battery 3 is lower than the lower limit value for the required generated power calculated by the required power calculation section 55. In the example of FIG. 5, the power generation section is set in a part of the section L2 and the section L4. As will be described later, when the power generation section is set, the position for generating power is set so that the fuel consumption becomes the best based on the travel load at each position on the route, the vehicle speed, the engine fuel consumption map, and the like.
 残存電力算出部56は、設定した発電区間で発電した場合における蓄電池3の残存電力を算出する。発電区間を設定して発電することにより、算出された残存電力は下限値を下回ることがなく、電力不足を防止することができる。なお、図5に示すように、バッテリ上がりを避けるため、走行終了する前(目的地の近く)において、電力制限(消費電力の制限)を行って蓄電池3の残存電力を増加させることもできる。 The remaining power calculation unit 56 calculates the remaining power of the storage battery 3 when power is generated in the set power generation section. By setting the power generation section and generating power, the calculated remaining power does not fall below the lower limit, and power shortage can be prevented. As shown in FIG. 5, in order to avoid running out of the battery, it is also possible to increase the remaining power of the storage battery 3 by performing power limitation (power consumption limitation) before the end of traveling (near the destination).
 また、設定部60は、残存電力算出部56で算出した残存電力が下限値及び上限値で定められる範囲内となり、かつ車両の燃料消費が所定条件を充足するように、蓄電池3を充電する発電区間及び蓄電池3の電力を消費させる放電区間の少なくとも一方を経路上に設定する。所定条件は、例えば、燃料消費(燃費)が最小となる条件とすることができる。これにより、蓄電池3の残存電力が下限値を下回ることなく、上限値を上回ることなく、かつ燃費が最も良くなるように発電区間及び放電区間の少なくとも一方を設定することができる。 In addition, the setting unit 60 generates power for charging the storage battery 3 so that the remaining power calculated by the remaining power calculating unit 56 falls within a range determined by the lower limit value and the upper limit value, and the fuel consumption of the vehicle satisfies a predetermined condition. At least one of the section and the discharge section that consumes the power of the storage battery 3 is set on the path. The predetermined condition can be, for example, a condition that minimizes fuel consumption (fuel consumption). Thereby, it is possible to set at least one of the power generation section and the discharge section so that the remaining power of the storage battery 3 does not fall below the lower limit value, does not exceed the upper limit value, and the fuel consumption becomes the best.
 また、生成部59は、設定部60の設定結果に基づいて走行計画を生成する。これにより、蓄電池の残存電力が下限値を下回ることなく、上限値を上回ることなく、かつ燃費が最も良くなるような走行計画を生成することができる。 Further, the generation unit 59 generates a travel plan based on the setting result of the setting unit 60. As a result, it is possible to generate a travel plan in which the remaining power of the storage battery does not fall below the lower limit value, does not exceed the upper limit value, and the fuel consumption becomes the best.
 図6は本実施の形態の走行計画生成部50が生成する走行計画の一例を示す模式図である。図6の上段の図は、残存電力算出部56で算出した蓄電池3の経路上での残存電力の推移、及び残燃料の推移を示す。また、図6の下段の図は、車両の走行モードを示す。 FIG. 6 is a schematic diagram illustrating an example of a travel plan generated by the travel plan generation unit 50 according to the present embodiment. The upper diagram in FIG. 6 shows the transition of the remaining power and the transition of the remaining fuel on the path of the storage battery 3 calculated by the remaining power calculator 56. Further, the lower diagram of FIG. 6 shows the traveling mode of the vehicle.
 区間L1では、低速時のエンジンの燃費悪化を避けるため、モータ(電動機)のみによる駆動を行う。 In the section L1, in order to avoid deterioration of the fuel consumption of the engine at low speed, the motor (electric motor) is used only for driving.
 区間L2では、発電区間として設定され、登坂となる区間L5+L6でトルクアシストにより必要となる電力を確保するため、エンジンによる駆動と発電とを同時に行う。 The section L2 is set as a power generation section, and driving by the engine and power generation are performed at the same time in order to secure electric power required by the torque assist in the section L5 + L6 that is the uphill.
 区間L3では、加速による燃費悪化を避けるため、モータ(電動機)によるトルクアシストを行い、エンジン及びモータの両方による駆動を行う。 In section L3, in order to avoid deterioration of fuel consumption due to acceleration, torque assist by a motor (electric motor) is performed and driving by both the engine and the motor is performed.
 区間L4の前半では、発電区間として設定され、登坂となる区間L5+L6でトルクアシストにより必要となる電力を確保するため、エンジンによる駆動と発電とを同時に行う。また、区間L4の後半では、市街地での比較的速い車速での走行なので、エンジンのみの駆動を行う。 In the first half of the section L4, it is set as a power generation section, and driving by the engine and power generation are performed at the same time in order to secure electric power required by the torque assist in the section L5 + L6 that becomes the uphill. Further, in the second half of the section L4, since the vehicle is traveling at a relatively high vehicle speed in an urban area, only the engine is driven.
 区間L5からL7までは、登坂のため燃費悪化を避けるため、モータ(電動機)によるトルクアシストを行い、エンジン及びモータの両方による駆動を行う。 From section L5 to L7, in order to avoid deterioration of fuel consumption due to climbing, torque assist by a motor (electric motor) is performed and driving by both engine and motor is performed.
 区間L8からL9までは、降坂なので、回生電力を回収して発電を行う。 Since sections L8 to L9 are downhill, regenerative power is collected and power is generated.
 区間L10の前半では、負荷を減らすため、登り勾配を避けて発電すべく、エンジンによる駆動と発電とを同時に行う。 In the first half of the section L10, in order to reduce the load, driving by the engine and power generation are performed at the same time in order to generate power while avoiding the climb slope.
 区間L10の後半では、消費電力を確保したので、コースティングを行って消費電力を低減する。なお、コースティングとは、走行中にエンジンとトランスミッションとを切り離して惰性走行することをいう。エンジンの抵抗が無くなるのでアクセルオフで走行距離を伸ばすことができ、燃費を向上させることができる。 In the second half of the section L10, since power consumption is secured, coasting is performed to reduce power consumption. Note that coasting refers to coasting with the engine and transmission separated during traveling. Since the resistance of the engine is eliminated, the mileage can be extended with the accelerator off, and the fuel efficiency can be improved.
 区間L11では、加速による燃費悪化を避けるため、モータ(電動機)によるトルクアシストを行い、エンジン及びモータの両方による駆動を行う。 In section L11, in order to avoid deterioration of fuel consumption due to acceleration, torque assist by a motor (electric motor) is performed and driving by both the engine and the motor is performed.
 区間L12では、郊外での比較的速い車速での走行なので、エンジンのみの駆動を行う。 In section L12, the engine is driven only because it is traveling at a relatively fast vehicle speed in the suburbs.
 区間L13では、加速による燃費悪化を避けるため、モータ(電動機)によるトルクアシストを行い、エンジン及びモータの両方による駆動を行う。 In section L13, in order to avoid deterioration in fuel consumption due to acceleration, torque assist by a motor (electric motor) is performed and driving by both the engine and the motor is performed.
 区間L14では、高速道路での高速走行なので、エンジンのみの駆動を行う。また、区間L14の終了付近では減速による回生電力を回収して発電する。 In section L14, only the engine is driven because it is traveling at high speed on the highway. Further, near the end of the section L14, the regenerative electric power due to the deceleration is collected to generate power.
 区間L15では、市街地での比較的速い車速での走行なので、エンジンのみの駆動を行う。また、区間L15の終了付近では減速による回生電力を回収して発電する。 In section L15, the engine is driven only because it is traveling at a relatively high speed in the city. Further, near the end of the section L15, the regenerative electric power due to the deceleration is recovered and generated.
 HMI6は、生成部59で生成した走行計画に基づいて運転支援情報を出力する。例えば、生成した走行計画に含まれる走行モードに基づいて運転支援情報を出力(音声による出力、文字又は図等による表示を含む)することができる。運転支援情報には、例えば、アクセルを踏むこと、ブレーキをかけること、車速などが含まれる。これにより、燃費の良い走行を支援することができる。 The HMI 6 outputs driving support information based on the travel plan generated by the generating unit 59. For example, driving support information can be output based on the driving mode included in the generated driving plan (including output by voice, display by characters, drawings, etc.). The driving support information includes, for example, stepping on an accelerator, applying a brake, vehicle speed, and the like. Thereby, driving | running | working with favorable fuel consumption can be supported.
 また、走行制御部63は、生成部59で生成した走行計画に基づいて車両の走行制御を行う。例えば、生成した走行計画に含まれる走行モードに基づいて、アクセル及びブレーキの制御を行うことができる。これにより、燃費の良い走行を支援することができる。 Also, the travel control unit 63 performs vehicle travel control based on the travel plan generated by the generation unit 59. For example, the accelerator and the brake can be controlled based on the travel mode included in the generated travel plan. Thereby, driving | running | working with favorable fuel consumption can be supported.
 次に、発電区間の設定方法について説明する。図7は本実施の形態の走行計画生成部50による発電区間の設定方法の一例を示す模式図である。図7の上段の図は、図4の下段の図を書き写したものである。図7の下段の図は、発電候補区間を複数の小区間に分割し、発電区間を選択する様子を示す。発電候補区間は、車両の現在地から推定残存電力が極小値となる位置(蓄電池3の推定残存電力が下限値を下回って不可となる放電の終わり)までの区間である。 Next, the method for setting the power generation section will be described. FIG. 7 is a schematic diagram showing an example of a method for setting a power generation section by the travel plan generation unit 50 of the present embodiment. The upper diagram of FIG. 7 is a copy of the lower diagram of FIG. The lower diagram in FIG. 7 shows a state where the power generation candidate section is divided into a plurality of small sections and the power generation section is selected. The power generation candidate section is a section from the current location of the vehicle to a position where the estimated remaining power becomes a minimum value (the end of the discharge where the estimated remaining power of the storage battery 3 becomes lower than the lower limit value).
 まず、発電候補区間を適当な小区間に分割する。小区間は、例えば、数十m~100m程度とすることができるが、これに限定されるものではない。各小区間における推定車速、道路の勾配、及び推定車速及び勾配等に基づく走行負荷、燃料消費の情報を算出する。また、トルクアシストする小区間については、トルクアシストなしの場合の燃料消費及びトルクアシストで消費するはずであった電力消費低減量を算出する。 First, the power generation candidate section is divided into appropriate small sections. The small section can be, for example, about several tens to 100 m, but is not limited to this. Information on travel load and fuel consumption based on estimated vehicle speed, road gradient, estimated vehicle speed and gradient, etc. in each small section is calculated. In addition, for the small section where torque assist is performed, the fuel consumption without torque assist and the power consumption reduction amount that should have been consumed with torque assist are calculated.
 また、発電機の特性(回転数-電力マップ等)から各小区間における発電可能量、発電時の燃料消費量を算出する。トルクアシストする小区間では、トルクアシストせずに発電した場合の発電可能量、発電時の燃料消費量を算出する。 Also, the amount of power that can be generated in each small section and the amount of fuel consumed during power generation are calculated from the generator characteristics (rotation speed-power map, etc.). In a small section where torque assist is performed, a power generation possible amount when generating power without torque assist and a fuel consumption amount during power generation are calculated.
 走行負荷は、以下のようにして算出することができる。走行負荷は、勾配による負荷Fg、転がり抵抗による負荷Fr、空気抵抗による負荷Fai、加速による負荷Facなどがある。 Traveling load can be calculated as follows. The traveling load includes a load Fg due to a gradient, a load Fr due to rolling resistance, a load Fai due to air resistance, a load Fac due to acceleration, and the like.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 勾配による負荷Fgは、式(1)で算出することができる。ここで、mは車縦、gは重力加速度、θは経路の勾配である。また、転がり抵抗による負荷Frは、式(2)で算出することができる。ここで、Crはタイヤの転がり抵抗係数である。また、空気抵抗による負荷Faiは、式(3)で算出することができる。ここで、ρは空気密度、Ccは車体の空気抵抗係数、Sは前方投影面積、Vは車速である。また、加速による負荷Facは、式(4)で算出することができる。 The load Fg due to the gradient can be calculated by the equation (1). Here, m is the longitudinal length of the vehicle, g is the gravitational acceleration, and θ is the gradient of the route. Further, the load Fr due to the rolling resistance can be calculated by Expression (2). Here, Cr is a rolling resistance coefficient of the tire. Further, the load Fai due to air resistance can be calculated by Expression (3). Here, ρ is the air density, Cc is the air resistance coefficient of the vehicle body, S is the front projected area, and V is the vehicle speed. Further, the load Fac due to acceleration can be calculated by Expression (4).
 エアコン、ECU、オーディオ製品、ワイパー、ヘッドライトなどの電装品の消費電力は、事前に設定しておくことができる。また、ワイパーの速度は、降雨量データに応じて異なると考えられるので、降雨量データに応じて消費電量を変えることができる。また、同様に、ヘッドライトのハイビーム・ロービームの違いは、道路属性(住宅街、都市、郊外等)、交通量などに応じて異なると考えられるので、道路属性や交通量に応じて消費電量を変えることができる。また、オーディオ製品は設定音量に応じて消費電量を変えることができ、エアコンは設定温度、各地の気温等に応じて消費電量を変えることができる。 The power consumption of electrical components such as air conditioners, ECUs, audio products, wipers, and headlights can be set in advance. Moreover, since it is thought that the speed of a wiper changes according to rainfall data, power consumption can be changed according to rainfall data. Similarly, the difference between high beam and low beam of headlights is considered to vary depending on road attributes (residential area, city, suburb, etc.), traffic volume, etc., so power consumption can be reduced according to road attributes and traffic volume. Can be changed. In addition, the audio product can change the power consumption according to the set volume, and the air conditioner can change the power consumption according to the set temperature, the temperature in each place, and the like.
 エンジンの燃費は、以下のようにして算出することができる。まず、エンジントルクTReは、式(5)で算出することができる。 Engine fuel efficiency can be calculated as follows. First, the engine torque TRe can be calculated by Expression (5).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、Rtはタイヤ径、Rgはミッションとデフの合計減速比、ηは伝達効率、Trmはモータトルク、TRnはその他負荷トルクである。その他負荷トルクTRnは、発電やコンプレッサの駆動のためのトルクであり、式(6)で算出することができる。ここで、Pnは各負荷の仕事率(発電量やコンプレッサの仕事率)、ηnは各負荷への伝達効率、Neはエンジン回転数である。 Here, Rt is the tire diameter, Rg is the total reduction ratio of the transmission and the differential, η is the transmission efficiency, Trm is the motor torque, and TRn is the other load torque. The other load torque TRn is a torque for power generation and driving of the compressor, and can be calculated by Expression (6). Here, Pn is the power of each load (power generation amount and compressor power), ηn is the transmission efficiency to each load, and Ne is the engine speed.
 また、エンジン回転数Neは、式(7)で算出することができる。モータトルクTRmとモータの消費電力Pmは、モータの特性マップからモータの回転数Nmを用いて算出することができる。モータの回転数Nmは、式(8)で算出することができる。ここで、Rpはプーリ比である。 Further, the engine speed Ne can be calculated by the equation (7). The motor torque TRm and the motor power consumption Pm can be calculated from the motor characteristic map using the motor rotation speed Nm. The rotational speed Nm of the motor can be calculated by equation (8). Here, Rp is a pulley ratio.
 図8はエンジンの燃料消費測定結果の一例を示す模式図である。図8において、横軸はエンジン回転数(rpm)を示し、縦軸はエンジントルク(Nm)を示す。エンジンの燃料消費率(g/kWh)、すなわち燃費は、エンジントルクとエンジン回転数を用いて、図8に例示するようなエンジンの燃料消費率(燃費マップ)を用いて算出することができる。 FIG. 8 is a schematic diagram showing an example of an engine fuel consumption measurement result. In FIG. 8, the horizontal axis represents the engine speed (rpm), and the vertical axis represents the engine torque (Nm). The fuel consumption rate (g / kWh) of the engine, that is, the fuel consumption can be calculated using the engine fuel consumption rate (fuel consumption map) illustrated in FIG. 8 using the engine torque and the engine speed.
 なお、ギヤ比は、AT(Automatic Transmission)及びCVT(Continuously Variable Transmission)の場合、ミッションの制御条件から判定することができる。MT(Manual Transmission)の場合、各段ギヤ比と車速、走行負荷に基づき最も燃費が良くなるギヤを選択することができる。また、トルクアシストは、車両毎の一定の条件(必要トルク、車速、モータ特性など)に従って動作有無を判定することができる。 In the case of AT (Automatic Transmission) and CVT (Continuously Variable Transmission), the gear ratio can be determined from the mission control conditions. In the case of MT (Manual Transmission), the gear with the best fuel efficiency can be selected based on each gear ratio, vehicle speed, and travel load. Further, the torque assist can determine the presence or absence of operation according to certain conditions (necessary torque, vehicle speed, motor characteristics, etc.) for each vehicle.
 設定部60は、発電可能量算出部61で算出した発電可能量が下限値と極小値との差分と等しくなり、かつ燃費算出部62で算出した燃料消費量が最小となるように、各小区間のうちの1又は複数の小区間を発電区間として設定する。なお、トルクアシスト後の一定区間では発電不可というような制限条件を加味することもできる。 The setting unit 60 sets each small electric power generation amount calculated by the electric power generation amount calculation unit 61 so that the electric power generation amount calculated by the fuel consumption calculation unit 62 becomes the minimum and the fuel consumption amount calculated by the fuel consumption calculation unit 62 becomes the same as the difference between the lower limit value and the minimum value. One or more small sections of the section are set as the power generation section. In addition, it is possible to consider a restriction condition that power generation is not possible in a certain section after torque assist.
 これにより、発電電力が必要発電電力を満たし(例えば、発電電力=必要発電電力)、かつ燃料消費が最小となるように、1又は複数の小区間を組み合わせて発電区間を設定(選択)することができる。組合せの算出方法として、例えば、数理計画法を用いることができる。また、小区間がトルクアシストを行う区間である場合、トルクアシストをしないことによる電力消費低減量(トルクアシストで消費するはずであった電力)と発電電力との合計が必要発電電力を満たすようにして発電区間を設定することもできる。トルクアシストを減らして等価的に必要発電電力を減らし発電を減らすことにより燃費をさらに向上させることができる。 Thereby, the power generation section is set (selected) by combining one or a plurality of small sections so that the generated power satisfies the required power generation (for example, generated power = necessary generated power) and the fuel consumption is minimized. Can do. As a method for calculating the combination, for example, mathematical programming can be used. In addition, when the small section is a section where torque assist is performed, the total of the power consumption reduction amount (power that should have been consumed by torque assist) and the generated power by not performing torque assist satisfies the required generated power. You can also set the power generation section. Fuel consumption can be further improved by reducing torque assist and equivalently reducing required power generation and reducing power generation.
 また、図7には図示していないが、放電区間も設定することができる。すなわち、設定部60は、燃費算出部62で算出した燃料消費量が最小となるように、各小区間のうちの1又は複数の小区間を放電区間として設定する。 Although not shown in FIG. 7, a discharge section can also be set. That is, the setting unit 60 sets one or a plurality of small sections of each small section as a discharge section so that the fuel consumption calculated by the fuel consumption calculation section 62 is minimized.
 これにより、燃料消費が最小となるように、1又は複数の小区間を組み合わせて放電区間を設定することができる。組合せの算出方法として、例えば、数理計画法を用いることができる。これにより、燃費が悪化しないようにトルクアシストを適切に行うことができる。 This makes it possible to set the discharge section by combining one or a plurality of small sections so that the fuel consumption is minimized. As a method for calculating the combination, for example, mathematical programming can be used. Thereby, torque assist can be appropriately performed so that fuel consumption does not deteriorate.
 次に、車両が出発地を出発し目的地に向かって走行している場合について説明する。インタフェース部58は、実測値取得部としての機能を有し、蓄電池3の残存電力の実測値を取得する。すなわち、車両が出発地から走行を開始した場合、走行中における蓄電池3の残存電力の実測値を取得する。なお、残存電力の実測値は、例えば、蓄電池3の入力電力(充電電力)及び出力電力(放電電力)を監視することにより取得することができる。 Next, the case where the vehicle departs from the departure place and travels toward the destination will be described. The interface unit 58 has a function as an actual measurement value acquisition unit, and acquires an actual measurement value of the remaining power of the storage battery 3. That is, when the vehicle starts traveling from the departure place, an actual measurement value of the remaining power of the storage battery 3 during traveling is acquired. The actually measured value of the remaining power can be acquired by monitoring the input power (charging power) and the output power (discharging power) of the storage battery 3, for example.
 生成部59は、インタフェース部58で取得した実測値と生成した走行計画に含まれる蓄電池の残存電力との差の絶対値が所定の閾値を超えた場合、再度走行計画を生成する。 The generation unit 59 generates the travel plan again when the absolute value of the difference between the actual measurement value acquired by the interface unit 58 and the remaining power of the storage battery included in the generated travel plan exceeds a predetermined threshold value.
 図9は本実施の形態の走行計画生成部50が生成した走行計画による計画値と実測値との乖離の様子の一例を示す模式図である。実際の走行では、様々な条件(例えば、温度、部品の劣化、運転の仕方等)によって生成した走行計画とのずれが生ずる。走行計画とのずれ(例えば、蓄電池の残存電力のずれ)により、トルクアシストしたい区間で電力が不足し、発電が必要となり燃費が悪化する。 FIG. 9 is a schematic diagram illustrating an example of a state of deviation between the planned value and the actual measurement value based on the travel plan generated by the travel plan generation unit 50 according to the present embodiment. In actual travel, a deviation from the travel plan generated due to various conditions (for example, temperature, deterioration of parts, operation method, etc.) occurs. Due to a deviation from the travel plan (for example, a deviation in the remaining power of the storage battery), power is insufficient in a section where torque assist is desired, and power generation is required, resulting in a deterioration in fuel consumption.
 例えば、当初の走行計画では、図6に示すように区間L7ではトルクアシストする区間であったにもかかわらず、図9に示すように実施の走行時では、蓄電池3の残存電力が下限値を下回っているためトルクアシストすることができず、逆に発電を行う必要が生じ、燃費が悪化する。また、区間L7は登坂しなければならず、高走行負荷路であるにもかかわらず発電が必要となり燃費が悪化することになる。 For example, in the initial travel plan, although the section L7 is a section where torque assist is performed as shown in FIG. 6, the remaining power of the storage battery 3 has a lower limit value during the travel as shown in FIG. Since it is below, torque assist cannot be performed, and on the contrary, it is necessary to generate electric power, and fuel consumption deteriorates. In addition, the section L7 must be climbed, and although it is a high travel load road, power generation is required and fuel consumption is deteriorated.
 図10は本実施の形態の走行計画生成部50が再度生成した走行計画の一例を示す模式図である。残存電力の実測値と計画値(走行計画に含まれる残存電力の算出値)との差分の絶対値(乖離)が所定の閾値を超えた場合、残存電力の実測値に基づいて、再度走行計画を生成する。なお、走行計画を再度生成する場合、必要発電量(必要発電電力)を算出し、必要発電量に従って、発電区間を設定すればよい。また、走行計画を再度生成する場合、フィードバックされるパラメータには、例えば、電装品の消費電力、発電効率、伝達効率、走行負荷などが含まれる。当初の走行計画との乖離の原因が発電・伝達効率、電装品の消費電力などの走行計画作成のためのパラメータのずれである場合、車両の走行距離が増えるに応じて実測値と走行計画の計画値との乖離は大きくなる。例えば、各電装品の消費電力、発電電力などを監視することで走行計画を生成時のパラメータとのずれを求め、これらのずれ量に所定の閾値を設定しておき、ずれ量が閾値を超えた場合に、再度走行計画を生成するようにしてもよい。 FIG. 10 is a schematic diagram showing an example of a travel plan generated again by the travel plan generation unit 50 of the present embodiment. If the absolute value (deviation) of the difference between the measured value of the remaining power and the planned value (the calculated value of the remaining power included in the travel plan) exceeds a predetermined threshold, the travel plan is again determined based on the measured value of the remaining power. Is generated. In addition, when generating a travel plan again, what is necessary is just to calculate required electric power generation amount (required electric power generation) and to set an electric power generation area according to required electric power generation amount. Further, when the travel plan is generated again, the parameters fed back include, for example, power consumption of the electrical equipment, power generation efficiency, transmission efficiency, travel load, and the like. If the cause of the deviation from the original travel plan is a deviation in parameters for creating a travel plan, such as power generation / transmission efficiency and power consumption of electrical components, the actual value and travel plan Deviation from the planned value will increase. For example, by monitoring the power consumption, generated power, etc. of each electrical component, find the deviation from the parameters when generating the travel plan, set a predetermined threshold for these deviation amounts, and the deviation amount exceeds the threshold In such a case, the travel plan may be generated again.
 これにより、トルクアシストすべき区間でトルクアシストができない事態、高走行負荷の状態で発電を行う事態などを未然に予見して、再度走行計画を生成することにより、トルクアシストを適切に行い、また高走行負荷の状態での発電を避けることができ、燃費の悪化を防止することができる。 As a result, it is possible to predict the situation where torque assist cannot be performed in the section where torque assist should be performed, the situation where power generation is performed in a state of high travel load, etc., and generate the travel plan again, so that torque assist can be performed appropriately. It is possible to avoid power generation under a high traveling load state and to prevent deterioration of fuel consumption.
 また、制御部51は、電力判定部としての機能を有し、取得した交通情報に基づいて電力推定部54で推定する放電電力又は発電電力に変更があるか否かを判定する。車両が出発地を出発した後、車両は、例えば、情報配信装置付近を通過した場合、あるいは定期的に交通情報を取得することができる。経路上又は経路付近において事故等により渋滞が発生した場合、推定車速(旅行時間)が変わる場合がある。推定車速が所定値以上変化すると、走行状態が変わり電力推定部54で推定する放電電力又は発電電力が変化することになる。 Further, the control unit 51 has a function as a power determination unit, and determines whether or not there is a change in the discharge power or generated power estimated by the power estimation unit 54 based on the acquired traffic information. After the vehicle departs from the departure place, the vehicle can acquire traffic information, for example, when the vehicle passes near the information distribution device or periodically. When traffic congestion occurs on the route or in the vicinity of the route due to an accident or the like, the estimated vehicle speed (travel time) may change. When the estimated vehicle speed changes by a predetermined value or more, the running state changes and the discharge power or generated power estimated by the power estimation unit 54 changes.
 生成部59は、制御部51で変更があると判定した場合、再度走行計画を生成する。これにより、最新の交通情報に基づいた走行計画を生成することができる。 When the control unit 51 determines that there is a change, the generation unit 59 generates a travel plan again. Thereby, the travel plan based on the latest traffic information can be generated.
 また、記憶部57に、車両に搭載された電装品の電力消費量及び電装品を使用した場合の環境情報を含むデータを収集しておく。例えば、エアコン又はデフロスターを使用する場合の気温及び湿度、ヘッドライトを使用した場合の周囲の明るさ、ワイパーを使用した場合の降雨量などのデータを学習データとして収集する。電力推定部54は、記憶部57で収集したデータに基づいて、放電電力を推定する。これにより、運転者固有の運転の仕方を学習して、放電電力(消費電力)の推定をより正確に行うことができる。 Also, the storage unit 57 collects data including the power consumption of the electrical components mounted on the vehicle and environmental information when the electrical components are used. For example, data such as temperature and humidity when using an air conditioner or a defroster, ambient brightness when using a headlight, and rainfall when using a wiper are collected as learning data. The power estimation unit 54 estimates the discharge power based on the data collected by the storage unit 57. As a result, it is possible to learn how to drive unique to the driver and more accurately estimate the discharge power (power consumption).
 次に、本実施の形態の走行計画生成部50による走行計画生成の処理について説明する。図11は本実施の形態の走行計画生成部50による車両の走行開始前の処理手順の一例を示すフローチャートである。以下では、便宜上処理の主体を制御部51として説明する。制御部51は、目的地を設定し(S11)、出発地から目的地までの経路を特定する(S12)。 Next, the travel plan generation process by the travel plan generation unit 50 of the present embodiment will be described. FIG. 11 is a flowchart illustrating an example of a processing procedure before the vehicle starts traveling by the travel plan generation unit 50 according to the present embodiment. In the following, the processing subject will be described as the control unit 51 for convenience. The control unit 51 sets a destination (S11) and specifies a route from the departure point to the destination (S12).
 制御部51は、特定した経路上又は経路付近の交通情報、道路情報を取得し(S13)、経路上での放電電力(消費電力)及び発電電力を推定する(S14)。制御部51は、蓄電池3の充電割合(残存電力の初期値)を取得し(S15)、経路上での必要発電電力、推奨放電電力を算出する(S16)。 The control unit 51 acquires traffic information and road information on or near the identified route (S13), and estimates the discharge power (power consumption) and generated power on the route (S14). The control unit 51 acquires the charging rate (initial value of remaining power) of the storage battery 3 (S15), and calculates necessary generated power and recommended discharge power on the route (S16).
 制御部51は、算出した必要発電電力及び推奨放電電力に基づいて、蓄電池3の経路上の残存電力を算出し(S17)、走行計画を生成し(S18)、処理を終了する。 The control unit 51 calculates the remaining power on the path of the storage battery 3 based on the calculated necessary generated power and recommended discharge power (S17), generates a travel plan (S18), and ends the process.
 図12は本実施の形態の走行計画生成部50による車両の走行中の処理手順の一例を示すフローチャートである。制御部51は、蓄電池3の残存電力の実測値を取得し(S31)、実測値と走行計画の残存電力との差の絶対値が所定の閾値より大きいか否かを判定する(S32)。絶対値が閾値より大きい場合(S32でYES)、制御部51は、各負荷の消費電力を修正し(S33)、経路上での放電電力(消費電力)、発電電力を推定する(S34)。 FIG. 12 is a flowchart showing an example of a processing procedure during travel of the vehicle by the travel plan generation unit 50 of the present embodiment. The control unit 51 acquires an actual measurement value of the remaining power of the storage battery 3 (S31), and determines whether or not the absolute value of the difference between the actual measurement value and the remaining power of the travel plan is greater than a predetermined threshold (S32). When the absolute value is larger than the threshold (YES in S32), the control unit 51 corrects the power consumption of each load (S33), estimates the discharge power (power consumption) on the path, and the generated power (S34).
 制御部51は、蓄電池3の充電割合(残存電力)を取得し(S35)、経路上での必要発電電力、推奨放電電力を算出する(S36)。制御部51は、算出した必要発電電力及び推奨放電電力に基づいて、蓄電池3の経路上の残存電力を算出し(S37)、走行計画を生成する(S38)。すなわち、制御部51は、走行計画を再度生成する。 The control unit 51 acquires the charging rate (residual power) of the storage battery 3 (S35), and calculates the necessary generated power and recommended discharge power on the route (S36). The control unit 51 calculates the remaining power on the path of the storage battery 3 based on the calculated required generated power and recommended discharge power (S37), and generates a travel plan (S38). That is, the control unit 51 generates a travel plan again.
 制御部51は、生成した走行計画に基づく運転支援を行い(S39)、目的地に到着したか否かを判定する(S40)。目的地に到着していない場合(S40でNO)、制御部51は、ステップS31以降の処理を繰り返し、目的地に到着した場合(S40でYES)、処理を終了する。 The control unit 51 performs driving support based on the generated travel plan (S39), and determines whether or not the destination has been reached (S40). If the destination has not been reached (NO in S40), the control unit 51 repeats the processing from step S31 onward, and if the destination has been reached (YES in S40), the processing is terminated.
 ステップS32において、絶対値が閾値より大きくない場合(S32でNO)、制御部51は、交通情報を取得したか否かを判定し(S41)、交通情報を取得した場合(S41でYES)、経路上での放電電力(消費電力)、発電電力の推定値に変更の必要性があるか否かを判定する(S42)。 In step S32, when the absolute value is not larger than the threshold value (NO in S32), the control unit 51 determines whether or not the traffic information is acquired (S41), and when the traffic information is acquired (YES in S41), It is determined whether there is a need to change the estimated value of the discharge power (power consumption) and generated power on the route (S42).
 推定値に変更の必要性がある場合(S42でYES)、制御部51は、ステップS34以降の処理を行う。交通情報を取得していない場合(S41でNO)、あるいは推定値の変更の必要性がない場合(S42でNO)、制御部51は、走行計画を再度生成することなく、ステップS39以降の処理を行う。 If there is a need to change the estimated value (YES in S42), the control unit 51 performs the processing after step S34. When the traffic information has not been acquired (NO in S41), or when there is no need to change the estimated value (NO in S42), the control unit 51 does not generate the travel plan again, and the processes after step S39. I do.
 本実施の形態の走行計画生成装置(走行計画生成部50)は、CPU(プロセッサ)、RAMなどを備えた汎用コンピュータを用いて実現することもできる。すなわち、図11、図12に示すような、各処理の手順を定めたコンピュータプログラムをコンピュータに備えられたRAMにロードし、コンピュータプログラムをCPU(プロセッサ)で実行することにより、コンピュータ上で走行計画生成装置(走行計画生成部50)を実現することができる。 The travel plan generation device (travel plan generation unit 50) of the present embodiment can also be realized using a general-purpose computer including a CPU (processor), a RAM, and the like. That is, as shown in FIG. 11 and FIG. 12, a computer program that defines the procedure of each process is loaded into a RAM provided in the computer, and the computer program is executed by a CPU (processor), whereby a travel plan is executed on the computer. A generation device (travel plan generation unit 50) can be realized.
 上述の実施の形態では、車両が走行計画生成部50を搭載する構成であったが、これに限定されるものではなく、情報提供装置などのサーバに走行計画生成部50を設けることもできる。この場合には、車両が発電機1、内燃機関2、蓄電池3などの情報をサーバへ送信し、サーバで走行計画を生成し、生成した走行計画を車両へ送信すればよい。 In the above-described embodiment, the vehicle is configured to include the travel plan generation unit 50. However, the present invention is not limited to this, and the travel plan generation unit 50 may be provided in a server such as an information providing device. In this case, the vehicle may transmit information such as the generator 1, the internal combustion engine 2, and the storage battery 3 to the server, generate a travel plan by the server, and transmit the generated travel plan to the vehicle.
 開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 The disclosed embodiments are to be considered in all respects as illustrative and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 発電機
 2 内燃機関
 3 蓄電池
 4 BMS
 5 電装品
 6 HMI
 7 アクセル
 8 ブレーキ
 50 走行計画生成部
 51 制御部
 52 経路特定部
 53 通信部
 54 電力推定部
 55 必要電力算出部
 56 残存電力算出部
 57 記憶部
 58 インタフェース部
 59 生成部
 60 設定部
 61 発電可能量算出部
 62 燃費算出部
 63 走行制御部
 100 車両
 
DESCRIPTION OF SYMBOLS 1 Generator 2 Internal combustion engine 3 Storage battery 4 BMS
5 Electrical equipment 6 HMI
DESCRIPTION OF SYMBOLS 7 Accelerator 8 Brake 50 Travel plan production | generation part 51 Control part 52 Path | route identification part 53 Communication part 54 Electric power estimation part 55 Necessary electric power calculation part 56 Residual electric power calculation part 57 Storage part 58 Interface part 59 Generation part 60 Setting part 61 Calculation of possible electric power generation amount Unit 62 fuel consumption calculation unit 63 travel control unit 100 vehicle

Claims (14)

  1.  蓄電池を有する車両の走行計画を生成する走行計画生成装置であって、
     車両の現在地から目的地までの経路上の交通情報を取得する交通情報取得部と、
     前記経路に係る道路の勾配を含む道路情報を取得する道路情報取得部と、
     前記交通情報取得部で取得した交通情報及び前記道路情報取得部で取得した道路情報に応じた前記車両の走行状態に基づいて前記経路上での放電電力及び発電電力を推定する電力推定部と、
     該電力推定部で推定した放電電力及び発電電力に基づいて前記経路上での必要発電電力及び推奨放電電力を算出する必要電力算出部と、
     該必要電力算出部での算出結果に基づいて前記蓄電池の前記経路上での残存電力を算出する残存電力算出部と、
     前記必要電力算出部での算出結果に応じた前記車両の前記経路上での走行モード及び前記残存電力算出部で算出した前記経路上での残存電力を含む走行計画を生成する生成部と
     を備える走行計画生成装置。
    A travel plan generation device that generates a travel plan for a vehicle having a storage battery,
    A traffic information acquisition unit that acquires traffic information on a route from the current location of the vehicle to the destination;
    A road information acquisition unit for acquiring road information including a gradient of the road according to the route;
    A power estimation unit that estimates the discharge power and the generated power on the route based on the traffic information acquired by the traffic information acquisition unit and the traveling state of the vehicle according to the road information acquired by the road information acquisition unit;
    A required power calculation unit that calculates the required generated power and the recommended discharge power on the path based on the discharge power and the generated power estimated by the power estimation unit;
    A remaining power calculation unit that calculates a remaining power on the path of the storage battery based on a calculation result in the required power calculation unit;
    A generation unit that generates a travel plan that includes a travel mode on the route of the vehicle according to a calculation result in the required power calculation unit and a remaining power on the route calculated by the remaining power calculation unit. Travel plan generation device.
  2.  前記必要電力算出部は、
     前記電力推定部での推定結果に基づく前記蓄電池の前記経路上での推定残存電力が所定の下限値を下回って極小値となる場合、前記下限値と極小値との差分を必要発電電力として算出する請求項1に記載の走行計画生成装置。
    The required power calculation unit
    When the estimated remaining power on the path of the storage battery based on the estimation result in the power estimation unit becomes a minimum value below a predetermined lower limit value, the difference between the lower limit value and the minimum value is calculated as the required generated power The travel plan generation device according to claim 1.
  3.  前記必要電力算出部は、
     前記電力推定部での推定結果に基づく前記蓄電池の前記経路上での推定残存電力が所定の上限値を上回って極大値となる場合、前記極大値と上限値との差分を推奨放電電力として算出する請求項2に記載の走行計画生成装置。
    The required power calculation unit
    When the estimated remaining power on the path of the storage battery based on the estimation result in the power estimation unit becomes a maximum value exceeding a predetermined upper limit value, the difference between the maximum value and the upper limit value is calculated as recommended discharge power The travel plan generation apparatus according to claim 2.
  4.  前記残存電力算出部で算出した残存電力が前記下限値及び上限値で定められる範囲内となり、かつ前記車両の燃料消費が所定条件を充足するように、前記蓄電池を充電する発電区間及び該蓄電池の電力を消費させる放電区間の少なくとも一方を前記経路上に設定する設定部を備え、
     前記生成部は、
     前記設定部の設定結果に基づいて前記走行計画を生成する請求項3に記載の走行計画生成装置。
    The power generation section for charging the storage battery and the storage battery so that the remaining power calculated by the remaining power calculation unit is within a range determined by the lower limit value and the upper limit value, and fuel consumption of the vehicle satisfies a predetermined condition. A setting unit that sets on the path at least one of the discharge sections that consumes power;
    The generator is
    The travel plan generation device according to claim 3, wherein the travel plan is generated based on a setting result of the setting unit.
  5.  車両の現在地から前記推定残存電力が前記極小値となる位置までの発電候補区間を複数の小区間に分割する分割部と、
     該分割部で分割した各小区間での発電可能量を算出する発電可能量算出部と、
     前記分割部で分割した各小区間での推定車速及び道路の勾配に基づいて、該各小区間での発電時及び非発電時の燃料消費量を算出する燃費算出部と
     を備え、
     前記設定部は、
     前記発電可能量算出部で算出した発電可能量が前記下限値と前記極小値との差分と等しくなり、かつ前記燃費算出部で算出した燃料消費量が最小となるように、前記各小区間のうちの1又は複数の小区間を前記発電区間として設定する請求項4に記載の走行計画生成装置。
    A dividing unit that divides a power generation candidate section from the current location of the vehicle to a position where the estimated remaining power becomes the minimum value, into a plurality of small sections;
    A possible power generation amount calculating unit for calculating a possible power generation amount in each small section divided by the dividing unit;
    A fuel consumption calculation unit that calculates fuel consumption during power generation and non-power generation in each small section based on the estimated vehicle speed and road gradient in each small section divided by the division unit, and
    The setting unit
    The power generation possible amount calculated by the power generation possible amount calculation unit is equal to the difference between the lower limit value and the minimum value, and the fuel consumption calculated by the fuel consumption calculation unit is minimized. The travel plan production | generation apparatus of Claim 4 which sets the one or some small area of them as the said electric power generation area.
  6.  車両の現在地から前記推定残存電力が前記極大値となる位置までの放電候補区間を複数の小区間に分割する分割部と、
     該分割部で分割した各小区間での放電時の燃料消費量を算出する燃費算出部と
     を備え、
     前記設定部は、
     前記燃費算出部で算出した燃料消費量が最小となるように、前記各小区間のうちの1又は複数の小区間を前記放電区間として設定する請求項4に記載の走行計画生成装置。
    A dividing unit that divides a discharge candidate section from the current location of the vehicle to a position where the estimated remaining power reaches the maximum value into a plurality of small sections;
    A fuel consumption calculation unit that calculates fuel consumption during discharge in each small section divided by the division unit, and
    The setting unit
    The travel plan generation device according to claim 4, wherein one or a plurality of small sections among the small sections are set as the discharge section so that the fuel consumption calculated by the fuel consumption calculation unit is minimized.
  7.  前記蓄電池の残存電力の実測値を取得する実測値取得部を備え、
     前記生成部は、
     前記実測値取得部で取得した実測値と生成した走行計画に含まれる前記蓄電池の残存電力との差の絶対値が所定の閾値を超えた場合、再度走行計画を生成する請求項1から請求項6までのいずれか1項に記載の走行計画生成装置。
    An actual value acquisition unit for acquiring an actual value of the remaining power of the storage battery,
    The generator is
    The travel plan is generated again when the absolute value of the difference between the actual measurement value acquired by the actual measurement value acquisition unit and the remaining power of the storage battery included in the generated travel plan exceeds a predetermined threshold. The travel plan generating device according to any one of 6 to 6.
  8.  前記交通情報取得部で取得した交通情報に基づいて前記電力推定部で推定する放電電力又は発電電力に変更があるか否かを判定する電力判定部を備え、
     前記生成部は、
     前記電力判定部で変更があると判定した場合、再度走行計画を生成する請求項1から請求項6までのいずれか1項に記載の走行計画生成装置。
    A power determination unit for determining whether there is a change in the discharge power or generated power estimated by the power estimation unit based on the traffic information acquired by the traffic information acquisition unit;
    The generator is
    The travel plan generation apparatus according to any one of claims 1 to 6, wherein when the power determination unit determines that there is a change, the travel plan is generated again.
  9.  車両に搭載された電装品の電力消費量及び該電装品を使用した場合の環境情報を含むデータを収集する収集部を備え、
     前記電力推定部は、
     前記収集部で収集したデータに基づいて、放電電力を推定する請求項1から請求項8までのいずれか1項に記載の走行計画生成装置。
    A collection unit for collecting data including power consumption of electrical components mounted on a vehicle and environmental information when the electrical components are used;
    The power estimation unit
    The travel plan generation device according to any one of claims 1 to 8, wherein discharge power is estimated based on data collected by the collection unit.
  10.  前記生成部で生成した走行計画に基づいて運転支援情報を出力する出力部を備える請求項1から請求項9までのいずれか1項に記載の走行計画生成装置。 The travel plan generation device according to any one of claims 1 to 9, further comprising an output unit that outputs driving support information based on the travel plan generated by the generation unit.
  11.  前記生成部で生成した走行計画に基づいて前記車両の走行制御を行う走行制御部を備える請求項1から請求項9までのいずれか1項に記載の走行計画生成装置。 The travel plan generation device according to any one of claims 1 to 9, further comprising a travel control unit that performs travel control of the vehicle based on the travel plan generated by the generation unit.
  12.  請求項1から請求項11までのいずれか1項に記載の走行計画生成装置を搭載した車両。 A vehicle equipped with the travel plan generation device according to any one of claims 1 to 11.
  13.  請求項1から請求項9までのいずれか1項に記載の走行計画生成装置と、車両とを備え、前記走行計画生成装置は、生成した走行計画を前記車両へ提供する走行計画生成システム。 A travel plan generation system comprising the travel plan generation device according to any one of claims 1 to 9 and a vehicle, wherein the travel plan generation device provides the generated travel plan to the vehicle.
  14.  コンピュータに、蓄電池を有する車両の走行計画を生成させるためのコンピュータプログラムであって、
     コンピュータを、
     車両の現在地から目的地までの経路上の交通情報及び前記経路に係る道路の勾配を含む道路情報に応じた前記車両の走行状態に基づいて前記経路上での放電電力及び発電電力を推定する電力推定部と、
     該電力推定部で推定した放電電力及び発電電力に基づいて前記経路上での必要発電電力及び推奨放電電力を算出する必要電力算出部と、
     該必要電力算出部での算出結果に基づいて前記蓄電池の前記経路上での残存電力を算出する残存電力算出部と、
     前記必要電力算出部での算出結果に応じた前記車両の前記経路上での走行モード及び前記残存電力算出部で算出した前記経路上での残存電力を含む走行計画を生成する生成部と
     して機能させるコンピュータプログラム。
    A computer program for causing a computer to generate a travel plan for a vehicle having a storage battery,
    Computer
    Electric power for estimating discharge power and generated power on the route based on traffic information on the route from the current location of the vehicle to the destination and road conditions including road information including the gradient of the road related to the route An estimation unit;
    A required power calculation unit that calculates the required generated power and the recommended discharge power on the path based on the discharge power and the generated power estimated by the power estimation unit;
    A remaining power calculation unit that calculates a remaining power on the path of the storage battery based on a calculation result in the required power calculation unit;
    As a generation unit that generates a travel plan including the travel mode of the vehicle on the route according to the calculation result of the required power calculation unit and the remaining power on the route calculated by the remaining power calculation unit. A computer program that functions.
PCT/JP2016/067247 2015-09-16 2016-06-09 Traveling plan generation apparatus, vehicle, traveling plan generation system, and computer program WO2017047171A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-183105 2015-09-16
JP2015183105A JP2017058249A (en) 2015-09-16 2015-09-16 Travel plan generation device, vehicle, travel plan generation system and computer program

Publications (1)

Publication Number Publication Date
WO2017047171A1 true WO2017047171A1 (en) 2017-03-23

Family

ID=58288595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067247 WO2017047171A1 (en) 2015-09-16 2016-06-09 Traveling plan generation apparatus, vehicle, traveling plan generation system, and computer program

Country Status (2)

Country Link
JP (1) JP2017058249A (en)
WO (1) WO2017047171A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019151283A (en) * 2018-03-06 2019-09-12 本田技研工業株式会社 Vehicle control system, vehicle control method, and program

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6867258B2 (en) * 2017-09-08 2021-04-28 本田技研工業株式会社 Vehicle heat exchange systems, vehicle heat exchange methods, and programs
JP7281099B2 (en) * 2017-10-23 2023-05-25 エーシーテクノロジーズ株式会社 Range Extender Using Route-Adaptive Power Generation Control - EV Bus Operation Method
JP6992500B2 (en) * 2017-12-26 2022-01-13 トヨタ自動車株式会社 Power management system
US11117475B2 (en) * 2018-10-22 2021-09-14 Woven Planet North America, Inc. Systems and methods for efficient vehicle control
KR102545110B1 (en) * 2018-12-14 2023-06-20 현대자동차주식회사 System and method for providing optimum fuel in operating pattern
JP6930621B1 (en) * 2020-03-17 2021-09-01 トヨタ自動車株式会社 Information processing equipment and vehicle control system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002171603A (en) * 2000-12-04 2002-06-14 Matsushita Electric Ind Co Ltd Control device for hybrid vehicle
JP2011158277A (en) * 2010-01-29 2011-08-18 Panasonic Corp Navigation apparatus
JP2013177089A (en) * 2012-02-29 2013-09-09 Nissan Motor Co Ltd Control device of hybrid vehicle
JP2015019521A (en) * 2013-07-11 2015-01-29 トヨタ自動車株式会社 Vehicle with regenerative generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002171603A (en) * 2000-12-04 2002-06-14 Matsushita Electric Ind Co Ltd Control device for hybrid vehicle
JP2011158277A (en) * 2010-01-29 2011-08-18 Panasonic Corp Navigation apparatus
JP2013177089A (en) * 2012-02-29 2013-09-09 Nissan Motor Co Ltd Control device of hybrid vehicle
JP2015019521A (en) * 2013-07-11 2015-01-29 トヨタ自動車株式会社 Vehicle with regenerative generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019151283A (en) * 2018-03-06 2019-09-12 本田技研工業株式会社 Vehicle control system, vehicle control method, and program

Also Published As

Publication number Publication date
JP2017058249A (en) 2017-03-23

Similar Documents

Publication Publication Date Title
WO2017047171A1 (en) Traveling plan generation apparatus, vehicle, traveling plan generation system, and computer program
US10137880B2 (en) Control apparatus for hybrid vehicle
US9758153B2 (en) Hybrid vehicle control apparatus
CN107487315B (en) The control device of hybrid vehicle
US6687581B2 (en) Control device and control method for hybrid vehicle
US8612077B2 (en) Hybrid electric vehicle and method of path dependent receding horizon control
EP3124302A2 (en) Control apparatus
CN106573624B (en) Method for operating a motor vehicle, motor vehicle and computer program
JP4918076B2 (en) Hybrid vehicle control device and hybrid vehicle
CN110758377B (en) Method for determining a driving state of a hybrid vehicle for a section of a preceding driving route and hybrid vehicle
JP2003047110A (en) Method of using on-board navigation system for hybrid electric vehicle for vehicle energy management
KR20100099165A (en) Method and system for managing the operation of a motor vehicle as a function of driving conditions
EP2692604B1 (en) Method for controlling the charge level of an energy storage device of a hybrid vehicle
US9352740B2 (en) Vehicle energy-management device for controlling energy consumption along a travel route
US10081352B2 (en) Method for operating a navigation system of a hybrid motor vehicle, and hybrid motor vehicle
EP3828048A1 (en) Travel control device, travel control method, and non-transitory storage medium
JP2017114312A (en) Hybrid vehicle and control method therefor
CN116946107B (en) Hybrid system mode decision and power distribution method under energy track following
CN111532264A (en) Intelligent internet automobile cruising speed optimization method for variable-gradient and variable-speed-limit traffic scene
CN112009455B (en) Energy management method and device for hybrid vehicle and vehicle
JP2016119792A (en) Power generation control device
DE102020128815A1 (en) SYSTEM AND PROCEDURE FOR ROUTE-BASED OPTIMIZATION FOR BATTERY ELECTRIC VEHICLES
CN115140046A (en) Vehicle control method and system, vehicle controller and cloud server
CN105984402B (en) Energy storage recommendation controller for vehicle
US20230280168A1 (en) Information processing device, system, and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846044

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16846044

Country of ref document: EP

Kind code of ref document: A1