WO2017045546A1 - 一种时间同步报文的处理方法及装置 - Google Patents

一种时间同步报文的处理方法及装置 Download PDF

Info

Publication number
WO2017045546A1
WO2017045546A1 PCT/CN2016/098076 CN2016098076W WO2017045546A1 WO 2017045546 A1 WO2017045546 A1 WO 2017045546A1 CN 2016098076 W CN2016098076 W CN 2016098076W WO 2017045546 A1 WO2017045546 A1 WO 2017045546A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
time synchronization
node
source information
time source
Prior art date
Application number
PCT/CN2016/098076
Other languages
English (en)
French (fr)
Inventor
韩柳燕
李晗
Original Assignee
中国移动通信集团公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信集团公司 filed Critical 中国移动通信集团公司
Priority to EP16845660.6A priority Critical patent/EP3352392B1/en
Priority to US15/760,870 priority patent/US20180262287A1/en
Publication of WO2017045546A1 publication Critical patent/WO2017045546A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0641Change of the master or reference, e.g. take-over or failure of the master
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • H04J3/0673Clock or time synchronisation among packet nodes using intermediate nodes, e.g. modification of a received timestamp before further transmission to the next packet node, e.g. including internal delay time or residence time into the packet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • H04J3/0661Clock or time synchronisation among packet nodes using timestamps
    • H04J3/0667Bidirectional timestamps, e.g. NTP or PTP for compensation of clock drift and for compensation of propagation delays

Definitions

  • the present disclosure relates to the field of transmission and time synchronization technologies, and in particular, to a method and an apparatus for processing a time synchronization message.
  • TD-SCDMA Time Division-Synchronous Code Division Multiple Access
  • TD-LTE Time Division Long Term Evolution
  • CDMA2000 3G mobile
  • Code Division Multiple Access 2000 Code Division Multiple Access 2000
  • LTE-A Long Term Evolution-Advanced
  • MBMS Multimedia Broadcast Multicast Service
  • the current mainstream time synchronization protocol is the PTP (Precision Time Synchronization Protocol) protocol.
  • PTP is a master-slave synchronization system that uses master-slave clock mode to encode time information, and uses network symmetry and delay measurement technology to achieve master-slave time synchronization.
  • the master clock provides the source time for the downstream clock to synchronize time, that is, for the slave clock reference.
  • the slave clock corrects the local time according to the time provided by the master clock by communicating with the master clock.
  • the PTP system consists of several nodes, including the super master clock node (Grandmaster node) and the boundary clock node, which can provide time source for the downstream clock node.
  • the boundary clock node Take the boundary clock node as an example, which has both a master clock port (master) and a slave clock port (slave).
  • the boundary clock node receives the PTP packet from the upstream port through the primary clock port, it processes the PTP packet and passes the optimal master clock algorithm (BMC).
  • BMC master clock algorithm
  • the algorithm determines the best time source.
  • the system clock tracks the optimal time source to synchronize with the time of the master clock.
  • the output PTP packet is regenerated and sent from the clock port to the downstream clock node.
  • time synchronization message processing is processed on the inside of the device. If the time synchronization status of the clock node changes or the input source status changes, the output time synchronization message will be changed accordingly. This type of processing will cause network instability in some cases. For example, when the input time source of a clock node is switched, the clock node may enter the time hold state in a short period of time, and the time synchronization message parameters of the output are changed and quickly sent to the downstream clock. The node causes the downstream clock node to also switch the time source event. The time state is the instantaneous state. After the clock node finds a new time source, it changes the output time synchronization message parameters. After the downstream clock node receives the switch, the time source may be switched again, causing the network node to frequently switch time frequently. The source causes the network to be unstable, and even some nodes cannot lock time due to frequent state changes, and the performance deteriorates drastically.
  • the present disclosure provides a method and an apparatus for processing a time synchronization message, which solves the problem that the input time synchronization message change of the time synchronization node in the prior art immediately causes the output time synchronization message parameter to change, thereby causing the time synchronization network to not operate. Stable technical issues.
  • a method for processing a time synchronization message is provided, which is applied to a time synchronization node, and the processing method includes:
  • the time synchronization node tracks the time source, after delaying for a predetermined time, the time synchronization message parameter modified according to the change of the time source information is sent to the downstream clock node.
  • the change of the time source information is that the time source information cannot be received normally, or the change of the time source information causes the time synchronization node to change the time source according to the received time source information, and needs to be modified.
  • the processing method further includes:
  • the time synchronization message parameters transmitted to the downstream clock node are modified according to the parameters of the time source currently tracked by the time synchronization node.
  • the processing method when the change of the time source information causes the time synchronization node to replace the time source according to the received time source information, the processing method further includes:
  • the time synchronization message parameters transmitted through the slave clock are modified according to the parameters of the time source currently tracked by the time synchronization node.
  • the processing method of the time synchronization message further includes:
  • the clock message parameters transmitted to the downstream clock node are directly modified according to the change of the time source information.
  • the corresponding delay predetermined time is different.
  • a processing apparatus for a time synchronization message is further provided, which is applied to a time synchronization node, and the processing apparatus includes:
  • a first determining module configured to determine, according to the change of the received time source information, whether the time synchronization node tracks the time source changes
  • the first processing module is configured to send a time synchronization message parameter modified according to the change of the time source information to the downstream clock node after the time synchronization node tracks the time source change.
  • the first determining module includes:
  • the first determining unit is configured to: when the time source information changes, the time synchronization information cannot be normally received, and determine that the time synchronization message parameter to be transmitted to the downstream clock node needs to be modified; or
  • the second determining unit is configured to determine, when the time synchronization information changes the time source according to the received time source information, that the time synchronization message parameter needs to be modified to be transmitted to the downstream clock node.
  • the processing device further includes:
  • a second judging module configured to determine, when the time source information changes, that the time source information cannot be received normally, after the predetermined time expires, determine whether the time synchronization node is in a time synchronization holding state; as well as
  • the second processing module is configured to modify the time synchronization message parameter transmitted to the downstream clock node according to the parameter of the time source currently tracked by the time synchronization node when the time synchronization node is in the time synchronization holding state.
  • the processing device further includes:
  • a third processing module configured to: when the time source information changes, causing the time synchronization node to replace the time source according to the received time source information, after the predetermined time expires, the parameter is modified according to the time source parameter currently tracked by the boundary clock node. Time synchronization message parameters for clock transmission.
  • the processing device of the time synchronization message further includes:
  • the fourth processing module is configured to modify the clock message parameters transmitted to the downstream clock node according to the change of the time source information when the change of the time source information does not cause the time synchronization node to change the time source.
  • time synchronization node By distinguishing the change of the time source information input by the time synchronization node, when the time source information changes the time source of the time synchronization node, a certain delay is set for changing the output time synchronization message parameter to the downstream clock node.
  • the scheduled time avoids unnecessary downstream oscillations and ensures stable operation of the time synchronization network.
  • FIG. 1 is a flow chart showing a first embodiment of the present disclosure
  • FIG. 2 is a schematic flow chart showing a third embodiment of the present disclosure.
  • FIG. 3 is a flow chart showing a fourth embodiment of the present disclosure.
  • FIG. 4 shows a schematic diagram of functional modules in accordance with an eighth embodiment of the present disclosure.
  • a first embodiment of the present disclosure provides a method for processing a time synchronization message, which is applied to a time synchronization node, and the processing method includes steps S11 and S12.
  • step S11 the time synchronization section is determined according to the change of the received time source information.
  • the point tracking time source has changed.
  • the time synchronization node mentioned here may be a boundary clock node or a super master clock node.
  • the boundary clock node can be used as the slave clock node of the upstream clock node to receive the time synchronization message sent by the upstream clock node or the master clock node of the downstream clock node.
  • the node sends time synchronization message parameters. In this way, parameters such as frequency and phase that are consistent between the upstream clock node, the boundary clock node, and the downstream clock node can be achieved.
  • the super master clock node directly receives the satellite receiver time source information sent by the satellite, and uses the time source information as its own reference time.
  • time synchronization process when the time source information sent by the satellite received by the super master clock changes, or the time synchronization message transmitted by the upstream clock node received by the boundary clock node changes, the modification to the downstream clock node is caused. Time synchronization message parameters transmitted. At this time, it is necessary to judge whether the change of the received time source information causes the change of the tracking time source itself, that is, whether it needs to switch the time source itself.
  • step S12 when the time synchronization node tracks the time source change, after delaying for a predetermined time, the time synchronization message parameter modified according to the change of the time source information is sent to the downstream clock node.
  • the downstream clock node may follow the time synchronization node to switch the time source, thereby Causes the oscillation of the downstream clock node.
  • the predetermined time referred to herein refers to the time when the time synchronization node returns to the normal running state and does not affect the normal operation of the downstream clock node.
  • the super master clock node determines the change according to the time source of the receiver received from the satellite, or the boundary clock node determines the change according to the time synchronization message received from the upstream clock node. Whether you need to switch the time source of the trace. When the time source needs to be switched, after the predetermined time delay, the modified time synchronization message is sent to the downstream clock node. The number is used to avoid unnecessary switching processes of the downstream clock nodes, thereby avoiding unnecessary network oscillations and ensuring stable operation of the entire time synchronization network.
  • the change of the time source information includes multiple cases.
  • the time source information changes include: changes in parameters of the receiving satellite, changes in satellite receiver parameters, and the like.
  • the boundary clock is used as an example.
  • the time source information sent by the upstream clock node is a time synchronization packet (for example, a PTP protocol packet).
  • the time synchronization packet changes include packet loss and packet. Partial loss, poor packet quality, packet delay, packet parameter changes, etc.
  • the packet parameters include one or more of a time class clockClass, a master clock identity information grandmasterIdentity, a step shift amountRemoved, a time source timeSource, a time trace source timeTraceable, and a frequency traceability frequencyTraceable.
  • the second embodiment is described by taking the following scenario as an example.
  • the time synchronization node replaces the time source according to the received time source information, and it is determined that the change situation needs to be modified to the downstream clock. Time synchronization message parameters transmitted by the node.
  • the processing method of the time synchronization message is specifically introduced in the case that the time source information cannot be received normally.
  • the method for processing the time synchronization packet includes the steps S21 to S24.
  • step S21 when the time source information cannot be normally received from the upstream clock node, it is determined that the time synchronization message parameter transmitted to the downstream clock node needs to be modified, and the boundary clock node enters the time synchronization holding state.
  • the reason that the time source information cannot be received normally is that the boundary clock node cannot receive the time synchronization message normally.
  • the specific situation includes: the time synchronization packet is partially lost, the time synchronization packet sent by the upstream clock node is not received within the preset time, and the upstream clock node stops transmitting time synchronization. The packet, or the upstream clock node failed to send the time synchronization message.
  • the boundary clock node determines that the time synchronization message parameter to be transmitted to the downstream clock node needs to be modified. At this time, the boundary clock node enters the time synchronization hold state.
  • the time synchronization hold state referred to herein means that the boundary clock node updates the local time with its own clock instead of using the external time source as the reference clock for the local time update.
  • step S22 when entering the time synchronization hold state, the time synchronization message parameters transmitted through the slave clock port to the downstream clock node are maintained unchanged for a predetermined time.
  • the predetermined time referred to herein refers to that the received time synchronization message sent by the upstream clock node returns to normal, and does not affect the experience time of the downstream clock node to synchronize the normal operation of the network.
  • the predetermined time t1 can be set to one or more cycles in which the upstream clock node transmits the time synchronization message. That is, after the boundary clock node enters the time synchronization hold state, the boundary clock node always maintains the time synchronization message parameters transmitted through the slave clock port before the upstream clock node sends the time synchronization message for the next or next N times. .
  • step S23 when the predetermined time has expired, it is judged whether or not the boundary clock node is in the time synchronization holding state.
  • the boundary clock node After the boundary clock node maintains the time synchronization hold state for a predetermined time, the boundary clock node needs to detect whether it is still in the time synchronization hold state.
  • step S24 when the boundary clock node is in the time synchronization hold state, the time synchronization message parameters transmitted through the slave clock port are modified according to the parameters of the time source currently tracked by the boundary clock node.
  • the boundary clock node When the boundary clock node maintains the time synchronization message transmitted through the slave clock port for more than the predetermined time and remains in the time synchronization hold state, the boundary clock node needs to be based on the current tracking in order not to affect the normal operation of the entire time synchronization network.
  • the time source parameter modifies the time synchronization message parameters sent to the downstream clock node, so that the downstream clock node can switch the correct time source to ensure the synchronization of the entire network clock.
  • the time synchronization node in combination with the change of the time source information in the second embodiment, replaces the time source according to the received time source information, and the processing method of the time synchronization packet is specifically introduced. For example, as shown in FIG. 3, specifically including step S31 to step S33.
  • step S31 when the change of the time source information received from the upstream clock node causes the boundary clock node to replace the time source according to the received time synchronization message, the time synchronization message parameter transmitted to the downstream clock node needs to be modified.
  • the time synchronization message received by the boundary clock node from the upstream clock node refers to the time synchronization message parameter received by the boundary clock node from the currently selected time source.
  • the BMC is selected.
  • the source algorithm determines, according to the received time synchronization message, that the time source source needs to be replaced, and the boundary clock node determines that the time synchronization message parameter to be transmitted to the downstream clock node needs to be modified.
  • step S32 the time synchronization message parameters transmitted through the slave clock port are maintained unchanged for a predetermined time.
  • the predetermined time referred to herein refers to the experience time that the boundary clock node tracks to a new time source and does not affect the normal operation of the downstream clock node synchronization network.
  • the predetermined time t2 can be set as the required time for the boundary clock node to calculate and track to the new time source, that is, the boundary clock node always maintains before the boundary clock node tracks the new time source.
  • the time synchronization message parameters transmitted from the clock port are unchanged.
  • step S33 after the predetermined time expires, the time synchronization message parameters transmitted through the slave clock are modified according to the parameters of the time source currently tracked by the boundary clock node.
  • the boundary clock node After the boundary clock node tracks the new time source, the boundary clock node needs to modify the time synchronization packet parameters sent to the downstream clock node according to the parameters of the current tracking time source, so that the downstream clock node can switch the correct time source to ensure the full Synchronization of the network clock.
  • the first embodiment to the fourth embodiment describe the case where the time synchronization node sets a certain delay predetermined time when changing the time synchronization message parameter to the downstream clock node when the time synchronization state changes.
  • the case where the change of the time source information received by the time synchronization node does not cause the time source to be switched by itself is introduced.
  • the clock message parameters transmitted to the downstream clock node are directly modified according to the change of the time source information.
  • the boundary clock node Take the boundary clock node as an example, that is, the boundary clock node receives from the upstream clock node.
  • the time synchronization packet changes, and the BMC source selection algorithm is used to determine that the time source is not required to be replaced according to the received time synchronization message.
  • the boundary clock node does not set the delay time for modifying the output time synchronization message parameters, and directly modifies the clock message parameters transmitted by the downstream clock node.
  • the corresponding delay predetermined time when the change of the time source information is different, the corresponding delay predetermined time is different.
  • t1 mentioned in the above embodiment 3 and t2 mentioned in the fourth embodiment may be set to different times.
  • the boundary clock node has multiple time synchronization interfaces and protocols, for example, when the PTN system has two time synchronization protocol interfaces, PTP and 1PPS+TOD, when one of the protocols as the time source changes, the other changes are made.
  • An output time synchronization message parameter of an interface For example, the boundary clock node tracks the PTP time source and the output interface is 1PPS+TOD. If the PTP packet is lost, the device enters the time synchronization hold state. At this time, the boundary clock node needs to be set to delay for a period of time t3, and if it is still in the time synchronization hold state after t3, the output 1PPS+TOD message status parameter is changed.
  • the above seven embodiments respectively introduce different changes of the time source information input by the time synchronization node, and adopt different processing strategies for processing.
  • the time synchronization node sets a certain delay time for changing the output time synchronization message parameters to the downstream clock node, thereby avoiding unnecessary downstream oscillation and ensuring stable operation of the time synchronization network.
  • the eighth embodiment will be described in detail with respect to the processing device for time synchronization messages corresponding to the processing method of the time synchronization message described above with reference to FIG.
  • the processing device of the time synchronization message is applied to a time synchronization node, and specifically includes:
  • the first judging module 401 is configured to determine, according to the change of the received time source information, whether the time synchronization node tracks the time source change;
  • the first processing module 402 is configured to delay when the time synchronization node tracks the time source change After a predetermined time, the time synchronization message parameters modified according to the change of the time source information are sent to the downstream clock node.
  • the first determining module includes:
  • the first determining unit is configured to: when the time source information changes, the time synchronization information cannot be normally received, and determine that the time synchronization message parameter to be transmitted to the downstream clock node needs to be modified; or
  • the second determining unit is configured to determine, when the time synchronization information changes the time source according to the received time source information, that the time synchronization message parameter needs to be modified to be transmitted to the downstream clock node.
  • the processing device further includes:
  • a second judging module configured to determine, when the time source information changes, that the time source information cannot be received normally, after the predetermined time expires, determine whether the time synchronization node is in a time synchronization holding state
  • a second processing module configured to: when the time synchronization node is in the time synchronization holding state, modify the time synchronization message parameter transmitted to the downstream clock node according to the parameter of the time source currently tracked by the time synchronization node.
  • the processing device further includes:
  • a third processing module configured to: when the time source information changes, causing the time synchronization node to replace the time source according to the received time source information, after the predetermined time expires, the parameter is modified according to the time source parameter currently tracked by the boundary clock node. Time synchronization message parameters for clock transmission.
  • the processing apparatus of the time synchronization message further includes:
  • the fourth processing module is configured to modify the clock message parameters transmitted to the downstream clock node according to the change of the time source information when the change of the time source information does not cause the time synchronization node to change the time source.
  • the device is a device corresponding to the processing method of the time synchronization message, and all the implementation manners in the foregoing method embodiments are applicable to the embodiment of the device, and the same technical effects can be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

本公开文本公开了一种时间同步报文的处理方法及装置,应用于一时间同步节点。该处理方法包括:根据接收到的时间源信息的变化情况,判断时间同步节点跟踪时间源信息是否发生改变;在时间同步节点跟踪时间源发生改变时,延迟一预定时间后,向下游时钟节点发送根据时间源信息的变化情况修改的时间同步报文参数。本公开文本通过对时间同步节点输入的时间源信息的变化情况进行区分处理,在时间源信息的变化情况改变时间同步节点跟踪的时间源时,对改变输出时间同步报文参数设置一定的延迟时间,从而避免了不必要的下游震荡,保证了时间同步网络的稳定运行。

Description

一种时间同步报文的处理方法及装置
相关申请的交叉参考
本申请主张在2015年9月16日在中国提交的中国专利申请号No.201510590170.4的优先权,其全部内容通过引用包含于此。
技术领域
本公开文本涉及传输及时间同步技术领域,尤其涉及一种时间同步报文的处理方法及装置。
背景技术
随着网络技术的发展,很多领域对时间同步的要求越来越高。例如,在移动通信领域,多种通信制式要求基站空口之间满足时间同步才能正常工作。其中常见的通信制式包括:TD-SCDMA(时分同步码分多址,Time Division-Synchronous Code Division Multiple Access)制式、TD-LTE(分时长期演进,Time Division Long Term Evolution)制式、CDMA2000(3G移动通讯标准,Code Division Multiple Access 2000)制式、LTE-A(长期演进技术升级,Long Term Evolution-Advanced)制式和MBMS(多媒体广播/组播服务,Multimedia Broadcast Multicast Service)等。
当前较为主流的时间同步协议是PTP(精确时间同步,Precision Time Synchronization Protocol)协议。PTP是一种主从同步系统,采用主从时钟方式,对时间信息进行编码,利用网络的对称性和延时测量技术,实现主从时间的同步。在一条PTP同步路径中,主时钟提供源时间,供下游时钟进行时间同步,也就是供从时钟参考。从时钟则通过与主时钟互通报文消息,根据主时钟提供的时间校正本地时间。
PTP系统由若干节点组成,其中包括的超级主时钟节点(Grandmaster节点)和边界时钟节点均可为下游时钟节点提供时间源。以边界时钟节点为例,其同时具有主时钟端口(master)和从时钟端口(slave)。边界时钟节点通过主时钟端口接收上游传递的PTP报文之后进行处理,经过最佳主时钟算法(BMC 算法)决策出最佳时间源,系统时钟跟踪最佳时间源达到和主时钟的时间同步,同时重新生成输出的PTP报文,通过从时钟端口向下游时钟节点发送。
现有技术中时间同步报文处理在设备内部是即时处理的。如果时钟节点的时间同步状态改变或者输入源状态改变,会立刻将输出的时间同步报文相应改变,这种处理方式在部分情况下会引起网络的不稳定。例如,某时钟节点的输入时间源发生切换时,在找寻切换时间源的过程中,该时钟节点有可能短暂时间进入时间保持状态,导致输出的时间同步报文参数改变,迅速下发给下游时钟节点,导致下游时钟节点也发生切换时间源事件。而这个时间保持状态是瞬时状态,该时钟节点找到新的时间源之后,又会改变其输出时间同步报文参数,下游时钟节点收到后可能又会切换时间源,导致网络节点频繁快速切换时间源,造成网络不稳定,甚至造成某些时间节点由于频繁状态变化无法再锁定时间,性能急剧恶化。
发明内容
(一)要解决的技术问题
本公开文本提供了一种时间同步报文的处理方法及装置,解决了现有技术中时间同步节点的输入时间同步报文变化立刻导致输出时间同步报文参数变化,从而引起时间同步网络运行不稳定的技术问题。
(二)技术方案
依据本公开文本的一个方面,提供了一种时间同步报文的处理方法,应用于一时间同步节点,该处理方法包括:
根据接收到的时间源信息的变化情况,判断时间同步节点跟踪时间源是否发生改变;以及
在时间同步节点跟踪时间源发生改变时,延迟一预定时间后,向下游时钟节点发送根据时间源信息的变化情况修改的时间同步报文参数。
在其中一个可行的实施例中,时间源信息的变化情况为无法正常接收到时间源信息,或者时间源信息的变化情况导致时间同步节点根据接收到的时间源信息更换时间源时,需要修改向下游时钟节点传输的时间同步报文参数。
在其中一个可行的实施例中,当时间源信息的变化情况为无法正常接收 到时间源信息时,处理方法还包括:
预定时间到期后,判断时间同步节点是否处于时间同步保持状态;以及
在时间同步节点处于时间同步保持状态时,依据时间同步节点当前跟踪的时间源的参数修改向下游时钟节点传输的时间同步报文参数。
在其中一个可行的实施例中,当时间源信息的变化情况导致时间同步节点根据接收到的时间源信息更换时间源时,处理方法还包括:
预定时间到期后,依据时间同步节点当前跟踪的时间源的参数修改通过从时钟传输的时间同步报文参数。
在其中一个可行的实施例中,该时间同步报文的处理方法还包括:
当时间源信息的变化情况不会导致时间同步节点更换时间源时,直接根据时间源信息的变化情况修改向下游时钟节点传输的时钟报文参数。
在其中一个可行的实施例中,当接收到的时间源信息的变化情况不同时,所对应的延迟预定时间不同。
依据本公开文本的另一个方面,还提供了一种时间同步报文的处理装置,应用于一时间同步节点,该处理装置包括:
第一判断模块,用于根据接收到的时间源信息的变化情况,判断时间同步节点跟踪时间源是否发生改变;以及
第一处理模块,用于在时间同步节点跟踪时间源发生改变时,延迟一预定时间后,向下游时钟节点发送根据所述时间源信息的变化情况修改的时间同步报文参数。
在其中一个可行的实施例中,第一判断模块包括:
第一判断单元,用于当时间源信息的变化情况为无法正常接收到时间源信息时,判断为需要修改向下游时钟节点传输的时间同步报文参数;或者,
第二判断单元,用于当时间源信息的变化情况导致时间同步节点根据接收到的时间源信息更换时间源时,判断为需要修改向下游时钟节点传输的时间同步报文参数。
在其中一个可行的实施例中,该处理装置还包括:
第二判断模块,用于当时间源信息的变化情况为无法正常接收到时间源信息时,预定时间到期后,判断时间同步节点是否处于时间同步保持状态; 以及
第二处理模块,用于在时间同步节点处于时间同步保持状态时,依据时间同步节点当前跟踪的时间源的参数修改向下游时钟节点传输的时间同步报文参数。
在其中一个可行的实施例中,处理装置还包括:
第三处理模块,用于当时间源信息的变化情况导致时间同步节点根据接收到的时间源信息更换时间源时,预定时间到期后,依据边界时钟节点当前跟踪的时间源的参数修改通过从时钟传输的时间同步报文参数。
在其中一个可行的实施例中,该时间同步报文的处理装置还包括:
第四处理模块,用于当时间源信息的变化情况不会导致时间同步节点更换时间源时,直接根据时间源信息的变化情况修改向下游时钟节点传输的时钟报文参数。
(三)有益效果
本公开文本具体实施例上述技术方案中的至少一个具有以下有益效果:
通过对时间同步节点输入的时间源信息的变化情况进行区分处理,在时间源信息的变化情况改变时间同步节点跟踪的时间源时,对改变向下游时钟节点输出时间同步报文参数设置一定的延迟预定时间,从而避免了不必要的下游震荡,保证了时间同步网络的稳定运行。
附图说明
为了更清楚地说明本公开文本实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开文本的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1表示根据本公开文本实施例一的流程示意图;
图2表示根据本公开文本实施例三的流程示意图;
图3表示根据本公开文本实施例四的流程示意图;以及
图4表示根据本公开文本实施例八的功能模块示意图。
具体实施方式
下面结合附图和实施例,对本公开文本的具体实施方式做进一步描述。以下实施例仅用于说明本公开文本,但不用来限制本公开文本的范围。
为使本公开文本实施例的目的、技术方案和优点更加清楚,下面将结合本公开文本实施例的附图,对本公开文本实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开文本的一部分实施例,而不是全部的实施例。基于所描述的本公开文本的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开文本保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开文本所属领域内具有一般技能的人士所理解的通常意义。本公开文本专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也相应地改变。
下面结合说明书附图对本公开文本实施例作进一步详细描述。应当理解,此处所描述的实施例仅用于说明和解释本公开文本,并不用于限定本公开文本。
下面将参照附图更详细地描述本公开文本的示例性实施例。虽然附图中显示了本公开文本的示例性实施例,然而应当理解,可以以各种形式实现本公开文本而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开文本,并且能够将本公开文本的范围完整的传达给本领域的技术人员。
实施例一
如图1所示,本公开文本实施例一提供了一种时间同步报文的处理方法,应用于一时间同步节点,该处理方法包括步骤S11和步骤S12。
在步骤S11中,根据接收到的时间源信息的变化情况,判断时间同步节 点跟踪时间源是否发生改变。
这里提到的时间同步节点可以是边界时钟节点,亦可以是超级主时钟节点。以边界时钟节点为例,边界时钟节点既可以作为上游时钟节点的从时钟节点,用于接收上游时钟节点发送的时间同步报文,又可以作为下游时钟节点的主时钟节点,用于向下游时钟节点发送时间同步报文参数。这样即可实现上游时钟节点、边界时钟节点和下游时钟节点保持一致的频率与相位等参数。而超级主时钟节点直接接收卫星发送的卫星接收机时间源信息,并将该时间源信息作为自身的参考时间。
在时间同步过程中,当超级主时钟接收到的卫星发送的时间源信息发生改变,或者边界时钟节点接收到的上游时钟节点传输过来的时间同步报文发生改变时,会导致修改向下游时钟节点传输的时间同步报文参数。这时,需要判断接收到的时间源信息的变化是否会导致自身跟踪时间源的变化,即自身是否需要切换时间源。
在步骤S12中,在时间同步节点跟踪时间源发生改变时,延迟一预定时间后,向下游时钟节点发送根据时间源信息的变化情况修改的时间同步报文参数。
当判断出接收到的时间源信息的变化情况会导致自身切换时间源时,即修改向下游时钟节点输出的时间同步报文参数,可能会造成下游时钟节点跟随该时间同步节点切换时间源,从而造成下游时钟节点的震荡。为了避免因下游时钟节点发生震荡导致网络运行不稳定的情况,需要延迟一预定时间后,再向下游时钟节点发送修改后的时间同步报文参数。也就是说,在该时间同步节点需要切换时间源时,在预定时间内不修改向下游时钟节点输出的时间同步报文参数。
这里所说的预定时间指的是该时间同步节点恢复正常运行状态,且不影响下游时钟节点正常运行的时间。
本公开文本实施例一中,超级主时钟节点根据从卫星接收到的接收机时间源的变化情况,或者,边界时钟节点根据从上游时钟节点接收到的时间同步报文的变化情况,来判断自身是否需要切换跟踪的时间源。在需要切换时间源时,延迟预定时间后,再向下游时钟节点发送修改后的时间同步报文参 数,以此避免下游时钟节点不必要的切换过程,从而避免了不必要的网络震荡,保证了整个时间同步网络的稳定运行。
实施例二
本实施例二在实施例一的基础上,时间源信息的变化情况包括多种情况。以超级主时钟节点为例,时间源信息的变化情况包括:接收卫星的参数变化、卫星接收机参数变化等。另外,以边界时钟为例,接收到上游时钟节点发送的时间源信息为时间同步报文(如为精确时间同步PTP协议报文),时间同步报文的变化情况包括:报文丢失、报文部分丢失、报文质量差、报文延迟、报文参数变化等。其中,报文参数包括:时间等级clockClass、主时钟身份信息grandmasterIdentity、步移量stepsRemoved、时间源timeSource、时间溯源timeTraceable和频率溯源frequencyTraceable等参数中的一种或多种。本实施例二仅以以下场景作为示例进行说明。
当时间源信息的变化情况为无法正常接收到时间源信息,或者时间源信息的变化情况导致时间同步节点根据接收到的时间源信息更换时间源时,均判断为该变化情况需要修改向下游时钟节点传输的时间同步报文参数。
值得指出的是,其他可造成时间同步节点更换时间源的情况亦属于上述实施例一中所提及的延迟一预定时间后,向下游时钟节点发送修改后的时间同步报文参数的情况。
实施例三
本实施例三结合实施例二中时间源信息的变化情况为无法正常接收到时间源信息的情况对该时间同步报文的处理方法进行具体介绍。如图2所示,以边界时钟节点为例,该时间同步报文处理方法具体包括步骤S21至步骤S24。
在步骤S21中,当无法从上游时钟节点正常接收到时间源信息时,判断为需要修改向下游时钟节点传输的时间同步报文参数,边界时钟节点进入时间同步保持状态。
这里所说的无法正常接收到时间源信息指的是边界时钟节点无法正常接收到时间同步报文。具体情况包括:时间同步报文部分丢失,预设时间内未接收到上游时钟节点发送的时间同步报文,上游时钟节点停止发送时间同步 报文,或上游时钟节点未成功发送处时间同步报文等情况。边界时钟节点判断出需要修改向下游时钟节点传输的时间同步报文参数,这时,边界时钟节点进入时间同步保持状态。其中,这里所说的时间同步保持状态指的是,边界时钟节点利用自身时钟更新本地时间,而不是利用外部时间源作为本地时间更新的参考时钟。
在步骤S22中,当进入时间同步保持状态时,在预定时间内,维持通过从时钟端口向下游时钟节点传输的时间同步报文参数不变。
这里所说的预定时间指的是接收到的上游时钟节点发送的时间同步报文恢复正常,且不影响下游时钟节点同步网络正常运行的经验时间。优选地,可将该预定时间t1设置为上游时钟节点发送时间同步报文的一个或多个周期。也就是说,当边界时钟节点进入时间同步保持状态后,在上游时钟节点下一次或下N次发送时间同步报文之前,边界时钟节点始终维持通过从时钟端口传输的时间同步报文参数不变。
在步骤S23中,当预定时间到期后,判断边界时钟节点是否处于时间同步保持状态。
当边界时钟节点保持时间同步保持状态预定时间后,边界时钟节点需检测判断自身是否仍然处于时间同步保持状态。
在步骤S24中,在边界时钟节点处于时间同步保持状态时,依据边界时钟节点当前跟踪的时间源的参数修改通过从时钟端口传输的时间同步报文参数。
当边界时钟节点维持通过从时钟端口传输的时间同步报文参数不变超过预定时间后,仍然处于时间同步保持状态时,为了不影响整个时间同步网络的正常运行,边界时钟节点需依据当前跟踪的时间源的参数修改向下游时钟节点发送的时间同步报文参数,以使下游时钟节点切换正确的时间源,保证全网时钟的同步性。
实施例四
本实施例四结合实施例二中时间源信息的变化情况导致时间同步节点根据接收到的时间源信息更换时间源的情况,对该时间同步报文的处理方法进行具体介绍,以边界时钟节点为例,如图3所示,具体包括步骤S31至步骤 S33。
在步骤S31中,当从上游时钟节点接收到的时间源信息的变化情况导致边界时钟节点根据接收到的时间同步报文更换时间源时,需要修改向下游时钟节点传输的时间同步报文参数。
这里所说的边界时钟节点从上游时钟节点接收到的时间同步报文指的是,边界时钟节点从当前选择的时间源接收到的时间同步报文参数,当报文参数发生变化,采用BMC选源算法,根据接收到的时间同步报文决策出自身需要更换时间源时,边界时钟节点判断为需要修改向下游时钟节点传输的时间同步报文参数。
在步骤S32中,在预定时间内,维持通过从时钟端口传输的时间同步报文参数不变。
这里所说的预定时间指的是边界时钟节点跟踪到新的时间源,且不影响下游时钟节点同步网络正常运行的经验时间。优选地,可将该预定时间t2设置为边界时钟节点计算并跟踪到新的时间源的所需时间,也就是说,当边界时钟节点在跟踪到新的时间源之前,边界时钟节点始终维持通过从时钟端口传输的时间同步报文参数不变。
在步骤S33中,当预定时间到期后,依据边界时钟节点当前跟踪的时间源的参数修改通过从时钟传输的时间同步报文参数。
当边界时钟节点跟踪到新的时间源后,边界时钟节点需依据当前跟踪的时间源的参数修改向下游时钟节点发送的时间同步报文参数,以使下游时钟节点切换正确的时间源,保证全网时钟的同步性。
实施例五
以上实施例一至实施例四介绍了时间同步节点在时间同步状态变化时,对改变向下游时钟节点输出时间同步报文参数设置一定的延迟预定时间的情况。本实施例五将介绍时间同步节点接收到的时间源信息的变化情况不会导致自身切换时间源的情况。
当时间源信息的变化情况不会导致时间同步节点更换时间源时,直接根据时间源信息的变化情况修改向下游时钟节点传输的时钟报文参数。
以边界时钟节点为例,也就是说,边界时钟节点从上游时钟节点接收到 的时间同步报文发生变化,采用BMC选源算法,根据接收到的时间同步报文决策出自身不需要更换时间源。这时,边界时钟节点不对修改输出时间同步报文参数设置延迟时间,直接修改修改下游时钟节点传输的时钟报文参数。实施例六
上述实施例一至实施例五中所述的延迟预定时间,当时间源信息的变化情况不同时,对应的延迟预定时间不同。例如,上述实施例三中提及的t1和实施例四中提及的t2可以设置为不同时间。
实施例七
值得指出的是,以上实施例所说明的情况均为时间源信息发生变化时的处理情况,本实施例七将结合时间同步协议或接口发生变化时的处理情况。
当边界时钟节点具有多种时间同步接口和协议时,例如,PTN系统中具备PTP和1PPS+TOD两种时间同步协议接口时,那么作为时间源的其中一种协议发生变化时,会相应改变另一种接口的输出时间同步报文参数。例如,边界时钟节点跟踪PTP时间源,输出接口为1PPS+TOD,那么如果PTP报文丢失导致设备进入时间同步保持状态。这时,边界时钟节点需要设置延迟一段时间t3,t3之后如果仍然处于时间同步保持状态时,才改变输出1PPS+TOD报文状态参数。
实施例八
以上七个实施例分别介绍了时间同步节点输入的时间源信息的不同变化情况,采用不同的处理策略进行处理。当时间同步状态变化时,时间同步节点对改变向下游时钟节点输出时间同步报文参数设置一定的延迟时间,从而避免了不必要的下游震荡,保证了时间同步网络的稳定运行。本实施例八将结合图4对上述时间同步报文的处理方法对应的时间同步报文的处理装置进行详细介绍。
具体地,该时间同步报文的处理装置,应用于一时间同步节点,具体包括:
第一判断模块401,用于根据接收到的时间源信息的变化情况,判断时间同步节点跟踪时间源是否发生改变;以及
第一处理模块402,用于在时间同步节点跟踪时间源发生改变时,延迟 一预定时间后,向下游时钟节点发送根据时间源信息的变化情况修改的时间同步报文参数。
另外,在其中一个可行的实施方式中,第一判断模块包括:
第一判断单元,用于当时间源信息的变化情况为无法正常接收到时间源信息时,判断为需要修改向下游时钟节点传输的时间同步报文参数;或者,
第二判断单元,用于当时间源信息的变化情况导致时间同步节点根据接收到的时间源信息更换时间源时,判断为需要修改向下游时钟节点传输的时间同步报文参数。
另外,在其中一个可行的实施方式中,处理装置还包括:
第二判断模块,用于当时间源信息的变化情况为无法正常接收到时间源信息时,预定时间到期后,判断时间同步节点是否处于时间同步保持状态;
第二处理模块,用于在时间同步节点处于时间同步保持状态时,依据时间同步节点当前跟踪的时间源的参数修改向下游时钟节点传输的时间同步报文参数。
另外,在其中一个可行的实施方式中,处理装置还包括:
第三处理模块,用于当时间源信息的变化情况导致时间同步节点根据接收到的时间源信息更换时间源时,预定时间到期后,依据边界时钟节点当前跟踪的时间源的参数修改通过从时钟传输的时间同步报文参数。
另外,在其中一个可行的实施方式中,该时间同步报文的处理装置还包括:
第四处理模块,用于当时间源信息的变化情况不会导致时间同步节点更换时间源时,直接根据所述时间源信息的变化情况修改向下游时钟节点传输的时钟报文参数。
需要说明的是,该装置是与上述时间同步报文的处理方法对应的装置,上述方法实施例中所有实现方式均适用于该装置的实施例中,也能达到相同的技术效果。
以上所述的是本公开文本的优选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开文本所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本公开文本的保护范围内。

Claims (11)

  1. 一种时间同步报文的处理方法,应用于一时间同步节点,包括:
    根据接收到的时间源信息的变化情况,判断所述时间同步节点跟踪时间源是否发生改变;以及
    在所述时间同步节点跟踪时间源发生改变时,延迟一预定时间后,向下游时钟节点发送根据所述时间源信息的变化情况修改的时间同步报文参数。
  2. 根据权利要求1所述的时间同步报文的处理方法,其中,所述时间源信息的变化情况为无法正常接收到时间源信息,或者所述时间源信息的变化情况导致所述时间同步节点根据接收到的时间源信息更换时间源时,需要修改向下游时钟节点传输的时间同步报文参数。
  3. 根据权利要求2所述的时间同步报文的处理方法,其中,当所述时间源信息的变化情况为无法正常接收到时间源信息时,所述处理方法还包括:
    所述预定时间到期后,判断所述时间同步节点是否处于时间同步保持状态;以及
    在所述时间同步节点处于时间同步保持状态时,依据所述时间同步节点当前跟踪的时间源的参数修改向下游时钟节点传输的时间同步报文参数。
  4. 根据权利要求2所述的时间同步报文的处理方法,其中,当所述时间源信息的变化情况导致所述时间同步节点根据接收到的时间源信息更换时间源时,所述处理方法还包括:
    所述预定时间到期后,依据所述时间同步节点当前跟踪的时间源的参数修改通过从时钟传输的时间同步报文参数。
  5. 根据权利要求1至4中任一项所述的时间同步报文的处理方法,还包括:
    当所述时间源信息的变化情况不会导致所述时间同步节点更换时间源时,直接根据所述时间源信息的变化情况修改向下游时钟节点传输的时钟报文参数。
  6. 根据权利要求1至5中任一项所述的时间同步报文的处理方法,其中,当接收到的时间源信息的变化情况不同时,所对应的延迟预定时间不同。
  7. 一种时间同步报文的处理装置,应用于一时间同步节点,包括:
    第一判断模块,用于根据接收到的时间源信息的变化情况,判断所述时间同步节点跟踪时间源是否发生改变;以及
    第一处理模块,用于在所述时间同步节点跟踪时间源发生改变时,延迟一预定时间后,向下游时钟节点发送根据所述时间源信息的变化情况修改的时间同步报文参数。
  8. 根据权利要求7所述的时间同步报文的处理装置,其中,所述第一判断模块包括:
    第一判断单元,用于当所述时间源信息的变化情况为无法正常接收到时间源信息时,判断为需要修改向下游时钟节点传输的时间同步报文参数;或者,
    第二判断单元,用于所述时间源信息的变化情况导致所述时间同步节点根据接收到的时间源信息更换时间源时,判断为需要修改向下游时钟节点传输的时间同步报文参数。
  9. 根据权利要求8所述的时间同步报文的处理装置,还包括:
    第二判断模块,用于当所述时间源信息的变化情况为无法正常接收到时间源信息时,所述预定时间到期后,判断所述时间同步节点是否处于时间同步保持状态;以及
    第二处理模块,用于在所述时间同步节点处于时间同步保持状态时,依据所述时间同步节点当前跟踪的时间源的参数修改向下游时钟节点传输的时间同步报文参数。
  10. 根据权利要求8所述的时间同步报文的处理装置,还包括:
    第三处理模块,用于当所述时间源信息的变化情况导致所述时间同步节点根据接收到的时间源信息更换时间源时,所述预定时间到期后,依据所述边界时钟节点当前跟踪的时间源的参数修改通过从时钟传输的时间同步报文参数。
  11. 根据权利要求7至10中任一项所述的时间同步报文的处理装置,还包括:
    第四处理模块,用于当所述时间源信息的变化情况不会导致所述时间同 步节点更换时间源时,直接根据所述时间源信息的变化情况修改向下游时钟节点传输的时钟报文参数。
PCT/CN2016/098076 2015-09-16 2016-09-05 一种时间同步报文的处理方法及装置 WO2017045546A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16845660.6A EP3352392B1 (en) 2015-09-16 2016-09-05 Time synchronization packet processing method and device
US15/760,870 US20180262287A1 (en) 2015-09-16 2016-09-05 Time synchronization packet processing method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510590170.4 2015-09-16
CN201510590170.4A CN106549724A (zh) 2015-09-16 2015-09-16 一种时间同步报文的处理方法及装置

Publications (1)

Publication Number Publication Date
WO2017045546A1 true WO2017045546A1 (zh) 2017-03-23

Family

ID=58288658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/098076 WO2017045546A1 (zh) 2015-09-16 2016-09-05 一种时间同步报文的处理方法及装置

Country Status (4)

Country Link
US (1) US20180262287A1 (zh)
EP (1) EP3352392B1 (zh)
CN (1) CN106549724A (zh)
WO (1) WO2017045546A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106504220B (zh) 2016-08-19 2019-07-23 华为机器有限公司 一种图像处理方法及装置
CN110100408B (zh) 2016-12-30 2021-05-18 华为技术有限公司 交互时间同步报文的方法以及网络装置
US10396922B2 (en) * 2017-02-07 2019-08-27 Texas Instruments Incorporated Apparatus and mechanism to support multiple time domains in a single soc for time sensitive network
CN113396553B (zh) * 2020-01-06 2023-12-08 华为技术有限公司 一种时钟切换方法、设备及存储介质
CN113518419B (zh) * 2020-04-09 2022-11-22 华为技术有限公司 处理时间同步报文的方法和装置
CN113518421A (zh) * 2020-04-09 2021-10-19 华为技术有限公司 处理时间同步报文的方法和装置
WO2023212874A1 (en) * 2022-05-05 2023-11-09 Zte Corporation A method, system and apparatus of time synchronization switching

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110200051A1 (en) * 2010-02-17 2011-08-18 Daniel Rivaud Ethernet network synchronization systems and methods
CN102215101A (zh) * 2011-05-31 2011-10-12 中兴通讯股份有限公司 一种时钟同步方法及设备
CN103856360A (zh) * 2012-11-28 2014-06-11 中兴通讯股份有限公司 一种同步链路故障检测方法及装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6185247B1 (en) * 1998-02-27 2001-02-06 Nortel Networks Limited Method of reducing synchronization rearrangements in synchronous transmission systems
US8451763B2 (en) * 2006-12-07 2013-05-28 Digimarc Corporation Wireless local area network-based position locating systems and methods
WO2011072881A1 (en) * 2009-12-17 2011-06-23 Telefonaktiebolaget L M Ericsson (Publ) Configuration of synchronisation network having synchronization trails for time sync and frequency sync
CN103248445B (zh) * 2012-02-09 2018-01-05 中兴通讯股份有限公司 一种时钟同步方法和装置
CN103428081A (zh) * 2012-05-14 2013-12-04 中兴通讯股份有限公司 一种分组网络同步方法、装置及系统
US9973601B2 (en) * 2013-03-15 2018-05-15 Avago Technologies General Ip (Singapore) Pte. Ltd. Fault tolerant clock network
US9178637B2 (en) * 2013-12-09 2015-11-03 Khalifa University of Science, Technology, and Research Method and devices for synchronization using linear programming
US9270395B2 (en) * 2014-05-05 2016-02-23 Telefonaktiebolaget L M Ericsson (Publ) Method for robust PTP synchronization with default 1588V2 profile
EP3226504B1 (en) * 2014-12-16 2020-11-04 Huawei Technologies Co., Ltd. Time synchronization method and apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110200051A1 (en) * 2010-02-17 2011-08-18 Daniel Rivaud Ethernet network synchronization systems and methods
CN102215101A (zh) * 2011-05-31 2011-10-12 中兴通讯股份有限公司 一种时钟同步方法及设备
CN103856360A (zh) * 2012-11-28 2014-06-11 中兴通讯股份有限公司 一种同步链路故障检测方法及装置

Also Published As

Publication number Publication date
EP3352392A1 (en) 2018-07-25
EP3352392A4 (en) 2019-04-24
EP3352392B1 (en) 2020-04-15
CN106549724A (zh) 2017-03-29
US20180262287A1 (en) 2018-09-13

Similar Documents

Publication Publication Date Title
WO2017045546A1 (zh) 一种时间同步报文的处理方法及装置
US9270395B2 (en) Method for robust PTP synchronization with default 1588V2 profile
US9860004B2 (en) Network distributed packet-based synchronization
US9749073B2 (en) Clock recovery in a packet based network
US8081663B2 (en) Time synchronization method and relay apparatus
RU2638645C2 (ru) Способ для определения опорных синхросигналов, подвергнутых воздействию изменения в асимметрии задержки трассы распространения между узлами в сети связи
US20110026394A1 (en) Distributed ethernet system and method for detecting fault based thereon
EP2688240A1 (en) Method, system and device for switching and selecting clock source device
WO2012163172A1 (zh) 一种时钟同步方法及设备
EP2852087A1 (en) Packet network synchronization method, apparatus and system
JP2014505444A (ja) パケット交換ネットワークのためのネットワーク要素
US8565270B2 (en) Phase and frequency re-lock in synchronous ethernet devices
CN102237996B (zh) 一种同步时钟的方法和时钟同步装置
CN102843205A (zh) 一种基于精确时间协议的时间同步收敛的方法和装置
US20150229587A1 (en) Method and apparatus for selecting passive port of transparent clock node based on ptp
CN102075317B (zh) 一种家庭基站系统中可靠的时频同步方法及系统
WO2015131350A1 (zh) 时钟同步方法、设备及通信系统
WO2013178148A1 (zh) 通信网络时钟同步方法和装置
CN101848193A (zh) 网络同步的方法、系统和网络节点
KR101304745B1 (ko) 적어도 하나의 타이밍 분배 프로토콜을 통해 제 1 및 제 2 데이터를 분리 전송함으로써 클록들을 동기화시키는 방법, 및 연관된 시스템 및 모듈
US9179429B2 (en) Synchronization method, device, and system
JP5302051B2 (ja) 無線基地局、無線制御装置及び無線装置
CN105323086B (zh) 指示同步时间源选择的方法、装置及系统
WO2017166969A1 (zh) 1588报文发送方法、装置及存储介质
JP6326468B2 (ja) 受動光ネットワークの時刻同期化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16845660

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15760870

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016845660

Country of ref document: EP