WO2017045206A1 - 一种数据传输方法及装置 - Google Patents

一种数据传输方法及装置 Download PDF

Info

Publication number
WO2017045206A1
WO2017045206A1 PCT/CN2015/090025 CN2015090025W WO2017045206A1 WO 2017045206 A1 WO2017045206 A1 WO 2017045206A1 CN 2015090025 W CN2015090025 W CN 2015090025W WO 2017045206 A1 WO2017045206 A1 WO 2017045206A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
signal
wireless signal
bearer channel
optical
Prior art date
Application number
PCT/CN2015/090025
Other languages
English (en)
French (fr)
Inventor
张晓风
周雷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/090025 priority Critical patent/WO2017045206A1/zh
Priority to EP15903895.9A priority patent/EP3340734B1/en
Publication of WO2017045206A1 publication Critical patent/WO2017045206A1/zh
Priority to US15/923,020 priority patent/US10419111B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07953Monitoring or measuring OSNR, BER or Q
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/16Code allocation
    • H04J13/18Allocation of orthogonal codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/005Optical Code Multiplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a data transmission method and apparatus.
  • the remote radio unit (English: Remote Radio Unit, RRU) and the baseband processing unit (BBU) are separated. Split, sink, and get closer to the user.
  • the BBU is pooled, virtualized, and deployed centrally.
  • the RRU side and the BBU side adopt a forward-backward (Fronthaul) approach.
  • each site has only RRU devices, and all BBU devices are moved to the centralized machine room to form a BBU pool.
  • the BBU and the RRU are connected to each other through a common public radio interface (English: Common Public Radio Interface, CPRI) and an optical fiber.
  • CPRI Common Public Radio Interface
  • Data transmission between the BBU and the RRU is performed on the optical fiber through the CPRI transmission protocol.
  • the wireless signal is encapsulated according to the frame format of the CPRI protocol, and transmitted through the CPRI interface and the optical fiber.
  • the disadvantage of the above network structure is that because the wireless signal is encapsulated according to the CPRI protocol, there are more invalid data, resulting in lower transmission efficiency, and the transmission mode requires a large number of optical fibers to be deployed between the BBU and the RRU.
  • the embodiment of the invention provides a data transmission method and device, which are used to solve the technical problem that the data transmission mode between the BBU and the RRU is low in transmission efficiency in the prior art.
  • a first aspect of the present invention provides a data transmission method, including:
  • the modulated optical signal is transmitted to an optical network.
  • the method further includes:
  • the method further includes:
  • the measuring the channel includes:
  • the change information of the SNR with the spectrum is determined according to the measurement result.
  • the method further includes:
  • the method further includes include:
  • the correspondence is received through a management channel; wherein the codeword and carrier used by the management channel are fixed.
  • a second aspect of the present invention provides a network side device, including:
  • a processor configured to determine, according to a correspondence between the input port and the bearer channel, a bearer channel corresponding to the wireless signal
  • a modem configured to perform code division multiple access CDMA modulation and carrier modulation on the wireless signal according to a codeword and a sub-band corresponding to the bearer channel, obtain a modulated electrical signal, and modulate the modulated electrical signal to the bearer channel.
  • An optical transceiver for transmitting the modulated optical signal to the optical network.
  • the processor is further configured to: obtain a measurement result of a channel, where the measurement result includes information about a signal-to-noise ratio SNR as a function of a spectrum;
  • the SNR determines at least one bearer channel according to the change information of the spectrum; and establishes a correspondence between the input port and the bearer channel.
  • the processor is further configured to: according to the type of the configured wireless signal, the quantity of each wireless signal, and the channel capacity of each wireless signal The requirement is to determine at least one bearer channel; establish a correspondence between the input port and the bearer channel.
  • the optical transmitter is further configured to: send a reference signal to the receiving end; and receive through a management channel a measurement result generated based on the reference signal; wherein a codeword and a carrier used by the management channel are fixed;
  • the processor is configured to: obtain, according to the measurement result, change information of the SNR according to a spectrum.
  • the optical transceiver further And configured to: send, by using a management channel, the corresponding relationship to the receiving end device, so that the receiving end demodulates the modulated optical signal according to the corresponding relationship; wherein, the codeword used by the management channel And the carrier is fixed.
  • the optical transceiver is further configured to: receive the corresponding relationship by using a management channel, where a codeword and a carrier used by the management channel are stable.
  • the side device is a baseband processing unit BBU side device, and the receiving end device is a remote radio unit RRU side device; or
  • the network side device is a remote radio unit RRU side device, and the receiving end device is a baseband processing unit BBU side device.
  • a third aspect of the present invention provides a data transmission apparatus, including:
  • a processing unit configured to acquire a wireless signal by using an input port; determine a bearer channel corresponding to the wireless signal according to a correspondence between the input port and the bearer channel; and code the wireless signal according to the codeword and the sub-band corresponding to the bearer channel Demultiplexing CDMA modulation and carrier modulation, obtaining a modulated electrical signal, modulating the modulated electrical signal to a wavelength of light corresponding to the bearer channel, to obtain a modulated optical signal;
  • an optical sending unit configured to send the modulated optical signal to the optical network.
  • each input port corresponds to one bearer channel
  • each bearer channel includes three attributes, that is, a codeword used by each bearer channel, a frequency band in which it is located, and a wavelength of light in which it is located. Then, by performing CDMA modulation of different code words for each wireless signal and different carrier modulation, and then modulating to the wavelength of light supported by the optical network, an optical modulation signal is formed, because the wireless signal is not required to be packetized, which is reduced. Invalid data is transmitted, so the transmission efficiency of the system is improved. Further, since the wireless signals are distinguished by codewords and/or carriers, each RRU and A single fiber is deployed between the BBUs. The fiber can be deployed on the BBU side and the RRU side.
  • FIG. 1 is a schematic diagram of data transmission between a BBU side and an RRU side provided by the prior art
  • FIGS. 2a-2b are structural diagrams of a wireless network according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a data transmission method according to an embodiment of the present invention.
  • FIG. 5 is a functional block diagram of a data transmission apparatus according to an embodiment of the present invention.
  • FIG. 6 is a structural block diagram of a network side device according to an embodiment of the present invention.
  • the embodiments of the present invention provide a data transmission method and apparatus, which are used to solve the technical problem that a large number of optical fibers need to be deployed in a data transmission mode between a BBU and an RRU existing in the prior art.
  • Each input port corresponds to one bearer channel, and each bearer channel includes three attributes, that is, a codeword used by each bearer channel, a frequency band in which it is located, and a wavelength of light at which it is located. Then, by performing CDMA modulation of different code words for each wireless signal and different carrier modulation, and then modulating to the wavelength of light supported by the optical network, an optical modulation signal is formed, because the wireless signal is not required to be packetized, which is reduced. Invalid data is transmitted, so the transmission efficiency of the system is improved.
  • the wireless signals are distinguished by the codewords and the carriers, it is not necessary to separately deploy one optical fiber between each RRU and the BBU, and at least one optical fiber is needed for the entire network, so that the BBU side and the RRU side can be The amount of fiber deployment is greatly reduced.
  • the wireless network includes a BBU, an RRU, a BBU side device, an RRU side device, and an optical network.
  • the optical network may be a passive optical network (English: Passive Optical Network, PON for short) or an active optical network.
  • a PON refers to an optical network including a passive optical device, and does not relate to a transmission protocol of a PON in the prior art.
  • the optical splitter in Figure 2a is a passive optical device.
  • An active optical network refers to an optical network containing active optical devices, and does not relate to transmission protocols of active optical networks in the prior art.
  • the active optical device is, for example, an optical amplifier.
  • the optical network includes one optical transceiver on the BBU side, a plurality of optical transceivers on the RRU side, an optical splitter, and an optical fiber.
  • the optical transceiver on the BBU side is connected to one end of the optical splitter through one optical fiber.
  • the other end of the optical splitter is connected to the optical transceiver on the RRU side through an optical fiber.
  • the optical network includes one optical transceiver on the BBU side, one optical transceiver on the RRU side, and one optical fiber between the two optical transceivers.
  • other passive or active optical devices can be configured in the optical network, and those skilled in the art can configure according to actual needs.
  • the optical transceiver on the BBU side and the BBU side device may be physically integrated or two separate.
  • the optical transceiver on the RRU side and the RRU side device may be physically integrated or may be two separate.
  • the RRU side device and the corresponding RRU may be physically integrated or may be two separate.
  • the optical transceiver includes an optical transmitter and an optical receiver that are physically independent of each other or integrated.
  • the network structure shown in FIG. 2a can be used, that is, at least two RRUs that are closer together are connected to the same RRU side device, and then multiple RRU side devices are connected to the optical splitter through the split optical fiber, and then the main road. The fiber is connected. If the RRUs of the same BBU pool are close to each other, the network structure described in FIG. 2b can be used, that is, all the RRUs are connected to the same RRU device, and the RRU device is connected to the BBU device through one fiber. The electrical signal is transmitted between the RRU device and the RRU.
  • the signal sent from the BBU side device to the RRU side device is called downlink, and the signal sent by the RRU side device to the BBU side device is called uplink.
  • the function of the optical splitter is to divide one downlink optical signal into multiple downlink optical signals and transmit them to the RRU side device respectively.
  • the upstream optical signal sent by the RRU device is imported to the primary optical fiber and transmitted to the BBU side device.
  • the optical network in the embodiment of the present invention may support transmission of multiple wavelengths, for example, the downlink wavelength is, for example, ⁇ 11 to ⁇ 1n , where n is an integer greater than or equal to 2.
  • the upward wavelengths are, for example, ⁇ 21 to ⁇ 2n .
  • FIG. 3 is a flowchart of a data transmission method according to an embodiment of the present invention, and is described from the perspective of a data transmitting end.
  • the method shown in FIG. 3 can be applied to both the BBU side device as shown in FIG. 2a and FIG. 2b, and also to the RRU side device as shown in FIG. 2a and FIG. 2b.
  • the method includes:
  • Step 101 Acquire a wireless signal through an input port
  • Step 102 Determine, according to a correspondence between the input port and the bearer channel, a bearer channel corresponding to the wireless signal;
  • Step 103 Perform CDMA modulation and carrier modulation on the wireless signal according to the codeword and the sub-band corresponding to the bearer channel, obtain a modulated electrical signal, and modulate the modulated electrical signal to a wavelength of light corresponding to the bearer channel. Obtaining a modulated optical signal;
  • Step 104 Send the modulated optical signal to an optical network.
  • all bearer channels use the same wavelength.
  • all bearer channels can use the same optical wavelength or different.
  • the bearer channels use different wavelengths of light.
  • the codeword corresponding to the bearer channel is referred to as a first attribute of the bearer channel
  • the sub-band corresponding to the bearer channel is referred to as a second attribute of the bearer channel
  • the relationship between different bearer channels can have the following conditions.
  • the sub-bands corresponding to all the bearer channels are the same and all the frequency bands supported by the optical network
  • the codewords corresponding to each bearer channel are orthogonal to each other. In other words, all wireless signals are transmitted over the same carrier, but each wireless signal is distinguished by orthogonal codewords.
  • the second part of the bearer channel corresponds to the same sub-band, and the sub-band is a part of the frequency band supported by the optical network; the codewords corresponding to each bearer channel of the part of the bearer channels are orthogonal to each other.
  • all frequency bands supported by the optical network can be divided into multiple sub-bands, and each sub-band is further distinguished by orthogonal code words.
  • the third type is similar to the second type. The difference is that each bearer channel corresponds to a sub-band different from each other, and the sub-band is a part of the frequency band supported by the optical network, and each bearer channel corresponds to a code different from each other. word.
  • the capacity of the channel that is, the maximum transmission rate of the channel
  • Rmax represents the channel capacity
  • W represents the spectral width of the channel
  • SNR represents the signal-to-noise ratio (Signal Noise Ratio) of the channel.
  • FIG. 4 is a relationship diagram between SNR and spectrum.
  • the vertical axis is the SNR.
  • the horizontal axis is the spectrum.
  • the curve shows the SNR as a function of the spectrum.
  • Each rectangle, such as rectangle C0, represents the channel capacity.
  • the wider the rectangle for example the rectangle C3 is wider than the rectangle C1.
  • the requirement of the channel capacity for a given wireless signal is determined. Therefore, to meet this requirement, the channel capacity needs to be adjusted, and the adjustment method is to adjust the width of the spectrum.
  • the administrator configures the current service type on the BBU according to the current service configuration, including configuring the channel capacity requirements of several wireless signals that need to be supported, that is, the spectrum width and SNR requirement, and each wireless signal. Number and mark the business class of each wireless signal input port type. Generally, one type of service corresponds to one type of wireless signal, and the two correspond one-to-one. Each service type or each wireless signal corresponds to one channel capacity requirement, ie the same spectrum width requirement and the same SNR requirement.
  • the number of wireless signals W1 is 2, which are W11 and W12, respectively.
  • the number of wireless signals W2 is three, which are W21, W22, and W23, respectively.
  • the number of wireless signals W3 is 2, which are W31 and W32, respectively.
  • the wireless signal W1 has a spectral width of F1 and an SNR requirement of SNR1.
  • the wireless signal W2 has a spectral width of F2 and an SNR requirement of SNR2.
  • the wireless signal W3 has a spectral width of F3 and an SNR requirement of SNR3.
  • the BBU side device sends a downlink reference signal to the RRU side device, and notifies the RRU side device to receive the reference signal through the management channel, and measures the downlink channel quality by using the downlink reference signal, and then reports the SNR measurement result to the BBU through the management channel. Side equipment. Then, the BBU side device notifies the RRU side device to send an uplink reference signal through the management channel, and measures the uplink channel quality to obtain an SNR measurement result.
  • the specific measurement process is well known to those skilled in the art, so it will not be described here.
  • the codeword and carrier corresponding to the management channel are fixed.
  • the signals transmitted through the management channel are both CDMA modulated using a fixed carrier for carrier modulation and fixed codewords, and the fixed carrier and fixed codeword cannot be used by other bearer channels.
  • the wavelength of light at which the management channel is located may be each of the wavelengths of light or one of the wavelengths of the multi-wavelength optical network.
  • the BBU side device After obtaining the measurement result, the BBU side device performs the division and attribute definition of the bearer channel according to the type of the wireless signal, the number of the radio signal, the channel capacity requirement of each radio signal, and the measured SNR as a function of the spectrum. Wherein, if the division and attribute definition of the downlink bearer channel are performed, the curve of the downlink SNR as a function of the spectrum is adopted. If the division and attribute definition of the uplink bearer channel is performed, the curve of the uplink SNR as a function of the spectrum is adopted.
  • system administrator can also perform the division and attribute definition of the bearer channel.
  • the type of the wireless signal may correspond to one sub-band (including the carrier position and the spectrum width). Therefore, the downlink or uplink frequency band supported by the optical network may be divided according to the type of the wireless signal. In addition to the fixed carrier occupied by the management channel, the remaining frequency band may be divided into sub-bands that are consistent with the number of types. As for the width of the sub-band corresponding to each type, it can be determined according to the demand for channel capacity of each type of wireless signal. Therefore, each sub-band may be the same or different.
  • the first wireless signal W1 requires a spectrum width of F1 and the SNR requirement is SNR1. According to the Shannon formula, the channel capacity of the first wireless signal W1 can be calculated, assuming R1.
  • the final channel capacity of the first wireless signal W1 is R1+r, and r is greater than zero.
  • the actual SNR according to the measurement is assumed to be SNRc, so according to the Shannon formula, it can be finally determined that the spectrum width of the sub-band occupied by the first wireless signal W1 is (R1+r) divided by log 2 (1+SNRc) .
  • SNRc is 8dB smaller than SRN1
  • CDMA spread spectrum can theoretically provide a certain gain
  • CDMA spread spectrum can compensate for this difference, such as spread spectrum 16 times, theoretically can provide nearly 12dB gain, if the first wireless signal Only one of the two wireless signals W11 and W12 of W1 is transmitted on the sub-band.
  • the spectrum width occupied by the sub-band is F1*16, and the codeword length is 16. If the two wireless signals are transmitted on the sub-band, the spread spectrum can provide 18dB gain at 64 times, and the average is 9dB gain per wireless signal, so that the SNR requirement of each wireless signal can be satisfied.
  • the spectrum width occupied by this band is F1*64, and the codeword length is 64.
  • a plurality of wireless signals of each kind may correspond to a set of codewords, the set of codewords being orthogonal to each other and of the same length. Since multiple wireless signals in each wireless signal have the same channel capacity requirements, one code group can be corresponding.
  • the first wireless signal W1 corresponds to the first sub-band C1
  • the second wireless signal W2 corresponds to the second sub-band C2
  • the third wireless signal W3 corresponds to the third sub-band C3.
  • the codeword corresponding to the wireless signal W11 is code1
  • the codeword corresponding to the wireless signal W12 is code2.
  • code1 and code2 are the same length and orthogonal to each other.
  • the code word corresponding to the wireless signal W21 is code3.
  • the code word corresponding to the wireless signal W22 is code4.
  • the code word corresponding to the wireless signal W23 is code5. Its Medium, code3, code4, and code5 are the same length and orthogonal to each other.
  • the code word corresponding to the wireless signal W31 is code6.
  • the code word corresponding to the wireless signal W32 is code7.
  • Each bearer channel includes two attributes, one is the codeword used by the bearer channel, and the other is the sub-band where the bearer channel is located.
  • the attribute table of the seven bearer channels is shown in Table 1.
  • the third attribute of the bearer channel may be divided according to the number of optical wavelengths, the number of bearer channels, or the same wavelength of all bearer channels. Specifically, assuming that the number of bearer channels is 7, and the number of optical wavelengths supported by the optical network is eight, then one optical wavelength can be allocated for each bearer channel. If the number of bearer channels is 8, and the number of optical wavelengths is seven, then the optical wavelengths of the two bearer channels can be the same, and the other bearer channels each use one of the remaining six optical wavelengths.
  • the bearer channel identification (ID) is then mapped to each wireless input port to form a mapping table.
  • the mapping table is a specific storage form of the correspondence between the input port and the bearer channel described above.
  • each wireless input port represents a type of service, that is, a type of wireless signal
  • the correspondence between each wireless input port and each bearer channel can also be regarded as each wireless input from the wireless input port.
  • the correspondence between the signal and each bearer channel can also be regarded as each wireless input from the wireless input port.
  • mapping table is, for example, as shown in Table 2.
  • Wireless signal input port wireless signal Bearer channel ID Port1 W11 1 Port2 W12 2 Port3 W21 3 Port4 W22 4 Port5 W23 5 Port6 W31 6 Port7 W32 7
  • the column where the wireless signal is located may not be in the actual mapping table. In this paper, it is only for convenience to explain the correspondence between the wireless signal, the input port and the bearer channel.
  • the attributes of the bearer channel 1 include that the codeword used by the bearer 1 is code1, the sub-band in which the bearer channel 1 is located is the sub-band C1, and the optical wavelength is the first. A wavelength of light.
  • the wireless signal W11 is CDMA-modulated in accordance with the codeword code1, and carrier-modulated in accordance with the sub-band C1 to obtain a modulated electrical signal.
  • the modulated electrical signal is then remodulated onto the first optical wavelength to obtain a modulated optical signal.
  • the BBU side and the RRU side can be made.
  • the amount of fiber deployment between them is greatly reduced, and since the wireless signal is not required to be packetized, the transmission efficiency of the system is improved.
  • the bearer channel in the embodiment of the present invention is determined by the type and number of wireless signals, the channel capacity requirement of each wireless signal, and the actually measured SNR as a function of the spectrum, so that different wireless signals can be provided.
  • the bearer channel for its SNR requirements.
  • the invention The solution in the embodiment provides a reliable forward bearer channel.
  • the above describes an example of defining a bearer channel. In actual use, it may be defined in other manners, as long as the bearer channel includes the above three attributes, and at least one attribute is different between the two bearer channels,
  • the invention is not specifically limited. For example, determining at least one bearer channel according to the type, number of radio signals, and channel capacity requirements of each radio signal; wherein, the attributes of each of the bearer channels include a codeword in which the bearer channel is located, a sub-band in which the bearer channel is located and an optical wavelength at which the bearer channel is located; and then each input port is corresponding to the at least one bearer channel to generate the corresponding relationship.
  • the BBU device may send the corresponding relationship to the RRU device, so that the RRU device performs the determination of the bearer channel of the uplink wireless signal.
  • the BBU side device may further send a correspondence between the input port and the downlink bearer channel to the RRU side device, so that the RRU can perform signal demodulation based on the correspondence.
  • the BBU side device sends the correspondence relationship to the RRU side device by using the foregoing management channel.
  • the method in the embodiment of the present invention may be used to transmit an analog signal or a digital signal.
  • the implementation of the data transmission method in the embodiment of the present invention will be exemplified below.
  • the wireless signal is a digital signal before quadrature modulation, for example, including two digital signals of I and Q, it can be considered that two wireless signals are input to the two input ports.
  • step 102 a corresponding bearer channel is determined for each of the two digital signals, and then step 103 is performed, that is, the two digital signals are modulated according to the attribute information of the respective bearer channels to obtain two modulated optical signals.
  • step 104 is performed to transmit two modulated optical signals on the optical network.
  • the codewords of the two bearer channels corresponding to the two digital signals are orthogonal.
  • the two signals are CDMA modulated, and then converted into an analog domain by a digital-to-analog converter (English: Digital to Analog Converter, DAC) for carrier modulation to obtain two modulated electrical signals.
  • the modulated electrical signal is then modulated onto the wavelength of the light at which each bearer channel is located.
  • the wireless signal is a quadrature-modulated digital signal or an analog signal
  • the former is the same as the above-described one-way wireless digital signal
  • the latter is the same as the above-described one-way wireless digital signal except that the DAC conversion is not required. I will not repeat them here.
  • the above describes the implementation process of the data transmitting end, and for the data receiving end, the reverse operation of the transmitting end can be performed. Specifically, the received optical signal is restored to an electrical signal; the filtering and frequency modulation are performed to the baseband signal, that is, the signal is demodulated from the carrier; and then the CDMA demodulation is performed. The demodulated first wireless signal is output from the corresponding output port to the corresponding RRU.
  • each wireless signal can be assigned a signal ID, which input port is input from each input port, and from which output port is output, which is predetermined, and the BBU side device and the RRU side device can perform through the management channel. Interacting, the input port and the output port corresponding to each wireless signal are sent to each other, and when the receiving end demodulates the wireless signal, the receiving end can output the wireless signal from the corresponding output port according to the correspondence between the signal ID and the output port. Give the corresponding RRU.
  • the relationship between the output port and the bearer channel may be increased in the foregoing correspondence relationship, so the receiving end may demodulate the CDMA according to the correspondence between the output port and the bearer channel.
  • the wireless signal is output from an output port corresponding to the bearer channel, thereby implementing communication between the BBU and the RRU.
  • an embodiment of the present invention further provides a data transmission apparatus for implementing the method shown in FIG.
  • the data transmission apparatus includes: a processing unit 201, configured to acquire a wireless signal by using an input port; and determine, according to a correspondence between the input port and the bearer channel, a bearer channel corresponding to the wireless signal; The codeword corresponding to the bearer channel performs CDMA modulation and performs carrier modulation according to the sub-band in which the bearer channel is located, obtains a modulated electrical signal, and modulates the modulated electrical signal to a wavelength of light corresponding to the bearer channel to obtain modulated light.
  • a signal an optical transmitting unit 202, configured to send the modulated optical signal to an optical network.
  • the processing unit 201 is configured to: measure a channel to obtain information about SNR variation with a spectrum; according to a type of configured wireless signal, a quantity of each wireless signal, a channel capacity requirement of each wireless signal, and Determining, according to the change information of the SNR, at least one bearer channel; and correspondingly generating each corresponding port with the at least one bearer channel to generate the corresponding relationship.
  • the processing unit 201 is configured to: determine, according to a type of the configured wireless signal, a quantity of each wireless signal, and a channel capacity requirement of each wireless signal, at least one bearer channel; and each input port and the at least A bearer channel correspondingly generates the correspondence.
  • the optical sending unit 202 is further configured to: send a reference signal, and receive, by using a management channel, a measurement result generated based on the reference signal; where, a codeword and a carrier used by the management channel are fixed;
  • the processing unit 201 is further configured to: determine, according to the measurement result, the change information of the SNR according to a spectrum.
  • the optical sending unit 202 is further configured to: send, by using a management channel, the corresponding relationship to the receiving end, so that the receiving end demodulates the modulated optical signal according to the corresponding relationship;
  • the codeword and carrier used by the management channel are fixed.
  • the device further includes: a light receiving unit, configured to receive the correspondence by using a management channel; wherein the codeword and the carrier used by the management channel are fixed.
  • the embodiment of the present invention further provides a network side device, which is used to implement the method shown in FIG.
  • the network side device includes an input port 301, a processor 302, a modem 303, an optical transceiver 304, and a memory 305.
  • the processor 302 may be a central processing unit, an application specific integrated circuit (ASIC), and may be one or more integrated circuits for controlling program execution, and may be a field programmable gate array. (English: Field Programmable Gate Array, referred to as: FPGA) developed hardware circuit.
  • the number of memories 305 can be one or more.
  • the memory 305 may include a read only memory (English: Read Only Memory, ROM for short), a random access memory (English: Random Access Memory, RAM for short), and a disk storage.
  • Optical transceiver 304 can include optical receivers and optical transmitters that are physically separate or integrated.
  • Input port 301 The number can be one or more.
  • the input port 301 is configured to receive a wireless signal
  • the processor 302 is configured to determine a bearer channel corresponding to the wireless signal according to the correspondence between the input port and the bearer channel
  • the modem 303 is configured to use, according to the code corresponding to the bearer channel Performing CDMA modulation and carrier modulation on the wireless signal to obtain a modulated electrical signal, and modulating the modulated electrical signal to a wavelength of light corresponding to the bearer channel to obtain a modulated optical signal
  • the optical wavelength is a connection The optical wavelength supported by the optical network of the network side device and the receiving end device
  • the optical transceiver 304 is configured to send the modulated optical signal to the optical network.
  • the processor 302 is further configured to: obtain a measurement result of the channel, where the measurement result includes information about the change of the SNR with the spectrum; according to the type of the configured wireless signal, the quantity of each wireless signal, and each wireless signal pair.
  • the channel capacity requirement and the SNR along with the spectrum change information determining at least one bearer channel; and each input port is corresponding to the at least one bearer channel to generate the correspondence.
  • the processor 302 is further configured to: determine, according to a type of the configured wireless signal, a quantity of each wireless signal, and a channel capacity requirement of each wireless signal, at least one bearer channel; At least one bearer channel correspondingly generates the correspondence.
  • the optical transceiver 304 is further configured to: send a reference signal to the receiving end; and receive, by using a management channel, a measurement result generated based on the reference signal; where, a codeword and a carrier used by the management channel are fixed. of;
  • the processor 302 is configured to: obtain, according to the measurement result, change information of the SNR according to a spectrum.
  • the optical transceiver 304 is further configured to: send the corresponding relationship to the receiving end device by using a management channel, so that the receiving end demodulates the modulated optical signal according to the correspondence relationship;
  • the codeword and carrier used by the management channel are fixed.
  • the optical transceiver 304 is further configured to: receive the correspondence by using a management channel; where the codeword and carrier used by the management channel are fixed.
  • the network side device is a BBU side device, and the receiving end device is an RRU side device; or
  • the network side device is an RRU side device, and the receiving end device is a BBU side device.
  • Each input port corresponds to one bearer channel, and each bearer channel includes three attributes, that is, a codeword used by each bearer channel, a frequency band in which it is located, and a wavelength of light at which it is located. Then, by performing CDMA modulation of different code words for each wireless signal and different carrier modulation, and then modulating to the wavelength of light supported by the optical network, an optical modulation signal is formed, because the wireless signal is not required to be packetized, which is reduced. Invalid data is transmitted, so the transmission efficiency of the system is improved.
  • the wireless signals are distinguished by the codewords and the carriers, it is not necessary to separately deploy one optical fiber between each RRU and the BBU, and at least one optical fiber is needed for the entire network, so that the BBU side and the RRU side can be The amount of fiber deployment is greatly reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

本发明提供一种数据传输方法及装置。该方法包括:通过输入端口获取无线信号;根据输入端口和承载信道的对应关系,确定所述无线信号对应的承载信道;根据所述承载信道对应的码字和子频段对所述无线信号进行CDMA调制和载波调制,获得调制电信号,将所述调制电信号调制到所述承载信道对应的光波长上,获得调制光信号;将所述调制光信号发送到光网络。

Description

一种数据传输方法及装置 技术领域
本发明涉及通信技术领域,尤其涉及一种数据传输方法及装置。
背景技术
随着无线技术的发展需求,原本处于同一个基站上的拉远射频单元(英文:Remote Radio Unit,简称:RRU)、基带处理单元(英文:Base band Unit,简称:BBU)被分离,RRU不断分裂、下沉,越来越靠近用户。而BBU则被池组化、虚拟化,集中部署。RRU侧和BBU侧采用前向回传(Fronthaul)的方式。
请参考图1所示的现有技术中无线网络的结构图及部署示意图。如图1所示,每个站址只有RRU设备,所有的BBU设备都上移到了集中机房,形成BBU池。BBU和RRU之间通过通用公共无线接口(英文:Common Public RadioInterface,简称:CPRI)和光纤进行连接。BBU和RRU之间通过CPRI传输协议在光纤上进行数据传输。具体的,BBU或RRU需要传输无线信号时,就将无线信号按照CPRI协议的帧格式进行封装,按照通过CPRI接口和光纤传输出去。
上述网络结构的缺点为:因为要将无线信号按照CPRI协议进行封装,所以无效数据较多,导致传输效率较低,而且该传输方式需要在BBU和RRU之间部署大量的光纤。
发明内容
本发明实施例提供一种数据传输方法及装置,用以解决现有技术中存在的BBU和RRU之间的数据传输方式传输效率较低的技术问题。
本发明第一方面提供了一种数据传输方法,包括:
通过输入端口获取无线信号;
根据输入端口和承载信道的对应关系,确定所述无线信号对应的承载信 道;
根据所述承载信道对应的码字和子频段对所述无线信号进行码分多址CDMA调制和载波调制,获得调制电信号,将所述调制电信号调制到所述承载信道对应的光波长上,获得调制光信号;
将所述调制光信号发送到光网络。
结合第一方面,在第一方面的第一种可能的实现方式中,所述方法还包括:
对信道进行测量,以获得信噪比SNR随频谱的变化信息;
根据所述SNR随频谱的变化信息,确定至少一个承载信道;
建立输入端口与承载信道之间的对应关系。
结合第一方面,在第一方面的第二种可能的实现方式中,所述方法还包括:
根据配置的无线信号的种类、每种无线信号的数量以及每种无线信号对信道容量的需求,确定至少一个承载信道;
建立输入端口与承载信道之间的对应关系。
结合第一方面的第一种可能的实现方式,在第一方面的第三种可能的实现方式中,所述对信道进行测量,包括:
发送参考信号;
通过管理信道接收基于所述参考信号生成的测量结果;其中,所述管理信道使用的码字和载波是固定的;
根据所述测量结果确定所述SNR随频谱的变化信息。
结合第一方面或第一方面的第一种可能的实现方式或第一方面的第二种可能的实现方式,在第一方面的第四种可能的实现方式中,所述方法还包括:
通过管理信道将所述对应关系发送给接收端,以使所述接收端根据所述对应关系对所述调制光信号进行解调;其中,所述管理信道使用的码字和载波是固定的。
结合第一方面,在第一方面的第五种可能的实现方式中,所述方法还包 括:
通过管理信道接收所述对应关系;其中,所述管理信道使用的码字和载波是固定的。
本发明第二方面提供一种网络侧设备,包括:
输入端口,用于接收无线信号;
处理器,用于根据输入端口和承载信道的对应关系,确定所述无线信号对应的承载信道;
调制解调器,用于根据所述承载信道对应的码字和子频段对所述无线信号进行码分多址CDMA调制和载波调制,获得调制电信号,并将所述调制电信号调制到所述承载信道对应的光波长上,获得调制光信号;所述光波长为连接所述网络侧设备和接收端设备的光网络支持的光波长;
光收发器,用于将所述调制光信号发送到所述光网络。
结合第二方面,在第二方面的第一种可能的实现方式中,所述处理器还用于:获得对信道的测量结果,所述测量结果包括信噪比SNR随频谱的变化信息;根据所述SNR随频谱的变化信息,确定至少一个承载信道;建立输入端口与承载信道之间的对应关系。
结合第二方面,在第二方面的第二种可能的实现方式中,所述处理器还用于:根据配置的无线信号的种类、每种无线信号的数量以及每种无线信号对信道容量的需求,确定至少一个承载信道;建立输入端口与承载信道之间的对应关系。
结合第二方面的第一种可能的实现方式,在第二方面的第三种可能的实现方式中,所述光发送器还用于:发送参考信号给所述接收端;以及通过管理信道接收基于所述参考信号生成的测量结果;其中,所述管理信道使用的码字和载波是固定的;
所述处理器用于:根据所述测量结果,获得所述SNR随频谱的变化信息。
结合第二方面或第二方面的第一种可能的实现方式或第二方面的第二种可能的实现方式,在第二方面的第四种可能的实现方式中,所述光收发器还 用于:通过管理信道将所述对应关系发送给所述接收端设备,以使所述接收端根据所述对应关系对所述调制光信号进行解调;其中,所述管理信道使用的码字和载波是固定的。
结合第二方面,在第二方面的第五种可能的实现方式中,所述光收发器还用于:通过管理信道接收所述对应关系;其中,所述管理信道使用的码字和载波是固定的。
结合第二方面或第二方面的第一种可能的实现方式至第二方面的第五种可能的实现方式中任意一种,在第二方面的第六种可能的实现方式中,所述网络侧设备为基带处理单元BBU侧设备,所述接收端设备为拉远射频单元RRU侧设备;或
所述网络侧设备为拉远射频单元RRU侧设备,所述接收端设备为基带处理单元BBU侧设备。
本发明第三方面提供一种数据传输装置,包括:
处理单元,用于通过输入端口获取无线信号;根据输入端口和承载信道的对应关系,确定所述无线信号对应的承载信道;根据所述承载信道对应的码字和子频段对所述无线信号进行码分多址CDMA调制和载波调制,获得调制电信号,将所述调制电信号调制到所述承载信道对应的光波长上,获得调制光信号;
光发送单元,用于将所述调制光信号发送到光网络。
本发明实施例中提供的一个或多个技术方案,至少具有如下技术效果或优点:
本发明实施例中,每个输入端口对应一个承载信道,每个承载信道包括三个属性,即每个承载信道使用的码字、所在的频段以及所在的光波长。然后通过对每个无线信号进行不同码字的CDMA调制以及不同的载波调制,然后再调制到光网络支持的光波长上,形成光调制信号,因为不需要对无线信号进行封包处理,减小了传输的无效数据,所以提高了系统的传输效率。进一步,因为通过码字和/或载波对无线信号进行区分,所以不需要每个RRU和 BBU之间都单独部署一路光纤,最少整个网络只需要一路光纤即可,所以可以使得BBU侧和RRU侧之间的光纤部署量大大降低。
附图说明
图1为现有技术提供的BBU侧和RRU侧之间的数据传输示意图;
图2a-图2b为本发明实施例提供的无线网络结构图;
图3为本发明实施例提供的一种数据传输方法的流程图;
图4为本发明实施例提供的一种SNR随频谱的变化曲线图;
图5为本发明实施例提供的一种数据传输装置的功能框图;
图6为本发明实施例提供的一种网络侧设备的结构框图。
具体实施方式
本发明实施例提供一种数据传输方法及装置,用以解决现有技术中存在的BBU和RRU之间的数据传输方式需要部署大量光纤的技术问题。
为解决上述技术问题,本发明实施例的技术方案的主要思路如下:
每个输入端口对应一个承载信道,每个承载信道包括三个属性,即每个承载信道使用的码字、所在的频段以及所在的光波长。然后通过对每个无线信号进行不同码字的CDMA调制以及不同的载波调制,然后再调制到光网络支持的光波长上,形成光调制信号,因为不需要对无线信号进行封包处理,减小了传输的无效数据,所以提高了系统的传输效率。进一步,因为通过码字和载波对无线信号进行区分,所以不需要每个RRU和BBU之间都单独部署一路光纤,最少整个网络只需要一路光纤即可,所以可以使得BBU侧和RRU侧之间的光纤部署量大大降低。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于 本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
另外,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
请参考图2a和图2b所示,为本发明实施例提供的两种可能的无线网络结构图。该无线网络包括BBU、RRU、BBU侧设备、RRU侧设备以及光网络。
其中,光网络可以是无源光网络(英文:Passive Optical Network,简称:PON),也可以是有源光网络。需要说明的是,在本发明实施例中,PON指的是包含无源光器件的光网络,而并不涉及现有技术中的PON的传输协议。例如图2a中的光分路器即为无源光器件。有源光网络指的是包含有源光器件的光网络,而并不涉及现有技术中有源光网络的传输协议。有源光器件例如为光放大器。
具体的,在图2a中,光网络包括BBU侧的一个光收发器、RRU侧的多个光收发器、光分路器以及光纤。BBU侧的光收发器通过一路光纤与光分路器的一端连接。光分路器的另一端分别通过光纤与RRU侧的光收发器连接。在图2b中,光网络包括BBU侧的一个光收发器、RRU侧的一个光收发器以及两个光收发器之间的一路光纤。在实际运用中,光网络中还可以配置有其它无源或有源的光器件,本领域技术人员可以根据实际需求进行配置。
其中,BBU侧的光收发器和BBU侧设备在物理上可以是集成在一起,也可以是单独的两个。类似的,RRU侧的光收发器和RRU侧设备在物理上可以是集成在一起,也可以是单独的两个。另外,RRU侧设备和对应的RRU在物理上可以是集成在一起,也可以是单独的两个。
光收发器包括在物理上相互独立或集成在一起的光发送器和光接收器。
在实际运用中,如果同一个BBU池对应的RRU相互之间距离较远,那 么就可以采用图2a所示的网络结构,即距离较近的至少两个RRU连接至同一个RRU侧设备,然后多个RRU侧设备通过分路光纤连接至光分路器,进而与主路光纤进行连接。如果同一个BBU池对应的RRU相互之间距离较近,那么就可以采用图2b所述的网络结构,即所有RRU连接至同一个RRU侧设备,RRU侧设备通过一路光纤与BBU侧设备连接。其中,RRU侧设备与RRU之间传输的是电信号。
在本发明实施例中,从BBU侧设备向RRU侧设备发送信号称为下行,由RRU侧设备向BBU侧设备发送信号称为上行。
对应的,光分路器的作用是将一路下行光信号分为多路下行光信号,分别传输给RRU侧设备。将RRU侧设备发送的上行光信号导入到主光纤上,传输给BBU侧设备。
另外,本发明实施例中的光网络可以支持多个波长的传输,例如下行波长例如有λ11至λ1n,其中,n为大于等于2的整数。上行的波长例如有λ21至λ2n
接下来请参考图3所示,为本发明实施例提供的一种数据传输方法的流程图,并且是从数据发送端的角度描述的。在本实施例中,图3所示的方法既可以应用于如图2a以及图2b中所示的BBU侧设备,也可以应用于如图2a以及图2b中所示的RRU侧设备。如图3所示,该方法包括:
步骤101:通过输入端口获取无线信号;
步骤102:根据输入端口和承载信道的对应关系,确定无线信号对应的承载信道;
步骤103:根据所述承载信道对应的码字和子频段,对所述无线信号进行CDMA调制和载波调制,获得调制电信号,将所述调制电信号调制到所述承载信道对应的光波长上,获得调制光信号;
步骤104:将所述调制光信号发送到光网络。
当光网络仅支持单波长传输时,所有承载信道使用相同的波长。当光网络支持多波长传输时,所有承载信道可以使用同一光波长,也可以是不同的 承载信道使用不同的光波长。
可选的,将承载信道对应的码字称为承载信道的第一个属性,承载信道对应的子频段称为承载信道的第二个属性的话,并且如果只考虑承载信道的第一个属性和第二个属性,即所使用的码字以及所在的子频段,那么不同的承载信道之间的关系可以具有以下几种情况。第一种,所有承载信道对应的子频段相同且为光网络支持的全部频段,每个承载信道对应的码字互相正交。换言之,所有无线信号都通过同一个载波传输,但是通过正交的码字来进行每个无线信号的区分。第二种,所有承载信道中的部分承载信道对应相同的子频段,且该子频段为光网络支持的部分频段;所述部分承载信道中的每个承载信道对应的码字互相正交。换言之,光网络支持的全部频段可以分为多个子频段,每个子频段又通过正交的码字来进行区分。第三种,与第二种类似,不同的是,每个承载信道对应一个互不相同的子频段,且该子频段为光网络支持的部分频段,每个承载信道对应一个互不相同的码字。
在实际运用中,具体是第一种至第三种情况中的哪种情况,可以根据实际情况来设置。以下将举例详细描述如何确定步骤102中的对应关系。
具体的,给定信号传播的媒质以及频段,其信道的容量,即信道的最大传输速率是有限的,满足香农定理。用公式来表示香农定理,即为:Rmax=W*log2 (1+SNR)。其中,Rmax表示信道容量,W表示信道的频谱宽度,SNR表示信道的信噪比(Signal Noise Ratio)。请参考图4所示,为SNR和频谱之间的关系图。纵轴是SNR。横轴是频谱。曲线表示的是SNR随着频谱的变化。每个矩形,例如矩形C0表示的是信道容量。如果SNR不够大,那么就需要扩大频谱的范围,那么矩形就越宽,例如矩形C3就比矩形C1宽。通常来讲,给定的无线信号对于信道容量的要求是确定的,所以要满足该要求,就需要调整信道容量的大小,调整的方法即调整频谱的宽度。
在系统启动前,管理员根据当前业务配置,在BBU侧配置当前的业务类型,包括配置当前需要支持的几种无线信号对信道容量的需求,即频谱宽度及SNR需求,每种无线信号的个数,并标记每个无线信号输入端口的业务类 型。通常,一种业务类型就对应一种无线信号,且两者一一对应。每种业务类型或每种无线信号对应一个信道容量需求,即相同的频谱宽度需求以及相同的SNR需求。
举例来说,当前支持的无线信号有三种,分别为第一种无线信号W1、第二种无线信号W2和第三无线信号W3。无线信号W1的个数为2,分别为W11和W12。无线信号W2的个数为3个,分别为W21、W22和W23。无线信号W3的个数为2,分别为W31和W32。无线信号W1的频谱宽度为F1,SNR需求为SNR1。无线信号W2的频谱宽度为F2,SNR需求为SNR2。无线信号W3的频谱宽度为F3,SNR需求为SNR3。
系统启动后,进行下行信道测量和上行信道测量,获得SNR测量结果,即下行的SNR随频谱的变化曲线以及上行的SNR随频谱的变化曲线。具体的,BBU侧设备发送下行参考信号给RRU侧设备,并通过管理信道通知RRU侧设备进行参考信号的接收,并通过下行参考信号测量下行信道质量,然后通过管理信道将SNR测量结果上报给BBU侧设备。之后,BBU侧设备通过管理信道通知RRU侧设备发送上行参考信号,并测量上行信道质量,获得SNR测量结果。具体的测量过程为本领域技术人员所熟知的内容,所以在此不再赘述。
需要特别说明的是,管理信道对应的码字和载波是固定的。换言之,通过管理信道发送的信号都使用固定的载波进行载波调制和固定的码字进行CDMA调制,其它承载信道不能使用该固定的载波和固定的码字。另外,管理信道所在的光波长可以是多波长光网络中的每个光波长或者其中一个光波长。
在获得测量结果之后,BBU侧设备根据无线信号的种类、个数、每种无线信号的信道容量需求以及测量得到的SNR随频谱的变化曲线,进行承载信道的划分与属性定义。其中,如果是进行下行承载信道的划分与属性定义,那么就采用下行SNR随频谱的变化曲线。如果是进行上行承载信道的划分与属性定义,那么就采用上行SNR随频谱的变化曲线。
在实际运用中,也可以由系统管理员来进行承载信道的划分与属性定义。
具体的,无线信号的种类可以对应一个子频段(包括载波位置以及频谱宽度)。因此,可以根据无线信号的种类对光网络支持的下行或上行频段进行划分,除了管理信道所占用的固定载波,可以将剩余频段划分为与种类数量一致的子频段。至于每个种类对应的子频段有多宽,可以根据每个种类的无线信号对信道容量的需求确定。因此,每个子频段可能相同,也可能不同。举例来说,第一种无线信号W1需要的频谱宽度为F1,SNR需求为SNR1,根据香农公式,可以计算出第一种无线信号W1的信道容量,假设为R1。通常为了保留一定的信道容量余量,所以第一种无线信号W1的最终信道容量为R1+r,r大于0。而根据测量得到的实际SNR假设为SNRc,所以根据香农公式最终可以确定第一种无线信号W1所占用的子频段的频谱宽度为(R1+r)除以log2 (1+SNRc)。再例如,假设SNRc较SRN1小8dB,CDMA扩频理论上可以提供一定的增益,CDMA扩频可以弥补该差异,比如扩频16倍,理论上可以提供近12dB的增益,如果第一种无线信号W1的2个无线信号W11和W12中只有一个无线信号在该子频段上传输,那么此时该子频段占用的频谱宽度即为F1*16,码字长度即为16。如果该2个无线信号均在该子频段上传输,扩频64倍即可以提供18dB的增益,平均到每个无线信号就是9dB的增益,这样的话就可以满足每个无线信号的SNR需求,此时该频段的占用的频谱宽度就是F1*64,码字长度即为64。
每个种类的多个无线信号可以对应一组码字,这一组码字彼此正交且长度相同。因为每种无线信号中多个无线信号对信道容量要求相同,所以可以对应一个码组。
继续以前述例子来说明,第一种无线信号W1对应第一子频段C1,第二种无线信号W2对应第二子频段C2,第三种无线信号W3对应第三子频段C3。无线信号W11对应的码字为code1,无线信号W12对应的码字为code2。其中,code1和code2长度相同且彼此正交。无线信号W21对应的码字为code3。无线信号W22对应的码字为code4。无线信号W23对应的码字为code5。其 中,code3、code4和code5长度相同且彼此正交。无线信号W31对应的码字为code6。无线信号W32对应的码字为code7。
经过上述过程,即可划分出7个承载信道,每个承载信道包括两个属性,一是承载信道所使用的码字,二是承载信道所在的子频段。7个承载信道的属性表如表1所示。
承载信道ID 码字 子频段
1 code1 C1
2 code2 C1
3 code3 C2
4 code4 C2
5 code5 C2
6 code6 C3
7 code7 C3
表1
对于承载信道的第三个属性,即所在的光波长的划分,通常可以根据光波长的数量、承载信道的数量来划分,也可以是所有承载信道使用同一个波长。具体来说,假设承载信道的数量为7,而光网络支持的光波长的数量为8个,那么就可以为每个承载信道分配一个光波长。而如果承载信道的数量为8,光波长的数量为7个,那么就可以有两个承载信道的光波长相同,而其它承载信道各使用剩余的6个光波长中的一个。
然后将承载信道标识(ID)和每个无线输入端口进行映射,形成映射表。该映射表即为前述所描述的输入端口和承载信道的对应关系的一种具体存储形式。
因为每个无线输入端口代表一种业务类型,即代表一种无线信号的种类,所以每个无线输入端口与每个承载信道的对应关系,也可以看作是从无线输入端口输入的每个无线信号与每个承载信道的对应关系。
映射表的形式例如为表2所示。
无线信号输入端口 无线信号 承载信道ID
Port1 W11 1
Port2 W12 2
Port3 W21 3
Port4 W22 4
Port5 W23 5
Port6 W31 6
Port7 W32 7
表2
其中,无线信号所在的栏在实际的映射表中可以没有,在本文中,只是为了便于说明无线信号、输入端口和承载信道之间的对应关系。
因此,在通过输入端口接收无线信号时,例如通过输入端口Port1接收到无线信号W11,那么根据输入端口和承载信道的对应关系(例如表2),可以确定无线信号对应的承载信道为承载信道1。根据事先对承载信道1的属性定义(例如表1中所示),承载信道1的属性包括承载1所使用的码字为code1、承载信道1所在的子频段为子频段C1以及光波长为第一光波长。
接下来,将无线信号W11按照码字code1进行CDMA调制,以及按照子频段C1进行载波调制,获得调制电信号。然后把调制电信号再调制到第一光波长上,获得调制光信号。
由以上描述可以看出,通过对每个无线信号进行不同码字的CDMA调制以及不同的载波调制,然后再调制到光网络支持的光波长上,形成光调制信号,可以使得BBU侧和RRU侧之间的光纤部署量大大降低,并且因为不需要对无线信号进行封包处理,所以提高了系统的传输效率。
进一步,本发明实施例中的承载信道是通过无线信号的种类、个数、每种无线信号的信道容量需求以及实际测量的SNR随频谱的变化曲线确定的,所以能为不同的无线信号提供满足其SNR需求的承载信道。换言之,本发明 实施例中的方案提供了一种可靠的前传承载信道。
以上描述了一种定义承载信道的示例,在实际运用中,还可以采用其它方式进行定义,只要承载信道包括上述三个属性、并且两个承载信道之间,至少有一个属性不同即可,不发明不作具体限定。举例来说,直接根据无线信号的种类、个数、每种无线信号的信道容量需求确定至少一个承载信道;其中,每个所述承载信道的属性包括所述承载信道所在的码字、所述承载信道所在的子频段以及所述承载信道所在的光波长;然后将每个输入端口与所述至少一个承载信道对应生成所述对应关系。
可选的,如果该对应关系为输入端口与上行承载信道的对应关系,那么BBU侧设备还可以将该对应关系发送给RRU侧设备,以便RRU侧设备进行上行的无线信号的承载信道的确定。进一步,BBU侧设备还可以将输入端口与下行承载信道的对应关系发送给RRU侧设备,以使所述RRU能够基于该对应关系进行信号解调。
具体的,BBU侧设备通过前述管理信道将该对应关系发送给RRU侧设备。
在实际运用中,本发明实施例中的方法可以用于传输模拟信号,也可以传输数字信号。以下将进行举例说明本发明实施例中的数据传输方法的实施过程。
当无线信号为正交调制前的数字信号时,例如包括I、Q两路数字信号,此时可以认为是两个输入端口输入了两个无线信号。
在步骤102中,就为两路数字信号分别确定一个对应的承载信道,然后执行步骤103,即将两路数字信号按照各自承载信道的属性信息进行调制,获得两个调制光信号。接下来进行步骤104,即在光网路上发送两个调制光信号。
可选的,两路数字信号对应的两个承载信道的码字是相正交的。对两路信号进行CDMA调制,然后通过数模转换器(英文:Digital to Analog Converter,简称:DAC)转换到模拟域进行载波调制,获得两路调制电信号。接下来将调制电信号调制到每个承载信道所在的光波长上。
对于无线信号为正交调制后的数字信号或模拟信号的情况,前者与上述一路无线数字信号的情况相同,而后者除了不需要进行DAC转换之外,与上述一路无线数字信号的情况相同,所以在此不再赘述。
上述描述了数据发送端的实施过程,对于数据接收端而言,进行发送端的反向操作即可。具体的,将接收到的光信号恢复为电信号;进行滤波以及调频到基带信号,即将信号从载波上解调出来;进而再进行CDMA解调。再将解调得到的第一无线信号从对应的输出端口输出给对应的RRU。
具体来说,可以为每个无线信号分配一个信号ID,每个无线信号从哪个输入端口输入,以及从哪个输出端口输出,均是预定好的,BBU侧设备和RRU侧设备可以通过管理信道进行交互,将每个无线信号对应的输入端口和输出端口发送给彼此,那么接收端在解调出无线信号时,可以根据信号ID与输出端口的对应关系,将该无线信号从对应的输出端口输出给对应的RRU。当然,因为每个输入端口与输出端口对应,所以也可以是在前述对应关系中增加输出端口与承载信道的关系,所以接收端可以根据输出端口和承载信道的对应关系,将CDMA解调后的无线信号从与承载信道对应的输出端口输出,从而实现BBU和RRU之间的通信。
基于同一发明构思,本发明实施例还提供一种数据传输装置,用于实现图3所示方法。如图5所示,该数据传输装置包括:处理单元201,用于通过输入端口获取无线信号;根据输入端口和承载信道的对应关系,确定无线信号对应的承载信道;将所述无线信号按照所述承载信道对应的码字进行CDMA调制以及按照所述承载信道所在的子频段进行载波调制,获得调制电信号,将所述调制电信号调制到所述承载信道对应的光波长上,获得调制光信号;光发送单元202,用于将所述调制光信号发送到光网络。
可选的,处理单元201用于:对信道进行测量,以获得SNR随频谱的变化信息;根据配置的无线信号的种类、每种无线信号的数量、每种无线信号对信道容量的需求以及所述SNR随频谱的变化信息,确定至少一个承载信道;将每个输入端口与所述至少一个承载信道对应生成所述对应关系。
可选的,处理单元201用于:根据配置的无线信号的种类、每种无线信号的数量以及每种无线信号对信道容量的需求,确定至少一个承载信道;将每个输入端口与所述至少一个承载信道对应生成所述对应关系。
可选的,光发送单元202还用于:发送参考信号,以及通过管理信道接收基于所述参考信号生成的测量结果;其中,所述管理信道使用的码字和载波是固定的;
处理单元201还用于:根据所述测量结果确定所述SNR随频谱的变化信息。
可选的,光发送单元202还用于:通过管理信道将所述对应关系发送给接收端,以使所述接收端根据所述对应关系对所述调制光信号进行解调;其中,所述管理信道使用的码字和载波是固定的。
可选的,所述装置还包括:光接收单元,用于通过管理信道接收所述对应关系;其中,所述管理信道使用的码字和载波是固定的。
前述图3所示的实施例中的数据传输方法中的各种变化方式和具体实例同样适用于本实施例的数据传输装置,通过前述对数据传输方法的详细描述,本领域技术人员可以清楚的知道本实施例中数据传输装置的实施方法,所以为了说明书的简洁,在此不再详述。
基于同一发明构思,本发明实施例还提供一种网络侧设备,用于实现图3所示方法。如图6所示,该网络侧设备包括:输入端口301,处理器302、调制解调器303、光收发器304、存储器305。处理器302具体可以是中央处理器、特定应用集成电路(英文:Application Specific Integrated Circuit,简称:ASIC),可以是一个或多个用于控制程序执行的集成电路,可以是使用现场可编程门阵列(英文:Field Programmable Gate Array,简称:FPGA)开发的硬件电路。存储器305的数量可以是一个或多个。存储器305可以包括只读存储器(英文:Read Only Memory,简称:ROM)、随机存取存储器(英文:Random Access Memory,简称:RAM)和磁盘存储器。光收发器304可以包括物理上相互独立的或集成在一起的光接收器和光发送器。输入端口301的 数量可以是一个或多个。
具体的,输入端口301,用于接收无线信号;处理器302,用于根据输入端口和承载信道的对应关系,确定无线信号对应的承载信道;调制解调器303,用于根据所述承载信道对应的码字和子频段对所述无线信号进行CDMA调制和载波调制,获得调制电信号,将所述调制电信号调制到所述承载信道对应的光波长上,获得调制光信号;所述光波长为连接所述网络侧设备和接收端设备的光网络支持的光波长;光收发器304,用于将所述调制光信号发送到所述光网络。
可选的,处理器302还用于:获得对信道的测量结果,所述测量结果包括SNR随频谱的变化信息;根据配置的无线信号的种类、每种无线信号的数量、每种无线信号对信道容量的需求以及所述SNR随频谱的变化信息,确定至少一个承载信道;将每个输入端口与所述至少一个承载信道对应生成所述对应关系。
可选的,处理器302还用于:根据配置的无线信号的种类、每种无线信号的数量以及每种无线信号对信道容量的需求,确定至少一个承载信道;将每个输入端口与所述至少一个承载信道对应生成所述对应关系。
可选的,光收发器304还用于:发送参考信号给所述接收端;以及通过管理信道接收基于所述参考信号生成的测量结果;其中,所述管理信道使用的码字和载波是固定的;
处理器302用于:根据所述测量结果,获得所述SNR随频谱的变化信息。
可选的,光收发器304还用于:通过管理信道将所述对应关系发送给所述接收端设备,以使所述接收端根据所述对应关系对所述调制光信号进行解调;其中,所述管理信道使用的码字和载波是固定的。
可选的,光收发器304还用于:通过管理信道接收所述对应关系;其中,所述管理信道使用的码字和载波是固定的。
可选的,所述网络侧设备为BBU侧设备,所述接收端设备为RRU侧设备;或
所述网络侧设备为RRU侧设备,所述接收端设备为BBU侧设备。
前述图3所示的实施例中的数据传输方法中的各种变化方式和具体实例同样适用于本实施例的网络侧设备,通过前述对数据传输方法的详细描述,本领域技术人员可以清楚的知道本实施例中网络侧设备的实施方法,所以为了说明书的简洁,在此不再详述。
申请实施例中提供的一个或多个技术方案,至少具有如下技术效果或优点:
每个输入端口对应一个承载信道,每个承载信道包括三个属性,即每个承载信道使用的码字、所在的频段以及所在的光波长。然后通过对每个无线信号进行不同码字的CDMA调制以及不同的载波调制,然后再调制到光网络支持的光波长上,形成光调制信号,因为不需要对无线信号进行封包处理,减小了传输的无效数据,所以提高了系统的传输效率。进一步,因为通过码字和载波对无线信号进行区分,所以不需要每个RRU和BBU之间都单独部署一路光纤,最少整个网络只需要一路光纤即可,所以可以使得BBU侧和RRU侧之间的光纤部署量大大降低。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (13)

  1. 一种数据传输方法,其特征在于,包括:
    通过输入端口获取无线信号;
    根据输入端口和承载信道的对应关系,确定所述无线信号对应的承载信道;
    根据所述承载信道对应的码字和子频段对所述无线信号进行码分多址CDMA调制和载波调制,获得调制电信号,将所述调制电信号调制到所述承载信道对应的光波长上,获得调制光信号;
    将所述调制光信号发送到光网络。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    对信道进行测量,以获得信噪比SNR随频谱的变化信息;
    根据所述SNR随频谱的变化信息,确定至少一个承载信道;
    建立输入端口与承载信道之间的对应关系。
  3. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    根据配置的无线信号的种类、每种无线信号的数量以及每种无线信号对信道容量的需求,确定至少一个承载信道;
    建立输入端口与承载信道之间的对应关系。
  4. 如权利要求2所述的方法,其特征在于,所述对信道进行测量,包括:
    发送参考信号;
    通过管理信道接收基于所述参考信号生成的测量结果;其中,所述管理信道使用的码字和载波是固定的;
    根据所述测量结果确定所述SNR随频谱的变化信息。
  5. 如权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    通过管理信道将所述对应关系发送给接收端,以使所述接收端根据所述对应关系对所述调制光信号进行解调;其中,所述管理信道使用的码字和载波是固定的。
  6. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    通过管理信道接收所述对应关系;其中,所述管理信道使用的码字和载波是固定的。
  7. 一种网络侧设备,其特征在于,包括:
    输入端口,用于接收无线信号;
    处理器,用于根据输入端口和承载信道的对应关系,确定所述无线信号对应的承载信道;
    调制解调器,用于根据所述承载信道对应的码字和子频段对所述无线信号进行码分多址CDMA调制和载波调制,获得调制电信号,并将所述调制电信号调制到所述承载信道对应的光波长上,获得调制光信号;所述光波长为连接所述网络侧设备和接收端设备的光网络支持的光波长;
    光收发器,用于将所述调制光信号发送到所述光网络。
  8. 如权利要求7所述的网络侧设备,其特征在于,所述处理器还用于:获得对信道的测量结果,所述测量结果包括信噪比SNR随频谱的变化信息;根据所述SNR随频谱的变化信息,确定至少一个承载信道;建立输入端口与承载信道之间的对应关系。
  9. 如权利要求7所述的网络侧设备,其特征在于,所述处理器还用于:根据配置的无线信号的种类、每种无线信号的数量以及每种无线信号对信道容量的需求,确定至少一个承载信道;建立输入端口与承载信道之间的对应关系。
  10. 如权利要求8所述的网络侧设备,其特征在于,所述光发送器还用于:发送参考信号给所述接收端;以及通过管理信道接收基于所述参考信号生成的测量结果;其中,所述管理信道使用的码字和载波是固定的;
    所述处理器用于:根据所述测量结果,获得所述SNR随频谱的变化信息。
  11. 如权利要求7-9任一项所述的网络侧设备,其特征在于,所述光收发器还用于:通过管理信道将所述对应关系发送给所述接收端设备,以使所述接收端根据所述对应关系对所述调制光信号进行解调;其中,所述管理信道 使用的码字和载波是固定的。
  12. 如权利要求7所述的网络侧设备,其特征在于,所述光收发器还用于:通过管理信道接收所述对应关系;其中,所述管理信道使用的码字和载波是固定的。
  13. 如权利要求7-12任一项所述的网络侧设备,其特征在于,所述网络侧设备为基带处理单元BBU侧设备,所述接收端设备为拉远射频单元RRU侧设备;或
    所述网络侧设备为拉远射频单元RRU侧设备,所述接收端设备为基带处理单元BBU侧设备。
PCT/CN2015/090025 2015-09-18 2015-09-18 一种数据传输方法及装置 WO2017045206A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2015/090025 WO2017045206A1 (zh) 2015-09-18 2015-09-18 一种数据传输方法及装置
EP15903895.9A EP3340734B1 (en) 2015-09-18 2015-09-18 Data transmission method and apparatus
US15/923,020 US10419111B2 (en) 2015-09-18 2018-03-16 Data transmission method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/090025 WO2017045206A1 (zh) 2015-09-18 2015-09-18 一种数据传输方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/923,020 Continuation US10419111B2 (en) 2015-09-18 2018-03-16 Data transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2017045206A1 true WO2017045206A1 (zh) 2017-03-23

Family

ID=58288058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/090025 WO2017045206A1 (zh) 2015-09-18 2015-09-18 一种数据传输方法及装置

Country Status (3)

Country Link
US (1) US10419111B2 (zh)
EP (1) EP3340734B1 (zh)
WO (1) WO2017045206A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102265526B1 (ko) * 2017-10-12 2021-06-16 에스케이텔레콤 주식회사 기지국장치 및 데이터 및 신호 전송 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040151503A1 (en) * 2003-01-27 2004-08-05 Oki Electric Industry Co., Ltd. Communication system having wireless transmission path and optical transmission path
CN101321017A (zh) * 2007-06-07 2008-12-10 日立通讯技术株式会社 光通信系统
CN103428144A (zh) * 2012-05-24 2013-12-04 中兴通讯股份有限公司 一种随机接入信号的处理方法及装置
CN103905122A (zh) * 2012-12-28 2014-07-02 中国移动通信集团江苏有限公司 一种双模基站Ir接口间数据传输的方法及系统
CN104104406A (zh) * 2013-04-10 2014-10-15 联发科技股份有限公司 一种多标准收发器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8098990B2 (en) 2006-09-12 2012-01-17 Nec Laboratories America, Inc. System and method for providing wireless over a passive optical network (PON)
WO2008044273A1 (fr) * 2006-10-06 2008-04-17 Hitachi Communication Technologies, Ltd. Système de communication optique
CN101557597B (zh) * 2009-05-21 2011-08-03 华为技术有限公司 一种多模汇聚、合路的方法及装置
EP2978149B1 (en) * 2009-07-27 2017-09-20 Huawei Technologies Co., Ltd. Signal transmission processing method and apparatus and distributed base station
TWI514791B (zh) * 2012-09-11 2015-12-21 Ind Tech Res Inst 射頻信號收發裝置及方法,自我監控光學傳輸裝置及方法
US9225453B2 (en) 2013-04-09 2015-12-29 Futurewei Technologies, Inc. Optimizing optical systems using code division multiple access and/or orthogonal frequency-division multiplexing
US20140308899A1 (en) 2013-04-10 2014-10-16 Mediatek Inc. Multi-standards transceiver
US10028274B2 (en) * 2015-04-15 2018-07-17 Viavi Solutions Uk Limited Techniques for providing front-haul data awareness

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040151503A1 (en) * 2003-01-27 2004-08-05 Oki Electric Industry Co., Ltd. Communication system having wireless transmission path and optical transmission path
CN101321017A (zh) * 2007-06-07 2008-12-10 日立通讯技术株式会社 光通信系统
CN103428144A (zh) * 2012-05-24 2013-12-04 中兴通讯股份有限公司 一种随机接入信号的处理方法及装置
CN103905122A (zh) * 2012-12-28 2014-07-02 中国移动通信集团江苏有限公司 一种双模基站Ir接口间数据传输的方法及系统
CN104104406A (zh) * 2013-04-10 2014-10-15 联发科技股份有限公司 一种多标准收发器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3340734A4 *

Also Published As

Publication number Publication date
US10419111B2 (en) 2019-09-17
EP3340734A1 (en) 2018-06-27
EP3340734A4 (en) 2018-09-12
EP3340734B1 (en) 2021-11-10
US20180205456A1 (en) 2018-07-19

Similar Documents

Publication Publication Date Title
US10090902B2 (en) Distributed antenna system with uplink bandwidth for signal analysis
US9178636B2 (en) Universal remote radio head
US9882644B2 (en) WDM link for radio base station
CN110050417B (zh) 减少通用公共无线接口(cpri)无源光网络(pon)中的同步误差
EP3531609B1 (en) Customer bandwidth re-distribution in point-to-multipoint access
CN110574425B (zh) 配置物理信号和物理信道的方法和设备
WO2001063958A1 (fr) Appareil de station mobile, appareil de station de base, et procede d'affectation de canal de communication
KR20200107992A (ko) Bwp의 주파수 호핑 구성 방법 및 네트워크 장치, 단말
US11071081B2 (en) Validation sub-system for telecommunication system
JP5113915B2 (ja) 無線基地局、無線装置制御装置及び無線装置
KR20150049845A (ko) 무선 통신 시스템에서 장치 간 통신을 위한 신호 처리 장치 및 방법
WO2019184819A1 (zh) 一种无源光网络系统的信号传输方法及相关设备
US11316567B2 (en) Uplink controlled resource allocation for distributed antenna systems and C-RAN systems
US10505661B2 (en) Methods and apparatus for multiplexing signals
WO2017045206A1 (zh) 一种数据传输方法及装置
EP3289722B1 (en) Methods and apparatus for multiplexing and demultiplexing signals
WO2023124815A1 (zh) 无线设备、资源管理方法以及通信系统
Hizan et al. Multiservice wireless network testbed design using SDR and RoF platforms
WO2020022320A1 (ja) 光/rf無線ハイブリッド通信システム、及び制御方法
US11671911B2 (en) Sleep-mode for ethernet controller
CN111083803B (zh) 一种实现公网对讲机与dmr对讲机通信的方法及系统
EP3570469B1 (en) Data transmission method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15903895

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015903895

Country of ref document: EP