WO2017043954A1 - Method and material for producing an electro-assisted crystallisation cell for biological macromolecules - Google Patents

Method and material for producing an electro-assisted crystallisation cell for biological macromolecules Download PDF

Info

Publication number
WO2017043954A1
WO2017043954A1 PCT/MX2016/000092 MX2016000092W WO2017043954A1 WO 2017043954 A1 WO2017043954 A1 WO 2017043954A1 MX 2016000092 W MX2016000092 W MX 2016000092W WO 2017043954 A1 WO2017043954 A1 WO 2017043954A1
Authority
WO
WIPO (PCT)
Prior art keywords
electro
biological
assisted crystallization
cell
assisted
Prior art date
Application number
PCT/MX2016/000092
Other languages
Spanish (es)
French (fr)
Inventor
Abel MORENO CÁRCAMO
Nuria Victoria SÁNCHEZ PUIG
Original Assignee
Universidad Nacional Autónoma de México
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Nacional Autónoma de México filed Critical Universidad Nacional Autónoma de México
Publication of WO2017043954A1 publication Critical patent/WO2017043954A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/02Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by evaporation of the solvent
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B30/00Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions
    • C30B30/02Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions using electric fields, e.g. electrolysis

Definitions

  • the present invention relates to the field of biomacrorrsolecuiar chryography, as! as to the methods and devices used for the nucieation and growth of biological macromolecule crystals.
  • Crystallography is a science that is part of the Solid State Chemistry, it deals with the study of the three-dimensional structure of organic, inorganic and even biological macromolecules solids. Crystallization is a complex process that involves multiple balances. The three common stages in the crystallization of any molecule are; nucieation, crystal growth and growth term. During nucieation enough moiecuias are associated to form a thermodynamically stable aggregate that is known as "critical nucleus". This core provides the surfaces on which e! Crystal will grow by subsequent addition of dough. The term of growth of a crystal! It occurs when raw moiecuias have been used up in the solution.
  • nucieation and the growth of a crystal occur in supersaturated solutions where the concentration of the molecule to be crystallized, in this case a protein, exceeds the value of its solubility balance.
  • the supersaturation requirements for nucieation and crystal growth are different. At high supersaturations both nucieation and crystal growth can occur, while growth occurs predominantly at low supersaturation. The probability of obtaining crystals increases in solutions with very high supersaturations.
  • the risk is that many nuclei that produce many small crystals are produced. The ideal is to be able to control and separate both phenomena, and thus obtain only a few nuclei that originate crystals of adequate size.
  • Granada Crystallization Box which does not use electric current but that allows to grow crystals in capillary media inside a plastic box, even, obtaining large crystals for structural studies via X-rays is still a big problem.
  • X-ray diffraction techniques there are two ways to obtain the structure of micro- powders. Crystals, which is not yet well established for biological macromoecures (for example, proteins) and the other possibility is to obtain the 3D structure using high-quality mono-crystals. In that sense, biomachromolecular crystallography requires crystals of high optical quality - structure! to have the high resolution 3D structure.
  • US Patent 5,597,457 proposes a method and device for the growth of crystals in a fluid protein substance of sufficient quality to be subjected to diffraction, using the electro-crystallization method to grow protein crystals. Disseminates a system comprising a glass, carbon, or silicon substrate and a pair of parallel electrodes arranged in a solvent containing the protein solution; and it is preferred that the electrodes be in full contact with the substance. Once crystallization is carried out, an X-ray beam is directed towards the protein solution.
  • US 8,945,303 discloses a device for crystallization of proteins or other biopoiimers comprising a transparent conducting electrode in a glass substrate, an insulating element and a crystallization solution. Moreover, patent 8,945,303 teaches a plate-shaped crystallization device.
  • the present invention deals with a new device for crystallizing biological macromoecures, which joins the crystallization path by the method of hanging or sitting drops (conventional) and an electric field (unconventional), which allows crystallizing biological macromoecures in an electro-assisted manner.
  • conventional the method of hanging or sitting drops
  • unconventional an electric field
  • electro-assisted crystallization proceeds in the cell, automatically when it has a batch type configuration, configuration also within the scope of the present invention.
  • Tin and Indian Oxide unlike glass a matter!
  • Hard, fragile, transparent or not inorganic which may contain silica sand, sodium carbonate and calcium - it is a ternary composition of indium, staph and oxygen in varying proportions.
  • the ITO can be described as a ceramic material or alloy.
  • ITO is transparent and colorless in thin films, and is even one of the most commonly used transparent conductive oxides due to its two properties, its electrical conductivity and its optical transparency, as well as the ease with which it can be deposited as a thin film.
  • ITO has been frequently used to make transparent conductive coatings for screens or displays, such as liquid crystal displays, for organic light-emitting diodes, solar cells, among others.
  • the electro-assisted crystallization cell is manufactured with ITO electrodes mounted on plastic material (ITO on polyethylene) which gives it great advantages over its predecessors: 1) it allows to configure the crystallization of macromoecuias biological that proceeds in the cell according to!
  • the electro-assisted crystallization cell described in this invention has a different conception, since this new crystallization cell is based on plastic material (polyethylene, PEI), which allows crystallization to be configured which proceeds in the cell according to the seated drop method in diffusion in vapor phase or even in bat.
  • plastic material polyethylene, PEI
  • the electro-assisted crystallization cell of the present invention uses ITO electrodes mounted on plastic material (ITO on polyethylene) which gives it great advantages over its predecessors.
  • ITO plastic material
  • the present invention makes it possible to configure the crystallization of biological macromolecules that proceed in the cell according to the method of hanging or sitting drops and an electric field; that is, electro-assisted in situ.
  • the electro-assisted crystallization cell allows the easy separation of the crystals that have been obtained within it by simply cutting the window opposite to where the biological macromolecule crystallized (for example, a protein).
  • the crystals of said proteins obtained can be recovered from the cell by cutting the plastic material easily with a conventional knife making a slit and the crystals of said protein can be recovered for diffraction studies.
  • the present invention makes it possible that in those cases where biological macromolecules such as proteins have a high structural water content or are very sensitive to remove them from the cell, ITO electrodes allow the collection of rays to be obtained.
  • ITO electrodes allow the collection of rays to be obtained.
  • the electro-assisted crystallization cell overcomes the difficulty of separating the nucleation and growth phenomena of a crystal in situ, and thus obtain only a few nuclei that originate crystals of suitable size, thus solving many of the deficiencies that exist in the existing approaches, especially in the case of biological macromolecules such as proteins.
  • the nuclei grow by means of a classic process like that of the diffusion in vapor phase (water extraction) and also the cell has the advantage of allowing to observe the experiments in a conventional microscope and even the experiments can be recorded with a camcorder with time lapse recording.
  • the procedure to manufacture the cell in matter! Plastic are also presented in this specification.
  • the present electro-assisted crystallization cell can be used in the presence of magnetic fields without it undergoing changes or variations in its design.
  • the electro-assisted crystallization cell can be used at different temperatures.
  • the present invention allows the crystallization of biological macromolecules, such as: proteins, nucleic acids and polysaccharides, and macromolecular complexes having combinations of these biomolecules.
  • a direct current is applied in the range of 2-8 micro Amps in parallel plates of electrodes of ⁇ (Tin and Indian Oxide) which allows the electro-crystallization of the biological macromolecule (for example, a protein) on the cathode or anode.
  • the current stops and the crystalline growth process proceeds through vapor phase diffusion.
  • the precipitating agent placed in the largest compartment of the cell draws water from the solution where the protein and the precipitating agent were mixed. Large crystals are obtained in a period of 2-4 weeks.
  • the design of this cell allows to influence the process of nucieation and control the process of crystal growth.
  • the electro-assisted crystallization cell present allows the possibility of being able to have two variants thereof: 1) employing the crystallization conditions of classical methods called hanging drop or sitting drop and 2) being able to crystallize in ba ⁇ ch; for this, the cell that is claimed in the present invention would have 4 windows to do 4 batch experiments at the same time.
  • Figure 1 Three types of broth used previously are shown, in which electric fields are applied in different experimental configurations, observing the influence of electric fields in the crystallization of proteins.
  • Figure 1a experimental design using the acupuncture technique in gels (GA E) [18] where the anode (101), the precipitating solution (102), the solution with protein (103), the gel (104), the cathode (105) and the power source (108).
  • Figure 1b using two parallel platinum electrodes, where the red figures represent protein crystals [7].
  • Figure 1c using tin and indium oxide electrodes (ITO) applied in the batch technique [18].
  • ITO indium oxide electrodes
  • Figure 2 Shows the advanced experimental design of the electro-assisted crystallization cell for a biological macromolecule, such as: proteins, nucleic acids and polysaccharides, and macromolecular complexes having combinations of these biomolecules, in a configuration of a seated drop in diffusion in Vapor phase with de transparent and matter electrodes! plastic; the The cell allows controlling the nucleation in the small reservoir and in the larger reservoir the precipitating agent is coiocated.
  • a biological macromolecule such as: proteins, nucleic acids and polysaccharides, and macromolecular complexes having combinations of these biomolecules
  • Electro-assisted crystallization cell for several biological macromolecules such as: proteins, nucleic acids and poüsaccharides, and macromoiecuiar complexes that have combinations of these biomolecules, in configuration with! TO electrodes in plastic.
  • biological macromolecules such as: proteins, nucleic acids and poüsaccharides, and macromoiecuiar complexes that have combinations of these biomolecules, in configuration with! TO electrodes in plastic.
  • Different macromolecules, different precipitating agents or a combination of both in a single experiment can be evaluated in each compartment of this cell. The case of a cell with four windows is exemplified but the design can be extended to a larger number of compartments.
  • Figure 4 Electro-assisted crystallization cell for two different biological macromolecules in a seated drop configuration by vapor phase diffusion with ITO electrodes in plastic using the same precipitating agent.
  • FIG. 5 Cele of electro-assisted crystallization that summarizes the general idea of the invention and shows preferred sizes and cuts in e! manufacturing process of the electro-assisted crystallization cell.
  • Figure 6. They show an image of the electro-assisted crystallization cell mounted for diffraction taken in situ by the inventors of the patent in a synchrotron.
  • Figure 7 A and 7B shows diffraction images taken in situ by Sos inventors of the patent in a synchrotron, as an effective test that supports one of the advantages and potential of the cell present in the direct collection of X-ray diffraction data.
  • the present invention is about an electro-assisted crystallization cell for biological macromolecules, such as: proteins, nucleic acids and poüsaccharides, and macromoiecuiar complexes having combinations of these biomolecules.
  • biological macromolecules such as: proteins, nucleic acids and poüsaccharides, and macromoiecuiar complexes having combinations of these biomolecules.
  • which comprises two ITO electrodes (tin oxide and indium). Said electrodes are separated by a rubber insulating membrane.
  • the cell ( Figure 2) has two compartments, one small one, which is a reservoir where the biological macromolecule (for example, a protein) is mixed with the precipitating agent and in the other reservoir the precipitating agent is placed only.
  • the cell is perfectly sealed with an adherent substance to be able to apply a continuous current on a micro-Amp scale (in the range of 2-8 micro Amps) on parallel ITO plates for 48 hours, who suffer a polarization that allows crystallization through the application of said current and the biological macromolecuia (for example, a protein) crystallizes on any of them - (cathode or anode).
  • the current stops being applied and the nucleation process stops and the cores generated proceed to grow through diffusion processes in the vapor phase, that is, the short section of the cell that It is shown in Figure 2.
  • the crystals of the biological macromolecuia grow, because at first nuclear, assisted the process of nucleation by a current, the nuclei generated either in e! anode or cathode (this depends on the burden of the macromolecule or protein under study), are enriched by the mass supply of the solution, when the compartment containing the biological macromolecule mixture (for example, protein) with precipitating agent it is concentrated in time due to the extraction of water made by the precipitating agent that is in the reservoir higher. In a period of 2-4 weeks, large crystals are obtained due to the extraction of solvent into the small compartment.
  • the biological macromolecule mixture for example, protein
  • the electro-assisted crystallization release of the present invention uses ITO electrodes mounted on plastic material (ITO on polyethylene), which gives it great advantages over its predecessors.
  • ITO plastic material
  • the main disadvantage of Sa cell in which the glass-mounted ITO electrodes were had was that due to the rigidity of the glass, there were sealing problems and runoff problems on some occasions when the experiment was mounted; The extraction of crystals from biogenic macromolecules (for example, proteins) was also a problem or required great expertise from the experimenter. This problem has been overcome in the present cell made of ITO plastic material (PET).
  • the electro-assisted crystallization cell allows easy separation of the crystals that have been obtained within it by simply cutting the opposite window where the macromolecule or protein crystallized.
  • the crystals obtained can be recovered from the cell by easily cutting the plastic material with a conventional knife by making a slit and the crystals of said protein can be recovered, for example, for diffraction studies.
  • the present invention makes it possible that in cases where biological macromolecules (for example, a protein) have a high structural water content or are very sensitive to remove them from the cell, STO electrodes allow to obtain the X-ray collection of crystals in place since the plastic material is transparent to this radiation without producing X-ray absorption, and thus being able to perform high resolution structural studies, even, without having to take the sample of its growth conditions.
  • biological macromolecules for example, a protein
  • the electro-assisted crystallization cell also overcomes the difficulty of separating the nucleation and growth phenomena of a crystal in situ, and thus obtain only a few nuclei that originate crystals of adequate size, thus solving many of the deficiencies that are found in Sas existing approaches, especially in the case of biogenic macromolecules such as proteins.
  • the nuclei grow by means of a classic process such as the diffusion in the vapor phase (water extraction) and in addition the cell has the advantage of allowing to observe the experiments in a conventional microscope and the experiments can even be recorded with a camcorder with recording in time lapses.
  • the procedure to manufacture the cell and the design of the same in matter! Plastic are also presented in this specification.
  • the present electro-assisted crystallization cell can be used even in the presence of magnetic fields without it undergoing changes or variations in its design, or it can be used at different temperatures.
  • Example 1 MateHa ⁇ es and manufacturing process of the one-way round crystallization cell for biological macromolecules based on ITO plastic electrodes.
  • the electro-assisted crystallization cell comprises two transparent electrode plates of plastic material (polyethene) with tin and indium oxide deposited on its surface, this is allowed to have adequate conductivity and have a resistance ranging from 4 to 8 Ohms.
  • Sa cell dimensions can be made of different sizes, even without limitations; the ideal case is to cut the plates to a size or dimensions of approximately 3.0 to 5.0 cm long by approximately 2.5 - 5.0 crn in width, as shown in Figures 2-4 because the plastic material It allows, as well as offers the advantage of the proper adjustment of the clamps (alligators).
  • the conductive part of the plates is placed inside the cell, this can be done using a muitimeter to detect and corroborate, that the conductive part of Sa itself is inside.
  • the sealing of the plate to avoid permeation of Siquádo is done by placing an adherent substance, such as nail varnish, vacuum grease or silicone on the surface of the rubber and the plates are glued.
  • an adherent substance such as nail varnish, vacuum grease or silicone
  • the electrode plates move approximately 0.5 - 1.0 cm from each other, this with e! object of leaving tabs to connect the clamps (colloquially known as alligators) that will be connected to the cathode or to the anode of the electroplating.
  • the process for manufacturing this electro-assisted crystallization cell comprises Sas following steps:
  • the plates and insulating membrane with an adherent substance that is placed on said insulating membrane, wherein the adherent substance is nail varnish, vacuum grease or silicon; preferably, nail varnish;
  • the size and dimensions of the electrode plates are preferably between 3.0 - SO cm long and approximately 2.5 - 5.0 cm wide, while the size and dimensions of the rubber insulating membrane are preferably approximately 2.5 - 5.0. cm long by approximately 2.2 - 2.7 cm wide.
  • the insulating membrane of the cell comprises from two to three reservoirs, preferably three reservoirs - wherein the size and dimensions of the electrode plates is preferably approximately between 3.Q - 5.0 cm long by approximately 8.5 - 7.5 cm wide and the size and dimensions of the rubber insulating membrane are preferably approximately 2.5 - 5.0 cm long by approximately 6.0 - 7.0 cm wide - then the electro- crystallization cell assisted corresponds to a seated drop configuration with vapor phase diffusion, where at least one of Sos reservoirs is of greater volume containing precipitating agent, and the rest of the reservoirs is of lower volume Sos which will contain a biological macromolecule and precipitating agent ;
  • the largest volume reservoir is approximately 1.5 cm x 0.8 x 0.15 - 2.0 cm x 1.0 cm x 0.2 cm, while the lowest volume reservoir is approximately 0.7 cm x 0.5 cm x 0.15 cm - 1.0 cm x 0.8 cm x 0.2 cm, being that in the sedentary drop configuration with three reservoirs, the reservoir of greater
  • the electro-assisted crystallization cell corresponds to a batch configuration, and all reservoirs contain a biological macromolecule and precipitating agent .
  • approximately 25 microiiters of the biological macromolecule are mixed (for example, a proelel) with approximately 25 microiiters of precipitating agent, or in 1: 1, 1: 2 or 1: 3 ratios depending on the concentration of the available biological macromolecule, and depending on the size of the cell construction; care must be taken to first put the mixture in an eppendorf tube, taking care to put the most viscous solution first; in general, the biological macromolecule (for example, protein ⁇ is put first and then the precipitating agent and they are mixed very carefully. If polyether glycols are used at concentrations greater than 25% by weight, the precipitating agent must be put first and then the biological macromolecule (for example, a protein), to prepare the mixture that it will go in the small reservoir ( Figures 2 and 4.) This also applies when 4 identical or different proteins are prepared to crystallize in the configuration ón bateh as shown in Figure 3.
  • the biological macromolecule for example, a protein
  • the crystallization plate is mounted, ensuring that there is no loss of internal liquid (drip), the crystallization plate is connected to the respective electroplating and a direct current is applied in the range of 1 to 2 micro Amps for 24 hours. Subsequently, the equipment is disconnected from the current applied by the Galvanostat and the crystalline growth process is allowed to proceed through vapor phase diffusion, to allow the solution that is in the smallest reservoir ( Figures 2 and 3) to be concentrate and allow the growth of crystals of the biological macromolecule (for example, a protein).
  • the biological macromolecule for example, a protein
  • the crystals of the cell can be separated, opening a slit by cutting with a cutter and plastic (polyethylene) and removing the crystals at the end of the experiment.
  • the precipitating agent can also be mixed with a cryoprotectant.
  • the plastic ITO is transparent, an in-situ X-ray collection can be carried out without removing the crystals. It can also be placed in any optical microscope.
  • Example 3 fi elities of the efeetro-assistants crystal cell configuration
  • the cell in the seated drop configuration ( Figure 2) can also be configured with four or more windows to apply the batch method ( Figure 3). Even this cell in batch configuration could be expanded to lines of 8 to facilitate its filling with the sample of a biological macromolecule ⁇ for example, a protein) and precipitating agent through the use of muiticanai pipettes. This would allow it to perform aita density tests as each compartment could contain a different precipitating agent according to how they are accommodated in commercial kits.
  • the reservoirs in which the precipitating agent and the biological macromolecule (for example, protein) to be crystallized are mixed can vary in size and be able to use minimum amounts of said biological macromolecule. Even the same concept of crystallization can be varied so that instead of having a single well for crystallization of a biological macromolecule (for example, a protein) at two different concentrations or two different proteins, there are two lateral reservoirs and one central one that will contain ai precipitating agent ( Figure 4). The nucleation is electro-assisted by the application of current and the crystal growth proceeds through the concentration of the drop by vapor phase diffusion.
  • a biological macromolecule for example, a protein
  • Example 4 Use of the erytheatics chamber ⁇ teotro-asfstida of ITO plastic for X-ray radiation m situ
  • the invention is applied to the crystallization of biological macromolecules (proteins, nucleic acids and polysaccharides and for macromolecures complexes having combinations of these biomoléeuias) through an electro-assisted crystallization cell.
  • the electro-assisted crystallization cell allows easy separation of the crystals that have been obtained within it by simply cutting the window opposite where the macromolecule or protein crystallized.
  • the present invention makes it possible that in cases where the biological macromolecules have a high structural water content or are very sensitive to remove them from the cell, ITO electrodes allow to obtain the X-ray collection of crystals in situ since the Plastic material is transparent to this radiation without producing X-ray absorption, and thus be able to perform high-resolution structural studies, even without having to take the sample of its growth conditions.
  • the present electro-assisted crystallization cement can also be used in the presence of magnetic fields without it undergoing changes or variations in its design or can be used at different temperatures.
  • this type of cell allows measuring kinetics of crystal growth in situ, establishing nucleation studies and crystal growth.
  • the time for induction of nucleation since the cell is transparent and can be placed even in any optical microscope, the only requirement is that a potentiostat / gaivanostat device must be used to apply the constant current or the respective voltage.

Abstract

The present invention relates to the field of biomacromolecular crystallography, as well as to methods and devices used for the nucleation and growth of biological macromolecule crystals. Unlike existing devices in the prior art, the electro-assisted crystallisation cell described in this invention has a different conception, since the crystallisation cell is a novel design based on a plastic material (polyethylene, PET).

Description

MÉTODO Y MATERIAL DE FABRICACIÓN DE CELDA DE CRISTALIZACIÓN ELECTRO-ASISTIDA METHOD AND MANUFACTURING MATERIAL OF ELECTRO-ASSISTED CRYSTALLIZATION CELL
PARA MACROÜOLÉCULAS BIOLÓGICAS FOR BIOLOGICAL MACROÜOLECULES
CAMPO DE LA INVECCIÓN FIELD OF THE INVENTION
La presente invención se relaciona al campo de !a crisíaiografla biomacrorrsolecuiar, as! como a ios métodos y dispositivos empleados para la nucieación y crecimiento de cristales de macromoiéculas biológicas. The present invention relates to the field of biomacrorrsolecuiar chryography, as! as to the methods and devices used for the nucieation and growth of biological macromolecule crystals.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
La cristalografía es una ciencia que es parte de la Química del Estado Sólido, ésta trata sobre el estudio de la estructura tridimensional de sólidos orgánicos, inorgánicos e inclusive de macromoiéculas biológicas. La cristalización es un proceso complejo que involucra múltiples equilibrios. Las tres etapas comunes en la cristalización de cualquier molécula son; nucieación, crecimiento del cristal y término del crecimiento. Durante la nucieación suficientes moiécuias se asocian para formar un agregado termodinámicamente estable que se conoce como "núcleo critico". Este núcleo provee las superficies sobre las cuales e! cristal crecerá mediante la subsecuente adición de masa. El término deí crecimiento de un crista! ocurre cuando en la disolución se han agotado las moiécuias primas. La nucieación y el crecimiento de un cristal ocurren en soluciones sobresaturadas donde la concentración de la molécula que se desea cristalizar, en este caso una proteína, excede el valor de su equilibrio de solubilidad. Sin embargo, los requerimientos de sobresaturación para la nucieación y el crecimiento del cristal son diferentes. A altas sobresaturaciones tanto la nucieación como el crecimiento del cristal pueden ocurrir, mientras que el crecimiento ocurre predominantemente a baja sobresaturación. La probabilidad de obtener cristales aumenta en disoluciones con sobresaturaciones muy altas. Sin embargo, el riesgo es que se produzcan muchos núcleos que originen muchos cristales pequeños. Lo ideal es poder controlar y separar ambos fenómenos, y así obtener solo unos cuantos núcleos que originen cristales de tamaño adecuado. Crystallography is a science that is part of the Solid State Chemistry, it deals with the study of the three-dimensional structure of organic, inorganic and even biological macromolecules solids. Crystallization is a complex process that involves multiple balances. The three common stages in the crystallization of any molecule are; nucieation, crystal growth and growth term. During nucieation enough moiecuias are associated to form a thermodynamically stable aggregate that is known as "critical nucleus". This core provides the surfaces on which e! Crystal will grow by subsequent addition of dough. The term of growth of a crystal! It occurs when raw moiecuias have been used up in the solution. Nucieation and the growth of a crystal occur in supersaturated solutions where the concentration of the molecule to be crystallized, in this case a protein, exceeds the value of its solubility balance. However, the supersaturation requirements for nucieation and crystal growth are different. At high supersaturations both nucieation and crystal growth can occur, while growth occurs predominantly at low supersaturation. The probability of obtaining crystals increases in solutions with very high supersaturations. However, the risk is that many nuclei that produce many small crystals are produced. The ideal is to be able to control and separate both phenomena, and thus obtain only a few nuclei that originate crystals of adequate size.
Durante años el control de la nucieación de sistemas biológicos macromoleculares ha sido un cuello de botella en investigaciones biológicas y biomédíeas. For years the control of the nucieation of macromolecular biological systems has been a bottleneck in biological and biomedical research.
Las técnicas empleadas para cristalizar macromoiécula biológica (por ejemplo, proteínas) se basan en el uso de disoluciones que varían en sus parámetros químicos (fuerza iónica, polímeros, ρΗ, temperatura) y en las que la mayoría de las macromoiécula biológica (por ejemplo, proteínas o familias de proteínas) han cristalizado. A pesar, de lo popular que son estos kits en la cristalización de proteínas, al proporcionar sólo las condiciones iniciales de cristalización, no permiten separar el proceso nucieación del crecimiento de cristales. Este concepto no había sido explorado en detalle, salvo por un producto comercial de la compañía TRIA A Sci. and Tech, de España, que ofrece un dispositivo llamado Granada Crystallization Box (GCB, por sus siglas en inglés), que no usa corriente eléctrica pero que permite crecer cristales en medios capilares dentro de una caja de plástico, incluso, la obtención de cristales de gran tamaño para estudios estructurales vía rayos-X es aún gran problema. Cuando se trata de obtener la estructura de macromoiéculas biológicas por medio de técnicas de difracción de rayos-X, existe dos vías la de obtener la estructura de polvos micro- cristalinos, io que todavía no está bien impíementado para macromoíécuías biológicas (por ejemplo, proteínas) y la otra posibilidad es obtener ia estructura 3D empleando mono-cristales de alta calidad. En ese sentido, ia cristalografía biomacromolecular requiere tener cristales de a!ta calidad óptico- estructura! para tener la estructura 3D de alta resolución. Existen diversas técnicas que han permitido obtener cristales por vías convencionales en pequeñas gotas (métodos de las gotas colgantes o sedentes [1-3]) o por vías que no son las clásicas [4, 5]. En ese sentido los métodos no-clásicos empleando campos eléctricos o magnéticos han abierto un nuevo camino en el estudio de! crecimiento de cristales de macromoíécuías biológicas por vías no convencionales. Desde el año 2005 surgió una idea preliminar sobre ia concepción de cristalizar de forma electro-asistida las proteínas in situ [6, 7]. En eí año 2008 aparece una revisión para poner las bases teóricas de este tipo de métodos de cristalización asistida por aspectos electroquímicos [8]. Es a partir de ésta publicación de 2008 que presenta las perspectivas en la cristalización de proteínas, cuando surgen una serie de artículos relacionados con variantes y propuestas de celdas de crecimiento [9-15], The techniques used to crystallize biological macromolecule (for example, proteins) are based on the use of solutions that vary in their chemical parameters (ionic strength, polymers, ρΗ, temperature) and in which most of the biological macromolecule (for example, proteins or protein families) have crystallized. However, how popular these kits are in the crystallization of proteins, by providing only the initial crystallization conditions, they do not allow to separate the nucieation process from the growth of crystals. This concept had not been explored in detail, except for a commercial product of the company TRIA A Sci. And Tech, of Spain, which offers a device called Granada Crystallization Box (GCB), which does not use electric current but that allows to grow crystals in capillary media inside a plastic box, even, obtaining large crystals for structural studies via X-rays is still a big problem. When it comes to obtaining the structure of biological macromolecules by means of X-ray diffraction techniques, there are two ways to obtain the structure of micro- powders. crystals, which is not yet well established for biological macromoecures (for example, proteins) and the other possibility is to obtain the 3D structure using high-quality mono-crystals. In that sense, biomachromolecular crystallography requires crystals of high optical quality - structure! to have the high resolution 3D structure. There are several techniques that have allowed to obtain crystals by conventional routes in small drops (methods of hanging or sitting drops [1-3]) or by routes that are not the classic [4, 5]. In that sense, non-classical methods using electric or magnetic fields have opened a new path in the study of! crystal growth of biological macromoecures by unconventional routes. Since 2005, a preliminary idea emerged about the conception of crystallizing electro-assisted proteins in situ [6,7]. In 2008, a review appears to put the theoretical basis of this type of crystallization methods assisted by electrochemical aspects [8]. It is from this 2008 publication that presents the perspectives in the crystallization of proteins, when a series of articles related to variants and proposals of growth cells arise [9-15],
Recientemente se ha evaluado el efecto que tienen muchos parámetros físicos como los campos eléctricos y magnéticos en el control de la nucleación y crecimiento de cristales. Se presentan en la Figura 1 los avances realizados con macromoíécuías biológicas modeio (por ejemplo, proteínas) en las que se ha empleado campos eléctricos en su cristalización y que fueron los modelos preliminares de celda que se pueden considerar las ideas precursoras de la cristalización electro-asistida de macromoíécuías biológicas.  Recently, the effect of many physical parameters such as electric and magnetic fields in the control of nucleation and crystal growth has been evaluated. The advances made with moderate biological macromoecures (for example, proteins) in which electric fields have been used in their crystallization and which were the preliminary cell models that can be considered as the precursor ideas of electro crystallization are presented in Figure 1. assisted by biological macromoecuias.
La patente US 5,597,457 propone un método y dispositivo para el crecimiento de cristales en una sustancia fluida de proteínas con suficiente calidad para ser sometidas a difracción, utilizando el método de eiectrocristalización para crecer cristales de proteínas. Divulga un sistema que comprende un sustrato de vidrio, carbón, o silicio y un par de electrodos paralelos y dispuestos dentro de un disolvente que contiene la solución de proteína; y se prefiere que los electrodos se encuentren en pleno contacto con ia sustancia. Una vez que se lleva a cabo la cristalización, se dirige un haz de rayos-X hacia la solución de proteína.  US Patent 5,597,457 proposes a method and device for the growth of crystals in a fluid protein substance of sufficient quality to be subjected to diffraction, using the electro-crystallization method to grow protein crystals. Disseminates a system comprising a glass, carbon, or silicon substrate and a pair of parallel electrodes arranged in a solvent containing the protein solution; and it is preferred that the electrodes be in full contact with the substance. Once crystallization is carried out, an X-ray beam is directed towards the protein solution.
La patente US 8,945,303 divulga un dispositivo de cristaiización de proteínas u otros biopoiímeros que comprende un electrodo conductor transparente en un sustrato de vidrio, un elemento aislante y una solución de cristalización. Más aun, la patente 8,945,303 enseña un dispositivo de cristalización en forma de placa.  US 8,945,303 discloses a device for crystallization of proteins or other biopoiimers comprising a transparent conducting electrode in a glass substrate, an insulating element and a crystallization solution. Moreover, patent 8,945,303 teaches a plate-shaped crystallization device.
Eí estado de ía técnica, que antecede a la presente invención, son ideas precursoras en las que ninguna propone la presente invención. Todas las celdas que le anteceden a la presente invención (Mirkin et al, 2003 y Sazaki et al; y Moreno and Sazaki, 2004) empleaban electrodos de alambre de platino, que corrían el riesgo de producir electrólisis del agua. La primera celda que empleó el concepto de cristalización electro-asistida en la que se combinan campos eléctricos y magnéticos, es ía publicada por Sazaki et al., 2004, Moreno and Sazaki, 2004. Esta celda contenía dos electrodos paralelos de platino en los que ocurre la cristalización en la sección interna de los mismos o sobre alguno de los electrodos dependiendo de la carga de la proteína en estudio. Por primera vez se mostró en la publicación de Sazaki et al., 2004 que aplicando al proceso de cristalización un campo eléctrico de 2 micro Amperios y un campo magnético de 10 Tesía era posible crecer cristales del mismo tamaño y con !a misma orientación, todos orientado en el eje C cristalográfico de la proteína en estudio. Es a partir de Gii-Alvaradejo et ai. (2011), donde se presenta por primera vez el uso de electrodos de ITO transparentes para evitar cualquier problema de electrólisis del agua. Mientras que otra publicación reporta el uso de electrodos de grafito (Espinosa-Montaro et al, 2013). En ambas celdas se aplicó solo en el método de cristalización de proteínas por el método "baten", para el cual se deben conocer previamente las condiciones de cristalización y las cantidades exactas tanto de proteína como de agente precipitante necesarias para producir la nucleación y el consecuente crecimiento de cristales. Uno de ios inconvenientes que tuvo esta celda fue fundamentalmente la separación de las muestras cristalinas de su interior para subsecuentes estudios estructurales por rayos-X. En el año 2013 se publicó una variante de esta técnica para ser aplicada en la cristalización de proteínas en el concepto de gota colgante por difusión en fase vapor (Flores-Hernández et al., 2013). Las mejores realizadas en esta celda permiten extender las condiciones conocidas de cristalización obtenidas en gotas empleando kíís comerciales y aplicar la cristalización electro-asistida. La diferencia de la celda publicada en 2013 y las anteriores, es que utilizó electrodos de ITO montados sobre vidrio. The state of the art, which precedes the present invention, are precursor ideas in which none proposes the present invention. All the cells that predate the present invention (Mirkin et al, 2003 and Sazaki et al; and Moreno and Sazaki, 2004) used platinum wire electrodes, which ran the risk of producing water electrolysis. The first cell that used the concept of electro-assisted crystallization in which electric and magnetic fields are combined, is published by Sazaki et al., 2004, Moreno and Sazaki, 2004. This cell contained two parallel platinum electrodes in which crystallization occurs in the internal section thereof or on any of the electrodes depending on the load of the protein under study. For the first time it was shown in the publication of Sazaki et al., 2004 that by applying to the crystallization process an electric field of 2 micro Amps and a magnetic field of 10 Tesia it was possible to grow crystals of the same size and with the same orientation, all oriented in the C crystallographic axis of the protein under study. It is from Gii-Alvaradejo et ai. (2011), where the use of transparent ITO electrodes is presented for the first time to avoid any problem of water electrolysis. While another publication reports the use of graphite electrodes (Espinosa-Montaro et al, 2013). In both cells it was applied only in the protein crystallization method by the "bat" method, for which the crystallization conditions and the exact amounts of both protein and precipitating agent necessary to produce the nucleation and the consequent must be previously known. crystal growth One of the problems that this cell had was mainly the separation of the crystalline samples from its interior for subsequent structural studies by X-rays. In 2013, a variant of this technique was published to be applied in the crystallization of proteins in the concept of hanging drop by diffusion in vapor phase (Flores-Hernández et al., 2013). The best performed in this cell allow to extend the known crystallization conditions obtained in drops using commercial kíís and apply electro-assisted crystallization. The difference in the cell published in 2013 and the previous ones is that it used ITO electrodes mounted on glass.
La presente invención trata de un nuevo dispositivo para cristalizar macromoiécuias biológicas, que conjunta la vía de cristalización por el método de las gotas colgantes o sedentes (convencional) y un campo eléctrico (no convencional), que permite cristalizar macromoiécuias biológicas de forma electro- asistida in situ, Hasta ahora, ninguna de las celdas o dispositivos de cristalización que conjunta el método de gota sedente y un campo eléctrico es similar o parecida a 3a presente invención, y mucho menos propone el uso de placas de !TO plástico para montar el dispositivo, y al mismo tiempo como material conductor para asistir a ia cristalización. En una modalidad de la presente invención, la cristalización electro-asistida procede en la celda, de forma automática cuando posee una configuración de tipo batch, configuración también dentro del alcance de la presente invención.  The present invention deals with a new device for crystallizing biological macromoecures, which joins the crystallization path by the method of hanging or sitting drops (conventional) and an electric field (unconventional), which allows crystallizing biological macromoecures in an electro-assisted manner. In situ, Until now, none of the cells or crystallization devices that combine the method of seated drop and an electric field is similar or similar to the present invention, much less proposes the use of plastic plates to mount the device , and at the same time as a conductive material to assist in crystallization. In one embodiment of the present invention, electro-assisted crystallization proceeds in the cell, automatically when it has a batch type configuration, configuration also within the scope of the present invention.
El Oxido de Estaño e Indio (ITO) - a diferencia del vidrio un materia! inorgánico duro, frágil, transparente o no, que puede contener arena de sílice, carbonato de sodio y calcio - es una composición ternaria de indio, estaflo y oxígeno en proporciones variables. Dependiendo del contenido de oxígeno, el ITO puede ser descrito como un material cerámico o aleación. El ITO es transparente e incoloro en películas delgadas, e incluso es uno de los óxidos conductores transparente más utilizados debido a sus dos propiedades, su conductividad eléctrica y su transparencia óptica, así como la facilidad con la que se puede depositar como una película fina. El ITO se ha utilizado frecuentemente para hacer recubrimientos conductores transparentes para pantallas o displays, tales como pantallas de cristal líquido, para diodos orgánicos emisores de luz, celdas solares, entre otros. Tin and Indian Oxide (ITO) - unlike glass a matter! Hard, fragile, transparent or not inorganic, which may contain silica sand, sodium carbonate and calcium - it is a ternary composition of indium, staph and oxygen in varying proportions. Depending on the oxygen content, the ITO can be described as a ceramic material or alloy. ITO is transparent and colorless in thin films, and is even one of the most commonly used transparent conductive oxides due to its two properties, its electrical conductivity and its optical transparency, as well as the ease with which it can be deposited as a thin film. ITO has been frequently used to make transparent conductive coatings for screens or displays, such as liquid crystal displays, for organic light-emitting diodes, solar cells, among others.
Por sus propiedades, en la presente invención, la celda de cristalización electro-asistida se fabrica con electrodos de ITO montados en material plástico (ITO sobre polietileno) lo que le confiere grandes ventajas respecto a sus antecesoras: 1) permite configurar la cristalización de macromoiécuias biológicas que procede en la celda de acuerdo a! método de las gotas colgantes o sedentes y un campo eiéctrico, de forma electro-asistida in situ; 2) la fácil separación de los cristales que se hayan obtenido dentro de ella con solo cortar la ventana opuesta a donde cristalizó la macromolécula biológica (por ejemplo, protelna); y 3) en casos donde las macromoiécuias biológicas (por ejemplo, proteínas} poseen un gran contenido de agua estructural o bien son muy sensibles para removerías de la celda, los electrodos de ITO permiten obtener !a colecta de rayos-X de cristales in situ ya que son transparentes a esta radiación; 4) supera la dificultad de separar ios fenómenos de nucleación y crecimiento de un cristal, y así obtener sólo unos cuantos núcleos que originen cristales de tamaño adecuado, resolviendo asf muchas de las deficiencias que se tienen en las aproximaciones existentes, sobretodo en el caso de macromoléculas biológicas como las proteínas; entre otras. Due to its properties, in the present invention, the electro-assisted crystallization cell is manufactured with ITO electrodes mounted on plastic material (ITO on polyethylene) which gives it great advantages over its predecessors: 1) it allows to configure the crystallization of macromoecuias biological that proceeds in the cell according to! method of hanging or sitting drops and an electric field, electro-assisted in situ; 2) the easy separation of the crystals that have been obtained within it by simply cutting the window opposite to where the biological macromolecule crystallized (for example, protelna); and 3) in cases where biological macromoecuias (for example, proteins} have a high structural water content or are very sensitive for cell removal, ITO electrodes allow to obtain X-ray collection of crystals in situ since they are transparent to this radiation; 4) overcomes the difficulty of separating the phenomena of nucleation and growth of a crystal, and thus obtain only a few nuclei that originate crystals of adequate size, thus solving many of the deficiencies that exist in the existing approaches, especially in the case of biological macromolecules such as proteins; among other.
StMAFUG DE LA INVENCIÓN StMAFUG OF THE INVENTION
A diferencia de los dispositivos existentes, la celda de cristalkación electro-asistida que se describe en esta invención tiene una concepción diferente, toda vez que esta nueva celda de cristalización, está basada en material plástico (polietileno, PEI), que permite configurar la cristalización que procede en la celda de acuerdo ai método de gota sedente en difusión en fase vapor o incluso en baten. Unlike the existing devices, the electro-assisted crystallization cell described in this invention has a different conception, since this new crystallization cell is based on plastic material (polyethylene, PEI), which allows crystallization to be configured which proceeds in the cell according to the seated drop method in diffusion in vapor phase or even in bat.
La celda de cristalización electro-asistida de la presente invención utiliza electrodos de ITO montados en material plástico (ITO sobre polietiterto) lo que le confiere grandes ventajas respecto a sus antecesoras. Las tres principales desventajas de ia celda en la que se tenían los electrodos de ITO montados en vidrio son: la rigidez del vidrio, el escurrimiento o goteo y la extracción de cristales. Debido a la rigidez del vidrio, se tenían problemas de sellado y problemas de escurrimiento en algunas ocasiones cuando se montaba el experimento; la extracción de cristales de proteínas era también un problema o requería una gran pericia del experimentador. Este problema se ha superado en la presente celda hecha en material ITO de plástico (PET). The electro-assisted crystallization cell of the present invention uses ITO electrodes mounted on plastic material (ITO on polyethylene) which gives it great advantages over its predecessors. The three main disadvantages of the cell in which the glass-mounted ITO electrodes were: the stiffness of the glass, the runoff or dripping and the extraction of crystals. Due to the rigidity of the glass, there were sealing problems and runoff problems on some occasions when the experiment was mounted; Protein crystal extraction was also a problem or required great expertise from the experimenter. This problem has been overcome in the present cell made of ITO plastic material (PET).
En un primer aspecto, ia presente invención permite configurar la cristalización de macromoléculas biológicas que procede en la celda de acuerdo al método de las gotas colgantes o sedentes y un campo eléctrico; esto es, de forma electro-asistida in situ.  In a first aspect, the present invention makes it possible to configure the crystallization of biological macromolecules that proceed in the cell according to the method of hanging or sitting drops and an electric field; that is, electro-assisted in situ.
En un segundo aspecto, la celda de cristalización electro-asistida permite la fácii separación de los cristales que se hayan obtenido dentro de ella con solo cortar la ventana opuesta a donde cristalizó la macromolécula biológica (por ejemplo, una proteína). Los cristales de dichas proteínas obtenidas, se pueden recuperar de ia celda cortando ei material plástico fácilmente con una navaja convencional haciendo una hendidura y se pueden recuperar los cristales de dicha proteína para estudios de difracción.  In a second aspect, the electro-assisted crystallization cell allows the easy separation of the crystals that have been obtained within it by simply cutting the window opposite to where the biological macromolecule crystallized (for example, a protein). The crystals of said proteins obtained can be recovered from the cell by cutting the plastic material easily with a conventional knife making a slit and the crystals of said protein can be recovered for diffraction studies.
En un tercer aspecto, la presente invención hace posibie que en ios casos donde las macromoléculas biológicas como las proteínas poseen un gran contenido de agua estructural o bien son muy sensibles para removerlas de la celda, los electrodos de ITO permiten obtener ia colecta de rayos-X de cristales in situ ya que el material plástico es transparente a esta radiación sin producir absorción de rayos-X, y así poder realizar estudios estructurales de alta resolución, inclusive, sin tener que sacar la muestra de sus condiciones de crecimiento.  In a third aspect, the present invention makes it possible that in those cases where biological macromolecules such as proteins have a high structural water content or are very sensitive to remove them from the cell, ITO electrodes allow the collection of rays to be obtained. X of crystals in situ since the plastic material is transparent to this radiation without producing X-ray absorption, and thus being able to carry out high resolution structural studies, even, without having to take the sample of its growth conditions.
En un cuarto aspecto de la presente invención, la celda de cristalización electro-asistida supera la dificultad de separar los fenómenos de nucleación y crecimiento de un cristal in situ, y así obtener sólo unos cuantos núcleos que originen cristales de tamaño adecuado, resolviendo así muchas de las deficiencias que se tienen en las aproximaciones existentes, sobretodo en el caso de macromoléculas biológicas como las proteínas. Los núcleos crecen por medio de un proceso clásico como el de la difusión en fase vapor (extracción de agua) y además ia celda tiene la ventaja de permitir observar los experimentos en un microscopio convencional e inclusive se pueden grabar ios experimentos con una videocámara con grabación en lapsos de tiempo. Además el procedimiento para fabricar !a celda en materia! plástico también se presentan en esta especificación. In a fourth aspect of the present invention, the electro-assisted crystallization cell overcomes the difficulty of separating the nucleation and growth phenomena of a crystal in situ, and thus obtain only a few nuclei that originate crystals of suitable size, thus solving many of the deficiencies that exist in the existing approaches, especially in the case of biological macromolecules such as proteins. The nuclei grow by means of a classic process like that of the diffusion in vapor phase (water extraction) and also the cell has the advantage of allowing to observe the experiments in a conventional microscope and even the experiments can be recorded with a camcorder with time lapse recording. In addition the procedure to manufacture the cell in matter! Plastic are also presented in this specification.
En un quinto aspecto, ia presente celda de cristalización electro-asistida se puede usar en presencia de campos magnéticos sin que ésta sufra cambios o variaciones en su diseño.  In a fifth aspect, the present electro-assisted crystallization cell can be used in the presence of magnetic fields without it undergoing changes or variations in its design.
En un sexto aspecto de ia presente invención, la celda de cristalización electro-asistida se puede emplear a diferentes temperaturas. In a sixth aspect of the present invention, the electro-assisted crystallization cell can be used at different temperatures.
La presente invención permite la cristalización de macromoléculas biológicas, como por ejemplo: proteínas, ácidos nucleicos y polisacáridos, y complejos macromoieculares que tengan combinaciones de éstas biomoléculas. Se aplica una corriente continua en el intervalo de 2-8 micro Amperios en placas paralelas de electrodos de ΪΤΟ (Oxido de Estaño e Indio por sus siglas en inglés) lo que permite eiectrocristalizar la macromolécula biológica (por ejemplo, una proteina) sobre el cátodo o ánodo. Posteriormente, la corriente se detiene y el proceso de crecimiento cristalino procede a través de difusión en fase vapor. El agente precipitante colocado en el compartimento más grande de la celda extrae agua de la solución donde se mezclaron ia proteina y el agente precipitante. En un periodo de 2-4 semanas se obtienen cristales grandes. El diseño de esta celda permite influir en el proceso de nucieación y controlar el proceso de crecimiento de cristales.  The present invention allows the crystallization of biological macromolecules, such as: proteins, nucleic acids and polysaccharides, and macromolecular complexes having combinations of these biomolecules. A direct current is applied in the range of 2-8 micro Amps in parallel plates of electrodes of ΪΤΟ (Tin and Indian Oxide) which allows the electro-crystallization of the biological macromolecule (for example, a protein) on the cathode or anode. Subsequently, the current stops and the crystalline growth process proceeds through vapor phase diffusion. The precipitating agent placed in the largest compartment of the cell draws water from the solution where the protein and the precipitating agent were mixed. Large crystals are obtained in a period of 2-4 weeks. The design of this cell allows to influence the process of nucieation and control the process of crystal growth.
En una modalidad de ia invención, la celda de cristalización electro-asistida presente permite la posibilidad de poder tener dos variantes de la misma: 1) emplear las condiciones de cristalización de métodos clásicos llamados gota colgante o gota sedente y 2) poder hacer cristalización en baích; para ello la celda que se reclama en la presente invención tendría 4 ventanas para hacer 4 experimentos batch al mismo tiempo.  In one embodiment of the invention, the electro-assisted crystallization cell present allows the possibility of being able to have two variants thereof: 1) employing the crystallization conditions of classical methods called hanging drop or sitting drop and 2) being able to crystallize in baích; for this, the cell that is claimed in the present invention would have 4 windows to do 4 batch experiments at the same time.
BREVE DESCWPCIÓM DE LAS FIGURAS BRIEF DISCOVERY OF THE FIGURES
Figura 1. Se muestran tres tipos de calda utilizadas anteriormente, en los que se aplican campos eléctricos en configuraciones experimentales diferentes, observándose la influencia de campos eléctricos en la cristalización de proteínas. Figura 1a: diseño experimental empleando la técnica de acupuntura en geles (GA E) [18] donde se observa el ánodo (101), la solución precipitante (102), la solución con proteína (103), ei gel (104), el cátodo (105) y la fuente de poder (108). Figura 1b: empleando dos electrodos de platino paralelos, en donde las figuras en rojo representan cristales de proteínas [ 7]. Figura 1c: empleando electrodos de óxido de estaño e indio (ITO por sus siglas en inglés) aplicados en la técnica de batch [18]. En ios tres casos la corriente aplicada desde el inicio del experimento fue de 2 μΑ y se genera una polarización de los electrodos en cátodo y ánodo, ya que las proteínas tienen un í, si se preparan debajo de este valor se cargan positivamente y se pegaran al cátodo (electrodo cargado en este tipo de celda negativamente). Figure 1. Three types of broth used previously are shown, in which electric fields are applied in different experimental configurations, observing the influence of electric fields in the crystallization of proteins. Figure 1a: experimental design using the acupuncture technique in gels (GA E) [18] where the anode (101), the precipitating solution (102), the solution with protein (103), the gel (104), the cathode (105) and the power source (108). Figure 1b: using two parallel platinum electrodes, where the red figures represent protein crystals [7]. Figure 1c: using tin and indium oxide electrodes (ITO) applied in the batch technique [18]. In the three cases the current applied since the beginning of the experiment was 2 μΑ and a polarization of the electrodes in cathode and anode is generated, since the proteins have an í, if they are prepared below this value they are positively charged and will stick to the cathode (electrode charged in this type of cell negatively).
Figura 2, Muestra ei diseño experimental avanzado de ia celda de cristalización electro-asistida para una macromolécula biológica, como por ejemplo: proteínas, ácidos nucleicos y polisacáridos, y complejos macromoieculares que tengan combinaciones de éstas biomoléculas, en configuración de gota sedente en difusión en fase vapor con electrodos de ΠΌ transparente y de materia! plástico; la celda permite controlar la nucleación en el reservono chico y en ei reservorio mayor se coioca el agente precipitante. Figure 2, Shows the advanced experimental design of the electro-assisted crystallization cell for a biological macromolecule, such as: proteins, nucleic acids and polysaccharides, and macromolecular complexes having combinations of these biomolecules, in a configuration of a seated drop in diffusion in Vapor phase with de transparent and matter electrodes! plastic; the The cell allows controlling the nucleation in the small reservoir and in the larger reservoir the precipitating agent is coiocated.
Figura 3, Celda de cristalización electro-asistida para varias macromoléculas biológicas, como por ejemplo: proteínas, ácidos nucleicos y poüsacáridos, y complejos macromoiecuiares que tengan combinaciones de éstas biomoléculas, en configuración baten con electrodos de !TO en plástico. En cada compartimento de esta celda se pueden evaluar diferentes macromoléculas, diferentes agentes precipitantes o una combinación de ambos en un soio experimento. Se ejemplifica el caso de una celda con cuatro ventanas pero el diseño se puede extender a un mayor número de compartimentos. Figura 4. Celda de cristalización electro-asistida para dos macromoléculas biológicas diferentes en configuración de gota sedente por difusión en fase vapor con electrodos de ITO en plástico utilizando el mismo agente precipitante.  Figure 3, Electro-assisted crystallization cell for several biological macromolecules, such as: proteins, nucleic acids and poüsaccharides, and macromoiecuiar complexes that have combinations of these biomolecules, in configuration with! TO electrodes in plastic. Different macromolecules, different precipitating agents or a combination of both in a single experiment can be evaluated in each compartment of this cell. The case of a cell with four windows is exemplified but the design can be extended to a larger number of compartments. Figure 4. Electro-assisted crystallization cell for two different biological macromolecules in a seated drop configuration by vapor phase diffusion with ITO electrodes in plastic using the same precipitating agent.
Figura 5. Ceída de cristalización electro-asistida que resume la idea general de ia invención y muestra tamaños y cortes preferidos en e! proceso de fabricación de la celda de cristalización electro-asistida. Figura 6. Muestran una imagen de la celda cristalización electro-asistida montada para la difracción tomada in situ por los inventores de la patente en un sincrotrón.  Figure 5. Cele of electro-assisted crystallization that summarizes the general idea of the invention and shows preferred sizes and cuts in e! manufacturing process of the electro-assisted crystallization cell. Figure 6. They show an image of the electro-assisted crystallization cell mounted for diffraction taken in situ by the inventors of the patent in a synchrotron.
Figura 7. La figura 7 A y 7B muestra imágenes de difracción tomadas in situ por Sos inventores de la patente en un sincrotrón, como una prueba efectiva que sostiene una de !as ventajas y potencialidades de la celda de ia presente en ia colecta directa de datos de difracción de rayos X.  Figure 7. Figure 7 A and 7B shows diffraction images taken in situ by Sos inventors of the patent in a synchrotron, as an effective test that supports one of the advantages and potential of the cell present in the direct collection of X-ray diffraction data.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
La presente invención trata sobre una celda de cristalización electro-asistida para macromoléculas biológicas, como por ejemplo: proteínas, ácidos nucleicos y poüsacáridos, y complejos macromoiecuiares que tengan combinaciones de éstas biomoléculas. que comprende dos electrodos de ITO (oxido de estaño e indio por sus siglas en Inglés). Dichos electrodos están separados por una membrana aislante de caucho. La celda (Figura 2) tiene dos compartimentos uno pequeño, que es un reservorio donde se pone la macromolécuia biológica (por ejemplo, una proteína) mezclada con el agente precipitante y en el otro reservorio se coloca el agente precipitante solamente. Adícionaimerste, la celda se sella perfectamente con una sustancia adherente para poder aplicar una corriente continua en escala de micro-Amperios (en el intervalo de 2-8 micro Amperios) en placas paralelas de ITO durante 48 horas, quienes sufren una polarización que permite cristalizar a través de la aplicación de dicha corriente y cristaliza la macromolécuia biológica (por ejemplo, una proteína) sobre alguno de ellos - (cátodo o ánodo). Posteriormente, se deja de aplicar la corriente y el proceso de nucleación se detiene y tos núcleos generados (adheridos al electrodo: cátodo ó ánodo) proceden a crecer a través de procesos de difusión en fase vapor, es decir la sección corta de la celda que se muestra en la figura 2. Los cristales de la macromolécuia biológica crecen, porque ai nuclear primero, asistido el proceso de nucleación por una corriente, ¡os núcleos generados ya sea en e! ánodo o en el cátodo (esto depende de la carga que tenga la macromolécuia o proteína en estudio), se ven enriquecidos por el suministro de masa de la disolución, cuando el compartimento que contiene a la mezcla de macromolécuia biológica (por ejemplo, proteína) con agente precipitante se va concentrando en el tiempo debido a la extracción de agua que hace el agente precipitante que está en el reservorio mayor. En un periodo de 2-4 semanas se obtienen cristales grandes debido a la extracción de disolvente dentro del compartimento pequeño. The present invention is about an electro-assisted crystallization cell for biological macromolecules, such as: proteins, nucleic acids and poüsaccharides, and macromoiecuiar complexes having combinations of these biomolecules. which comprises two ITO electrodes (tin oxide and indium). Said electrodes are separated by a rubber insulating membrane. The cell (Figure 2) has two compartments, one small one, which is a reservoir where the biological macromolecule (for example, a protein) is mixed with the precipitating agent and in the other reservoir the precipitating agent is placed only. In addition, the cell is perfectly sealed with an adherent substance to be able to apply a continuous current on a micro-Amp scale (in the range of 2-8 micro Amps) on parallel ITO plates for 48 hours, who suffer a polarization that allows crystallization through the application of said current and the biological macromolecuia (for example, a protein) crystallizes on any of them - (cathode or anode). Subsequently, the current stops being applied and the nucleation process stops and the cores generated (attached to the electrode: cathode or anode) proceed to grow through diffusion processes in the vapor phase, that is, the short section of the cell that It is shown in Figure 2. The crystals of the biological macromolecuia grow, because at first nuclear, assisted the process of nucleation by a current, the nuclei generated either in e! anode or cathode (this depends on the burden of the macromolecule or protein under study), are enriched by the mass supply of the solution, when the compartment containing the biological macromolecule mixture (for example, protein) with precipitating agent it is concentrated in time due to the extraction of water made by the precipitating agent that is in the reservoir higher. In a period of 2-4 weeks, large crystals are obtained due to the extraction of solvent into the small compartment.
La ceída de cristalización electro-asistida de la presente invención utiliza electrodos de ITO montados en material plástico (ITO sobre polieiileno), lo que le confiere grandes ventajas respecto a sus antecesoras. La principal desventaja de Sa celda en la que se tenían ios electrodos de ITO montados en vidrio era que debido a la rigidez del vidrio, se tenían problemas de sellado y problemas de escurrimiento en algunas ocasiones cuando se montaba el experimento; ia extracción de cristales de las macromoléculas bioiógicas (por ejemplo, las proteínas) era también un problema o requería una gran pericia dei experimentador. Este problema se ha superado en la presente celda hecha en material ITO de plástico (PET).  The electro-assisted crystallization release of the present invention uses ITO electrodes mounted on plastic material (ITO on polyethylene), which gives it great advantages over its predecessors. The main disadvantage of Sa cell in which the glass-mounted ITO electrodes were had was that due to the rigidity of the glass, there were sealing problems and runoff problems on some occasions when the experiment was mounted; The extraction of crystals from biogenic macromolecules (for example, proteins) was also a problem or required great expertise from the experimenter. This problem has been overcome in the present cell made of ITO plastic material (PET).
La celda de cristalización electro-asistida permite la fácil separación de tos cristales que se hayan obtenido dentro de ella con solo cortar 3a ventana opuesta a donde cristalizó la macromolécuia o proteína. Los cristales obtenidos, se pueden recuperar de la celda cortando el material plástico fácilmente con una navaja convencional haciendo una hendidura y se pueden recuperar los cristales de dicha proteína, por ejemplo, para estudios de difracción.  The electro-assisted crystallization cell allows easy separation of the crystals that have been obtained within it by simply cutting the opposite window where the macromolecule or protein crystallized. The crystals obtained can be recovered from the cell by easily cutting the plastic material with a conventional knife by making a slit and the crystals of said protein can be recovered, for example, for diffraction studies.
La presente invención hace posible que en los casos donde las macromoléculas biológicas (por ejemplo, una proteína) poseen un gran contenido de agua estructural o bien son muy sensibles para removerlas de ia celda, los electrodos de STO permiten obtener la colecta de rayos-X de cristales in sita ya que el material plástico es transparente a esta radiación sin producir absorción de rayos-X, y así poder realizar estudios estructurales de alta resolución, inclusive, sin tener que sacar la muestra de sus condiciones de crecimiento.  The present invention makes it possible that in cases where biological macromolecules (for example, a protein) have a high structural water content or are very sensitive to remove them from the cell, STO electrodes allow to obtain the X-ray collection of crystals in place since the plastic material is transparent to this radiation without producing X-ray absorption, and thus being able to perform high resolution structural studies, even, without having to take the sample of its growth conditions.
La celda de cristalización electro-asistida también supera la dificultad de separar ios fenómenos de nucleación y crecimiento de un cristal in situ, y así obtener sólo unos cuantos núcleos que originen cristales de tamaño adecuado, resolviendo así muchas de las deficiencias que se tienen en Sas aproximaciones existentes, sobretodo en el caso de macromoléculas bioiógicas como las proteínas. Los núcleos crecen por medio de un proceso clásico como el de la difusión en fase vapor (extracción de agua) y además la celda tiene la ventaja de permitir observar los experimentos en un microscopio convencional e inclusive se pueden grabar los experimentos con una videocámara con grabación en lapsos de tiempo. Además el procedimiento para fabricar la celda y el diseño de la misma en materia! plástico también se presentan en esta especificación.  The electro-assisted crystallization cell also overcomes the difficulty of separating the nucleation and growth phenomena of a crystal in situ, and thus obtain only a few nuclei that originate crystals of adequate size, thus solving many of the deficiencies that are found in Sas existing approaches, especially in the case of biogenic macromolecules such as proteins. The nuclei grow by means of a classic process such as the diffusion in the vapor phase (water extraction) and in addition the cell has the advantage of allowing to observe the experiments in a conventional microscope and the experiments can even be recorded with a camcorder with recording in time lapses. In addition the procedure to manufacture the cell and the design of the same in matter! Plastic are also presented in this specification.
La presente celda de cristalización electro-asistida se puede usar incluso en presencia de campos magnéticos sin que ésta sufra cambios o variaciones en su diseño, o se puede emplear a diferentes temperaturas. En otras modalidades, es posible producir dos variantes de la misma celda de cristalización electro-asistida: 1 ) emplear las condiciones de cristalización de métodos clásicos llamados gota colgante o gota sedente, que comprenden de dos a tres reservónos y 2) poder hacer cristalización en batch, para ello la celda que se patenta tendría 4 ventanas o reservónos para hacer 4 experimentos batch al mismo tiempo (Figura 3).  The present electro-assisted crystallization cell can be used even in the presence of magnetic fields without it undergoing changes or variations in its design, or it can be used at different temperatures. In other embodiments, it is possible to produce two variants of the same electro-assisted crystallization cell: 1) employ the crystallization conditions of classical methods called pendant drop or sedentary drop, comprising two to three reservoirs and 2) to be able to crystallize in batch, for this the cell that is patented would have 4 windows or reservoirs to do 4 batch experiments at the same time (Figure 3).
Ejempio 1 ¡MateHaíes y proceso de fabricación de Ía celda de cristalización eieetro-as ida para macromoléculas biológicas basada en electrodos de ITO plástico. La celda de cristalización electro-asistida comprende dos placas de electrodos transparente de material plástico (polietiíeno) con óxido de estaño e indio depositado en su superficie, ésto Se permite tener conductividad adecuada y tienen una resistencia que va de entre 4 a 8 Ohms, Las dimensiones de Sa celda pueden hacerse de diferentes tamaños, aun sin limitaciones; el caso ideal es cortar las placas a un tamaño o dimensiones de aproximadamente entre 3.0 a 5,0 cm de iargo por aproximadamente entre 2.5 - 5,0 crn de ancho, tal y como se muestra en las Figuras 2-4 porque eí material plástico So permite, así como ofrece la ventaja del ajuste adecuado de las pinzas (caimanes). Estas dimensiones están adecuadas para el tamaño y número de reservorio(s) (desde dos, tres hasta 4 reservónos; este último en el caso de una configuración baích; y en caso de ser mayor el número de reservónos, desde 1 hasta 98 reservónos, ¡as dimensiones aumentarán proporciona!mente al número de reservónos comprendidos) que contendrá a Sa macromoiécuSa biológica (por ejemplo, proteína) la cual puede encontrarse en cantidades limitadas resu!tado de su purificación de la fuente natura!; reservónos de distintas dimensiones permiten ia cristaüzación de moléculas de mayor o menor peso molecular. Las placas se unen a través de una membrana aisSante de caucho negro de un grosor de aproximadamente entre 0.15 a 0.2 cm de espesor y con dimensiones iguales ai de ías placas de electrodos transparentes. La parte conductora de ias placas se pone hacia dentro de ía celda, esto se puede hacer empleando un muítímetro para detectar y corroborar, que ia parte conductora de Sa misma, quede en el interior. El sellado de la placa para evitar permeación de Síquádo, se hace poniendo una sustancia adherente, como por ejemplo, barniz de uñas, grasa de vacio o silicón sobre la superficie del caucho y se pegan ias placas. En el caso de emplear la configuración de gota sedente con difusión en fase vapor (Figura 2 y 4). se debe recubrir con barniz la sección interna más grande de Sa sección que contendrá a! agente precipitante, esto con e! objeto de evitar que Sas sales que le componen no se disocien y se eiectrodepositen en Sas paredes del ITO, Este procedimiento de recubrimiento interno de barniz no se hace si se empleará la configuración en batch desde 4 secciones o reservónos (Figura 3) hasta 98 reservónos, donde solamente se mezcla ía macromolécula biológica (por ejemplo, una proteína, o ácidos nucleicos, polisacáridos o combinaciones de las mismas) y el agente precipitante y el proceso de crecimiento procede Inmediatamente. En el reservorio que contendrá dicha macromolécula o proteína y el agente precipitante (Figuras 2 y 4), no se recubre de barniz ni ninguna sustancia adherente, ya que I© deseable es justamente que dicha proteína nucíeé en eí eletrodo y posteriormente crezca por fenómenos de difusión en fase vapor. Una vez puesto el barniz sobre el caucho negro, Sas placas de ios electrodos se desplazan aproximadamente entre 0.5 - 1.0 cm una con respecto de ía otra, esto con e! objeto de dejar unas pestañas para conectar las pinzas (conocidos coloquialmente como caimanas) que se conectarán al cátodo o al ánodo del galvanostato. Example 1 MateHaíes and manufacturing process of the one-way round crystallization cell for biological macromolecules based on ITO plastic electrodes. The electro-assisted crystallization cell comprises two transparent electrode plates of plastic material (polyethene) with tin and indium oxide deposited on its surface, this is allowed to have adequate conductivity and have a resistance ranging from 4 to 8 Ohms. Sa cell dimensions can be made of different sizes, even without limitations; the ideal case is to cut the plates to a size or dimensions of approximately 3.0 to 5.0 cm long by approximately 2.5 - 5.0 crn in width, as shown in Figures 2-4 because the plastic material It allows, as well as offers the advantage of the proper adjustment of the clamps (alligators). These dimensions are suitable for the size and number of reservoir (s) (from two, three to 4 reservoirs; the latter in the case of a baích configuration; and if the number of reservoirs is greater, from 1 to 98 reservoirs, The dimensions will increase proportionally to the number of reservoirs included) which will contain the biological macromoecuSa (for example, protein) which can be found in limited quantities resulting from its purification of the natural source !; Reservoirs of different dimensions allow the crystallization of molecules of greater or lesser molecular weight. The plates are joined through a black rubber insulating membrane approximately 0.15 to 0.2 cm thick and with dimensions equal to the transparent electrode plates. The conductive part of the plates is placed inside the cell, this can be done using a muitimeter to detect and corroborate, that the conductive part of Sa itself is inside. The sealing of the plate to avoid permeation of Siquádo, is done by placing an adherent substance, such as nail varnish, vacuum grease or silicone on the surface of the rubber and the plates are glued. In the case of using the seated drop configuration with vapor phase diffusion (Figure 2 and 4). the largest internal section of Sa section that will contain a must be varnished! precipitating agent, this with e! in order to prevent Sas salts that are part of it from separating and electrodeposing on Sas ITO walls, this internal varnish coating procedure is not done if the batch configuration from 4 sections or reservoirs will be used (Figure 3) up to 98 reservoirs , where only the biological macromolecule is mixed (for example, a protein, or nucleic acids, polysaccharides or combinations thereof) and the precipitating agent and the growth process proceeds immediately. In the reservoir that will contain said macromolecule or protein and the precipitating agent (Figures 2 and 4), it is not covered with varnish or any adherent substance, since it is desirable that said protein be numbered in the electrode and subsequently grow by phenomena of vapor phase diffusion. Once the varnish is placed on the black rubber, the electrode plates move approximately 0.5 - 1.0 cm from each other, this with e! object of leaving tabs to connect the clamps (colloquially known as alligators) that will be connected to the cathode or to the anode of the electroplating.
Eí proceso para la fabricación de esta celda de cristalización electro-asistida comprende Sas siguientes etapas:  The process for manufacturing this electro-assisted crystallization cell comprises Sas following steps:
a. cortar dos placas de electrodos transparente de material plástico (poSietileno) con óxido de estaño e indio depositado en su superficie, a un tamaño y dimensiones apropiadas;  to. cut two transparent electrode plates of plastic material (polyethylene) with tin and indium oxide deposited on its surface, to an appropriate size and dimensions;
b. cortar una membrana aislante de caucho, de aproximadamente entre 0.15 a Q.2 cm de espesor, con tamaño y dimensiones apropiadas a ias de las piacas de electrodos dei inciso anterior; c. cortar ía membrana aislante de caucho de! punto b. por un extremo generando desde dos hasta noventa y seis reservorios; b. cut a rubber insulating membrane, approximately 0.15 to Q.2 cm thick, with appropriate size and dimensions to the electrode pins of the preceding paragraph; C. cut the rubber insulating membrane of! point b. at one end generating from two to ninety-six reservoirs;
d. unir las dos placas de electrodos transparente por medio de Sa membrana aislante de caucho;  d. join the two transparent electrode plates by means of Sa rubber insulating membrane;
e. colocar la parte conductora de las placas de electrodos hacia dentro de la celda;  and. place the conductive part of the electrode plates into the cell;
f. desplazar las placas de electrodos aproximadamente de entre 0.5 - 1.0 cm una con respecto a la otra, dejando unas pestañas para conectar pinzas o caimanes; (esto se hace antes de poner la sustancia adherente, para no contaminar ¡os electrodos de ITO cuando se desplazan las placas);  F. move the electrode plates approximately 0.5 - 1.0 cm from each other, leaving tabs to connect clamps or alligators; (This is done before putting the adherent substance, so as not to contaminate the ITO electrodes when the plates are moved);
g. sellar las placas y membrana aislante con una sustancia adherente que se coloca sobre dicha membrana aislante, en donde la sustancia adherente es barniz de uñas, grasa de vacío o siíicon; preferiblemente, barniz de uñas;  g. sealing the plates and insulating membrane with an adherent substance that is placed on said insulating membrane, wherein the adherent substance is nail varnish, vacuum grease or silicon; preferably, nail varnish;
h. conectar las pinzas o caimanes al cátodo y ánodo de un galvanostato.  h. connect the clamps or alligators to the cathode and anode of a galvanostat.
El tamaño y dimensiones de las placas de electrodos son preferiblemente de aproximadamente entre 3.0 - S.O cm de largo por aproximadamente entre 2.5 - 5.0 cm de ancho, mientras que el tamaño y dimensiones de la membrana aislante de caucho son preferiblemente de aproximadamente entre 2.5 - 5.0 cm de largo por aproximadamente entre 2.2 - 2.7 cm de ancho.  The size and dimensions of the electrode plates are preferably between 3.0 - SO cm long and approximately 2.5 - 5.0 cm wide, while the size and dimensions of the rubber insulating membrane are preferably approximately 2.5 - 5.0. cm long by approximately 2.2 - 2.7 cm wide.
En una modalidad de fabricación de la invención, cuando la membrana aislante de la celda comprende desde dos hasta tres reservorios, preferiblemente, tres reservorios - en donde el tamaño y dimensiones de las placas de electrodos es preferiblemente de aproximadamente entre 3.Q - 5.0 cm de largo por aproximadamente entre 8.5 - 7.5 cm de ancho y el tamaño y dimensiones de la membrana aislante de caucho son preferiblemente de aproximadamente entre 2.5 - 5.0 cm de largo por aproximadamente entre 6.0 - 7.0 cm de ancho - entonces la celda de cristalización electro-asistida corresponde a una configuración de gota sedente con difusión en fase de vapor, en donde al menos uno de Sos reservorios es de mayor volumen conteniendo agente precipitante, y el resto de los reservorios es de menor volumen Sos cuales contendrán una macromolécula biológica y agente precipitante; el reservorio de mayor volumen es de aproximadamente entre 1.5 cm x 0.8 x 0.15 - 2.0 cm x 1.0 cm x 0.2 cm, mientras que el reservorio de menor volumen es de aproximadamente entre 0.7 cm x 0.5 cm x 0.15 cm - 1.0 cm x 0.8 cm x 0.2 cm, siendo que en la configuración de gota sedente con tres reservorios, el reservorio de mayor volumen es central a los otros dos reservorios laterales de menor volumen (Figura 4).  In one embodiment of the invention, when the insulating membrane of the cell comprises from two to three reservoirs, preferably three reservoirs - wherein the size and dimensions of the electrode plates is preferably approximately between 3.Q - 5.0 cm long by approximately 8.5 - 7.5 cm wide and the size and dimensions of the rubber insulating membrane are preferably approximately 2.5 - 5.0 cm long by approximately 6.0 - 7.0 cm wide - then the electro- crystallization cell assisted corresponds to a seated drop configuration with vapor phase diffusion, where at least one of Sos reservoirs is of greater volume containing precipitating agent, and the rest of the reservoirs is of lower volume Sos which will contain a biological macromolecule and precipitating agent ; The largest volume reservoir is approximately 1.5 cm x 0.8 x 0.15 - 2.0 cm x 1.0 cm x 0.2 cm, while the lowest volume reservoir is approximately 0.7 cm x 0.5 cm x 0.15 cm - 1.0 cm x 0.8 cm x 0.2 cm, being that in the sedentary drop configuration with three reservoirs, the reservoir of greater volume is central to the other two lateral reservoirs of smaller volume (Figure 4).
En otra modalidad, cuando la membrana aislante de la celda comprende desde cuatro hasta noventa y seis reservorios, preferiblemente comprende 98 reservorios, is celda de cristalización electro-asistida corresponde a una configuración de batch, y todos los reservorios contienen una macromolécula biológica y agente precipitante.  In another embodiment, when the insulating cell membrane comprises from four to ninety-six reservoirs, preferably comprises 98 reservoirs, the electro-assisted crystallization cell corresponds to a batch configuration, and all reservoirs contain a biological macromolecule and precipitating agent .
En el caso de emplear la configuración de gota sedente con difusión en fase vapor (Figura 2 y 4), durante el sellado, se debe recubrir con barniz ía sección interna más grande' de la sección que contendrá al agente precipitante, esto con ei objeto de evitar que las sales que te componen no se disocien y se electrodepositen en las paredes del ITO. Este procedimiento de recubrimiento interno de barniz no se hace si se empleará la configuración en baten desde 4 secciones o reservónos (Figura 3) hasta 96 reservónos, donde solamente se mezcla la macromolécula biológica y el agente precipitante. En una etapa posterior, se preparan las soluciones y se adicionan a la celda, siguiendo el procedimiento que se menciona a continuación: Se adicionan aproximadamente 100 microiitros de agente precipitante en el reservona más grande de la celda (ver Figuras 2 y 4), según el tamaño de la construcción de la misma. Posteriormente se mezclan aproximadamente 25 microiitros de la macromolécula biológica (por ejemplo, una proíelna} con aproximadamente 25 microiitros de agente precipitante, o en relaciones 1 :1 , 1 :2 ó 1 :3 dependiendo de la concentración de la macromolécula biológica disponible, y según el tamaño de la construcción de la celda; se debe tener cuidado de poner primero la mezcla en un tubo eppendorf, teniendo cuidado de poner primero la solución más viscosa; en genera! se pone primero la macromolécula biológica (por ejemplo, proteína} y luego el agente precipitante y se mezclan de forma muy cuidadosa. Si se emplearan poiietiíenglícoies a concentraciones mayores a 25% en peso, el agente precipitante se debe poner primero y luego la macromolécula biológica (por ejemplo, una proteína), para preparar el mezclado que irá en el reservorio pequeño (Figuras 2 y 4). Esto aplica también cuando se preparen 4 proteínas iguales o diferentes para cristalizar en la configuración bateh tal y como lo muestra la Figura 3. En esta configuración de baten, para poder introducir las macromoléculas biológicas (por ejemplo, proteínas) mezcladas con el agente precipitante en alguna de las 4 secciones de la celda, se deben poner dos agujas y jeringas de tipo insulina, una para introducir el líquido y otra para que se expulse el aire almacenado en la sección de Sa celda. Ya que se tienen 4 compartimentos para el método batch (Figura 3), se deben usar 8 agujas y jeringas de tipo insulina para poder introducir 4 experimentos iguales o 4 macromoléculas biológicas (por ejemplo, proteínas) diferentes que se pretendan cristalizar. Para el caso de configuraciones batch que comprendan un mayor número de reservarlos, desde 1 hasta 96 reservónos, la introducción de la mezcla macromolécula bioiógica-agente precipitante se hace a través de! uso de sistemas automatizados. In the case of using the seated drop configuration with vapor phase diffusion (Figure 2 and 4), during sealing, it should be coated with varnish or the larger internal section of the section that will contain the precipitating agent, this for the purpose to avoid that the salts that compose you do not dissociate and electrodepositen on the walls of the ITO. This internal coating procedure of Varnish is not done if the configuration in bat from 4 sections or reservoirs (Figure 3) to 96 reservoirs will be used, where only the biological macromolecule and the precipitating agent are mixed. At a later stage, the solutions are prepared and added to the cell, following the procedure mentioned below: Approximately 100 microiiters of precipitating agent are added to the largest reservoir in the cell (see Figures 2 and 4), according to The size of the construction of it. Subsequently, approximately 25 microiiters of the biological macromolecule are mixed (for example, a proelel) with approximately 25 microiiters of precipitating agent, or in 1: 1, 1: 2 or 1: 3 ratios depending on the concentration of the available biological macromolecule, and depending on the size of the cell construction; care must be taken to first put the mixture in an eppendorf tube, taking care to put the most viscous solution first; in general, the biological macromolecule (for example, protein} is put first and then the precipitating agent and they are mixed very carefully.If polyether glycols are used at concentrations greater than 25% by weight, the precipitating agent must be put first and then the biological macromolecule (for example, a protein), to prepare the mixture that it will go in the small reservoir (Figures 2 and 4.) This also applies when 4 identical or different proteins are prepared to crystallize in the configuration ón bateh as shown in Figure 3. In this configuration of bat, to be able to introduce the biological macromolecules (for example, proteins) mixed with the precipitating agent in any of the 4 sections of the cell, two needles must be placed and Insulin-type syringes, one to introduce the liquid and another to expel the air stored in the Sa cell section. Since there are 4 compartments for the batch method (Figure 3), 8 needles and syringes of insulin type must be used to be able to introduce 4 equal experiments or 4 different biological macromolecules (for example, proteins) that are intended to crystallize. In the case of batch configurations that comprise a greater number of reserves, from 1 to 96 reservoirs, the introduction of the biogenic macromolecule-precipitating agent mixture is made through! use of automated systems.
Una vez montada la placa de cristalización asegurándose de que no haya pérdida de liquido interno (goteo), se conecta la placa de cristalización al galvanostato respectivo y se aplica una corriente continua en el intervalo de 1 a 2 micro Amperios por 24 horas. Posteriormente, se desconecta el equipo de la corriente aplicada por el Galvanostato y se permite que el proceso de crecimiento cristalino proceda a través de difusión en fase vapor, para permitir que la solución que está en el reservona más pequeño (Figuras 2 y 3) se concentre y permita el crecimiento de cristales de la macromolécula biológica (por ejemplo, una proteína).  Once the crystallization plate is mounted, ensuring that there is no loss of internal liquid (drip), the crystallization plate is connected to the respective electroplating and a direct current is applied in the range of 1 to 2 micro Amps for 24 hours. Subsequently, the equipment is disconnected from the current applied by the Galvanostat and the crystalline growth process is allowed to proceed through vapor phase diffusion, to allow the solution that is in the smallest reservoir (Figures 2 and 3) to be concentrate and allow the growth of crystals of the biological macromolecule (for example, a protein).
Adicionaimente en una modalidad de la invención, los cristales de la celda se pueden separar, abriendo una hendidura cortando con un cutter eí ÍTO de plástico (polietileno) y extrayendo los cristales al término del experimento.  Additionally, in one embodiment of the invention, the crystals of the cell can be separated, opening a slit by cutting with a cutter and plastic (polyethylene) and removing the crystals at the end of the experiment.
En otra modalidad de la invención, también se puede mezclar el agente precipitante con un crio- protector. En otra modalidad de la invención, dado que el ITO de plástico es transparente, se puede llevar a cabo una colecta in situ de rayos-X, sin extraer los cristales. También puede colocarse en cualquier microscopio óptico. In another embodiment of the invention, the precipitating agent can also be mixed with a cryoprotectant. In another embodiment of the invention, since the plastic ITO is transparent, an in-situ X-ray collection can be carried out without removing the crystals. It can also be placed in any optical microscope.
Lo anterior, son ventajas no obvias que tiene esta celda de crecimiento cristaiino con respecto a las celdas divulgadas en ei estado de la técnica.  The foregoing are non-obvious advantages of this crystalline growth cell with respect to the cells disclosed in the prior art.
Ejemplo 2 Procedimiento de cristalización efeetro-asisti f  Example 2 Efeetro-Assist C Crystallization Procedure
Para llevar a cabo la cristalización de macromoléeulas biológicas y ver ei efecto de la cristalización electro-asistida y la separación de la nucieacián del crecimiento cristalino, se sigue ei siguiente procedimiento:  To carry out the crystallization of biological macromolecules and see the effect of electro-assisted crystallization and the separation of nucieacián from crystalline growth, the following procedure is followed:
1. Mezclar una solución de Lisozima 80 mg/mL (de alta pureza) preparada en un buffer de acetatos 0.01 M pH 4.5 con una solución de NaC! de 80 mg/mL 1 :1. Introducirla a la celda de crecimiento en cualquiera de sus variantes en modalidad batch o el método de gota sedente como el dispositivo publicado en 2013 {Flores-Hernández et al). En un experimento de gota sedente por difusión en fase vapor, la concentración de agente precipitante debe ser el doble que en ei reservorio pequeño.  1. Mix a solution of Lysozyme 80 mg / mL (high purity) prepared in a 0.01 M acetates buffer pH 4.5 with a NaC solution! 80 mg / mL 1: 1. Introduce it to the growth cell in any of its variants in batch mode or the seated drop method as the device published in 2013 {Flores-Hernández et al). In a sedentary drop experiment by vapor phase diffusion, the concentration of precipitating agent must be twice that in the small reservoir.
2. Aplicar una corriente de 1 a 2 micro Amperios por 24 horas, como se definió en ei ejemplo 1. 2. Apply a current of 1 to 2 micro Amps for 24 hours, as defined in example 1.
3. Suspender la corriente eléctrica y ver los cristales que se generan a las 24 horas en ei caso del método batch. En ei caso del proceso de difusión en fase vapor, se pueden ver los cristales a las 24 horas y seguir su crecimiento a lo largo de 30 días. 3. Suspend the electric current and see the crystals that are generated at 24 hours in the case of the batch method. In the case of the vapor phase diffusion process, the crystals can be seen at 24 hours and their growth can be followed over 30 days.
Ejemplo 3. fi elidades de la configuración de te celda de cristafeadórs efeetro-asisíi a La celda en la configuración de gota sedente (Figura 2), también se puede configurar con cuatro ventanas o más para aplicar ei método batch (Figura 3). Inclusive, esta celda en configuración batch podría expandirse a líneas de 8 para facilitar su llenado con la muestra de una macromolécula biológica {por ejemplo, una protefna) y agente precipitante mediante el uso de pipetas muiticanai. Esto permitirla realizar ensayos de aita densidad pues cada compartimento podría contener un agente precipitante diferente de acuerdo a como vienen acomodados en los kits comerciales.  Example 3. fi elities of the efeetro-assistants crystal cell configuration The cell in the seated drop configuration (Figure 2), can also be configured with four or more windows to apply the batch method (Figure 3). Even this cell in batch configuration could be expanded to lines of 8 to facilitate its filling with the sample of a biological macromolecule {for example, a protein) and precipitating agent through the use of muiticanai pipettes. This would allow it to perform aita density tests as each compartment could contain a different precipitating agent according to how they are accommodated in commercial kits.
Un aspecto importante es que los reservónos en los que se mezclan el agente precipitante y la macromolécula biológica (por ejemplo, proteína) a cristalizar pueden variar de tamaños y poder emplear cantidades mínimas de dicha macromolécula biológica. Inclusive el mismo concepto de cristalización se puede variar para que en vez de tener un solo pozo para cristalización de una macromolécula biológica (por ejemplo, una proteina) a dos concentraciones diferentes o dos proteínas diferentes, se tengan dos reservónos laterales y uno central que contendrá ai agente precipitante (Figura 4). La nucleación es electro-asistida por ia aplicación de corriente y el crecimiento de cristales procede a través de ia concentración de la gota por difusión en fase de vapor. An important aspect is that the reservoirs in which the precipitating agent and the biological macromolecule (for example, protein) to be crystallized are mixed can vary in size and be able to use minimum amounts of said biological macromolecule. Even the same concept of crystallization can be varied so that instead of having a single well for crystallization of a biological macromolecule (for example, a protein) at two different concentrations or two different proteins, there are two lateral reservoirs and one central one that will contain ai precipitating agent (Figure 4). The nucleation is electro-assisted by the application of current and the crystal growth proceeds through the concentration of the drop by vapor phase diffusion.
Las ventajas antes descritas superan a todas las celdas que se han publicado tanto por otros autores / inventores como por otros grupos de investigación. Ejemplo 4. Uso de ia c&íúa de erisíatización ©teotro-asfstida de ITO plástico para ta cotecfa de rayos-X m situ The advantages described above outweigh all the cells that have been published both by other authors / inventors and by other research groups. Example 4. Use of the erytheatics chamber © teotro-asfstida of ITO plastic for X-ray radiation m situ
Para realizar ia colecta de datos de difracción in situ es necesario colocar ia celda para cristalización electro-asistida, con ios cristales formados, previamente en la cabeza del goniómetro. Posteriormente hay que ajustar ia cabeza del goniómetro tal que uno de ios cristales que está dentro de la celda quede centrado en un giro de 360 grados con el haz de rayos-X. Una vez centrado es posible comenzar la colecta irradiando el cristal (véase Figuras 8, 7A y 7B).  To carry out the collection of diffraction data in situ, it is necessary to place the cell for electro-assisted crystallization, with the crystals formed, previously in the goniometer head. Subsequently, the goniometer head must be adjusted so that one of the crystals inside the cell is centered in a 360-degree rotation with the X-ray beam. Once centered, it is possible to start the collection by irradiating the crystal (see Figures 8, 7A and 7B).
Aplicación Industrial de t Invención Industrial Application of Invention
La invención se aplica a ¡a cristalización de macromoléculas biológicas (proteínas, ácidos nucleicos y polisacáridos y para complejos macromolecuiares que tengan combinaciones de éstas biomoléeuias) a través de una celda de cristalización electro-asistida. La celda de cristalización electro-asistida permite la fácil separación de los cristales que se hayan obtenido dentro de ella con solo cortar la ventana opuesta a donde cristalizó ia macromolécula o proteína.  The invention is applied to the crystallization of biological macromolecules (proteins, nucleic acids and polysaccharides and for macromolecures complexes having combinations of these biomoléeuias) through an electro-assisted crystallization cell. The electro-assisted crystallization cell allows easy separation of the crystals that have been obtained within it by simply cutting the window opposite where the macromolecule or protein crystallized.
La presente invención hace posible que en los casos donde las macromoléculas biológicas poseen un gran contenido de agua estructural o bien son muy sensibles para removerlas de la celda, los electrodos de ITO permiten obtener la colecta de rayos-X de cristales in situ ya que el material plástico es transparente a esta radiación sin producir absorción de rayos-X, y así poder realizar estudios estructurales de alta resolución, inclusive, sin tener que sacar la muestra de sus condiciones de crecimiento.  The present invention makes it possible that in cases where the biological macromolecules have a high structural water content or are very sensitive to remove them from the cell, ITO electrodes allow to obtain the X-ray collection of crystals in situ since the Plastic material is transparent to this radiation without producing X-ray absorption, and thus be able to perform high-resolution structural studies, even without having to take the sample of its growth conditions.
En otros aspectos, la presente ceida de cristalización electro-asistida también se puede usar en presencia de campos magnéticos sin que ésta sufra cambios o variaciones en su diseño o se puede emplear a diferentes temperaturas.  In other aspects, the present electro-assisted crystallization cement can also be used in the presence of magnetic fields without it undergoing changes or variations in its design or can be used at different temperatures.
En otras apiicaciones, este tipo de celda permite medir cinéticas de crecimiento de cristales in situ, establecer estudios de nucleación y crecimiento de cristales. Además poder medir el tiempo para ia inducción de la nucleación, ya que la celda es transparente y puede colocarse inclusive en cualquier microscopio óptico, el único requisito es que se debe tener un equipo potenciostato/gaivanostato para aplicar la corriente constante o el voltaje respectivo.  In other applications, this type of cell allows measuring kinetics of crystal growth in situ, establishing nucleation studies and crystal growth. In addition to being able to measure the time for induction of nucleation, since the cell is transparent and can be placed even in any optical microscope, the only requirement is that a potentiostat / gaivanostat device must be used to apply the constant current or the respective voltage.
Finalmente una ventaja muy importante es los electrodos transparentes de ITO plasíificado permiten grabar con una video cámara time-lapse el proceso de crecimiento de los cristales.  Finally, a very important advantage is the transparent electrodes of plastered ITO allow the crystal growth process to be recorded with a time-lapse video camera.
Referencias  References
[1] Ducruix, A., Giegé, R. (1999). Crystaifeation of nucieic acids and proteins: A practical approach, 2nd ed., ÍRL Press, Oxford. [1] Ducruix, A., Giegé, R. (1999). Crystaifeation of nucieic acids and proteins: A practical approach, 2 nd ed., IRL Press, Oxford.
[2] McPherson, A. (1999). Crystailizaíion of Biológica! Macromolecules, 1 st Ed. Cold Spring Harbor Laboratory Press, New York.  [2] McPherson, A. (1999). Crystallization of Biological! Macromolecules, 1st Ed. Cold Spring Harbor Laboratory Press, New York.
[3] Bergfors, T. M. (1999) Protein crystaiüzation. Biotechnology Series, Int. Univ. Line. La Joiia, USA.  [3] Bergfors, T. M. (1999) Protein crystaiüzation. Biotechnology Series, Int. Univ. Line. La Joiia, USA.
[4] Andrea E. Gutiérrez-Guezada, Roberto Arreguín-Espinosa, Abel Moreno "Protein Crystal Growth ethods" Chapier 47 of the Springer Handbook of Crystal Growth, Edíted by D anaraj, Byrappa, Prasad, Dudley. 2010. Pages 1583-1605. [5] Abei Moreno, & Ma. Eugenia Mendoza "Cr staílizaíion in Gels" Chapter of the Handbook oí Crysíal Growth, Second Edition, ELSEVIER. Edited by Peter Rudolph and T. Nishinaga. Voí. í!; 2015 p. 1277- 1315. iSBN: 9780444833033. [4] Andrea E. Gutiérrez-Guezada, Roberto Arreguín-Espinosa, Abel Moreno "Protein Crystal Growth ethods" Chapier 47 of the Springer Handbook of Crystal Growth, Edited by D anaraj, Byrappa, Prasad, Dudley. 2010. Pages 1583-1605. [5] Abei Moreno, & Ma. Eugenia Mendoza "Cr staílizaíion in Gels" Chapter of the Handbook I heard Crysíal Growth, Second Edition, ELSEVIER. Edited by Peter Rudolph and T. Nishinaga. I saw í !; 2015 p. 1277-1315. ISBN: 9780444833033.
[6] Abei Moreno and Margarita Rivera "Concepíions and First Resulís on the Electrocrystallization Behaviour of Ferritin". Acta Crysisllograp ica Seciion D. Biológica! Crystallography D61 (2005) 1678- 1681  [6] Abei Moreno and Margarita Rivera "Conceptions and First Resulís on the Electrocrystallization Behavior of Ferritin". Act Crysisllograp ica Section D. Biological! Crystallography D61 (2005) 1678-1681
[7]. Francisco Acosta, Désir Eid, Liliana Marín-García, Bernardo A. Frontana-Uribe, and Abel Moreno rom Cytochrome C Grysíals to a Solid-State Eiecíron-Transfer Deviee", Crysíal Growth and Design 7 (2007) 2187-2191.  [7]. Francisco Acosta, Désir Eid, Liliana Marín-García, Bernardo A. Frontana-Uribe, and Abel Moreno rom Cytochrome C Grysíals to a Solid-State Eiecíron-Transfer Deviee ", Crysíal Growth and Design 7 (2007) 2187-2191.
[8] Frontana-Uribe, Bernardo; Moreno, Abe! On Bectrochemically Assisted Protein Crystallízation and Related ethods". Crysta! Growth and Design 8 {2008} 4194-4199.  [8] Frontana-Uribe, Bernardo; Moreno, Abe! On Bectrochemically Assisted Protein Crystallization and Related ethods ". Crysta! Growth and Design 8 {2008} 4194-4199.
[9] Yobana Pérez, Désir Eid, Francisco Acosta, Liliana Marín-García, Jean Jakoncic, Vivian Síojanoff, Bernardo A. Frontana-Uribe, Abel Moreno "ESectrochemicaliy Assisted Protein Crystaílizaíion of Comrrsercial Cytochrome C witbout Previous Purificaíion". Crysta! Growth and Design 8 (2008) 2493- 2496.  [9] Yobana Pérez, Désir Eid, Francisco Acosta, Liliana Marín-García, Jean Jakoncic, Vivian Síojanoff, Bernardo A. Frontana-Uribe, Abel Moreno "ESectrochemicaliy Assisted Protein Crystallization of Comrrsercial Cytochrome C witbout Previous Purification". Crysta! Growth and Design 8 (2008) 2493-2496.
[10] Gabriela Gií-Aívaradejo, Rayana, R. Ruiz-Arelfano, Christopher Owen, Adela Rodriguez-Romero, Enrique Rudiño-Piñera, Moriamou K. Antwi, Vivian Stojanoff & Abei Moreno "Novel Protein Crysta! Growth Eiectrochemical Ceií for Applications in X-Ray Diffraction and Atornic Forcé Microscopy" Crystal Growth and Design 1 1 (201 1 ) 3917-3922.  [10] Gabriela Gií-Aívaradejo, Rayana, R. Ruiz-Arelfano, Christopher Owen, Adela Rodriguez-Romero, Enrique Rudiño-Piñera, Moriamou K. Antwi, Vivian Stojanoff & Abei Moreno "Novel Protein Crysta! Growth Eiectrochemical Ceií for Applications in X-Ray Diffraction and Atornic Forcé Microscopy "Crystal Growth and Design 1 1 (201 1) 3917-3922.
[1 1] akamaísu,!.; Ohnishi.Y. Transparent CeíS for Protein Crystallization under Low Appüed Volíage. Jpn. J. Appl. Phys. 50 (20 1 ) 048003-1- 048003-2.  [1 1] akamaísu,!.; Ohnishi.Y. Transparent CeíS for Protein Crystallization under Low Appüed Volíage. Jpn J. Appl. Phys. 50 (20 1) 048003-1-048003-2.
[12] Hammadi, 2., Veesler, S. New Approaches on Crysíaiüzatíon under Electric Fields. Prog. Biophys, And Mol. Biol. 101 (2009) 38-44.  [12] Hammadi, 2., Veesler, S. New Approaches on Crysíaiüzatíon under Electric Fields. Prog. Biophys, And Mol. Biol. 101 (2009) 38-44.
[13] A!-Haq: MA., Lebrasseur, e., Tsuchiya, H,, Toril, T, Protein Crystailizaíion under Electric Fields. Crystallography Reviews 13 (2007} 29-64. [13] A! -Haq : MA., Lebrasseur, e., Tsuchiya, H ,, Toril, T, Protein Crystallization under Electric Fields. Crystallography Reviews 13 (2007} 29-64.
[14] Flores-Hernández, E., Stojanoff, V., Arreguln-Espinosa, R., Moreno, A. and Nuria Sánchez-Puig. "An electricaliy assisted devíce for protein crystaíiization in a vapor diffusion seí-υρ". Journal of Appüed Crystallography, 46 (2013) 832-834. [14] Flores-Hernández, E., Stojanoff, V., Arreguln-Espinosa, R., Moreno, A. and Nuria Sánchez-Puig. "An electricaliy assisted devíce for protein crystallization in a vapor diffusion seí-υρ " . Journal of Appüed Crystallography, 46 (2013) 832-834.
[15] Espinoza-Montero, P., Moreno-Narváez, M. E., Frontana-Uribe, B.A., Stojanoff, V., Moreno, A. [15] Espinoza-Montero, P., Moreno-Narváez, M. E., Frontana-Uribe, B.A., Stojanoff, V., Moreno, A.
Investigations on the use of graphite eíectrodes using a Hull-Type Growth Ceíl for ElectrochemcialInvestigations on the use of graphite ectrodes using a Hull-Type Growth Ceil for Electrochemcial
Assisted Protein Crystallization. Crystal Growth and Design 13 (20 3) 590-598. Assisted Protein Crystallization. Crystal Growth and Design 13 (20 3) 590-598.
[18] Nurit Mirkin, Bernardo Frontana-Uribe, Adeia Rodríguez-Romero, Alejandra Hernández-Santoyo and Abei Moreno. The influersce of the etecírie field upon protein crystallization using the ge! acupuncíure rnethod". Acia Crysíallographiea D59, No. 9 (2003) 1533-1538.  [18] Nurit Mirkin, Bernardo Frontana-Uribe, Adeia Rodríguez-Romero, Alejandra Hernández-Santoyo and Abei Moreno. The influersce of the etecírie field upon protein crystallization using the ge! acupuncíure rnethod ". Acia Crysíallographiea D59, No. 9 (2003) 1533-1538.
[ 7] Abei Moreno & Gen Sazaki "The use of a new ad oc growth ceü with paraliel eiectrodes for nucleation control of iysozyme". Journal of Crystaí Growth, 264 (2004) 438-444.  [7] Abei Moreno & Gen Sazaki "The use of a new ad oc growth ceü with paraliel eiectrodes for nucleation control of iysozyme". Journal of Crystaí Growth, 264 (2004) 438-444.
[18] Gabriela Gil-Alvaradejo, Rayana, R. Ruiz-Areüano, Christopher Owen, Adeia Rodriguez-Romero, [18] Gabriela Gil-Alvaradejo, Rayana, R. Ruiz-Areüano, Christopher Owen, Adeia Rodriguez-Romero,
Enrique Rudiño-Piñera, Moriamou . Antwi, Vivian Stojanoff & Abei Moreno "Novel Protein Crysta!Enrique Rudiño-Piñera, Moriamou. Antwi, Vivian Stojanoff & Abei Moreno "Novel Protein Crysta!
Growth Eiectrochemical Ceü for Applications in X-Ray Diffraction and Atomic Forcé Microscopy"Growth Eiectrochemical Ceü for Applications in X-Ray Diffraction and Atomic Forcé Microscopy "
Crysíal Growth and Design 11 (2011 ) 3917-3922. Crysíal Growth and Design 11 (2011) 3917-3922.

Claims

REIVINDICACIONES
1. - Una ce!da de cristalización electro-asistida para macromoiécuias biológicas, caracterizada porque comprende:  1. - An electro-assisted crystallization crystallization for biological macromoecuias, characterized in that it comprises:
a. dos píacas de electrodos transparente de material plástico (polietileno) con óxido de estaño e indio depositado en su superficie, de un tamaño y dimensiones apropiadas;  to. two transparent electrode plates of plastic material (polyethylene) with tin and indium oxide deposited on its surface, of an appropriate size and dimensions;
b. una membrana aislante de caucho, de aproximadamente entre 0.15 cm ~ 0.2 cm de espesor, con tamaño y dimensiones apropiadas a las de las placas de electrodos del inciso anterior; c. desde dos hasta noventa y seis reservónos, en donde eí reservorio de menor volumen contiene una macromolécuia biológica y agente precipitante, y eí de mayor tamaño agente precipitante;  b. a rubber insulating membrane, approximately 0.15 cm ~ 0.2 cm thick, with appropriate size and dimensions to those of the electrode plates of the preceding paragraph; C. from two to ninety-six reservoirs, where the reservoir of smaller volume contains a biological macromolecuia and precipitating agent, and the larger precipitating agent;
en donde las placas se unen a través de dicha membrana aislante de caucho selladas, ambas, con una sustancia adherente y en donde la parte conductora de las placas se pone hacia el interior de la celda. wherein the plates are joined through said sealed rubber insulating membrane, both with an adherent substance and wherein the conductive part of the plates is placed into the cell.
2. - La ceida de cristalización electro-asistida para macromoiécuias biológicas de conformidad con la reivindicación 1 , caracterizado porque el tamaño y dimensiones de ias placas de electrodos son preferiblemente de aproximadamente entre 3.0 - 5.0 cm de largo por aproximadamente entre 2.5 - 5.0 cm de.ancho. 2. - The electro-assisted crystallization ceid for biological macromoecures according to claim 1, characterized in that the size and dimensions of the electrode plates are preferably between 3.0-5.0 cm long and approximately 2.5-5.0 cm. .width.
3. - La ceida de cristalización electro-asistida para macromoiécuias biológicas de conformidad con la reivindicación 1 , caracterizado porque el tamaño y dimensiones de la membrana aislante de caucho son preferiblemente de aproximadamente entre 2.5 - 5.0 cm de largo por aproximadamente entre 2.2 - 2.7 cm de ancho 3. - The electro-assisted crystallization ceid for biological macromoecures according to claim 1, characterized in that the size and dimensions of the rubber insulating membrane are preferably between about 2.5 - 5.0 cm long by about between 2.2 - 2.7 cm Wide
4. - La ceida de cristalización electro-asistida para macromoiécuias biológicas de conformidad con la reivindicación 1 , caracterizado porque cuando comprende desde dos hasta fres reservónos, ia celda de cristalización electro-asistida corresponde a una configuración de gota sedente con difusión en fase de vapor. 4. - The electro-assisted crystallization ceid for biological macromoecures according to claim 1, characterized in that when it comprises from two to two reservoirs, the electro-assisted crystallization cell corresponds to a seated drop configuration with vapor diffusion .
5. - La ceida de cristalización electro-asistida para macromoiécuias biológicas de conformidad con la reivindicación 1 , caracterizado porque cuando comprende desde cuatro hasta noventa y seis reservónos, la celda de cristalización electro-asistida corresponde a una configuración de baich, 5. - The electro-assisted crystallization ceid for biological macromoecures according to claim 1, characterized in that when it comprises from four to ninety-six reservoirs, the electro-assisted crystallization cell corresponds to a baich configuration,
8.- La celda de cristalización electro-asistida para macromoiécuias biológicas de conformidad con la reivindicación 1-5, caracterizada porque ias placas de los electrodos están desplazadas aproximadamente entre 0.5 - 1.0 cm una con respecto de la otra. 8. The electro-assisted crystallization cell for biological macromoecures according to claim 1-5, characterized in that the electrode plates are displaced approximately between 0.5-1.0 cm with respect to each other.
7.- La celda de cristalización electro-asistida para macromoiécuias biológicas de conformidad con la reivindicación 1-5, caracterizada porque tiene una resistencia que va de entre 4 a 8 Ohms. 7. The electro-assisted crystallization cell for biological macromoecures according to claim 1-5, characterized in that it has a resistance ranging from 4 to 8 Ohms.
8. - La celda de cristalización electro-asistida para maeromoléculas biológicas de conformidad con ¡a reivindicación 1 -5, caracterizada porque la sustancia adherente es barniz de uñas, grasa de vacío o siíicón. 8. - The electro-assisted crystallization cell for biological maeromolecules according to claim 1-5, characterized in that the adherent substance is nail varnish, vacuum grease or silica.
9. - La celda de cristalización electro-asistida para maeromoléculas biológicas de conformidad con la reivindicación 8, caracterizado porque la sustancia adherente es preferiblemente barniz de uñas. 9. - The electro-assisted crystallization cell for biological maomolecules according to claim 8, characterized in that the adherent substance is preferably nail varnish.
10. - La celda de cristalización electro-asistida para maeromoléculas biológicas de conformidad con la reivindicación 1 y 4, caracterizado porque al menos uno de los reservónos es de mayor volumen, y el resto de menor volumen. 10. - The electro-assisted crystallization cell for biological maomolecules according to claim 1 and 4, characterized in that at least one of the reservoirs is of greater volume, and the rest of smaller volume.
11. - La celda de cristalización electro-asistida para rrsacromolécuias biológicas de conformidad con la reivindicación 10, caracterizado porque el reservorio de mayor volumen es de aproximadamente entre 1.5 crn x 0.8 x 0,15 - 2.0 cm x 1 ,0 cm x 0.2 cm. 11. - The electro-assisted crystallization cell for biological rrsacromolecules according to claim 10, characterized in that the reservoir of greater volume is approximately 1.5 crn x 0.8 x 0.15 - 2.0 cm x 1.0 cm x 0.2 cm .
12. - La celda de cristalización electro-asistida para maeromoléculas biológicas de conformidad con la reivindicación 10, caracterizado porque el reservorio de menor volumen es de aproximadamente entre 0.7 cm x 0.5 cm x 0.15 cm - 1.0 cm x 0.8 cm x 0.2 cm, 12. - The electro-assisted crystallization cell for biological maomolecules according to claim 10, characterized in that the reservoir of smaller volume is approximately 0.7 cm x 0.5 cm x 0.15 cm - 1.0 cm x 0.8 cm x 0.2 cm,
13. - La celda de cristalización electro-asistida para maeromoléculas biológicas de conformidad con la reivindicación 10, caracterizado porque el reservorio de mayor volumen contiene agente precipitante y el reservorio de menor volumen contiene una macromolécula biológica y agente precipitante. 13. - The electro-assisted crystallization cell for biological maomolecules according to claim 10, characterized in that the reservoir of greater volume contains precipitating agent and the reservoir of smaller volume contains a biological macromolecule and precipitating agent.
14 - La celda de cristalización electro-asistida para macromoióculas biológicas de conformidad con la reivindicación 13, en donde las maeromoléculas biológicas son proteínas, ácidos nucleicos, poüsacáridos y combinaciones de las mismas. 14 - The electro-assisted crystallization cell for biological macromolecules according to claim 13, wherein the biological maeromolecules are proteins, nucleic acids, posaccharides and combinations thereof.
15 - La celda de cristalización electro-asistida para maeromoléculas biológicas de conformidad con la reivindicación 13, caracterizado porque el sellado con la sustancia adherente se encuentra en la sección interna más grande de la sección que contendrá al agente precipitante. 15 - The electro-assisted crystallization cell for biological maomolecules according to claim 13, characterized in that the sealing with the adherent substance is in the largest internal section of the section that will contain the precipitating agent.
18.- La ceida de cristalización efedro-asistida para maeromoléculas biológicas de conformidad con la reivindicación 4, caracterizado porque preferiblemente comprenden en su configuración de gota sedente con difusión en fase de vapor, tres reservónos. 18. The ephedro-assisted crystallization ceid for biological maeromolecules according to claim 4, characterized in that three reservoirs preferably comprise in their configuration of a seated drop with vapor phase diffusion.
17 - La celda de cristalización electro-asistida para maeromoléculas biológicas de conformidad con la reivindicación 16, caracterizado porque el tamaño y dimensiones de las placas de electrodos es preferiblemente de aproximadamente entre 3,0 - 5.0 cm de largo por aproximadamente entre 8.5 ··· 7.5 cm de ancho. 17 - The electro-assisted crystallization cell for biological maeromolecules according to claim 16, characterized in that the size and dimensions of the electrode plates is preferably between approximately 3.0 - 5.0 cm long and approximately between 8.5 ··· 7.5 cm wide
18. - La celda de cristalización electro-asistida para macromoiécuias biológicas de conformidad con la reivindicación 16, caracterizado porque el tamaño y dimensiones de la membrana aislante de caucho son preferiblemente de aproximadamente entre 2.5 ·-- 5.0 cm de largo por aproximadamente entre 6.0 - 7.0 cm de ancho. 18. - The electro-assisted crystallization cell for biological macromoecures according to claim 16, characterized in that the size and dimensions of the rubber insulating membrane are preferably between approximately 2.5 · - 5.0 cm long and approximately between 6.0 - 7.0 cm wide.
19. - La celda de cristalización electro-asistida para macromoiécuias biológicas de conformidad con la reivindicación 18, caracterizado porque uno de los reservonas es de mayor volumen, y el resto de menor volumen. 19. - The electro-assisted crystallization cell for biological macromoecures according to claim 18, characterized in that one of the reservoirs is of greater volume, and the rest of smaller volume.
20. - La celda de cristalización electro-asistida para macromoiécuias bioíógicas de conformidad con la reivindicación 19, caracterizado porque el reservarlo de mayor volumen es central a los otros dos reservónos laterales de menor volumen. 20. - The electro-assisted crystallization cell for biographical macromoecures according to claim 19, characterized in that reserving it of greater volume is central to the other two lateral reservoirs of smaller volume.
21. - La celda de cristalización electro-asistida para macromoiécuias biológicas de conformidad con la reivindicación 19, caracterizado porque el reservarlo de mayor volumen es de aproximadamente entre 1.5 cm x 0.8 x 0.15 - 2.0 cm x 1.0 cm x 0.2 cm. 21. - The electro-assisted crystallization cell for biological macromoecures according to claim 19, characterized in that the reserve of greater volume is approximately between 1.5 cm x 0.8 x 0.15 - 2.0 cm x 1.0 cm x 0.2 cm.
22. - La celda de cristalización electro-asistida para macromoiécuias biológicas de conformidad con la reivindicación 19, caracterizado porque el reservorio de menor volumen es de aproximadamente entre Q.7 cm x 0.5 cm x 0.15 cm - 1.0 cm x 0.8 cm x 0.2 cm. 22. - The electro-assisted crystallization cell for biological macromoecures according to claim 19, characterized in that the reservoir of smaller volume is approximately between Q.7 cm x 0.5 cm x 0.15 cm - 1.0 cm x 0.8 cm x 0.2 cm .
23. - La celda de cristalización electro-asistida para macromoiécuias biológicas de conformidad con la reivindicación 20, caracterizado porque el reservorio de mayor volumen contiene agente precipitante y los reservónos de menor volumen contienen una maeromolécula biológica y agente precipitante. 23. - The electro-assisted crystallization cell for biological macromoecures according to claim 20, characterized in that the reservoir of greater volume contains precipitating agent and reservoirs of smaller volume contain a biological maeromolecule and precipitating agent.
24. ~ La celda de cristalización electro-asistida para macromoiécuias biológicas de conformidad con la reivindicación 23, en donde las macromoiécuias biológicas son proteínas, ácidos nucleicos, polisacáridos y combinaciones de las mismas. 24. The electro-assisted crystallization cell for biological macromoecures according to claim 23, wherein the biological macromoecures are proteins, nucleic acids, polysaccharides and combinations thereof.
25. - La celda de cristalización electro-asistida para macromoiécuias biológicas de conformidad con la reivindicación 1 y 5, caracterizado porque los reservónos contienen una maeromolécula biológica y agente precipitante. 25. - The electro-assisted crystallization cell for biological macromoecures according to claim 1 and 5, characterized in that the reservoirs contain a biological maeromolecule and precipitating agent.
28.- La celda de cristalización electro-asistida para macromoiécuias biológicas de conformidad con ia reivindicación 25, en donde las macromoiécuias biológicas son proteínas, ácidos nucleicos, polisacáridos y combinaciones de las mismas. 28. The electro-assisted crystallization cell for biological macromoecures according to claim 25, wherein the biological macromoecuias are proteins, nucleic acids, polysaccharides and combinations thereof.
27,- Celda de cristalización electro-asistida para macromoiécuias biológicas en configuración de batch de conformidad con la reivindicación 28, en donde la introducción de la mezcla maeromolécula biológica-agente requiere ei uso de agujas y jeringas tipo insulina o sistemas automatizados. 27, - Electro-assisted crystallization cell for biological macromoecules in batch configuration according to claim 28, wherein the introduction of the biological agent-molecular mixture requires the use of insulin-like needles and syringes or automated systems.
28. - La celda de cristalización electro-asistida para macromoléculas biológicas de conformidad con la reivindicación 1 y 5» caracterizado porque en la configuración batch, no hay recubrimiento interno con la sustancia adherente. 28. - The electro-assisted crystallization cell for biological macromolecules according to claim 1 and 5 »characterized in that in the batch configuration, there is no internal coating with the adherent substance.
29. - La ceída de cristalización electro-asistida para macromoléculas biológicas de conformidad con la reivindicación 1 y 5, caracterizado porque preferiblemente la membrana aislante de caucho comprende 98 reservónos, 29. - The electro-assisted crystallization yield for biological macromolecules according to claim 1 and 5, characterized in that preferably the rubber insulating membrane comprises 98 reservoirs,
30. - Un proceso para la fabricación de la celda de cristalización electro-asistida para macromoléculas biológicas de la reivindicación 1, caracterizado porque comprende las siguientes etapas: 30. - A process for manufacturing the electro-assisted crystallization cell for biological macromolecules of claim 1, characterized in that it comprises the following steps:
a. cortar dos placas de electrodos transparente de material plástico (poííetileno) con óxido de estaño e indio depositado en su superficie, a un tamaño y dimensiones apropiadas;  to. cut two transparent electrode plates of plastic material (polyethelene) with tin and indium oxide deposited on its surface, to an appropriate size and dimensions;
b. cortar una membrana aislante de caucho, de aproximadamente entre 0.15 - 0.2 em de espesor, con tamaño y dimensiones apropiadas a las de las placas de electrodos del inciso anterior; c. cortar la membrana aislante de caucho del punto b. por un extremo generando desde dos hasta noventa y seis reservónos;  b. cut a rubber insulating membrane, approximately 0.15 - 0.2 em thick, with appropriate size and dimensions to those of the electrode plates of the preceding paragraph; C. cut the rubber insulating membrane from point b. at one end generating from two to ninety-six reservoirs;
d. unir las dos placas de electrodos transparente por medio de la membrana aislante de caucho;  d. join the two transparent electrode plates by means of the rubber insulating membrane;
e. colocar ia parte conductora de las placas de electrodos hacia dentro de la celda;  and. place the conductive part of the electrode plates into the cell;
f. desplazar las placas de electrodos aproximadamente entre 0.5 - 1,0 cm una con respecto a ia otra, dejando unas pestañas para conectar pinzas o caimanes;  F. move the electrode plates approximately 0.5 - 1.0 cm from each other, leaving tabs to connect clamps or alligators;
g. sellar las placas y membrana aislante con una sustancia adherente que se coloca sobre dicha membrana aislante;  g. sealing the plates and insulating membrane with an adherent substance that is placed on said insulating membrane;
h. conectar las pinzas o caimanes al cátodo y ánodo de un galvanostato.  h. connect the clamps or alligators to the cathode and anode of a galvanostat.
31. - El proceso para la fabricación de una celda de cristalización electro-asistida para macromoléculas biológicas de conformidad con la reivindicación 30, caracterizado porque el tamaño y dimensiones de las píacas de electrodos son preferiblemente de aproximadamente entre 3.0 - 5.0 cm de largo por aproximadamente entre 2.5 ·- 5.0 cm de ancho, 31. - The process for manufacturing an electro-assisted crystallization cell for biological macromolecules according to claim 30, characterized in that the size and dimensions of the electrode pins are preferably between about 3.0 - 5.0 cm long by about between 2.5 · - 5.0 cm wide,
32. - El proceso para la fabricación de una celda de cristalización electro-asistida para macromoléculas biológicas de conformidad con ¡a reivindicación 30, caracterizado porque el tamaño y dimensiones de ia membrana aislante de caucho son preferiblemente de aproximadamente entre 2.5 - 5.0 cm de largo por aproximadamente entre 2.2 - 2.7 cm de ancho 32. - The process for the manufacture of an electro-assisted crystallization cell for biological macromolecules according to claim 30, characterized in that the size and dimensions of the rubber insulating membrane are preferably approximately 2.5-5.0 cm long. for approximately 2.2 - 2.7 cm wide
33. - El proceso para la fabricación de una celda de cristalización electro-asistida para macromoléculas biológicas de conformidad con la reivindicación 30, caracterizado porque cuando la membrana aislante comprende desde dos hasta tres reservónos, la celda de cristalización elecíro-asistída corresponde a una configuración de gota sedente con difusión en fase de vapor. 33. - The process for manufacturing an electro-assisted crystallization cell for biological macromolecules according to claim 30, characterized in that when the insulating membrane comprises from two to three reservoirs, the electro-assisted crystallization cell corresponds to a configuration seated drop with vapor phase diffusion.
34. - E3 proceso para la fabricación de una celda de cristalización electro-asistida para macromolécuias biológicas de conformidad con la reivindicación 30, caracterizado porque cuando ía membrana aislante comprende desde cuatro hasta noventa y seis reservónos, la ceida de cristalización electro-asistida corresponde a una configuración de baten. 34. - E3 process for the manufacture of an electro-assisted crystallization cell for biological macromolecules according to claim 30, characterized in that when the insulating membrane comprises from four to ninety-six reservoirs, the electro-assisted crystallization cell corresponds to a bat setting.
35. - El proceso para la fabricación de una celda de cristalización electro-asistida para macromolécuias biológicas de conformidad con la reivindicación 30-34, caracterizado porque ¡as piacas de electrodos de la celda tienen una resistencia que va de entre 4 a 8 Ohms. 35. - The process for the manufacture of an electro-assisted crystallization cell for biological macromolecules according to claim 30-34, characterized in that the electrode pins of the cell have a resistance ranging from 4 to 8 Ohms.
36. - El proceso para la fabricación de una ceida de cristalización electro-asistida para macromolécuias biológicas de conformidad con la reivindicación 30-34, caracterizado porque la sustancia adhereníe es barniz de uñas, grasa de vacio o silicón. 36. - The process for the manufacture of an electro-assisted crystallization cement for biological macromolecules according to claim 30-34, characterized in that the adherent substance is nail varnish, vacuum grease or silicone.
37. - E¡ proceso para la fabricación de una celda de cristalización electro-asistida para macromoiéculas biológicas de conformidad con la reivindicación 36, caracterizado porque ía sustancia adherenfe es preferiblemente barniz de uñas. 37. - The process for the manufacture of an electro-assisted crystallization cell for biological macromolecules according to claim 36, characterized in that the adherent substance is preferably nail varnish.
38. - Eí proceso para la fabricación de una celda de cristalización electro-asistida para macromolécuias biológicas de conformidad con las reivindicaciones 30 y 33, caracterizado porque al menos uno de los reservónos es de mayor volumen, y el resto de menor volumen. 38. - The process for manufacturing an electro-assisted crystallization cell for biological macromolecules according to claims 30 and 33, characterized in that at least one of the reservoirs is of greater volume, and the rest of smaller volume.
39. - El proceso para la fabricación de una ceida de cristalización electro-asistida para macromolécuias biológicas de conformidad con ía reivindicación 38, caracterizado porque eí reservono de mayor volumen es de aproximadamente entre 1.5 cm x 0.8 x 0.15 - 2.0 em x 1.0 cm x 0.2 cm. 39. - The process for the manufacture of an electro-assisted crystallization cement for biological macromolecules according to claim 38, characterized in that the reservoir of greater volume is approximately between 1.5 cm x 0.8 x 0.15 - 2.0 em x 1.0 cm x 0.2 cm
40. - Eí proceso para la fabricación de una celda de cristalización electro-asistida para macromolécuias biológicas de conformidad con la reivindicación 38, caracterizado porque el reservona de merior volumen es de aproximadamente entre 0.7 cm x 0.5 cm x 0.15 cm - 1.0 cm x 0.8 cm x 0.2 cm. 40. - The process for the manufacture of an electro-assisted crystallization cell for biological macromolecules according to claim 38, characterized in that the reservoir of the highest volume is approximately between 0.7 cm x 0.5 cm x 0.15 cm - 1.0 cm x 0.8 cm x 0.2 cm
41. - El proceso para ía fabricación de una ceida de cristalización electro-asistida para macromolécuias biológicas de conformidad con la reivindicación 38, caracterizado porque el reservono de mayor volumen contiene agente precipitante y el reservarlo de menor volumen contiene una macromoiécuía biológica y agente precipitante. 41. - The process for the manufacture of an electro-assisted crystallization cement for biological macromolecules according to claim 38, characterized in that the reservoir of greater volume contains precipitating agent and reserving it of smaller volume contains a biological macromoecuia and precipitating agent.
42. - El proceso para ía fabricación de una celda de cristalización electro-asistida para macromolécuias biológicas de conformidad con la reivindicación 41 , en ' donde las macromolécuias biológicas son proteínas, ácidos nucleicos, poíisacáridos y combinaciones de las mismas. 42. - The process for manufacturing a cell for electro-assisted crystallization biological macromolécuias according to claim 41, 'wherein the biological macromolécuias are proteins, nucleic acids, poíisacáridos and combinations thereof.
43. - El proceso para la fabricación de una celda de cristalización electro-asistida para macromolécuias biológicas de conformidad con la reivindicación 41 , caracterizado porque en la etapa de sellado, se realiza un recubrimiento interno de barniz de la sección interna más grande de ia sección que contendrá ai agente precipitante. 43. - The process for the manufacture of an electro-assisted crystallization cell for biological macromolecules according to claim 41, characterized in that in the sealing stage, It performs an internal varnish coating of the largest internal section of the section that will contain the precipitating agent.
44. - El proceso para ia fabricación de una celda de cristalización electro-asistida para macromoiécuías biológicas de conformidad con la reivindicación 33, caracterizado porque preferiblemente las placas de eiecírodos y ia membrana aislante de caucho comprenden en su configuración de gota sedente con difusión en fase de vapor, tres reservónos, 44. - The process for the manufacture of an electro-assisted crystallization cell for biological macromoecures according to claim 33, characterized in that preferably the eiecrode plates and the rubber insulating membrane comprise in their configuration a seated drop with phase diffusion steam, three reservoirs,
45. - El proceso para ia fabricación de una celda de cristalización electro-asistida para macromolécuias biológicas de conformidad con la reivindicación 44, caracterizado porque ei tamaño y dimensiones de las placas de electrodos es preferiblemente de aproximadamente entre 3.0 - 5.0 cm de largo por aproximadamente entre 8.5 - 7.5 cm de ancho. 45. - The process for the manufacture of an electro-assisted crystallization cell for biological macromolecules according to claim 44, characterized in that the size and dimensions of the electrode plates is preferably approximately 3.0-5.0 cm long by approximately between 8.5 - 7.5 cm wide.
48.- El proceso para ia fabricación de una ce!da de cristalización electro-asistida para macromoiécuías biológicas de conformidad con la reivindicación 44, caracterizado porque el tamaño y dimensiones de ia membrana aislante de caucho son preferiblemente de aproximadamente entre 2.5 ~ 5.0 cm de largo por aproximadamente entre 6.0 - 7.0 cm de ancho. 48.- The process for the manufacture of an electro-assisted crystallization crystallization cell for biological macromoecures according to claim 44, characterized in that the size and dimensions of the rubber insulating membrane are preferably approximately 2.5 ~ 5.0 cm. long by approximately 6.0 - 7.0 cm wide.
47. - Ei proceso para la fabricación de una celda de cristalización electro-asistida para macromoiécuías biológicas de conformidad con la reivindicación 44, caracterizado porque uno de los reservónos es de mayor volumen, y el resto de menor volumen. 47. - The process for manufacturing an electro-assisted crystallization cell for biological macromoecures according to claim 44, characterized in that one of the reservoirs is of greater volume, and the rest of smaller volume.
48. - ES proceso para ia fabricación de una celda de cristalización electro-asistida para macromoiécuías biológicas de conformidad con la reivindicación 47, caracterizado porque el reservorio de mayor volumen es central a los otros dos reservónos laterales de menor volumen. 48. - A process for the manufacture of an electro-assisted crystallization cell for biological macromoecures according to claim 47, characterized in that the reservoir of greater volume is central to the other two lateral reservoirs of smaller volume.
49. - El proceso para la fabricación de una celda de cristalización electro-asistida para macromoiécuías biológicas de conformidad con la reivindicación 47, caracterizado porque el reservorio de mayor volumen es de aproximadamente entre 1.5 cm x 0.8 x 0.15 - 2.0 cm x .0 cm x 0.2 cm. 49. - The process for the manufacture of an electro-assisted crystallization cell for biological macromoecures according to claim 47, characterized in that the reservoir of greater volume is approximately between 1.5 cm x 0.8 x 0.15 - 2.0 cm x .0 cm x 0.2 cm
50. - Ei proceso para la fabricación de una celda de cristalización electro-asistida para macromoiécuías biológicas de conformidad con la reivindicación 47, caracterizado porque ei reservorio de menor volumen es de aproximadamente entre 0.7 cm x 0.5 cm x 0.15 cm - 1.0 cm x 0.8 cm x 0,2 cm. 50. - The process for manufacturing an electro-assisted crystallization cell for biological macromoecures according to claim 47, characterized in that the reservoir of smaller volume is approximately between 0.7 cm x 0.5 cm x 0.15 cm - 1.0 cm x 0.8 cm x 0.2 cm.
51- Ei proceso para la fabricación de una celda de cristalización electro-asistida para macromoiécuías biológicas de conformidad con la reivindicación 48, caracterizado porque ei reservorio de mayor volumen contiene agente precipitante y los reservónos de menor volumen contienen una maeromolécula biológica y agente precipitante. 51. The process for manufacturing an electro-assisted crystallization cell for biological macromoecures according to claim 48, characterized in that the reservoir of greater volume contains precipitating agent and reservoirs of smaller volume contain a biological maeromolecule and precipitating agent.
52. - El proceso para la fabricación de una celda de cristalización electro-asistida para macromoléculas biológicas de conformidad con la reivindicación 51 , en donde las macromoléculas biológicas son proteínas, ácidos nucleicos, poiisacáridos y combinaciones de ias mismas. 52. - The process for manufacturing an electro-assisted crystallization cell for biological macromolecules according to claim 51, wherein the biological macromolecules are proteins, nucleic acids, polysaccharides and combinations thereof.
53. - El proceso para la fabricación de una celda de cristalización electro-asistida para macromoléculas biológicas de conformidad con la reivindicación 30 y 34, caracterizado porque los reservónos contienen una macromolécuia bioíógica y agente precipitante. 53. - The process for manufacturing an electro-assisted crystallization cell for biological macromolecules according to claim 30 and 34, characterized in that the reservoirs contain a biographical macromolecule and precipitating agent.
54. - El proceso para la fabricación de una celda de cristalización electro-asistida para macromolécuias biológicas de conformidad con la reivindicación 53, en donde las macromoléculas biológicas son proteínas, ácidos nucleicos, poiisacáridos y combinaciones de las mismas. 54. - The process for the manufacture of an electro-assisted crystallization cell for biological macromolecules according to claim 53, wherein the biological macromolecules are proteins, nucleic acids, polysaccharides and combinations thereof.
55. - El proceso para la fabricación de una celda de cristalización electro-asistida para macromoléculas biológicas de conformidad con la reivindicación 30 y 34, caracterizado porque en la configuración batch, no se realiza un procedimiento de recubrimiento interno, 55. - The process for manufacturing an electro-assisted crystallization cell for biological macromolecules according to claim 30 and 34, characterized in that in the batch configuration, an internal coating procedure is not performed,
56. - El proceso para ¡a fabricación de una ceida de cristalización electro-asistida para macromoléculas biológicas de conformidad con ias reivindicaciones 30 y 34, caracterizado porque preferiblemente la membrana aislante de caucho comprende 96 reservónos. 56. - The process for the manufacture of an electro-assisted crystallization cement for biological macromolecules according to claims 30 and 34, characterized in that preferably the rubber insulating membrane comprises 96 reservoirs.
57. - Uso de la celda de cristalización electro-asistida para macromoléculas biológicas de la reivindicación , útil para aplicaciones en cristalografía de macromoléculas biológicas. 57. - Use of the electro-assisted crystallization cell for biological macromolecules of the claim, useful for applications in crystallography of biological macromolecules.
58. - El uso de la ceida de cristalización electro-asistida para macromoléculas biológicas de conformidad con la reivindicación 57, en donde ias macromoléculas biológicas son proteínas, ácidos nucleicos, poiisacáridos y combinaciones de ias mismas. 58. - The use of the electro-assisted crystallization ceid for biological macromolecules according to claim 57, wherein the biological macromolecules are proteins, nucleic acids, polysaccharides and combinations thereof.
PCT/MX2016/000092 2015-09-09 2016-09-07 Method and material for producing an electro-assisted crystallisation cell for biological macromolecules WO2017043954A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MX2015011982A MX2015011982A (en) 2015-09-09 2015-09-09 Method and material for manufacturing an electro-assisted crystalization cell for biological macromolecules.
MXMX/A/2015/011982 2015-09-09

Publications (1)

Publication Number Publication Date
WO2017043954A1 true WO2017043954A1 (en) 2017-03-16

Family

ID=55747602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2016/000092 WO2017043954A1 (en) 2015-09-09 2016-09-07 Method and material for producing an electro-assisted crystallisation cell for biological macromolecules

Country Status (2)

Country Link
MX (1) MX2015011982A (en)
WO (1) WO2017043954A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110308948A1 (en) * 2009-03-03 2011-12-22 Takashi Wakamatsu Device for crystallizing biopolymer, cell of solution for crystallizing biopolymer, method for controlling alignment of biopolymer, method for crystallizing biopolymer and biopolymer crystal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110308948A1 (en) * 2009-03-03 2011-12-22 Takashi Wakamatsu Device for crystallizing biopolymer, cell of solution for crystallizing biopolymer, method for controlling alignment of biopolymer, method for crystallizing biopolymer and biopolymer crystal

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FLORES-HERNANDEZ, E. ET AL.: "An electrically assisted device for protein crystallization in a vapor-diffusion setup.", JOURNAL OF APPLIED CRYSTALLOGRAPHY, vol. 46, no. 3, June 2013 (2013-06-01), pages 832 - 834, XP055368817 *
GIL-ALVARADEJO G ET AL.: "Novel protein crystal growth electrochemical cell for applications in x-ray diffraction and atomic force microscopy.", CRYSTAL GROWTH AND DESIGN, vol. 11, no. 9, 7 September 2011 (2011-09-07), pages 3917 - 3922, XP055368839 *
HAMMADI Z ET AL.: "New approaches on crystallization under electric fields.", PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY, vol. 101, no. 1- 3, 1 November 2009 (2009-11-01), pages 38 - 44, XP026884108 *
MORENO A.: "¿Por qué tenemos que cristalizar las proteínas para conocer su estructura 3D?", CIENCIA, REVISTA FROM FACULTAD OF INGENIERÍA, May 2013 (2013-05-01), pages 24 - 30, Retrieved from the Internet <URL:http://ingenieria.anahuac.mx/revista/MasCiencia2.pdf.> [retrieved on 20160213] *

Also Published As

Publication number Publication date
MX2015011982A (en) 2016-02-08

Similar Documents

Publication Publication Date Title
Dimova et al. The giant vesicle book
Smith et al. The structure of T6 human insulin at 1.0 Å resolution
JPH064677B2 (en) Serum albumin crystal and method for producing the same
WO2017043954A1 (en) Method and material for producing an electro-assisted crystallisation cell for biological macromolecules
Sun et al. Molecular dynamics simulations of phase transition of lamellar lipid membrane in water under an electric field
JP5626914B2 (en) Biopolymer crystallization apparatus, biopolymer crystallization solution cell, biopolymer orientation control method, biopolymer crystallization method, and biopolymer crystallization
Silver et al. Protein crystallization at oil/water interfaces
JP3595513B2 (en) Protein crystallization apparatus and protein crystallization method
US20230364601A1 (en) High-throughput crystallographic screening device and method for crystalizing membrane proteins using a sub physiological resting membrane potential across a lipid matrix of variable composition
Jung et al. Storable droplet interface lipid bilayers for cell-free ion channel studies
Buta et al. Properties of electrode-supported lipid cubic mesophase films with embedded gramicidin A: Structure and ion-transport studies
US10358475B1 (en) High-throughput crystallographic screening device and method for crystalizing membrane proteins using a sub physiological resting membrane potential across a lipid matrix of variable composition
CN207699561U (en) A kind of reaction pool device for fixing biological nano hole
EP2479319A1 (en) Container for crystallization, crystallization apparatus, method for producing crystal, and substrate for crystallization
Wang et al. Seeded mineralization in silk fibroin hydrogel matrices leads to continuous rhombohedral CaCO3 films
Hernández et al. Electrochemistry of adhesion and spreading of lipid vesicles on electrodes
Grusky et al. Secondary Ion Mass Spectrometry of Single Giant Unilamellar Vesicles Reveals Compositional Variability
JP7160288B1 (en) Organic polymer crystal manufacturing equipment
Nele Effect of PEG, lipid composition and formulation on vesicle lamellarity: A small angle neutron scattering study
JP2021084907A (en) Method for making hydrogel-embedded protein crystal
Udachin et al. Layered polyhydrate 18-crown-6· 12H2O
Bartell et al. Anomalous Osmose of Some Solutions of Electrolytes with Gold-beaters Skin Membranes
JP2022087076A (en) Crystal production method and device using micro flow path device
Dimitriou et al. Manipulation of encapsulated artificial phospholipid membranes using sub-micellar lysolipid concentrations
Yin et al. Time-Dependent Effect of Additives on Crystallization of Amorphous Calcium Phosphate: Faster Nucleation after Dilution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844770

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16844770

Country of ref document: EP

Kind code of ref document: A1