WO2017043942A1 - Method for analyzing three-dimensional specimen - Google Patents

Method for analyzing three-dimensional specimen Download PDF

Info

Publication number
WO2017043942A1
WO2017043942A1 PCT/KR2016/010251 KR2016010251W WO2017043942A1 WO 2017043942 A1 WO2017043942 A1 WO 2017043942A1 KR 2016010251 W KR2016010251 W KR 2016010251W WO 2017043942 A1 WO2017043942 A1 WO 2017043942A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional specimen
dimensional
specimen
ion beam
energy spectrum
Prior art date
Application number
PCT/KR2016/010251
Other languages
French (fr)
Korean (ko)
Inventor
유규상
김완섭
김수방
정광환
민원자
김승균
박경수
안승엽
김좌순
심창식
Original Assignee
케이맥(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 케이맥(주) filed Critical 케이맥(주)
Publication of WO2017043942A1 publication Critical patent/WO2017043942A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/02Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion

Definitions

  • the present invention relates to a method for analyzing three-dimensional specimens, and more particularly, three-dimensional specimens capable of measuring the components constituting the three-dimensional specimens by checking the energy spectrum generated when the ion beam incident on the three-dimensional specimens collide with the three-dimensional specimens. It is about how to analyze.
  • the thickness of the oxide layer is increased as the high density increases, such that the thickness of the silicon oxide layer must be reduced to 1 nm or less in the 100 nm technology generation.
  • ITRS International Semiconductor Technology Roadmap
  • thinning is required, conventional surface analysis methods have a problem in that they do not have resolution for ultra-thin film thickness or only a part of a structure or composition can be identified.
  • the doped layer of semiconductors is even thinner, allowing secondary ion mass spectroscopy (SIMS) or electron beams to analyze the cations or anions emitted while hitting the surface with the primary ions that have been used.
  • SIMS secondary ion mass spectroscopy
  • CD-SEM Critical Dimension-Secondary Electron Microscopy
  • the problem to be solved by the present invention is a method for analyzing a three-dimensional specimen having a high resolution, by measuring the energy spectrum generated when the ion beam incident on the three-dimensional specimen collides with the three-dimensional specimen to determine the components constituting the three-dimensional specimen To provide a method for analyzing three-dimensional specimens.
  • the method for analyzing a three-dimensional specimen according to the present invention by configuring the three-dimensional specimen by confirming the energy spectrum generated as the ion beam incident on the three-dimensional specimen collides with the three-dimensional specimen It comprises a component measuring step of measuring the component to be.
  • the component measuring step may include measuring at least one of component concentration or thickness of the three-dimensional specimen, the ion beam incident process for injecting the ion beam to the three-dimensional specimen; A spectrum checking step of checking an energy spectrum of the scattered ion beam when the ion beam incident through the ion beam incident process is scattered as it collides with the three-dimensional specimen; And a component measurement process of measuring at least one of component concentration or thickness of the three-dimensional specimen from the energy spectrum identified through the spectrum identification process.
  • the component measurement process at least any one of the component concentration or thickness of the three-dimensional specimen by comparing the energy spectrum identified through the spectrum confirmation process and the energy spectrum previously confirmed according to the component concentration and thickness of the three-dimensional specimen. One can be measured.
  • the energy spectrum and the spectrum identified in accordance with the thickness of the outer region and the component concentration of the inner region in the part spaced apart from one point of the three-dimensional specimen By comparing the energy spectrum identified through the process with each other, at least one of the component concentration or the thickness of the three-dimensional specimen is measured, wherein the predetermined energy spectrum is an outer region at a portion spaced from one point of the three-dimensional specimen.
  • the energy spectrum and the spectrum confirmation that have been previously determined according to the thickness of the outer zone and the component concentration of the inner zone in the spaced portion at one point of the three-dimensional specimen.
  • the predetermined energy spectrum is an inner region at a portion spaced from one point of the three-dimensional specimen. The higher the component concentration of, the higher the detection intensity of the scattered ion beams.
  • the energy spectrum confirmed through the spectrum and the energy spectrum identified in accordance with the component concentration and thickness of the thin film formed on the three-dimensional specimen
  • the predetermined energy spectrum is fixed at least one of the component concentration or thickness of the thin film formed on the three-dimensional specimen While changing one value, the energy spectrum may be previously identified for each of the top, bottom, and side surfaces of the three-dimensional specimen.
  • the predetermined energy spectrum may be characterized in that the detection intensity of the scattered ion beam is increased as the component concentration is higher when the thickness of the thin film formed on the three-dimensional specimen is confirmed in advance while changing the component concentration.
  • the predetermined energy spectrum is fixed at an angle in which the ion beam is incident on the basis of a coordinate system defining one surface of the three-dimensional specimen while changing the component concentration while fixing the thickness of the thin film formed on the three-dimensional specimen.
  • the energy of the ion beam scattered in the order of the top, side, and bottom of the three-dimensional specimen may be large.
  • the pre-determined energy spectrum is an angle toward the direction in which the ion beam is incident on the basis of a coordinate system defining one surface of the three-dimensional specimen while changing the concentration of components while fixing the thickness of the thin film formed on the three-dimensional specimen.
  • the energy of the ion beam scattered from the side surfaces of the three-dimensional specimen may be greater than that of the side surface. In this case, the energy of the ion beam scattered from the side of the three-dimensional specimen will be smaller toward the lower side of the side from the upper side of the three-dimensional specimen.
  • the thinner the thickness of the side thin film of the three-dimensional specimen, the energy spectrum of the ion beam scattered from the side of the three-dimensional specimen and the energy of the ion beam scattered from the other side of the three-dimensional specimen through the side of the three-dimensional specimen The spectrum will be divided.
  • the method for analyzing three-dimensional specimens according to the present invention may further comprise a shape definition step of defining the shape of the three-dimensional specimens before the component measurement step.
  • the shape of the three-dimensional specimen may be defined by confirming an energy spectrum generated when the ion beam incident on the three-dimensional specimen collides with the three-dimensional specimen.
  • the shape defining step may include a coordinate arrangement process of arranging the three-dimensional specimen in virtual three-dimensional coordinates; An ion beam incident process of injecting an ion beam into the three-dimensional specimen at an incident angle that may be defined based on the virtual three-dimensional coordinates; A spectrum checking step of checking an energy spectrum of the scattered ion beam when the ion beam incident through the ion beam incident process is scattered as it collides with the three-dimensional specimen; And a shape definition process for defining the shape of the three-dimensional specimen from the energy spectrum identified through the spectrum identification process.
  • the shape definition process by comparing the energy spectrum identified according to the shape of the three-dimensional specimen and the energy spectrum confirmed through the spectrum identification process, the height, length, width or the three-dimensional specimen of the three-dimensional specimen When composed of a plurality of three-dimensional specimen unit may define at least one of the spacing between the three-dimensional specimen unit.
  • the predetermined energy spectrum is scattered in the inner region as the thickness of the inner region in the portion spaced apart from one point of the three-dimensional specimen is thicker.
  • the lower end to the upper end of the three-dimensional specimen is called the height of the three-dimensional specimen
  • the horizontal direction of the three-dimensional specimen is called the length
  • the predetermined energy spectrum is parallel to the coordinate axis defining the width of the three-dimensional specimen with respect to the coordinate axis defining the height of the three-dimensional specimen in the virtual three-dimensional coordinates.
  • the three-dimensional specimen is a polyhedral structure with a thin film formed on the surface of the three-dimensional specimen
  • the lower to the upper end of the three-dimensional specimen is called the height of the three-dimensional specimen
  • the horizontal direction of the three-dimensional specimen is called the length
  • the predetermined energy spectrum is parallel to a coordinate axis defining a width of the three-dimensional specimen based on a coordinate axis defining a height of the three-dimensional specimen in the virtual three-dimensional coordinates.
  • the three-dimensional specimen is a polyhedral structure with a thin film formed on the surface of the three-dimensional specimen
  • the lower end to the upper end of the three-dimensional specimen is called the height of the three-dimensional specimen
  • the horizontal direction of the three-dimensional specimen is called the length
  • the longitudinal direction of the specimen is referred to as width
  • the predetermined energy spectrum is the virtual three-dimensional coordinates.
  • the interval between the three-dimensional specimen unit is The larger the detection intensity of the scattered ion beam may be characterized.
  • the component constituting the three-dimensional specimen can be measured by checking the energy spectrum generated when the ion beam incident on the three-dimensional specimen collides with the three-dimensional specimen, and from this, Three-dimensional specimens can be analyzed.
  • FIG. 1 is a flow chart showing an embodiment of a method for analyzing three-dimensional specimens according to the present invention.
  • FIG. 2 is a flowchart illustrating an example of the shape definition step S300 in the flowchart of FIG. 1.
  • FIG. 3 is a perspective view briefly illustrating an example (a radially unfolded structure based on one point) of a three-dimensional specimen analyzed through one embodiment of a method for analyzing a three-dimensional specimen according to the present invention.
  • FIG. 4 is an energy spectrum previously identified in relation to a shape definition step when applying an embodiment of the method for analyzing a three-dimensional specimen according to the present invention with respect to the example of the three-dimensional specimen shown in FIG. 3.
  • 5 and 6 are energy spectra identified in relation to the component analysis process when applying an embodiment of the method for analyzing a three-dimensional specimen according to the present invention with respect to the example of the three-dimensional specimen shown in FIG.
  • FIG. 7 is a perspective view briefly showing an example (polyhedral structure in which a thin film is formed on the surface of a three-dimensional specimen) of another three-dimensional specimen analyzed through one embodiment of a method for analyzing a three-dimensional specimen according to the present invention.
  • FIG. 8 is a perspective view illustrating an orthogonal coordinate axis together with an example of the three-dimensional specimen illustrated in FIG. 7 to define a direction in which an ion beam is incident in an embodiment of a method of analyzing a three-dimensional specimen according to the present invention.
  • 9 to 11 are energy spectra identified in relation to the shape definition step when applying an embodiment of the method for analyzing a three-dimensional specimen according to the present invention with respect to the example of the three-dimensional specimen shown in FIG.
  • 12 to 22 are energy spectra identified in relation to the component analysis process when applying an embodiment of the method of analyzing the three-dimensional specimen according to the present invention with respect to the example of the three-dimensional specimen shown in FIG.
  • FIGS. 1 to 22 are the same as those described in the above [Brief Description of Drawings].
  • one embodiment of the method for analyzing three-dimensional specimens according to the present invention comprises a component measuring step (S200), in some cases, the shape definition step (S300) further It can be configured to include.
  • the component measurement step (S200) by confirming the energy spectrum for the scattered ion beam as it collides with the three-dimensional specimen when the ion beam is incident on the three-dimensional specimen, It is a step of measuring the components constituting.
  • the factor (factor) to be measured is also the component concentration, Of course, it can be varied, such as thickness, it is natural that the scope of rights is not limited. However, an embodiment of the method for analyzing three-dimensional specimens according to the present invention is most likely to be used to measure at least any one of the component concentration or the thickness of the portion formed on the wafer surface in the semiconductor, In the following will be described in detail with respect to the present invention.
  • the component measurement step (S200) of measuring the components constituting the three-dimensional specimen is performed when the ion beam is incident on the three-dimensional specimen. If the spectrum can be determined by measuring the components constituting the three-dimensional specimen, it may be measured by any process. However, for example, for more detailed description, as shown in FIG. 1, the component measurement step S200 includes an ion beam incidence process S210, a spectral verification process S220, and a component analysis process S230. It may be configured, and in some cases may further comprise a data storage process (S240).
  • S240 data storage process
  • the ion beam incident process (S210) is a process of injecting the ion beam into the three-dimensional specimen, it is advantageous to inject the ion beam so that it is easy to check the energy spectrum for the scattered ion beam. Therefore, it is natural that the ion beam incident process S210 may vary the type of incident ion beam and the incident direction (incidence angle) according to the type and shape of the three-dimensional specimen.
  • the spectrum confirmation process (S220) is a process of confirming the energy spectrum for the scattered ion beam when the ion beam incident through the ion beam incident process (S210) collided with the three-dimensional specimen to be scattered.
  • the type of the energy spectrum may be varied without limitation, but it is advantageous to check the energy (energy) and intensity (intensity) for the scattered ion beam in the component analysis process (S230) to be described later. will be.
  • the component analysis process (S230) is a process of measuring at least one of the concentration or thickness of the component of the three-dimensional specimen from the energy spectrum confirmed through the spectrum confirmation process (S220), this process also through the spectrum confirmation process (S220) As long as at least one of the component concentration or the thickness of the three-dimensional specimen can be measured from the identified energy spectrum, it may proceed in any way.
  • the method of measuring at least one of the component concentration or thickness of the three-dimensional specimen by comparing the energy spectrum confirmed through the spectrum confirmation process (S220) and the energy spectrum previously confirmed according to the component concentration or thickness of the three-dimensional specimen It's a way to save time and money.
  • the predetermined energy spectrum may be an energy spectrum previously confirmed by pre-simulation through software, or may be an energy spectrum stored through a data storage process S240 which will be described later while the component measuring step S200 is performed. That is, the previously confirmed energy spectrum will be said to include all the energy spectra acquired in advance so as to be compared with the energy spectrum confirmed through the spectral check process (S220) in the component analysis process (S230).
  • the predetermined energy spectrum may vary depending on the structure and shape of the three-dimensional specimen.
  • examples of the three-dimensional specimens shown in FIGS. 3 and 7 will be described as an example for a more detailed description of the present invention.
  • one example of the three-dimensional specimen shown in FIG. 3 is a radially unfolded structure based on one point
  • one example of the three-dimensional specimen shown in FIG. 7 is a polyhedral structure in which a thin film is formed on the surface of the three-dimensional specimen.
  • one example of the three-dimensional specimen shown in Figure 7 will be referred to as a form similar to the Fin-FET (Field Effect Transistor) that is in the spotlight as a technology for maximizing low power.
  • Fin-FET Field Effect Transistor
  • the energy spectra shown in FIGS. 5 and 6 are confirmed energy spectra associated with an example of the three-dimensional specimen shown in FIG. 3. That is, the predetermined energy spectrum as shown in FIG. 5 is an energy spectrum previously identified for a three-dimensional specimen formed in a radially unfolded structure based on one point (c), and is an outer region of a part spaced apart from one point (c). (Cshell) As the thickness d2 is larger, the energy spectrum of the scattered ion beam is smaller.
  • the predetermined energy spectrum as shown in FIG. 6 is also an energy spectrum previously confirmed for a three-dimensional specimen formed in a radially unfolded structure based on one point (c), and an inner region of a portion spaced apart from one point (c). Consisting of PbS The higher the concentration of the component, the higher the energy intensity of the scattered ion beam.
  • the outer region and the inner region are relative, and the region farther from the one point (c) based on the part spaced from the one point (c) of the three-dimensional specimen will be referred to as the outer region,
  • the zone close to one point (c) will be referred to as the inner zone. That is, in the example of the three-dimensional specimen shown in FIG. 3, the boundary surface of the zone composed of Cshell and PbS will be referred to as a part spaced apart from one point (c).
  • the parts spaced at one point (c) may be variously designated as the boundary of each layer, and accordingly, the outer and inner zones will be relatively determined. It will be appreciated that the present invention is not limited thereto.
  • the energy spectra shown in FIGS. 12 to 22 are confirmed energy spectra associated with an example of the three-dimensional specimen shown in FIG. 7.
  • FIGS. 12 to 22 are energy spectra previously confirmed with respect to a three-dimensional specimen of a polyhedral structure having a thin film formed on its surface, and at least one value of a component concentration or thickness of the thin film formed on the three-dimensional specimen is fixed and the other value is fixed. While varying, the energy spectra previously identified for each of the top (t), bottom (b), and side (s) of the three-dimensional specimen.
  • the energy spectrum may be differently determined according to the angle at which the ion beam is incident.
  • the angle of incidence will also be an important factor in explaining the known energy spectrum.
  • the angle at which the ion beam is incident is first defined as follows. As shown in FIG. 8, when the three-dimensional specimen is placed in the virtual three-dimensional coordinates, an angle at which the ion beam is incident on the three-dimensional coordinates may be defined in three directions, but one direction is a direction in which the three-dimensional specimen is placed. Are defined as angles in two directions.
  • One is the direction toward the lower end (b) of the three-dimensional specimen (in FIG. 8, the x-axis direction) with respect to the coordinate axis (corresponding to the z-axis in FIG. 8) defining the height from the lower end (b) to the upper end (t) of the three-dimensional specimen.
  • the energy spectra shown in Figs. 12 to 22 are explained in order as follows. 12 to 14, the predetermined energy spectrum, when the angle of ⁇ is 45 degrees, the angle of ⁇ is 90 degrees, the thickness of the thin film is fixed with respect to the three-dimensional specimen of the polyhedral structure with a thin film formed on the surface It is an energy spectrum that is confirmed in advance while changing the component concentration, and the higher the component concentration of the thin film, the higher the energy intensity can be confirmed that the detection intensity of the scattered ion beam.
  • FIG. 12 confirms in advance that the detection intensity of the scattered ion beam increases as the thin film component concentration at the top of the three-dimensional specimen is increased
  • FIG. 13 is the scattering as the thin film component concentration at the bottom of the three-dimensional specimen is increased. It is confirmed in advance that the detection intensity of the ion beam is increased
  • FIG. 14 confirms in advance that the detection intensity of the scattered ion beam is increased as the thin film component concentration of the three-dimensional specimen side (s) is increased.
  • the predetermined energy spectrum as shown in Figs. 15 to 17 when the ⁇ angle is 25 degrees, the ⁇ angle is 0 degrees, the thickness of the thin film is fixed to the three-dimensional specimen of the polyhedral structure with a thin film formed on the surface It is an energy spectrum which is confirmed beforehand by changing the component concentration, and it is an energy spectrum which can confirm that the detection intensity of the scattered ion beam increases as the component concentration of a thin film is high.
  • FIG. 15 confirms in advance that the detection intensity of the scattered ion beam increases as the thin film component concentration at the top of the three-dimensional specimen t is increased
  • FIG. 16 is the scattering as the thin film component concentration at the bottom of the three-dimensional specimen b is increased. It is confirmed in advance that the detection intensity of the ion beam is increased
  • FIG. 17 confirms in advance that the detection intensity of the scattered ion beam is increased as the thin film component concentration of the three-dimensional specimen side (s) is increased.
  • the energy spectra of the polyhedral specimens having a thin film formed on the surface of the polyhedral structure were previously confirmed by fixing the thickness of the thin film and changing the concentration of components. At this time, it will be appreciated that the higher the concentration of the component, the higher the detection intensity of the scattered ion beam.
  • the ⁇ angle is different from each other, that is, when the contents related to FIGS. 12 to 14 and the contents related to FIGS. 15 to 17 are compared and arranged, when the angle ⁇ is 90 degrees, the upper end t of the three-dimensional specimen is t. It can be seen that the energy of the ion beam scattered in the order of the side (s) and the bottom (b) is large, but when the angle of ⁇ is 0 degrees, the energy of the scattered ion beam is the top (t) and It can be seen that the energy of the ion beam scattered at the bottom (b) is large.
  • the energy of the ion beam scattered from the three-dimensional specimen side (s) is an energy spectrum that can be confirmed to decrease toward the lower side (s3) of the side surface of the three-dimensional specimen (s1).
  • the predetermined energy spectrum as shown in Figs. 19 and 20 when the ⁇ angle is 45 degrees, the ⁇ angle is 90 degrees, the component concentration of the thin film with respect to the three-dimensional specimen of the polyhedral structure with a thin film formed on the surface An energy spectrum that has been fixed and fixed in advance by changing the thickness. The energy spectrum that can be confirmed that the greater the thickness of the thin film at the top (t) and the bottom (b) of the three-dimensional specimen, the greater the change in energy compared to the detection intensity of the scattered ion beam. to be.
  • the large amount of energy change relative to the detection intensity of the scattered ion beam means that the width of the energy spectrum is larger on the axis representing the magnitude of energy in FIGS. 19 and 20. More specifically, FIG. 19 confirms in advance that the thicker the thickness of the thin film at the top t of the three-dimensional specimen, the greater the width of the energy spectrum is on the axis representing the energy size of the scattered ion beam. As the thickness of the thin film in b) increases, the width of the energy spectrum increases in advance on the axis representing the energy size of the scattered ion beam.
  • the predetermined energy spectrum as shown in Figure 21 when the ⁇ angle is 65 degrees, the ⁇ angle is 90 degrees, the component concentration of the thin film is fixed with respect to the three-dimensional specimen of the polyhedral structure with a thin film formed on the surface It is an energy spectrum which is confirmed beforehand by changing thickness, and it is an energy spectrum which can confirm that the change of energy with respect to the detection intensity of the scattered ion beam is large, so that the thickness of the thin film in the side surface s of a three-dimensional specimen is thickened. That is, similar to FIGS.
  • the thinner the thin film thickness on the side surface s of the three-dimensional specimen the energy spectrum of the ion beam and the ion beam scattered on the side surface s of the three-dimensional specimen pass through the side surface s of the three-dimensional specimen. It is further confirmed that the energy spectrum of the ion beam scattered from the other side (s') of the three-dimensional specimen is divided.
  • FIG. 22 is an energy spectrum in which the thickness of the thin film on the side surface s of the three-dimensional specimen is 4 times different and the scale of each axis is smaller.
  • the composition concentration of the thin film is also four times different, but it is natural that the scope of rights is not limited by this.
  • FIG. In the case of the energy spectrum indicated by the dotted line, it can be seen that the energy spectrum is divided from the energy spectrum indicated by the solid line. In the vicinity of 84 keV, the detection intensity is largely scattered from the side (s) of the three-dimensional specimen.
  • the energy spectrum of the ion beam where the detection intensity is large near 82 keV, is the energy spectrum of the ion beam scattered from the other side (s') of the three-dimensional specimen.
  • the previously confirmed energy spectrum related to the example of the three-dimensional specimen illustrated in FIG. 7 as described above with reference to FIGS. 12 to 22 may be adjusted to the conditions at the time of confirming the energy spectrum as described above. Although some may vary according to the present invention, it is natural that those skilled in the art can easily substitute or change, and therefore, all of them are included in the scope of the present invention.
  • the data storage process (S240), which may be further included in some cases is a spectrum confirmation process.
  • the present invention is not limited to storing the identified energy spectrum as the previously confirmed energy spectrum while the spectrum checking process S220 is performed, and the whole process of the component measuring step S200 may be stored, and the medium to be stored is not limited. It can be varied without.
  • the component measuring step S200 may be performed immediately according to the result of the shape checking step S100 as described above, but may be performed after the shape defining step S300 is performed. That is, when it is confirmed that the shape of the three-dimensional specimen is defined in advance through the shape checking step (S100), the components constituting the three-dimensional specimen can be measured immediately corresponding to the defined shape, but the three-dimensional through the shape checking step (S100). If it is confirmed that the shape of the specimen is not defined in advance, the shape must be defined through the shape definition step (S300) so that the components constituting the three-dimensional specimen can be measured correspondingly.
  • the shape confirmation step (S100) may be any process as long as it confirms that the shape of the three-dimensional specimen is defined in advance, it is natural that the scope of rights is not limited thereby.
  • the shape confirmation step (S100) may be any process as long as it confirms that the shape of the three-dimensional specimen is defined in advance, it is natural that the scope of rights is not limited thereby.
  • the information on the shape of the three-dimensional specimen stored in advance through the data storage process (S350) of the shape definition step (S300) to be described later will be seen that the shape of the three-dimensional specimen is defined in advance.
  • the shape definition step (S300) proceeds, wherein the shape definition step (S300) is three-dimensional before the component measurement step (S200) If the shape of the specimen can be defined, it will be said that all including the process belongs to the scope of the present invention.
  • the shape definition step S300 includes a process of defining a shape of a three-dimensional specimen by checking an energy spectrum generated when an ion beam incident on the three-dimensional specimen collides with the three-dimensional specimen. can do. More specifically, the shape definition step S300 may include a coordinate arrangement process S310, an ion beam incident process S320, a spectrum verification process S330, and a shape definition process S340. May be configured to further include a data storage process (S350).
  • the coordinate arrangement process (S310) is a process of placing the three-dimensional specimen in the virtual three-dimensional coordinates, which is to present a criterion for defining the shape of the three-dimensional specimen.
  • the coordinate arrangement process (S310) is not limited at all, such as the type and scale of the virtual three-dimensional coordinates, because only need to present a reference when the shape of the three-dimensional specimen is defined through the shape definition process (S340) to be described later
  • the polar coordinate system may be used in the example of the three-dimensional specimen shown in FIG. 3, and the rectangular coordinate system may be used in the example of the three-dimensional specimen illustrated in FIG. 7.
  • the ion beam incident process (S320), the spectrum confirmation process (S330), the shape definition process (S340), the data storage process (S350) is the ion beam incident process (S210), the spectrum check described in the above-described component measurement step (S200)
  • the process (S220), shape definition process (S230), data storage process (S240) will be similar. That is, the ion beam incident process (S320) is a process of injecting an ion beam into a three-dimensional specimen, and the spectral identification process (S330) is an ion beam scattered when scattered as the ion beam incident through the ion beam incident process (S320) collides with the three-dimensional specimen.
  • the process of checking the energy spectrum for the shape definition process is a process of defining the shape of the three-dimensional specimen from the energy spectrum identified through the spectrum confirmation process (S330), the data storage process (S350) is the spectrum confirmation process The process of storing the energy spectrum identified during the operation (S330).
  • the shape definition process (S340) by comparing the energy spectrum identified according to the shape of the three-dimensional specimen and the energy spectrum confirmed through the spectrum identification process (S330), the height, length, width or three-dimensional specimen of the three-dimensional specimen When composed of a plurality of three-dimensional specimen unit will be able to define at least one of the spacing between the three-dimensional specimen unit.
  • the predetermined energy spectrum shown in FIG. 4 has a larger energy change amount of the ion beam scattered in the inner region as the thickness d1 of the inner region in the portion spaced from one point (c) of the three-dimensional specimen is larger, The thicker the thickness d2 of the outer zone in the spaced apart portion at one point (c) of the specimen, the smaller the energy spectrum of the ion beam scattered in the inner zone.
  • FIGS. 9 to 11 there may be a predetermined energy spectrum as illustrated in FIGS. 9 to 11.
  • the three-dimensional specimen illustrated in FIG. 7 defines and describes the shape of the three-dimensional specimen in any direction unlike the three-dimensional specimen illustrated in FIG. 3. Since it may vary depending on whether or not, the three-dimensional specimen shown in FIG. 7 will be described first based on FIG. 8.
  • the three-dimensional specimen illustrated in FIG. 7, which is formed in a polyhedral structure having a thin film formed on the surface thereof, is placed in a rectangular coordinate system
  • the three-dimensional specimen may be steered from the lower end (b) to the upper end (t) in the z-axis direction.
  • the height of the specimen (h), the longitudinal direction of the three-dimensional specimen in the y-axis direction can be referred to as the width (l), the horizontal direction of the three-dimensional specimen in the x-axis direction can be referred to as the length (not shown). It may be referred to as the interval (w) between each of the plurality of three-dimensional specimen units arranged in the longitudinal direction.
  • the predetermined energy spectrum shown in FIG. 9 defines the width l of the three-dimensional specimen based on the coordinate axis (z-axis) that defines the height h of the three-dimensional specimen. This is an energy spectrum previously confirmed when the ion beam is incident toward the lower end (b) of the three-dimensional specimen in parallel to the coordinate axis (y-axis). As the height h of the three-dimensional specimen increases, the detection intensity of the scattered ion beam increases. Energy spectrum.
  • the predetermined energy spectrum shown in Figure 10 is a three-dimensional parallel to the coordinate axis (y axis) defining the width (l) of the three-dimensional specimen relative to the coordinate axis (z axis) that defines the height (h) of the three-dimensional specimen.
  • This is an energy spectrum that is confirmed in advance when the ion beam is incident toward the lower end (b) of the specimen.
  • the predetermined energy spectrum shown in Figure 11 is a three-dimensional parallel to the coordinate axis (y axis) defining the width (l) of the three-dimensional specimen relative to the coordinate axis (z axis) that defines the height (h) of the three-dimensional specimen.
  • This is an energy spectrum that is confirmed in advance when the ion beam is incident toward the lower end (b) of the specimen.
  • the predetermined energy spectrum may vary depending on the shape of the three-dimensional specimen, but the present invention is not limited thereto, and may vary depending on how and in which direction the ion beam is incident on the three-dimensional specimen. Of course it is not limited.
  • One embodiment of the method for analyzing three-dimensional specimens starts from the shape checking step (S100) to check whether the shape of the three-dimensional specimen is defined, the shape of the three-dimensional specimen is defined through the shape checking step (S100) If it is confirmed that the component measurement step (S200) is continued, otherwise, after the shape definition step (S300) proceeds, the component measurement step (S200) proceeds.
  • shape checking step (S100) can be checked whether there is data related to the shape of the three-dimensional specimen stored through the data storage process (S350), and through a separate simulation It may also be determined whether data related to the shape of the identified three-dimensional specimen is stored in a separate storage medium.
  • the shape definition step S300 is performed prior to the component measurement step S200, and the shape definition step S300 is a coordinate arrangement process. (S310), the ion beam incident process (S320), the spectrum confirmation process (S330), the shape definition process (S340), the data storage process (S350) can be performed in this order.
  • the three-dimensional specimen is disposed at the virtual three-dimensional coordinates, and then the ion beam is incident on the three-dimensional specimen at an incident angle that may be defined based on the virtual three-dimensional coordinates.
  • the incident ion beam collides with the three-dimensional specimen and is scattered. In this case, the energy spectrum of the scattered ion beam can be confirmed.
  • the shape of the three-dimensional specimen is defined from the identified energy spectrum of the scattered ion beam.
  • the shape of the three-dimensional specimen may be defined by mutual comparison with the previously confirmed energy spectrum.
  • all of the related information may be stored through the data storage process (S350).
  • the predetermined energy spectrum may be a previously confirmed energy spectrum stored through the data storage process S350, or may be an energy spectrum previously confirmed through a separate simulation, examples of which are illustrated in FIGS. 4 and 9 to 9. As shown in FIG.
  • the component measurement step (S200) is then proceeded. If the component measurement step (S200) can measure the components constituting the three-dimensional specimen by checking the energy spectrum generated when the ion beam incident on the three-dimensional specimen collides with the three-dimensional specimen, the process as well as the following series of processes as well as other processes It's okay.
  • the component measurement step (S200) is an ion beam incidence process (S210), a spectrum confirmation process (S220), a component analysis process (S230), a data storage process (S240). It may proceed in order.
  • the component measurement step (S200) may be performed by first injecting an ion beam into a three-dimensional specimen, in which the ion beam may inject two or more ion beams, and the two or more ion beams may have different incidence angles. have. As such, by injecting two or more ion beams having different incidence angles, the component measuring step S200 may be performed more accurately and efficiently.
  • the ion beam incident through the ion beam incident process (S210) collides with the three-dimensional specimen and is scattered.
  • the energy spectrum of the scattered ion beam may be confirmed, and at least any one of the component concentration or thickness of the three-dimensional specimen.
  • at least one of the component concentration or the thickness of the three-dimensional specimen may be measured by comparing the energy spectra determined according to the shape of the three-dimensional specimen, and all information related thereto may be stored through the data storage process (S240).
  • the previously confirmed energy spectrum may be a previously confirmed energy spectrum stored through the data storage process S240, or may be an energy spectrum previously confirmed through a separate simulation, examples of which are illustrated in FIGS. 5, 6 and As shown in FIGS. 12 to 22.
  • the present invention for analyzing a three-dimensional specimen by proceeding to a step or a process that has not been presented in the prior art includes a component constituting the three-dimensional specimen by checking an energy spectrum generated when an ion beam incident on the three-dimensional specimen collides with the three-dimensional specimen. Can be analyzed with high resolution.
  • each step or each process may be performed at the same time or the order may be changed in part, from this right
  • the scope is not limited.
  • specific embodiments of the present invention have been described and illustrated above, the present invention is not limited to the described embodiments, and various modifications and changes may be made without departing from the spirit and scope of the present invention. It is obvious to those who have knowledge. Therefore, such modifications or variations are not to be understood individually from the technical spirit or point of view of the present invention, all will belong to the claims of the present invention.

Abstract

The present invention relates to a method for analyzing a three-dimensional specimen, the method comprising: a component measurement step for measuring components constituting a three-dimensional specimen by identifying an energy spectrum generated when an ion beam incident to the three-dimensional specimen collides with the three-dimensional specimen.

Description

입체 시편을 분석하는 방법How to Analyze Stereoscopic Specimens
본 발명은 입체 시편을 분석하는 방법에 관한 것으로, 더욱 상세하게는 입체 시편에 입사시킨 이온빔이 입체 시편과 충돌함에 따라 발생되는 에너지 스펙트럼을 확인하여 입체 시편을 구성하는 성분을 측정할 수 있는 입체 시편을 분석하는 방법에 관한 것이다.The present invention relates to a method for analyzing three-dimensional specimens, and more particularly, three-dimensional specimens capable of measuring the components constituting the three-dimensional specimens by checking the energy spectrum generated when the ion beam incident on the three-dimensional specimens collide with the three-dimensional specimens. It is about how to analyze.
오늘날 IT산업이 발전함에 따라 이와 관련된 수많은 고집적 전자소자들이 개발되고 있다. 하지만 고집적 전자소자들을 분석하는 기술이 이를 뒷받침 못하고 있는 실정이다. 일례로, 대표적인 고집적 전자소자인 반도체를 예로 들어 설명하면, ITRS(국제 반도체 기술 로드맵)에 의하면 100 nm 기술 세대에서는 실리콘 산화층 두께가 1 nm 이하로 줄어야 되는 등 고집적도가 증가할수록 더욱 산화층 두께는 얇아지는 것이 요구되고 있음에도, 기존의 일반적인 표면분석방법들은 초박막 두께에 대한 분해능을 갖지 못하거나 구조나 조성의 일부분 밖에 확인할 수 없다는 문제점이 있다.As the IT industry develops today, numerous highly integrated electronic devices are being developed. However, technology for analyzing highly integrated electronic devices does not support this. For example, a semiconductor, which is a representative high-density electronic device, is described as an example. According to the International Semiconductor Technology Roadmap (ITRS), the thickness of the oxide layer is increased as the high density increases, such that the thickness of the silicon oxide layer must be reduced to 1 nm or less in the 100 nm technology generation. Although thinning is required, conventional surface analysis methods have a problem in that they do not have resolution for ultra-thin film thickness or only a part of a structure or composition can be identified.
또한, 반도체의 도핑층(doped layer)도 더욱 더 얇아져서 그 동안 사용해온 일차이온으로 표면을 때리는 동안 방출하는 양이온 혹은 음이온을 분석하는 2차 이온 질량분석(secondary ion mass spectroscopy; SIMS) 또는 전자빔을 사용하는 CD-SEM(Critical Dimension-Secondary Electron Microscopy) 등의 기술로는 더 이상 접근하기 어렵다는 점에서 위의 문제점은 더욱 부각되고 있다. 더욱이, 예를 들어 설명한 반도체를 비롯한 고집적 전자소자들이 과거에는 2차원 분석만 하여도 무방하였지만 오늘날에는 그 구조가 복잡해져서 3차원 분석까지 필요하다는 점에서, 고집적 전자소자들을 입체 시편이라 할 때 고분해능을 갖는 입체 시편을 분석하는 기술이 개발되어야만 할 것이다.In addition, the doped layer of semiconductors is even thinner, allowing secondary ion mass spectroscopy (SIMS) or electron beams to analyze the cations or anions emitted while hitting the surface with the primary ions that have been used. The above problems are further highlighted in that CD-SEM (Critical Dimension-Secondary Electron Microscopy) technology is no longer accessible. Moreover, in the past, highly integrated electronic devices including semiconductors described above may have been used for two-dimensional analysis, but today, the structure is complicated and requires three-dimensional analysis. Techniques for analyzing three-dimensional specimens will have to be developed.
본 발명이 해결하고자 하는 과제는, 고분해능을 갖는 입체 시편을 분석하는 방법으로서, 입체 시편에 입사시킨 이온빔이 입체 시편과 충돌함에 따라 발생되는 에너지 스펙트럼을 확인하여 입체 시편을 구성하는 성분을 측정할 수 있는 입체 시편을 분석하는 방법을 제공하는데 있다.The problem to be solved by the present invention is a method for analyzing a three-dimensional specimen having a high resolution, by measuring the energy spectrum generated when the ion beam incident on the three-dimensional specimen collides with the three-dimensional specimen to determine the components constituting the three-dimensional specimen To provide a method for analyzing three-dimensional specimens.
이와 같이 해결하고자 하는 과제를 해결하기 위하여 안출된 본 발명에 따른 입체 시편을 분석하는 방법은, 입체 시편에 입사시킨 이온빔이 상기 입체 시편과 충돌함에 따라 발생되는 에너지 스펙트럼을 확인함으로써, 입체 시편을 구성하는 성분을 측정하는 성분측정단계를 포함하여 구성된다.In order to solve the problem to be solved as described above, the method for analyzing a three-dimensional specimen according to the present invention, by configuring the three-dimensional specimen by confirming the energy spectrum generated as the ion beam incident on the three-dimensional specimen collides with the three-dimensional specimen It comprises a component measuring step of measuring the component to be.
여기서, 상기 성분측정단계는, 상기 입체 시편의 성분농도 또는 두께 중 적어도 어느 하나를 측정할 수 있으며, 상기 입체 시편에 이온빔을 입사시키는 이온빔입사과정; 상기 이온빔입사과정을 통해 입사된 상기 이온빔이 상기 입체 시편과 충돌함에 따라 산란될 때, 산란되는 이온빔에 대한 에너지 스펙트럼을 확인하는 스펙트럼확인과정; 및 상기 스펙트럼확인과정을 통해 확인된 에너지 스펙트럼으로부터 상기 입체 시편의 성분농도 또는 두께 중 적어도 어느 하나를 측정하는 성분측정과정;을 포함하여 구성될 수 있다.Here, the component measuring step may include measuring at least one of component concentration or thickness of the three-dimensional specimen, the ion beam incident process for injecting the ion beam to the three-dimensional specimen; A spectrum checking step of checking an energy spectrum of the scattered ion beam when the ion beam incident through the ion beam incident process is scattered as it collides with the three-dimensional specimen; And a component measurement process of measuring at least one of component concentration or thickness of the three-dimensional specimen from the energy spectrum identified through the spectrum identification process.
또한, 상기 성분측정과정은, 상기 입체 시편의 성분농도 및 두께에 따라 기확인된 에너지 스펙트럼과 상기 스펙트럼확인과정을 통해 확인된 에너지 스펙트럼을 상호 비교함으로써, 상기 입체 시편의 성분농도 또는 두께 중 적어도 어느 하나를 측정할 수 있다.In addition, the component measurement process, at least any one of the component concentration or thickness of the three-dimensional specimen by comparing the energy spectrum identified through the spectrum confirmation process and the energy spectrum previously confirmed according to the component concentration and thickness of the three-dimensional specimen. One can be measured.
이때, 상기 입체 시편이 일점을 기준으로 방사형으로 펼쳐진 구조인 경우, 상기 입체 시편의 일점에서 이격되어 있는 부분에서의 외측 구역의 두께 및 내측 구역의 성분농도에 따라 기확인된 에너지 스펙트럼과 상기 스펙트럼확인과정을 통해 확인된 에너지 스펙트럼을 상호 비교함으로써, 상기 입체 시편의 성분농도 또는 두께 중 적어도 어느 하나를 측정하되, 상기 기확인된 에너지 스펙트럼은, 상기 입체 시편의 일점에서 이격되어 있는 부분에서의 외측 구역의 두께가 두꺼울수록 산란되는 이온빔의 에너지(energy)가 작아질 수 있다.In this case, when the three-dimensional specimen has a radially unfolded structure with respect to one point, the energy spectrum and the spectrum identified in accordance with the thickness of the outer region and the component concentration of the inner region in the part spaced apart from one point of the three-dimensional specimen By comparing the energy spectrum identified through the process with each other, at least one of the component concentration or the thickness of the three-dimensional specimen is measured, wherein the predetermined energy spectrum is an outer region at a portion spaced from one point of the three-dimensional specimen. The thicker is the energy of the scattered ion beam may be smaller.
또한, 상기 입체 시편이 일점을 기준으로 방사형으로 펼쳐진 구조인 경우, 상기 입체 시편의 일점에서 이격되어 있는 부분에서의 외측 구역의 두께 및 내측 구역의 성분농도에 따라 기확인된 에너지 스펙트럼과 상기 스펙트럼확인과정을 통해 확인된 에너지 스펙트럼을 상호 비교함으로써, 상기 입체 시편의 성분농도 또는 두께 중 적어도 어느 하나를 측정하되, 상기 기확인된 에너지 스펙트럼은, 상기 입체 시편의 일점에서 이격되어 있는 부분에서의 내측 구역의 성분농도가 높을수록 산란되는 이온빔의 검출강도(intensity)는 높아질 수 있다.In addition, in the case where the three-dimensional specimen has a radially unfolded structure based on one point, the energy spectrum and the spectrum confirmation that have been previously determined according to the thickness of the outer zone and the component concentration of the inner zone in the spaced portion at one point of the three-dimensional specimen. By comparing the energy spectra identified through the process, at least one of the component concentration or the thickness of the three-dimensional specimen is measured, wherein the predetermined energy spectrum is an inner region at a portion spaced from one point of the three-dimensional specimen. The higher the component concentration of, the higher the detection intensity of the scattered ion beams.
한편, 상기 입체 시편이 상기 입체 시편의 표면에 박막이 형성된 다면체 구조인 경우, 상기 입체 시편에 형성된 박막의 성분농도 및 두께에 따라 기확인된 에너지 스펙트럼과 상기 스펙트럼확인과정을 통해 확인된 에너지 스펙트럼을 상호 비교함으로써, 상기 입체 시편에 형성된 박막의 성분농도 또는 두께 중 적어도 어느 하나를 측정하되, 상기 기확인된 에너지 스펙트럼은, 상기 입체 시편에 형성된 박막의 성분농도 또는 두께 중 적어도 어느 하나의 값을 고정해 두고 다른 하나의 값을 변화시키면서, 상기 입체 시편의 상단, 하단, 측면 별로 각각 미리 확인한 에너지 스펙트럼일 수 있다.On the other hand, if the three-dimensional specimen is a polyhedral structure formed with a thin film on the surface of the three-dimensional specimen, the energy spectrum confirmed through the spectrum and the energy spectrum identified in accordance with the component concentration and thickness of the thin film formed on the three-dimensional specimen By comparing with each other, at least one of the component concentration or thickness of the thin film formed on the three-dimensional specimen is measured, wherein the predetermined energy spectrum is fixed at least one of the component concentration or thickness of the thin film formed on the three-dimensional specimen While changing one value, the energy spectrum may be previously identified for each of the top, bottom, and side surfaces of the three-dimensional specimen.
이때, 상기 기확인된 에너지 스펙트럼은, 상기 입체 시편에 형성된 박막의 두께를 고정해 두고 성분농도를 변화시키면서 미리 확인한 경우, 성분농도가 높을수록 산란되는 이온빔의 검출강도는 높아지는 것을 특징으로 할 수 있다.In this case, the predetermined energy spectrum may be characterized in that the detection intensity of the scattered ion beam is increased as the component concentration is higher when the thickness of the thin film formed on the three-dimensional specimen is confirmed in advance while changing the component concentration. .
또한, 상기 기확인된 에너지 스펙트럼은, 상기 입체 시편에 형성된 박막의 두께를 고정해두고 성분농도를 변화시키면서, 상기 입체 시편의 일면을 정의하는 좌표계를 기준으로 상기 이온빔이 입사되는 방향을 향하는 각에 90도(azimuth angle=90°)로 이온빔을 입사시켜 미리 확인한 경우, 상기 입체 시편의 상단, 측면, 하단 순으로 산란되는 이온빔의 에너지가 큰 것을 특징으로 할 수 있다.In addition, the predetermined energy spectrum is fixed at an angle in which the ion beam is incident on the basis of a coordinate system defining one surface of the three-dimensional specimen while changing the component concentration while fixing the thickness of the thin film formed on the three-dimensional specimen. When the ion beam is incident in advance at 90 degrees (azimuth angle = 90 °), the energy of the ion beam scattered in the order of the top, side, and bottom of the three-dimensional specimen may be large.
뿐만 아니라, 상기 기확인된 에너지 스펙트럼은, 상기 입체 시편에 형성된 박막의 두께를 고정해두고 성분농도를 변화시키면서, 상기 입체 시편의 일면을 정의하는 좌표계를 기준으로 상기 이온빔이 입사되는 방향을 향하는 각에 0도(azimuth angle=0°)로 이온빔을 입사시켜 미리 확인한 경우, 상기 입체 시편의 상단 및 하단이 측면보다 산란되는 이온빔의 에너지가 큰 것을 특징으로 할 수 있다. 이때, 상기 입체 시편 측면에서 산란되는 이온빔의 에너지는, 상기 입체 시편의 측면 상단에서 측면 하단으로 향할수록 작아질 것이다.In addition, the pre-determined energy spectrum is an angle toward the direction in which the ion beam is incident on the basis of a coordinate system defining one surface of the three-dimensional specimen while changing the concentration of components while fixing the thickness of the thin film formed on the three-dimensional specimen. When the ion beam is incident in advance at 0 degrees (azimuth angle = 0 °), the energy of the ion beam scattered from the side surfaces of the three-dimensional specimen may be greater than that of the side surface. In this case, the energy of the ion beam scattered from the side of the three-dimensional specimen will be smaller toward the lower side of the side from the upper side of the three-dimensional specimen.
또한, 상기 기확인된 에너지 스펙트럼은, 상기 입체 시편에 형성된 박막의 성분농도를 고정해 두고 두께를 변화시키면서 미리 확인한 경우, 상기 입체 시편의 박막의 두께가 두꺼울수록 산란되는 이온빔의 검출강도 대비 에너지의 변화량이 큰 것을 특징으로 할 수 있다.In addition, when the predetermined energy spectrum is checked in advance by changing the thickness of the thin film formed on the three-dimensional specimen while changing the thickness of the thin film of the three-dimensional specimen, the thicker the thickness of the thin film of the three-dimensional specimen of the energy compared to the detection intensity of the scattered ion beam It can be characterized by a large amount of change.
이때, 상기 입체 시편의 측면 박막의 두께가 얇을수록, 상기 입체 시편의 측면에서 산란되는 이온빔의 에너지 스펙트럼과 상기 이온빔이 상기 입체 시편의 측면을 통과하여 상기 입체 시편의 다른 측면에서 산란되는 이온빔의 에너지 스펙트럼이 나뉘어 질 것이다.In this case, the thinner the thickness of the side thin film of the three-dimensional specimen, the energy spectrum of the ion beam scattered from the side of the three-dimensional specimen and the energy of the ion beam scattered from the other side of the three-dimensional specimen through the side of the three-dimensional specimen The spectrum will be divided.
한편, 본 발명에 따른 입체 시편을 분석하는 방법은, 상기 성분측정단계 이전에 상기 입체 시편의 형상을 정의하는 형상정의단계를 더 포함하여 구성될 수 있다.On the other hand, the method for analyzing three-dimensional specimens according to the present invention, may further comprise a shape definition step of defining the shape of the three-dimensional specimens before the component measurement step.
여기서, 상기 형상정의단계는, 상기 입체 시편에 입사시킨 이온빔이 상기 입체 시편과 충돌함에 따라 발생되는 에너지 스펙트럼을 확인함으로써, 상기 입체 시편의 형상을 정의할 수 있다.Here, in the shape defining step, the shape of the three-dimensional specimen may be defined by confirming an energy spectrum generated when the ion beam incident on the three-dimensional specimen collides with the three-dimensional specimen.
이러한 상기 형상정의단계는, 상기 입체 시편을 가상의 3차원 좌표에 배치하는 좌표배치과정; 상기 가상의 3차원 좌표를 기준으로 정의될 수 있는 입사각으로 상기 입체 시편에 이온빔을 입사시키는 이온빔입사과정; 상기 이온빔입사과정을 통해 입사된 상기 이온빔이 상기 입체 시편과 충돌함에 따라 산란될 때, 산란되는 이온빔에 대한 에너지 스펙트럼을 확인하는 스펙트럼확인과정; 및 상기 스펙트럼확인과정을 통해 확인된 에너지 스펙트럼으로부터 상기 입체 시편의 형상을 정의하는 형상정의과정;을 포함하여 구성될 수 있다.The shape defining step may include a coordinate arrangement process of arranging the three-dimensional specimen in virtual three-dimensional coordinates; An ion beam incident process of injecting an ion beam into the three-dimensional specimen at an incident angle that may be defined based on the virtual three-dimensional coordinates; A spectrum checking step of checking an energy spectrum of the scattered ion beam when the ion beam incident through the ion beam incident process is scattered as it collides with the three-dimensional specimen; And a shape definition process for defining the shape of the three-dimensional specimen from the energy spectrum identified through the spectrum identification process.
이때, 상기 형상정의과정은, 상기 입체 시편의 형상에 따라 기확인된 에너지 스펙트럼과 상기 스펙트럼확인과정을 통해 확인된 에너지 스펙트럼을 상호 비교함으로써, 상기 입체 시편의 높이, 길이, 폭 또는 상기 입체 시편이 복수의 입체시편유닛으로 구성될 때 상기 입체시편유닛 간의 간격 중 적어도 어느 하나를 정의할 수 있다.In this case, the shape definition process, by comparing the energy spectrum identified according to the shape of the three-dimensional specimen and the energy spectrum confirmed through the spectrum identification process, the height, length, width or the three-dimensional specimen of the three-dimensional specimen When composed of a plurality of three-dimensional specimen unit may define at least one of the spacing between the three-dimensional specimen unit.
여기서, 상기 입체 시편이 일점을 기준으로 방사형으로 펼쳐진 구조라고 할 때, 상기 기확인된 에너지 스펙트럼은, 상기 입체 시편의 일점에서 이격되어 있는 부분에서의 내측 구역의 두께가 두꺼울수록 상기 내측 구역에서 산란되는 이온빔의 에너지 변화량이 크고, 상기 입체 시편의 일점에서 이격되어 있는 부분에서의 외측 구역의 두께가 두꺼울수록 상기 내측 구역에서 산란되는 이온빔의 에너지가 작은 것을 특징으로 할 수 있다.Here, when the three-dimensional specimen is a radially unfolded structure with respect to one point, the predetermined energy spectrum is scattered in the inner region as the thickness of the inner region in the portion spaced apart from one point of the three-dimensional specimen is thicker. The greater the amount of change in the energy of the ion beam, and the thicker the outer zone in the portion spaced from one point of the three-dimensional specimen, the smaller the energy of the ion beam scattered in the inner zone.
또한, 상기 입체 시편이 상기 입체 시편의 표면에 박막이 형성된 다면체 구조인 경우, 상기 입체 시편의 하단에서 상단까지를 상기 입체 시편의 높이라 하고, 상기 입체 시편의 가로 방향을 길이라고 하며, 상기 입체 시편의 세로 방향을 폭이라고 할 때, 상기 기확인된 에너지 스펙트럼은, 상기 가상의 3차원 좌표에 있어서 상기 입체 시편의 높이를 정의하는 좌표축을 기준으로 상기 입체 시편의 폭을 정의하는 좌표축에 평행하게 상기 입체 시편의 하단을 향하도록 이온빔이 입사될 때 미리 확인한 경우, 상기 입체 시편의 높이가 높을수록 산란되는 이온빔의 검출강도가 큰 것을 특징으로 할 수 있다.In addition, when the three-dimensional specimen has a polyhedral structure with a thin film formed on the surface of the three-dimensional specimen, the lower end to the upper end of the three-dimensional specimen is called the height of the three-dimensional specimen, the horizontal direction of the three-dimensional specimen is called the length, When the longitudinal direction of the specimen is referred to as the width, the predetermined energy spectrum is parallel to the coordinate axis defining the width of the three-dimensional specimen with respect to the coordinate axis defining the height of the three-dimensional specimen in the virtual three-dimensional coordinates. When the ion beam is incident in advance to face the lower end of the three-dimensional specimen, the higher the height of the three-dimensional specimen may be characterized in that the detection intensity of the scattered ion beam is greater.
뿐만 아니라, 상기 입체 시편이 상기 입체 시편의 표면에 박막이 형성된 다면체 구조인 경우, 상기 입체 시편의 하단에서 상단까지를 상기 입체 시편의 높이라 하고, 상기 입체 시편의 가로 방향을 길이라고 하며, 상기 입체 시편의 세로 방향을 폭이라고 할 때, 상기 기확인된 에너지 스펙트럼은, 상기 가상의 3차원 좌표에 있어서 상기 입체 시편의 높이를 정의하는 좌표축을 기준으로 상기 입체 시편의 폭을 정의하는 좌표축에 평행하게 상기 입체 시편의 하단을 향하도록 이온빔이 입사될 때 미리 확인한 경우, 상기 입체 시편의 폭이 작을수록 산란되는 이온빔의 에너지가 큰 것을 특징으로 할 수 있다.In addition, when the three-dimensional specimen is a polyhedral structure with a thin film formed on the surface of the three-dimensional specimen, the lower to the upper end of the three-dimensional specimen is called the height of the three-dimensional specimen, the horizontal direction of the three-dimensional specimen is called the length, When the longitudinal direction of a three-dimensional specimen is referred to as a width, the predetermined energy spectrum is parallel to a coordinate axis defining a width of the three-dimensional specimen based on a coordinate axis defining a height of the three-dimensional specimen in the virtual three-dimensional coordinates. When the ion beam is incident in advance so as to face the lower end of the three-dimensional specimen, the smaller the width of the three-dimensional specimen may be characterized in that the energy of the scattered ion beam is larger.
나아가, 상기 입체 시편이 상기 입체 시편의 표면에 박막이 형성된 다면체 구조인 경우, 상기 입체 시편의 하단에서 상단까지를 상기 입체 시편의 높이라 하고, 상기 입체 시편의 가로 방향을 길이라고 하며, 상기 입체 시편의 세로 방향을 폭이라 하며, 상기 입체 시편이 복수의 입체시편유닛으로 구성될 때 상기 입체시편유닛이 폭 방향을 따라 나열되어 있을 때, 상기 기확인된 에너지 스펙트럼은, 상기 가상의 3차원 좌표에 있어서 상기 입체 시편의 높이를 정의하는 좌표축을 기준으로 상기 입체 시편의 폭을 정의하는 좌표축에 평행하게 상기 입체 시편의 하단을 향하도록 이온빔이 입사될 때 미리 확인한 경우, 상기 입체시편유닛 간의 간격이 클수록 산란되는 이온빔의 검출강도가 작은 것을 특징으로 할 수 있다.Further, when the three-dimensional specimen is a polyhedral structure with a thin film formed on the surface of the three-dimensional specimen, the lower end to the upper end of the three-dimensional specimen is called the height of the three-dimensional specimen, the horizontal direction of the three-dimensional specimen is called the length, The longitudinal direction of the specimen is referred to as width, and when the three-dimensional specimen units are arranged along the width direction when the three-dimensional specimen is composed of a plurality of three-dimensional specimen units, the predetermined energy spectrum is the virtual three-dimensional coordinates. In the case of checking in advance when the ion beam is incident to the lower end of the three-dimensional specimen in parallel to the coordinate axis defining the width of the three-dimensional specimen relative to the coordinate axis defining the height of the three-dimensional specimen, the interval between the three-dimensional specimen unit is The larger the detection intensity of the scattered ion beam may be characterized.
본 발명에 따른 입체 시편을 분석하는 방법에 의하면, 입체 시편에 입사시킨 이온빔이 입체 시편과 충돌함에 따라 발생되는 에너지 스펙트럼을 확인함으로써 입체 시편을 구성하는 성분을 측정할 수 있고, 이로부터 고분해능을 갖는 입체 시편까지 분석할 수 있을 것이다.According to the method for analyzing three-dimensional specimens according to the present invention, the component constituting the three-dimensional specimen can be measured by checking the energy spectrum generated when the ion beam incident on the three-dimensional specimen collides with the three-dimensional specimen, and from this, Three-dimensional specimens can be analyzed.
도 1은 본 발명에 따른 입체 시편을 분석하는 방법의 일 실시예를 도시한 순서도이다.1 is a flow chart showing an embodiment of a method for analyzing three-dimensional specimens according to the present invention.
도 2는 도 1의 순서도에 있어서 형상정의단계(S300)에 대한 일례를 도시한 순서도이다.FIG. 2 is a flowchart illustrating an example of the shape definition step S300 in the flowchart of FIG. 1.
도 3은 본 발명에 따른 입체 시편을 분석하는 방법의 일 실시예를 통해 분석되는 입체 시편의 일례(일점을 기준으로 방사형으로 펼쳐진 구조)를 간략하게 도시한 사시도이다.3 is a perspective view briefly illustrating an example (a radially unfolded structure based on one point) of a three-dimensional specimen analyzed through one embodiment of a method for analyzing a three-dimensional specimen according to the present invention.
도 4는 도 3에 도시된 입체 시편의 일례에 대하여 본 발명에 따른 입체 시편을 분석하는 방법의 일 실시예를 적용할 때 형상정의단계와 관련하여 기확인된 에너지 스펙트럼이다.4 is an energy spectrum previously identified in relation to a shape definition step when applying an embodiment of the method for analyzing a three-dimensional specimen according to the present invention with respect to the example of the three-dimensional specimen shown in FIG. 3.
도 5 및 도 6은 도 3에 도시된 입체 시편의 일례에 대하여 본 발명에 따른 입체 시편을 분석하는 방법의 일 실시예를 적용할 때 성분분석과정과 관련하여 기확인된 에너지 스펙트럼이다.5 and 6 are energy spectra identified in relation to the component analysis process when applying an embodiment of the method for analyzing a three-dimensional specimen according to the present invention with respect to the example of the three-dimensional specimen shown in FIG.
도 7은 본 발명에 따른 입체 시편을 분석하는 방법의 일 실시예를 통해 분석되는 다른 입체 시편의 일례(입체 시편의 표면에 박막이 형성된 다면체 구조)를 간략하게 도시한 사시도이다.7 is a perspective view briefly showing an example (polyhedral structure in which a thin film is formed on the surface of a three-dimensional specimen) of another three-dimensional specimen analyzed through one embodiment of a method for analyzing a three-dimensional specimen according to the present invention.
도 8은 본 발명에 따른 입체 시편을 분석하는 방법의 일 실시예에서 이온빔이 입사되는 방향을 정의하기 위하여 도 7에 도시된 입체 시편의 일례에 직교 좌표축을 함께 도시한 사시도이다.FIG. 8 is a perspective view illustrating an orthogonal coordinate axis together with an example of the three-dimensional specimen illustrated in FIG. 7 to define a direction in which an ion beam is incident in an embodiment of a method of analyzing a three-dimensional specimen according to the present invention.
도 9 내지 도 11은 도 7에 도시된 입체 시편의 일례에 대하여 본 발명에 따른 입체 시편을 분석하는 방법의 일 실시예를 적용할 때 형상정의단계와 관련하여 기확인된 에너지 스펙트럼이다.9 to 11 are energy spectra identified in relation to the shape definition step when applying an embodiment of the method for analyzing a three-dimensional specimen according to the present invention with respect to the example of the three-dimensional specimen shown in FIG.
도 12 내지 도 22는 도 7에 도시된 입체 시편의 일례에 대하여 본 발명에 따른 입체 시편을 분석하는 방법의 일 실시예를 적용할 때 성분분석과정과 관련하여 기확인된 에너지 스펙트럼이다.12 to 22 are energy spectra identified in relation to the component analysis process when applying an embodiment of the method of analyzing the three-dimensional specimen according to the present invention with respect to the example of the three-dimensional specimen shown in FIG.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세하게 설명하면 다음과 같다. 다만, 본 발명을 설명함에 있어서, 이미 공지된 기능 혹은 구성에 대한 설명은, 본 발명의 요지를 명료하게 하기 위하여 생략하기로 한다. 또한, 본 발명의 실시예를 설명하는데 있어서, 가로, 세로, 상측, 하측과 같이 방향성을 전제로 하는 용어들은 당업자가 본 발명을 이해하기 용이하도록 기재한 것으로 본 발명의 권리범위를 제한하지 않음은 당연하다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, in describing the present invention, descriptions of already known functions or configurations will be omitted to clarify the gist of the present invention. In addition, in describing the embodiments of the present invention, terms premised on directionality such as horizontal, vertical, upper, and lower sides are described to facilitate understanding of the present invention by those skilled in the art, and do not limit the scope of the present invention. Of course.
먼저, 본 발명에 따른 입체 시편을 분석하는 방법의 일 실시예의 구성을 도 1 내지 도 22를 참조하여 상세하게 설명한다. 여기서, 도 1 내지 도 22에 대한 설명은 전술한 [도면의 간단한 설명]에 기재된 바와 같다.First, the configuration of an embodiment of a method for analyzing three-dimensional specimens according to the present invention will be described in detail with reference to FIGS. 1 to 22. 1 to 22 are the same as those described in the above [Brief Description of Drawings].
도 1 및 도 2에 도시된 바와 같이, 본 발명에 따른 입체 시편을 분석하는 방법의 일 실시예는 성분측정단계(S200)를 포함하여 구성되되, 경우에 따라서는 형상정의단계(S300)를 더 포함하여 구성될 수 있다.As shown in Figure 1 and 2, one embodiment of the method for analyzing three-dimensional specimens according to the present invention comprises a component measuring step (S200), in some cases, the shape definition step (S300) further It can be configured to include.
이때, 형상정의단계(S300)가 진행될 필요가 있는지 여부는 입체 시편의 형상이 정의되었는지를 확인하는 형상확인단계(S100)의 결과에 따라 달라질 수 있으며, 이에 대하여는 형상정의단계(S300)를 설명하기 전에 더욱 상세하게 설명하기로 한다.At this time, whether or not the shape defining step (S300) needs to proceed may vary depending on the result of the shape checking step (S100) for confirming that the shape of the three-dimensional specimen is defined, and the shape definition step (S300) will be described. This will be described in more detail before.
본 발명에 따른 입체 시편을 분석하는 방법의 일 실시예에서 성분측정단계(S200)는, 입체 시편에 이온빔을 입사시킬 때 입체 시편과 충돌함에 따라 산란되는 이온빔에 대한 에너지 스펙트럼을 확인함으로써, 입체 시편을 구성하는 성분을 측정하는 단계이다.In one embodiment of the method for analyzing a three-dimensional specimen according to the present invention, the component measurement step (S200), by confirming the energy spectrum for the scattered ion beam as it collides with the three-dimensional specimen when the ion beam is incident on the three-dimensional specimen, It is a step of measuring the components constituting.
이때, 입체 시편을 구성하는 성분 중 코어(core)에 해당하는 부분의 성분을 측정하든, 표면(surface)에 해당하는 부분의 성분을 측정하든 무관하고, 측정하고자 하는 요소(factor)도 성분농도, 두께 등 다양할 수 있음은 당연하며, 이로 인해 권리범위가 제한되지 않음은 당연하다. 다만, 본 발명에 따른 입체 시편을 분석하는 방법의 일 실시예가 가장 많이 사용될 것으로 예상되는 부분이 반도체에 있어서 웨이퍼 표면에 형성된 부분에 대한 성분농도 또는 두께 중 적어도 어느 하나를 측정하는 것이라 할 것이어서, 이하에서는 이를 중심으로 본 발명에 대하여 상세히 설명하기로 한다.At this time, regardless of whether the component of the portion corresponding to the core (core) of the components constituting the three-dimensional specimen or the component of the portion corresponding to the surface (surface) is measured, the factor (factor) to be measured is also the component concentration, Of course, it can be varied, such as thickness, it is natural that the scope of rights is not limited. However, an embodiment of the method for analyzing three-dimensional specimens according to the present invention is most likely to be used to measure at least any one of the component concentration or the thickness of the portion formed on the wafer surface in the semiconductor, In the following will be described in detail with respect to the present invention.
전술한 바와 같이 입체 시편을 구성하는 성분(특히 성분농도 또는 두께 중 적어도 어느 하나)을 측정하는 성분측정단계(S200)는 입체 시편에 이온빔을 입사시킬 때 입체 시편과 충돌되어 산란되는 이온빔에 대한 에너지 스펙트럼을 확인하여 입체 시편을 구성하는 성분을 측정할 수 있다면, 어떠한 과정으로 측정되어도 무방하다. 다만, 더욱 상세한 설명을 위해 예를 들어 설명하면, 도 1에 도시된 바와 같이, 성분측정단계(S200)는 이온빔입사과정(S210), 스펙트럼확인과정(S220), 성분분석과정(S230)을 포함하여 구성될 수 있으며, 경우에 따라서는 데이터저장과정(S240)을 더 포함하여 구성될 수 있다.As described above, the component measurement step (S200) of measuring the components constituting the three-dimensional specimen (particularly, at least one of the component concentration or the thickness) is performed when the ion beam is incident on the three-dimensional specimen. If the spectrum can be determined by measuring the components constituting the three-dimensional specimen, it may be measured by any process. However, for example, for more detailed description, as shown in FIG. 1, the component measurement step S200 includes an ion beam incidence process S210, a spectral verification process S220, and a component analysis process S230. It may be configured, and in some cases may further comprise a data storage process (S240).
여기서, 이온빔입사과정(S210)은 입체 시편에 이온빔을 입사시키는 과정으로서, 산란되는 이온빔에 대한 에너지 스펙트럼을 확인하기 용이하도록 이온빔을 입사시키는 것이 유리하다. 따라서 이온빔입사과정(S210)은 입체 시편의 종류 및 형상에 따라 입사되는 이온빔의 종류와 입사시키는 방향(입사각)을 다르게 할 수 있음은 당연하다.Here, the ion beam incident process (S210) is a process of injecting the ion beam into the three-dimensional specimen, it is advantageous to inject the ion beam so that it is easy to check the energy spectrum for the scattered ion beam. Therefore, it is natural that the ion beam incident process S210 may vary the type of incident ion beam and the incident direction (incidence angle) according to the type and shape of the three-dimensional specimen.
한편, 스펙트럼확인과정(S220)은 이온빔입사과정(S210)을 통해 입사된 이온빔이 입체 시편과 충돌하여 산란될 때 산란되는 이온빔에 대한 에너지 스펙트럼을 확인하는 과정이다.On the other hand, the spectrum confirmation process (S220) is a process of confirming the energy spectrum for the scattered ion beam when the ion beam incident through the ion beam incident process (S210) collided with the three-dimensional specimen to be scattered.
이때, 에너지 스펙트럼의 유형에 대하여는 제한 없이 다양할 수 있음은 물론이지만, 산란되는 이온빔에 대한 에너지(energy)와 세기(intensity)를 함께 확인하는 것이 후술할 성분분석과정(S230)을 진행하는데 있어서 유리할 것이다. 이는 성분분석과정(S230)에서 기확인된 에너지 스펙트럼과 비교하여 성분을 분석하게 될 경우, 기확인된 에너지 스펙트럼의 유형과 동일하게 하는 것이 분석과정의 편의성을 높이는 것이며, 기확인된 에너지 스펙트럼은 도 5, 도 6, 도 12 내지 도 22로 제시된 바와 같이 산란되는 이온빔의 에너지와 세기를 함께 확인하도록 제시되는 경우가 많기 때문이다.At this time, the type of the energy spectrum may be varied without limitation, but it is advantageous to check the energy (energy) and intensity (intensity) for the scattered ion beam in the component analysis process (S230) to be described later. will be. This means that when the component is analyzed in comparison with the previously confirmed energy spectrum in the component analysis process (S230), the same as the type of the previously confirmed energy spectrum increases the convenience of the analysis process. This is because it is often presented to confirm the energy and intensity of the scattered ion beam as shown in FIGS. 5, 6 and 12 to 22.
한편, 성분분석과정(S230)은 스펙트럼확인과정(S220)을 통해 확인된 에너지 스펙트럼으로부터 입체 시편의 성분농도 또는 두께 중 적어도 어느 하나를 측정하는 과정으로, 이 과정 역시 스펙트럼확인과정(S220)을 통해 확인된 에너지 스펙트럼으로부터 입체 시편의 성분농도 또는 두께 중 적어도 어느 하나를 측정할 수 있다면 어떠한 방식으로 진행되더라도 무방하다.On the other hand, the component analysis process (S230) is a process of measuring at least one of the concentration or thickness of the component of the three-dimensional specimen from the energy spectrum confirmed through the spectrum confirmation process (S220), this process also through the spectrum confirmation process (S220) As long as at least one of the component concentration or the thickness of the three-dimensional specimen can be measured from the identified energy spectrum, it may proceed in any way.
다만, 입체 시편의 성분농도 또는 두께에 따라 기확인된 에너지 스펙트럼과 스펙트럼확인과정(S220)을 통해 확인된 에너지 스펙트럼을 상호 비교함으로써, 입체 시편의 성분농도 또는 두께 중 적어도 어느 하나를 측정하는 방식이 측정하는 시간과 비용을 줄일 수 있는 방식이라 할 것이다.However, the method of measuring at least one of the component concentration or thickness of the three-dimensional specimen by comparing the energy spectrum confirmed through the spectrum confirmation process (S220) and the energy spectrum previously confirmed according to the component concentration or thickness of the three-dimensional specimen It's a way to save time and money.
이때, 기확인된 에너지 스펙트럼은 소프트웨어를 통한 사전 시뮬레이션을 하여 미리 확인한 에너지 스펙트럼이거나, 또는 성분측정단계(S200)를 진행하면서 후술할 데이터저장과정(S240)을 통해 저장되어 있는 에너지 스펙트럼일 수도 있다. 즉, 기확인된 에너지 스펙트럼은 성분분석과정(S230)에서 스펙트럼확인과정(S220)을 통해 확인된 에너지 스펙트럼과 비교할 수 있도록 사전에 습득한 모든 에너지 스펙트럼을 포함한다고 할 것이다.At this time, the predetermined energy spectrum may be an energy spectrum previously confirmed by pre-simulation through software, or may be an energy spectrum stored through a data storage process S240 which will be described later while the component measuring step S200 is performed. That is, the previously confirmed energy spectrum will be said to include all the energy spectra acquired in advance so as to be compared with the energy spectrum confirmed through the spectral check process (S220) in the component analysis process (S230).
또한, 기확인된 에너지 스펙트럼은 입체 시편의 구조 및 형상에 따라 다양할 수 있음은 당연하다. 다만, 본 발명의 보다 상세한 설명을 위하여 도 3 및 도 7에 도시된 입체 시편의 일례들을 예로 설명하기로 한다.In addition, it is natural that the predetermined energy spectrum may vary depending on the structure and shape of the three-dimensional specimen. However, examples of the three-dimensional specimens shown in FIGS. 3 and 7 will be described as an example for a more detailed description of the present invention.
여기서, 도 3에 도시된 입체 시편의 일례는 일점을 기준으로 방사형으로 펼쳐진 구조이고, 도 7에 도시된 입체 시편의 일례는 입체 시편의 표면에 박막이 형성된 다면체 구조이다. 특히, 도 7에 도시된 입체 시편의 일례는 저전력을 극대화하기 위한 기술로서 각광받고 있는 Fin-FET(Field Effect Transistor)와 유사한 형태라고 할 것이다.Here, one example of the three-dimensional specimen shown in FIG. 3 is a radially unfolded structure based on one point, and one example of the three-dimensional specimen shown in FIG. 7 is a polyhedral structure in which a thin film is formed on the surface of the three-dimensional specimen. In particular, one example of the three-dimensional specimen shown in Figure 7 will be referred to as a form similar to the Fin-FET (Field Effect Transistor) that is in the spotlight as a technology for maximizing low power.
이와 같은 입체 시편의 일례에 대한 기확인된 에너지 스펙트럼은 도 5, 도 6, 도 12 내지 도 22와 같으며, 이하에서는 각각의 도면 별로 기확인된 에너지 스펙트럼을 확인하기로 한다. 다만, 이때 각각의 도면에 기재된 수치는 상대적인 것이어서 권리범위에 영향을 주지 않음은 당연하다.The previously confirmed energy spectrum of the example of the three-dimensional specimen is as shown in Figures 5, 6, 12 to 22, and will be identified below for each of the predetermined energy spectrum. However, at this time, the numerical values described in the respective drawings are relative and do not affect the scope of rights.
먼저, 도 5 및 도 6에 대하여 상세히 설명하면, 도 5 및 도 6에 도시된 에너지 스펙트럼은 도 3에 도시된 입체 시편의 일례와 관련된 기확인된 에너지 스펙트럼이다. 즉, 도 5에 도시된 바와 같은 기확인된 에너지 스펙트럼은 일점(c)을 기준으로 방사형으로 펼쳐진 구조로 형성된 입체 시편에 대하여 미리 확인한 에너지 스펙트럼으로서, 일점(c)에서 이격되어 있는 부분의 외측 구역(Cshell) 두께(d2)가 두꺼울수록 산란되는 이온빔의 에너지가 작아짐을 확인할 수 있는 에너지 스펙트럼이다.First, with reference to FIGS. 5 and 6, the energy spectra shown in FIGS. 5 and 6 are confirmed energy spectra associated with an example of the three-dimensional specimen shown in FIG. 3. That is, the predetermined energy spectrum as shown in FIG. 5 is an energy spectrum previously identified for a three-dimensional specimen formed in a radially unfolded structure based on one point (c), and is an outer region of a part spaced apart from one point (c). (Cshell) As the thickness d2 is larger, the energy spectrum of the scattered ion beam is smaller.
또한, 도 6에 도시된 바와 같은 기확인된 에너지 스펙트럼도 일점(c)을 기준으로 방사형으로 펼쳐진 구조로 형성된 입체 시편에 대하여 미리 확인한 에너지 스펙트럼으로서, 일점(c)에서 이격되어 있는 부분의 내측 구역(PbS로 구성) 성분농도가 높을수록 산란되는 이온빔의 검출강도가 높아짐을 확인할 수 있는 에너지 스펙트럼이다.In addition, the predetermined energy spectrum as shown in FIG. 6 is also an energy spectrum previously confirmed for a three-dimensional specimen formed in a radially unfolded structure based on one point (c), and an inner region of a portion spaced apart from one point (c). Consisting of PbS The higher the concentration of the component, the higher the energy intensity of the scattered ion beam.
한편, 전술한 기확인된 에너지 스펙트럼에 있어서, 외측 구역과 내측 구역은 상대적인 것으로, 입체시편의 일점(c)에서 이격되어 있는 부분을 기준으로 일점(c)에 먼 구역이 외측 구역이라 할 것이고, 일점(c)에서 가까운 구역이 내측 구역이라 할 것이다. 즉, 도 3에 도시된 입체 시편의 일례에서는 Cshell과 PbS로 구성된 구역의 경계면이 일점(c)에서 이격되어 있는 부분이라 할 것이고, 만약 도시되지 않았지만 일점(c)을 기준으로 방사형으로 펼쳐진 구조가 3개 이상의 다양한 층으로 구성되는 경우 일점(c)에서 이격되어 있는 부분은 각 층의 경계면으로 다양하게 지정될 수 있으며, 이에 따라 외측 구역과 내측 구역도 상대적으로 정해질 것이어서, 이로 인해 권리범위가 제한되지 않음은 당연하다고 할 것이다.이어서, 도 12 내지 도 22에 대하여 설명하면, 도 12 내지 도 22에 도시된 에너지 스펙트럼은 도 7에 도시된 입체 시편의 일례와 관련된 기확인된 에너지 스펙트럼이다.On the other hand, in the above-described predetermined energy spectrum, the outer region and the inner region are relative, and the region farther from the one point (c) based on the part spaced from the one point (c) of the three-dimensional specimen will be referred to as the outer region, The zone close to one point (c) will be referred to as the inner zone. That is, in the example of the three-dimensional specimen shown in FIG. 3, the boundary surface of the zone composed of Cshell and PbS will be referred to as a part spaced apart from one point (c). In the case of three or more different layers, the parts spaced at one point (c) may be variously designated as the boundary of each layer, and accordingly, the outer and inner zones will be relatively determined. It will be appreciated that the present invention is not limited thereto. Next, with reference to FIGS. 12 to 22, the energy spectra shown in FIGS. 12 to 22 are confirmed energy spectra associated with an example of the three-dimensional specimen shown in FIG. 7.
즉, 도 12 내지 도 22는 표면에 박막이 형성된 다면체 구조의 입체 시편에 대하여 미리 확인한 에너지 스펙트럼으로서, 입체 시편에 형성된 박막의 성분농도 또는 두께 중 적어도 어느 하나의 값을 고정해 두고 다른 하나의 값을 변화시키면서, 입체 시편의 상단(t), 하단(b), 측면(s) 별로 각각 미리 확인한 에너지 스펙트럼이다.That is, FIGS. 12 to 22 are energy spectra previously confirmed with respect to a three-dimensional specimen of a polyhedral structure having a thin film formed on its surface, and at least one value of a component concentration or thickness of the thin film formed on the three-dimensional specimen is fixed and the other value is fixed. While varying, the energy spectra previously identified for each of the top (t), bottom (b), and side (s) of the three-dimensional specimen.
이때, 입체 시편이 다면체 구조로 형성되어 있기에 전술한 바와 같이 일점(c)을 기준으로 방사형으로 펼쳐진 구조로 형성된 입체 시편과 달리 이온빔이 입사되는 각도에 따라서 에너지 스펙트럼이 다르게 확인될 수 있는바, 이온빔의 입사되는 각도도 기확인된 에너지 스펙트럼을 설명하는데 있어서 중요한 요소가 될 것이다.At this time, since the three-dimensional specimen is formed of a polyhedral structure, unlike the three-dimensional specimen formed in a radially unfolded structure based on one point (c), the energy spectrum may be differently determined according to the angle at which the ion beam is incident. The angle of incidence will also be an important factor in explaining the known energy spectrum.
따라서 이에 대하여는 형상정의단계(S300)를 설명하기 위해 도시된 도 8을 미리 참조하여 이온빔이 입사되는 각도를 먼저 정의하면 다음과 같다. 도 8에 도시된 바와 같이 입체 시편을 가상의 3차원 좌표에 놔둔다면, 3차원 좌표 상에서 이온빔이 입사되는 각도는 세 방향으로 정의될 수 있으나, 한 방향은 입체 시편이 놓여지는 방향이어서 실제 다음과 같이 두 방향의 각으로 정의된다.Therefore, with reference to FIG. 8 shown in advance to explain the shape defining step (S300), the angle at which the ion beam is incident is first defined as follows. As shown in FIG. 8, when the three-dimensional specimen is placed in the virtual three-dimensional coordinates, an angle at which the ion beam is incident on the three-dimensional coordinates may be defined in three directions, but one direction is a direction in which the three-dimensional specimen is placed. Are defined as angles in two directions.
하나는 입체 시편의 하단(b)에서 상단(t)까지의 높이를 정의하는 좌표축(도 8에서는 z축에 해당)을 기준으로 입체 시편의 하단(b)을 향하는 방향(도 8에서는 x축 방향)을 향하는 θ각(polar angle)으로 정의될 수 있으며, 다른 하나는 입체 시편의 높이를 정의하는 좌표축에 수직되는 두 개의 좌표축(x축,y축) 사이에서 이온빔이 입사되는 방향을 향하는 φ각(azimuth angle)으로 정의될 수 있다.One is the direction toward the lower end (b) of the three-dimensional specimen (in FIG. 8, the x-axis direction) with respect to the coordinate axis (corresponding to the z-axis in FIG. 8) defining the height from the lower end (b) to the upper end (t) of the three-dimensional specimen. Can be defined as a polar angle to the side, and the other is a φ angle towards the direction in which the ion beam is incident between two coordinate axes (x-axis, y-axis) perpendicular to the coordinate axis defining the height of the three-dimensional specimen. It can be defined as (azimuth angle).
이와 같이 정의되는 두 방향의 각을 전제로, 도 12 내지 도 22에 도시된 에너지 스펙트럼을 각각 차례대로 설명하면 다음과 같다. 도 12 내지 도 14에 도시된 바와 같은 기확인된 에너지 스펙트럼은, θ각이 45도이고, φ각이 90도일 때, 표면에 박막이 형성된 다면체 구조의 입체 시편에 대하여 박막의 두께를 고정해두고 성분농도를 변화시키면서 미리 확인한 에너지 스펙트럼으로서, 박막의 성분농도가 높을수록 산란되는 이온빔의 검출강도가 높아짐을 확인할 수 있는 에너지 스펙트럼이다.Assuming the angles of the two directions defined as described above, the energy spectra shown in Figs. 12 to 22 are explained in order as follows. 12 to 14, the predetermined energy spectrum, when the angle of θ is 45 degrees, the angle of φ is 90 degrees, the thickness of the thin film is fixed with respect to the three-dimensional specimen of the polyhedral structure with a thin film formed on the surface It is an energy spectrum that is confirmed in advance while changing the component concentration, and the higher the component concentration of the thin film, the higher the energy intensity can be confirmed that the detection intensity of the scattered ion beam.
더욱 구체적으로, 도 12는 입체 시편 상단(t)의 박막 성분농도를 높일수록 산란되는 이온빔의 검출강도가 높아짐을 미리 확인한 것이고, 도 13은 입체 시편 하단(b)의 박막 성분농도를 높일수록 산란되는 이온빔의 검출강도가 높아짐을 미리 확인한 것이며, 도 14는 입체 시편 측면(s)의 박막 성분농도를 높일수록 산란되는 이온빔의 검출강도가 높아짐을 미리 확인한 것이다.More specifically, FIG. 12 confirms in advance that the detection intensity of the scattered ion beam increases as the thin film component concentration at the top of the three-dimensional specimen is increased, and FIG. 13 is the scattering as the thin film component concentration at the bottom of the three-dimensional specimen is increased. It is confirmed in advance that the detection intensity of the ion beam is increased, and FIG. 14 confirms in advance that the detection intensity of the scattered ion beam is increased as the thin film component concentration of the three-dimensional specimen side (s) is increased.
한편, 도 15 내지 도 17에 도시된 바와 같은 기확인된 에너지 스펙트럼은, θ각이 25도이고, φ각이 0도일 때, 표면에 박막이 형성된 다면체 구조의 입체 시편에 대하여 박막의 두께를 고정해두고 성분농도를 변화시키면서 미리 확인한 에너지 스펙트럼으로서, 박막의 성분농도가 높을수록 산란되는 이온빔의 검출강도가 높아짐을 확인할 수 있는 에너지 스펙트럼이다.On the other hand, the predetermined energy spectrum as shown in Figs. 15 to 17, when the θ angle is 25 degrees, the φ angle is 0 degrees, the thickness of the thin film is fixed to the three-dimensional specimen of the polyhedral structure with a thin film formed on the surface It is an energy spectrum which is confirmed beforehand by changing the component concentration, and it is an energy spectrum which can confirm that the detection intensity of the scattered ion beam increases as the component concentration of a thin film is high.
더욱 구체적으로, 도 15는 입체 시편 상단(t)의 박막 성분농도를 높일수록 산란되는 이온빔의 검출강도가 높아짐을 미리 확인한 것이고, 도 16은 입체 시편 하단(b)의 박막 성분농도를 높일수록 산란되는 이온빔의 검출강도가 높아짐을 미리 확인한 것이며, 도 17은 입체 시편 측면(s)의 박막 성분농도를 높일수록 산란되는 이온빔의 검출강도가 높아짐을 미리 확인한 것이다.More specifically, FIG. 15 confirms in advance that the detection intensity of the scattered ion beam increases as the thin film component concentration at the top of the three-dimensional specimen t is increased, and FIG. 16 is the scattering as the thin film component concentration at the bottom of the three-dimensional specimen b is increased. It is confirmed in advance that the detection intensity of the ion beam is increased, and FIG. 17 confirms in advance that the detection intensity of the scattered ion beam is increased as the thin film component concentration of the three-dimensional specimen side (s) is increased.
이때, 도 12 내지 도 17과 관련된 위의 내용을 통합 정리하면, 표면에 박막이 형성된 다면체 구조의 입체 시편에 대하여 기확인된 에너지 스펙트럼은 박막의 두께를 고정해두고 성분농도를 변화시키면서 미리 확인하였을 때, 성분농도가 높을수록 산란되는 이온빔의 검출강도가 높아진다는 것을 알 수 있을 것이다.12 to 17, the energy spectra of the polyhedral specimens having a thin film formed on the surface of the polyhedral structure were previously confirmed by fixing the thickness of the thin film and changing the concentration of components. At this time, it will be appreciated that the higher the concentration of the component, the higher the detection intensity of the scattered ion beam.
또한, φ각이 다르게 한 경우를 비교 정리하면, 즉 도 12 내지 도 14와 관련된 내용과 도 15 내지 도 17과 관련된 내용을 비교 정리하면, φ각이 90도인 경우에는 입체 시편의 상단(t), 측면(s), 하단(b) 순으로 산란되는 이온빔의 에너지가 큰 것을 알 수 있었지만, φ각이 0도인 경우에는 산란되는 이온빔의 에너지가 입체 시편의 측면(s)보다 상단(t) 및 하단(b)에서 산란되는 이온빔의 에너지가 큰 것을 알 수 있을 것이다.In addition, when the φ angle is different from each other, that is, when the contents related to FIGS. 12 to 14 and the contents related to FIGS. 15 to 17 are compared and arranged, when the angle φ is 90 degrees, the upper end t of the three-dimensional specimen is t. It can be seen that the energy of the ion beam scattered in the order of the side (s) and the bottom (b) is large, but when the angle of φ is 0 degrees, the energy of the scattered ion beam is the top (t) and It can be seen that the energy of the ion beam scattered at the bottom (b) is large.
한편, 도 18에 도시된 바와 같은 기확인된 에너지 스펙트럼은, 도 15 내지 도 17과 같은 조건, 즉 θ각이 25도이고 φ각이 0도일 때 표면에 박막이 형성된 다면체 구조의 입체 시편에 대하여 미리 확인한 에너지 스펙트럼으로서, 입체 시편 측면(s)에서 산란되는 이온빔의 에너지는 입체 시편의 측면 상단(s1)에서 측면 하단(s3)으로 향할수록 작아지는 것을 확인할 수 있는 에너지 스펙트럼이다.On the other hand, the predetermined energy spectrum as shown in Fig. 18, for the three-dimensional specimen of the polyhedron structure in which a thin film is formed on the surface under the same conditions as in Figs. As the energy spectrum confirmed in advance, the energy of the ion beam scattered from the three-dimensional specimen side (s) is an energy spectrum that can be confirmed to decrease toward the lower side (s3) of the side surface of the three-dimensional specimen (s1).
한편, 도 19 및 도 20에 도시된 바와 같은 기확인된 에너지 스펙트럼은, θ각이 45도이고, φ각이 90도일 때, 표면에 박막이 형성된 다면체 구조의 입체 시편에 대하여 박막의 성분농도를 고정해두고 두께를 변화시키면서 미리 확인한 에너지 스펙트럼으로서, 입체 시편의 상단(t) 및 하단(b)에서 박막의 두께가 두꺼울수록 산란되는 이온빔의 검출강도 대비 에너지의 변화량이 크다는 것을 확인할 수 있는 에너지 스펙트럼이다.On the other hand, the predetermined energy spectrum as shown in Figs. 19 and 20, when the θ angle is 45 degrees, the φ angle is 90 degrees, the component concentration of the thin film with respect to the three-dimensional specimen of the polyhedral structure with a thin film formed on the surface An energy spectrum that has been fixed and fixed in advance by changing the thickness. The energy spectrum that can be confirmed that the greater the thickness of the thin film at the top (t) and the bottom (b) of the three-dimensional specimen, the greater the change in energy compared to the detection intensity of the scattered ion beam. to be.
이때, 산란되는 이온빔의 검출강도 대비 에너지의 변화량이 크다는 것은 도 19 및 도 20에서 에너지의 크기를 나타내는 축 상에서 에너지 스펙트럼의 폭이 더 크다는 것을 의미한다. 더욱 구체적으로, 도 19는 입체 시편의 상단(t)에서의 박막 두께를 두껍게 할수록 산란되는 이온빔의 에너지 크기를 나타내는 축 상에서 에너지 스펙트럼의 폭이 커짐을 미리 확인한 것이며, 도 20은 입체 시편의 하단(b)에서의 박막 두께를 두껍게 할수록 산란되는 이온빔의 에너지 크기를 나타내는 축 상에서 에너지 스펙트럼의 폭이 커짐을 미리 확인한 것이다.In this case, the large amount of energy change relative to the detection intensity of the scattered ion beam means that the width of the energy spectrum is larger on the axis representing the magnitude of energy in FIGS. 19 and 20. More specifically, FIG. 19 confirms in advance that the thicker the thickness of the thin film at the top t of the three-dimensional specimen, the greater the width of the energy spectrum is on the axis representing the energy size of the scattered ion beam. As the thickness of the thin film in b) increases, the width of the energy spectrum increases in advance on the axis representing the energy size of the scattered ion beam.
한편, 도 21에 도시된 바와 같은 기확인된 에너지 스펙트럼은, θ각이 65도이고, φ각이 90도일 때, 표면에 박막이 형성된 다면체 구조의 입체 시편에 대하여 박막의 성분농도를 고정해두고 두께를 변화시키면서 미리 확인한 에너지 스펙트럼으로서, 입체 시편의 측면(s)에서의 박막 두께를 두껍게 할수록 산란되는 이온빔의 검출강도 대비 에너지의 변화량이 크다는 것을 확인할 수 있는 에너지 스펙트럼이다. 즉, 도 21도 도 19 및 도 20과 유사하게 에너지 크기를 나타내는 축 상에서 에너지 스펙트럼의 폭이 커짐을 미리 확인할 수 있으며, 이로부터 입체 시편의 측면(s)에서의 박막 두께를 두껍게 할수록 산란되는 이온빔의 검출강도 대비 에너지의 변화량이 크다는 것을 확인한 것이다.On the other hand, the predetermined energy spectrum as shown in Figure 21, when the θ angle is 65 degrees, the φ angle is 90 degrees, the component concentration of the thin film is fixed with respect to the three-dimensional specimen of the polyhedral structure with a thin film formed on the surface It is an energy spectrum which is confirmed beforehand by changing thickness, and it is an energy spectrum which can confirm that the change of energy with respect to the detection intensity of the scattered ion beam is large, so that the thickness of the thin film in the side surface s of a three-dimensional specimen is thickened. That is, similar to FIGS. 21 and 19 and 20, it can be confirmed in advance that the width of the energy spectrum is increased on the axis representing the energy magnitude, and from this, the ion beam scattered as the thickness of the thin film on the side surface s of the three-dimensional specimen is thickened. It is confirmed that the amount of change in energy compared to the detection intensity is large.
한편, 도 21에 있어서, 입체 시편의 측면(s)에서의 박막 두께가 얇을수록, 입체 시편의 측면(s)에서의 산란되는 이온빔의 에너지 스펙트럼과 이온빔이 입체 시편의 측면(s)를 통과하여 입체 시편의 다른 측면(s')에서 산란되는 이온빔의 에너지 스펙트럼이 나뉘어지는 것도 추가적으로 확인할 수 있다.Meanwhile, in FIG. 21, the thinner the thin film thickness on the side surface s of the three-dimensional specimen, the energy spectrum of the ion beam and the ion beam scattered on the side surface s of the three-dimensional specimen pass through the side surface s of the three-dimensional specimen. It is further confirmed that the energy spectrum of the ion beam scattered from the other side (s') of the three-dimensional specimen is divided.
이에 대하여는, 입체 시편의 측면(s)에서의 박막 두께를 4배 차이가 나도록 하고 각 축의 스케일을 더 작게 한 에너지 스펙트럼인 도 22를 참조하면 더욱 명확하게 확인할 수 있을 것이다. 이때, 박막의 두께를 4배 차이가 나도록 하는 것 이외에도 박막의 성분농도도 4배 차이가 나도록 하였지만, 이로 인해 권리범위가 제한되지 않음은 당연하다고 할 것이다.이와 같은 도22와 관련하여, 더욱 자세하게 살펴보면, 점선으로 표시된 에너지 스펙트럼의 경우가 실선으로 표시된 에너지 스펙트럼 대비 에너지 스펙트럼이 나누어져 있는 것을 확인할 수 있을 것인데, 84keV 인근에서 검출강도가 크게 확인되는 부분은 입체 시편의 측면(s)에서의 산란되는 이온빔의 에너지 스펙트럼이고, 82keV 인근에서 검출강도가 크게 확인되는 부분은 입체 시편의 다른 측면(s')에서 산란되는 이온빔의 에너지 스펙트럼이다.This can be more clearly seen with reference to FIG. 22, which is an energy spectrum in which the thickness of the thin film on the side surface s of the three-dimensional specimen is 4 times different and the scale of each axis is smaller. In this case, in addition to making the thickness of the thin film four times different, the composition concentration of the thin film is also four times different, but it is natural that the scope of rights is not limited by this. With reference to FIG. In the case of the energy spectrum indicated by the dotted line, it can be seen that the energy spectrum is divided from the energy spectrum indicated by the solid line. In the vicinity of 84 keV, the detection intensity is largely scattered from the side (s) of the three-dimensional specimen. The energy spectrum of the ion beam, where the detection intensity is large near 82 keV, is the energy spectrum of the ion beam scattered from the other side (s') of the three-dimensional specimen.
도 12 내지 도 22를 통해 이상 설명한 바와 같은 도 7에 도시된 입체 시편의 일례와 관련된 기확인된 에너지 스펙트럼은 전술한 바와 같이 θ각 및 φ각이 변경되는 것과 같이 에너지 스펙트럼을 확인할 당시의 조건에 따라 일부 달라질 수 있다 하더라도 이는 당업자가 용이하게 치환하거나 변경할 수 있을 정도의 것이라서 모두 본 발명의 권리범위에 포함됨은 당연하다.The previously confirmed energy spectrum related to the example of the three-dimensional specimen illustrated in FIG. 7 as described above with reference to FIGS. 12 to 22 may be adjusted to the conditions at the time of confirming the energy spectrum as described above. Although some may vary according to the present invention, it is natural that those skilled in the art can easily substitute or change, and therefore, all of them are included in the scope of the present invention.
한편, 성분측정단계(S200)에서 이온빔입사과정(S210), 스펙트럼확인과정(S220), 성분분석과정(S230) 외에 경우에 따라 더 포함하여 구성될 수 있는 데이터저장과정(S240)은 스펙트럼확인과정(S220)을 진행하면서 확인하게 되는 에너지 스펙트럼을 저장하는 과정이다.On the other hand, in addition to the ion beam incident process (S210), spectrum confirmation process (S220), component analysis process (S230) in the component measurement step (S200), the data storage process (S240), which may be further included in some cases, is a spectrum confirmation process. The process of storing the energy spectrum to be confirmed while proceeding (S220).
그러나 스펙트럼확인과정(S220)을 진행하면서 확인한 에너지 스펙트럼을 기확인된 에너지 스펙트럼으로서 저장하는 것에 한정되지 않고, 성분측정단계(S200)가 진행되는 전 과정이 저장될 수 있으며, 저장되는 매체 또한 제한되지 않고 다양할 수 있다.However, the present invention is not limited to storing the identified energy spectrum as the previously confirmed energy spectrum while the spectrum checking process S220 is performed, and the whole process of the component measuring step S200 may be stored, and the medium to be stored is not limited. It can be varied without.
이상 상세히 설명한 바와 같은 성분측정단계(S200)는 전술한 바와 같이 형상확인단계(S100)의 결과에 따라 곧바로 진행될 수도 있지만, 형상정의단계(S300)가 진행된 이후에 진행될 수 있다. 즉, 형상확인단계(S100)를 통해 입체 시편의 형상이 사전에 정의되어 있다고 확인되면 곧바로 정의된 형상에 대응하여 입체 시편을 구성하는 성분을 측정할 수 있겠지만, 형상확인단계(S100)를 통해 입체 시편의 형상이 사전에 정의되어 있지 않다고 확인되면 형상정의단계(S300)를 통해 형상을 정의하여야만 그에 대응하여 입체 시편을 구성하는 성분을 측정할 수 있을 것이다.As described above, the component measuring step S200 may be performed immediately according to the result of the shape checking step S100 as described above, but may be performed after the shape defining step S300 is performed. That is, when it is confirmed that the shape of the three-dimensional specimen is defined in advance through the shape checking step (S100), the components constituting the three-dimensional specimen can be measured immediately corresponding to the defined shape, but the three-dimensional through the shape checking step (S100). If it is confirmed that the shape of the specimen is not defined in advance, the shape must be defined through the shape definition step (S300) so that the components constituting the three-dimensional specimen can be measured correspondingly.
이때, 형상확인단계(S100)는 입체 시편의 형상이 사전에 정의되어 있다고 확인하기만 하면 어떠한 과정을 거쳐도 무방하며, 이로 인해 권리범위가 제한되지 않음은 당연하다. 일례로, 후술할 형상정의단계(S300)의 데이터저장과정(S350)을 통해 사전에 저장된 입체 시편의 형상에 대한 정보를 가져올 수 있다면 입체 시편의 형상이 사전에 정의되었다고 볼 수 있을 것이다.At this time, the shape confirmation step (S100) may be any process as long as it confirms that the shape of the three-dimensional specimen is defined in advance, it is natural that the scope of rights is not limited thereby. As an example, if the information on the shape of the three-dimensional specimen stored in advance through the data storage process (S350) of the shape definition step (S300) to be described later will be seen that the shape of the three-dimensional specimen is defined in advance.
한편, 형상확인단계(S100)에서 입체 시편의 형상이 사전에 정의되어 있지 않다고 확인되면, 형상정의단계(S300)가 진행되는데, 이때 형상정의단계(S300)는 성분측정단계(S200) 이전에 입체 시편의 형상을 정의할 수 있으면 어떠한 과정을 포함하여도 모두 본 발명의 권리범위에 속한다고 할 것이다.On the other hand, if it is confirmed in the shape confirmation step (S100) that the shape of the three-dimensional specimen is not defined in advance, the shape definition step (S300) proceeds, wherein the shape definition step (S300) is three-dimensional before the component measurement step (S200) If the shape of the specimen can be defined, it will be said that all including the process belongs to the scope of the present invention.
그러나 더욱 상세한 설명을 위하여 일례를 들어 설명하면, 형상정의단계(S300)는 입체 시편에 입사시킨 이온빔이 입체 시편과 충돌함에 따라 발생되는 에너지 스펙트럼을 확인함으로써, 입체 시편의 형상을 정의하는 과정을 포함할 수 있다. 더욱 구체적으로, 형상정의단계(S300)는, 좌표배치과정(S310), 이온빔입사과정(S320), 스펙트럼확인과정(S330), 형상정의과정(S340)을 포함하여 구성될 수 있으며, 경우에 따라서는 데이터저장과정(S350)을 더 포함하여 구성될 수 있다. 여기서, 좌표배치과정(S310)은 입체 시편을 가상의 3차원 좌표에 배치하는 과정으로서, 이는 입체 시편의 형상을 정의하는 기준을 제시하기 위함이다.However, for example, the shape definition step S300 includes a process of defining a shape of a three-dimensional specimen by checking an energy spectrum generated when an ion beam incident on the three-dimensional specimen collides with the three-dimensional specimen. can do. More specifically, the shape definition step S300 may include a coordinate arrangement process S310, an ion beam incident process S320, a spectrum verification process S330, and a shape definition process S340. May be configured to further include a data storage process (S350). Here, the coordinate arrangement process (S310) is a process of placing the three-dimensional specimen in the virtual three-dimensional coordinates, which is to present a criterion for defining the shape of the three-dimensional specimen.
이때, 좌표배치과정(S310)은 후술할 형상정의과정(S340)을 통해 입체 시편의 형상이 정의될 때 기준을 제시하기만 하면 되므로, 가상의 3차원 좌표의 종류 및 스케일 등에 전혀 제한을 받지 않음은 당연하다. 예를 들어, 도 3에 도시된 입체 시편의 일례의 경우에는 극 좌표계를, 도 7에 도시된 입체 시편의 일례의 경우에는 직교 좌표계를 이용할 수 있을 것이다.At this time, the coordinate arrangement process (S310) is not limited at all, such as the type and scale of the virtual three-dimensional coordinates, because only need to present a reference when the shape of the three-dimensional specimen is defined through the shape definition process (S340) to be described later Of course. For example, the polar coordinate system may be used in the example of the three-dimensional specimen shown in FIG. 3, and the rectangular coordinate system may be used in the example of the three-dimensional specimen illustrated in FIG. 7.
한편, 이온빔입사과정(S320), 스펙트럼확인과정(S330), 형상정의과정(S340), 데이터저장과정(S350)은 전술한 성분측정단계(S200)에서 설명하였던 이온빔입사과정(S210), 스펙트럼확인과정(S220), 형상정의과정(S230), 데이터저장과정(S240)과 유사하다고 할 것이다. 즉, 이온빔입사과정(S320)은 입체 시편에 이온빔을 입사시키는 과정이고, 스펙트럼확인과정(S330)은 이온빔입사과정(S320)을 통해 입사된 이온빔이 입체 시편과 충돌함에 따라 산란될 때 산란되는 이온빔에 대한 에너지 스펙트럼을 확인하는 과정이며, 형상정의과정(S340)은 스펙트럼확인과정(S330)을 통해 확인된 에너지 스펙트럼으로부터 입체 시편의 형상을 정의하는 과정이며, 데이터저장과정(S350)은 스펙트럼확인과정(S330)을 진행하면서 확인하게 되는 에너지 스펙트럼을 저장하는 과정이다.On the other hand, the ion beam incident process (S320), the spectrum confirmation process (S330), the shape definition process (S340), the data storage process (S350) is the ion beam incident process (S210), the spectrum check described in the above-described component measurement step (S200) The process (S220), shape definition process (S230), data storage process (S240) will be similar. That is, the ion beam incident process (S320) is a process of injecting an ion beam into a three-dimensional specimen, and the spectral identification process (S330) is an ion beam scattered when scattered as the ion beam incident through the ion beam incident process (S320) collides with the three-dimensional specimen. The process of checking the energy spectrum for the shape definition process (S340) is a process of defining the shape of the three-dimensional specimen from the energy spectrum identified through the spectrum confirmation process (S330), the data storage process (S350) is the spectrum confirmation process The process of storing the energy spectrum identified during the operation (S330).
이때, 이온빔입사과정(S320)의 경우, 좌표배치과정(S310)에서 이미 입체 시편을 가상의 3차원 좌표에 배치한 만큼, 이온빔의 입사각을 정의할 때에도 전술한 가상의 3차원 좌표를 기준으로 정의하는 것이 당업자에게 더욱 편리할 것이다.In this case, in the case of the ion beam incident process (S320), as the three-dimensional specimen is already disposed in the virtual three-dimensional coordinates in the coordinate arrangement process (S310), when defining the incident angle of the ion beam, it is defined based on the virtual three-dimensional coordinates described above. It will be more convenient to those skilled in the art.
또한, 형상정의과정(S340)의 경우, 스펙트럼확인과정(S330)을 통해 확인된 에너지 스펙트럼으로부터 입체 시편의 형상을 정의하는 방법이 여러 가지일 수 있으며, 이로 인해 권리범위가 제한되지 않음은 당연하다고 할 것이지만, 성분측정과정(S230)과 유사하게 기확인된 에너지 스펙트럼을 이용하여 상호 비교하는 방법을 이용한다면 유사한 방법을 이용하는 것이기에 이 역시 당업자에게 더욱 편리할 것이다. 즉, 형상정의과정(S340)을 통해, 입체 시편의 형상에 따라 기확인된 에너지 스펙트럼과 스펙트럼확인과정(S330)을 통해 확인한 에너지 스펙트럼을 상호 비교함으로써, 입체 시편의 높이, 길이, 폭 또는 입체 시편이 복수의 입체시편유닛으로 구성될 때 입체시편유닛 간의 간격 중 적어도 어느 하나를 정의할 수 있을 것이다.In addition, in the case of the shape definition process (S340), there may be a number of ways to define the shape of the three-dimensional specimen from the energy spectrum confirmed through the spectrum confirmation process (S330), it is natural that the scope of rights is not limited by this. However, similar to the component measurement process (S230), if using a method of comparing with each other using a predetermined energy spectrum, it will be more convenient to those skilled in the art because it uses a similar method. That is, through the shape definition process (S340), by comparing the energy spectrum identified according to the shape of the three-dimensional specimen and the energy spectrum confirmed through the spectrum identification process (S330), the height, length, width or three-dimensional specimen of the three-dimensional specimen When composed of a plurality of three-dimensional specimen unit will be able to define at least one of the spacing between the three-dimensional specimen unit.
다만, 기확인된 에너지 스펙트럼에 있어서는 전술한 성분측정과정(S230)과 차이가 있음은 당연하고, 이에 대하여는 전술한 바와 같이 본 발명의 상세한 설명을 위하여 도 3 및 도 7에 도시된 입체 시편의 일례들을 예로 설명하기로 한다.However, it is obvious that there is a difference from the above-described component measurement process (S230) in the previously confirmed energy spectrum, and as described above, an example of the three-dimensional specimen shown in FIGS. 3 and 7 for the detailed description of the present invention. This will be described as an example.
먼저, 도 3에 도시된 바와 같은 일점(c)을 기준으로 방사형으로 펼쳐진 구조의 입체 시편을 예로 들어 설명하면, 도 4에 도시된 바와 같은 기확인된 에너지 스펙트럼이 있을 수 있다. 즉, 도 4에 도시된 기확인된 에너지 스펙트럼은 입체시편의 일점(c)에서 이격되어 있는 부분에서의 내측 구역의 두께(d1)가 두꺼울수록 내측 구역에서 산란되는 이온빔의 에너지 변화량이 크고, 입체시편의 일점(c)에서 이격되어 있는 부분에서의 외측 구역의 두께(d2)가 두꺼울수록 내측 구역에서 산란되는 이온빔의 에너지가 작은 것을 확인할 수 있는 에너지 스펙트럼이다.First, referring to the three-dimensional specimen of the radially unfolded structure based on one point (c) as shown in FIG. 3, there may be a predetermined energy spectrum as shown in FIG. 4. That is, the predetermined energy spectrum shown in FIG. 4 has a larger energy change amount of the ion beam scattered in the inner region as the thickness d1 of the inner region in the portion spaced from one point (c) of the three-dimensional specimen is larger, The thicker the thickness d2 of the outer zone in the spaced apart portion at one point (c) of the specimen, the smaller the energy spectrum of the ion beam scattered in the inner zone.
이어서, 도 7에 도시된 바와 같은 입체 시편의 표면에 박막이 형성된 다면체 구조의 입체 시편을 예로 들어 설명하면, 도 9 내지 도 11에 도시된 바와 같은 기확인된 에너지 스펙트럼이 있을 수 있다. 이때, 도 9 내지 도 11에 도시된 바와 같은 기확인된 에너지 스펙트럼을 설명하기 전에, 도 7에 도시된 입체 시편은 도 3에 도시된 입체 시편과 달리 어느 방향에서 입체 시편의 형상을 정의하고 설명하느냐에 따라 달라질 수 있으므로, 도 8을 기초로 도 7에 도시된 입체 시편을 먼저 설명하기로 한다.Subsequently, when a three-dimensional specimen having a polyhedral structure in which a thin film is formed on a surface of the three-dimensional specimen as illustrated in FIG. 7 is described as an example, there may be a predetermined energy spectrum as illustrated in FIGS. 9 to 11. In this case, before explaining the predetermined energy spectrum as shown in FIGS. 9 to 11, the three-dimensional specimen illustrated in FIG. 7 defines and describes the shape of the three-dimensional specimen in any direction unlike the three-dimensional specimen illustrated in FIG. 3. Since it may vary depending on whether or not, the three-dimensional specimen shown in FIG. 7 will be described first based on FIG. 8.
도 8에 도시된 바와 같이, 표면에 박막이 형성된 다면체 구조로 형성되는 도 7에 도시된 입체 시편을 직교 좌표계에 두면, z축 방향으로 입체 시편의 하단(b)에서 상단(t)까지를 입체 시편의 높이(h)라고 할 수 있고, y축 방향으로 입체 시편의 세로 방향을 폭(l)이라 할 수 있으며, x축 방향으로 입체 시편의 가로 방향을 길이(도면부호 미부여)라고 할 수 있으며, 길이 방향으로 나열된 복수의 입체시편유닛 각각의 사이를 간격(w)이라 할 수 있다.As shown in FIG. 8, when the three-dimensional specimen illustrated in FIG. 7, which is formed in a polyhedral structure having a thin film formed on the surface thereof, is placed in a rectangular coordinate system, the three-dimensional specimen may be steered from the lower end (b) to the upper end (t) in the z-axis direction. The height of the specimen (h), the longitudinal direction of the three-dimensional specimen in the y-axis direction can be referred to as the width (l), the horizontal direction of the three-dimensional specimen in the x-axis direction can be referred to as the length (not shown). It may be referred to as the interval (w) between each of the plurality of three-dimensional specimen units arranged in the longitudinal direction.
이와 같은 도 7에 도시된 입체 시편에 대하여, 도 9에 도시된 기확인된 에너지 스펙트럼은 입체 시편의 높이(h)를 정의하는 좌표축(z축)을 기준으로 입체 시편의 폭(l)을 정의하는 좌표축(y축)에 평행하게 입체 시편의 하단(b)을 향하도록 이온빔이 입사될 때 미리 확인한 에너지 스펙트럼으로서, 입체 시편의 높이(h)가 높을수록 산란되는 이온빔의 검출강도가 커지는 것을 확인할 수 있는 에너지 스펙트럼이다.With respect to the three-dimensional specimen shown in FIG. 7, the predetermined energy spectrum shown in FIG. 9 defines the width l of the three-dimensional specimen based on the coordinate axis (z-axis) that defines the height h of the three-dimensional specimen. This is an energy spectrum previously confirmed when the ion beam is incident toward the lower end (b) of the three-dimensional specimen in parallel to the coordinate axis (y-axis). As the height h of the three-dimensional specimen increases, the detection intensity of the scattered ion beam increases. Energy spectrum.
한편, 도 10에 도시된 기확인된 에너지 스펙트럼은 입체 시편의 높이(h)를 정의하는 좌표축(z축)을 기준으로 입체 시편의 폭(l)을 정의하는 좌표축(y축)에 평행하게 입체 시편의 하단(b)을 향하도록 이온빔이 입사될 때 미리 확인한 에너지 스펙트럼으로서, 입체 시편의 폭(l)이 작을수록 산란되는 이온빔의 에너지가 커지는 것을 확인할 수 있는 에너지 스펙트럼이다.On the other hand, the predetermined energy spectrum shown in Figure 10 is a three-dimensional parallel to the coordinate axis (y axis) defining the width (l) of the three-dimensional specimen relative to the coordinate axis (z axis) that defines the height (h) of the three-dimensional specimen This is an energy spectrum that is confirmed in advance when the ion beam is incident toward the lower end (b) of the specimen. The smaller the width l of the three-dimensional specimen, the larger the energy spectrum of the scattered ion beam is.
한편, 도 11에 도시된 기확인된 에너지 스펙트럼은 입체 시편의 높이(h)를 정의하는 좌표축(z축)을 기준으로 입체 시편의 폭(l)을 정의하는 좌표축(y축)에 평행하게 입체 시편의 하단(b)을 향하도록 이온빔이 입사될 때 미리 확인한 에너지 스펙트럼으로서, 입체시편유닛 간의 간격(w)이 클수록 산란되는 이온빔의 검출강도가 작아짐을 확인할 수 있는 에너지 스펙트럼이다.On the other hand, the predetermined energy spectrum shown in Figure 11 is a three-dimensional parallel to the coordinate axis (y axis) defining the width (l) of the three-dimensional specimen relative to the coordinate axis (z axis) that defines the height (h) of the three-dimensional specimen This is an energy spectrum that is confirmed in advance when the ion beam is incident toward the lower end (b) of the specimen. The larger the distance w between the three-dimensional specimen units, the smaller the energy intensity of the scattered ion beam.
이상 설명한 바와 같이 입체 시편의 형상에 따라 기확인된 에너지 스펙트럼은 다양할 수 있는데, 이에 한정되지 않고 입체 시편에 이온빔을 어떤 방향으로 어떻게 입사시키느냐에 따라서도 다양할 수 있다고 할 것이며, 이로 인해 권리범위가 제한되지 않음은 물론이다.As described above, the predetermined energy spectrum may vary depending on the shape of the three-dimensional specimen, but the present invention is not limited thereto, and may vary depending on how and in which direction the ion beam is incident on the three-dimensional specimen. Of course it is not limited.
이어서, 전술한 바와 같이 구성되는 본 발명에 따른 입체 시편을 분석하는 방법의 일 실시예에 대한 작용 및 이에 따른 효과를 도 1 및 도 2을 재참조하여 시계열적으로 상세하게 설명한다.Next, the operation and the effect of the embodiment of the method for analyzing the three-dimensional specimen according to the present invention configured as described above will be described in detail in time series with reference to FIGS. 1 and 2 again.
본 발명에 따른 입체 시편을 분석하는 방법의 일 실시예는, 입체 시편의 형상이 정의되어 있는지 확인하는 형상확인단계(S100)로부터 시작되며, 형상확인단계(S100)를 통해 입체 시편의 형상이 정의되어 있음이 확인된 경우에는 성분측정단계(S200)가 이어서 진행되고, 그렇지 않은 경우에는 형상정의단계(S300)가 진행된 이후에 성분측정단계(S200)가 진행된다.One embodiment of the method for analyzing three-dimensional specimens according to the present invention starts from the shape checking step (S100) to check whether the shape of the three-dimensional specimen is defined, the shape of the three-dimensional specimen is defined through the shape checking step (S100) If it is confirmed that the component measurement step (S200) is continued, otherwise, after the shape definition step (S300) proceeds, the component measurement step (S200) proceeds.
이때, 형상확인단계(S100)에서 입체 시편의 형상이 정의되었는지 확인하는 것은 데이터저장과정(S350)을 통해 저장된 입체 시편에 대한 형상과 관련된 데이터가 있는지 여부로도 확인할 수 있으며, 별도의 시뮬레이션을 거쳐서 확인된 입체 시편에 대한 형상과 관련된 데이터가 별도의 저장매체에 저장되어 있는지 여부로도 확인할 수 있다.At this time, whether the shape of the three-dimensional specimen is defined in the shape checking step (S100) can be checked whether there is data related to the shape of the three-dimensional specimen stored through the data storage process (S350), and through a separate simulation It may also be determined whether data related to the shape of the identified three-dimensional specimen is stored in a separate storage medium.
우선, 입체 시편의 형상이 정의되어 있지 않음이 확인되는 것을 전제로 이하 설명하면, 성분측정단계(S200)에 앞서 형상정의단계(S300)가 먼저 진행되는데, 형상정의단계(S300)는 좌표배치과정(S310), 이온빔입사과정(S320), 스펙트럼확인과정(S330), 형상정의과정(S340), 데이터저장과정(S350) 순으로 진행될 수 있다.First, a description will be given on the premise that the shape of the three-dimensional specimen is not defined. Hereinafter, the shape definition step S300 is performed prior to the component measurement step S200, and the shape definition step S300 is a coordinate arrangement process. (S310), the ion beam incident process (S320), the spectrum confirmation process (S330), the shape definition process (S340), the data storage process (S350) can be performed in this order.
즉, 먼저 입체 시편을 가상의 3차원 좌표에 배치한 후, 가상의 3차원 좌표를 기준으로 정의될 수 있는 입사각으로 입체 시편에 이온빔을 입사시킨다. 이와 같이 이온빔을 입사시키면 입사된 이온빔은 입체 시편과 충돌하게 되어 산란하게 되는데, 이때 발생되는 산란되는 이온빔에 대한 에너지 스펙트럼을 확인할 수 있다.That is, first, the three-dimensional specimen is disposed at the virtual three-dimensional coordinates, and then the ion beam is incident on the three-dimensional specimen at an incident angle that may be defined based on the virtual three-dimensional coordinates. When the ion beam is incident as described above, the incident ion beam collides with the three-dimensional specimen and is scattered. In this case, the energy spectrum of the scattered ion beam can be confirmed.
이후, 확인한 산란되는 이온빔에 대한 에너지 스펙트럼으로부터 입체 시편의 형상을 정의하게 되는데, 이때 입체 시편의 형상에 따라 기확인된 에너지 스펙트럼과 상호 비교하여 입체 시편의 형상을 정의할 수 있다. 또한, 이때 관련된 모든 정보는 데이터저장과정(S350)을 통해 저장될 수 있음은 당연하다.Thereafter, the shape of the three-dimensional specimen is defined from the identified energy spectrum of the scattered ion beam. In this case, the shape of the three-dimensional specimen may be defined by mutual comparison with the previously confirmed energy spectrum. In addition, it is natural that all of the related information may be stored through the data storage process (S350).
여기서, 기확인된 에너지 스펙트럼은 데이터저장과정(S350)을 통해 저장되어 있는 미리 확인한 에너지 스펙트럼일 수도 있고, 별도의 시뮬레이션을 거쳐서 미리 확인한 에너지 스펙트럼일 수도 있으며, 이에 대한 예들은 도 4 및 도 9 내지 11에 도시된 바와 같다.Here, the predetermined energy spectrum may be a previously confirmed energy spectrum stored through the data storage process S350, or may be an energy spectrum previously confirmed through a separate simulation, examples of which are illustrated in FIGS. 4 and 9 to 9. As shown in FIG.
한편, 이와 같은 형상정의단계(S300)를 거쳐 입체 시편의 형상이 정의된 이후에는, 이어서 성분측정단계(S200)가 진행된다. 성분측정단계(S200)는 입체 시편에 입사시킨 이온빔이 입체 시편과 충돌함에 따라 발생되는 에너지 스펙트럼을 확인함으로써 입체 시편을 구성하는 성분을 측정할 수만 있다면 아래와 같은 일련의 과정뿐만 아니라 다른 과정으로 진행되어도 무방하다.On the other hand, after the shape of the three-dimensional specimen is defined through the shape definition step (S300), the component measurement step (S200) is then proceeded. If the component measurement step (S200) can measure the components constituting the three-dimensional specimen by checking the energy spectrum generated when the ion beam incident on the three-dimensional specimen collides with the three-dimensional specimen, the process as well as the following series of processes as well as other processes It's okay.
그러나 본 발명을 더욱 상세하게 설명하기 위하여, 예를 들어 설명하면 성분측정단계(S200)는 이온빔입사과정(S210), 스펙트럼확인과정(S220), 성분분석과정(S230), 데이터저장과정(S240) 순으로 진행될 수 있다.However, in order to explain the present invention in more detail, for example, the component measurement step (S200) is an ion beam incidence process (S210), a spectrum confirmation process (S220), a component analysis process (S230), a data storage process (S240). It may proceed in order.
즉, 먼저 입체 시편에 이온빔을 입사시키는 과정을 시작으로 하여 성분측정단계(S200)를 진행할 수 있는데, 이때 이온빔은 둘 이상의 이온빔을 입사시킬 수 있으며, 입사되는 둘 이상의 이온빔은 서로 다른 입사각을 가질 수 있다. 이와 같이 서로 다른 입사각을 갖는 둘 이상의 이온빔을 입사시킴으로써 성분측정단계(S200)를 더욱 정확하고 효율적으로 진행할 수 있을 것이다.That is, the component measurement step (S200) may be performed by first injecting an ion beam into a three-dimensional specimen, in which the ion beam may inject two or more ion beams, and the two or more ion beams may have different incidence angles. have. As such, by injecting two or more ion beams having different incidence angles, the component measuring step S200 may be performed more accurately and efficiently.
이와 같이 이온빔입사과정(S210)을 통해 입사된 이온빔은 입체 시편과 충돌하게 되어 산란하게 되는데, 이때 산란되는 이온빔에 대한 에너지 스펙트럼을 확인할 수 있을 것이고, 이로부터 입체 시편의 성분농도 또는 두께 중 적어도 어느 하나를 측정하게 된다. 이때, 입체 시편의 형상에 따라 기확인된 에너지 스펙트럼과 상호 비교하여 입체 시편의 성분농도 또는 두께 중 적어도 어느 하나를 측정할 수 있으며, 이와 관련된 모든 정보는 데이터저장과정(S240)을 통해 저장될 수 있음은 당연하다. 여기서, 기확인된 에너지 스펙트럼은 데이터저장과정(S240)을 통해 저장되어 있는 미리 확인한 에너지 스펙트럼일 수도 있고, 별도의 시뮬레이션을 거쳐서 미리 확인한 에너지 스펙트럼일 수도 있으며, 이에 대한 예들은 도 5, 도 6 및 도 12 내지 22에 도시된 바와 같다.As such, the ion beam incident through the ion beam incident process (S210) collides with the three-dimensional specimen and is scattered. At this time, the energy spectrum of the scattered ion beam may be confirmed, and at least any one of the component concentration or thickness of the three-dimensional specimen. You will measure one. In this case, at least one of the component concentration or the thickness of the three-dimensional specimen may be measured by comparing the energy spectra determined according to the shape of the three-dimensional specimen, and all information related thereto may be stored through the data storage process (S240). Of course it is. Here, the previously confirmed energy spectrum may be a previously confirmed energy spectrum stored through the data storage process S240, or may be an energy spectrum previously confirmed through a separate simulation, examples of which are illustrated in FIGS. 5, 6 and As shown in FIGS. 12 to 22.
이와 같이 종래에는 제시되지 못하였던 단계 또는 과정으로 진행되어 입체 시편을 분석하는 본 발명은, 입체 시편에 입사시킨 이온빔이 입체 시편과 충돌함에 따라 발생되는 에너지 스펙트럼을 확인함으로써, 입체 시편을 구성하는 성분을 고분해능으로 분석할 수 있을 것이다.As described above, the present invention for analyzing a three-dimensional specimen by proceeding to a step or a process that has not been presented in the prior art includes a component constituting the three-dimensional specimen by checking an energy spectrum generated when an ion beam incident on the three-dimensional specimen collides with the three-dimensional specimen. Can be analyzed with high resolution.
한편, 이상 설명한 바와 같은 순서로 작용하는 본 발명에 따른 입체 시편을 분석하는 방법의 일 실시예 있어서 경우에 따라서 각 단계 또는 각 과정이 동시에 진행되거나 그 순서가 일부 변경될 수도 있을 것이며, 이로부터 권리범위가 제한되지 않음은 물론이다. 또한, 앞에서 본 발명의 특정한 실시예가 설명되고 도시되었지만 본 발명은 기재된 실시예에 한정되는 것이 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형할 수 있음은 이 기술의 분야에서 통상의 지식을 가진 자에게 자명한 일이다. 따라서, 그러한 수정예들 또는 변형예들은 본 발명의 기술적 사상이나 관점으로부터 개별적으로 이해되어서는 안 되며, 모두 본 발명의 특허청구범위에 속한다 하여야 할 것이다.On the other hand, in one embodiment of the method for analyzing three-dimensional specimens according to the present invention in the order described above in some cases, each step or each process may be performed at the same time or the order may be changed in part, from this right Of course, the scope is not limited. In addition, although specific embodiments of the present invention have been described and illustrated above, the present invention is not limited to the described embodiments, and various modifications and changes may be made without departing from the spirit and scope of the present invention. It is obvious to those who have knowledge. Therefore, such modifications or variations are not to be understood individually from the technical spirit or point of view of the present invention, all will belong to the claims of the present invention.

Claims (21)

  1. 입체 시편에 입사시킨 이온빔이 상기 입체 시편과 충돌함에 따라 발생되는 에너지 스펙트럼을 확인함으로써, 입체 시편을 구성하는 성분을 측정하는 성분측정단계를 포함하는, 입체 시편을 분석하는 방법.And a component measuring step of measuring the components constituting the three-dimensional specimen by identifying an energy spectrum generated when the ion beam incident on the three-dimensional specimen collides with the three-dimensional specimen.
  2. 제1항에 있어서, 상기 성분측정단계는 상기 입체 시편의 성분농도 또는 두께 중 적어도 어느 하나를 측정하는 것을 특징으로 하는, 입체 시편을 분석하는 방법.The method of claim 1, wherein the component measuring step measures at least one of component concentration or thickness of the three-dimensional specimen.
  3. 제2항에 있어서, 상기 성분측정단계는, 상기 입체 시편에 이온빔을 입사시키는 이온빔입사과정; 상기 이온빔입사과정을 통해 입사된 상기 이온빔이 상기 입체 시편과 충돌함에 따라 산란될 때, 산란되는 이온빔에 대한 에너지 스펙트럼을 확인하는 스펙트럼확인과정; 및 상기 스펙트럼확인과정을 통해 확인된 에너지 스펙트럼으로부터 상기 입체 시편의 성분농도 또는 두께 중 적어도 어느 하나를 측정하는 성분측정과정;을 포함하는 것을 특징으로 하는, 입체 시편을 분석하는 방법.The method of claim 2, wherein the measuring component comprises: an ion beam incident process of injecting an ion beam into the three-dimensional specimen; A spectrum checking step of checking an energy spectrum of the scattered ion beam when the ion beam incident through the ion beam incident process is scattered as it collides with the three-dimensional specimen; And a component measurement process of measuring at least one of the component concentration and the thickness of the three-dimensional specimen from the energy spectrum identified through the spectrum identification process.
  4. 제3항에 있어서, 상기 성분측정과정은, 상기 입체 시편의 성분농도 및 두께에 따라 기확인된 에너지 스펙트럼과 상기 스펙트럼확인과정을 통해 확인된 에너지 스펙트럼을 상호 비교함으로써, 상기 입체 시편의 성분농도 또는 두께 중 적어도 어느 하나를 측정하는 것을 특징으로 하는, 입체 시편을 분석하는 방법.According to claim 3, The component measurement process, by comparing the energy spectrum identified in accordance with the previously confirmed energy spectrum according to the concentration and thickness of the component of the three-dimensional specimen, the component concentration of the three-dimensional specimen or A method for analyzing three-dimensional specimens, characterized in that at least one of the thickness is measured.
  5. 제4항에 있어서, 상기 입체 시편이 일점을 기준으로 방사형으로 펼쳐진 구조인 경우, 상기 입체 시편의 일점에서 이격되어 있는 부분에서의 외측 구역의 두께 및 내측 구역의 성분농도에 따라 기확인된 에너지 스펙트럼과 상기 스펙트럼확인과정을 통해 확인된 에너지 스펙트럼을 상호 비교함으로써, 상기 입체 시편의 성분농도 또는 두께 중 적어도 어느 하나를 측정하되, 상기 기확인된 에너지 스펙트럼은 상기 입체 시편의 일점에서 이격되어 있는 부분에서의 외측 구역의 두께가 두꺼울수록 내측 구역에서 산란되는 이온빔의 에너지(energy)가 작아지는 것을 특징으로 하는, 입체 시편을 분석하는 방법.According to claim 4, wherein when the three-dimensional specimen has a radially unfolded structure based on one point, the energy spectrum previously determined according to the thickness of the outer zone and the component concentration of the inner zone in the spaced portion from one point of the three-dimensional specimen By comparing the energy spectrum confirmed through the spectral identification process with each other, at least one of the concentration or the thickness of the component of the three-dimensional specimen is measured, wherein the predetermined energy spectrum is at a portion spaced from one point of the three-dimensional specimen The thicker the outer zone, the smaller the energy of the ion beam scattered in the inner zone.
  6. 제4항에 있어서, 상기 입체 시편이 일점을 기준으로 방사형으로 펼쳐진 구조인 경우, 상기 입체 시편의 일점에서 이격되어 있는 부분에서의 외측 구역의 두께 및 내측 구역의 성분농도에 따라 기확인된 에너지 스펙트럼과 상기 스펙트럼확인과정을 통해 확인된 에너지 스펙트럼을 상호 비교함으로써, 상기 입체 시편의 성분농도 또는 두께 중 적어도 어느 하나를 측정하되, 상기 기확인된 에너지 스펙트럼은 상기 입체 시편의 일점에서 이격되어 있는 부분에서의 내측 구역의 성분농도가 높을수록 산란되는 이온빔의 검출강도(intensity)는 높아지는 것을 특징으로 하는, 입체 시편을 분석하는 방법.According to claim 4, wherein when the three-dimensional specimen has a radially unfolded structure based on one point, the energy spectrum previously determined according to the thickness of the outer zone and the component concentration of the inner zone in the spaced portion from one point of the three-dimensional specimen By comparing the energy spectrum confirmed through the spectral identification process with each other, at least one of the concentration or the thickness of the component of the three-dimensional specimen is measured, wherein the predetermined energy spectrum is at a portion spaced from one point of the three-dimensional specimen The higher the concentration of the components in the inner region of the detection intensity (intensity) of the scattered ion beams, characterized in that the method of analyzing three-dimensional specimens.
  7. 제4항에 있어서, 상기 입체 시편이 상기 입체 시편의 표면에 박막이 형성된 다면체 구조인 경우, 상기 입체 시편에 형성된 박막의 성분농도 및 두께에 따라 기확인된 에너지 스펙트럼과 상기 스펙트럼확인과정을 통해 확인된 에너지 스펙트럼을 상호 비교함으로써, 상기 입체 시편에 형성된 박막의 성분농도 또는 두께 중 적어도 어느 하나를 측정하되, 상기 기확인된 에너지 스펙트럼은 상기 입체 시편에 형성된 박막의 성분농도 또는 두께 중 적어도 어느 하나의 값을 고정해 두고 다른 하나의 값을 변화시키면서, 상기 입체 시편의 상단, 하단, 측면 별로 각각 미리 확인한 에너지 스펙트럼인 것을 특징으로 하는, 입체 시편을 분석하는 방법.The method according to claim 4, wherein when the three-dimensional specimen has a polyhedral structure with a thin film formed on the surface of the three-dimensional specimen, the energy spectrum and the spectrum identification process are determined according to the concentration and thickness of the thin film formed on the three-dimensional specimen. By comparing the energy spectra with each other, at least one of the component concentration or thickness of the thin film formed on the three-dimensional specimen is measured, wherein the predetermined energy spectrum is at least one of the component concentration or thickness of the thin film formed on the three-dimensional specimen. Method of analyzing a three-dimensional specimen, characterized in that the energy spectrum is confirmed in advance for each of the upper, lower, and side surfaces of the three-dimensional specimen while fixing the value while changing another value.
  8. 제7항에 있어서, 상기 기확인된 에너지 스펙트럼은, 상기 입체 시편에 형성된 박막의 두께를 고정해 두고 성분농도를 변화시키면서 미리 확인한 경우, 성분농도가 높을수록 산란되는 이온빔의 검출강도는 높아지는 것을 특징으로 하는, 입체 시편을 분석하는 방법.The method according to claim 7, wherein the predetermined energy spectrum is fixed when the thickness of the thin film formed on the three-dimensional specimen is fixed while changing the component concentration, the higher the component concentration, the higher the detection intensity of the scattered ion beam is characterized in that A method of analyzing a three-dimensional specimen.
  9. 제7항에 있어서, 상기 기확인된 에너지 스펙트럼은, 상기 입체 시편에 형성된 박막의 두께를 고정해두고 성분농도를 변화시키면서, 상기 입체 시편의 일면을 정의하는 좌표계를 기준으로 상기 이온빔이 입사되는 방향을 향하는 각에 90도(azimuth angle=90°)로 이온빔을 입사시켜 미리 확인한 경우, 상기 입체 시편의 상단, 측면, 하단 순으로 산란되는 이온빔의 에너지가 큰 것을 특징으로 하는, 입체 시편을 분석하는 방법.The method according to claim 7, wherein the predetermined energy spectrum is a direction in which the ion beam is incident on the basis of a coordinate system defining one surface of the three-dimensional specimen while changing the concentration of components while fixing the thickness of the thin film formed on the three-dimensional specimen. When the ion beam is incident in advance at 90 degrees (azimuth angle = 90 °) at an angle toward, the energy of the ion beam scattered in the order of the top, the side, and the bottom of the three-dimensional specimen is large, analyzing the three-dimensional specimen Way.
  10. 제7항에 있어서, 상기 기확인된 에너지 스펙트럼은, 상기 입체 시편에 형성된 박막의 두께를 고정해두고 성분농도를 변화시키면서, 상기 입체 시편의 일면을 정의하는 좌표계를 기준으로 상기 이온빔이 입사되는 방향을 향하는 각에 0도(azimuth angle=0°)로 이온빔을 입사시켜 미리 확인한 경우, 상기 입체 시편의 상단 및 하단이 측면보다 산란되는 이온빔의 에너지가 큰 것을 특징으로 하는, 입체 시편을 분석하는 방법.The method according to claim 7, wherein the predetermined energy spectrum is a direction in which the ion beam is incident on the basis of a coordinate system defining one surface of the three-dimensional specimen while changing the concentration of components while fixing the thickness of the thin film formed on the three-dimensional specimen. When the ion beam is incident in advance at an angle toward 0 ° (azimuth angle = 0 °), the energy of the ion beam scattered from the side of the top and bottom of the three-dimensional specimen is larger than the side, the method of analyzing a three-dimensional specimen .
  11. 제10항에 있어서, 상기 입체 시편 측면에서 산란되는 이온빔의 에너지는 상기 입체 시편의 측면 상단에서 측면 하단으로 향할수록 작아지는 것을 특징으로 하는, 입체 시편을 분석하는 방법.The method of claim 10, wherein the energy of the ion beam scattered from the side of the three-dimensional specimen is smaller as it goes from the top of the side to the bottom of the side of the three-dimensional specimen.
  12. 제7항에 있어서, 상기 기확인된 에너지 스펙트럼은, 상기 입체 시편에 형성된 박막의 성분농도를 고정해 두고 두께를 변화시키면서 미리 확인한 경우, 상기 입체 시편의 박막의 두께가 두꺼울수록 산란되는 이온빔의 검출강도 대비 에너지의 변화량이 큰 것을 특징으로 하는, 입체 시편을 분석하는 방법.The method according to claim 7, wherein the predetermined energy spectrum is detected in the ion beam scattered as the thickness of the thin film of the three-dimensional specimen is thicker when the thickness of the thin film of the three-dimensional specimen is confirmed beforehand while fixing the component concentration of the thin film formed on the three-dimensional specimen. Method for analyzing three-dimensional specimens, characterized in that the amount of change in energy relative to the intensity.
  13. 제12항에 있어서, 상기 입체 시편의 측면 박막의 두께가 얇을수록, 상기 입체 시편의 측면에서 산란되는 이온빔의 에너지 스펙트럼과 상기 이온빔이 상기 입체 시편의 측면을 통과하여 상기 입체 시편의 다른 측면에서 산란되는 이온빔의 에너지 스펙트럼이 나뉘어 지는 것을 특징으로 하는, 입체 시편을 분석하는 방법.The method of claim 12, wherein the thinner the side thin film of the three-dimensional specimen, the energy spectrum of the ion beam scattered from the side of the three-dimensional specimen and the ion beam passes through the side of the three-dimensional specimen and scattered from the other side of the three-dimensional specimen Method for analyzing three-dimensional specimens, characterized in that the energy spectrum of the ion beam is divided.
  14. 제1항 내지 제13항 중 어느 한 항에 있어서, 상기 성분측정단계 이전에 상기 입체 시편의 형상을 정의하는 형상정의단계를 더 포함하는, 입체 시편을 분석하는 방법.The method of any one of claims 1 to 13, further comprising a shape definition step of defining the shape of the three-dimensional specimen before the component measuring step.
  15. 제14항에 있어서, 상기 형상정의단계는, 상기 입체 시편에 입사시킨 이온빔이 상기 입체 시편과 충돌함에 따라 발생되는 에너지 스펙트럼을 확인함으로써, 상기 입체 시편의 형상을 정의하는 것을 특징으로 하는, 입체 시편을 분석하는 방법.15. The three-dimensional specimen of claim 14, wherein the shape defining step defines a shape of the three-dimensional specimen by identifying an energy spectrum generated when an ion beam incident on the three-dimensional specimen collides with the three-dimensional specimen. How to analyze.
  16. 제15항에 있어서, 상기 형상정의단계는, 상기 입체 시편을 가상의 3차원 좌표에 배치하는 좌표배치과정; 상기 가상의 3차원 좌표를 기준으로 정의될 수 있는 입사각으로 상기 입체 시편에 이온빔을 입사시키는 이온빔입사과정; 상기 이온빔입사과정을 통해 입사된 상기 이온빔이 상기 입체 시편과 충돌함에 따라 산란될 때, 산란되는 이온빔에 대한 에너지 스펙트럼을 확인하는 스펙트럼확인과정; 및 상기 스펙트럼확인과정을 통해 확인된 에너지 스펙트럼으로부터 상기 입체 시편의 형상을 정의하는 형상정의과정;을 포함하는 것을 특징으로 하는, 입체 시편을 분석하는 방법.The method of claim 15, wherein the shape defining step comprises: a coordinate arrangement process of disposing the three-dimensional specimen in virtual three-dimensional coordinates; An ion beam incident process of injecting an ion beam into the three-dimensional specimen at an incident angle that may be defined based on the virtual three-dimensional coordinates; A spectrum checking step of checking an energy spectrum of the scattered ion beam when the ion beam incident through the ion beam incident process is scattered as it collides with the three-dimensional specimen; And a shape definition process for defining the shape of the three-dimensional specimen from the energy spectrum identified through the spectrum identification process.
  17. 제16항에 있어서, 상기 형상정의과정은, 상기 입체 시편의 형상에 따라 기확인된 에너지 스펙트럼과 상기 스펙트럼확인과정을 통해 확인된 에너지 스펙트럼을 상호 비교함으로써, 상기 입체 시편의 높이, 길이, 폭 또는 상기 입체 시편이 복수의 입체시편유닛으로 구성될 때 상기 입체시편유닛 간의 간격 중 적어도 어느 하나를 정의하는 것을 특징으로 하는, 입체 시편을 분석하는 방법.17. The method of claim 16, wherein the shape definition process, by comparing the energy spectrum identified according to the shape of the three-dimensional specimen and the energy spectrum identified through the spectrum identification process, the height, length, width or When the three-dimensional specimen is composed of a plurality of three-dimensional specimen unit, characterized in that at least any one of the spacing between the three-dimensional specimen unit, a method for analyzing a three-dimensional specimen.
  18. 제17항에 있어서, 상기 입체 시편이 일점을 기준으로 방사형으로 펼쳐진 구조라고 할 때, 상기 기확인된 에너지 스펙트럼은 상기 입체 시편의 일점에서 이격되어 있는 부분에서의 내측 구역의 두께가 두꺼울수록 상기 내측 구역에서 산란되는 이온빔의 에너지 변화량이 크고, 상기 입체 시편의 일점에서 이격되어 있는 부분에서의 외측 구역의 두께가 두꺼울수록 상기 내측 구역에서 산란되는 이온빔의 에너지가 작은 것을 특징으로 하는, 입체 시편을 분석하는 방법.18. The method of claim 17, wherein when the three-dimensional specimen is a radially unfolded structure with respect to one point, the predetermined energy spectrum has a higher thickness of the inner region at a portion spaced from one point of the three-dimensional specimen. Analysis of three-dimensional specimens, characterized in that the amount of change in the energy of the ion beam scattered in the zone, the greater the thickness of the outer zone in the portion spaced from one point of the three-dimensional specimen is smaller the energy of the ion beam scattered in the inner zone How to.
  19. 제17항에 있어서, 상기 입체 시편이 상기 입체 시편의 표면에 박막이 형성된 다면체 구조인 경우, 상기 입체 시편의 하단에서 상단까지를 상기 입체 시편의 높이라 하고, 상기 입체 시편의 가로 방향을 길이라고 하며, 상기 입체 시편의 세로 방향을 폭이라고 할 때, 상기 기확인된 에너지 스펙트럼은, 상기 가상의 3차원 좌표에 있어서 상기 입체 시편의 높이를 정의하는 좌표축을 기준으로 상기 입체 시편의 폭을 정의하는 좌표축에 평행하게 상기 입체 시편의 하단을 향하도록 이온빔이 입사될 때 미리 확인한 경우, 상기 입체 시편의 높이가 높을수록 산란되는 이온빔의 검출강도가 큰 것을 특징으로 하는, 입체 시편을 분석하는 방법.18. The method of claim 17, wherein when the three-dimensional specimen has a polyhedral structure with a thin film formed on the surface of the three-dimensional specimen, the lower end to the upper end of the three-dimensional specimen is referred to as the height of the three-dimensional specimen, and the horizontal direction of the three-dimensional specimen is referred to as length. When the longitudinal direction of the three-dimensional specimen is referred to as a width, the predetermined energy spectrum defines a width of the three-dimensional specimen based on a coordinate axis defining a height of the three-dimensional specimen in the virtual three-dimensional coordinates. When the ion beam is previously confirmed when the ion beam is incident to the lower end of the three-dimensional specimen parallel to the coordinate axis, the higher the height of the three-dimensional specimen, characterized in that the detection intensity of the scattered ion beam is larger, the method of analyzing a three-dimensional specimen.
  20. 제17항에 있어서, 상기 입체 시편이 상기 입체 시편의 표면에 박막이 형성된 다면체 구조인 경우, 상기 입체 시편의 하단에서 상단까지를 상기 입체 시편의 높이라 하고, 상기 입체 시편의 가로 방향을 길이라고 하며, 상기 입체 시편의 세로 방향을 폭이라고 할 때, 상기 기확인된 에너지 스펙트럼은 상기 가상의 3차원 좌표에 있어서 상기 입체 시편의 높이를 정의하는 좌표축을 기준으로 상기 입체 시편의 폭을 정의하는 좌표축에 평행하게 상기 입체 시편의 하단을 향하도록 이온빔이 입사될 때 미리 확인한 경우, 상기 입체 시편의 폭이 작을수록 산란되는 이온빔의 에너지가 큰 것을 특징으로 하는, 입체 시편을 분석하는 방법.18. The method of claim 17, wherein when the three-dimensional specimen has a polyhedral structure with a thin film formed on the surface of the three-dimensional specimen, the lower end to the upper end of the three-dimensional specimen is referred to as the height of the three-dimensional specimen, and the horizontal direction of the three-dimensional specimen is referred to as length. When the longitudinal direction of the three-dimensional specimen is referred to as a width, the predetermined energy spectrum defines a width of the three-dimensional specimen based on a coordinate axis defining a height of the three-dimensional specimen in the virtual three-dimensional coordinate. When the ion beam is confirmed in advance when the ion beam is incident in parallel to the lower surface of the three-dimensional specimen, the smaller the width of the three-dimensional specimen, characterized in that the energy of the scattered ion beam is larger, the method of analyzing a three-dimensional specimen.
  21. 제17항에 있어서, 상기 입체 시편이 상기 입체 시편의 표면에 박막이 형성된 다면체 구조인 경우, 상기 입체 시편의 하단에서 상단까지를 상기 입체 시편의 높이라 하고, 상기 입체 시편의 가로 방향을 길이라고 하며, 상기 입체 시편의 세로 방향을 폭이라 하고, 상기 입체 시편이 복수의 입체시편유닛으로 구성될 때 상기 입체시편유닛이 폭 방향을 따라 나열되어 있을 때, 상기 기확인된 에너지 스펙트럼은 상기 가상의 3차원 좌표에 있어서 상기 입체 시편의 높이를 정의하는 좌표축을 기준으로 상기 입체 시편의 폭을 정의하는 좌표축에 평행하게 상기 입체 시편의 하단을 향하도록 이온빔이 입사될 때 미리 확인한 경우, 상기 입체시편유닛 간의 간격이 클수록 산란되는 이온빔의 검출강도가 작은 것을 특징으로 하는, 입체 시편을 분석하는 방법.18. The method of claim 17, wherein when the three-dimensional specimen has a polyhedral structure with a thin film formed on the surface of the three-dimensional specimen, the lower end to the upper end of the three-dimensional specimen is referred to as the height of the three-dimensional specimen, and the horizontal direction of the three-dimensional specimen is referred to as length. The longitudinal direction of the three-dimensional specimen is referred to as a width, and when the three-dimensional specimen units are arranged along the width direction when the three-dimensional specimen is composed of a plurality of three-dimensional specimen units, the predetermined energy spectrum is determined by the virtual image. The three-dimensional specimen unit in advance when the ion beam is incident to the lower end of the three-dimensional specimen in parallel to the coordinate axis defining the width of the three-dimensional specimen in the three-dimensional coordinates to define the height of the three-dimensional specimen, The detection intensity of the scattered ion beam is smaller as the distance between the larger, method of analyzing a three-dimensional specimen.
PCT/KR2016/010251 2015-09-10 2016-09-12 Method for analyzing three-dimensional specimen WO2017043942A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0128101 2015-09-10
KR1020150128101A KR101753146B1 (en) 2015-09-10 2015-09-10 Method for analyzing a three dimensional sample

Publications (1)

Publication Number Publication Date
WO2017043942A1 true WO2017043942A1 (en) 2017-03-16

Family

ID=58240315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/010251 WO2017043942A1 (en) 2015-09-10 2016-09-12 Method for analyzing three-dimensional specimen

Country Status (2)

Country Link
KR (1) KR101753146B1 (en)
WO (1) WO2017043942A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102081344B1 (en) * 2019-12-10 2020-02-25 국방과학연구소 Apparatus for detecting collision and collision detection method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003536084A (en) * 2000-06-07 2003-12-02 ケーエルエー−テンカー・コーポレーション Thin film thickness measurement using electron beam induced X-ray microanalysis
JP2004151045A (en) * 2002-11-01 2004-05-27 Hitachi High-Technologies Corp Electron microscope or x-ray analysis apparatus, and method for analyzing sample
KR20060051822A (en) * 2004-09-30 2006-05-19 가부시키가이샤 고베 세이코쇼 Spectrum analyzer and method of spectrum analysis
KR20100134546A (en) * 2010-12-14 2010-12-23 케이맥(주) Medium energy ion scattering spectrometer
JP2015506484A (en) * 2012-02-07 2015-03-02 マテリアリティクス,エルエルシー Method and system for analyzing a sample

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003536084A (en) * 2000-06-07 2003-12-02 ケーエルエー−テンカー・コーポレーション Thin film thickness measurement using electron beam induced X-ray microanalysis
JP2004151045A (en) * 2002-11-01 2004-05-27 Hitachi High-Technologies Corp Electron microscope or x-ray analysis apparatus, and method for analyzing sample
KR20060051822A (en) * 2004-09-30 2006-05-19 가부시키가이샤 고베 세이코쇼 Spectrum analyzer and method of spectrum analysis
KR20100134546A (en) * 2010-12-14 2010-12-23 케이맥(주) Medium energy ion scattering spectrometer
JP2015506484A (en) * 2012-02-07 2015-03-02 マテリアリティクス,エルエルシー Method and system for analyzing a sample

Also Published As

Publication number Publication date
KR101753146B1 (en) 2017-07-19
KR20170030775A (en) 2017-03-20

Similar Documents

Publication Publication Date Title
WO2021244636A1 (en) Electric power parameter measurement method, system and apparatus, computer device, and storage medium
US10747123B2 (en) Semiconductor device having overlay pattern
US8442300B2 (en) Specified position identifying method and specified position measuring apparatus
WO2013100593A1 (en) Method for diagnosing internal fault of oil-immersed transformer through content ratios of dissolved gases
KR20150014567A (en) Test method for a multi magnetic sensor on the wafer
EP2689452A2 (en) Apparatus for measuring impurities on wafer and method of measuring impurities on wafer
TW201541071A (en) Measurement system and measurement method
CN101174581A (en) Method and system for optimizing intra-field critical dimension uniformity using a sacrificial twin mask
WO2017019171A1 (en) System and method for dynamic care area generation on an inspection tool
WO2017043942A1 (en) Method for analyzing three-dimensional specimen
JP5280041B2 (en) Method for inspecting a test substance using a probe support and a probe support
KR20150064168A (en) Image processor, method for generating pattern using self-organizing lithographic techniques and computer program
US20130111417A1 (en) Database-Driven Cell-to-Cell Reticle Inspection
WO2022080740A1 (en) Gis-based method for producing spatial wafer map, and method for providing wafer test results using same
JP3638245B2 (en) Load port adjustment jig, FOUP measurement jig, FOUP wafer position measurement jig, kinematic pin shape evaluation jig, kinematic pin position evaluation jig, and adjustment / measurement / evaluation method using them
WO2015088089A1 (en) Apparatus and method for inspecting defect of steel plate
WO2018066852A1 (en) Substrate inspection device and substrate distortion compensating method using same
KR102025537B1 (en) Apparatus for testing semiconductor package
WO2017007047A1 (en) Spatial depth non-uniformity compensation method and device using jittered comparison
WO2019216493A1 (en) Plasma process measurement sensor and method for manufacturing same
WO2014193057A1 (en) Method for determining problematic equipment using defect map of faulty samples and apparatus for same
GB2299450A (en) Analyzing defects in a semiconductor device
WO2023068631A1 (en) System and method for generating tem sadp image with high distinguishability
WO2021194116A1 (en) Trap analysis modeling system for predicting effect of trap on semiconductor device, and operating method therefor
WO2020080758A1 (en) Device and method for inspection, and recording medium in which command is recorded

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844758

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16844758

Country of ref document: EP

Kind code of ref document: A1