WO2017043893A1 - Pcr-based point-of-care testing device having microfluidic chip for electrophoresis coupled thereto - Google Patents

Pcr-based point-of-care testing device having microfluidic chip for electrophoresis coupled thereto Download PDF

Info

Publication number
WO2017043893A1
WO2017043893A1 PCT/KR2016/010111 KR2016010111W WO2017043893A1 WO 2017043893 A1 WO2017043893 A1 WO 2017043893A1 KR 2016010111 W KR2016010111 W KR 2016010111W WO 2017043893 A1 WO2017043893 A1 WO 2017043893A1
Authority
WO
WIPO (PCT)
Prior art keywords
pcr
microtube
microfluidic channel
field analysis
based field
Prior art date
Application number
PCT/KR2016/010111
Other languages
French (fr)
Korean (ko)
Inventor
이재훈
Original Assignee
주식회사 하임바이오텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하임바이오텍 filed Critical 주식회사 하임바이오텍
Publication of WO2017043893A1 publication Critical patent/WO2017043893A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers

Definitions

  • the present invention relates to a field analysis device (Point of Care Testing, hereinafter 'POCT'), and more particularly to a PCR-based field analysis device combined with a microfluidic chip for electrophoresis.
  • a field analysis device Point of Care Testing, hereinafter 'POCT'
  • PCR-based field analysis device combined with a microfluidic chip for electrophoresis.
  • microfluidics offers the possibility to reduce the size of complete chemistry laboratories to the size of credit cards.
  • Microfluidics is achieved through a network of micrometer-sized channels connecting many microsized devices such as valves, mixers, heating elements, and sensors. It is implemented through a microfluidic device that drives it.
  • Microfluidics is also widely used in the fields of biochemistry and molecular biology.
  • Examples of the microfluidics include blood glucose measurement devices, capillary electrophoresis, and PCR chips (Toriello et al., Anal. Chem. 78 (23): 79978003, 2006). exist.
  • the PCR chip has the advantage of being able to amplify and analyze DNA samples in a short time, but has the disadvantages of PCR inhibition and contamination due to the large surface-to-volume ratio that increases the surface-agent interaction.
  • PCR polymerase chain reaction
  • traditional PCR has a relatively long reaction time, and the analysis requires labor-intensive experiments such as electrophoresis, which is not suitable for high capacity analysis.
  • this real-time PCR method is not only unsuitable for the analysis of PCR reactions, such as multiflex PCR (multiflex PCR), but also can quickly amplify and confirm the sample in the field, such as a hospital
  • multiflex PCR multiflex PCR
  • the present invention is to solve a number of problems including the above problems, it is an object of the present invention to provide a PCR-based field analysis device (POCT) that can perform PCR and electrophoresis at once.
  • POCT PCR-based field analysis device
  • these problems are exemplary, and the scope of the present invention is not limited thereby.
  • a microtube consisting of a lid and a container fastened to the lid, wherein the container is a pleated elastic wall at the top and a narrower conical shape at the bottom, the bottom surface is composed of a thin film and the A microtube consisting of a hollow cylindrical joint surrounding the bottom surface; And ii) a hollow protrusion having a sharp attachment fastened to the junction portion is formed at an upper portion thereof, and a microfluidic channel filled with an electrophoretic medium is connected to the lower portion of the protrusion, and an electrode is provided at the top and bottom of the microfluidic channel, respectively.
  • a PCR based field analysis device comprising the microfluidic chip provided.
  • the PCR microtube insertion hole is formed on the upper surface, a hollow protrusion having a sharp attachment to the bottom of the PCR microtube insertion hole is formed, the electrophoretic medium (matrix) below the protrusion
  • a PCR-based on-site analysis device including a microfluidic channel filled with), and a microfluidic chip having electrodes at the top and bottom of the channel, respectively.
  • a PCR microtube drilling step of drilling a lower surface of the PCR microtube by applying a first pressure to the PCR microtube of the PCR-based field analysis device is complete; ii) a PCR reaction solution loading step of opening the lid of the PCR microtube and applying a second pressure to the inside of the PCR microtube to load the PCR reaction solution into the microfluidic channel of the microfluidic chip; iii) an electrophoresis step of performing electrophoresis by applying an alternating current to electrodes connected to both ends of the microfluidic channel; And iv) a nucleic acid molecule detecting step of detecting a nucleic acid molecule electrophoresed using fluorescence or ultraviolet light.
  • PCR tube loading step of inserting the PCR microtube completion of the PCR reaction in the PCR microtube insertion hole of the PCR-based field analysis apparatus of claim 7; ii) perforating the PCR microtube by applying a first pressure to the inserted PCR microtube to perforate the lower surface of the PCR microtube; iii) a PCR reaction solution loading step of opening the lid of the PCR microtube and applying a second pressure to the inside of the PCR microtube to load the PCR reaction solution into the microfluidic channel of the microfluidic chip; iv) an electrophoresis step of performing electrophoresis by applying an alternating current to electrodes connected to both ends of the microfluidic channel; And v) a nucleic acid molecule detection step of detecting a nucleic acid molecule electrophoresed using fluorescence or ultraviolet light.
  • the PCR reaction is performed in the micro tube of the PCR-based field analysis apparatus, and when the PCR reaction is completed, the attachment of the protrusion formed on the microfluidic chip of the PCR-based field analysis apparatus is the micro
  • the PCR reaction solution was made by drilling a thin film-like bottom surface of the tube and moved to the microfluidic channel filled with the electrophoretic medium through the hole in the protrusion, and the channel was inversely proportional to the size of the DNA fragment amplified by the application of an electric current. As it moves, it is detected through a detection means in a reaction apparatus that simultaneously performs PCR and electrophoresis, thereby having the advantage of automating identification of amplification products through PCR reaction and electrophoresis.
  • the scope of the present invention is not limited by these effects.
  • FIG. 1 is a schematic diagram schematically showing a PCR-based field analysis apparatus according to an embodiment of the present invention.
  • Figure 2 is a schematic diagram schematically showing a reaction apparatus equipped with a PCR-based field analysis apparatus according to an embodiment of the present invention is carried out PCR and electrophoresis.
  • Figure 3 is a schematic diagram showing the operating principle of the PCR-based field analysis apparatus according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram schematically showing a PCR-based field analysis apparatus according to another embodiment of the present invention.
  • FIG. 5 is a schematic diagram schematically showing the operating principle of the PCR-based field analysis apparatus shown in FIG.
  • nucleotide refers to a monomer molecule constituting a nucleic acid and is composed of a base, an pentose sugar, and a phosphoric acid.
  • the base is adenine, guanine, and cytosine.
  • thymine Four kinds of thymine exist, and in the case of RNA, uracil is used instead of the thymine.
  • the pentose sugar is 2'-deoxyribose in the case of DNA, ribose is used in the case of RNA.
  • oligonucleotide refers to a short single-stranded nucleic acid chain consisting of 13 to 25 nucleotides as a polymer of the nucleotide monomer molecule, in some cases 6-mer, 7 It may refer to a nucleic acid chain consisting of less than 13 nucleotides or more than 25 nucleotides, such as -mer, 8-mer, 9-mer, 10-mer, 11-mer, and 12-mer.
  • polynucleotide generally refers to a polymer chain of nucleotide units longer than the oligonucleotide, but is also used interchangeably with the oligonucleotide. Polynucleotides include both single-stranded or double-stranded nucleic acid chains.
  • sense strand refers to a single-stranded nucleic acid molecule in the same direction as the direction of the code of the gene of the double-stranded DNA molecule
  • antisense strand is another single strand complementary to the sense strand.
  • it refers to a nucleic acid molecule, it is also possible to define a strand in which the nucleic acid sequence is first identified as a “sense strand” and its complementary strand as an "antisense strand” irrespective of the direction of the gene's code progression.
  • polymerase chain reaction or “nucleic acid amplification reaction” refers to a reaction that amplifies a particular target nucleic acid molecule using a thermostable DNA polymerase.
  • PCR the DNA in addition to the polymerase target nucleic acid oligonucleotide that can specifically hybridize to a nucleotide of the primer (forward primer, reverse primer), deoxy-nucleotide mixture (dNTP mixture), Mg 2 +, such as divalent reaction buffer containing ions such as This is used.
  • the DNA molecules produced by the PCR reactions are referred to herein as "amplification products”.
  • primer refers to an oligonucleotide or polynucleotide that complementarily hybridizes to template DNA, which is used for initiation of a PCR reaction or a primer extension reaction.
  • a primer for a PCR reaction is a pair of forward primers (or sense primers) selected from the same sense strand as the direction of genetic code of the nucleic acid molecule to be amplified and reverse primers (or antisense primers) selected from antisense strands complementary to the sense strands. In the case of primer extension, a single extension primer is usually used.
  • point of care testing used in this document is a container and device used for small, portable analysis that can be analyzed immediately at the site where the sample is taken, rather than being taken to the laboratory for analysis.
  • point of care testing used in this document is a container and device used for small, portable analysis that can be analyzed immediately at the site where the sample is taken, rather than being taken to the laboratory for analysis.
  • a microtube consisting of a lid and a container fastened to the lid, the container is a concave shape of the upper portion is a corrugated elastic wall and the lower narrower, the bottom surface is composed of a thin film and the A micro tube consisting of a hollow columnar junction projecting downward from the bottom surface; And ii) a hollow projection having a sharp attachment fastened to the junction portion is formed at an upper portion thereof, and a microfluidic channel filled with an electrophoretic matrix is connected to the lower portion of the projection, and upper and lower ends of the microfluidic channel are connected.
  • PCR-based field analysis apparatus comprising a microfluidic chip each provided with an electrode is provided.
  • the microtube may be made of polyethylene, polystyrene or polypropylene material.
  • the bottom surface may have a thickness of 50 to 200 ⁇ m.
  • the electrophoretic medium may be an agarose gel, starch gel, or polyacrylamide gel.
  • the microfluidic channel may be formed in a “1” shape or may have a shape in which a “d” shaped pipe portion and a “l” shaped pipe portion are mixed.
  • the PCR microtube insertion hole is formed on the upper surface, a hollow protrusion having a sharp attachment to the bottom of the PCR microtube insertion hole is formed, the electrophoretic medium (matrix) below the protrusion
  • a PCR-based on-site analysis device including a microfluidic chip filled with) and a microfluidic chip having electrodes at the top and bottom of the microfluidic channel, respectively.
  • the electrophoretic medium may be an agarose gel, starch gel, or polyacrylamide gel.
  • the channel may be formed in the shape of "I” or in the shape of a mixture of "D" tube and "I” tube.
  • a PCR microtube drilling step of drilling a lower surface of the PCR microtube by applying a first pressure to the PCR microtube of the PCR-based field analysis device is complete; ii) a PCR reaction solution loading step of opening the lid of the PCR microtube and applying a second pressure to the inside of the PCR microtube to load the PCR reaction solution into the microfluidic channel of the microfluidic chip; iii) an electrophoresis step of performing electrophoresis by applying an alternating current to electrodes connected to both ends of the microfluidic channel; And iv) a nucleic acid molecule detecting step of detecting a nucleic acid molecule electrophoresed using fluorescence or ultraviolet light.
  • PCR tube loading step of inserting the PCR microtube completion of the PCR reaction in the PCR microtube insertion hole of the PCR-based field analysis apparatus of claim 7; ii) perforating the PCR microtube by applying a first pressure to the inserted PCR microtube to perforate the lower surface of the PCR microtube; iii) a PCR reaction solution loading step of opening the lid of the PCR microtube and applying a second pressure to the inside of the PCR microtube to load the PCR reaction solution into the microfluidic channel of the microfluidic chip; iv) an electrophoresis step of performing electrophoresis by applying an alternating current to electrodes connected to both ends of the microfluidic channel; And v) a nucleic acid molecule detection step of detecting a nucleic acid molecule electrophoresed using fluorescence or ultraviolet light.
  • the first pressure may be a pressure exceeding the maximum shear stress of the bottom surface of the PCR microtube
  • the second pressure is applied to the extent that the volume of the pleated elastic wall can be reduced or the PCR It may be applied by a piston inserted into the microtube.
  • FIG. 1 is a schematic diagram schematically showing a microfluidic device according to an embodiment of the present invention.
  • the PCR-based on-site analysis device 1 includes a microtube 10 in which a PCR reaction occurs and a microfluidic chip 20 in which electrophoresis is performed up and down.
  • the microtube 10 has a hollow pipe-like coupling portion formed at the bottom of the bottom, unlike the general PCR reaction microtube, and the bottom is formed of a very thin film. It can be easily pierced by an attachment (not shown) at the end of the protrusion 21 protruding into the corrugated wall.
  • the amount of the PCR reaction solution is reduced by the volume of electricity in the channel 22 through the passage formed in the protrusion 21.
  • Yeongdong Hawk The load is to be able to have.
  • the channel 22 for electrophoresis formed in the microfluidic chip 20 was vertically formed as shown in FIG. 1, and DC current was applied through the electrodes 24 and 24 ′ formed at the upper and lower ends, respectively.
  • the detection of the amplified DNA can be detected by various detection means. In general, it is possible to monitor in real time by irradiating a laser to a channel using a fluorescent material and then detecting excitation light of a specific wavelength.
  • the channel may also be formed horizontally in the longitudinal direction (not shown).
  • PCR-based field analysis apparatus can be usefully used for automation of the analysis in that the PCR reaction and electrophoresis may occur automatically except for transferring the PCR reaction solution to the microtube as described above.
  • FIG. 2 is a view schematically showing a PCR-based field analysis apparatus according to another embodiment of the present invention.
  • the other components are the same as those of FIG. 1, but may have an effect of extending the electrophoretic development length by forming the channel 22 for electrophoresis in a 'd' shape (22 '). have.
  • the resolution can be improved when the difference between the lengths of the amplified DNA fragments is not large.
  • detection of the amplified DNA can be performed through the portion 22 "
  • Figure 3 is a schematic diagram showing the operating principle of the PCR-based field analysis apparatus according to an embodiment of the present invention.
  • the microtube 10 and the microfluidic chip 20 are coupled to each other during the PCR reaction which repeats cycles of thermal denaturation, hybridization, and polymerization several times.
  • the bottom surface 15 of the lower end of the microfluidic chip 20 is not in communication with the state.
  • a first pressure is applied from a cover (not shown) of the PCR reaction apparatus so that the microtube 10 is lowered downward and the upper end of the protrusion 21 formed on the microfluidic chip 20.
  • the attachment 23 formed in the penetrates through the bottom surface 15 of the lower end of the thin film of the microtube 10.
  • the second pressure is applied to the cover of the PCR reactor, the corrugated wall 12 on the upper portion of the microtube 10 is pressed to reduce the volume inside the microtube 10, and the microtube is caused by the pressure generated at this time.
  • the reaction solution therein is loaded on the electrophoretic medium of the microfluidic chip 20.
  • the microfluidic chip 200 may further include a waste solution reservoir 205 for supporting excess solution.
  • the PCR-based on-site analysis device 1 ′ is coupled to a micro tube 100 in which a PCR reaction occurs and a microfluidic chip 200 in which electrophoresis is performed.
  • This possible but separate form microtube 100 is a special PCR reaction microtube made of a very thin thickness (several to several tens of micrometers) so that it is easily punched by a general PCR reaction microtube or a pointed protrusion at the bottom.
  • the PCR reaction liquid is formed in the protrusion 201 by the second pressure applied in the PCR reaction microtube 100.
  • the channel 202 for the electrophoresis formed in the microfluidic chip 200 is vertically formed as shown in FIG.
  • the amplified DNA is moved to the anode (+) in the channel.
  • the detection of the amplified DNA can be detected by various detection means. In general, it is possible to monitor in real time by irradiating a laser to a channel using a fluorescent material and then detecting excitation light of a specific wavelength.
  • FIG. 5 is a piston 207 provided in the PCR based field analysis apparatus 1 'into the PCR microtube inserted into the PCR microtube insertion hole 206 of the PCR based field analysis apparatus 1' shown in FIG. It is a schematic diagram schematically showing a process of loading the PCR reaction solution into the microfluidic channel 202 by descending downward and pushing the PCR reaction solution in the PCR microtube downward.
  • the outer shape of the piston 207 is manufactured according to the shape of the PCR microtube 100, the outer diameter is preferably slightly smaller than the inner diameter of the PCR microtube 100, the rubber or silicone material on the outer peripheral surface to properly apply pressure Gasket 208 may be provided.
  • the apparatus and method of the present invention can be very useful in the environmental and medical fields because of the rapid detection of nucleic acid molecules, in particular the rapid detection of nucleic acids in situ.

Abstract

The present invention relates to a point-of-care testing device, and provides a PCR-based point-of-care testing device comprising: i) a microtube comprising a cap and a container fastened to the cap, the upper portion of the container comprising a corrugated elastic wall, the lower portion thereof having a conical shape such that the same becomes narrower downwardly, the bottom surface thereof being made of a thin film, the container comprising a junction portion protruding downwards from the bottom surface in a hollow pillar shape; and ii) a microfluidic chip having a hollow protrusion formed on the upper portion thereof, the protrusion having a sharp pointed portion fastened to the junction portion, a microfluidic channel, which is filled with an electrophoresis matrix, being connected to the lower portion of the protrusion, and electrodes being provided on the upper and lower ends of the microfluidic channel, respectively.

Description

전기영동용 미세유체칩이 결합된 PCR 기반 현장분석장치PCR based field analysis device combined with microfluidic chip for electrophoresis
본 발명은 현장분석장치(Point of Care Testing, 이하, 'POCT'라 함)에 관한 것으로서, 보다 상세하게는 전기영동용 미세유체칩이 결합된 PCR 기반 현장분석장치에 관한 것이다.The present invention relates to a field analysis device (Point of Care Testing, hereinafter 'POCT'), and more particularly to a PCR-based field analysis device combined with a microfluidic chip for electrophoresis.
미세유체학(microfluidics) 분야는 완전한 화학 실험실들을 신용 카드의 크기로 줄일 수 있는 가능성을 제공한다. 미세유체학은 밸브(valve), 믹서(mixer), 가열기(heating element) 및 센서(sensor)와 같은 수 많은 마이크로 크기의 장치들을 연결하는 마이크로미터 크기의 채널(channel)들의 네트웍(network)을 통해서 구동하게 하는 미세유체 장치(microfluidic device)를 통해 구현된다.The field of microfluidics offers the possibility to reduce the size of complete chemistry laboratories to the size of credit cards. Microfluidics is achieved through a network of micrometer-sized channels connecting many microsized devices such as valves, mixers, heating elements, and sensors. It is implemented through a microfluidic device that drives it.
미세유체학은 생화학 및 분자생물학 분야에서도 다양하게 이용되고 있는데, 대표적인 것이 혈당 측정 장치나, 모세관 전기영동, PCR 칩(Toriello et al., Anal. Chem. 78(23): 79978003, 2006) 등이 존재한다.Microfluidics is also widely used in the fields of biochemistry and molecular biology. Examples of the microfluidics include blood glucose measurement devices, capillary electrophoresis, and PCR chips (Toriello et al., Anal. Chem. 78 (23): 79978003, 2006). exist.
특히 PCR 칩의 경우 신속한 시간 내에 DNA 시료를 증폭하여 분석할 수 있다는 장점이 있으나, 표면-시약 상호작용을 증가시키는 큰 표면-대-부피비에 기인하는 PCR 저해와 오염이라는 단점을 갖는다.In particular, the PCR chip has the advantage of being able to amplify and analyze DNA samples in a short time, but has the disadvantages of PCR inhibition and contamination due to the large surface-to-volume ratio that increases the surface-agent interaction.
한편, PCR(polymerase chain reaction)은 현재 분자생물학 분야에서 빼놓을 수 없는 필수적인 기법이 되었다. 그러나, 전통적인 PCR의 경우 반응시간이 상대적으로 길고, 분석을 위해서는 결국 전기영동과 같은 노동집약적인 실험을 수반해야 하는 바, 고용량 분석에는 적합하지 않다. 물론, 분석을 동시에 수행할 수 있는 실시간 PCR 방법이 있으나, 이러한 실시간 PCR 방법은 다중 PCR(multiflex PCR)과 같은 PCR 반응의 분석에는 부적할 뿐만 아니라, 병원 등 현장에서 시료를 신속하게 증폭하고 확인할 수 있는 현장분석장치로는 사용될 수 없는 단점을 가지고 있다.Meanwhile, polymerase chain reaction (PCR) has become an essential technique in the field of molecular biology. However, traditional PCR has a relatively long reaction time, and the analysis requires labor-intensive experiments such as electrophoresis, which is not suitable for high capacity analysis. Of course, there is a real-time PCR method that can perform the analysis at the same time, but this real-time PCR method is not only unsuitable for the analysis of PCR reactions, such as multiflex PCR (multiflex PCR), but also can quickly amplify and confirm the sample in the field, such as a hospital There is a disadvantage that cannot be used as a field analysis device.
따라서, 신속하고 정확한 현장분석을 위해 보다 효율적이고 정학한 PCR 반응과 이후의 증폭된 DNA 단편의 분석을 한 번에 수행할 수 있는 방법 및 장치의 개발이 절실히 요구되고 있다.Therefore, there is an urgent need for the development of methods and devices that can perform more efficient and precise PCR reactions and subsequent analysis of amplified DNA fragments at once for rapid and accurate in situ analysis.
본 발명은 상기와 같은 문제점을 포함하여 여러 문제점들을 해결하기 위한 것으로서, PCR과 전기영동을 한 번에 수행할 수 있는 PCR 기반의 현장분석장치(POCT)를 제공하는 것을 목적으로 한다. 그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.The present invention is to solve a number of problems including the above problems, it is an object of the present invention to provide a PCR-based field analysis device (POCT) that can perform PCR and electrophoresis at once. However, these problems are exemplary, and the scope of the present invention is not limited thereby.
본 발명의 일 관점에 따르면, i) 뚜껑과 상기 뚜껑에 체결된 용기로 구성된 마이크로 튜브로서, 상기 용기는 상단이 주름 탄성벽이고 하부는 갈수록 좁아지는 원추형이며, 바닥면이 얇은 필름으로 구성고 상기 바닥면을 둘러싼 중공의 원기둥 형상의 접합부로 구성된, 마이크로 튜브; 및 ii) 상기 접합부와 체결되는 날카로운 첨부를 갖는 중공의 돌기가 상부에 형성되어 있고 상기 돌기 하부에 전기영동 매질이 충진된 미세유체 채널이 연결되어 있고, 상기 미세유체 채널의 상단 및 하단에 각각 전극이 구비된 미세유체칩을 포함하는 PCR 기반 현장분석 장치가 제공된다.According to one aspect of the invention, i) a microtube consisting of a lid and a container fastened to the lid, wherein the container is a pleated elastic wall at the top and a narrower conical shape at the bottom, the bottom surface is composed of a thin film and the A microtube consisting of a hollow cylindrical joint surrounding the bottom surface; And ii) a hollow protrusion having a sharp attachment fastened to the junction portion is formed at an upper portion thereof, and a microfluidic channel filled with an electrophoretic medium is connected to the lower portion of the protrusion, and an electrode is provided at the top and bottom of the microfluidic channel, respectively. Provided is a PCR based field analysis device comprising the microfluidic chip provided.
본 발명의 다른 일 관점에 따르면, PCR 마이크로튜브 삽입홀이 상면에 형성되고, 상기 PCR 마이크로튜브 삽입홀의 바닥부에 날카로운 첨부를 갖는 중공의 돌기가 형성되어 있으며, 상기 돌기 하부에 전기영동 매질(matrix)이 충진된 미세유체 채널이 연결되어 있고, 상기 채널의 상단 및 하단에 각각 전극이 구비된 미세유체 칩을 포함하는 PCR 기반 현장분석 장치가 제공된다.According to another aspect of the invention, the PCR microtube insertion hole is formed on the upper surface, a hollow protrusion having a sharp attachment to the bottom of the PCR microtube insertion hole is formed, the electrophoretic medium (matrix) below the protrusion There is provided a PCR-based on-site analysis device including a microfluidic channel filled with), and a microfluidic chip having electrodes at the top and bottom of the channel, respectively.
본 발명의 다른 일 관점에 따르면, i) PCR 반응이 완료된 상기 PCR 기반 현장분석 장치의 PCR 마이크로튜브에 제1압력을 가하여 상기 PCR 마이크로튜브의 하면을 천공하는 PCR 마이크로튜브 천공단계; ii) 상기 PCR 마이크로튜브의 덮개를 열고 PCR 마이크로튜브의 내부에 제2압력을 가하여 PCR 반응액을 미세유체칩의 미세유체 채널 내로 적재하는 PCR 반응액 적재단계; iii) 상기 미세유체 채널의 양 말단에 연결된 전극에 교류 전류를 인가하여 전기영동을 수행하는 전기영동 단계; 및 iv) 형광 또는 자외선을 이용하여 전기영동된 핵산분자를 검출하는 핵산분자 검출단계를 포함하는 PCR 기반 현장 핵산 분석방법이 제공된다.According to another aspect of the invention, i) a PCR microtube drilling step of drilling a lower surface of the PCR microtube by applying a first pressure to the PCR microtube of the PCR-based field analysis device is complete; ii) a PCR reaction solution loading step of opening the lid of the PCR microtube and applying a second pressure to the inside of the PCR microtube to load the PCR reaction solution into the microfluidic channel of the microfluidic chip; iii) an electrophoresis step of performing electrophoresis by applying an alternating current to electrodes connected to both ends of the microfluidic channel; And iv) a nucleic acid molecule detecting step of detecting a nucleic acid molecule electrophoresed using fluorescence or ultraviolet light.
아울러 본 발명의 또 다른 일 관점에 따르면, i) PCR 반응이 완료된 PCR 마이크로튜브를 제7항의 PCR 기반 현장분석 장치의 PCR 마이크로튜브 삽입홀에 삽입하는 PCR 튜브 적재단계; ii) 상기 삽입된 PCR 마이크로튜브에 제1압력을 가하여 상기 PCR 마이크로튜브의 하면을 천공하는 PCR 마이크로튜브 천공단계; iii) 상기 PCR 마이크로튜브의 덮개를 열고 PCR 마이크로튜브의 내부에 제2압력을 가하여 PCR 반응액을 미세유체칩의 미세유체 채널 내로 적재하는 PCR 반응액 적재단계; iv) 상기 미세유체 채널의 양 말단에 연결된 전극에 교류 전류를 인가하여 전기영동을 수행하는 전기영동 단계; 및 v) 형광 또는 자외선을 이용하여 전기영동된 핵산분자를 검출하는 핵산분자 검출단계를 포함하는 PCR 기반 현장 핵산 분석방법이 제공된다.In addition, according to another aspect of the present invention, i) PCR tube loading step of inserting the PCR microtube completion of the PCR reaction in the PCR microtube insertion hole of the PCR-based field analysis apparatus of claim 7; ii) perforating the PCR microtube by applying a first pressure to the inserted PCR microtube to perforate the lower surface of the PCR microtube; iii) a PCR reaction solution loading step of opening the lid of the PCR microtube and applying a second pressure to the inside of the PCR microtube to load the PCR reaction solution into the microfluidic channel of the microfluidic chip; iv) an electrophoresis step of performing electrophoresis by applying an alternating current to electrodes connected to both ends of the microfluidic channel; And v) a nucleic acid molecule detection step of detecting a nucleic acid molecule electrophoresed using fluorescence or ultraviolet light.
본 발명의 일 실시예에 따르면, 상기 PCR 기반 현장분석 장치의 마이크로 튜브에서 PCR 반응이 수행되고, PCR 반응이 종료되면 상기 PCR 기반 현장분석 장치의 미세유체칩의 상부에 형성된 돌기의 첨부가 상기 마이크로 튜브의 얇은 필름상 바닥면에 구멍을 내 PCR 반응액이 상기 돌기 내의 구멍을 통해 전기영동 매질이 충진된 미세유체채널로 이동한 후 전류의 인가에 따라 증폭된 DNA 단편의 크기에 반비례로 채널을 이동함에 따라 PCR 및 전기영동을 동시에 수행하는 반응장치 내의 검출 수단을 통해 검출됨으로써, PCR 반응과 전기영동을 통한 증폭 산물의 확인을 자동화할 수 있다는 장점이 있다. 물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.According to an embodiment of the present invention, the PCR reaction is performed in the micro tube of the PCR-based field analysis apparatus, and when the PCR reaction is completed, the attachment of the protrusion formed on the microfluidic chip of the PCR-based field analysis apparatus is the micro The PCR reaction solution was made by drilling a thin film-like bottom surface of the tube and moved to the microfluidic channel filled with the electrophoretic medium through the hole in the protrusion, and the channel was inversely proportional to the size of the DNA fragment amplified by the application of an electric current. As it moves, it is detected through a detection means in a reaction apparatus that simultaneously performs PCR and electrophoresis, thereby having the advantage of automating identification of amplification products through PCR reaction and electrophoresis. Of course, the scope of the present invention is not limited by these effects.
도 1은 본 발명의 일 실시예에 따른 PCR 기반 현장분석 장치를 개략적으로 도시한 개요도이다.1 is a schematic diagram schematically showing a PCR-based field analysis apparatus according to an embodiment of the present invention.
도 2는 본 발명의 일실시예에 따른 PCR 기반 현장분석 장치가 장착되어 PCR 및 전기영동이 수행되는 반응장치를 개략적으로 도시한 개요도이다.Figure 2 is a schematic diagram schematically showing a reaction apparatus equipped with a PCR-based field analysis apparatus according to an embodiment of the present invention is carried out PCR and electrophoresis.
도 3은 본 발명의 일 실시예에 따른 PCR 기반 현장분석 장치의 작동원리를 개략적으로 도시한 개요도이다.Figure 3 is a schematic diagram showing the operating principle of the PCR-based field analysis apparatus according to an embodiment of the present invention.
도 4는 본 발명의 다른 일 실시예에 따른 PCR 기반 현장분석 장치를 개략적으로 도시한 개요도이다.4 is a schematic diagram schematically showing a PCR-based field analysis apparatus according to another embodiment of the present invention.
도 5는 상기 도 4에 도시된 PCR 기반 현장분석 장치의 작동원리를 개략적으로 도시한 개요도이다.5 is a schematic diagram schematically showing the operating principle of the PCR-based field analysis apparatus shown in FIG.
용어의 정의:Definition of Terms:
이하 본 문서에서 사용되는 용어를 정의한다:The terms used in this document are defined below:
본 문서에서 사용되는 용어 "뉴클레오티드(nucleotide)"는 핵산을 구성하는 단위체 분자로 염기, 오탄당 및 인산으로 구성되어 있으며, 상기 염기는 DNA의 경우 아데닌(adenine), 구아닌(guanine), 시토신(cytosine), 및 티민(thymine)의 네 가지가 존재하고, RNA의 경우에는 상기 티민 대신 우라실(uracil)이 사용된다. 상기 오탄당은 DNA의 경우 2'-디옥시리보스(2'-deoxyribose), RNA의 경우 리보스(ribose)가 사용된다. As used herein, the term "nucleotide" refers to a monomer molecule constituting a nucleic acid and is composed of a base, an pentose sugar, and a phosphoric acid. In the case of DNA, the base is adenine, guanine, and cytosine. Four kinds of thymine exist, and in the case of RNA, uracil is used instead of the thymine. The pentose sugar is 2'-deoxyribose in the case of DNA, ribose is used in the case of RNA.
본 문서에서 사용되는 용어 "올리고뉴클레오티드(oligonucleotide)"는 상기 뉴클레오티드 단위체 분자의 중합체로서 일반적으로 13 내지 25개까지의 뉴클레오티드로 구성된 짧은 단일쇄 핵산 사슬을 의미하는데, 경우에 따라서는 6-mer, 7-mer, 8-mer, 9-mer, 10-mer, 11-mer 및 12-mer 등 13개 미만의 뉴클레오티드로 구성되거나 25개 초과의 뉴클레오티드로 구성된 핵산 사슬을 지칭할 수 있다.As used herein, the term "oligonucleotide" refers to a short single-stranded nucleic acid chain consisting of 13 to 25 nucleotides as a polymer of the nucleotide monomer molecule, in some cases 6-mer, 7 It may refer to a nucleic acid chain consisting of less than 13 nucleotides or more than 25 nucleotides, such as -mer, 8-mer, 9-mer, 10-mer, 11-mer, and 12-mer.
본 문서에서 사용되는 용어 "폴리뉴클레오티드(polynucleotide)"는 통상적으로 상기 올리고뉴클레오티드 보다 더 긴 뉴클레오티드 단위체의 중합체 사슬을 의미하나, 상기 올리고뉴클레오티드와 혼용되어 사용되기도 한다. 폴리뉴클레오티드는 단일가닥 또는 이중가닥 핵산사슬 모두를 포함한다.As used herein, the term "polynucleotide" generally refers to a polymer chain of nucleotide units longer than the oligonucleotide, but is also used interchangeably with the oligonucleotide. Polynucleotides include both single-stranded or double-stranded nucleic acid chains.
본 문서에서 사용되는 용어 "센스 가닥"은 이중가닥 DNA 분자 중 유전자의 코드의 진행방향과 동일한 방향의 단일가닥 핵산분자를 의미하고, "안티센스 가닥"은 상기 센스 가닥과 상보결합을 하는 다른 단일가닥 핵산분자를 의미하나, 유전자의 코드 진행방향과 무관하게, 최초로 핵산서열이 규명된 가닥을 "센스 가닥"으로 정의하고 그의 상보가닥을 "안티센스 가닥"으로 정의하는 것도 무방하다.As used herein, the term "sense strand" refers to a single-stranded nucleic acid molecule in the same direction as the direction of the code of the gene of the double-stranded DNA molecule, "antisense strand" is another single strand complementary to the sense strand. Although it refers to a nucleic acid molecule, it is also possible to define a strand in which the nucleic acid sequence is first identified as a "sense strand" and its complementary strand as an "antisense strand" irrespective of the direction of the gene's code progression.
본 문서에서 사용되는 용어 "PCR(polymerase chain reaction)" 또는 "핵산증폭반응"은 열안정성 DNA 중합효소를 이용하여 특정 표적 핵산 분자를 증폭하는 반응을 의미한다. PCR에는 DNA 중합효소 외에 표적 핵산 특이적으로 혼성화할 수 있는 올리고뉴클레오티드인 프라이머(포워드 프라이머, 리버스 프라이머), 디옥시뉴클레오티드 혼합물(dNTP mixture), Mg2 + 등의 2가이온을 포함하는 반응 완충액 등이 사용된다. 상기 PCR 반응에 의해 생성된 DNA 분자를 본 문서에서는 "증폭산물"이라고 지칭하였다.As used herein, the term "polymerase chain reaction" or "nucleic acid amplification reaction" refers to a reaction that amplifies a particular target nucleic acid molecule using a thermostable DNA polymerase. PCR, the DNA in addition to the polymerase target nucleic acid oligonucleotide that can specifically hybridize to a nucleotide of the primer (forward primer, reverse primer), deoxy-nucleotide mixture (dNTP mixture), Mg 2 +, such as divalent reaction buffer containing ions such as This is used. The DNA molecules produced by the PCR reactions are referred to herein as "amplification products".
본 문서에서 사용되는 용어 "프라이머(primer)"는 PCR 반응 또는 프라이머 연장반응(primer extension) 반응의 개시를 위해 사용되는, 주형 DNA에 상보적으로 혼성화는 올리고뉴클레오티드 또는 폴리뉴클레오티드를 의미한다. PCR 반응을 위한 프라이머는 증폭되는 핵산분자의 유전자 코드 진행방향과 동일한 센스 가닥으로부터 선택되는 포워드 프라이머(또는 센스 프라이머) 및 상기 센스 가닥에 상보적인 안티센스 가닥으로부터 선택되는 리버스 프라이머(또는 안티센스 프라이머)의 쌍이 사용되고, 프라이머 연장반응의 경우 통상적으로 단일한 연장용 프라이머가 사용된다.As used herein, the term "primer" refers to an oligonucleotide or polynucleotide that complementarily hybridizes to template DNA, which is used for initiation of a PCR reaction or a primer extension reaction. A primer for a PCR reaction is a pair of forward primers (or sense primers) selected from the same sense strand as the direction of genetic code of the nucleic acid molecule to be amplified and reverse primers (or antisense primers) selected from antisense strands complementary to the sense strands. In the case of primer extension, a single extension primer is usually used.
본 문서에서 사용되는 "현장분석 장치(point of care testing)"는 시료를 실험실로 옮겨와서 분석을 하는 것이 아니라, 시료가 채취된 현장에서 곧바로 분석할 수 있는 소규모의 이동형 분석에 사용되는 용기 및 기기를 모두 포괄적으로 지칭한다.The term "point of care testing" used in this document is a container and device used for small, portable analysis that can be analyzed immediately at the site where the sample is taken, rather than being taken to the laboratory for analysis. Are referred to generically.
발명의 상세한 설명Detailed description of the invention
본 발명의 일 관점에 따르면, i) 뚜껑과 상기 뚜껑에 체결된 용기로 구성된 마이크로 튜브로서, 상기 용기는 상부가 주름 탄성벽이고 하부는 갈수록 좁아지는 원추형이며, 바닥면이 얇은 필름으로 구성되고 상기 바닥면으로부터 하부로 돌출된 중공의 기둥 형상의 접합부로 구성된, 마이크로 튜브; 및 ii) 상기 접합부와 체결되는 날카로운 첨부를 갖는 중공의 돌기가 상부에 형성되어 있고 상기 돌기 하부에 전기영동 매질(matrix)이 충진된 미세유체 채널이 연결되어 있고, 상기 미세유체 채널의 상단 및 하단에 각각 전극이 구비된 미세유체 칩을 포함하는 PCR 기반 현장분석 장치가 제공된다.According to one aspect of the invention, i) a microtube consisting of a lid and a container fastened to the lid, the container is a concave shape of the upper portion is a corrugated elastic wall and the lower narrower, the bottom surface is composed of a thin film and the A micro tube consisting of a hollow columnar junction projecting downward from the bottom surface; And ii) a hollow projection having a sharp attachment fastened to the junction portion is formed at an upper portion thereof, and a microfluidic channel filled with an electrophoretic matrix is connected to the lower portion of the projection, and upper and lower ends of the microfluidic channel are connected. PCR-based field analysis apparatus comprising a microfluidic chip each provided with an electrode is provided.
상기 장치에 있어서, 상기 마이크로 튜브는 폴리에틸렌, 폴리스티렌 또는 폴리프로필렌 소재로 구성될 수 있다.In the device, the microtube may be made of polyethylene, polystyrene or polypropylene material.
상기 장치에 있어서, 상기 바닥면은 두께가 50 내지 200 μm일 수 있다.In the device, the bottom surface may have a thickness of 50 to 200 μm.
상기 장치에 있어서, 상기 전기영동 매질은 아가로스 겔, 녹말 겔, 또는 폴리아크릴아마이드 겔일 수 있다. In the device, the electrophoretic medium may be an agarose gel, starch gel, or polyacrylamide gel.
상기 장치에 있어서, 상기 미세유체 채널은 “一”자형으로 형성되거나 “ㄹ”자 관부와 “一”자 관부가 혼합된 형상으로 형성될 수 있다.In the apparatus, the microfluidic channel may be formed in a “1” shape or may have a shape in which a “d” shaped pipe portion and a “l” shaped pipe portion are mixed.
본 발명의 다른 일 관점에 따르면, PCR 마이크로튜브 삽입홀이 상면에 형성되고, 상기 PCR 마이크로튜브 삽입홀의 바닥부에 날카로운 첨부를 갖는 중공의 돌기가 형성되어 있으며, 상기 돌기 하부에 전기영동 매질(matrix)이 충진된 미세유체 채널이 연결되어 있고, 상기 미세유체 채널의 상단 및 하단에 각각 전극이 구비된 미세유체 칩을 포함하는 PCR 기반 현장분석 장치가 제공된다.According to another aspect of the invention, the PCR microtube insertion hole is formed on the upper surface, a hollow protrusion having a sharp attachment to the bottom of the PCR microtube insertion hole is formed, the electrophoretic medium (matrix) below the protrusion There is provided a PCR-based on-site analysis device including a microfluidic chip filled with) and a microfluidic chip having electrodes at the top and bottom of the microfluidic channel, respectively.
상기 장치에 있어서, 상기 전기영동 매질은 아가로스 겔, 녹말 겔, 또는 폴리아크릴아마이드 겔일 수 있다. In the device, the electrophoretic medium may be an agarose gel, starch gel, or polyacrylamide gel.
상기 장치에 있어서, 상기 채널은 “一”자형으로 형성되거나 “ㄹ”자 관부와 “一”자 관부가 혼합된 형상으로 형성될 수 있다.In the apparatus, the channel may be formed in the shape of "I" or in the shape of a mixture of "D" tube and "I" tube.
본 발명의 다른 일 관점에 따르면, i) PCR 반응이 완료된 상기 PCR 기반 현장분석 장치의 PCR 마이크로튜브에 제1압력을 가하여 상기 PCR 마이크로튜브의 하면을 천공하는 PCR 마이크로튜브 천공단계; ii) 상기 PCR 마이크로튜브의 덮개를 열고 PCR 마이크로튜브의 내부에 제2압력을 가하여 PCR 반응액을 미세유체칩의 미세유체 채널 내로 적재하는 PCR 반응액 적재단계; iii) 상기 미세유체 채널의 양 말단에 연결된 전극에 교류 전류를 인가하여 전기영동을 수행하는 전기영동 단계; 및 iv) 형광 또는 자외선을 이용하여 전기영동된 핵산분자를 검출하는 핵산분자 검출단계를 포함하는 PCR 기반 현장 핵산 분석방법이 제공된다.According to another aspect of the invention, i) a PCR microtube drilling step of drilling a lower surface of the PCR microtube by applying a first pressure to the PCR microtube of the PCR-based field analysis device is complete; ii) a PCR reaction solution loading step of opening the lid of the PCR microtube and applying a second pressure to the inside of the PCR microtube to load the PCR reaction solution into the microfluidic channel of the microfluidic chip; iii) an electrophoresis step of performing electrophoresis by applying an alternating current to electrodes connected to both ends of the microfluidic channel; And iv) a nucleic acid molecule detecting step of detecting a nucleic acid molecule electrophoresed using fluorescence or ultraviolet light.
아울러 본 발명의 또 다른 일 관점에 따르면, i) PCR 반응이 완료된 PCR 마이크로튜브를 제7항의 PCR 기반 현장분석 장치의 PCR 마이크로튜브 삽입홀에 삽입하는 PCR 튜브 적재단계; ii) 상기 삽입된 PCR 마이크로튜브에 제1압력을 가하여 상기 PCR 마이크로튜브의 하면을 천공하는 PCR 마이크로튜브 천공단계; iii) 상기 PCR 마이크로튜브의 덮개를 열고 PCR 마이크로튜브의 내부에 제2압력을 가하여 PCR 반응액을 미세유체칩의 미세유체 채널 내로 적재하는 PCR 반응액 적재단계; iv) 상기 미세유체 채널의 양 말단에 연결된 전극에 교류 전류를 인가하여 전기영동을 수행하는 전기영동 단계; 및 v) 형광 또는 자외선을 이용하여 전기영동된 핵산분자를 검출하는 핵산분자 검출단계를 포함하는 PCR 기반 현장 핵산 분석방법이 제공된다.In addition, according to another aspect of the present invention, i) PCR tube loading step of inserting the PCR microtube completion of the PCR reaction in the PCR microtube insertion hole of the PCR-based field analysis apparatus of claim 7; ii) perforating the PCR microtube by applying a first pressure to the inserted PCR microtube to perforate the lower surface of the PCR microtube; iii) a PCR reaction solution loading step of opening the lid of the PCR microtube and applying a second pressure to the inside of the PCR microtube to load the PCR reaction solution into the microfluidic channel of the microfluidic chip; iv) an electrophoresis step of performing electrophoresis by applying an alternating current to electrodes connected to both ends of the microfluidic channel; And v) a nucleic acid molecule detection step of detecting a nucleic acid molecule electrophoresed using fluorescence or ultraviolet light.
상기 방법에 있어서, 상기 제1압력은 상기 PCR 마이크로튜브 바닥면의 최대전단응력을 초과하는 압력일 수 있고, 상기 제2압력은 상기 주름 탄성벽의 부피를 감소시킬 수 있을 정도로 인가되거나 또는 상기 PCR 마이크로튜브 내로 삽입되는 피스톤에 의해 인가될 수 있다.In the method, the first pressure may be a pressure exceeding the maximum shear stress of the bottom surface of the PCR microtube, the second pressure is applied to the extent that the volume of the pleated elastic wall can be reduced or the PCR It may be applied by a piston inserted into the microtube.
이하 본 발명의 일 실시예에 따른 키트 및 방법을 첨부된 도면을 통해 보다 상세히 설명한다.Hereinafter, a kit and a method according to an embodiment of the present invention will be described in more detail with reference to the accompanying drawings.
도 1 은 본 발명의 일 실시예에 따른 미세유체 장치를 개략적으로 도시한 개요도이다.1 is a schematic diagram schematically showing a microfluidic device according to an embodiment of the present invention.
도 1에 도시된 바와 같이 본 발명의 일 실시예에 따른 PCR 기반 현장분석장치(1)는 PCR 반응이 일어나는 마이크로 튜브(10)와 전기영동이 수행되는 미세유체칩(20)이 상하로 부착된 형태로서 마이크로 튜브(10)는 일반적인 PCR 반응용 마이크로 튜브와는 달리 바닥의 하면에 중공의 파이프 형태의 결합부가 형성되어 있고 상기 바닥이 매우 얇은 필름으로 형성되어 있어, 미세유체칩(20)의 상단에 돌출된 돌기(21) 끝의 첨부(미도시)에 의해 쉽게 구멍이 날 수 있으며, 상단의 주름벽(일명,‘자바라’구조)은 PCR 장치부의 덮개의 바닥의 필름에 천궁이 될 수준의 제1압력에 의해 눌렸을 때에는 주름이 접히지 않고, 천공이 난 이후, 제2압력에 의해 눌려서 높이가 줄어들 경우 줄어든 부피만큼 PCR 반응액이 돌기(21) 내에 형성된 통로를 통해 채널(22) 내의 전기영동 매질에 적재가 될 수 있도록 할 수 있다. 이 때 미세유체칩(20) 내에 형성된 전기영동을 위한 채널(22)은 도 1에 도시된 바와 같이 수직으로 형성되어 상단 및 하단에 각각 형성된 전극(24, 24')를 통해 DC 전류가 인가되었을 때 증폭된 DNA가 채널 내에서 양극(+)으로 이동하게 딘다. 증폭된 DNA의 검출은 다양한 검출 수단에 의해 검출이 가능한데, 통상적으로 형광물질을 이용하여 레이져를 채널에 조사한 후 특정 파장의 여기광을 검출하는 방식으로 실시간 모니터링하는 것이 가능하다. As shown in FIG. 1, the PCR-based on-site analysis device 1 according to an embodiment of the present invention includes a microtube 10 in which a PCR reaction occurs and a microfluidic chip 20 in which electrophoresis is performed up and down. As a form, the microtube 10 has a hollow pipe-like coupling portion formed at the bottom of the bottom, unlike the general PCR reaction microtube, and the bottom is formed of a very thin film. It can be easily pierced by an attachment (not shown) at the end of the protrusion 21 protruding into the corrugated wall. When pressed by the first pressure, wrinkles do not fold, and after punching, when pressed by the second pressure and the height is reduced, the amount of the PCR reaction solution is reduced by the volume of electricity in the channel 22 through the passage formed in the protrusion 21. Yeongdong Hawk The load is to be able to have. At this time, the channel 22 for electrophoresis formed in the microfluidic chip 20 was vertically formed as shown in FIG. 1, and DC current was applied through the electrodes 24 and 24 ′ formed at the upper and lower ends, respectively. When the amplified DNA is moved to the positive (+) in the channel. The detection of the amplified DNA can be detected by various detection means. In general, it is possible to monitor in real time by irradiating a laser to a channel using a fluorescent material and then detecting excitation light of a specific wavelength.
선택적으로, 미세유체칩을 수직방향으로 길게 하지 않고 가로방향으로 길게 제작할 경우, 상기 채널 역시 길이 방향의 수평으로 형성되어도 무방하다(미도시).Optionally, when the microfluidic chip is elongated in the horizontal direction without being elongated in the vertical direction, the channel may also be formed horizontally in the longitudinal direction (not shown).
상기와 같이 PCR 반응액을 마이크로 튜브에 옮기는 것 외에는 PCR 반응과 전기영동이 자동으로 일어날 수 있다는 점에서 본 발명의 일 실시예에 따른 PCR 기반 현장분석 장치는 분석의 자동화에 유용하게 사용될 수 있다.PCR-based field analysis apparatus according to an embodiment of the present invention can be usefully used for automation of the analysis in that the PCR reaction and electrophoresis may occur automatically except for transferring the PCR reaction solution to the microtube as described above.
도 2는 본 발명의 다른 일 실시예에 따른 PCR 기반 현장분석 장치를 개략적으로 개시한 도면이다. 도 2에 도시된 바와 같이, 다른 구성요소들은 도 1과 동일하되, 전기영동을 위한 채널(22)을 ‘ㄹ’자 형상으로 형성시킴으로써(22') 전기영동 전개길이를 연장하는 효과를 나타낼 수 있다. 이 경우 증폭된 DNA 단편의 길이 차가 많이 나지 않는 경우 해상도를 향상시킬 수 있는 장점이 있다. 그러나 이 경우에도 마찬가지로 증폭된 DNA의 검출은 ‘一’자형으로 형성된 부분(22")을 통해 수행될 수 있다.2 is a view schematically showing a PCR-based field analysis apparatus according to another embodiment of the present invention. As shown in FIG. 2, the other components are the same as those of FIG. 1, but may have an effect of extending the electrophoretic development length by forming the channel 22 for electrophoresis in a 'd' shape (22 '). have. In this case, there is an advantage in that the resolution can be improved when the difference between the lengths of the amplified DNA fragments is not large. However, in this case as well, detection of the amplified DNA can be performed through the portion 22 "
도 3은 본 발명의 일 실시예에 따른 PCR 기반 현장분석 장치의 작동원리를 나타내는 개요도이다.Figure 3 is a schematic diagram showing the operating principle of the PCR-based field analysis apparatus according to an embodiment of the present invention.
도 3의 좌측에 도시된 바와 같이, 마이크로 튜브(10) 내에 주형 폴리뉴클레오티드, 올리고뉴클레오티드로 구성된 프라이머쌍, Mg2 +와 같은 이가이온 및 dNTP가 포함된 PCR 반응용액에 열안정성 DNA 중합효소를 첨가한 후 열변성(denaturation), 혼성화(hybridization) 및 중합(polymerization)의 사이클을 수십회 반복하는 PCR 반응 동안에는 마이크로 튜브(10)과 미세유체칩(20)은 서로 결합되어 있되, 마이크로 튜브(10)의 하단의 바닥면(15)이 미세유체칩(20)과 연통되어 있지 않은 상태로 존재한다. 그러나 PCR 반응이 종결되면 PCR 반응장치의 덮개(미도시)에서 제1압력이 가해져서, 마이크로 튜브(10)가 하방으로 하강하게 되고 미세유체칩(20)의 상부에 형성된 돌기(21)의 상단에 형성된 첨부(23)가 마이크로 튜브(10)의 얇은 필름상의 하단의 바닥면(15)를 관통하게 된다. 그런 다음, PCR 반응장치의 덮개에 제2압력이 가해지면 마이크로 튜브(10) 상부의 주름벽(12)이 눌리게 되어 마이크로 튜브(10) 내부의 부피가 줄어들게 되고 이 때 발생한 압력에 의해 마이크로 튜브 내의 반응액은 미세유체칩(20)의 전기영동 매질에 적재되게 된다. 이어, 전기영동용 미세유체칩의 양 전극에 DC 전류가 인가되면 채널 내로 이동한 증폭 DNA 단편이 그 크기에 따라 전기영동하게 된다. 상기 미세유체 칩(200)은 과잉 용액을 담지하기 위한 폐액 저장소(205)를 추가로 포함할 수 있다.A template polynucleotide, the oligonucleotide primers, thermostable DNA polymerase in the PCR reaction solution, toothed containing the ions and dNTP, such as Mg 2 + made up in micro-tube 10, as shown in the left side of Figure 3 added The microtube 10 and the microfluidic chip 20 are coupled to each other during the PCR reaction which repeats cycles of thermal denaturation, hybridization, and polymerization several times. The bottom surface 15 of the lower end of the microfluidic chip 20 is not in communication with the state. However, when the PCR reaction is terminated, a first pressure is applied from a cover (not shown) of the PCR reaction apparatus so that the microtube 10 is lowered downward and the upper end of the protrusion 21 formed on the microfluidic chip 20. The attachment 23 formed in the penetrates through the bottom surface 15 of the lower end of the thin film of the microtube 10. Then, when the second pressure is applied to the cover of the PCR reactor, the corrugated wall 12 on the upper portion of the microtube 10 is pressed to reduce the volume inside the microtube 10, and the microtube is caused by the pressure generated at this time. The reaction solution therein is loaded on the electrophoretic medium of the microfluidic chip 20. Subsequently, when a DC current is applied to both electrodes of the electrophoretic microfluidic chip, the amplified DNA fragment moved into the channel is electrophoresed according to its size. The microfluidic chip 200 may further include a waste solution reservoir 205 for supporting excess solution.
도 4에 도시된 바와 같이 본 발명의 일 실시예에 따른 PCR 기반 현장분석장치(1')는 PCR 반응이 일어나는 마이크로 튜브(100)와 전기영동이 수행되는 미세유체칩(200)이 상하로 결합이 가능하되 분리된 형태로서 마이크로 튜브(100)는 일반적인 PCR 반응용 마이크로 튜브 또는 바닥이 뾰족한 돌기에 의해 쉽게 구멍이 뚫리도록 두께가 매우 얇게(수 내지 수십 마이크로미터) 제작된 특수 PCR 반응용 마이크로튜브로서 본 발명의 일 실시예에 따른 PCR 기반 현장분석장치(1')의 상부에 형성된 PCR 반응 마이크로튜브 수용홀(206) 바닥의 하면에 상방으로 돌출된 돌기(201) 끝의 첨부에 의해 쉽게 구멍이 날 수 있으며, PCR 반응 마이크로튜브(100) 상부에 가해진 압력에 의해 천공이 된 후, PCR 반응 마이크로튜브(100) 내에 가해진 제2압력에 의해 PCR 반응액이 돌기(201) 내에 형성된 통로를 통해 채널(202) 내의 전기영동 매질에 적재가 될 수 있도록 할 수 있다. 이 때 미세유체칩(200) 내에 형성된 전기영동을 위한 채널(202)은 도 4에 도시된 바와 같이 수직으로 형성되어 상단 및 하단에 각각 형성된 전극(204, 204')를 통해 DC 전류가 인가되었을 때 증폭된 DNA가 채널 내에서 양극(+)으로 이동하게 된다. 증폭된 DNA의 검출은 다양한 검출 수단에 의해 검출이 가능한데, 통상적으로 형광물질을 이용하여 레이져를 채널에 조사한 후 특정 파장의 여기광을 검출하는 방식으로 실시간 모니터링하는 것이 가능하다. As shown in FIG. 4, the PCR-based on-site analysis device 1 ′ according to an embodiment of the present invention is coupled to a micro tube 100 in which a PCR reaction occurs and a microfluidic chip 200 in which electrophoresis is performed. This possible but separate form microtube 100 is a special PCR reaction microtube made of a very thin thickness (several to several tens of micrometers) so that it is easily punched by a general PCR reaction microtube or a pointed protrusion at the bottom. As a hole easily attached by the end of the protrusion 201 protruding upward on the bottom of the bottom of the PCR reaction microtube receiving hole 206 formed on the top of the PCR-based field analysis apparatus 1 'according to an embodiment of the present invention as This may fly, and after being punched by the pressure applied to the PCR reaction microtube 100, the PCR reaction liquid is formed in the protrusion 201 by the second pressure applied in the PCR reaction microtube 100. Through such a passage, it may be possible to load the electrophoretic medium in the channel 202. At this time, the channel 202 for the electrophoresis formed in the microfluidic chip 200 is vertically formed as shown in FIG. 4, and DC current is applied through the electrodes 204 and 204 ′ formed at the upper and lower ends, respectively. When the amplified DNA is moved to the anode (+) in the channel. The detection of the amplified DNA can be detected by various detection means. In general, it is possible to monitor in real time by irradiating a laser to a channel using a fluorescent material and then detecting excitation light of a specific wavelength.
도 5는 상기 도 4에 도시된 PCR 기반 현장분석장치(1')의 PCR 마이크로튜브 삽입홀(206)에 삽입된 PCR 마이크로튜브 내로 PCR 기반 현장분석장치(1') 내에 구비된 피스톤(207)이 하방으로 하강하여 PCR 마이크로튜브 내의 PCR 반응액을 하방으로 밀어냄으로써 미세유체 채널(202)에 PCR 반응액을 적재하는 과정을 개략적으로 도시한 개요도이다. 피스톤(207)의 외형은 PCR 마이크로튜브(100)의 형상을 따라 제조되며, 외경이 PCR 마이크로튜브(100)의 내경보다 약간 작은 것이 바람직하며, 압력을 제대로 인가하기 위해 외주면에 고무 또는 실리콘 소재의 개스킷(208)을 구비할 수 있다. 5 is a piston 207 provided in the PCR based field analysis apparatus 1 'into the PCR microtube inserted into the PCR microtube insertion hole 206 of the PCR based field analysis apparatus 1' shown in FIG. It is a schematic diagram schematically showing a process of loading the PCR reaction solution into the microfluidic channel 202 by descending downward and pushing the PCR reaction solution in the PCR microtube downward. The outer shape of the piston 207 is manufactured according to the shape of the PCR microtube 100, the outer diameter is preferably slightly smaller than the inner diameter of the PCR microtube 100, the rubber or silicone material on the outer peripheral surface to properly apply pressure Gasket 208 may be provided.
본 발명은 상술한 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구 범위의 기술적 사상에 의하여 정해져야 할 것이다.Although the present invention has been described with reference to the above-described embodiments, these are merely exemplary, and it will be understood by those skilled in the art that various modifications and equivalent other embodiments are possible. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.
본 발명의 장치 및 방법은 핵산 분자의 신속한 검출, 특히 현장에서의 핵산의 신속한 검출이 가능하기 때문에 환경 및 의료분야에서 매우 유용하게 사용될 수 있다.The apparatus and method of the present invention can be very useful in the environmental and medical fields because of the rapid detection of nucleic acid molecules, in particular the rapid detection of nucleic acids in situ.

Claims (13)

  1. i) 뚜껑과 상기 뚜껑에 체결된 용기로 구성된 마이크로 튜브로서, 상기 용기는 상부가 주름 탄성벽이고 하부는 갈수록 좁아지는 원추형이며, 바닥면이 얇은 필름으로 구성되고 상기 바닥면으로부터 하부로 돌출된 중공의 기둥 형상의 접합부로 구성된, 마이크로 튜브; 및 i) a microtube consisting of a lid and a container fastened to the lid, wherein the container is a conical shape with a corrugated elastic wall at the top and a narrower taper at the bottom, the bottom being made of a thin film and hollowed out from the bottom Consisting of a columnar junction of micro-tubes; And
    ii) 상기 접합부와 체결되는 날카로운 첨부를 갖는 중공의 돌기가 상부에 형성되어 있고 상기 돌기 하부에 전기영동 매질(matrix)이 충진된 미세유체 채널이 연결되어 있고, 상기 미세유체 채널의 상단 및 하단에 각각 전극이 구비된 미세유체 칩을 포함하는 PCR 기반 현장분석 장치.ii) a hollow projection having a sharp attachment fastened to the junction portion is formed at the top, and a microfluidic channel filled with an electrophoretic matrix is connected to the lower portion of the projection, and at the top and bottom of the microfluidic channel. PCR-based field analysis device comprising a microfluidic chip each equipped with an electrode.
  2. 제1항에 있어서,The method of claim 1,
    상기 전기영동 매질은 아가로스 겔, 녹말 겔, 또는 폴리아크릴아마이드 겔인, PCR 기반 현장분석 장치. The electrophoretic medium is agarose gel, starch gel, or polyacrylamide gel, PCR based field analysis device.
  3. 제1항에 있어서,The method of claim 1,
    상기 마이크로 튜브는 폴리에틸렌, 폴리스티렌 또는 폴리프로필렌 소재로 구성된, PCR 기반 현장분석 장치.The micro tube is made of polyethylene, polystyrene or polypropylene material, PCR-based field analysis device.
  4. 제1항에 있어서, The method of claim 1,
    상기 바닥면은 두께가 20 내지 200 μm인, PCR 기반 현장분석 장치.The bottom surface is 20 to 200 μm thick, PCR-based field analysis device.
  5. 제1항에 있어서, The method of claim 1,
    상기 전기영동 매질은 아가로스 겔, 녹말 겔, 또는 폴리아크릴아마이드 겔인, PCR 기반 현장분석 장치. The electrophoretic medium is agarose gel, starch gel, or polyacrylamide gel, PCR based field analysis device.
  6. 제1항에 있어서,The method of claim 1,
    상기 미세유체 채널은 “一”자형으로 형성되거나 “ㄹ”자 관부와 “一”자 관부가 혼합된 형상으로 형성된, PCR 기반 현장분석 장치.The microfluidic channel is formed in a "一" shape or "r" shaped pipe portion and the "一" shaped pipe portion, formed in the shape of a PCR-based field analysis device.
  7. PCR 마이크로튜브 삽입홀이 상면에 형성되고, 상기 PCR 마이크로튜브 삽입홀의 바닥부에 날카로운 첨부를 갖는 중공의 돌기가 형성되어 있으며, 상기 돌기 하부에 전기영동 매질(matrix)이 충진된 미세유체 채널이 연결되어 있고, 상기 미세유체 채널의 상단 및 하단에 각각 전극이 구비된 미세유체 칩을 포함하는 PCR 기반 현장분석 장치.A PCR microtube insertion hole is formed on the upper surface, and a hollow protrusion having a sharp attachment is formed at the bottom of the PCR microtube insertion hole, and a microfluidic channel filled with an electrophoretic matrix is connected to the lower portion of the protrusion. And a PCR-based on-site analysis device comprising a microfluidic chip having electrodes on top and bottom of the microfluidic channel, respectively.
  8. 제7에 있어서, The method according to claim 7,
    상기 전기영동 매질은 아가로스 겔, 녹말 겔, 또는 폴리아크릴아마이드 겔인, PCR 기반 현장분석 장치. The electrophoretic medium is agarose gel, starch gel, or polyacrylamide gel, PCR based field analysis device.
  9. 제7항에 있어서, The method of claim 7, wherein
    상기 미세유체 채널은 “一”자형으로 형성되거나 “ㄹ”자 관부와 “一”자 관부가 혼합된 형상으로 형성되는, PCR 기반 현장분석 장치. Wherein the microfluidic channel is formed in a "一" shape or "r" shaped pipe portion and "一" shaped pipe portion is formed in a shape, PCR-based field analysis device.
  10. i) PCR 반응이 완료된 제1항의 PCR 기반 현장분석 장치의 PCR 마이크로튜브에 제1압력을 가하여 상기 PCR 마이크로튜브의 하면을 천공하는 PCR 마이크로튜브 천공단계; i) a PCR microtube drilling step of drilling a lower surface of the PCR microtube by applying a first pressure to the PCR microtube of the PCR-based field analysis apparatus of claim 1, wherein the PCR reaction is completed;
    ii) 상기 PCR 마이크로튜브의 덮개를 열고 PCR 마이크로튜브의 내부에 제2압력을 가하여 PCR 반응액을 미세유체칩의 미세유체 채널 내로 적재하는 PCR 반응액 적재단계; ii) a PCR reaction solution loading step of opening the lid of the PCR microtube and applying a second pressure to the inside of the PCR microtube to load the PCR reaction solution into the microfluidic channel of the microfluidic chip;
    iii) 상기 미세유체 채널의 양 말단에 연결된 전극에 교류 전류를 인가하여 전기영동을 수행하는 전기영동 단계; 및 iii) an electrophoresis step of performing electrophoresis by applying an alternating current to electrodes connected to both ends of the microfluidic channel; And
    iv) 형광 또는 자외선을 이용하여 전기영동된 핵산분자를 검출하는 핵산분자 검출단계를 포함하는 PCR 기반 현장 핵산 분석방법.iv) PCR-based in situ nucleic acid analysis method comprising a nucleic acid molecule detection step of detecting the electrophoretic nucleic acid molecule using fluorescence or ultraviolet light.
  11. i) PCR 반응이 완료된 PCR 마이크로튜브를 제7항의 PCR 기반 현장분석 장치의 PCR 마이크로튜브 삽입홀에 삽입하는 PCR 튜브 적재단계; i) PCR tube loading step of inserting the PCR microtube completion of the PCR reaction in the PCR microtube insertion hole of the PCR-based field analysis apparatus of claim 7;
    ii) 상기 삽입된 PCR 마이크로튜브에 제1압력을 가하여 상기 PCR 마이크로튜브의 하면을 천공하는 PCR 마이크로튜브 천공단계; ii) perforating the PCR microtube by applying a first pressure to the inserted PCR microtube to perforate the lower surface of the PCR microtube;
    iii) 상기 PCR 마이크로튜브의 덮개를 열고 PCR 마이크로튜브의 내부에 제2압력을 가하여 PCR 반응액을 미세유체칩의 미세유체 채널 내로 적재하는 PCR 반응액 적재단계; iii) a PCR reaction solution loading step of opening the lid of the PCR microtube and applying a second pressure to the inside of the PCR microtube to load the PCR reaction solution into the microfluidic channel of the microfluidic chip;
    iv) 상기 미세유체 채널의 양 말단에 연결된 전극에 교류 전류를 인가하여 전기영동을 수행하는 전기영동 단계; 및 iv) an electrophoresis step of performing electrophoresis by applying an alternating current to electrodes connected to both ends of the microfluidic channel; And
    v) 형광 또는 자외선을 이용하여 전기영동된 핵산분자를 검출하는 핵산분자 검출단계를 포함하는 PCR 기반 현장 핵산 분석방법.v) PCR-based in situ nucleic acid analysis method comprising a nucleic acid molecule detection step for detecting the electrophoretic nucleic acid molecule using fluorescence or ultraviolet light.
  12. 제10항 또는 제11항에 있어서, The method according to claim 10 or 11, wherein
    상기 제1압력은 상기 PCR 마이크로튜브 바닥면의 최대전단응력을 초과하는 압력인, 분석방법.Wherein the first pressure is a pressure that exceeds a maximum shear stress of the bottom surface of the PCR microtube.
  13. 제10항에 있어서, The method of claim 10,
    상기 제2압력은 상기 PCR 마이크로튜브 내로 삽입되는 피스톤에 의해 인가되는, 분석방법.And said second pressure is applied by a piston inserted into said PCR microtube.
PCT/KR2016/010111 2015-09-08 2016-09-08 Pcr-based point-of-care testing device having microfluidic chip for electrophoresis coupled thereto WO2017043893A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0127285 2015-09-08
KR1020150127285A KR101751913B1 (en) 2015-09-08 2015-09-08 A PCR-based point of care testing device coupled with electrophoretic microfluidic chip

Publications (1)

Publication Number Publication Date
WO2017043893A1 true WO2017043893A1 (en) 2017-03-16

Family

ID=58240343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/010111 WO2017043893A1 (en) 2015-09-08 2016-09-08 Pcr-based point-of-care testing device having microfluidic chip for electrophoresis coupled thereto

Country Status (2)

Country Link
KR (1) KR101751913B1 (en)
WO (1) WO2017043893A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102288369B1 (en) * 2020-12-23 2021-08-10 주식회사 미코바이오메드 Integrated chip with lysis and amplifying nucleic acids, lysis module having the same, apparatus for point-of-care-testing having the same, and method for lysis and amplifying nucleic acids using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007136715A2 (en) * 2006-05-16 2007-11-29 Arcxis Biotechnologies Pcr-free sample preparation and detection systems for high speed biologic analysis and identification
KR20100029181A (en) * 2007-04-04 2010-03-16 네트워크 바이오시스템즈, 인코퍼레이티드 Plastic microfluidic separation and detection platforms
KR20110037343A (en) * 2009-10-06 2011-04-13 유원에코사이언스 주식회사 Hermetic pressure type injector
KR20110115476A (en) * 2010-04-15 2011-10-21 주식회사 싸이토젠 Microfluidic apparatus and method for separating targets using the same
KR20120059423A (en) * 2010-11-30 2012-06-08 케이맥(주) Microfluidmaterial analysis apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007136715A2 (en) * 2006-05-16 2007-11-29 Arcxis Biotechnologies Pcr-free sample preparation and detection systems for high speed biologic analysis and identification
KR20100029181A (en) * 2007-04-04 2010-03-16 네트워크 바이오시스템즈, 인코퍼레이티드 Plastic microfluidic separation and detection platforms
KR20110037343A (en) * 2009-10-06 2011-04-13 유원에코사이언스 주식회사 Hermetic pressure type injector
KR20110115476A (en) * 2010-04-15 2011-10-21 주식회사 싸이토젠 Microfluidic apparatus and method for separating targets using the same
KR20120059423A (en) * 2010-11-30 2012-06-08 케이맥(주) Microfluidmaterial analysis apparatus

Also Published As

Publication number Publication date
KR20170030154A (en) 2017-03-17
KR101751913B1 (en) 2017-07-03

Similar Documents

Publication Publication Date Title
US10927407B2 (en) Systems and methods for handling microfluidic droplets
EP2817418B1 (en) Labeling and sample preparation for sequencing
Paegel et al. Microchip bioprocessor for integrated nanovolume sample purification and DNA sequencing
EP2971136B1 (en) Microfluidic methods for manipulating dna
EP2481815B1 (en) Microfluidic devices
US11016079B2 (en) Integrated membrane sensor for rapid molecular detection
EP2548646A2 (en) Cartridge and system for manipulating samples in liquid droplets
EP2981349A2 (en) Systems and methods for handling microfluidic droplets
US20090186344A1 (en) Devices and methods for detecting and quantitating nucleic acids using size separation of amplicons
JP2008245612A (en) Method and device for preparing sample
KR20150048158A (en) Microcapsule compositions and methods
US8092999B2 (en) Biological sample reaction chip and biological sample reaction method
KR20110008174A (en) Microfluidic chip devices and their use
KR20150011359A (en) Method of performing digital pcr
Njoroge et al. Integrated microfluidic systems for DNA analysis
CN106854674B (en) Nucleic acid high-throughput rapid detection method based on capillary microarray
Henry et al. Rapid DNA hybridization in microfluidics
WO2017043893A1 (en) Pcr-based point-of-care testing device having microfluidic chip for electrophoresis coupled thereto
US11220706B2 (en) Combined extraction and PCR systems
WO2020258037A1 (en) Apparatus and method for high throughput parallel nucleic acid sequencing on surfaces of microbeads
Taylor et al. Micro-genetic analysis systems
CN109839417B (en) Human autosomal STR (short tandem repeat) gene locus typing method based on micro-fluidic chip
WO2020211069A1 (en) Apparatus and method for high throughput parallel nucleic acid sequencing
Cronin et al. Microfluidic arrays in genetic analysis
Kim et al. Microchip for continuous on-line PCR product analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844709

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16844709

Country of ref document: EP

Kind code of ref document: A1