WO2017043773A1 - Hydrogenation reactor - Google Patents

Hydrogenation reactor Download PDF

Info

Publication number
WO2017043773A1
WO2017043773A1 PCT/KR2016/008611 KR2016008611W WO2017043773A1 WO 2017043773 A1 WO2017043773 A1 WO 2017043773A1 KR 2016008611 W KR2016008611 W KR 2016008611W WO 2017043773 A1 WO2017043773 A1 WO 2017043773A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
hydrogen
semi
hydrogenation
reaction chamber
Prior art date
Application number
PCT/KR2016/008611
Other languages
French (fr)
Korean (ko)
Inventor
안우열
양혜림
장재규
최성업
Original Assignee
한화케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화케미칼 주식회사 filed Critical 한화케미칼 주식회사
Publication of WO2017043773A1 publication Critical patent/WO2017043773A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/20Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
    • B01J8/22Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • the present invention relates to a hydrogenation reactor.
  • it is related with the hydrogenation reaction machine which improved the reaction efficiency and stability of a hydrogenation reaction reaction.
  • hydrogenation or hydrogenation processes for organic compounds are reactions applied to reducing specific functional groups or converting unsaturated compounds to saturated compounds, such as ketones, aldehydes, imines, and the like.
  • Compounds having the same unsaturated functional groups can be applied to various compounds such as reduction of compounds with alcohols, amines, etc., or saturation of unsaturated bonds of olefin compounds. It is one of the important reactions.
  • Such hydrogenation reaction is generally carried out by contacting a reaction object to be subjected to hydrogen and a hydrogenation reaction with a noble metal catalyst.
  • Reactors for hydrogenation reaction are typically trickle bed reactors and loop reactors. ).
  • the trickle bed reactor has the advantage of low investment and operating costs, but due to the risk of pressure drop, the particle size of the catalyst to enter the reactor has to be large, so that the contact area between the catalyst and the reaction product is reduced and the reaction efficiency is low.
  • the loop type reactor does not have a limitation on the size of the catalyst, and because of the excellent compatibility between the liquid phase and the gas phase, the efficiency of the catalyst is excellent.
  • the loop-type reaction device is to perform hydrogenation reaction in a gaseous reaction mixture of gaseous hydrogen gas and a liquid phase reaction liquid, and does not dissolve in the reaction system. There is a disadvantage in that it is necessary to inject a lot of hydrogen gas because the hydrogen gas coming out of this space inevitably exists.
  • a semi-ungmul supply unit which is located in connection with the reaction product and supplies the reactant into the reaction chamber;
  • a reaction product discharge part disposed under the reaction chamber and discharging the hydrogenated reaction product to the outside of the reaction chamber;
  • a hydrogen supply pipe connected to the reactant supply unit and additionally supplying hydrogen to the reaction chamber through the reaction system;
  • One end is connected to the upper portion of the reaction chamber, the other end is connected to the interruption of the hydrogen supply pipe, including a first hydrogen circulation pipe for circulating hydrogen gas flowing in the upper region of the reaction chamber to the reaction water supply portion Provide a hydrogenation reaction.
  • the hydrogenation reaction machine of this invention it is equipped with the hydrogen circulation piping,
  • the efficiency of the hydrogenation reaction can be improved by recycling the hydrogen gas flowing in the upper region of the chamber back into the reaction system by the hydrogen circulation pipe.
  • the flow rate of hydrogen circulated from the upper portion of the reaction tank to the semi-water supply portion is increased more than if only one, and the fluidity of the gas is much higher It can be improved so that the efficiency of the hydrogenation reaction can be further improved.
  • FIG. 3 is a diagram illustrating a structure of a hydrogenation reaction reactor according to another embodiment of the present invention.
  • FIG 4 is a view showing a state seen from above the hydrogenation reaction counter according to an embodiment of the present invention.
  • each component when each component is first to be formed “on” or “on” of each component, it means that each component is directly formed on each component, or other components are each It can be formed additionally between the layer, the object, the substrate.
  • Hydrogenation reaction according to an embodiment of the present invention, the reaction chamber in which the hydrogenation reaction occurs; A semi-ungmul injecting unit for injecting a reaction product including hydrogen, a reaction object to be hydrogenated, and a solvent; A reactant supply unit located in connection with the reaction water injector and supplying the reaction water to the reaction chamber; A reaction product discharge part disposed under the reaction chamber and discharging a hydrogenation reaction product outside the reaction chamber; A hydrogen supply pipe which is connected to the semi-flounder supply part and additionally supplies hydrogen to the reaction additive through the semi-flounder supply part; And a first hydrogen circulation pipe having one end connected to an upper portion of the reaction chamber and the other end connected to an interruption of the hydrogen supply pipe to circulate hydrogen gas flowing in an upper region of the reaction chamber to the reaction product supply unit. do.
  • Commercially used reaction reactors for such hydrogenation include trickle bed reactors, loop reactors, and the like.
  • the trickle bed reactor has the advantage of low investment cost and operating cost, but the contact area of the catalyst and the reactant is reduced because the size of the catalyst entering the reactor due to the risk of pressure drop has a disadvantage of low reaction efficiency.
  • the loop reactor has no limitation on the size of the catalyst and has excellent efficiency of the catalyst because of excellent compatibility between the liquid phase and the gas phase.
  • the loop-type reaction device undergoes a hydrogenation reaction in a reaction system in which a gas phase of hydrogen gas and a liquid phase reaction object and a solvent are mixed. Accordingly, hydrogen gas that does not dissolve in the reaction system and exits into the space where the reaction object is absent is There is a disadvantage in that it is necessary to add a relatively large amount of hydrogen gas in order to complement this can not exist.
  • the hydrogenation reaction group of the present invention reduces unsaturated functional groups such as ketones, aldehydes, imines, etc., or saturates carbon-carbon double bonds or triple bonds present in olefinic compounds, aromatic compounds, petroleum resins, and other organic compounds or resins. It can be applied to various hydrogenation reactions or hydrogenation processes, and is not particularly limited.
  • the hydrogenation reactor can be used for the hydrogenation reaction of dicyclopentadiene (DCPD) resin.
  • DCPD dicyclopentadiene
  • Dicyclopentadiene resin is a resin obtained by thermal polymerization of DCPD, and has excellent compatibility with a base polymer such as a metallocene polymer and has a low molecular weight, and thus is used as an adhesive or an adhesive in various fields.
  • the DCPD resin has a yellowish brown color and gives off a bad smell, it needs to be modified into a colorless and odorless resin by saturating by adding hydrogen to a carbon-carbon backbone bond through hydrogenation reaction.
  • the DCPD resin subjected to the hydrogenation reaction has the advantage that the thermal stability and weather resistance is significantly improved.
  • the hydrogenation reaction vessel 9 includes a reaction product inlet 1, a reactant supply 3, a reaction product outlet 4, a reaction chamber 5, and a hydrogen supply pipe 6. do.
  • the reaction liquid supply part 3 is located in the upper part of the reaction chamber 5 and the reaction liquid supply nozzle 2a communicating with the reaction liquid injection part 1, and is located inside the reaction chamber 5, and supplies the reaction product And a semi-coagulant diffuser 2b for diffusing the semi-coagulum supplied from the nozzle 2a into the reaction chamber 5.
  • a reaction mixture comprising hydrogen, a reaction object to be hydrogenated, and a solvent is injected from the reaction product injection section 1 through the reaction product supply nozzle 2a of the reaction product supply section 3 into the reaction chamber 5 at a constant speed. do.
  • the injected reaction mixture diffuses through the reactant diffusion section 2b into the space in the reaction chamber 5, and the reaction object to be hydrogenated in the presence of the catalyst present in the reaction chamber 5 reacts with the hydrogen to perform the reaction reaction. Done.
  • a hydrogen supply pipe (6) is separately included to complement the hydrogen gas leaving the reaction system (8), and the reaction chamber (5) intermittently from the hydrogen supply pipe (6) intermittently as necessary in the middle of the hydrogenation reaction.
  • Supply hydrogen gas in a complementary manner.
  • the hydrogen supply pipe 6 is connected with the semi-atom water supply part 3 at a position near the reactant supply nozzle 2a, so that the hydrogen gas supplied from the hydrogen supply pipe 6 is injected near the reactant supply nozzle 2a. It is combined with the reaction mixture to be supplied into the reaction chamber (5) through the reaction mixture diffusion (2b).
  • FIG. 2 is a diagram illustrating a structure of a hydrogenation reaction reactor according to an embodiment of the present invention.
  • the hydrogenation reaction machine 100 includes a reaction product injection part 10, a reaction product supply part 30, a reaction product discharge part 40, a reaction product chamber 50, And a hydrogen supply pipe 60 and a first hydrogen circulation pipe 90.
  • the half water supply 30 is located in connection with the half water injection 10, and the half water supply 30 is also located at the top of the reaction chamber 50 and communicates with the half water injection 10.
  • a supply nozzle 20a and a semi-coagulant diffuser 20b which is located inside the reaction chamber 50 and diffuses the reaction product supplied from the reaction product supply nozzle 20a, into the reaction chamber 50.
  • one end of the first hydrogen circulation pipe 90 is connected to the upper portion of the reaction chamber 50, and the other end is supplied with hydrogen. It is connected to the interruption of the pipe 60 in the form of a T and serves to circulate the hydrogen gas flowing in the upper region 70 of the reaction chamber 50 to the semi-water supply portion 30.
  • the reaction mixture (banung mixture) including hydrogen, a reaction object to be hydrogenated, and a solvent is supplied from the reaction product injection unit 10 through the reaction product supply nozzle 20a to form the reaction chamber 50. Sprayed into it at a constant speed. The injected reaction mixture is diffused into the space in the reaction chamber 50 through the reaction mixture diffusion portion 20b, and the reaction object to be hydrogenated in the presence of a catalyst present in the reaction chamber 50 reacts with the hydrogen to react with the hydrogenation reaction. Will perform.
  • the present invention is not limited thereto, but the semi-coupling diffuser 20b has a tubular shape extending in the longitudinal direction of the counter-coupling chamber 50 for more effective diffusion of the counter-coupling, wherein the diameter of the middle portion of the tube It may have the narrowest, funnel shape with diameters that extend toward the top and bottom.
  • the diameter of the reagent supply nozzle (20a) can be changed by the performance of the target output and the pump is not particularly limited, in one embodiment of the present invention: it can be from about 20 to about 1000mm, banung water supply nozzle (20a) Depending on the diameter of the semi-ungmul diffusion 20b may also vary.
  • the length of the semi-acre water diffusion part 20b may be about 20 to about 50 times, preferably about 30 to about 40 times the diameter of the semi-acre water supply nozzle 20a.
  • the diameter of the middle portion of the narrowest portion in the semi-acre water diffusion part 20b may be about 1 to about 4 times, preferably about 1.2 to about 2 times the diameter of the semi-water supply nozzle 20a
  • the reactant diffuser 20b The diameter of the widest bottom portion of N) may be about 1 to about 10 times, preferably about 4 to about 8 times the diameter of the reactant feed nozzle 20a.
  • the hydrogen supply pipe 60 is connected with the reactant supply unit 30 at a position near the semi-flood supply nozzle 20a, so that the hydrogen gas intermittently supplied from the hydrogen supply pipe 60 is the semi-flounder supply nozzle 20a. It is combined with the reaction mixture injected in the vicinity and supplied into the reaction chamber 50 through the reaction mixture diffusion part 20b.
  • hydrogen due to the solubility characteristics of hydrogen gas, hydrogen, reaction to be hydrogenated There is a hydrogen gas that flows in the upper region 70 of the reaction chamber 50 without dissolving in the reaction system 80 in which the object and the solvent are present together.
  • the hydrogen gas leaving the reaction system 80 is sucked through the first hydrogen circulation pipe 90 due to the pressure difference, and thus the hydrogen supply pipe 60 is removed.
  • the hydrogen gas stream 90a is combined with the reaction product sprayed at a constant rate from the reaction product supply nozzle 20a and reacts again. 50 is fed into. Therefore, the gas holdup of the hydrogen gas participating in the reaction in the reaction system 80 can be increased to achieve a high hydrogenation reaction reaction rate.
  • the hydrogenation reaction reactor 100 of the present invention also includes a hydrogen supply pipe 60 for replenishing hydrogen gas, as in the conventional hydrogenation reactor, but inside the reaction system 80 by the first hydrogen circulation pipe 90 Since there is a flow rate of the hydrogen gas recycled to the reactor, the amount of hydrogen gas replenished as compared with the conventional hydrogenation reactor may be significantly reduced, or a complement layer of hydrogen gas may not be required.
  • the amount of hydrogen gas replenished through the hydrogen supply piping 60 is reduced by about 1/25 to about 1/45 times under the same operating conditions as compared to not including the first hydrogen circulation piping 90. Can be.
  • the degree of pressure drop at the semi-aeration water supply nozzle (20a) is not significantly different from when the first hydrogen circulation pipe (90) is not included. It is not necessary to increase the performance of the pump to compensate the furnace pressure drop, and it is economically advantageous because the reaction efficiency of the reaction can be maintained.
  • the diameters of the hydrogen supply pipe 60 and the first hydrogen circulation pipe 90 may each independently be the same or different, and each of about 0.5 to about about the diameter of the semi-atom water supply nozzle 20a. It may be three times, preferably about 0.5 to about 1.5 times, but the present invention is not limited thereto.
  • FIG. 3 is a diagram illustrating a structure of a hydrogenation reaction reactor according to another embodiment of the present invention.
  • the hydrogenation reactor 200 Reactant inlet 10, reaction product supply 30, reaction product outlet 40, reaction chamber 50, hydrogen supply piping 60, first hydrogen circulation piping 90 and second hydrogen circulation piping ( 95).
  • the reactant feeder 30 is located in connection with the reactant inlet 10, and the reactant feeder 30 is also located at the top of the reactant inlet chamber 50 and in communication with the reactant feeder 10. 20a and a reactant diffuser 20b positioned inside the reaction chamber 50 and diffusing the reaction product supplied from the reaction product supply nozzle 20a into the reaction chamber 50.
  • Exemplary shapes and diameter ranges of the semi-aerated water supply nozzle 20a, the semi-aerated water supply nozzle 20a, and the semi-aerated water diffusion part 20b are the same as those described with reference to FIG.
  • the hydrogen supply pipe 60 is connected to the semi-flop water supply part 30 at a position near the half-water supply nozzle 20a, and thus intermittently from the hydrogen supply pipe 60.
  • the hydrogen gas supplied thereto is combined with the reaction mixture injected in the vicinity of the reaction product supply nozzle 20a and supplied into the reaction chamber 50 through the reaction product diffusion portion 20b.
  • one end of the first hydrogen circulation pipe 90 is connected to the upper portion of the reaction chamber 50, and the other end is connected to the stop of the hydrogen supply pipe 60.
  • the hydrogen gas flowing in the upper region 70 of the reaction chamber 50 in the form of a ruler is circulated to the reaction product supply section 30.
  • one end of the second hydrogen circulation pipe 95 is connected to the upper portion of the reaction chamber 50, and the other end thereof is connected to an interruption of the reactant supply unit 30, in particular, in the vicinity of where the reactant supply nozzle 20a is located. It serves to circulate hydrogen gas flowing in the upper region 70 of the 50 to the semi-furnace supply 30 additionally.
  • a reaction mixture including hydrogen, a reaction object to be hydrogenated, and a solvent is supplied from the reaction product injection unit 10 to the reaction chamber 50 through the reaction product supply nozzle 20a. Sprayed. The injected semicoal water is diffused into the space in the reaction chamber 50 through the semicoalm diffusion portion 20b to perform a hydrogenation reaction.
  • the hydrogen gas leaving the reaction system 80 is thus sucked by the first hydrogen circulation pipe 90 due to the pressure difference and reactant supply portion through the hydrogen supply pipe 60. It is moved around the semi-flop water supply nozzle 20a of the 30, and the hydrogen gas is also sucked in through the second hydrogen circulation pipe 95, and around the semi-flop water supply nozzle 20a of the half-frozen water supply part 30. Will be moved to.
  • the hydrogen gas stream 90a thus formed is combined with the semicoagulum injected at a constant rate from the semicoagulant supply nozzle 20a and fed back into the reaction chamber 50. Accordingly, the flow rate of the hydrogen gas stream 90a and the gas holdup of the hydrogen gas participating in the reaction in the reaction system 80 can be increased significantly to achieve a high hydrogenation reaction rate.
  • the hydrogen supply pipe 60 may be used.
  • the amount of complementary hydrogen gas may be significantly reduced compared to the case where neither the first hydrogen circulation pipe 90 nor the second hydrogen circulation pipe 95 is included, or no supplement of hydrogen gas may be required.
  • the amount of hydrogen gas that is complemented through the hydrogen supply pipe 60 is about 1 / at the same operating conditions as compared to the case where both the first hydrogen circulation pipe 90 and the second hydrogen circulation pipe 95 are not included. It may be reduced by 60 to about 1/80 times, and may be reduced by about 1 / 1.5 to about 1/10 times under the same operating conditions as compared to including only the first hydrogen circulation pipe 90.
  • the degree of pressure drop at the semi-aeration water supply nozzle 20a may be such that the first and second hydrogen circulation pipes 90. 95 are reduced. There is no significant difference from not including it, so it is not necessary to increase the performance of the pump to further compensate for the pressure drop, and it is economically advantageous as the reaction efficiency of the reaction can be maintained.
  • the second hydrogen circulation pipe 95 may be provided with one or more.
  • the first hydrogen circulation pipe 90 and one or more second hydrogen circulation pipe 95 may be provided at equal intervals with respect to the circumference of the reaction chamber.
  • the diameters of the hydrogen supply pipe 60, the first hydrogen circulation pipe 90, and the second hydrogen circulation pipe 95 may be the same or different from each other independently.
  • the water supply nozzle 20a may be about 0.5 to about 3 times the diameter, and preferably about 0.5 to about 1.5 times, but the present invention is not limited thereto.
  • FIG 4 is a view showing a view from above of the hydrogenation reaction reactor of the present invention to show the arrangement of the first hydrogen circulation pipe and the second hydrogen circulation pipe.
  • FIG. 4A is a diagram when the first hydrogen circulation pipe and one second hydrogen circulation pipe are included, and FIG. 4B includes the first hydrogen circulation pipe and two second hydrogen circulation pipes.
  • FIG. 4C is a diagram when the first hydrogen circulation pipe and three second hydrogen circulation pipes are included.
  • FIG. in FIGS. 4A to 4C since the first hydrogen circulation pipe 90 is connected to the interruption of the hydrogen supply pipe 60 and is not visible from the top of the reactor, the connection position is indicated by a dotted line.
  • the hydrogenation reaction reactor of the present invention when the hydrogenation reaction reactor of the present invention includes one first hydrogen circulation pipe 90 and one second hydrogen circulation pipe 95, the first hydrogen circulation pipe 90 is provided. And the second hydrogen circulation pipe 95 are arranged at equal intervals with respect to the circumference of the reaction chamber 50. That is, the angles Ql and Q2 between the first hydrogen circulation pipe 90 and the second hydrogen circulation pipe 95 may be arranged at substantially equal intervals such that Q1 Q2 is 180 degrees.
  • the hydrogenation reaction reactor of the present invention when the hydrogenation reaction reactor of the present invention includes one first hydrogen circulation pipe 90 and two second hydrogen circulation pipes 95, the first hydrogen circulation pipe 90 is provided. And two second hydrogen circulation pipes 95 are arranged at equal intervals with respect to the circumference of the reaction chamber 50. That is, the angles (Q3, Q5) between the first hydrogen circulation pipe 90 and the adjacent second hydrogen circulation pipe 95, and the angle formed by the two second hydrogen circulation pipes 95 adjacent to each other ( Q4) may be arranged at substantially equal intervals to be Q3-Q4-Q5-120 degrees.
  • the hydrogenation reactor of the present invention includes one first hydrogen circulation pipe 90 and three second hydrogen circulation pipes 95
  • the first The hydrogen circulation pipe 90 and three second hydrogen circulation pipes 95 are arranged at equal intervals with respect to the circumference of the reaction chamber 50. That is, angles Q6 and Q9 between the first hydrogen circulation pipe 90 and the adjacent second hydrogen circulation pipe 95 and the angles Q7 formed by the second hydrogen circulation pipe 95 adjacent to each other are formed.
  • Q8 may be arranged at substantially equal intervals such that Q6-Q7-Q8-Q9 is 90 degrees.
  • (A) to (C) of Figure 4 is the second Although shown as including one to three of the hydrogen circulation pipe (95), not necessarily the invention is not limited to, various numbers, as needed And a second hydrogen circulation pipe in the form.
  • the hydrogenation reaction reactor according to an embodiment of the present invention when the hydrogenation reaction reactor according to an embodiment of the present invention further includes a second hydrogen circulation pipe, it is compared with the case where only the first hydrogen circulation pipe is included. Improved asymmetrical flow due to the hydrogen gas flow in the upper region of the chamber being supplied in only one direction, allowing the mixed flow of hydrogen and reactant to be maintained well in the counter-fuel diffusion to increase reaction efficiency There is this.
  • This disadvantage may be ameliorated by recycling hydrogen gas to the semi-water feed by the first hydrogen circulation pipe and the second hydrogen circulation pipe according to another embodiment of the present invention. That is, by circulating the hydrogen gas in addition to the first hydrogen circulation pipe by one or more second hydrogen circulation pipes, the imbalance of the hydrogen gas is eliminated and the problem caused by this is prevented, and the flow rate of the hydrogen gas is also increased so that the second hydrogen The efficiency of the hydrogenation reaction can be further increased compared to the case without the circulation pipe. At this time, such hydrogen gas In order to maximize the effect of reducing the imbalance of the flow and improving the efficiency of the hydrogenation reaction, the first hydrogen circulation pipe and the at least one second hydrogen circulation pipe are equally spaced from each other with respect to the circumference of the reaction chamber as illustrated in FIG. 4. It is preferable to arrange.
  • the temperature in the reaction chamber is about 90 to about 300 ° C, preferably about 120 to about 300 ° C, the pressure is about 5 to About 120 barg, preferably about 50 to about 100 barg.
  • the reaction mixture supplied into the reaction chamber may be a mixed mixture such that the volume ratio of hydrogen gas (3 ⁇ 4) is about 10 to about 50 vol% with respect to the total volume of the reaction mixture. Can be.
  • the semi-coupling water injected from the semi-coupling water supply nozzle may be injected into the reaction chamber at a speed of about 30 to about 70 m / sec.
  • the hydrogen gas flowing in the upper region of the reaction chamber, the velocity of about 5 to about 20 m / sec through the first hydrogen circulation pipe and optionally included second hydrogen circulation pipe May be sucked into the reaction stream and supplied to the semi-fung supply.
  • the hydrogen gas stream sucked into the reactant supply unit may be combined with the reactant sprayed at a constant rate from the reactant supply nozzle and supplied back into the reaction chamber to be recycled.
  • one end is connected to the upper part of the reaction chamber 50, and the other end includes a first hydrogen circulation pipe 90 which is connected in a T-shape to the interruption of the hydrogen supply pipe 60.
  • the reaction chamber was designed to have a height of 10 m and a maximum diameter of 3 m.
  • the diaphragm supply nozzle 20a had a diameter of 0.2m and the total length of the semicoultice diffuser 20b was 6m, and the diameter of the widest lower portion of the semiconductor diffused portion 20b was 0.96m, and the hydrogen supply pipe (60). ) was 0.15 m in diameter and the diameter (inner diameter) of the first hydrogen circulation pipe 90 was 0.1 5 m.
  • a reaction mixture containing a volume ratio of hydrogen gas (3 ⁇ 4) and a DCPD resin from the reactant injector 10 at a weight ratio of 3: 7 and 100 parts by weight of cyclohaxane as a solvent based on 100 parts by weight of the DCPD resin was added.
  • the feed nozzle 20a was injected into the reaction chamber 50 at a rate of 10 m / sec. Hydrogen gas flowing in the upper region of the reaction chamber 50 is sucked through the first hydrogen circulation pipe 90 at a rate of about 5 m / sec at an average speed and then injected through the reaction product supply nozzle 20a. The mixture was recycled into the reaction chamber 50 together.
  • one end is connected to the upper part of the reaction chamber 50, and the other end is connected to the first hydrogen circulation pipe 90 so as to be connected in a T-shape to the interruption of the hydrogen supply pipe 60.
  • 1st hydrogen circulating pipe which is connected to the upper part of reaction chamber 50 at the angle which forms 180 degree angle with 1 hydrogen circulation pipe 90, and the other end is connected to the reactant supply nozzle 20a of the reactant supply part 30
  • a hydrogenation reaction reactor having a height of 10 m and a maximum diameter of 3 m.
  • the reactant supply nozzle 20a had a diameter of 0.2m, the total length of the semicoultane diffuser 20b was 6m, and the diameter of the widest lower portion of the semiconducted diffuser 20b was 0.96m, and the hydrogen supply pipe 60 was used.
  • the diameter (inner diameter) was 0.15 m, and the diameter (inner diameter) of the crab 1 hydrogen circulation pipe 90 and the second hydrogen circulation pipe 95 was 0.15 m.
  • the hydrogen gas flowing in the upper region of the reaction chamber 50 has an average speed of about 5 ra / sec through the first hydrogen circulation pipe 90, and an average speed of about 5 through the second hydrogen circulation pipe 95. Sucked up at a rate of m / sec and recycled into the reaction chamber 50 together with the reaction mixture sprayed through the reaction product supply nozzle 20a. The remainder was subjected to the hydrogenation reaction of DCPD resin under the same conditions as in Example 1. Comparative Example 1
  • a hydrogenation reaction machine was designed in which the required hydrogen was supplied through the hydrogen supply pipe 6 without the hydrogen circulation pipe.
  • the conditions and reaction conditions of the remaining hydrogenation reaction was performed in the same manner as in Example 1 to carry out hydrogenation reaction of the DCPD resin.
  • the hydrogenation reaction was carried out while continuously supplying hydrogen gas through the hydrogen supply pipe 6 at an average speed of about 0.1 to about 0.5 m / sec.
  • Comparative Example 1 the pressure drop degree of the reaction vessel, hydrogen flow rate and fluidity through the first and second hydrogen circulation pipe were evaluated and shown in Table 1 below.
  • Comparative Example 1 ⁇ ⁇ 0.01 5 Asymmetric As shown in Table 1, the implementation II 1 and 2 has a hydrogen flow recycled in the first and / or the second hydrogen circulation pipe, the high yield of the hydrogenation reaction of the DCPD resin without the supplementary layer of hydrogen through the hydrogen supply pipe And the pressure drop was similar to that without the hydrogen circulation pipe.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

The present invention relates to a hydrogenation reactor. More specifically, the present invention relates to a hydrogenation reactor with improved stability and reaction efficiency of hydrogenation. The hydrogenation reactor of the present invention is provided with a hydrogen circulation pipe to recirculate hydrogen gas flowing in the upper region of a reaction chamber to a reaction system by means of the hydrogen circulation pipe, thereby being capable of improving the efficiency of hydrogenation.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
수소화 반웅기 【기술분야】  Hydrogenation reaction machine [technical field]
관련 출원 (들ᅵ과의 상호 인용  Cross citation with related application (s)
본 출원은 2015 년 9 월 10 일자 한국 특허 출원 제 10-2015- 0128298 호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.  This application claims the benefit of priority based on Korean Patent Application No. 10-2015-0128298 dated September 10, 2015, and all content disclosed in the literature of that Korean patent application is incorporated as part of this specification.
본 발명은 수소화 반웅기에 관한 것이다. 보다 상세하게는, 수소화 반웅의 반응 효율 및 안정성을 향상시킨 수소화 반웅기에 관한 것이다.  The present invention relates to a hydrogenation reactor. In more detail, it is related with the hydrogenation reaction machine which improved the reaction efficiency and stability of a hydrogenation reaction reaction.
【발명의 배경이 되는 기술】 [Technique to become background of invention]
일반적으로 유기 화합물에 대한 수소화 또는 수첨 반웅 (hydrogenation process)은 특정한 관능기를 환원시키거나, 불포화 화합물을 포화 화합물로 전환하는데 적용되는 반웅으로, 케톤 (ketone), 알데히드 (aldehyde), 이민 (imine) 등과 같은 불포화 관능기를 갖는 화합물을 알코올 (alcohol), 아민 (amine) 등의 화합물로 환원 (reduction)하거나, 을레핀 (olefin) 화합물의 불포화 결합을 포화시키는 등 다양한 화합물에 대해 적용될 수 있으며 , 상업적으로 대단히 중요한 반웅 중 하나이다.  In general, hydrogenation or hydrogenation processes for organic compounds are reactions applied to reducing specific functional groups or converting unsaturated compounds to saturated compounds, such as ketones, aldehydes, imines, and the like. Compounds having the same unsaturated functional groups can be applied to various compounds such as reduction of compounds with alcohols, amines, etc., or saturation of unsaturated bonds of olefin compounds. It is one of the important reactions.
이러한 수소화 반웅은 일반적으로 수소 및 수소화 반웅을 수행할 반웅 대상물을 귀금속 촉매와 접촉시킴으로써 수행되는데, 수소화 반웅을 위한 반응기로는 대표적으로 트리클 베드 반웅기 (trickle bed reactor), 루프형 반웅기 (loop reactor) 등이 있다.  Such hydrogenation reaction is generally carried out by contacting a reaction object to be subjected to hydrogen and a hydrogenation reaction with a noble metal catalyst. Reactors for hydrogenation reaction are typically trickle bed reactors and loop reactors. ).
이 중 트리클 베드 반웅기는 투자비와 운전비가 낮다는 장점이 있지만, 압력 강하의 위험으로 인해 반응기에 들어가는 촉매 입경이 커야 하기 때문에 촉매와 반웅물의 접촉 면적이 감소하게 되어 반웅 효율성이 낮은 단점이 있다.  Among these, the trickle bed reactor has the advantage of low investment and operating costs, but due to the risk of pressure drop, the particle size of the catalyst to enter the reactor has to be large, so that the contact area between the catalyst and the reaction product is reduced and the reaction efficiency is low.
이에 반하여, 루프형 반웅기는 촉매 크기에 제한이 없으며, 액상과 기상의 흔합성이 뛰어나기 때문에 촉매의 효율성이 우수한 장점이 있다. 그러나, 상기 루프형 반웅기는 기상 (gas phase)의 수소 기체와, 액상 (liquid phase)의 반웅 대상물이 흔합된 기액의 반웅계 내에서 수소화 반웅을 수행하는 것으로, 상기 반웅계 내에 용해되지 않고 반웅 대상물이 없는 공간으로 나오는 수소 기체가 필연적으로 존재하므로 상대적으로 수소 기체를 많이 투입해야 할 필요가 있는 단점이 있다. On the contrary, the loop type reactor does not have a limitation on the size of the catalyst, and because of the excellent compatibility between the liquid phase and the gas phase, the efficiency of the catalyst is excellent. However, the loop-type reaction device is to perform hydrogenation reaction in a gaseous reaction mixture of gaseous hydrogen gas and a liquid phase reaction liquid, and does not dissolve in the reaction system. There is a disadvantage in that it is necessary to inject a lot of hydrogen gas because the hydrogen gas coming out of this space inevitably exists.
【해결하고자 하는 과제】 Problem to be solved
상기한 문제점을 해결하기 위하여, 반웅기의 반웅 챔버의 상부 영역에서 유동하여 반웅에 참여하지 못하는 수소 기체를 다시 반응계 내로 재순환시킴으로써 수소화 반웅의 효율을 향상시킨 수소화 반응기를 제공하고자 한다.  In order to solve the above problems, it is to provide a hydrogenation reactor that improves the efficiency of the hydrogenation reaction by recirculating the hydrogen gas flowing in the upper region of the reaction chamber of the reaction chamber back to the reaction system.
【과제 해결 수단】 [Task solution]
이에 본 발명의 일 구현예에 따르면,  Accordingly, according to one embodiment of the present invention,
수소화 반웅이 일어나는 반웅 챔버;  A reaction chamber in which the hydrogenation reaction takes place;
수소, 수소화될 반웅 대상물, 및 용매를 포함하는 반응물을 주입하는 반웅물 주입부;  A reaction mixture injecting reactant including hydrogen, a reaction target to be hydrogenated, and a solvent;
상기 반웅물 주입부와 연결되어 위치하며, 상기 반웅 챔버 내부로 상기 반응물을 공급하는 반웅물 공급부;  A semi-ungmul supply unit which is located in connection with the reaction product and supplies the reactant into the reaction chamber;
상기 반웅 챔버 하부에 위치하며, 상기 반웅 챔버 외부로 수소화 반웅 생성물을 배출하는 반응 생성물 배출부;  A reaction product discharge part disposed under the reaction chamber and discharging the hydrogenated reaction product to the outside of the reaction chamber;
상기 반응물 공급부에 연결되며, 상기 반웅물 공급부를 통해 상기 반웅 첨버에 수소를 추가적으로 공급하는 수소 공급 배관; 및  A hydrogen supply pipe connected to the reactant supply unit and additionally supplying hydrogen to the reaction chamber through the reaction system; And
일단은 상기 반웅 챔버의 상부에 연결되고, 타단은 상기 수소 공급 배관의 중단에 연결되어, 상기 반웅 챔버의 상부 영역에 유동하는 수소 기체를 상기 반웅물 공급부로 순환시키는 제 1 수소 순환 배관을 포함하는 수소화 반웅기를 제공한다.  One end is connected to the upper portion of the reaction chamber, the other end is connected to the interruption of the hydrogen supply pipe, including a first hydrogen circulation pipe for circulating hydrogen gas flowing in the upper region of the reaction chamber to the reaction water supply portion Provide a hydrogenation reaction.
【발명의 효과】 【Effects of the Invention】
본 발명의 수소화 반웅기에 따르면, 수소 순환 배관을 구비하여 반웅 챔버의 상부 영역에서 유동하는 수소 기체를 상기 수소 순환 배관에 의해 다시 반웅계 내로 재순환시킴으로써 수소화 반웅의 효율을 향상시킬 수 있다. According to the hydrogenation reaction machine of this invention, it is equipped with the hydrogen circulation piping, The efficiency of the hydrogenation reaction can be improved by recycling the hydrogen gas flowing in the upper region of the chamber back into the reaction system by the hydrogen circulation pipe.
또한, 본 발명의 일 실시예에 따라 상기 수소 순환 배관을 복수 개로 포함하는 경우, 하나만 구비하는 경우보다 반응 ¾버 상부 영역에서 반웅물 공급부로 순환되는 수소 유량이 보다 증가하고, 기체의 유동성이 훨씬 좋아질 수 있어 수소화 반웅의 효율이 한층 더 향상될 수 있다.  In addition, in the case of including a plurality of the hydrogen circulation pipe according to an embodiment of the present invention, the flow rate of hydrogen circulated from the upper portion of the reaction tank to the semi-water supply portion is increased more than if only one, and the fluidity of the gas is much higher It can be improved so that the efficiency of the hydrogenation reaction can be further improved.
【도면의 간단한 설명】 [Brief Description of Drawings]
도 1은 일반적인 루프형 수소화 반웅기의 구조를 도시하는 도면이다. 도 2는 본 발명의 일 실시예에 따른 수소화 반웅기의 구조를 도시하는 도면이다.  BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the structure of a general loop type hydrogenation reaction reactor. 2 is a diagram illustrating a structure of a hydrogenation reaction reactor according to an embodiment of the present invention.
도 3은 본 발명의 다른 일 실시예에 따른 수소화 반웅기의 구조를 도시하는 도면이다.  3 is a diagram illustrating a structure of a hydrogenation reaction reactor according to another embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 수소화 반웅기를 위에서 바라본 모습을 도시하는 도면이다.  4 is a view showing a state seen from above the hydrogenation reaction counter according to an embodiment of the present invention.
【발명의 실시를 위한 구체적인 내용】 [Specific contents for implementation of the invention]
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.  As the invention allows for various changes and numerous embodiments, particular embodiments will be illustrated and described in detail below. However, this is not intended to limit the present invention to a specific disclosed form, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.
또한, 본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. Also, the terminology used herein is for the purpose of describing example embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. As used herein, the terms "comprise", "comprise" or "have" are intended to indicate that there is a feature, step, component, or combination thereof, that includes one or more other features or steps, Does not preclude the existence or possibility of addition of components or any combination thereof It must be understood.
또한 본 발명에 있어서, 각 구성 요소가 각 구성 요소들의 "상에" 또는 "위에" 형성되는 것으로 먼급되는 경우에는 각 구성 요소가 직접 각 구성 요소들의 위에 형성되는 것을 의미하거나, 다른 구성 요소가 각 층 사이, 대상체, 기재 상에 추가적으로 형성될 수 있음을 의미한다.  In addition, in the present invention, when each component is first to be formed "on" or "on" of each component, it means that each component is directly formed on each component, or other components are each It can be formed additionally between the layer, the object, the substrate.
이하, 도면을 참고로 하여 본 발명의 수소화 반웅기를 보다 자세히 설명하기로 한다. 본 발명의 일 구현예에 따른 수소화 반웅기는, 수소화 반웅이 일어나는 반응 챔버; 수소, 수소화될 반응 대상물, 및 용매를 포함하는 반웅물을 주입하는 반웅물 주입부; 상기 반웅물 주입부와 연결되어 위치하며, 상기 반웅 ¾버 내부로 상기 반웅물을 공급하는 반응물 공급부; 상기 반웅 챔버 하부에 위치하며, 상기 반응 챔버 외부로 수소화 반웅 생성물을 배출하는 반웅 생성물 배출부; 상기 반웅물 공급부에 연결되며, 상기 반웅물 공급부를 통해 상기 반응 첨버에 수소를 추가적으로 공급하는 수소 공급 배관; 및 일단은 상기 반웅 챔버의 상부에 연결되고, 타단은 상기 수소 공급 배관의 중단에 연결되어, 상기 반웅 챔버의 상부 영역에 유동하는 수소 기체를 상기 반웅물 공급부로 순환시키는 제 1 수소 순환 배관을 포함한다. 이러한 수소화 반응을 위해 상업적으로 사용되는 반웅기로는 대표적으로 트리클 베드 반웅기 (trickle bed reactor), 루프형 반웅기 (loop reactor) 등이 있다.  Hereinafter, the hydrogenation reaction reactor of the present invention will be described in more detail with reference to the accompanying drawings. Hydrogenation reaction according to an embodiment of the present invention, the reaction chamber in which the hydrogenation reaction occurs; A semi-ungmul injecting unit for injecting a reaction product including hydrogen, a reaction object to be hydrogenated, and a solvent; A reactant supply unit located in connection with the reaction water injector and supplying the reaction water to the reaction chamber; A reaction product discharge part disposed under the reaction chamber and discharging a hydrogenation reaction product outside the reaction chamber; A hydrogen supply pipe which is connected to the semi-flounder supply part and additionally supplies hydrogen to the reaction additive through the semi-flounder supply part; And a first hydrogen circulation pipe having one end connected to an upper portion of the reaction chamber and the other end connected to an interruption of the hydrogen supply pipe to circulate hydrogen gas flowing in an upper region of the reaction chamber to the reaction product supply unit. do. Commercially used reaction reactors for such hydrogenation include trickle bed reactors, loop reactors, and the like.
이 중 트리클 베드 반응기는 투자비와 운전비가 낮다는 장점이 있지만, 압력 강하의 위험으로 인해 반웅기에 들어가는 촉매 입경이 커야 하기 때문에 촉매와 반응물의 접촉 면적이 감소하게 되어 반웅 효율성이 낮은 단점이 있다.  Among these, the trickle bed reactor has the advantage of low investment cost and operating cost, but the contact area of the catalyst and the reactant is reduced because the size of the catalyst entering the reactor due to the risk of pressure drop has a disadvantage of low reaction efficiency.
이에 반하여, 루프형 반응기는 촉매 크기에 제한이 없으며, 액상과 기상의 흔합성이 뛰어나기 때문에 촉매의 효을성이 우수하다. 상기 루프형 반웅기는 기상 (gas phase)의 수소 기체와, 액상 (liquid phase)의 반웅 대상물 및 용매가 흔합된 반웅계 내에서 수소화 반응이 일어난다. 이에, 상기 반웅계 내에 용해되지 않고 반웅 대상물이 없는 공간으로 나오는 수소 기체가 존재할 수 밖에 없어 이를 보층하기 위해 상대적으로 수소 기체를 많이 투입해야 할 필요가 있는 단점이 있다. On the contrary, the loop reactor has no limitation on the size of the catalyst and has excellent efficiency of the catalyst because of excellent compatibility between the liquid phase and the gas phase. The loop-type reaction device undergoes a hydrogenation reaction in a reaction system in which a gas phase of hydrogen gas and a liquid phase reaction object and a solvent are mixed. Accordingly, hydrogen gas that does not dissolve in the reaction system and exits into the space where the reaction object is absent is There is a disadvantage in that it is necessary to add a relatively large amount of hydrogen gas in order to complement this can not exist.
본 발명의 수소화 반웅기는 케톤, 알데히드, 이민 등과 같은 불포화 관능기를 환원시키거나, 올레핀계 화합물, 방향족 화합물, 석유 수지, 그 밖에 유기 화합물 또는 수지에 존재하는 탄소 -탄소 이중 결합 또는 삼중 결합을 포화시키는 다양한 수첨 반웅 또는 수소화 반응 (hydrogenation process)에 적용될 수 있으며, 특별히 제한되지 않는다.  The hydrogenation reaction group of the present invention reduces unsaturated functional groups such as ketones, aldehydes, imines, etc., or saturates carbon-carbon double bonds or triple bonds present in olefinic compounds, aromatic compounds, petroleum resins, and other organic compounds or resins. It can be applied to various hydrogenation reactions or hydrogenation processes, and is not particularly limited.
본 발명의 일 실시예에 따르면, 상기 수소화 반응기는 디시클로펜타디엔 (dicyclopentadiene, DCPD) 수지의 수소화 반웅에 사용될 수 있다. 디시클로펜타디엔 수지는 DCPD을 열중합하여 수득되는 수지로, 메탈로센 폴리머와 같은 베이스 폴리머와의 상용성이 우수하며 낮은 분자량을 가지고 있어 다양한 분야에서의 점착제 또는 접착제로 사용된다. 하지만, DCPD 수지는 황갈색을 띠고, 심한 악취를 풍기기 때문에 수소화 반웅을 통해 탄소 -탄소 이증 결합에 수소를 첨가하여 포화시킴으로써 무색, 무취의 수지로 개질할 필요가 있다. 또한, 수소화 반웅을 수행한 DCPD 수지는 열안정성과 내후성이 현저히 향상되는 장점이 있다.  According to one embodiment of the invention, the hydrogenation reactor can be used for the hydrogenation reaction of dicyclopentadiene (DCPD) resin. Dicyclopentadiene resin is a resin obtained by thermal polymerization of DCPD, and has excellent compatibility with a base polymer such as a metallocene polymer and has a low molecular weight, and thus is used as an adhesive or an adhesive in various fields. However, since the DCPD resin has a yellowish brown color and gives off a bad smell, it needs to be modified into a colorless and odorless resin by saturating by adding hydrogen to a carbon-carbon backbone bond through hydrogenation reaction. In addition, the DCPD resin subjected to the hydrogenation reaction has the advantage that the thermal stability and weather resistance is significantly improved.
도 1은 일반적인 루프형 수소화 반웅기의 구조를 도시하는 도면이다. 도 1을 참조하면, 수소화 반웅기 (9)는 반웅물 주입부 (1), 반응물 공급부 (3), 반웅 생성물 배출부 (4), 반웅 챔버 (5), 및 수소 공급 배관 (6)를 포함한다. 반웅물 공급부 (3)는 반웅 챔버 (5)의 상부에 위치하며 반웅물 주입부 (1)와 연통하는 반웅물 공급 노즐 (2a)과, 반웅 챔버 (5)의 내부에 위치하며, 반웅물 공급 노즐 (2a)로부터 공급되는 반웅물을 반웅 챔버 (5) 내로 확산시키는 반웅물 확산부 (2b)를 포함한다.  BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the structure of a general loop type hydrogenation reaction reactor. Referring to FIG. 1, the hydrogenation reaction vessel 9 includes a reaction product inlet 1, a reactant supply 3, a reaction product outlet 4, a reaction chamber 5, and a hydrogen supply pipe 6. do. The reaction liquid supply part 3 is located in the upper part of the reaction chamber 5 and the reaction liquid supply nozzle 2a communicating with the reaction liquid injection part 1, and is located inside the reaction chamber 5, and supplies the reaction product And a semi-coagulant diffuser 2b for diffusing the semi-coagulum supplied from the nozzle 2a into the reaction chamber 5.
수소, 수소화될 반응 대상물, 및 용매를 포함하는 반웅 흔합물은 반웅물 주입부 (1)로부터 반웅물 공급부 (3)의 반웅물 공급 노즐 (2a)를 통해 반웅 챔버 (5) 내로 일정한 속도로 분사된다. 분사된 반응 흔합물은 반응물 확산부 (2b)를 통해 반웅 챔버 (5) 내의 공간으로 확산되며, 반웅 챔버 (5) 내에 존재하는 촉매의 존재 하에서 수소화될 반웅 대상물이 수소와 반웅함으로써 수소화 반웅을 수행하게 된다.  A reaction mixture comprising hydrogen, a reaction object to be hydrogenated, and a solvent is injected from the reaction product injection section 1 through the reaction product supply nozzle 2a of the reaction product supply section 3 into the reaction chamber 5 at a constant speed. do. The injected reaction mixture diffuses through the reactant diffusion section 2b into the space in the reaction chamber 5, and the reaction object to be hydrogenated in the presence of the catalyst present in the reaction chamber 5 reacts with the hydrogen to perform the reaction reaction. Done.
이때 액상의 반웅 흔합물 내에 용해되지 않은 수소 기체가 반웅 챔버 (5)의 상부 영역 (7)에서 유동하게 되는데, 이처럼 수소, 수소화될 반응 대상물, 및 용매가 함께 존재하는 반웅계 (8) 내에 존재하지 않고, 반웅물이 없는 빈 공간인 상부 영역 (7)으로 올라은 수소 기체는 수소화 반웅에 참여하지 못하므로 반웅 효율이 떨어지게 된다. At this time, undissolved hydrogen gas in the liquid reaction mixture And flows in the upper region 7 of the chamber 5, such that the upper region 7 which is an empty space without hydrogen, the reaction object to be hydrogenated, and the solvent is present in the reaction system 8 together. The hydrogen gas raised to) does not participate in the hydrogenation reaction and thus the reaction efficiency decreases.
따라서, 이렇게 반응계 (8)로부터 이탈하는 수소 기체를 보층하기 위해 별도로 수소 공급 배관 (6)을 포함하며, 수소화 반응이 진행되는 중간에 필요에 따라 간헐적으로 수소 공급 배관 (6)으로부터 반웅 챔버 (5)로 수소 기체를 보층하여 공급한다. 수소 공급 배관 (6)은 반응물 공급 노즐 (2a) 부근의 위치에서 반웅물 공급부 (3)와 연결되며, 따라서, 수소 공급 배관 (6)으로부터 공급되는 수소 기체는 반응물 공급 노즐 (2a) 부근에서 분사되는 반웅 흔합물과 합쳐져 반웅물 확산부 (2b)를 통해 반응 챔버 (5) 내로 공급된다.  Thus, a hydrogen supply pipe (6) is separately included to complement the hydrogen gas leaving the reaction system (8), and the reaction chamber (5) intermittently from the hydrogen supply pipe (6) intermittently as necessary in the middle of the hydrogenation reaction. ) Supply hydrogen gas in a complementary manner. The hydrogen supply pipe 6 is connected with the semi-atom water supply part 3 at a position near the reactant supply nozzle 2a, so that the hydrogen gas supplied from the hydrogen supply pipe 6 is injected near the reactant supply nozzle 2a. It is combined with the reaction mixture to be supplied into the reaction chamber (5) through the reaction mixture diffusion (2b).
그런데, 수소 기체는 단가가 비싼 원료이므로 이처럼 과량의 수소 기체의 보충 주입으로 인하여 생산비용이 증가하게 되어 경제성이 떨어지는 문제점이 있다.  However, since hydrogen gas is an expensive raw material, there is a problem in that the production cost increases due to supplemental injection of excess hydrogen gas and thus the economical efficiency is lowered.
한편, 본 발명의 일 실시예에 따른 반웅기는, 반웅에 참여하지 못하는 수소 기체를 다시 반웅계 내로 재순환시킴으로써 상기와 같은 문제점을 해결하고 수소화 반웅의 효율성을 획기적으로 높이는 효과를 달성하였다. 도 2는 본 발명의 일 실시예에 따른 수소화 반웅기의 구조를 도시하는 도면이다.  On the other hand, the counterunggi according to an embodiment of the present invention, by recirculating the hydrogen gas that does not participate in the reaction back into the reaction system to solve the above problems and achieved the effect of significantly increasing the efficiency of the hydrogenation reaction. 2 is a diagram illustrating a structure of a hydrogenation reaction reactor according to an embodiment of the present invention.
도 2를 참조하면, 본 발명의 일 실시예에 따른 수소화 반웅기 (100)는 반웅물 주입부 (10), 반웅물 공급부 (30), 반웅 생성물 배출부 (40), 반웅 챔버 (50), 수소 공급 배관 (60) 및 제 1 수소 순환 배관 (90)을 포함한다. 반웅물 공급부 (30)는 반웅물 주입부 (10)와 연결되어 위치하며, 반웅물 공급부 (30)는 또한 반웅 챔버 (50)의 상부에 위치하며 반웅물 주입부 (10)와 연통하는 반웅물 공급 노즐 (20a)과, 반웅 챔버 (50)의 내부에 위치하며 반웅물 공급 노즐 (20a)로부터 공급되는 반웅물을 반웅 챔버 (50) 내로 확산시키는 반웅물 확산부 (20b)를 포함한다.  Referring to FIG. 2, the hydrogenation reaction machine 100 according to an embodiment of the present invention includes a reaction product injection part 10, a reaction product supply part 30, a reaction product discharge part 40, a reaction product chamber 50, And a hydrogen supply pipe 60 and a first hydrogen circulation pipe 90. The half water supply 30 is located in connection with the half water injection 10, and the half water supply 30 is also located at the top of the reaction chamber 50 and communicates with the half water injection 10. A supply nozzle 20a and a semi-coagulant diffuser 20b, which is located inside the reaction chamber 50 and diffuses the reaction product supplied from the reaction product supply nozzle 20a, into the reaction chamber 50.
본 발명의 일 실시예에 따른 수소화 반웅기 (100)에서, 제 1 수소 순환 배관 (90)의 일단은 반웅 챔버 (50)의 상부에 연결되고, 타단은 수소 공급 배관 (60)의 중단에 T자 형태로 연결되어 반응 챔버 (50)의 상부 영역 (70)에 유동하는 수소 기체를 반웅물 공급부 (30)로 순환시키는 역할을 한다. In the hydrogenation reaction vessel 100 according to an embodiment of the present invention, one end of the first hydrogen circulation pipe 90 is connected to the upper portion of the reaction chamber 50, and the other end is supplied with hydrogen. It is connected to the interruption of the pipe 60 in the form of a T and serves to circulate the hydrogen gas flowing in the upper region 70 of the reaction chamber 50 to the semi-water supply portion 30.
이를 보다 구체적으로 설명하면, 먼저 수소, 수소화될 반웅 대상물, 및 용매를 포함하는 반웅 흔합물 (반웅물)은 반웅물 주입부 (10)로부터 반웅물 공급 노즐 (20a)을 통해 반웅 챔버 (50) 내로 일정한 속도로 분사된다. 분사된 반웅 흔합물은 반웅물 확산부 (20b)를 통해 반웅 챔버 (50) 내의 공간으로 확산되며, 반웅 챔버 (50) 내에 존재하는 촉매의 존재 하에서 수소화될 반웅 대상물이 수소와 반웅함으로써 수소화 반응을 수행하게 된다.  More specifically, first, the reaction mixture (banung mixture) including hydrogen, a reaction object to be hydrogenated, and a solvent is supplied from the reaction product injection unit 10 through the reaction product supply nozzle 20a to form the reaction chamber 50. Sprayed into it at a constant speed. The injected reaction mixture is diffused into the space in the reaction chamber 50 through the reaction mixture diffusion portion 20b, and the reaction object to be hydrogenated in the presence of a catalyst present in the reaction chamber 50 reacts with the hydrogen to react with the hydrogenation reaction. Will perform.
본 발명이 이에 제한되는 것은 아니나, 반웅물 확산부 (20b)는 보다 효과적인 반웅물의 확산을 위하여, 상기 반웅 챔버 (50)의 길이 방향으로 연장된 관 형태를 가지며, 이때 관의 중간 부분의 직경이 가장 좁고, 윗 부분과 아래 부분으로 갈수록 직경이 넓어지는 깔때기 모양을 가질 수 있다. 반응물 공급 노즐 (20a)의 직경은 목표 생산량과 펌프의 성능에 따라 달라질 수 있으므로 특별히 제한되지 않으나, 본 발명의 일 실시예에 따르면 : 약 20 내지 약 1000mm일 수 있고, 반웅물 공급 노즐 (20a)의 직경에 따라 반웅물 확산부 (20b)의 직경도 달라질 수 있다. The present invention is not limited thereto, but the semi-coupling diffuser 20b has a tubular shape extending in the longitudinal direction of the counter-coupling chamber 50 for more effective diffusion of the counter-coupling, wherein the diameter of the middle portion of the tube It may have the narrowest, funnel shape with diameters that extend toward the top and bottom. The diameter of the reagent supply nozzle (20a) can be changed by the performance of the target output and the pump is not particularly limited, in one embodiment of the present invention: it can be from about 20 to about 1000mm, banung water supply nozzle (20a) Depending on the diameter of the semi-ungmul diffusion 20b may also vary.
예를 들어, 본 발명의 일 실시예에 따르면, 반웅물 확산부 (20b)의 길이는 반웅물 공급 노즐 (20a) 직경의 약 20 내지 약 50 배, 바람직하게는 약 30 내지 약 40 배일 수 있다. 또한 반웅물 확산부 (20b)에서 가장 좁은 부분 중간 부분의 직경은 반웅물 공급 노즐 (20a) 직경의 약 1 내지 약 4 배, 바람직하게는 약 1.2 내지 약 2 배일 수 있고, 반응물 확산부 (20b)의 가장 넓은 아랫 부분의 직경은 반응물 공급 노즐 (20a) 직경의 약 1 내지 약 10 배, 바람직하게는 약 4 내지 약 8 배일 수 있다. 반응물 확산부 (20b)의 길이 및 직경이 상기와 같은 범위를 가질 때, 반웅물이 보다 효과적으로 반웅 챔버 내로 확산되어 수소화 반웅의 효율이 높아질 수 있다.  For example, according to one embodiment of the present invention, the length of the semi-acre water diffusion part 20b may be about 20 to about 50 times, preferably about 30 to about 40 times the diameter of the semi-acre water supply nozzle 20a. . In addition, the diameter of the middle portion of the narrowest portion in the semi-acre water diffusion part 20b may be about 1 to about 4 times, preferably about 1.2 to about 2 times the diameter of the semi-water supply nozzle 20a, and the reactant diffuser 20b The diameter of the widest bottom portion of N) may be about 1 to about 10 times, preferably about 4 to about 8 times the diameter of the reactant feed nozzle 20a. When the length and diameter of the reactant diffusion part 20b have the above ranges, the reaction product can be more effectively diffused into the reaction chamber to increase the efficiency of the hydrogenation reaction reaction.
수소 공급 배관 (60)은 반웅물 공급 노즐 (20a) 부근의 위치에서 반응물 공급부 (30)와 연결되며, 따라서, 수소 공급 배관 (60)으로부터 간헐적으로 공급되는 수소 기체는 반웅물 공급 노즐 (20a) 부근에서 분사되는 반웅 흔합물과 합쳐져 반웅물 확산부 (20b)를 통해 반웅 챔버 (50) 내로 공급된다. 한편, 수소 기체의 용해도 특성으로 인하여 수소, 수소화될 반웅 대상물, 및 용매가 함께 존재하는 반웅계 (80) 내에 용해되지 않고 반웅 챔버 (50)의 상부 영역 (70)에서 유동하는 수소 기체가 존재한다. The hydrogen supply pipe 60 is connected with the reactant supply unit 30 at a position near the semi-flood supply nozzle 20a, so that the hydrogen gas intermittently supplied from the hydrogen supply pipe 60 is the semi-flounder supply nozzle 20a. It is combined with the reaction mixture injected in the vicinity and supplied into the reaction chamber 50 through the reaction mixture diffusion part 20b. On the other hand, due to the solubility characteristics of hydrogen gas, hydrogen, reaction to be hydrogenated There is a hydrogen gas that flows in the upper region 70 of the reaction chamber 50 without dissolving in the reaction system 80 in which the object and the solvent are present together.
도 2에 도시된 본 발명의 수소화 반웅기 (100)에 따르면, 이렇게 반웅계 (80)로부터 이탈하는 수소 기체는 압력 차이에 의해 제 1 수소 순환 배관 (90)을 통해 빨아들여져 수소 공급 배관 (60)을 통해 반웅물 공급부 (30)의 반응물 공급 노즐 (20a) 주위로 이동하게 되며, 이러한 수소 기체 흐름 (90a)은 반웅물 공급 노즐 (20a)로부터 일정한 속도로 분사되는 반웅물과 합쳐져 다시 반웅 챔버 (50) 내로 공급된다. 따라서, 반웅계 (80) 내에서 반웅에 참여하는 수소 기체의 기체 체류량 (gas holdup)이 증가하여 높은 수소화 반웅율을 달성할 수 있다.  According to the hydrogenation reaction reactor 100 of the present invention shown in FIG. 2, the hydrogen gas leaving the reaction system 80 is sucked through the first hydrogen circulation pipe 90 due to the pressure difference, and thus the hydrogen supply pipe 60 is removed. ) Is moved around the reactant supply nozzle 20a of the reaction product supply part 30, and the hydrogen gas stream 90a is combined with the reaction product sprayed at a constant rate from the reaction product supply nozzle 20a and reacts again. 50 is fed into. Therefore, the gas holdup of the hydrogen gas participating in the reaction in the reaction system 80 can be increased to achieve a high hydrogenation reaction reaction rate.
또한, 본 발명의 수소화 반웅기 (100) 또한 종래의 수소화 반응기와 마찬가지로 수소 기체를 보충하기 위한 수소 공급 배관 (60)을 포함하나, 제 1 수소 순환 배관 (90)에 의해 반웅계 (80) 내부로 재순환되는 수소 기체의 유량이 존재하므로, 종래의 수소화 반웅기에 비하여 보충되는 수소 기체의 양이 현저히 줄어들거나, 수소 기체의 보층이 필요하지 않을 수 있다. 예를 들어, 수소 공급 배관 (60)을 통해 보충되는 수소 기체의 양은 제 1 수소 순환 배관 (90)을 포함하지 않았을 경우에 비하여, 동일한 운전 조건에서 약 1/25 내지 약 1/45배까지 감소될 수 있다.  In addition, the hydrogenation reaction reactor 100 of the present invention also includes a hydrogen supply pipe 60 for replenishing hydrogen gas, as in the conventional hydrogenation reactor, but inside the reaction system 80 by the first hydrogen circulation pipe 90 Since there is a flow rate of the hydrogen gas recycled to the reactor, the amount of hydrogen gas replenished as compared with the conventional hydrogenation reactor may be significantly reduced, or a complement layer of hydrogen gas may not be required. For example, the amount of hydrogen gas replenished through the hydrogen supply piping 60 is reduced by about 1/25 to about 1/45 times under the same operating conditions as compared to not including the first hydrogen circulation piping 90. Can be.
또한, 제 1 수소 순환 배관 (90)를 포함하더라도, 반웅물 공급 노즐 (20a)에서의 압력 강하 (pressure drop) 정도가 제 1 수소 순환 배관 (90)을 포함하지 않았을 때와 큰 차이가 없어 추가로 압력 강하를 보완하기 위해 펌프의 성능을 증가시킬 필요가 없으며, 반웅기의 반응 효율성이 유지될 수 있으므로 경제적으로 유리하다.  In addition, even if the first hydrogen circulation pipe (90) is included, the degree of pressure drop at the semi-aeration water supply nozzle (20a) is not significantly different from when the first hydrogen circulation pipe (90) is not included. It is not necessary to increase the performance of the pump to compensate the furnace pressure drop, and it is economically advantageous because the reaction efficiency of the reaction can be maintained.
본 발명의 일 실시예에 따르면, 수소 공급 배관 (60) 및 제 1 수소 순환 배관 (90)의 직경은 각각 독립적으로 동일하거나 상이할 수 있으며, 반웅물 공급 노즐 (20a) 직경의 약 0.5 내지 약 3 배, 바람직하게는 약 0.5 내지 약 1.5 배일 수 있으나, 본 발명이 이에 제한되는 것은 아니다.  According to one embodiment of the present invention, the diameters of the hydrogen supply pipe 60 and the first hydrogen circulation pipe 90 may each independently be the same or different, and each of about 0.5 to about about the diameter of the semi-atom water supply nozzle 20a. It may be three times, preferably about 0.5 to about 1.5 times, but the present invention is not limited thereto.
도 3은 본 발명의 다른 일 실시예에 따른 수소화 반웅기의 구조를 도시하는 도면이다.  3 is a diagram illustrating a structure of a hydrogenation reaction reactor according to another embodiment of the present invention.
도 3을 참조하면, 본 발명의 일 실시예에 따른 수소화 반응기 (200)는 반응물 주입부 (10), 반웅물 공급부 (30), 반웅 생성물 배출부 (40), 반응 챔버 (50), 수소 공급 배관 (60), 제 1 수소 순환 배관 (90) 및 제 2 수소 순환 배관 (95)을 포함한다. 반웅물 공급부 (30)는 반응물 주입부 (10)와 연결되어 위치하며, 반웅물 공급부 (30)는 또한 반웅 챔버 (50)의 상부에 위치하며 반웅물 주입부 (10)와 연통하는 반응물 공급 노즐 (20a)과, 반웅 챔버 (50)의 내부에 위치하며 반웅물 공급 노즐 (20a)로부터 공급되는 반웅물을 반응 챔버 (50) 내로 확산시키는 반응물 확산부 (20b)를 포함한다. Referring to Figure 3, the hydrogenation reactor 200 according to an embodiment of the present invention Reactant inlet 10, reaction product supply 30, reaction product outlet 40, reaction chamber 50, hydrogen supply piping 60, first hydrogen circulation piping 90 and second hydrogen circulation piping ( 95). The reactant feeder 30 is located in connection with the reactant inlet 10, and the reactant feeder 30 is also located at the top of the reactant inlet chamber 50 and in communication with the reactant feeder 10. 20a and a reactant diffuser 20b positioned inside the reaction chamber 50 and diffusing the reaction product supplied from the reaction product supply nozzle 20a into the reaction chamber 50.
반웅물 공급 노즐 (20a), 반웅물 공급 노즐 (20a) 및 반웅물 확산부 (20b)의 예시적인 형태 및 직경 범위는 상기 도 2에서 설명한 바와 동일하므로 생략한다.  Exemplary shapes and diameter ranges of the semi-aerated water supply nozzle 20a, the semi-aerated water supply nozzle 20a, and the semi-aerated water diffusion part 20b are the same as those described with reference to FIG.
또한, 도 2에 도시된 수소화 반응기와 마찬가지로, 수소 공급 배관 (60)은 반웅물 공급 노즐 (20a) 부근의 위치에서 반웅물 공급부 (30)와 연결되며, 따라서, 수소 공급 배관 (60)으로부터 간헐적으로 공급되는 수소 기체는 반웅물 공급 노즐 (20a) 부근에서 분사되는 반웅 흔합물과 합쳐져 반웅물 확산부 (20b)를 통해 반웅 챔버 (50) 내로 공급된다.  In addition, similarly to the hydrogenation reactor shown in FIG. 2, the hydrogen supply pipe 60 is connected to the semi-flop water supply part 30 at a position near the half-water supply nozzle 20a, and thus intermittently from the hydrogen supply pipe 60. The hydrogen gas supplied thereto is combined with the reaction mixture injected in the vicinity of the reaction product supply nozzle 20a and supplied into the reaction chamber 50 through the reaction product diffusion portion 20b.
본 발명의 일 실시예에 따른 수소화 반웅기 (200)에서, 제 1 수소 순환 배관 (90)의 일단은 반웅 챔버 (50)의 상부에 연결되고, 타단은 수소 공급 배관 (60)의 중단에 T자 형태로 연결되어 반옹 챔버 (50)의 상부 영역 (70)에 유동하는 수소 기체를 반웅물 공급부 (30)로 순환시키는 역할을 한다. 또한, 제 2 수소 순환 배관 (95)의 일단은 반웅 챔버 (50)의 상부에 연결되고, 타단은 반응물 공급부 (30)의 중단, 특히 반응물 공급 노즐 (20a)이 위치하는 부근에 연결되어 반응 챔버 (50)의 상부 영역 (70)에 유동하는 수소 기체를 추가적으로 반웅물 공급부 (30)로 순환시키는 역할을 한다.  In the hydrogenation reaction vessel 200 according to an embodiment of the present invention, one end of the first hydrogen circulation pipe 90 is connected to the upper portion of the reaction chamber 50, and the other end is connected to the stop of the hydrogen supply pipe 60. The hydrogen gas flowing in the upper region 70 of the reaction chamber 50 in the form of a ruler is circulated to the reaction product supply section 30. In addition, one end of the second hydrogen circulation pipe 95 is connected to the upper portion of the reaction chamber 50, and the other end thereof is connected to an interruption of the reactant supply unit 30, in particular, in the vicinity of where the reactant supply nozzle 20a is located. It serves to circulate hydrogen gas flowing in the upper region 70 of the 50 to the semi-furnace supply 30 additionally.
이를 보다 구체적으로 설명하면, 먼저 수소, 수소화될 반웅 대상물, 및 용매를 포함하는 반웅 흔합물은 반웅물 주입부 (10)로부터 반웅물 공급 노즐 (20a)를 통해 반웅 챔버 (50) 내로 일정한 속도로 분사된다. 분사된 반웅물은 반웅물 확산부 (20b)를 통해 반응 챔버 (50) 내의 공간으로 확산되어 수소화 반응을 수행하게 된다.  In more detail, first, a reaction mixture including hydrogen, a reaction object to be hydrogenated, and a solvent is supplied from the reaction product injection unit 10 to the reaction chamber 50 through the reaction product supply nozzle 20a. Sprayed. The injected semicoal water is diffused into the space in the reaction chamber 50 through the semicoalm diffusion portion 20b to perform a hydrogenation reaction.
이때 수소 기체의 용해도 특성으로 인하여 수소, 수소화될 반응 대상물, 및 용매가 함께 존재하는 반웅계 (80) 내에 용해되지 않고 반웅 챔버 (50)의 상부 영역 (70)에서 유동하는 수소 기체가 존재한다. At this time, due to the solubility characteristics of the hydrogen gas, hydrogen, reaction target to be hydrogenated, and the solvent are not dissolved in the reaction system 80, which is present together. There is hydrogen gas flowing in the upper region 70 of the chamber 50.
본 발명의 수소화 반웅기 (200)에 따르면, 이렇게 반웅계 (80)로부터 이탈하는 수소 기체는 압력 차이에 의해 제 1 수소 순환 배관 (90)에 의해 빨아들여져 수소 공급 배관 (60)을 통해 반응물 공급부 (30)의 반웅물 공급 노즐 (20a) 주위로 이동하게 되며, 또한, 상기 수소 기체는 제 2 수소 순환 배관 (95)을 통해서도 빨아들여져 반웅물 공급부 (30)의 반웅물 공급 노즐 (20a) 주위로 이동하게 된다. 이렇게 형성된 수소 기체 흐름 (90a)은 반웅물 공급 노즐 (20a)로부터 일정한 속도로 분사되는 반웅물과 합쳐져 다시 반응 챔버 (50) 내로 공급된다. 따라서, 수소 기체 흐름 (90a)의 유량 및 반웅계 (80) 내에서 반웅에 참여하는 수소 기체의 기체 체류량 (gas holdup)이 현저히 증가하여 높은 수소화 반웅율을 달성할 수 있다.  According to the hydrogenation reaction reactor 200 of the present invention, the hydrogen gas leaving the reaction system 80 is thus sucked by the first hydrogen circulation pipe 90 due to the pressure difference and reactant supply portion through the hydrogen supply pipe 60. It is moved around the semi-flop water supply nozzle 20a of the 30, and the hydrogen gas is also sucked in through the second hydrogen circulation pipe 95, and around the semi-flop water supply nozzle 20a of the half-frozen water supply part 30. Will be moved to. The hydrogen gas stream 90a thus formed is combined with the semicoagulum injected at a constant rate from the semicoagulant supply nozzle 20a and fed back into the reaction chamber 50. Accordingly, the flow rate of the hydrogen gas stream 90a and the gas holdup of the hydrogen gas participating in the reaction in the reaction system 80 can be increased significantly to achieve a high hydrogenation reaction rate.
본 발명의 일 실시예에 따라 수소화 반웅기 (200)가 제 1 수소 순환 배관 (90)에 더하여 하나의 제 2 수소 순환 배관 (95)을 추가로 포함할 경우, 수소 공급 배관 (60)을 통해 보층되는 수소 기체의 양은 제 1 수소 순환 배관 (90) 및 제 2 수소 순환 배관 (95)을 모두 포함하지 않았을 경우에 비하여 현저히 줄어들거나, 수소 기체의 보충이 필요하지 않을 수 있다. 예를 들어, 수소 공급 배관 (60)을 통해 보층되는 수소 기체의 양은 제 1 수소 순환 배관 (90) 및 제 2 수소 순환 배관 (95)을 모두 포함하지 않았을 경우에 비하여 동일한 운전 조건에서 약 1/60 내지 약 1/80배까지 감소될 수 있으며, 제 1 수소 순환 배관 (90)만을 포함할 경우에 비하여는 동일한 운전 조건에서 약 1/1.5 내지 약 1/10배까지 감소될 수 있다.  According to an embodiment of the present invention, when the hydrogenation reaction reactor 200 further includes one second hydrogen circulation pipe 95 in addition to the first hydrogen circulation pipe 90, the hydrogen supply pipe 60 may be used. The amount of complementary hydrogen gas may be significantly reduced compared to the case where neither the first hydrogen circulation pipe 90 nor the second hydrogen circulation pipe 95 is included, or no supplement of hydrogen gas may be required. For example, the amount of hydrogen gas that is complemented through the hydrogen supply pipe 60 is about 1 / at the same operating conditions as compared to the case where both the first hydrogen circulation pipe 90 and the second hydrogen circulation pipe 95 are not included. It may be reduced by 60 to about 1/80 times, and may be reduced by about 1 / 1.5 to about 1/10 times under the same operating conditions as compared to including only the first hydrogen circulation pipe 90.
또한, 제 1 및 제 2 수소 순환 배관 (90, 95)를 포함하더라도, 반웅물 공급 노즐 (20a)에서의 압력 강하 (pressure drop) 정도가 제 1 및 제 2 수소 순환 배관 (90. 95)을 포함하지 않았을 때와 큰 차이가 없어 추가로 압력 강하를 보완하기 위해 펌프의 성능을 증가시킬 필요가 없으며, 반웅기의 반응 효율성이 유지될 수 있으므로 경제적으로 유리하다.  Further, even if the first and second hydrogen circulation pipes 90 and 95 are included, the degree of pressure drop at the semi-aeration water supply nozzle 20a may be such that the first and second hydrogen circulation pipes 90. 95 are reduced. There is no significant difference from not including it, so it is not necessary to increase the performance of the pump to further compensate for the pressure drop, and it is economically advantageous as the reaction efficiency of the reaction can be maintained.
본 발명의 일 실시예에 따르면, 제 2 수소 순환 배관 (95)은 하나 이상으로 구비될 수 있다. 또한, 제 1 수소 순환 배관 (90) 및 하나 이상의 제 2 수소 순환 배관 (95)은 상기 반응 챔버의 원주에 대하여 등간격으로 구비될 수 있다. 또한, 본 발명의 일 실시예에 따르면, 수소 공급 배관 (60), 제 1 수소 순환 배관 (90) 및 제 2 수소 순환 배관 (95)의 직경은 각각 독립적으로 동일하거나一상이할 수 있으며, 반웅물 공급 노즐 (20a) 직경의 약 0.5 내지 약 3 배, 바람직하게는 약 0.5 내지 약 1.5 배일 수 있으나, 본 발명이 이에 제한되는 것은 아니다. According to one embodiment of the invention, the second hydrogen circulation pipe 95 may be provided with one or more. In addition, the first hydrogen circulation pipe 90 and one or more second hydrogen circulation pipe 95 may be provided at equal intervals with respect to the circumference of the reaction chamber. In addition, according to an embodiment of the present invention, the diameters of the hydrogen supply pipe 60, the first hydrogen circulation pipe 90, and the second hydrogen circulation pipe 95 may be the same or different from each other independently. The water supply nozzle 20a may be about 0.5 to about 3 times the diameter, and preferably about 0.5 to about 1.5 times, but the present invention is not limited thereto.
도 4는 제 1 수소 순환 배관 및 제 2 수소 순환 배관의 배치 상태를 보여주기 위해 본 발명의 수소화 반웅기를 위에서 바라본 모습을 도시하는 도면이다ᅳ  4 is a view showing a view from above of the hydrogenation reaction reactor of the present invention to show the arrangement of the first hydrogen circulation pipe and the second hydrogen circulation pipe.
도 4의 (A)는 제 1 수소 순환 배관 및 하나의 제 2 수소 순환 배관을 포함하는 경우의 도면이고, 도 4의 (B)는 제 1 수소 순환 배관 및 두 개의 제 2 수소 순환 배관을 포함하는 경우의 도면이며, 도 4의 (C)는 제 1 수소 순환 배관 및 세 개의 제 2 수소 순환 배관을 포함하는 경우의 도면이다. 도 4의 (A) 내지 (C)에서, 제 1 수소 순환 배관 (90)은 수소 공급 배관 (60)의 중단에 연결되어 반웅기의 위에서는 보이지 않으므로, 점선으로 그 연결 위치를 표시하였다.  FIG. 4A is a diagram when the first hydrogen circulation pipe and one second hydrogen circulation pipe are included, and FIG. 4B includes the first hydrogen circulation pipe and two second hydrogen circulation pipes. FIG. 4C is a diagram when the first hydrogen circulation pipe and three second hydrogen circulation pipes are included. FIG. In FIGS. 4A to 4C, since the first hydrogen circulation pipe 90 is connected to the interruption of the hydrogen supply pipe 60 and is not visible from the top of the reactor, the connection position is indicated by a dotted line.
도 4의 (A)를 참조하면, 본 발명의 수소화 반웅기가 하나의 제 1 수소 순환 배관 (90) 및 하나의 제 2 수소 순환 배관 (95)을 포함하는 경우, 제 1 수소 순환 배관 (90) 및 제 2 수소 순환 배관 (95)은 반웅 챔버 (50)의 원주에 대하여 등간격으로 배치된다. 즉, 제 1 수소 순환 배관 (90) 및 제 2 수소 순환 배관 (95) 사이의 각도 (Ql , Q2)는 Q1 Q2 180도가 되도록 실질적으로 등간격으로 배치될 수 있다.  Referring to FIG. 4A, when the hydrogenation reaction reactor of the present invention includes one first hydrogen circulation pipe 90 and one second hydrogen circulation pipe 95, the first hydrogen circulation pipe 90 is provided. And the second hydrogen circulation pipe 95 are arranged at equal intervals with respect to the circumference of the reaction chamber 50. That is, the angles Ql and Q2 between the first hydrogen circulation pipe 90 and the second hydrogen circulation pipe 95 may be arranged at substantially equal intervals such that Q1 Q2 is 180 degrees.
도 4의 (B)를 참조하면, 본 발명의 수소화 반웅기가 하나의 제 1 수소 순환 배관 (90) 및 두 개의 제 2 수소 순환 배관 (95)을 포함하는 경우, 제 1 수소 순환 배관 (90) 및 두 개의 제 2 수소 순환 배관 (95)은 반웅 챔버 (50)의 원주에 대하여 등간격으로 배치된다. 즉, 제 1 수소 순환 배관 (90) 및 인접하는 제 2 수소 순환 배관 (95) 사이의 각각의 각도 (Q3, Q5)와, 서로 인접하는 두 개의 제 2 수소 순환 배관 (95)이 이루는 각도 (Q4)는 Q3-Q4-Q5-120도가 되도록 실질적으로 등간격으로 배치될 수 있다.  Referring to FIG. 4B, when the hydrogenation reaction reactor of the present invention includes one first hydrogen circulation pipe 90 and two second hydrogen circulation pipes 95, the first hydrogen circulation pipe 90 is provided. And two second hydrogen circulation pipes 95 are arranged at equal intervals with respect to the circumference of the reaction chamber 50. That is, the angles (Q3, Q5) between the first hydrogen circulation pipe 90 and the adjacent second hydrogen circulation pipe 95, and the angle formed by the two second hydrogen circulation pipes 95 adjacent to each other ( Q4) may be arranged at substantially equal intervals to be Q3-Q4-Q5-120 degrees.
도 5의 (C)를 참조하면, 본 발명의 수소화 반응기가 하나의 제 1 수소 순환 배관 (90) 및 세 개의 제 2 수소 순환 배관 (95)을 포함하는 경우, 제 1 수소 순환 배관 (90) 및 세 개의 제 2 수소 순환 배관 (95)은 반웅 챔버 (50)의 원주에 대하여 등간격으로 배치된다. 즉, 제 1 수소 순환 배관 (90) 및 인접하는 제 2 수소 순환 배관 (95) 사이의 각각의 각도 (Q6, Q9)와, 서로 인접하는 제 2 수소 순환 배관 (95)이 이루는 각도 (Q7, Q8)는 Q6-Q7-Q8-Q9 90도가 되도록 실질적으로 등간격으로 배치될 수 있다. Referring to FIG. 5C, when the hydrogenation reactor of the present invention includes one first hydrogen circulation pipe 90 and three second hydrogen circulation pipes 95, the first The hydrogen circulation pipe 90 and three second hydrogen circulation pipes 95 are arranged at equal intervals with respect to the circumference of the reaction chamber 50. That is, angles Q6 and Q9 between the first hydrogen circulation pipe 90 and the adjacent second hydrogen circulation pipe 95 and the angles Q7 formed by the second hydrogen circulation pipe 95 adjacent to each other are formed. Q8) may be arranged at substantially equal intervals such that Q6-Q7-Q8-Q9 is 90 degrees.
한편, 도 (4)의 (A) 내지 (C)는 제 2 수소 순환 배관 (95)을 한 개 내지 세 개를 포함하는 것으로 도시하였으나 본 발명이 이에 제한되는 것은 아니며, 필요에 따라 다양한 개수 및 형태의 제 2 수소 순환 배관을 포함할 수 있다. On the other hand, (A) to (C) of Figure 4 is the second Although shown as including one to three of the hydrogen circulation pipe (95), not necessarily the invention is not limited to, various numbers, as needed And a second hydrogen circulation pipe in the form.
도 3 및 도 4에 예시적으로 도시한 바와 같이, 본 발명의 일 실시예에 따른 수소화 반웅기가 제 2 수소 순환 배관을 더 포함할 경우, 제 1 수소 순환 배관만을 포함할 경우와 비교하여, 반웅 챔버 상부 영역에서의 수소 기체 흐름이 한 쪽 방향으로만 공급됨으로 인한 비대칭적 흐름을 개선하여, 수소와 반응물의 흔합 흐름이 반웅물 확산부 내에서 양호하게 유지될 수 있게 하여 반웅 효율을 증가시키는 장점이 있다.  As exemplarily shown in FIGS. 3 and 4, when the hydrogenation reaction reactor according to an embodiment of the present invention further includes a second hydrogen circulation pipe, it is compared with the case where only the first hydrogen circulation pipe is included. Improved asymmetrical flow due to the hydrogen gas flow in the upper region of the chamber being supplied in only one direction, allowing the mixed flow of hydrogen and reactant to be maintained well in the counter-fuel diffusion to increase reaction efficiency There is this.
즉, 수소 기체가 제 1 수소 순환 배관에 의해서만 반웅물 공급부로 재순환될 경우, 반웅계 내부로 재순환되는 수소 기체의 유량은 증가하지만, 반웅 챔버의 상부 영역 중 상기 제 1 수소 순환 배관이 위치하는 부근의 일부 영역에서만 수소 기체 흐름이 발생하므로, 수소 기체의 흐름이 불균형한 양상을 띠게 된다. 이러한 불균형한 수소 기체의 흐름은 반응물 확산부 내에서의 흐름도 좋지 못하게 한다. 이에 따라, 수소화 반응의 효율성 향상 효과가 떨어지거나, 오랜 시간의 반웅기 운전시 비대칭적 흐름으로 인한 반웅기의 운전 수명이 단축될 수 있다.  That is, when the hydrogen gas is recycled to the reaction product supply only by the first hydrogen circulation pipe, the flow rate of the hydrogen gas recycled into the reaction chamber increases, but the vicinity of the upper region of the reaction chamber where the first hydrogen circulation pipe is located. Since the hydrogen gas flow occurs only in a portion of the region, the hydrogen gas flow is unbalanced. This unbalanced flow of hydrogen gas leads to poor flow in the reactant diffusion. Accordingly, the efficiency improvement effect of the hydrogenation reaction may be reduced, or the operating life of the half-unggi due to the asymmetrical flow during the long-time half-unggi operation may be shortened.
이러한 불이익은 본 발명의 다른 일 실시예에 따라 수소 기체를 제 1 수소 순환 배관 및 제 2 수소 순환 배관에 의해서 반웅물 공급부로 재순환시킴으로써 개선될 수 있다. 즉, 수소 기체를 제 1 수소 순환 배관에 더하여 하나 이상의 제 2 수소 순환 배관에 의해 순환시킴으로써, 수소 기체의 불균형성을 해소하여, 이로 인한 문제점을 방지하며, 수소 기체의 유량 또한 증가되어 제 2 수소 순환 배관을 포함하지 않는 경우에 비하여 수소화 반웅의 효율성을 보다 증가시킬 수 있다. 이때 이러한 수소 기체 흐름의 불균형성 해소 효과 및 수소화 반웅의 효율성 향상 효과를 보다 극대화하기 위하여 제 1 수소 순환 배관 및 하나 이상의 제 2 수소 순환 배관은 도 4에 예시된 바와 같이 상기 반응 챔버의 원주에 대하여 서로 등간격으로 배치하는 것이 바람직하다. This disadvantage may be ameliorated by recycling hydrogen gas to the semi-water feed by the first hydrogen circulation pipe and the second hydrogen circulation pipe according to another embodiment of the present invention. That is, by circulating the hydrogen gas in addition to the first hydrogen circulation pipe by one or more second hydrogen circulation pipes, the imbalance of the hydrogen gas is eliminated and the problem caused by this is prevented, and the flow rate of the hydrogen gas is also increased so that the second hydrogen The efficiency of the hydrogenation reaction can be further increased compared to the case without the circulation pipe. At this time, such hydrogen gas In order to maximize the effect of reducing the imbalance of the flow and improving the efficiency of the hydrogenation reaction, the first hydrogen circulation pipe and the at least one second hydrogen circulation pipe are equally spaced from each other with respect to the circumference of the reaction chamber as illustrated in FIG. 4. It is preferable to arrange.
한편, 본 발명의 수소화 반웅기를 이용하여 DCPD 수지의 수소화 반웅을 수행하는 경우, 반웅 챔버 내의 온도는 약 90 내지 약 300 °C , 바람직하게는 약 120 내지 약 300°C로, 압력은 약 5 내지 약 120 barg, 바람직하게는 약 50 내지 약 100 barg로 유지할 수 있다. On the other hand, when the hydrogenation reaction of the DCPD resin is carried out using the hydrogenation reaction of the present invention, the temperature in the reaction chamber is about 90 to about 300 ° C, preferably about 120 to about 300 ° C, the pressure is about 5 to About 120 barg, preferably about 50 to about 100 barg.
또한, 본 발명의 일 실시예에 따르면, 반웅 챔버 내로 공급되는 반응 흔합물은 상기 반응 흔합물 전체 부피에 대하여, 수소 기체 (¾)의 부피비가 약 10 내지 약 50 vol%가 되도록 흔합된 흔합물일 수 있다.  In addition, according to one embodiment of the present invention, the reaction mixture supplied into the reaction chamber may be a mixed mixture such that the volume ratio of hydrogen gas (¾) is about 10 to about 50 vol% with respect to the total volume of the reaction mixture. Can be.
또한, 본 발명의 일 실시예에 따르면, 반웅물 공급 노즐에서는 분사되는 반웅물은 약 30 내지 약 70 m/sec의 속도로 반응 챔버 내로 주입될 수 있다.  In addition, according to one embodiment of the present invention, the semi-coupling water injected from the semi-coupling water supply nozzle may be injected into the reaction chamber at a speed of about 30 to about 70 m / sec.
또한, 본 발명의 일 실시예에 따르면, 반웅 챔버의 상부 영역에서 유동하는 수소 기체는, 제 1 수소 순환 배관 및 선택적으로 포함되는 제 2 수소 순환 배관을 통해 약 5 내지 약 20 m/sec의 속도로 빨려올라가 반웅물 공급부로 유동하게 될 수 있다. 이처럼 반웅물 공급부로 빨려을라간 수소 기체 흐름은 반응물 공급 노즐로부터 일정한 속도로 분사되는 반웅물과 합쳐져 다시 반웅 챔버 내로 공급되어 재순환될 수 있다.  In addition, according to one embodiment of the invention, the hydrogen gas flowing in the upper region of the reaction chamber, the velocity of about 5 to about 20 m / sec through the first hydrogen circulation pipe and optionally included second hydrogen circulation pipe May be sucked into the reaction stream and supplied to the semi-fung supply. As such, the hydrogen gas stream sucked into the reactant supply unit may be combined with the reactant sprayed at a constant rate from the reactant supply nozzle and supplied back into the reaction chamber to be recycled.
이하, 실시예 및 비교예를 통하여 본 발명을 더욱 상세히 설명하지만, 이는 발명의 구체적 이해를 돕기 위한 것으로 본 발명의 범위가 실시예나 비교예에 의하여 한정되는 것은 아니다. <실시예 >  Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, which are intended to help a concrete understanding of the present invention, but the scope of the present invention is not limited to Examples or Comparative Examples. <Example>
실시예 1  Example 1
도 2에 도시된 바와 같이, 일단은 반응 챔버 (50)의 상부에 연결되고, 타단은 수소 공급 배관 (60)의 중단에 T자 형태로 연결되도록 한 제 1 수소 순환 배관 (90)을 포함하며, 반웅 챔버의 높이가 10m, 최대 직경이 3m인 수소화 반웅기를 디자인하였다. 반웅물 공급 노즐 (20a)의 직경은 0.2m, 반웅물 확산부 (20b)의 전체 길이는 6m이었으며, 반웅물 확산부 (20b)의 가장 넓은 아랫 부분의 직경은 0.96m, 수소 공급 배관 (60)의 직경 (내경)은 0.15m, 제 1 수소 순환 배관 (90)의 직경 (내경)은 0.15m로 하였다. As shown in FIG. 2, one end is connected to the upper part of the reaction chamber 50, and the other end includes a first hydrogen circulation pipe 90 which is connected in a T-shape to the interruption of the hydrogen supply pipe 60. The reaction chamber was designed to have a height of 10 m and a maximum diameter of 3 m. The diaphragm supply nozzle 20a had a diameter of 0.2m and the total length of the semicoultice diffuser 20b was 6m, and the diameter of the widest lower portion of the semiconductor diffused portion 20b was 0.96m, and the hydrogen supply pipe (60). ) Was 0.15 m in diameter and the diameter (inner diameter) of the first hydrogen circulation pipe 90 was 0.1 5 m.
또한, 수소화 반응을 수행하는 동안의 반응 챔버 (50)의 은도는 In addition, the silver content of the reaction chamber 50 during the hydrogenation reaction is
270 °C로, 압력은 90 barg로 유지되도록 하였다. At 270 ° C., the pressure was kept at 90 barg.
반응물 주입부 (10)로부터 수소 기체 (¾)와 DCPD 수지의 부피 비율이 3:7이고, 용매인 사이클로핵산 (cyclohaxane)을 DCPD 수지 100 중량부에 대하여 100 중량부로 포함하는 반응 흔합물을 반웅물 공급 노즐 (20a)을 통해 10 m/sec의 속도로 반응 챔버 (50) 내로 주입하였다. 반응 챔버 (50)의 상부 영역에서 유동하는 수소 기체는, 제 1 수소 순환 배관 (90)을 통해 평균 속도 약 5 m/sec의 속도로 빨려을라가 반웅물 공급 노즐 (20a)을 통해 분사되는 반웅 흔합물과 함께 반응 챔버 (50) 내로 재순환되었다. 실시예 2  A reaction mixture containing a volume ratio of hydrogen gas (¾) and a DCPD resin from the reactant injector 10 at a weight ratio of 3: 7 and 100 parts by weight of cyclohaxane as a solvent based on 100 parts by weight of the DCPD resin was added. The feed nozzle 20a was injected into the reaction chamber 50 at a rate of 10 m / sec. Hydrogen gas flowing in the upper region of the reaction chamber 50 is sucked through the first hydrogen circulation pipe 90 at a rate of about 5 m / sec at an average speed and then injected through the reaction product supply nozzle 20a. The mixture was recycled into the reaction chamber 50 together. Example 2
도 3에 도시된 바와 같이, 일단은 반웅 챔버 (50)의 상부에 연결되고, 타단은 수소 공급 배관 (60)의 중단에 T자 형태로 연결되도록 한 제 1 수소 순환 배관 (90)과, 제 1 수소 순환 배관 (90)과 180도의 각도를 이루는 곳에 일단은 반웅 챔버 (50)의 상부에 연결되고, 타단은 반응물 공급부 (30)의 반응물 공급 노즐 (20a) 부근에 연결되는 제 2 수소 순환 배관 (95)을 포함하며, 반웅 챔버의 높이가 10m, 최대 직경 3m인 수소화 반웅기를 디자인하였다. 반응물 공급 노즐 (20a)의 직경은 0.2m, 반웅물 확산부 (20b)의 전체 길이는 6m이었으며, 반웅물 확산부 (20b)의 가장 넓은 아랫 부분의 직경은 0.96m, 수소 공급 배관 (60)의 직경 (내경)은 0.15m, 게 1 수소 순환 배관 (90) 및 제 2 수소 순환 배관 (95)의 직경 (내경)은 0.15m로 하였다.  As shown in FIG. 3, one end is connected to the upper part of the reaction chamber 50, and the other end is connected to the first hydrogen circulation pipe 90 so as to be connected in a T-shape to the interruption of the hydrogen supply pipe 60. 1st hydrogen circulating pipe which is connected to the upper part of reaction chamber 50 at the angle which forms 180 degree angle with 1 hydrogen circulation pipe 90, and the other end is connected to the reactant supply nozzle 20a of the reactant supply part 30 And a hydrogenation reaction reactor having a height of 10 m and a maximum diameter of 3 m. The reactant supply nozzle 20a had a diameter of 0.2m, the total length of the semicoultane diffuser 20b was 6m, and the diameter of the widest lower portion of the semiconducted diffuser 20b was 0.96m, and the hydrogen supply pipe 60 was used. The diameter (inner diameter) was 0.15 m, and the diameter (inner diameter) of the crab 1 hydrogen circulation pipe 90 and the second hydrogen circulation pipe 95 was 0.15 m.
반웅 챔버 (50)의 상부 영역에서 유동하는 수소 기체는, 제 1 수소 순환 배관 (90)을 통해 평균 속도 약 5 ra/sec의 속도로, 제 2 수소 순환 배관 (95)을 통해 평균 속도 약 5 m/sec의 속도로 빨려올라가 반웅물 공급 노즐 (20a)을 통해 분사되는 반응 흔합물과 함께 반웅 챔버 (50) 내로 재순환되었다. 나머지 사항은 실시예 1과 동일한 조건으로 하여 DCPD 수지의 수소화 반웅을 수행하였다. 비교예 1 The hydrogen gas flowing in the upper region of the reaction chamber 50 has an average speed of about 5 ra / sec through the first hydrogen circulation pipe 90, and an average speed of about 5 through the second hydrogen circulation pipe 95. Sucked up at a rate of m / sec and recycled into the reaction chamber 50 together with the reaction mixture sprayed through the reaction product supply nozzle 20a. The remainder was subjected to the hydrogenation reaction of DCPD resin under the same conditions as in Example 1. Comparative Example 1
도 1에 도시된 바와 같이, 수소 순환 배관 없이, 수소 공급 배관 (6)을 통해 필요한 수소를 보층하여 공급해주는 수소화 반웅기를 디자인하였다. 나머지 수소화 반웅기의 조건 및 반웅 조건은 실시예 1과 동일하게 하여 DCPD 수지의 수소화 반웅을 수행하였다.  As shown in FIG. 1, a hydrogenation reaction machine was designed in which the required hydrogen was supplied through the hydrogen supply pipe 6 without the hydrogen circulation pipe. The conditions and reaction conditions of the remaining hydrogenation reaction was performed in the same manner as in Example 1 to carry out hydrogenation reaction of the DCPD resin.
수소화 반웅이 진행됨에 따라, 수소 기체를 수소 공급 배관 (6)을 통해 약 0.1 내지 약 0.5m/sec의 평균 속도로 연속적으로 공급하면서 수소화 반응을 수행하였다. 상기 실시예 1 및 2, 비교예 1에 대하여, 반웅기의 압력 강하 정도, 제 1 및 제 2 수소 순환 배관을 통한 수소 흐름 유량과 유동성을 평가하여 하기 표 1에 나타내었다.  As the hydrogenation reaction proceeded, the hydrogenation reaction was carried out while continuously supplying hydrogen gas through the hydrogen supply pipe 6 at an average speed of about 0.1 to about 0.5 m / sec. For Examples 1 and 2, Comparative Example 1, the pressure drop degree of the reaction vessel, hydrogen flow rate and fluidity through the first and second hydrogen circulation pipe were evaluated and shown in Table 1 below.
[표 1]  TABLE 1
재순환되는 수소 수소 공급 반웅기의 반웅기  Half-Wheel of Hydrogen Hydrogen Supply Refuse
흐름 유량 배관을 통해 강하 압력 상부 Pressure drop through the flow-flow piping
(단위: kg/sec) 보층되는 (단위: bar) 영역에서의 수소 유량 수소 (Unit: kg / sec) Hydrogen flow rate in the complemented (unit: bar) region Hydrogen
(단위: 유동성 kg/sec) 양상 실시예 1 제 1 수소 순환 o_  (Unit: fluidity kg / sec) Aspect Example 1 First hydrogen circulation o_
νλ =ι 5.1489 비대칭적 배관: 0.348  νλ = ι 5.1489 Asymmetric piping: 0.348
실시예 2 제 1 수소 순환 으 5.4025 대칭적  Example 2 5.4025 Symmetric to the first hydrogen cycle
배관: 0.374  Tubing: 0.374
제 2 수소 순환  2nd hydrogen cycle
배관: 0.381  Tubing: 0.381
합계 : 0.755  Total: 0.755
비교예 1 ΒΛᄆ 0.01 5 비대칭적 상기 표 1 에서와 같이, 실시 II 1 및 2 는 제 1 및 /또는 제 2 수소 순환 배관에서 재순환되는 수소 흐 이 존재하여, 수소 공급 배관을 통한 수소의 보층 없이도 DCPD 수지의 수소화 반웅을 고수율로 수행할 수 있었으며, 압력 강하도 수소 순환 배관이 없는 경우와 유사한 정도로 나타났다 Comparative Example 1 ΒΛ ㅁ 0.01 5 Asymmetric As shown in Table 1, the implementation II 1 and 2 has a hydrogen flow recycled in the first and / or the second hydrogen circulation pipe, the high yield of the hydrogenation reaction of the DCPD resin without the supplementary layer of hydrogen through the hydrogen supply pipe And the pressure drop was similar to that without the hydrogen circulation pipe.
【부호의 설명】 [Explanation of code]
1 , 10: 반웅물 주입부  1, 10: semi-aerated water injection part
2a, 20a: 반웅물 공급 노즐  2a, 20a: semi-aerated water supply nozzle
2b, 20b: 반웅물 확산부  2b, 20b: half-dung diffusion
2, 20: 반웅 생성물 배출부  2, 20: reaction product outlet
3, 30 : 반응물 공급부  3, 30: reactant supply unit
4, 40: 반웅 생성물 배출부  4, 40: reaction product outlet
5, 50: 반웅 챔버  5, 50: reaction chamber
6, 60: 수소 공급 배관  6, 60: hydrogen supply piping
7, 70: 반웅 챔버의 상부 영역  7, 70: upper region of the reaction chamber
8, 80: 반응계  8, 80: reaction system
90: 제 1 수소 순환 배관  90: first hydrogen circulation piping
95: 제 2 수소 순환 배관  95: second hydrogen circulation piping
9, 100, 200: 수소화 반웅기  9, 100, 200: Hydrogenation reaction machine

Claims

【특허청구범위】 [Patent Claims]
【청구항 11  [Claim 11
수소화 반웅이 일어나는 반웅 챔버;  A reaction chamber in which the hydrogenation reaction takes place;
수소, 수소화될 반응 대상물, 및 용매를 포함하는 반웅물을 주입하는 반웅물 주입부;  A semi-ungmul injecting unit for injecting a reaction product including hydrogen, a reaction target to be hydrogenated, and a solvent;
상기 반웅물 주입부와 연결되어 위치하며, 상기 반웅 챔버 내부로 상기 반응물을 공급하는 반웅물 공급부;  A semi-ungmul supply unit which is located in connection with the reaction product and supplies the reactant into the reaction chamber;
상기 반응 챔버 하부에 위치하며, 상기 반웅 챔버 외부로 수소화 반웅 생성물을 배출하는 반응 생성물 배출부;  A reaction product discharge part positioned below the reaction chamber and discharging a hydrogenation reaction product to the outside of the reaction chamber;
상기 반웅물 공급부에 연결되며, 상기 반웅물 공급부를 통해 상기 반웅 첨버에 수소를 추가적으로 공급하는 수소 공급 배관; 및  A hydrogen supply pipe which is connected to the half water supply part and additionally supplies hydrogen to the half water additive through the half water supply part; And
일단은 상기 반웅 챔버의 상부에 연결되고, 타단은 상기 수소 공급 배관의 중단에 연결되어, 상기 반응 챔버의 상부 영역에 유동하는 수소 기체를 상기 반응물 공급부로 순환시키는 제 1 수소 순환 배관;  A first hydrogen circulation pipe having one end connected to an upper portion of the reaction chamber and the other end connected to an interruption of the hydrogen supply pipe to circulate hydrogen gas flowing in an upper region of the reaction chamber to the reactant supply unit;
을 포함하는 수소화 반응기.  Hydrogenation reactor comprising a.
【청구항 2】 [Claim 2]
제 1 항에 있어서, 상기 제 1 수소 순환 배관은 상기 수소 공급 배관의 중단에 T자 형태로 연결되는, 수소화 반웅기.  The hydrogenation reaction vessel of claim 1, wherein the first hydrogen circulation pipe is connected in a T-shape to the interruption of the hydrogen supply pipe.
【청구항 3】 [Claim 3]
제 1 항에 있어서, 일단은 상기 반응 챔버의 상부에 연결되고, 타단은 상기 반웅물 공급부에 연결되는 제 2 수소 순환 배관을 더 포함하는, 수소화 반응기.  The hydrogenation reactor of claim 1, further comprising a second hydrogen circulation pipe connected at one end to an upper portion of the reaction chamber and connected at the other end to the semi-manufacture supply.
【청구항 4】 [Claim 4]
제 3 항에 있어서, 상기 제 2 수소 순환 배관올 하나 이상으로 포함하는, 수소화 반웅기.  The hydrogenation reaction machine of Claim 3 containing one or more said 2nd hydrogen circulation piping.
【청구항 5】 제 3 항 또는 제 4항에 있어서, 상기 제 1 및 제 2 수소 순환 배관은 상기 반웅 챔버의 원주에 대하여 등간격으로 구비되는, 수소화 반웅기 . [Claim 5] The hydrogenation reaction vessel according to claim 3 or 4, wherein the first and second hydrogen circulation pipes are provided at equal intervals with respect to the circumference of the reaction chamber.
【청구항 6】 [Claim 6]
제 1 항에 있어서, 상기 반웅물 공급부는 상기 반웅물이 분사되는 반웅물 공급 노즐; 및 상기 반응물 공급 노즐을 통하여 분사된 반웅물을 상기 반응 램버 내로 확산시키는 반웅물 확산부를 포함하는, 수소화 반웅기.  According to claim 1, wherein the semi-fung water supply unit Semi-fung water supply nozzle is sprayed the semi-ungmul water; And a semi-coagulant diffusion unit for diffusing the semi-coagulant injected through the reactant supply nozzle into the reaction ram.
【청구항 7] [Claim 7]
제 6 항에 있어서, 상기 반웅물 확산부는 상기 반웅 챔버의 길이 방향으로 연장된 관 형태를 가지고, 관의 중간 부분의 직경이 가장 좁고, 윗 부분과 아래 부분으로 갈수록 직경이 넓어지는 깔때기 모양인, 수소화 반웅기.  The method according to claim 6, wherein the semi-coagulant diffuser has a tube shape extending in the longitudinal direction of the reaction chamber, the diameter of the middle portion of the tube is the narrowest, the diameter of the funnel is widened toward the upper portion and the lower portion, Hydrogenation reaction.
【청구항 8】 [Claim 8]
제 7 항에 있어서, 상기 반웅물 확산부의 길이는 상기 반웅물 공급 노즐 직경의 20 내지 50 배이고, 가장 좁은 부분의 직경은 상기 반웅물 공급 노즐 직경의 1 내지 4 배이며, 가장 넓은 부분의 직경은 상기 반웅물 공급 노즐 직경의 1 내지 10 배인, 수소화 반웅기.  The method of claim 7, wherein the length of the semi-coupling diffuser is 20 to 50 times the diameter of the semi-coupling supply nozzle, the diameter of the narrowest portion is 1 to 4 times the diameter of the semi-coupling supply nozzle, and the diameter of the widest portion is A hydrogenation reaction machine, which is 1 to 10 times the diameter of the reaction water supply nozzle.
【청구항 9】 [Claim 9]
제 3 항 또는 제 4 항에 있어서, 상기 제 1 및 제 2 수소 순환 배관의 직경은 각각 독립적으로 동일하거나 상이하며, 상기 반웅물 공급 노즐 직경의 0.5 내지 3 배인, 수소화 반웅기.  The hydrogenation reaction machine according to claim 3 or 4, wherein the diameters of the first and second hydrogen circulation pipes are each independently the same or different, and are 0.5 to 3 times the diameter of the semi-fung water supply nozzle.
【청구항 10】 [Claim 10]
제 1 항에 있어서, 상기 수소화될 반웅 대상물은 디시클로펜타디엔 (dicyclopentadiene, DCPD) 수지인, 수소화 반웅기 .  The hydrogenation reaction reactor of Claim 1, wherein the reaction object to be hydrogenated is a dicyclopentadiene (DCPD) resin.
PCT/KR2016/008611 2015-09-10 2016-08-04 Hydrogenation reactor WO2017043773A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150128298A KR101872511B1 (en) 2015-09-10 2015-09-10 Reactor for hydrogenation process
KR10-2015-0128298 2015-09-10

Publications (1)

Publication Number Publication Date
WO2017043773A1 true WO2017043773A1 (en) 2017-03-16

Family

ID=58240262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/008611 WO2017043773A1 (en) 2015-09-10 2016-08-04 Hydrogenation reactor

Country Status (3)

Country Link
KR (1) KR101872511B1 (en)
TW (1) TWI645898B (en)
WO (1) WO2017043773A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080104713A (en) * 2007-05-29 2008-12-03 주식회사 엘지화학 Hydrogenation Method of Aldehyde and Apparatus Used Thereof
KR20110101597A (en) * 2010-03-09 2011-09-16 주식회사 엘지화학 Hydroformylation of olefins with excellent reaction efficiency
KR20130018428A (en) * 2013-02-13 2013-02-21 주식회사 엘지화학 Apparatus for producing alcohol from olefin
US20140066678A1 (en) * 2012-07-31 2014-03-06 Chevron U.S.A. Inc. Alkylation process with recyle of hydrogen and recovery of hydrogen chloride
KR20150021194A (en) * 2013-08-20 2015-03-02 주식회사 엘지화학 Hydrogenation apparatus of aldehydes and method for preparing alcohols using the apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080104713A (en) * 2007-05-29 2008-12-03 주식회사 엘지화학 Hydrogenation Method of Aldehyde and Apparatus Used Thereof
KR20110101597A (en) * 2010-03-09 2011-09-16 주식회사 엘지화학 Hydroformylation of olefins with excellent reaction efficiency
US20140066678A1 (en) * 2012-07-31 2014-03-06 Chevron U.S.A. Inc. Alkylation process with recyle of hydrogen and recovery of hydrogen chloride
KR20130018428A (en) * 2013-02-13 2013-02-21 주식회사 엘지화학 Apparatus for producing alcohol from olefin
KR20150021194A (en) * 2013-08-20 2015-03-02 주식회사 엘지화학 Hydrogenation apparatus of aldehydes and method for preparing alcohols using the apparatus

Also Published As

Publication number Publication date
KR20170030858A (en) 2017-03-20
TW201711748A (en) 2017-04-01
TWI645898B (en) 2019-01-01
KR101872511B1 (en) 2018-06-28

Similar Documents

Publication Publication Date Title
RU2003120084A (en) INTRODUCTION OF THE COMPONENT TO THE METHOD OF INDUSTRIAL RECEIPT USING RECIRCULATION
CN110156580B (en) Method and apparatus for producing aldehyde from olefin
TW201002649A (en) Continuous process and reactor for hydrogenating organic compounds
CN110128251B (en) Hydroformylation process and apparatus
CN105254583A (en) Method for preparing 2-chloro-5-chloromethylthiazole by jet loop reactor
KR101864137B1 (en) Plasma water treatment system with ozone dissolution accelerator
CN101863495B (en) Equipment for efficiently preparing ammonia water from liquid ammonia and water
CN107481773B (en) One-loop hydrogenation integrated device
CN106607004A (en) Circulation mixer and application thereof
WO2017043773A1 (en) Hydrogenation reactor
CN111187164B (en) 6-carbonyl-8-chloro ethyl caprylate synthesis device and method for synthesizing 6-carbonyl-8-chloro ethyl caprylate by using same
JP2010510046A (en) Method and apparatus for injecting oxygen into a reaction gas flowing through a synthesis reactor
BG62926B1 (en) Method for reducing waste materials in the acrylonitrile production
CN105085724A (en) Hydrogenation device and hydrogenation method for polymer continuous hydrogenation
CN100590113C (en) Pre-mixing device for the reaction of ethanolamine production raw materials under high pressure
CN215877955U (en) N, N-dimethylacetamide synthesis system
CN213966481U (en) CO gas distributor device on acetic acid device
CN210595857U (en) Oxo-synthesis spray kettle, reaction system and bottom spray self-suction type sprayer
CN111892479B (en) Method and device for improving primary conversion rate of methanol in chloromethane synthesis
CN210584972U (en) Hydroformylation reaction apparatus and reaction system using the same
CN210560168U (en) Hydroformylation synthesis reaction kettle and reaction system for hydroformylation synthesis reaction
CN113926382B (en) Circulation feeding system and polypropylene process system
CN212882340U (en) Novel cytosine high-pressure reaction reactor
CN214486810U (en) Reactor suitable for hydrofining of ethylene glycol
CN213314873U (en) Gas distributor and fluidized bed

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16844593

Country of ref document: EP

Kind code of ref document: A1