WO2017043653A1 - Compound for stabilizing protein - Google Patents

Compound for stabilizing protein Download PDF

Info

Publication number
WO2017043653A1
WO2017043653A1 PCT/JP2016/076697 JP2016076697W WO2017043653A1 WO 2017043653 A1 WO2017043653 A1 WO 2017043653A1 JP 2016076697 W JP2016076697 W JP 2016076697W WO 2017043653 A1 WO2017043653 A1 WO 2017043653A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
protein
compound represented
compound
Prior art date
Application number
PCT/JP2016/076697
Other languages
French (fr)
Japanese (ja)
Inventor
哲志 山口
岡本 晃充
英史 塩田
Original Assignee
国立大学法人 東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学 filed Critical 国立大学法人 東京大学
Priority to JP2017538555A priority Critical patent/JPWO2017043653A1/en
Publication of WO2017043653A1 publication Critical patent/WO2017043653A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/02General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length in solution
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/334Polymers modified by chemical after-treatment with organic compounds containing sulfur
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers

Definitions

  • the present invention relates to a compound for stabilizing a protein, and a modified protein obtained by reacting the compound with a protein.
  • proteins that are expression products of such genes will be used as protein drugs.
  • the structure of proteins easily loosens in aqueous solution, which causes irreversible aggregation and protease degradation during the production, storage, and transportation of protein drugs. Aggregation of proteinaceous drugs has been reported to be extremely dangerous by inducing a strong biological response after administration. Moreover, degradation by protease causes a decrease in drug efficacy. Therefore, a technique for stabilizing a protein from the manufacturing process to the bedside is a technique that is eagerly desired in the field of proteinaceous pharmaceuticals.
  • Non-patent Document 1 A technique of adding a saccharide, glycerol, or the like that stabilizes the three-dimensional structure of a protein, or an arginine hydrochloride, a surfactant, or the like that suppresses protein aggregation (Non-patent Document 1)
  • Non-patent Documents 2 and 3 (2) Technology for producing a fusion protein with a highly stable protein such as an antibody Fc domain (Non-patent Documents 2 and 3)
  • Patent Documents 4 and 5 Technology for chemically modifying a hydrophilic polymer such as polyethylene glycol (hereinafter abbreviated as PEG) (Non-patent Documents 4 and 5)
  • the above (1) is most commonly used as an existing method, but high-concentration additives are required for protein stabilization, and toxicity or the like becomes a problem when administered directly into the body. In addition, when the protein concentration is high, there are many cases where aggregation cannot be suppressed.
  • the stabilizing effect is higher than other methods, and it can be used in combination with other methods.
  • the function (activity) of the protein is lowered by chemically modifying a bulky polymer.
  • the number of modifications and the length of the polymer are increased in order to increase the stability, the activity is greatly reduced accordingly, and it is difficult to simultaneously realize high stability and high activity.
  • Non-cited Document 8 discloses that PEG can be modified through a photodegradable linker to control protein activity. Although the PEGylated protein is inactive, the photodegradable linker containing PEG is removed from the protein by light irradiation, and the activity of the protein is restored.
  • Non-Patent Documents 6 and 7 it takes a long time to remove the PEG-containing site under weakly basic conditions that hardly affect the protein activity (several tens of hours to several hundreds of hours). time). Some proteins denature under basic conditions.
  • the present invention can improve the stability of the protein, can be removed quickly under neutral conditions, does not impair the activity of the protein after being removed, and can be quickly removed after being removed.
  • the present inventors can solve the above problems by using a compound having (1) a photodegradable group, (2) a PEG group, and (3) a capture molecule partner group. And found the present invention.
  • a compound represented by [2] A 1 is the following substituent: [Wherein the arrow indicates the connection to A 2 ]
  • a 2 is a divalent group having a skeleton selected from the group consisting of a 2-nitrobenzyl skeleton, a coumarin-4-ylmethyl skeleton, a phenylcarbonylmethyl skeleton, and a 7-nitroindolinocarbonyl skeleton, [1] or The compound according to [1]
  • the combination of A 4 and the capture molecule is a combination of biotinyl group and streptavidin, a combination of maltosyl group and maltose binding protein, a combination of glutathion group and glutathione-S-transferase, HaloTag® ligand and HaloTag ( (Registered trademark) protein combination, guanylylmethylphenyl group and SNAP-tag (registered trademark) combination, cytosynylmethylphenyl group and CLIP-tag (registered trademark) combination, the following groups: [Where: The arrow indicates a connection to A 3 when k 2 is 0, and a connection to L 2 when k 2 is 1] And a combination of dihydrofolate reductase, a combination of Strep-tag (registered trademark) and Strep-tactin (registered trademark), a combination of an antigen and an antibody, and a combination of an azido group and dibenzocyclooctyn
  • a method for producing a modified protein comprising reacting a protein with a compound represented by the formula (II) according to any one of [6] to [10].
  • a method for producing a modified protein which comprises reacting with a compound represented by the formula: [14]
  • the modified protein which has a substituent represented by these.
  • the stability of the protein can be improved by using the compound of the present invention.
  • the modified protein obtained by using the compound of the present invention may have a decreased physiological activity compared to the unmodified protein, but the modified site can be removed by photoreaction, and the activity of the protein after the removal is removed. Recover. Furthermore, the modified moiety that has been removed can be separated from the protein by reacting with the capture molecule. Therefore, according to the present invention, a high concentration proteinaceous pharmaceutical can be transported and stored in a stable state, and the PEG group-containing part can be removed by a photoreaction immediately before administration to a patient, and the resulting PEG group By excluding the contained compounds, it is possible to quickly administer a high concentration proteinaceous drug in the active state to the patient.
  • FIG. 1 is a schematic diagram showing removal and separation of PEG-containing sites from the modified protein of the present invention.
  • FIG. 2 is a diagram showing an analysis result by SDS-PAGE before and after removal of a PEG-containing site linked to lysozyme.
  • FIG. 3 is a diagram showing absorption spectrum measurement results of the solution after the photoreaction and before the streptavidin treatment and the supernatant of the solution after the streptavidin treatment.
  • FIG. 4 is a diagram showing an analysis result by SDS-PAGE of a product obtained by reacting lysozyme with a compound of the formula (X).
  • FIG. 5 is a diagram showing the measurement results of aggregation in a solution after heating the modified lysozyme obtained by reacting the compound of formula (X).
  • FIG. 6 is a diagram showing an analysis result by SDS-PAGE after light irradiation was performed on the modified lysozyme obtained by reacting the compound of formula (X).
  • FIG. 7 is a diagram showing that the activity of the modified lysozyme obtained by reacting the compound of formula (X) is recovered by a photolysis reaction.
  • FIG. 8 is a diagram showing an analysis result by SDS-PAGE of a product obtained by reacting transferrin with a compound of the formula (II-b).
  • FIG. 9 is a graph showing the measurement results of the relative concentration of transferrin remaining in the solution after heating the modified transferrin obtained by reacting the compound of formula (II-b).
  • FIG. 10 is a diagram showing an analysis result by SDS-PAGE after light irradiation was performed on the modified transferrin obtained by reacting the compound of formula (II-b).
  • C 1-10 alkyl group is a linear or branched alkyl group having 1 to 10 carbon atoms.
  • Examples of C 1-10 alkyl groups include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl and isomers thereof.
  • C 1-40 alkylene group means a linear or branched alkylene group having 1 to 40 carbon atoms. Specifically, for example, methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, heptylene group, octylene group, nonylene group, decylene group, undecylene group, dodecylene group, tridecylene group, tetradecylene group, pentadecylene.
  • C 1-20 alkylene group means a linear or branched alkylene group having 1 to 20 carbon atoms. Specifically, for example, methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, heptylene group, octylene group, nonylene group, decylene group, undecylene group, dodecylene group, tridecylene group, tetradecylene group, pentadecylene. Group, hexadecylene group, heptadecylene group, octadecylene group, nonadecylene group, icosanylene group and isomers thereof.
  • C 1-10 alkylene group means a linear or branched alkylene group having 1 to 10 carbon atoms. Specific examples include a methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, heptylene group, octylene group, nonylene group, decalene group and isomers thereof.
  • C 6-14 aryl group refers to an aromatic cyclic group having 6 to 14 carbon atoms, and specific examples thereof include a phenyl group, a naphthyl group, and an anthracenyl group.
  • C 6-14 arylene group is a divalent group composed of an aromatic carbocyclic ring having 6 to 14 carbon atoms, and examples thereof include a phenylene group, a naphthylene group, and an anthracenylene group. .
  • the “5- to 10-membered heteroarylene group” is a divalent group consisting of a 5- to 10-membered aromatic heterocycle
  • the aromatic heterocycle include a pyrrole ring and an indole Ring, thiophene ring, benzothiophene ring, furan ring, benzofuran ring, pyridine ring, quinoline ring, isoquinoline ring, thiazole ring, benzothiazole ring, isothiazole ring, benzoisothiazole ring, pyrazole ring, indazole ring, oxazole ring, benzo Examples thereof include an oxazole ring, an isoxazole ring, a benzisoxazole ring, an imidazole ring, a benzimidazole ring, a triazole ring, a benzotriazole ring, a pyrimidine ring, a uridine ring
  • the “oxo group” refers to a group that forms a carbonyl group together with the carbon atom to which it is bonded.
  • One aspect of the present invention provides the following formula (I): [Where: A 1 is a hydroxyl group or an active group, A 2 is a photodegradable group, A 3 is an oxyethylene group, A 4 is a partner group of the capture molecule, L 1 and L 2 are each a linker, k 1 and k 2 are each independently 0 or 1, n represents the average number of moles added of the oxyethylene group and 50 ⁇ n ⁇ 450] It is a compound represented by these.
  • the “active group” is a substituent capable of reacting with a hydroxyl group, amino group or thiol group in a protein to form a modified protein. Although it does not specifically limit as an active group, For example, the following substituents are mentioned. [In the formula, the arrow indicates the connection with A 2 . ]
  • the “photodegradable group” is a divalent group in which a bond in the photodegradable group is cleaved by a photoreaction.
  • the photodegradable group is not particularly limited, and is, for example, a divalent group having a skeleton selected from the group consisting of a 2-nitrobenzyl skeleton, a coumarin-4-ylmethyl skeleton, and a phenylcarbonylmethyl skeleton.
  • the “divalent group having a 2-nitrobenzyl skeleton” is a divalent group having the following structure or a derivative structure thereof.
  • L 5 is a C 1-10 alkylene group or is not present, wherein the carbon atom in the alkylene group may be substituted with 1 to 5 oxo groups, The atoms may be connected by 1 to 5 unsaturated bonds, and 1 to 4 carbon atoms in the alkylene group may be NH, N (C 1-10 alkyl), O Or it may be replaced by S.
  • L 5 is a C 1-10 alkylene group or is not present, wherein the carbon atom in the alkylene group may be substituted with 1 to 5 oxo groups, The atoms may be connected by 1 to 5 unsaturated bonds, and 1 to 4 carbon atoms in the alkylene group may be NH, N (C 1-10 alkyl), O Or it may be replaced by S.
  • the left arrow indicates the connection to A 1
  • the right arrow indicates the connection to A 3 when k 1 is 0, and the connection to L 1 when k 1 is 1. Indicates concatenation.
  • the “divalent group having a coumarin-4-ylmethyl skeleton” is a divalent group having the following structure or a derivative structure thereof.
  • the left arrow indicates the connection to A 1
  • the right arrow indicates the connection to A 3 when k 1 is 0, and the connection to L 1 when k 1 is 1.
  • L 6 is a C 1-10 alkylene group or absent, wherein the carbon atom in said alkylene group may be substituted with 1 to 5 oxo groups, and adjacent carbon The atoms may be connected by 1 to 5 unsaturated bonds, and 1 to 4 carbon atoms in the alkylene group may be NH, N (C 1-10 alkyl), O Or it may be replaced by S. ]
  • the left arrow indicates the connection to A 1
  • the right arrow indicates the connection to A 3 when k 1 is 0, and the connection to L 1 when k 1 is 1. Indicates concatenation.
  • the “divalent group having a phenylcarbonylmethyl skeleton” is a divalent group having the following structure or a derivative structure thereof.
  • the left arrow indicates the connection to A 1
  • the right arrow indicates the connection to A 3 when k 1 is 0, and the connection to L 1 when k 1 is 1. Indicates concatenation.
  • the divalent group having a phenylcarbonylmethyl skeleton is preferable as the divalent group having a phenylcarbonylmethyl skeleton.
  • the left arrow indicates the connection to A 1
  • the right arrow indicates the connection to A 3 when k 1 is 0, and the connection to L 1 when k 1 is 1. Indicates concatenation.
  • the “divalent group having a 7-nitroindolinocarbonyl skeleton” is a divalent group having the following structure or a derivative structure thereof.
  • the left arrow indicates the connection to A 1
  • the right arrow indicates the connection to A 3 when k 1 is 0, and the connection to L 1 when k 1 is 1. Indicates concatenation.
  • the left arrow indicates the connection to A 1
  • the right arrow indicates the connection to A 3 when k 1 is 0, and the connection to L 1 when k 1 is 1. Indicates concatenation.
  • the “oxyethylene group” means a — (CH 2 CH 2 O) — group or a — (OCH 2 CH 2 ) — group.
  • a — (CH 2 CH 2 O) n — group and a — (OCH 2 CH 2 ) n — group (where n represents the average number of moles of oxyethylene group added and 50 ⁇ n ⁇ 450).
  • it is also referred to as “polyoxyethylene group” or “PEG group”.
  • n is preferably 50 ⁇ n ⁇ 400, and more preferably 50 ⁇ n ⁇ 350.
  • capture molecule refers to a molecule that captures a PEG group-containing compound removed from a modified protein by a photoreaction and allows separation of the compound from an unmodified protein.
  • the capture molecule may be used by being immobilized on a carrier (for example, a bead or a filter).
  • the “partner group of the capture molecule” is a group to which the capture molecule is bound covalently or non-covalently.
  • the combination of the partner group and the capture molecule is not particularly limited, but can be linked by, for example, a combination of a substituent that can be used as a protein tag and a protein that specifically binds to the tag, and a Huisgen cyclization reaction. And a combination of a substituent and a compound.
  • a combination of biotinyl group and streptavidin a combination of maltosyl group and maltose binding protein, a combination of glutathionyl group and glutathione-S-transferase, a combination of HaloTag® ligand and HaloTag® protein ,
  • the following groups [Where: The arrow indicates a connection to A 3 when k 2 is 0, and a connection to L 2 when k 2 is 1] And a combination of dihydrofolate reductase, a combination of Strep-tag (registered trademark) and Strep-tactin (registered trademark), a combination of an antigen and an antibody, and a combination of an azido group and dibenzocyclooctyne.
  • the “linker” is a divalent group for connecting two functional groups. Although it does not specifically limit as a linker, For example, it is a C1-40 alkylene group.
  • the methylene group in the C 1-40 alkylene group may be substituted with 1 to 10 oxo groups, and adjacent methylene groups may be connected with 1 to 10 unsaturated bonds.
  • 1 to 20 methylene groups are replaced by NH, N (C 1-10 alkyl), O, S, C 6-14 arylene, 5-10 membered heteroarylene. It may be done.
  • One aspect of the present invention is the following formula (II) [Where: A 1 , A 2 , A 3 , L 1 , k 1 and n are as defined in the above formula (I), L 3 is a linker, k 3 is 0 or 1, B 1 is represented by the following formula (III) (Where A 4 is as defined in the above formula (I), L 4 is a linker, k 4 is 0 or 1) A substituent that can be linked to B 2 of the compound represented by To a compound of formula (II)
  • B 1 and B 2 are not particularly limited as long as both can be connected.
  • it may be a combination of substituents that can be condensed with each other (for example, a carboxyl group and an amino group), or a combination of substituents that are linked by a Huisgen cyclization reaction (for example, an azide group and an alkynyl group).
  • B 1 and B 2 are preferably independently of each other an azide group or an alkynyl group, an azide group or a cyclooctynyl group, an azide group or a phosphinothioester group, a vinyl group or a thiol group.
  • an alkyl group substituted with an oxo group or a hydrazino group provided that they are not the same.
  • the compounds represented by the formulas (I) to (III) can be synthesized by adapting various known synthesis methods using characteristics based on the basic skeleton or the type of substituent. Although the typical manufacturing method is illustrated below, it is not limited only to the method as described below. Depending on the type of functional group, it may be effective in terms of production technology to change the functional group to a suitable protecting group at the raw material or intermediate stage, that is, a group that can be easily converted to the functional group. Yes, the protecting group can be removed as necessary to obtain the desired compound.
  • Examples of such functional groups include a hydroxyl group, a carboxyl group, an amino group, and the like
  • examples of the protecting group include a protective group by Greene and Wutt, a group group, a group group, an organic group, a synthesis group, a third edition “ Protective groups described in "Protective” Groups “in” Organic “Synthesis” (third'edition) "can be given, and these may be used as appropriate according to the reaction conditions.
  • the starting materials and the reaction reagents are known compounds, or can be easily produced from known compounds according to methods well known in the field of organic chemistry.
  • Process 1 Compound 3, which is an N-hydroxysuccinimide ester, can be reacted with compound 2 to produce compound 3.
  • the solvent used in this step is not particularly limited as long as it does not inhibit the reaction.
  • diethyl ether, tetrahydrofuran, 1,4-dioxane, benzene, toluene, xylene, hexane, cyclohexane, N, N-dimethyl examples include formamide, ethyl acetate, dichloromethane, chloroform, 1,2-dichloroethane, dimethyl sulfoxide, acetone, acetonitrile, or a mixed solvent thereof.
  • reaction temperature in this step varies depending on the raw materials and solvent to be used, it is generally -78 to 200 ° C, preferably 0 to 100 ° C, and the reaction time is usually 1 minute to 7 days, preferably 5 minutes to 72 hours.
  • This step can also be performed using an activated ester obtained by using another activator instead of the N-hydroxysuccinimide ester.
  • activators are not particularly limited, but include, for example, N-hydroxysulfosuccinimide ester, 4-nitrophenyl ester, 1-hydroxybenzotriazole ester and 1-hydroxy-7-azabenzotriazole ester, and N-carbonylimidazo -There are examples.
  • Compound 5 can be produced by reacting compound 3 with compound 4 in the presence of a condensing agent.
  • the condensing agent used in this step is not particularly limited.
  • 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride is preferred.
  • the solvent used in this step is not particularly limited as long as it does not inhibit the reaction.
  • diethyl ether, tetrahydrofuran, 1,4-dioxane, benzene, toluene, xylene, hexane, cyclohexane, N, N-dimethyl examples include formamide, ethyl acetate, dichloromethane, chloroform, 1,2-dichloroethane, dimethyl sulfoxide, acetone, acetonitrile, or a mixed solvent thereof.
  • Tetrahydrofuran or dichloromethane is preferred. While the reaction temperature in this step varies depending on the raw materials and solvent to be used, it is generally -78 to 200 ° C, preferably 0 to 100 ° C, and the reaction time is usually 1 minute to 7 days, preferably 5 minutes to 72 hours.
  • a compound of formula (Ia) can be prepared by converting the hydroxyl group of compound 5 to an active group A 1 .
  • a 1 is a 4-nitrophenyloxycarbonyloxy group
  • 4-nitrophenyl chloroformate is reacted with the hydroxyl group of compound 5.
  • the solvent used in this step is not particularly limited as long as it does not inhibit the reaction.
  • Examples include formamide, ethyl acetate, dichloromethane, chloroform, 1,2-dichloroethane, dimethyl sulfoxide, acetone, acetonitrile, or a mixed solvent thereof.
  • N, N-dimethylformamide, tetrahydrofuran and acetonitrile are preferred.
  • the reaction temperature in this step varies depending on the raw materials and solvent to be used, it is generally -78 to 200 ° C, preferably 0 to 100 ° C, and the reaction time is usually 1 minute to 7 days, preferably 5 minutes to 72 hours.
  • Process 4 Compound 7 can be produced by reacting the carboxyl group of Compound 3 obtained in Scheme 1 above with Compound 6 in the presence of a condensing agent. This step can be performed in the same manner as the above step 2.
  • a compound of formula (II-a) can be prepared by converting the hydroxyl group of compound 7 to the active group A 1 .
  • a 1 is a 4-nitrophenyloxycarbonyloxy group
  • 4-nitrophenyl chloroformate is reacted with the hydroxyl group of compound 7. This step can be performed in the same manner as the above step 3.
  • the compound represented by the formula (III) used in the present invention may be commercially available or may be prepared according to a known method.
  • reaction involving heating can be performed using a water bath, an oil bath, a sand bath, or a microwave, as will be apparent to those skilled in the art.
  • a solid-phase-supported reagent supported on a polymer eg, polystyrene, polyacrylamide, polypropylene, polyethylene glycol, etc.
  • a polymer eg, polystyrene, polyacrylamide, polypropylene, polyethylene glycol, etc.
  • the compounds and intermediates obtained as described above are isolated and purified by ordinary organic synthesis operations such as extraction, crystallization, recrystallization, dialysis, and various chromatography.
  • One embodiment of the present invention relates to a modified protein obtained by reacting a compound represented by the above formula (I) with a protein.
  • one embodiment of the present invention relates to a method for producing a modified protein, which comprises reacting a protein with a compound represented by the above formula (I).
  • a 1 of the compound represented by the formula (I) is an active group
  • the active group reacts with a hydroxyl group, amino group or thiol group in the protein to form a modified protein.
  • the solvent used in the reaction is not particularly limited as long as it does not inhibit the reaction.
  • water, buffer, N, N-dimethylformamide, dimethyl sulfoxide, acetonitrile, or a mixed solvent thereof can be used.
  • a buffer having a pH of about 8 is preferable (for example, sodium borate buffer (pH 8.3)).
  • reaction temperature in this reaction varies depending on the raw materials and solvent to be used, it is generally ⁇ 78 to 100 ° C., preferably 0 to 40 ° C., and the reaction time is usually 1 minute to 7 days, preferably 5 minutes to 72 hours.
  • a 1 of the compound represented by the above formula (I) is a hydroxyl group
  • the hydroxyl group may be converted into an active group and then reacted with a hydroxyl group, amino group or thiol group in protein. This embodiment is included in “reacting a protein with a compound represented by the above formula (I)”.
  • the modified protein obtained by reacting the compound represented by the above formula (I) with a protein is separated and purified using dialysis, gel filtration chromatography, affinity chromatography, or the like.
  • One embodiment of the present invention relates to a modified protein obtained by reacting a compound represented by the above formula (II) with a protein.
  • one embodiment of the present invention relates to a method for producing a modified protein, which comprises reacting a protein with a compound represented by the above formula (II).
  • a 1 of the compound represented by the formula (II) is an active group
  • the active group reacts with a hydroxyl group, amino group or thiol group in the protein to form a modified protein.
  • the solvent used in the reaction is not particularly limited as long as it does not inhibit the reaction.
  • water, buffer, N, N-dimethylformamide, dimethyl sulfoxide, acetonitrile, or a mixed solvent thereof can be used.
  • a buffer having a pH of about 8 is preferable (for example, sodium borate buffer (pH 8.3)).
  • reaction temperature in this reaction varies depending on the raw materials and solvent to be used, it is generally ⁇ 78 to 100 ° C., preferably 0 to 40 ° C., and the reaction time is usually 1 minute to 7 days, preferably 5 minutes to 72 hours.
  • a 1 of the compound represented by the above formula (II) is a hydroxyl group
  • the hydroxyl group may be converted into an active group and then reacted with a hydroxyl group, amino group or thiol group in protein. This embodiment is included in “reacting the protein with the compound represented by the above formula (II)”.
  • the modified protein obtained by reacting the compound represented by the above formula (II) with a protein is separated and purified using dialysis, gel filtration chromatography, affinity chromatography, or the like.
  • One embodiment of the present invention is an intermediate B 1 of a modified protein obtained by reacting a compound represented by the above formula (II) with a protein, and B 2 of a compound represented by the above formula (III).
  • the present invention relates to a modified protein obtained by linking.
  • Another embodiment of the present invention is: (1) preparing an intermediate of a modified protein by reacting a protein with a compound represented by the above formula (II); (2) converting the intermediate into the above formula (III) It is related with the manufacturing method of a modified protein including reacting with the compound represented by this.
  • connection condition between B 1 and B 2 varies depending on the combination.
  • the solvent used for the ligation reaction is not particularly limited as long as it does not inhibit the reaction.
  • a buffer having a pH of 7 to 8 (for example, phosphate buffered saline (PBS)) is preferable.
  • reaction temperature in this reaction varies depending on the raw materials and solvent to be used, it is generally ⁇ 78 to 100 ° C., preferably 0 to 40 ° C., and the reaction time is usually 1 minute to 7 days, preferably 5 minutes to 72 hours.
  • the resulting modified protein is separated and purified using dialysis, gel filtration chromatography, affinity chromatography, and the like.
  • the present invention relates to a modified protein having a substituent represented by:
  • the modified protein can be obtained, for example, by reacting the protein with a compound represented by the above formula (I). Alternatively, it can be obtained by reacting a protein with a compound represented by the above formula (II) to prepare an intermediate of a modified protein and reacting the intermediate with a compound represented by the above formula (III). .
  • the modified protein having a substituent represented by the formula (IV) is preferably the following formula (IV-a): [Where: A 4 , n, m 1 , m 2 , m 3 and L 1 are as defined in the above formula (Ia), Arrow indicates linkage with hydroxyl, amino or thiol group in protein]
  • modified protein having a substituent represented by the formula (IV) more preferably the following formula (IV-b): [Where: n represents the average number of added moles of oxyethylene groups, and 150 ⁇ n ⁇ 450, Arrow indicates linkage with hydroxyl, amino or thiol group in protein]
  • formula (IV-b) [Where: n represents the average number of added moles of oxyethylene groups, and 150 ⁇ n ⁇ 450, Arrow indicates linkage with hydroxyl, amino or thiol group in protein]
  • One embodiment of the present invention is the following formula (V): [Where: A 2 , A 3 , B 1 , L 1 , L 3 , k 1 , k 3 and n are as defined in the above formula (II), Arrow indicates linkage with hydroxyl, amino or thiol group in protein]
  • the present invention relates to a modified protein having a substituent represented by:
  • the modified protein can be obtained, for example, by reacting the protein with a compound represented by the above formula (II).
  • the modified protein having a substituent represented by the formula (V) is preferably the following formula (Va): [Where: n, m 4 , m 5 , m 6 and m 7 are as defined in the above formula (II-a); Arrow indicates linkage with hydroxyl, amino or thiol group in protein]
  • the modified protein having a substituent represented by the formula (V) is more preferably the following formula (Vb): [Where: n represents the average number of added moles of oxyethylene groups, and 150 ⁇ n ⁇ 450, Arrow indicates linkage with hydroxyl, amino or thiol group in protein]
  • Vb the following formula
  • modified protein of the present invention A modified protein obtained by reacting a protein with the compound represented by the above formula (I), an intermediate of the modified protein obtained by reacting the protein with a compound represented by the above formula (II), and the intermediate
  • modified protein of the present invention a modified protein obtained by reacting a compound represented by the above formula (III) with a substituent represented by the above formula (IV) is referred to as “modified protein of the present invention”. Also called.
  • the protein to be modified is not particularly limited, and examples thereof include protein drugs.
  • protein pharmaceuticals include lysozyme, transferrin, insulin, interferon, erythropoietin, hormone, antibody and the like.
  • the modified protein of the present invention that has been modified at the PEG-containing site has extremely high stability, but may have reduced physiological activity compared to the unmodified protein.
  • the wavelength of the light to be irradiated may be determined according to the kind of the photodegradable group in the compound of the present invention. Usually, light having a wavelength in the range of 280 to 500 nm, preferably in the vicinity of 350 to 450 nm is irradiated. Light sources such as sunlight, electric light such as mercury lamps, laser light (semiconductor lasers, solid state lasers, gas lasers), light emission of light emitting diodes, light emission of electroluminescent elements can be used.
  • the reaction temperature is not particularly limited, but is usually ⁇ 78 to 200 ° C., preferably 0 to 100 ° C.
  • the light irradiation energy is usually 0.5 to 100 J / cm 2 , and preferably 1 to 10 J / cm 2 .
  • the solvent used in the photolysis reaction is not particularly limited as long as it does not inhibit the reaction. For example, water, buffer solution, N, N-dimethylformamide, dimethyl sulfoxide, acetonitrile, or a mixed solvent thereof, etc. Is mentioned.
  • a buffer having a pH of about 7-8 eg Dulbecco's phosphate buffer
  • the light irradiation time may vary depending on the performance of the light irradiation device, the type of the photodegradable group in the compound of the present invention, the amount of the modified protein of the present invention, and the like. It is performed for ⁇ 12 hours, preferably 30 seconds to 5 hours.
  • the PEG group-containing compound produced by the photoreaction can be captured by a capture molecule. Thereby, separation of the protein and the PEG group-containing compound becomes possible.
  • the partner group present at the end of the PEG group-containing compound is captured by the capture molecule.
  • the magnetic beads are collected on the bottom surface of the container using a magnet, and only the supernatant is collected, whereby the PEG group-containing compound and the protein can be separated.
  • the capture molecule-immobilized gel is suspended in a mixed solution of the PEG group-containing compound and unmodified protein removed by light irradiation, and the partner group present at the end of the PEG group-containing compound is captured by the capture molecule. To do. Thereafter, the PEG group-containing compound and the protein can be separated by collecting the gel on the bottom of the container by centrifugation and collecting only the supernatant.
  • PA-050HC of formula (v) (average molecular weight: 5000) (200 mg, 40 ⁇ mol, NOF Corporation) in a 25 mL two-necked eggplant flask, and dry CH 2 Cl 2 (3.0 mL) at room temperature under a nitrogen atmosphere. Dissolved in. At the same time, take the compound of formula (vi) (79.27 mg, 200 ⁇ mol, manufactured according to S. Takamori, et al., Chem. Commun., 49, 3013-3015 (2013)) in a 25 mL two-necked eggplant flask and add nitrogen. Dissolved in dry CH 2 Cl 2 (2.0 mL) at room temperature under atmosphere.
  • Example 2 Chemical modification to lysozyme using the compound of formula (II-b) and subsequent biotinyl group modification
  • lysozyme powder from chicken egg white, manufactured by Wako Pure Chemical Industries
  • lysozyme aqueous solution (3.21 mg / mL, 0.1 M boric acid Sodium buffer, pH 8.3) was prepared.
  • the compound of the formula (II-b) that was 25 equivalents with respect to lysozyme was mixed and allowed to stand overnight at room temperature. The modification was confirmed by SDS-PAGE in the Crude state, and then dialyzed in PBS using a dialysis cup having a molecular weight fraction of 12000.
  • Example 3 Removal of PEG group-containing site and separation from protein
  • the aqueous solution of lysozyme substituted with a group containing a biotinyl group and a PEG group (hereinafter also simply referred to as “modified lysozyme of Example 2”) obtained in Example 2 was used. It adjusted to 0.5 mg / mL, 40 microliters was taken to the microtube, and 360-nm ultraviolet light was irradiated to 32 J / cm ⁇ 2 > using the light irradiation machine (MAX-302, the Asahi Spectroscope company). Irradiation was performed for 270 minutes (2 mW / cm 2 ).
  • FIG. 2 shows that the PEG-containing site is removed by light irradiation, and that the PEG-containing site is separated from the protein by using streptavidin-modified beads, thereby obtaining highly pure lysozyme.
  • the absorption spectrum of the supernatant obtained after the light irradiation and before the streptavidin treatment and the supernatant obtained after the streptavidin treatment was measured. The results are shown in FIG. In the solution before the treatment, absorption derived from the removed residue was observed, but in the supernatant absorption spectrum, no absorption derived from the residue was observed, which coincided with the absorption spectrum of unmodified lysozyme.
  • Reference example 3 Heat resistance test of the modified lysozyme of Reference Example 2
  • a PBS solution of 1.0 mg / mL unmodified lysozyme and the modified lysozyme of Reference Example 2 was prepared, and 120 ⁇ L each was placed in a quartz cell and capped.
  • a quartz cell was set in the measurement part of an absorption spectrometer (UV-2550, manufactured by Shimadzu Corporation), and turbidity was measured at an absorption wavelength of 600 nm.
  • the temperature for denaturation aggregation was increased from 50 ° C. to 100 ° C. at a temperature increase rate of 0.1 ° C./min. The results are shown in FIG.
  • Unmodified lysozyme began to aggregate near 70 ° C., and turbidity increased. On the other hand, the increase in turbidity was suppressed by the modification of PEG to lysozyme. In particular, in the modified lysozyme (25 eq), no increase in turbidity was observed even when the temperature exceeded 90 ° C.
  • Reference Example 5 Measurement of the lytic activity of the modified lysozyme of Reference Example 2 Take 2.0 ⁇ L of the modified lysozyme (25 eq) solution obtained in Reference Example 2 into the cell, and 120 ⁇ L of Micrococcus lysodeikticus cells The suspension (1.0 mg / mL) was added and pipetted 3 times. The cell was quickly attached to an absorptiometer (UV-2550, manufactured by Shimadzu Corporation), covered, and the time change of turbidity at 450 nm was measured every 1 second at 25 ° C. The slope of the regression line by the least square method was calculated for turbidity data from 11 to 30 seconds after the start of measurement, and was used as the lysis reaction rate.
  • UV-2550 UV-2550, manufactured by Shimadzu Corporation
  • Example 4 Chemical modification to transferrin using compound of formula (II-b) A 10.9 mg / mL (142 ⁇ M) transferrin solution (from human, using holo form, Sigma-Aldrich) was prepared. Next, compounds of formula (II-b) corresponding to 2 equivalents, 9 equivalents, 18 equivalents or 46 equivalents were taken in tubes, respectively. An aqueous transferrin solution was added to the tube, and pipetting was performed 10 times. The mixture was allowed to stand at room temperature for 20.5 hours under light-shielding conditions, 14 ⁇ L of 50 mM Tris / HCl buffer (pH 8.0) was added, and the mixture was allowed to stand at room temperature for one hour under light-shielding conditions.
  • Example 5 Thermostability test of the modified transferrin of Example 4 5.38 mg / mL unmodified transferrin and 40 mL of the modified transferrin solution of Example 4 were placed in a tube and incubated on a heat block set at 90 ° C. for 10 minutes. Centrifugation was performed at 14000 G for 10 minutes, and aggregates were dropped on the bottom of the tube. Aggregates were observed at the bottom of the tube with unmodified transferrin, whereas aggregates decreased with the modified transferrin (2 eq) solution and aggregates with the modified transferrin (9 eq, 18 eq, 46 eq) solution. Not observed.
  • the supernatant of each tube was measured three times in the UV-vis mode of nano-drop (Thermo-Fisher), and the absorbance at 280 nm was examined.
  • the concentration of the solution was determined by calculating the absorbance derived from the aromatic ring of the photodegradable group at 280 nm from the absorbance at 365 nm, and using the value obtained by subtracting it.
  • the relative concentration was calculated from the concentration of the solution before the heat denaturation operation and the concentration of the supernatant after the heat denaturation operation. The results are shown in FIG. In the modified transferrin, a decrease in the transferrin concentration in the supernatant after the heat denaturation operation was suppressed.
  • Example 6 Removal of the PEG group-containing site Take the modified transferrin (46eq) (1.67 mg / mL) obtained in Example 4 in a microtube and use a light irradiator (MAX-102, manufactured by Asahi Spectroscopy) to light at 360 nm ( 5.0 mW / cm 2 ) was irradiated at 32 J / cm 2 (106 minutes) and 87 J / cm 2 (290 minutes). The solution before and after the light irradiation was electrophoresed by SDS-PAGE (6%). The results are shown in FIG. The photodegradable group was decomposed by light irradiation, and the PEG-containing site was removed from transferrin.
  • MAX-102 manufactured by Asahi Spectroscopy
  • the compound of the present invention can be suitably used for stabilizing industrial and pharmaceutical proteins.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Peptides Or Proteins (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Polyethers (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)

Abstract

The present invention pertains to a compound represented by formula (I) [in the formula, A1 is a hydroxyl group or an active group, A2 is a photodegradable group, A3 is an oxyethylene group, A4 is a partner group of a capture molecule, L1 and L2 are each a linker, k1 and k2 are each independently 0 or 1, and n indicates the average number of moles of the oxyethylene group added, and 50 ≤ n ≤ 450 is satisfied]. The compound can be used to stabilize a protein.

Description

タンパク質を安定化するための化合物Compounds for stabilizing proteins
 本発明は、タンパク質を安定化するための化合物、及び当該化合物をタンパク質と反応させることにより得られる修飾タンパク質に関する。 The present invention relates to a compound for stabilizing a protein, and a modified protein obtained by reacting the compound with a protein.
 近年、疾患や重要な生命現象に関わる遺伝子が次々に明らかにされており、そのような遺伝子の発現産物であるタンパク質を、タンパク質性医薬品として活用することが期待されている。しかし、タンパク質は水溶液中で容易に構造が緩むため、タンパク質医薬品の製造過程や保存、運搬時に不可逆的な凝集やプロテアーゼによる分解を招く。タンパク質性医薬品の凝集は、投与後に強い生体反応を誘導して極めて危険であることが報告されている。また、プロテアーゼによる分解は、薬効の低下の原因となる。従って、製造過程からベッドサイドに至るまでの間、タンパク質を安定化する技術は、タンパク質性医薬品の分野で切望される技術である。 In recent years, genes related to diseases and important life phenomena have been clarified one after another, and it is expected that proteins that are expression products of such genes will be used as protein drugs. However, the structure of proteins easily loosens in aqueous solution, which causes irreversible aggregation and protease degradation during the production, storage, and transportation of protein drugs. Aggregation of proteinaceous drugs has been reported to be extremely dangerous by inducing a strong biological response after administration. Moreover, degradation by protease causes a decrease in drug efficacy. Therefore, a technique for stabilizing a protein from the manufacturing process to the bedside is a technique that is eagerly desired in the field of proteinaceous pharmaceuticals.
 既存のタンパク質安定化技術として、以下の三つに大別できる。
(1)タンパク質の立体構造を安定化する糖類及びグリセロールなどを、または、タンパク質の凝集を抑制するアルギニン塩酸塩及び界面活性剤などを添加する技術(非特許文献1)
(2)抗体のFcドメインなどの安定性の高いタンパク質との融合タンパク質とする技術(非特許文献2及び3)
(3)ポリエチレングリコール(以降、PEGと略する)等の親水性ポリマーを化学修飾する技術(非特許文献4及び5)
The existing protein stabilization techniques can be roughly divided into the following three types.
(1) A technique of adding a saccharide, glycerol, or the like that stabilizes the three-dimensional structure of a protein, or an arginine hydrochloride, a surfactant, or the like that suppresses protein aggregation (Non-patent Document 1)
(2) Technology for producing a fusion protein with a highly stable protein such as an antibody Fc domain (Non-patent Documents 2 and 3)
(3) Technology for chemically modifying a hydrophilic polymer such as polyethylene glycol (hereinafter abbreviated as PEG) (Non-patent Documents 4 and 5)
 上記(1)が既存法として最もよく用いられているが、タンパク質の安定化のためには高濃度の添加剤が必要となり、直接体内に投与するには毒性等が問題となる。また、タンパク質が高濃度の場合、凝集を抑えきれない場合も多い。 The above (1) is most commonly used as an existing method, but high-concentration additives are required for protein stabilization, and toxicity or the like becomes a problem when administered directly into the body. In addition, when the protein concentration is high, there are many cases where aggregation cannot be suppressed.
 上記(2)では、他のタンパク質との融合による機能の低下や、融合相手のタンパク質の投与後の免疫原性や望まない活性などが問題になる。 In the above (2), there are problems such as a decrease in function due to fusion with other proteins, immunogenicity and undesirable activity after administration of the fusion partner protein.
 上記(3)では、他の方法に比べて安定化効果が高いことが知られ、また、他の方法との併用も可能である。しかしながら、嵩高いポリマーを化学修飾することによって、タンパク質の機能(活性)が低下してしまうという問題点がある。特に、安定性を高めるために修飾本数やポリマーの長さを増やすと、それに応じて活性が大幅に落ちるため、高い安定性と高い活性を同時に実現することが困難である。 In the above (3), it is known that the stabilizing effect is higher than other methods, and it can be used in combination with other methods. However, there is a problem that the function (activity) of the protein is lowered by chemically modifying a bulky polymer. In particular, when the number of modifications and the length of the polymer are increased in order to increase the stability, the activity is greatly reduced accordingly, and it is difficult to simultaneously realize high stability and high activity.
 近年、塩基性条件下でのリンカーの分解によって、修飾したPEGがタンパク質表面から外れて活性が回復するPEG化法(Reversible PEGylation法)が報告されている(非引用文献6、7)。 In recent years, a PEGylation method (Reversible PEGylation method) in which the modified PEG is detached from the protein surface and its activity is recovered by degradation of the linker under basic conditions has been reported (Non-cited references 6, 7).
 また、タンパク質性医薬品の安定化について何ら言及されてはいないが、非引用文献8には、光分解性リンカーを介してPEGを修飾し、タンパク質の活性を制御できることを開示している。PEG化されたタンパク質は不活性だが、光照射によりPEGを含む光分解性リンカーがタンパク質から除去され、当該タンパク質の活性が回復する。 In addition, although there is no mention of stabilization of protein pharmaceuticals, Non-cited Document 8 discloses that PEG can be modified through a photodegradable linker to control protein activity. Although the PEGylated protein is inactive, the photodegradable linker containing PEG is removed from the protein by light irradiation, and the activity of the protein is restored.
 しかし、非特許文献6及び7の方法では、タンパク質の活性にほとんど影響を与えない弱塩基性条件下にてPEG含有部位を除去するために、長時間を必要とする(数十時間~数百時間)。また、タンパク質によっては塩基性条件で変性する。また、PEG含有部位をタンパク質性医薬から除去した後に速やかに生体内に投与できることが望ましいが、塩基性水溶液を生体内に直接投与することは好ましくない。よって、塩基性条件以外の条件でPEG含有部位を速やかに除去可能なPEG化法が必要である。 However, in the methods of Non-Patent Documents 6 and 7, it takes a long time to remove the PEG-containing site under weakly basic conditions that hardly affect the protein activity (several tens of hours to several hundreds of hours). time). Some proteins denature under basic conditions. In addition, it is desirable that the PEG-containing site can be quickly administered into the living body after removal from the proteinaceous drug, but it is not preferable to administer the basic aqueous solution directly into the living body. Therefore, there is a need for a PEGylation method that can quickly remove PEG-containing sites under conditions other than basic conditions.
 また、PEG基含有部位をタンパク質性医薬から除去した後に、当該タンパク質性医薬を速やかに生体内に投与可能とするために、生成したPEG基含有化合物を速やかにタンパク質性医薬から分離できることが必要である。従来技術は、そのような分離技術を何ら開示していない。 In addition, after removing the PEG group-containing site from the proteinaceous drug, it is necessary to be able to quickly separate the produced PEG group-containing compound from the proteinous drug in order to be able to rapidly administer the proteinous drug into the living body. is there. The prior art does not disclose any such separation technique.
 従って本発明は、タンパク質の安定性を向上させることができ、中性条件下で速やかに除去可能であり、除去された後にタンパク質の活性が損なわれることがなく、かつ除去された後に速やかにタンパク質から分離可能なPEG化試薬の開発を課題とする。 Therefore, the present invention can improve the stability of the protein, can be removed quickly under neutral conditions, does not impair the activity of the protein after being removed, and can be quickly removed after being removed. Development of a PEGylation reagent that can be separated from
 本発明者らは上記課題に鑑み、鋭意検討した結果、(1)光分解性基、(2)PEG基及び(3)捕獲分子のパートナー基を有する化合物を用いることで、上記課題を解決できることを見出し、本発明に至った。 As a result of intensive studies in view of the above problems, the present inventors can solve the above problems by using a compound having (1) a photodegradable group, (2) a PEG group, and (3) a capture molecule partner group. And found the present invention.
 すなわち本発明は、以下の態様を有する。
[1]
 以下の式(I)
Figure JPOXMLDOC01-appb-C000013
[式中、
1は、ヒドロキシル基であるか、又は活性基であり、
2は、光分解性基であり、
3は、オキシエチレン基であり、
4は、捕獲分子のパートナー基であり、
1及びL2は、それぞれリンカーであり、
1及びk2は、それぞれ独立して0又は1であり、
nは、オキシエチレン基の平均付加モル数を示し、かつ50≦n≦450である]
で表される化合物。
[2]
 A1が、以下の置換基:
Figure JPOXMLDOC01-appb-C000014
[式中、矢印はA2への連結を示す]
からなる群から選択される、[1]に記載の化合物。
[3]
 A2が、2-ニトロベンジル骨格、クマリン-4-イルメチル骨格、フェニルカルボニルメチル骨格及び7-ニトロインドリノカルボニル骨格からなる群から選択される骨格を有する二価の基である、[1]又は[2]に記載の化合物。
[4]
 A4と捕獲分子との組み合わせが、ビオチニル基とストレプトアビジンとの組み合わせ、マルトシル基とマルトース結合タンパク質との組み合わせ、グルタチオニル基とグルタチオン-S-トランスフェラーゼとの組み合わせ、HaloTag(登録商標)リガンドとHaloTag(登録商標)タンパク質との組み合わせ、グアニリルメチルフェニル基とSNAP-tag(登録商標)との組み合わせ、シトシニルメチルフェニル基とCLIP-tag(登録商標)との組み合わせ、以下の基:
Figure JPOXMLDOC01-appb-C000015
[式中、
矢印は、k2が0の場合にはA3への連結を示し、k2が1の場合にはL2への連結を示す]
とジヒドロ葉酸還元酵素との組み合わせ、Strep-tag(登録商標)とStrep-tactin(登録商標)との組み合わせ、抗原と抗体との組み合わせ、アジド基とジベンゾシクロオクチンとの組み合わせからなる群から選択される、[1]~[3]のいずれか1つに記載の化合物。
[5]
 以下の式(I-a)
Figure JPOXMLDOC01-appb-C000016
[式中、
1、A4、及びnは、[1]で定義された通りであり、
1、m2及びm3は、それぞれ独立して1~10の整数であり、
11は、C1-20アルキレン基であって、ここで前記C1-20アルキレン基中のメチレン基は1~5個のオキソ基で置換されていてもよく、隣接するメチレン基同士が1~5個の不飽和結合で結ばれていてもよく、そして前記アルキレン基中のメチレン基のうち、1~10個のメチレン基がNH、N(C1-10アルキル)、O、S、C6-14アリーレン、5~10員のヘテロアリーレンで置き換えられていてもよい]
で表される化合物である、[1]~[4]のいずれか1つに記載の化合物。
[6]
 以下の式(II)
Figure JPOXMLDOC01-appb-C000017
[式中、
1、A2、A3、L1、k1及びnは、[1]で定義された通りであり、
3は、リンカーであり、
3は、0又は1であり、
1は、以下の式(III)
Figure JPOXMLDOC01-appb-C000018
(式中、
4は、[1]で定義された通りであり、
4は、リンカーであり、
4は、0又は1である)
で表される化合物のB2と連結可能な置換基である]
で表される化合物。
[7]
 B1及びB2は、互いに独立してアジド基又はアルキニル基であるか、アジド基又はシクロオクチニル基であるか、アジド基又はホスフィノチオエステル基であるか、ビニル基又はチオール基であるか、或いはオキソ基で置換されたC1-10アルキル基又はヒドラジノ基であり、但し両者が同一であることはない、[6]に記載の式(II)で表される化合物。
[8]
 以下の式(II-a)
Figure JPOXMLDOC01-appb-C000019
[式中、
1、及びnは、[1]で定義された通りであり、
4、m5、m6及びm7は、それぞれ独立して1~10の整数である]
で表される化合物である、[6]又は[7]に記載の式(II)で表される化合物。
[9]
 以下の式(II-b)
Figure JPOXMLDOC01-appb-C000020
[式中、
nは、オキシエチレン基の平均付加モル数を示し、かつ50≦n≦450である]
で表される化合物である、[6]~[8]のいずれか1つに記載の式(II)で表される化合物。
[10]
 式(III)で表される化合物が、以下の(III-a)
Figure JPOXMLDOC01-appb-C000021
で表される化合物である、[6]~[9]のいずれか1つに記載の式(II)で表される化合物。
[11]
 タンパク質を[1]~[5]のいずれか1項に記載の式(I)で表される化合物と反応させることを含む、修飾タンパク質の製造方法。
[12]
 タンパク質を[6]~[10]のいずれか1項に記載の式(II)で表される化合物と反応させることを含む、修飾タンパク質の製造方法。
[13]
 (1)タンパク質を[6]~[10]のいずれか1項に記載の式(II)で表される化合物と反応させて修飾タンパク質の中間体を調製し;
 (2)前記中間体を、式(III)
Figure JPOXMLDOC01-appb-C000022
(式中、
4、B2、L4及びk4は、[6]で定義された通りである)
で表される化合物と反応させること
を含む、修飾タンパク質の製造方法。
[14]
 以下の式(IV):
Figure JPOXMLDOC01-appb-C000023
[式中、
2、A3、A4、L1、L2、k1、k2及びnは、[1]で定義された通りであり、
矢印は、タンパク質中のヒドロキシル基、アミノ基又はチオール基との連結を示す]
で表される置換基を有する、修飾タンパク質。
[15]
  以下の式(V):
Figure JPOXMLDOC01-appb-C000024
[式中、
2、A3、B1、L1、L3、k1、k3及びnは、[6]で定義された通りであり、
矢印は、タンパク質中のヒドロキシル基、アミノ基又はチオール基との連結を示す]
で表される置換基を有する、修飾タンパク質。
That is, this invention has the following aspects.
[1]
The following formula (I)
Figure JPOXMLDOC01-appb-C000013
[Where:
A 1 is a hydroxyl group or an active group,
A 2 is a photodegradable group,
A 3 is an oxyethylene group,
A 4 is a partner group of the capture molecule,
L 1 and L 2 are each a linker,
k 1 and k 2 are each independently 0 or 1,
n represents the average number of moles added of the oxyethylene group and 50 ≦ n ≦ 450]
A compound represented by
[2]
A 1 is the following substituent:
Figure JPOXMLDOC01-appb-C000014
[Wherein the arrow indicates the connection to A 2 ]
The compound according to [1], which is selected from the group consisting of:
[3]
A 2 is a divalent group having a skeleton selected from the group consisting of a 2-nitrobenzyl skeleton, a coumarin-4-ylmethyl skeleton, a phenylcarbonylmethyl skeleton, and a 7-nitroindolinocarbonyl skeleton, [1] or The compound according to [2].
[4]
The combination of A 4 and the capture molecule is a combination of biotinyl group and streptavidin, a combination of maltosyl group and maltose binding protein, a combination of glutathion group and glutathione-S-transferase, HaloTag® ligand and HaloTag ( (Registered trademark) protein combination, guanylylmethylphenyl group and SNAP-tag (registered trademark) combination, cytosynylmethylphenyl group and CLIP-tag (registered trademark) combination, the following groups:
Figure JPOXMLDOC01-appb-C000015
[Where:
The arrow indicates a connection to A 3 when k 2 is 0, and a connection to L 2 when k 2 is 1]
And a combination of dihydrofolate reductase, a combination of Strep-tag (registered trademark) and Strep-tactin (registered trademark), a combination of an antigen and an antibody, and a combination of an azido group and dibenzocyclooctyne. The compound according to any one of [1] to [3].
[5]
The following formula (Ia)
Figure JPOXMLDOC01-appb-C000016
[Where:
A 1 , A 4 , and n are as defined in [1],
m 1 , m 2 and m 3 are each independently an integer of 1 to 10,
L 11 is a C 1-20 alkylene group, wherein the methylene group in the C 1-20 alkylene group may be substituted with 1 to 5 oxo groups, and adjacent methylene groups are 1 1 to 10 methylene groups among the methylene groups in the alkylene group may be NH, N (C 1-10 alkyl), O, S, C 6-14 arylene, may be replaced with 5-10 membered heteroarylene]
The compound according to any one of [1] to [4], which is a compound represented by:
[6]
The following formula (II)
Figure JPOXMLDOC01-appb-C000017
[Where:
A 1 , A 2 , A 3 , L 1 , k 1 and n are as defined in [1],
L 3 is a linker,
k 3 is 0 or 1,
B 1 is represented by the following formula (III)
Figure JPOXMLDOC01-appb-C000018
(Where
A 4 is as defined in [1],
L 4 is a linker,
k 4 is 0 or 1)
A substituent that can be linked to B 2 of the compound represented by
A compound represented by
[7]
B 1 and B 2 are each independently an azide group or an alkynyl group, an azide group or a cyclooctynyl group, an azide group or a phosphinothioester group, a vinyl group or a thiol group, or A compound represented by the formula (II) according to [6], which is a C 1-10 alkyl group or hydrazino group substituted with an oxo group, but the two are not the same.
[8]
The following formula (II-a)
Figure JPOXMLDOC01-appb-C000019
[Where:
A 1 and n are as defined in [1],
m 4 , m 5 , m 6 and m 7 are each independently an integer of 1 to 10]
A compound represented by the formula (II) according to [6] or [7], which is a compound represented by:
[9]
The following formula (II-b)
Figure JPOXMLDOC01-appb-C000020
[Where:
n represents the average number of moles added of the oxyethylene group and 50 ≦ n ≦ 450]
A compound represented by the formula (II) according to any one of [6] to [8], which is a compound represented by:
[10]
The compound represented by the formula (III) is represented by the following (III-a):
Figure JPOXMLDOC01-appb-C000021
A compound represented by the formula (II) according to any one of [6] to [9], which is a compound represented by:
[11]
A method for producing a modified protein comprising reacting a protein with the compound represented by formula (I) according to any one of [1] to [5].
[12]
A method for producing a modified protein, comprising reacting a protein with a compound represented by the formula (II) according to any one of [6] to [10].
[13]
(1) preparing an intermediate of a modified protein by reacting the protein with the compound represented by the formula (II) described in any one of [6] to [10];
(2) The intermediate is represented by the formula (III)
Figure JPOXMLDOC01-appb-C000022
(Where
A 4 , B 2 , L 4 and k 4 are as defined in [6])
A method for producing a modified protein, which comprises reacting with a compound represented by the formula:
[14]
The following formula (IV):
Figure JPOXMLDOC01-appb-C000023
[Where:
A 2 , A 3 , A 4 , L 1 , L 2 , k 1 , k 2 and n are as defined in [1],
Arrow indicates linkage with hydroxyl, amino or thiol group in protein]
The modified protein which has a substituent represented by these.
[15]
The following formula (V):
Figure JPOXMLDOC01-appb-C000024
[Where:
A 2 , A 3 , B 1 , L 1 , L 3 , k 1 , k 3 and n are as defined in [6],
Arrow indicates linkage with hydroxyl, amino or thiol group in protein]
The modified protein which has a substituent represented by these.
 本発明の化合物を用いることで、タンパク質の安定性を向上させることができる。本発明の化合物を用いて得られる修飾タンパク質は、未修飾のタンパク質と比較しての生理活性が低下し得るが、修飾部位は光反応により除去可能であり、除去された後に当該タンパク質の活性が回復する。さらに、除去された修飾部分は、捕獲分子と反応させることにより、タンパク質と分離可能である。したがって本発明によれば、高濃度のタンパク質性医薬を安定な状態で運搬・保管することができ、さらに患者に投与する直前に光反応によりPEG基含有部を除去可能であり、生じたPEG基含有化合物を排除することで、活性状態の高濃度のタンパク質性医薬を、速やかに患者に投与することが可能である。 The stability of the protein can be improved by using the compound of the present invention. The modified protein obtained by using the compound of the present invention may have a decreased physiological activity compared to the unmodified protein, but the modified site can be removed by photoreaction, and the activity of the protein after the removal is removed. Recover. Furthermore, the modified moiety that has been removed can be separated from the protein by reacting with the capture molecule. Therefore, according to the present invention, a high concentration proteinaceous pharmaceutical can be transported and stored in a stable state, and the PEG group-containing part can be removed by a photoreaction immediately before administration to a patient, and the resulting PEG group By excluding the contained compounds, it is possible to quickly administer a high concentration proteinaceous drug in the active state to the patient.
図1は、本発明の修飾タンパク質からの、PEG含有部位の除去及び分離を示す模式図である。FIG. 1 is a schematic diagram showing removal and separation of PEG-containing sites from the modified protein of the present invention. 図2は、リゾチームと連結しているPEG含有部位の除去前後での、SDS-PAGEによる分析結果を示す図である。FIG. 2 is a diagram showing an analysis result by SDS-PAGE before and after removal of a PEG-containing site linked to lysozyme. 図3は、光反応後ストレプトアビジン処理前の溶液の、及び当該溶液のストレプトアビジン処理後の上清の、吸収スペクトル測定結果を示す図である。FIG. 3 is a diagram showing absorption spectrum measurement results of the solution after the photoreaction and before the streptavidin treatment and the supernatant of the solution after the streptavidin treatment. 図4は、リゾチームと式(X)の化合物とを反応させて得られた生成物のSDS-PAGEによる分析結果を示す図である。FIG. 4 is a diagram showing an analysis result by SDS-PAGE of a product obtained by reacting lysozyme with a compound of the formula (X). 図5は、式(X)の化合物を反応させて得られた修飾リゾチームを加熱した後における、溶液中での凝集の測定結果を示す図である。FIG. 5 is a diagram showing the measurement results of aggregation in a solution after heating the modified lysozyme obtained by reacting the compound of formula (X). 図6は、式(X)の化合物を反応させて得られた修飾リゾチームに対して光照射を行った後におけるSDS-PAGEによる分析結果を示す図である。FIG. 6 is a diagram showing an analysis result by SDS-PAGE after light irradiation was performed on the modified lysozyme obtained by reacting the compound of formula (X). 図7は、光分解反応によって、式(X)の化合物を反応させて得られた修飾リゾチームの活性が回復することを示す図である。FIG. 7 is a diagram showing that the activity of the modified lysozyme obtained by reacting the compound of formula (X) is recovered by a photolysis reaction. 図8は、トランスフェリンと式(II-b)の化合物とを反応させて得られた生成物のSDS-PAGEによる分析結果を示す図である。FIG. 8 is a diagram showing an analysis result by SDS-PAGE of a product obtained by reacting transferrin with a compound of the formula (II-b). 図9は、式(II-b)の化合物を反応させて得られた修飾トランスフェリンを加熱した後における、溶液中に残存しているトランスフェリンの相対濃度の測定結果を示す図である。FIG. 9 is a graph showing the measurement results of the relative concentration of transferrin remaining in the solution after heating the modified transferrin obtained by reacting the compound of formula (II-b). 図10は、式(II-b)の化合物を反応させて得られた修飾トランスフェリンに対して光照射を行った後におけるSDS-PAGEによる分析結果を示す図である。FIG. 10 is a diagram showing an analysis result by SDS-PAGE after light irradiation was performed on the modified transferrin obtained by reacting the compound of formula (II-b).
 本明細書において、「C1-10アルキル基」とは、炭素数1~10の直鎖もしくは分枝鎖状のアルキル基である。C1-10アルキル基の例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基及びそれらの異性体が挙げられる。 In the present specification, the “C 1-10 alkyl group” is a linear or branched alkyl group having 1 to 10 carbon atoms. Examples of C 1-10 alkyl groups include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl and isomers thereof.
 本明細書において、「C1-40アルキレン基」とは、炭素数1~40の直鎖もしくは分枝鎖状のアルキレン基のことである。具体的には例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、へキシレン基、ヘプチレン基、オクチレン基、ノニレン基、デシレン基、ウンデシレン基、ドデシレン基、トリデシレン基、テトラデシレン基、ペンタデシレン基、ヘキサデシレン基、ヘプタデシレン基、オクタデシレン基、ノナデシレン基、イコサニレン基、ヘンイコサニレン基、ドコサニレン基、トリコサニレン基、テトラコサニレン基、ペンタコサニレン基、ヘキサコサニレン基、ヘプタコサニレン基、オクタコサニレン基、ノナコサニレン基、トリアコンタニレン基、ヘントリアコンタニレン、ドトリアコンタニレン基、トリトリアコンタニレン基、テトラトリアコンタニレン基、ペンタトリアコンタニレン基、ヘキサトリアコンタニレン基、ヘプタトリアコンタニレン基、オクタトリアコンタニレン基、ノナトリアコンタニレン基、テトラコンタニレン基及びそれらの異性体が挙げられる。 In the present specification, the “C 1-40 alkylene group” means a linear or branched alkylene group having 1 to 40 carbon atoms. Specifically, for example, methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, heptylene group, octylene group, nonylene group, decylene group, undecylene group, dodecylene group, tridecylene group, tetradecylene group, pentadecylene. Group, hexadecylene group, heptadecylene group, octadecylene group, nonadecylene group, icosanylene group, heicosanylene group, docosanylene group, tricosanylene group, tetracosanylene group, pentacosanylene group, hexacosanylene group, heptacosanylene group, octacosanylene group, nonacosasanylene group, nonacosasanylene group, Triacontanilene, dotriacontanilene group, tritriacontanilene group, tetratriacontanilene group, pentatriacontanilene group, hexatriacontanilene group Hepta triacontyl Tani alkylene group, octamethylene triacontyl Tani alkylene group, nona triacontyl Tani alkylene group, tetra con Tani alkylene group and isomers thereof.
 本明細書において、「C1-20アルキレン基」とは、炭素数1~20の直鎖もしくは分枝鎖状のアルキレン基のことである。具体的には例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、へキシレン基、ヘプチレン基、オクチレン基、ノニレン基、デシレン基、ウンデシレン基、ドデシレン基、トリデシレン基、テトラデシレン基、ペンタデシレン基、ヘキサデシレン基、ヘプタデシレン基、オクタデシレン基、ノナデシレン基、イコサニレン基及びそれらの異性体が挙げられる。 In the present specification, the “C 1-20 alkylene group” means a linear or branched alkylene group having 1 to 20 carbon atoms. Specifically, for example, methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, heptylene group, octylene group, nonylene group, decylene group, undecylene group, dodecylene group, tridecylene group, tetradecylene group, pentadecylene. Group, hexadecylene group, heptadecylene group, octadecylene group, nonadecylene group, icosanylene group and isomers thereof.
 本明細書において、「C1-10アルキレン基」とは、炭素数1~10の直鎖もしくは分枝鎖状のアルキレン基のことである。具体的には例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、へキシレン基、ヘプチレン基、オクチレン基、ノニレン基、デカレン基及びそれらの異性体が挙げられる。 In the present specification, the “C 1-10 alkylene group” means a linear or branched alkylene group having 1 to 10 carbon atoms. Specific examples include a methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, heptylene group, octylene group, nonylene group, decalene group and isomers thereof.
 本明細書において、「C6-14アリール基」とは、炭素数6~14の芳香族環式基をいい、具体的には例えば、フェニル基、ナフチル基、アントラセニル基などが挙げられる。 In the present specification, the “C 6-14 aryl group” refers to an aromatic cyclic group having 6 to 14 carbon atoms, and specific examples thereof include a phenyl group, a naphthyl group, and an anthracenyl group.
 本明細書において、「C6-14アリーレン基」とは、炭素数が6~14の芳香族炭素環からなる2価の基であって、例えばフェニレン基、ナフチレン基、アントラセニレン基などが挙げられる。 In the present specification, the “C 6-14 arylene group” is a divalent group composed of an aromatic carbocyclic ring having 6 to 14 carbon atoms, and examples thereof include a phenylene group, a naphthylene group, and an anthracenylene group. .
 本明細書において、「5~10員のヘテロアリーレン基」とは、5~10員の芳香族ヘテロ環からなる2価の基であって、当該芳香族ヘテロ環としては、例えばピロール環、インドール環、チオフェン環、ベンゾチオフェン環、フラン環、ベンゾフラン環、ピリジン環、キノリン環、イソキノリン環、チアゾール環、ベンゾチアゾール環、イソチアゾール環、ベンゾイソチアゾール環、ピラゾール環、インダゾール環、オキサゾール環、ベンゾオキサゾール環、イソキサゾール環、ベンゾイソキサゾール環、イミダゾール環、ベンゾイミダゾール環、トリアゾール環、ベンゾトリアゾール環、ピリミジン環、ウリジン環、ピラジン環、ピリダジン環などが挙げられる。 In the present specification, the “5- to 10-membered heteroarylene group” is a divalent group consisting of a 5- to 10-membered aromatic heterocycle, and examples of the aromatic heterocycle include a pyrrole ring and an indole Ring, thiophene ring, benzothiophene ring, furan ring, benzofuran ring, pyridine ring, quinoline ring, isoquinoline ring, thiazole ring, benzothiazole ring, isothiazole ring, benzoisothiazole ring, pyrazole ring, indazole ring, oxazole ring, benzo Examples thereof include an oxazole ring, an isoxazole ring, a benzisoxazole ring, an imidazole ring, a benzimidazole ring, a triazole ring, a benzotriazole ring, a pyrimidine ring, a uridine ring, a pyrazine ring, and a pyridazine ring.
 本明細書において、「オキソ基」とは、それが結合する炭素原子と一緒になってカルボニル基を形成する基のことである。 In the present specification, the “oxo group” refers to a group that forms a carbonyl group together with the carbon atom to which it is bonded.
 本発明の一態様は、以下の式(I)
Figure JPOXMLDOC01-appb-C000025
[式中、
1は、ヒドロキシル基であるか、又は活性基であり、
2は、光分解性基であり、
3は、オキシエチレン基であり、
4は、捕獲分子のパートナー基であり、
1及びL2は、それぞれリンカーであり、
1及びk2は、それぞれ独立して0又は1であり、
nは、オキシエチレン基の平均付加モル数を示し、かつ50≦n≦450である]
で表される化合物である。
One aspect of the present invention provides the following formula (I):
Figure JPOXMLDOC01-appb-C000025
[Where:
A 1 is a hydroxyl group or an active group,
A 2 is a photodegradable group,
A 3 is an oxyethylene group,
A 4 is a partner group of the capture molecule,
L 1 and L 2 are each a linker,
k 1 and k 2 are each independently 0 or 1,
n represents the average number of moles added of the oxyethylene group and 50 ≦ n ≦ 450]
It is a compound represented by these.
 本明細書中、「活性基」とは、タンパク質中のヒドロキシル基、アミノ基又はチオール基と反応して修飾タンパク質を形成することができる置換基である。活性基としては、特に限定されないが、例えば以下の置換基が挙げられる。
Figure JPOXMLDOC01-appb-C000026
[式中、矢印はA2との連結を示す。]
In the present specification, the “active group” is a substituent capable of reacting with a hydroxyl group, amino group or thiol group in a protein to form a modified protein. Although it does not specifically limit as an active group, For example, the following substituents are mentioned.
Figure JPOXMLDOC01-appb-C000026
[In the formula, the arrow indicates the connection with A 2 . ]
 本明細書中、「光分解性基」とは、光反応によって当該光分解性基中の結合が切断される二価の基のことである。光分解性基は、特に限定されないが、例えば、2-ニトロベンジル骨格、クマリン-4-イルメチル骨格及びフェニルカルボニルメチル骨格からなる群から選択される骨格を有する二価の基である。 In the present specification, the “photodegradable group” is a divalent group in which a bond in the photodegradable group is cleaved by a photoreaction. The photodegradable group is not particularly limited, and is, for example, a divalent group having a skeleton selected from the group consisting of a 2-nitrobenzyl skeleton, a coumarin-4-ylmethyl skeleton, and a phenylcarbonylmethyl skeleton.
 本明細書中、「2-ニトロベンジル骨格を有する二価の基」とは、以下の構造又はその誘導体構造を有する二価の基である。
Figure JPOXMLDOC01-appb-C000027
[式中、L5は、C1-10アルキレン基であるか又は存在せず、ここで前記アルキレン基中の炭素原子は1~5個のオキソ基で置換されていてもよく、隣接する炭素原子同士が1~5個の不飽和結合で結ばれていてもよく、そして前記アルキレン基中の炭素原子のうち、1~4個の炭素原子がNH、N(C1-10アルキル)、O又はSで置き換えられていてもよい。]
In the present specification, the “divalent group having a 2-nitrobenzyl skeleton” is a divalent group having the following structure or a derivative structure thereof.
Figure JPOXMLDOC01-appb-C000027
[Wherein L 5 is a C 1-10 alkylene group or is not present, wherein the carbon atom in the alkylene group may be substituted with 1 to 5 oxo groups, The atoms may be connected by 1 to 5 unsaturated bonds, and 1 to 4 carbon atoms in the alkylene group may be NH, N (C 1-10 alkyl), O Or it may be replaced by S. ]
 2-ニトロベンジル骨格を有する二価の基としては、以下のものが好ましい。
Figure JPOXMLDOC01-appb-C000028
[式中、左側の矢印は、A1との連結を示し、右側の矢印は、k1が0の場合にはA3への連結を示し、k1が1の場合にはL1への連結を示す。]
As the divalent group having a 2-nitrobenzyl skeleton, the following are preferable.
Figure JPOXMLDOC01-appb-C000028
[In the formula, the left arrow indicates the connection to A 1 , the right arrow indicates the connection to A 3 when k 1 is 0, and the connection to L 1 when k 1 is 1. Indicates concatenation. ]
 本明細書中、「クマリン-4-イルメチル骨格を有する二価の基」とは、以下の構造又はその誘導体構造を有する二価の基である。
Figure JPOXMLDOC01-appb-C000029
[式中、左側の矢印は、A1との連結を示し、右側の矢印は、k1が0の場合にはA3への連結を示し、k1が1の場合にはL1への連結を示し、L6は、C1-10アルキレン基であるか又は存在せず、ここで前記アルキレン基中の炭素原子は1~5個のオキソ基で置換されていてもよく、隣接する炭素原子同士が1~5個の不飽和結合で結ばれていてもよく、そして前記アルキレン基中の炭素原子のうち、1~4個の炭素原子がNH、N(C1-10アルキル)、O又はSで置き換えられていてもよい。]
In the present specification, the “divalent group having a coumarin-4-ylmethyl skeleton” is a divalent group having the following structure or a derivative structure thereof.
Figure JPOXMLDOC01-appb-C000029
[In the formula, the left arrow indicates the connection to A 1 , the right arrow indicates the connection to A 3 when k 1 is 0, and the connection to L 1 when k 1 is 1. L 6 is a C 1-10 alkylene group or absent, wherein the carbon atom in said alkylene group may be substituted with 1 to 5 oxo groups, and adjacent carbon The atoms may be connected by 1 to 5 unsaturated bonds, and 1 to 4 carbon atoms in the alkylene group may be NH, N (C 1-10 alkyl), O Or it may be replaced by S. ]
 クマリン-4-イルメチル骨格を有する二価の基としては、以下のものが好ましい。
Figure JPOXMLDOC01-appb-C000030
[式中、左側の矢印は、A1との連結を示し、右側の矢印は、k1が0の場合にはA3への連結を示し、k1が1の場合にはL1への連結を示す。]
As the divalent group having a coumarin-4-ylmethyl skeleton, the following are preferable.
Figure JPOXMLDOC01-appb-C000030
[In the formula, the left arrow indicates the connection to A 1 , the right arrow indicates the connection to A 3 when k 1 is 0, and the connection to L 1 when k 1 is 1. Indicates concatenation. ]
 本明細書中、「フェニルカルボニルメチル骨格を有する二価の基」とは、以下の構造又はその誘導体構造を有する二価の基である。
Figure JPOXMLDOC01-appb-C000031
[式中、左側の矢印は、A1との連結を示し、右側の矢印は、k1が0の場合にはA3への連結を示し、k1が1の場合にはL1への連結を示す。]
In the present specification, the “divalent group having a phenylcarbonylmethyl skeleton” is a divalent group having the following structure or a derivative structure thereof.
Figure JPOXMLDOC01-appb-C000031
[In the formula, the left arrow indicates the connection to A 1 , the right arrow indicates the connection to A 3 when k 1 is 0, and the connection to L 1 when k 1 is 1. Indicates concatenation. ]
 フェニルカルボニルメチル骨格を有する二価の基としては、以下のものが好ましい。
Figure JPOXMLDOC01-appb-C000032
[式中、左側の矢印は、A1との連結を示し、右側の矢印は、k1が0の場合にはA3への連結を示し、k1が1の場合にはL1への連結を示す。]
The following are preferable as the divalent group having a phenylcarbonylmethyl skeleton.
Figure JPOXMLDOC01-appb-C000032
[In the formula, the left arrow indicates the connection to A 1 , the right arrow indicates the connection to A 3 when k 1 is 0, and the connection to L 1 when k 1 is 1. Indicates concatenation. ]
 本明細書中、「7-ニトロインドリノカルボニル骨格を有する二価の基」とは、以下の構造又はその誘導体構造を有する二価の基である。
Figure JPOXMLDOC01-appb-C000033
[式中、左側の矢印は、A1との連結を示し、右側の矢印は、k1が0の場合にはA3への連結を示し、k1が1の場合にはL1への連結を示す。]
In the present specification, the “divalent group having a 7-nitroindolinocarbonyl skeleton” is a divalent group having the following structure or a derivative structure thereof.
Figure JPOXMLDOC01-appb-C000033
[In the formula, the left arrow indicates the connection to A 1 , the right arrow indicates the connection to A 3 when k 1 is 0, and the connection to L 1 when k 1 is 1. Indicates concatenation. ]
 7-ニトロインドリノカルボニル骨格を有する二価の基としては、以下のものが好ましい。
Figure JPOXMLDOC01-appb-C000034
[式中、左側の矢印は、A1との連結を示し、右側の矢印は、k1が0の場合にはA3への連結を示し、k1が1の場合にはL1への連結を示す。]
As the divalent group having a 7-nitroindolinocarbonyl skeleton, the following are preferable.
Figure JPOXMLDOC01-appb-C000034
[In the formula, the left arrow indicates the connection to A 1 , the right arrow indicates the connection to A 3 when k 1 is 0, and the connection to L 1 when k 1 is 1. Indicates concatenation. ]
 本明細書中、「オキシエチレン基」とは、-(CH2CH2O)-基、又は-(OCH2CH2)-基のことである。-(CH2CH2O)n-基、及び-(OCH2CH2n-基(ここでnは、オキシエチレン基の平均付加モル数を示し、かつ50≦n≦450である)を本願明細書において「ポリオキシエチレン基」、又は「PEG基」とも呼ぶ。nは、好ましくは50≦n≦400であり、より好ましくは、50≦n≦350である。 In the present specification, the “oxyethylene group” means a — (CH 2 CH 2 O) — group or a — (OCH 2 CH 2 ) — group. A — (CH 2 CH 2 O) n — group and a — (OCH 2 CH 2 ) n — group (where n represents the average number of moles of oxyethylene group added and 50 ≦ n ≦ 450). In the present specification, it is also referred to as “polyoxyethylene group” or “PEG group”. n is preferably 50 ≦ n ≦ 400, and more preferably 50 ≦ n ≦ 350.
 本明細書中、「捕獲分子」とは、修飾タンパク質から光反応により除去されたPEG基含有化合物を捕獲し、当該化合物と未修飾タンパク質との分離を可能とする分子のことである。捕獲分子は、担体(例えばビーズ、又はフィルターなど)に固定して使用されてもよい。 In the present specification, “capture molecule” refers to a molecule that captures a PEG group-containing compound removed from a modified protein by a photoreaction and allows separation of the compound from an unmodified protein. The capture molecule may be used by being immobilized on a carrier (for example, a bead or a filter).
 本明細書中、「捕獲分子のパートナー基」とは、捕獲分子が共有結合的又は非共有結合的に結合する基のことである。 In the present specification, the “partner group of the capture molecule” is a group to which the capture molecule is bound covalently or non-covalently.
 パートナー基と捕獲分子との組み合わせは、特に限定されないが、例えば、タンパク質タグとして使用され得る置換基と当該タグに特異的に結合するタンパク質との組み合わせ、及びヒュスゲン(Huisgen)環化反応によって連結可能である置換基と化合物との組み合わせが挙げられる。好ましくは、ビオチニル基とストレプトアビジンとの組み合わせ、マルトシル基とマルトース結合タンパク質との組み合わせ、グルタチオニル基とグルタチオン-S-トランスフェラーゼとの組み合わせ、HaloTag(登録商標)リガンドとHaloTag(登録商標)タンパク質との組み合わせ、グアニリルメチルフェニル基とSNAP-tag(登録商標)との組み合わせ、シトシニルメチルフェニル基とCLIP-tag(登録商標)との組み合わせ、
以下の基:
Figure JPOXMLDOC01-appb-C000035
[式中、
矢印は、k2が0の場合にはA3への連結を示し、k2が1の場合にはL2への連結を示す]
とジヒドロ葉酸還元酵素との組み合わせ、Strep-tag(登録商標)とStrep-tactin(登録商標)との組み合わせ、抗原と抗体との組み合わせ、アジド基とジベンゾシクロオクチンとの組み合わせが挙げられる。
The combination of the partner group and the capture molecule is not particularly limited, but can be linked by, for example, a combination of a substituent that can be used as a protein tag and a protein that specifically binds to the tag, and a Huisgen cyclization reaction. And a combination of a substituent and a compound. Preferably, a combination of biotinyl group and streptavidin, a combination of maltosyl group and maltose binding protein, a combination of glutathionyl group and glutathione-S-transferase, a combination of HaloTag® ligand and HaloTag® protein , A combination of guanylylmethylphenyl group and SNAP-tag (registered trademark), a combination of cytosynylmethylphenyl group and CLIP-tag (registered trademark),
The following groups:
Figure JPOXMLDOC01-appb-C000035
[Where:
The arrow indicates a connection to A 3 when k 2 is 0, and a connection to L 2 when k 2 is 1]
And a combination of dihydrofolate reductase, a combination of Strep-tag (registered trademark) and Strep-tactin (registered trademark), a combination of an antigen and an antibody, and a combination of an azido group and dibenzocyclooctyne.
 本明細書において「リンカー」とは、二つの官能基を連結するための二価の基である。リンカーとしては特に限定されないが、例えば、C1-40アルキレン基である。ここで前記C1-40アルキレン基中のメチレン基は1~10個のオキソ基で置換されていてもよく、隣接するメチレン基同士が1~10個の不飽和結合で結ばれていてもよく、そして前記アルキレン基中のメチレン基のうち、1~20個のメチレン基がNH、N(C1-10アルキル)、O、S、C6-14アリーレン、5~10員のヘテロアリーレンで置き換えられていてもよい。 In the present specification, the “linker” is a divalent group for connecting two functional groups. Although it does not specifically limit as a linker, For example, it is a C1-40 alkylene group. Here, the methylene group in the C 1-40 alkylene group may be substituted with 1 to 10 oxo groups, and adjacent methylene groups may be connected with 1 to 10 unsaturated bonds. In the alkylene group, 1 to 20 methylene groups are replaced by NH, N (C 1-10 alkyl), O, S, C 6-14 arylene, 5-10 membered heteroarylene. It may be done.
 式(I)の化合物として、以下の式(I-a):
Figure JPOXMLDOC01-appb-C000036
[式中、
1、A4、及びnは、上で定義された通りであり、
1、m2及びm3は、それぞれ独立して1~10の整数であり、
11は、C1-20アルキレン基であって、ここで前記C1-20アルキレン基中のメチレン基は1~5個のオキソ基で置換されていてもよく、隣接するメチレン基同士が1~5個の不飽和結合で結ばれていてもよく、そして前記アルキレン基中のメチレン基のうち、1~10個のメチレン基がNH、N(C1-10アルキル)、O、S、C6-14アリーレン、5~10員のヘテロアリーレンで置き換えられていてもよい]
で表される化合物が好ましい。
As compounds of formula (I), the following formula (Ia):
Figure JPOXMLDOC01-appb-C000036
[Where:
A 1 , A 4 , and n are as defined above;
m 1 , m 2 and m 3 are each independently an integer of 1 to 10,
L 11 is a C 1-20 alkylene group, wherein the methylene group in the C 1-20 alkylene group may be substituted with 1 to 5 oxo groups, and adjacent methylene groups are 1 1 to 10 methylene groups among the methylene groups in the alkylene group may be NH, N (C 1-10 alkyl), O, S, C 6-14 arylene, may be replaced with 5-10 membered heteroarylene]
The compound represented by these is preferable.
 式(I)の化合物として、以下の式(I-b):
Figure JPOXMLDOC01-appb-C000037
[式中、
nはオキシエチレン基の平均付加モル数を示し、かつ150≦n≦450である]
で表される化合物が特に好ましい。
As compounds of formula (I), the following formula (Ib):
Figure JPOXMLDOC01-appb-C000037
[Where:
n represents the average number of moles of oxyethylene group added and 150 ≦ n ≦ 450]
Is particularly preferred.
 本発明の一態様は、以下の式(II)
Figure JPOXMLDOC01-appb-C000038
[式中、
1、A2、A3、L1、k1及びnは、上記式(I)で定義された通りであり、
3は、リンカーであり、
3は、0又は1であり、
1は、以下の式(III)
Figure JPOXMLDOC01-appb-C000039
(式中、
4は、上記式(I)で定義された通りであり、
4は、リンカーであり、
4は、0又は1である)
で表される化合物のB2と連結可能な置換基である]
で表される、式(II)の化合物に関する。
One aspect of the present invention is the following formula (II)
Figure JPOXMLDOC01-appb-C000038
[Where:
A 1 , A 2 , A 3 , L 1 , k 1 and n are as defined in the above formula (I),
L 3 is a linker,
k 3 is 0 or 1,
B 1 is represented by the following formula (III)
Figure JPOXMLDOC01-appb-C000039
(Where
A 4 is as defined in the above formula (I),
L 4 is a linker,
k 4 is 0 or 1)
A substituent that can be linked to B 2 of the compound represented by
To a compound of formula (II)
 上記B1及びB2としては、両者が連結可能である限り特に限定されない。例えば、両者が縮合可能な置換基の組み合わせ(例えばカルボキシル基とアミノ基)であってもよいし、ヒュスゲン(Huisgen)環化反応によって連結される置換基の組み合わせ(例えばアジド基とアルキニル基)であってもよい。B1及びB2としては、好ましくは、互いに独立してアジド基又はアルキニル基であるか、アジド基又はシクロオクチニル基であるか、アジド基又はホスフィノチオエステル基であるか、ビニル基又はチオール基であるか、或いはオキソ基で置換されたアルキル基又はヒドラジノ基であり、但し両者が同一であることはない。 B 1 and B 2 are not particularly limited as long as both can be connected. For example, it may be a combination of substituents that can be condensed with each other (for example, a carboxyl group and an amino group), or a combination of substituents that are linked by a Huisgen cyclization reaction (for example, an azide group and an alkynyl group). There may be. B 1 and B 2 are preferably independently of each other an azide group or an alkynyl group, an azide group or a cyclooctynyl group, an azide group or a phosphinothioester group, a vinyl group or a thiol group. Or an alkyl group substituted with an oxo group or a hydrazino group provided that they are not the same.
 式(II)の化合物として、以下の式(II-a):
Figure JPOXMLDOC01-appb-C000040
[式中、
1、及びnは、上記式(I)で定義された通りであり、
4、m5、m6及びm7は、それぞれ独立して1~10の整数である]
で表される化合物が好ましい。
As a compound of formula (II), the following formula (II-a):
Figure JPOXMLDOC01-appb-C000040
[Where:
A 1 and n are as defined in the above formula (I),
m 4 , m 5 , m 6 and m 7 are each independently an integer of 1 to 10]
The compound represented by these is preferable.
 式(II)の化合物として、以下の式(II-b):
Figure JPOXMLDOC01-appb-C000041
[式中、
nはオキシエチレン基の平均付加モル数を示し、かつ50≦n≦450である]
で表される化合物がより好ましい。
As a compound of formula (II), the following formula (II-b):
Figure JPOXMLDOC01-appb-C000041
[Where:
n represents the average number of moles added of the oxyethylene group and 50 ≦ n ≦ 450]
The compound represented by these is more preferable.
 式(III)の化合物として、以下の(III-a):
Figure JPOXMLDOC01-appb-C000042
で表される化合物が好ましい。
As a compound of formula (III), the following (III-a):
Figure JPOXMLDOC01-appb-C000042
The compound represented by these is preferable.
 式(I)及び(II)で表される化合物を、本願明細書中で「本発明の化合物」とも呼ぶ。 The compounds represented by formulas (I) and (II) are also referred to as “compounds of the invention” in the present specification.
 式(I)~(III)で示される化合物は、その基本骨格あるいは置換基の種類に基づく特徴を利用し、種々の公知の合成法を適応して合成することができる。以下に代表的な製造法を例示するが、以下に記載の方法のみに限定されるものではない。なお、官能基の種類によっては、当該官能基を原料もしくは中間体の段階で適当な保護基、すなわち容易に当該官能基に転化可能な基に変えておくことが製造技術上効果的な場合があり、必要に応じて保護基を除去し、所望の化合物を得ることができる。このような官能基としては、ヒドロキシル基、カルボキシル基、アミノ基等を挙げることができ、それら保護基としては例えば、グリーン(Greene)及びウッツ(Wutt)著プロテクティブ グループス イン オーガニック シンセシス 第3版「Protective Groups in Organic Synthesis (third edition)」に記載の保護基を挙げることができ、これらを反応条件に応じて適宜用いればよい。出発原料及び反応試薬は、公知の化合物であるか、又は公知化合物から有機化学の分野で周知の方法に従って容易に製造することができる。 The compounds represented by the formulas (I) to (III) can be synthesized by adapting various known synthesis methods using characteristics based on the basic skeleton or the type of substituent. Although the typical manufacturing method is illustrated below, it is not limited only to the method as described below. Depending on the type of functional group, it may be effective in terms of production technology to change the functional group to a suitable protecting group at the raw material or intermediate stage, that is, a group that can be easily converted to the functional group. Yes, the protecting group can be removed as necessary to obtain the desired compound. Examples of such functional groups include a hydroxyl group, a carboxyl group, an amino group, and the like, and examples of the protecting group include a protective group by Greene and Wutt, a group group, a group group, an organic group, a synthesis group, a third edition “ Protective groups described in "Protective" Groups "in" Organic "Synthesis" (third'edition) "can be given, and these may be used as appropriate according to the reaction conditions. The starting materials and the reaction reagents are known compounds, or can be easily produced from known compounds according to methods well known in the field of organic chemistry.
 式(I)に含まれる式(I-a)の化合物は、以下のスキーム1で概説されるように調製され得る。なお以下のスキーム中の記号は、上記のものと同一である。
Figure JPOXMLDOC01-appb-C000043
Compounds of formula (Ia) included in formula (I) can be prepared as outlined in Scheme 1 below. The symbols in the following scheme are the same as those described above.
Figure JPOXMLDOC01-appb-C000043
 工程1
 N-ヒドロキシスクシンイミドエステルである化合物1を化合物2と反応させて、化合物3を製造することができる。本工程で用いる溶媒としては、反応を阻害しないものであれば特に制限はないが、例えば、ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン、ベンゼン、トルエン、キシレン、ヘキサン、シクロヘキサン、N,N-ジメチルホルムアミド、酢酸エチル、ジクロロメタン、クロロホルム、1,2-ジクロロエタン、ジメチルスルホキシド、アセトン、アセトニトリル、又は、それらの混合溶媒等が挙げられる。好ましくはN,N-ジメチルホルムアミド、テトラヒドロフラン、アセトニトリルである。本工程における反応温度は、使用する原料、溶媒によって異なるが、通常、-78~200℃、好ましくは0~100℃であり、反応時間は、通常、1分~7日間、好ましくは5分~72時間である。
Process 1
Compound 3, which is an N-hydroxysuccinimide ester, can be reacted with compound 2 to produce compound 3. The solvent used in this step is not particularly limited as long as it does not inhibit the reaction. For example, diethyl ether, tetrahydrofuran, 1,4-dioxane, benzene, toluene, xylene, hexane, cyclohexane, N, N-dimethyl Examples include formamide, ethyl acetate, dichloromethane, chloroform, 1,2-dichloroethane, dimethyl sulfoxide, acetone, acetonitrile, or a mixed solvent thereof. N, N-dimethylformamide, tetrahydrofuran and acetonitrile are preferred. While the reaction temperature in this step varies depending on the raw materials and solvent to be used, it is generally -78 to 200 ° C, preferably 0 to 100 ° C, and the reaction time is usually 1 minute to 7 days, preferably 5 minutes to 72 hours.
 本工程は、N-ヒドロキシスクシンイミドエステルの代わりに、別の活性化剤を用いて得られる活性化エステルを用いて行うこともできる。そのような活性化剤は特に限定されないが、例えば、N-ヒドロキシスルホスクシンイミドエステル、4-ニトロフェニルエステル、1-ヒドロキシベンゾトリアゾールエステル及び1-ヒドロキシ-7-アザベンゾトリアゾールエステル、及びN-カルボニルイミダゾ-ルが挙げられる。 This step can also be performed using an activated ester obtained by using another activator instead of the N-hydroxysuccinimide ester. Such activators are not particularly limited, but include, for example, N-hydroxysulfosuccinimide ester, 4-nitrophenyl ester, 1-hydroxybenzotriazole ester and 1-hydroxy-7-azabenzotriazole ester, and N-carbonylimidazo -There are examples.
 工程2
 化合物3を化合物4と縮合剤存在下で反応させて、化合物5を製造することができる。本工程で用いる縮合剤としては、特に制限はないが、例えば、ジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、ベンゾトリアゾール-1-イルオキシ-トリスジメチルアミノホスホニウム塩、ヘキサフルオロリン酸(ベンゾトリアゾール-1-イルオキシ)トリピロリジノホスホニウム、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリドなどが挙げられる。好ましくは1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩である。本工程で用いる溶媒としては、反応を阻害しないものであれば特に制限はないが、例えば、ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン、ベンゼン、トルエン、キシレン、ヘキサン、シクロヘキサン、N,N-ジメチルホルムアミド、酢酸エチル、ジクロロメタン、クロロホルム、1,2-ジクロロエタン、ジメチルスルホキシド、アセトン、アセトニトリル、又は、それらの混合溶媒などが挙げられる。好ましくはテトラヒドロフラン、もしくはジクロロメタンである。本工程における反応温度は、使用する原料、溶媒によって異なるが、通常、-78~200℃、好ましくは0~100℃であり、反応時間は、通常、1分~7日間、好ましくは5分~72時間である。
Process 2
Compound 5 can be produced by reacting compound 3 with compound 4 in the presence of a condensing agent. The condensing agent used in this step is not particularly limited. For example, dicyclohexylcarbodiimide, diisopropylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, benzotriazol-1-yloxy-trisdimethylamino Phosphonium salt, hexafluorophosphoric acid (benzotriazol-1-yloxy) tripyrrolidinophosphonium, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride, etc. Is mentioned. 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride is preferred. The solvent used in this step is not particularly limited as long as it does not inhibit the reaction. For example, diethyl ether, tetrahydrofuran, 1,4-dioxane, benzene, toluene, xylene, hexane, cyclohexane, N, N-dimethyl Examples include formamide, ethyl acetate, dichloromethane, chloroform, 1,2-dichloroethane, dimethyl sulfoxide, acetone, acetonitrile, or a mixed solvent thereof. Tetrahydrofuran or dichloromethane is preferred. While the reaction temperature in this step varies depending on the raw materials and solvent to be used, it is generally -78 to 200 ° C, preferably 0 to 100 ° C, and the reaction time is usually 1 minute to 7 days, preferably 5 minutes to 72 hours.
 工程3
 化合物5のヒドロキシル基を、活性基A1に変換することにより、式(I-a)の化合物を製造することができる。例えば、A1が4-ニトロフェニルオキシカルボニルオキシ基である場合、クロロギ酸4-ニトロフェニルを化合物5のヒドロキシル基と反応させる。本工程で用いる溶媒としては、反応を阻害しないものであれば特に制限はないが、例えば、ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン、ベンゼン、トルエン、キシレン、ヘキサン、シクロヘキサン、N,N-ジメチルホルムアミド、酢酸エチル、ジクロロメタン、クロロホルム、1,2-ジクロロエタン、ジメチルスルホキシド、アセトン、アセトニトリル、又は、それらの混合溶媒等が挙げられる。好ましくはN,N-ジメチルホルムアミド、テトラヒドロフラン、アセトニトリルである。本工程における反応温度は、使用する原料、溶媒によって異なるが、通常、-78~200℃、好ましくは0~100℃であり、反応時間は、通常、1分~7日間、好ましくは5分~72時間である。
Process 3
A compound of formula (Ia) can be prepared by converting the hydroxyl group of compound 5 to an active group A 1 . For example, when A 1 is a 4-nitrophenyloxycarbonyloxy group, 4-nitrophenyl chloroformate is reacted with the hydroxyl group of compound 5. The solvent used in this step is not particularly limited as long as it does not inhibit the reaction. For example, diethyl ether, tetrahydrofuran, 1,4-dioxane, benzene, toluene, xylene, hexane, cyclohexane, N, N-dimethyl Examples include formamide, ethyl acetate, dichloromethane, chloroform, 1,2-dichloroethane, dimethyl sulfoxide, acetone, acetonitrile, or a mixed solvent thereof. N, N-dimethylformamide, tetrahydrofuran and acetonitrile are preferred. While the reaction temperature in this step varies depending on the raw materials and solvent to be used, it is generally -78 to 200 ° C, preferably 0 to 100 ° C, and the reaction time is usually 1 minute to 7 days, preferably 5 minutes to 72 hours.
 式(II)に含まれる式(II-a)の化合物は、以下のスキーム2で概説されるように調製され得る。なお以下のスキーム中の記号は、上記のものと同一である。
Figure JPOXMLDOC01-appb-C000044
Compounds of formula (II-a) included in formula (II) can be prepared as outlined in Scheme 2 below. The symbols in the following scheme are the same as those described above.
Figure JPOXMLDOC01-appb-C000044
 工程4
 上記スキーム1で得られた化合物3のカルボキシル基を化合物6と縮合剤存在下で反応させて、化合物7を製造することができる。当該工程は、上記工程2と同様に行うことができる。
Process 4
Compound 7 can be produced by reacting the carboxyl group of Compound 3 obtained in Scheme 1 above with Compound 6 in the presence of a condensing agent. This step can be performed in the same manner as the above step 2.
 工程5
 化合物7のヒドロキシル基を、活性基A1へと変換することにより、式(II-a)の化合物を製造することができる。例えば、A1が4-ニトロフェニルオキシカルボニルオキシ基である場合、クロロギ酸4-ニトロフェニルを化合物7のヒドロキシル基と反応させる。当該工程は、上記工程3と同様に行うことができる。
Process 5
A compound of formula (II-a) can be prepared by converting the hydroxyl group of compound 7 to the active group A 1 . For example, when A 1 is a 4-nitrophenyloxycarbonyloxy group, 4-nitrophenyl chloroformate is reacted with the hydroxyl group of compound 7. This step can be performed in the same manner as the above step 3.
 本発明で使用される式(III)で表される化合物は、市販のものでもよく、又は既知の方法に従って調製されても良い。 The compound represented by the formula (III) used in the present invention may be commercially available or may be prepared according to a known method.
 本明細書中の各反応において、加熱を伴う反応は、当業者にとって明らかなように、水浴、油浴、砂浴又はマイクロウェーブを用いて行なうことができる。 In each reaction in the present specification, the reaction involving heating can be performed using a water bath, an oil bath, a sand bath, or a microwave, as will be apparent to those skilled in the art.
 本明細書中の各反応において、適宜、高分子ポリマー(例えば、ポリスチレン、ポリアクリルアミド、ポリプロピレン、ポリエチレングリコール等)に担持させた固相担持試薬を用いてもよい。 In each reaction in the present specification, a solid-phase-supported reagent supported on a polymer (eg, polystyrene, polyacrylamide, polypropylene, polyethylene glycol, etc.) may be used as appropriate.
 以上のようにして得られた各化合物及び中間体は、抽出、結晶化、再結晶、透析、各種クロマトグラフィーなどの通常の有機合成操作により単離精製される。 The compounds and intermediates obtained as described above are isolated and purified by ordinary organic synthesis operations such as extraction, crystallization, recrystallization, dialysis, and various chromatography.
 本発明の一態様は、上記式(I)で表される化合物とタンパク質とを反応させて得られる、修飾タンパク質に関する。 One embodiment of the present invention relates to a modified protein obtained by reacting a compound represented by the above formula (I) with a protein.
 また、本発明の一態様は、タンパク質を上記式(I)で表される化合物と反応させることを含む、修飾タンパク質の製造方法に関する。 Further, one embodiment of the present invention relates to a method for producing a modified protein, which comprises reacting a protein with a compound represented by the above formula (I).
 上記式(I)で表される化合物のA1が活性基であるとき、活性基はタンパク質中のヒドロキシル基、アミノ基又はチオール基と反応して修飾タンパク質が形成される。当該反応に使用される溶媒は、反応を阻害しないものであれば特に制限はないが、例えば、水、緩衝液、N,N-ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、又は、それらの混合溶媒などが挙げられる。好ましくはpHが約8の緩衝液(例えばホウ酸ナトリウム緩衝液(pH8.3))である。本反応における反応温度は、使用する原料、溶媒によって異なるが、通常、-78~100℃、好ましくは0~40℃であり、反応時間は、通常、1分~7日間、好ましくは5分~72時間である。 When A 1 of the compound represented by the formula (I) is an active group, the active group reacts with a hydroxyl group, amino group or thiol group in the protein to form a modified protein. The solvent used in the reaction is not particularly limited as long as it does not inhibit the reaction. For example, water, buffer, N, N-dimethylformamide, dimethyl sulfoxide, acetonitrile, or a mixed solvent thereof can be used. Can be mentioned. A buffer having a pH of about 8 is preferable (for example, sodium borate buffer (pH 8.3)). While the reaction temperature in this reaction varies depending on the raw materials and solvent to be used, it is generally −78 to 100 ° C., preferably 0 to 40 ° C., and the reaction time is usually 1 minute to 7 days, preferably 5 minutes to 72 hours.
 上記式(I)で表される化合物のA1がヒドロキシル基であるとき、当該ヒドロキシル基を活性基へと変換した後に、タンパク質中のヒドロキシル基、アミノ基又はチオール基と反応させてもよい。本実施形態は、「タンパク質を上記式(I)で表される化合物と反応」させることに含まれる。 When A 1 of the compound represented by the above formula (I) is a hydroxyl group, the hydroxyl group may be converted into an active group and then reacted with a hydroxyl group, amino group or thiol group in protein. This embodiment is included in “reacting a protein with a compound represented by the above formula (I)”.
 上記式(I)で表される化合物とタンパク質とを反応させて得られる修飾タンパク質は、透析、ゲル濾過クロマトグラフィー及びアフィニティクロマトグラフィーなどを用いて分離・精製される。 The modified protein obtained by reacting the compound represented by the above formula (I) with a protein is separated and purified using dialysis, gel filtration chromatography, affinity chromatography, or the like.
 本発明の一態様は、上記式(II)で表される化合物とタンパク質とを反応させて得られる、修飾タンパク質に関する。 One embodiment of the present invention relates to a modified protein obtained by reacting a compound represented by the above formula (II) with a protein.
 また、本発明の一態様は、タンパク質を上記式(II)で表される化合物と反応させることを含む、修飾タンパク質の製造方法に関する。 Further, one embodiment of the present invention relates to a method for producing a modified protein, which comprises reacting a protein with a compound represented by the above formula (II).
 上記式(II)で表される化合物のA1が活性基であるとき、活性基はタンパク質中のヒドロキシル基、アミノ基又はチオール基と反応して修飾タンパク質が形成される。当該反応に使用される溶媒は、反応を阻害しないものであれば特に制限はないが、例えば、水、緩衝液、N,N-ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、又は、それらの混合溶媒などが挙げられる。好ましくはpHが約8の緩衝液(例えばホウ酸ナトリウム緩衝液(pH8.3))である。本反応における反応温度は、使用する原料、溶媒によって異なるが、通常、-78~100℃、好ましくは0~40℃であり、反応時間は、通常、1分~7日間、好ましくは5分~72時間である。 When A 1 of the compound represented by the formula (II) is an active group, the active group reacts with a hydroxyl group, amino group or thiol group in the protein to form a modified protein. The solvent used in the reaction is not particularly limited as long as it does not inhibit the reaction. For example, water, buffer, N, N-dimethylformamide, dimethyl sulfoxide, acetonitrile, or a mixed solvent thereof can be used. Can be mentioned. A buffer having a pH of about 8 is preferable (for example, sodium borate buffer (pH 8.3)). While the reaction temperature in this reaction varies depending on the raw materials and solvent to be used, it is generally −78 to 100 ° C., preferably 0 to 40 ° C., and the reaction time is usually 1 minute to 7 days, preferably 5 minutes to 72 hours.
 上記式(II)で表される化合物のA1がヒドロキシル基であるとき、当該ヒドロキシル基を活性基へと変換した後に、タンパク質中のヒドロキシル基、アミノ基又はチオール基と反応させてもよい。本実施形態は、「タンパク質を上記式(II)で表される化合物と反応」させることに含まれる。 When A 1 of the compound represented by the above formula (II) is a hydroxyl group, the hydroxyl group may be converted into an active group and then reacted with a hydroxyl group, amino group or thiol group in protein. This embodiment is included in “reacting the protein with the compound represented by the above formula (II)”.
 上記式(II)で表される化合物とタンパク質とを反応させて得られる修飾タンパク質は、透析、ゲル濾過クロマトグラフィー及びアフィニティクロマトグラフィーなどを用いてなどを用いて分離・精製される。 The modified protein obtained by reacting the compound represented by the above formula (II) with a protein is separated and purified using dialysis, gel filtration chromatography, affinity chromatography, or the like.
 本発明の一態様は、上記式(II)で表される化合物とタンパク質とを反応させて得られる修飾タンパク質の中間体のB1と、上記式(III)で表される化合物のB2とを連結させて得られる、修飾タンパク質に関する。 One embodiment of the present invention is an intermediate B 1 of a modified protein obtained by reacting a compound represented by the above formula (II) with a protein, and B 2 of a compound represented by the above formula (III). The present invention relates to a modified protein obtained by linking.
 また、本発明の一態様は:(1)タンパク質を上記式(II)で表される化合物と反応させることで、修飾タンパク質の中間体を調製し;(2)前記中間体を上記式(III)で表される化合物と反応させること、を含む、修飾タンパク質の製造方法に関する。 Another embodiment of the present invention is: (1) preparing an intermediate of a modified protein by reacting a protein with a compound represented by the above formula (II); (2) converting the intermediate into the above formula (III) It is related with the manufacturing method of a modified protein including reacting with the compound represented by this.
 B1とB2との連結条件は、その組み合わせに応じて異なる。例えば、B1がアルキニル基であってB2がアジド基である場合、連結反応に使用される溶媒は、反応を阻害しないものであれば特に制限はないが、例えば、水、緩衝液、N,N-ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、又は、それらの混合溶媒などが挙げられる。好ましくはpHが7~8の緩衝液(例えばリン酸緩衝生理食塩水(PBS))である。本反応における反応温度は、使用する原料、溶媒によって異なるが、通常、-78~100℃、好ましくは0~40℃であり、反応時間は、通常、1分~7日間、好ましくは5分~72時間である。得られる修飾タンパク質は、透析、ゲル濾過クロマトグラフィー及びアフィニティクロマトグラフィーなどを用いて分離・精製される。 The connection condition between B 1 and B 2 varies depending on the combination. For example, when B 1 is an alkynyl group and B 2 is an azide group, the solvent used for the ligation reaction is not particularly limited as long as it does not inhibit the reaction. For example, water, buffer solution, N , N-dimethylformamide, dimethyl sulfoxide, acetonitrile, or a mixed solvent thereof. A buffer having a pH of 7 to 8 (for example, phosphate buffered saline (PBS)) is preferable. While the reaction temperature in this reaction varies depending on the raw materials and solvent to be used, it is generally −78 to 100 ° C., preferably 0 to 40 ° C., and the reaction time is usually 1 minute to 7 days, preferably 5 minutes to 72 hours. The resulting modified protein is separated and purified using dialysis, gel filtration chromatography, affinity chromatography, and the like.
 本発明の一態様は、以下の式(IV):
Figure JPOXMLDOC01-appb-C000045
[式中、
2、A3、A4、L1、L2、k1、k2及びnは、上記式(I)で定義された通りであり、
矢印は、タンパク質中のヒドロキシル基、アミノ基又はチオール基との連結を示す]
で表される置換基を有する、修飾タンパク質に関する。当該修飾タンパク質は、例えば、タンパク質を上記式(I)で表される化合物と反応させることで得ることができる。あるいは、タンパク質を上記式(II)で表される化合物と反応させて修飾タンパク質の中間体を調製し、当該中間体を上記式(III)で表される化合物と反応させることで得ることができる。
One aspect of the present invention is the following formula (IV):
Figure JPOXMLDOC01-appb-C000045
[Where:
A 2 , A 3 , A 4 , L 1 , L 2 , k 1 , k 2 and n are as defined in the above formula (I),
Arrow indicates linkage with hydroxyl, amino or thiol group in protein]
The present invention relates to a modified protein having a substituent represented by: The modified protein can be obtained, for example, by reacting the protein with a compound represented by the above formula (I). Alternatively, it can be obtained by reacting a protein with a compound represented by the above formula (II) to prepare an intermediate of a modified protein and reacting the intermediate with a compound represented by the above formula (III). .
 式(IV)で表される置換基を有する修飾タンパク質として、好ましくは、以下の式(IV-a):
Figure JPOXMLDOC01-appb-C000046
[式中、
4、n、m1、m2、m3及びL1は、上記式(I-a)で定義された通りであり、
矢印は、タンパク質中のヒドロキシル基、アミノ基又はチオール基との連結を示す]
で表される置換基を有する、修飾タンパク質である。
The modified protein having a substituent represented by the formula (IV) is preferably the following formula (IV-a):
Figure JPOXMLDOC01-appb-C000046
[Where:
A 4 , n, m 1 , m 2 , m 3 and L 1 are as defined in the above formula (Ia),
Arrow indicates linkage with hydroxyl, amino or thiol group in protein]
A modified protein having a substituent represented by:
 式(IV)で表される置換基を有する修飾タンパク質として、より好ましくは、以下の式(IV-b):
Figure JPOXMLDOC01-appb-C000047
[式中、
nはオキシエチレン基の平均付加モル数を示し、かつ150≦n≦450であり、
矢印は、タンパク質中のヒドロキシル基、アミノ基又はチオール基との連結を示す]
で表される置換基を有する、修飾タンパク質である。
As the modified protein having a substituent represented by the formula (IV), more preferably the following formula (IV-b):
Figure JPOXMLDOC01-appb-C000047
[Where:
n represents the average number of added moles of oxyethylene groups, and 150 ≦ n ≦ 450,
Arrow indicates linkage with hydroxyl, amino or thiol group in protein]
A modified protein having a substituent represented by:
 本発明の一態様は、以下の式(V):
Figure JPOXMLDOC01-appb-C000048
[式中、
2、A3、B1、L1、L3、k1、k3及びnは、上記式(II)で定義された通りであり、
矢印は、タンパク質中のヒドロキシル基、アミノ基又はチオール基との連結を示す]
で表される置換基を有する、修飾タンパク質に関する。当該修飾タンパク質は、例えばタンパク質を上記式(II)で表される化合物と反応させることで得ることができる。
One embodiment of the present invention is the following formula (V):
Figure JPOXMLDOC01-appb-C000048
[Where:
A 2 , A 3 , B 1 , L 1 , L 3 , k 1 , k 3 and n are as defined in the above formula (II),
Arrow indicates linkage with hydroxyl, amino or thiol group in protein]
The present invention relates to a modified protein having a substituent represented by: The modified protein can be obtained, for example, by reacting the protein with a compound represented by the above formula (II).
 式(V)で表される置換基を有する修飾タンパク質として、好ましくは、以下の式(V-a):
Figure JPOXMLDOC01-appb-C000049
[式中、
n、m4、m5、m6及びm7は、上記式(II-a)で定義された通りであり、
矢印は、タンパク質中のヒドロキシル基、アミノ基又はチオール基との連結を示す]
で表される置換基を有する、修飾タンパク質である。
The modified protein having a substituent represented by the formula (V) is preferably the following formula (Va):
Figure JPOXMLDOC01-appb-C000049
[Where:
n, m 4 , m 5 , m 6 and m 7 are as defined in the above formula (II-a);
Arrow indicates linkage with hydroxyl, amino or thiol group in protein]
A modified protein having a substituent represented by:
 式(V)で表される置換基を有する修飾タンパク質として、より好ましくは、以下の式(V-b):
Figure JPOXMLDOC01-appb-C000050
[式中、
nはオキシエチレン基の平均付加モル数を示し、かつ150≦n≦450であり、
矢印は、タンパク質中のヒドロキシル基、アミノ基又はチオール基との連結を示す]
で表される置換基を有する、修飾タンパク質である。
The modified protein having a substituent represented by the formula (V) is more preferably the following formula (Vb):
Figure JPOXMLDOC01-appb-C000050
[Where:
n represents the average number of added moles of oxyethylene groups, and 150 ≦ n ≦ 450,
Arrow indicates linkage with hydroxyl, amino or thiol group in protein]
A modified protein having a substituent represented by:
 タンパク質を上記式(I)で表される化合物と反応させることで得られる修飾タンパク質、タンパク質を上記式(II)で表される化合物と反応させることで修飾タンパク質の中間体を得、当該中間体を上記式(III)で表される化合物と反応させることで得られる修飾タンパク質、及び、上記式(IV)で表される置換基を有するタンパク質を、本明細書中で「本発明の修飾タンパク質」とも呼ぶ。 A modified protein obtained by reacting a protein with the compound represented by the above formula (I), an intermediate of the modified protein obtained by reacting the protein with a compound represented by the above formula (II), and the intermediate In the present specification, a modified protein obtained by reacting a compound represented by the above formula (III) with a substituent represented by the above formula (IV) is referred to as “modified protein of the present invention”. Also called.
 本発明の修飾タンパク質において、修飾対象となるタンパク質は特に限定されないが、例えば、タンパク質性医薬品が挙げられる。タンパク質性医薬品としては、例えば、リゾチーム、トランスフェリン、インスリン、インターフェロン、エリスロポエチン、ホルモン、抗体などが挙げられる。PEG含有部位で修飾されていた本発明の修飾タンパク質は、極めて高い安定性を有するが、未修飾のタンパク質と比較して生理活性が低下し得る。 In the modified protein of the present invention, the protein to be modified is not particularly limited, and examples thereof include protein drugs. Examples of protein pharmaceuticals include lysozyme, transferrin, insulin, interferon, erythropoietin, hormone, antibody and the like. The modified protein of the present invention that has been modified at the PEG-containing site has extremely high stability, but may have reduced physiological activity compared to the unmodified protein.
 本発明の修飾タンパク質に光を照射することによって、A2で光分解反応が起こり、それによりPEG含有部位がタンパク質から除去されて、PEG基含有化合物が生じる。PEG基含有部位が除去された後に、タンパク質は本来の生理活性を回復する。 By irradiating the modified protein of the present invention with light, a photodegradation reaction occurs at A 2 , thereby removing the PEG-containing site from the protein, resulting in a PEG group-containing compound. After the PEG group-containing site is removed, the protein recovers its original physiological activity.
 照射する光の波長は、本発明の化合物中の光分解性基の種類に応じて決めればよく、通常、280~500nmの範囲の波長、好ましくは350~450nm付近の波長の光を照射する。光源は太陽光、水銀灯などの電灯光、レーザー光(半導体レーザー、固体レーザー、ガスレーザー)、発光ダイオードの発光、エレクトロルミネッセント素子の発光などが利用できる。反応温度は、特に限定されないが、通常-78~200℃であり、0~100℃が好ましい。光照射エネルギーは、通常は0.5~100J/cm2であり、1~10J/cm2が好ましい。光分解反応で使用される溶媒は、反応を阻害しないものであれば特に制限はないが、例えば、水、緩衝液、N,N-ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、又は、それらの混合溶媒などが挙げられる。好ましくはpHが約7~8の緩衝液(例えばダルベッコのリン酸緩衝液)である。光照射時間は、光照射装置の性能、本発明の化合物中の光分解性基の種類、本発明の修飾タンパク質の量などに応じて変化してもよく、特に限定はないが、例えば5秒~12時間、好ましくは30秒~5時間行う。 The wavelength of the light to be irradiated may be determined according to the kind of the photodegradable group in the compound of the present invention. Usually, light having a wavelength in the range of 280 to 500 nm, preferably in the vicinity of 350 to 450 nm is irradiated. Light sources such as sunlight, electric light such as mercury lamps, laser light (semiconductor lasers, solid state lasers, gas lasers), light emission of light emitting diodes, light emission of electroluminescent elements can be used. The reaction temperature is not particularly limited, but is usually −78 to 200 ° C., preferably 0 to 100 ° C. The light irradiation energy is usually 0.5 to 100 J / cm 2 , and preferably 1 to 10 J / cm 2 . The solvent used in the photolysis reaction is not particularly limited as long as it does not inhibit the reaction. For example, water, buffer solution, N, N-dimethylformamide, dimethyl sulfoxide, acetonitrile, or a mixed solvent thereof, etc. Is mentioned. A buffer having a pH of about 7-8 (eg Dulbecco's phosphate buffer) is preferred. The light irradiation time may vary depending on the performance of the light irradiation device, the type of the photodegradable group in the compound of the present invention, the amount of the modified protein of the present invention, and the like. It is performed for ˜12 hours, preferably 30 seconds to 5 hours.
 上記光反応によって生じたPEG基含有化合物は、捕獲分子によって捕獲され得る。これにより、タンパク質とPEG基含有化合物との分離が可能となる。 The PEG group-containing compound produced by the photoreaction can be captured by a capture molecule. Thereby, separation of the protein and the PEG group-containing compound becomes possible.
 例えば、光照射によって除去されたPEG基含有化合物と未修飾タンパク質との混合溶液中に捕獲分子固定化磁気ビーズを懸濁させて、PEG基含有化合物の末端に存在するパートナー基を捕獲分子で捕獲する。その後、磁石を用いて磁気ビーズを容器底面に集め、上清のみを回収することで、PEG基含有化合物とタンパク質とを分離可能である。 For example, by suspending a capture molecule-immobilized magnetic bead in a mixed solution of a PEG group-containing compound and unmodified protein removed by light irradiation, the partner group present at the end of the PEG group-containing compound is captured by the capture molecule. To do. Thereafter, the magnetic beads are collected on the bottom surface of the container using a magnet, and only the supernatant is collected, whereby the PEG group-containing compound and the protein can be separated.
 また例えば、光照射によって除去されたPEG基含有化合物と未修飾タンパク質との混合溶液中に捕獲分子固定化ゲルを懸濁させて、PEG基含有化合物の末端に存在するパートナー基を捕獲分子で捕獲する。その後、遠心操作によってゲルを容器底面に集め、上清のみを回収することで、PEG基含有化合物とタンパク質とを分離可能である。 In addition, for example, the capture molecule-immobilized gel is suspended in a mixed solution of the PEG group-containing compound and unmodified protein removed by light irradiation, and the partner group present at the end of the PEG group-containing compound is captured by the capture molecule. To do. Thereafter, the PEG group-containing compound and the protein can be separated by collecting the gel on the bottom of the container by centrifugation and collecting only the supernatant.
 以下に示す実施例及び参考例を参照して本発明をさらに詳しく説明するが、本発明の範囲は、これらの実施例によって限定されるものでないことは言うまでもない。 The present invention will be described in more detail with reference to the following examples and reference examples, but it goes without saying that the scope of the present invention is not limited by these examples.
 実施例1
 式(II-b)の化合物の製造
 (1)式(iii)の化合物の製造
Figure JPOXMLDOC01-appb-C000051
Example 1
Production of compound of formula (II-b) (1) Production of compound of formula (iii)
Figure JPOXMLDOC01-appb-C000051
 二口ナスフラスコ(25 mL)に式(i)の化合物(60.0 mg, 307.6 mmol, 1.0 eq, E. D. Funder, et al., J. Org. Chem., 77, 3134-3142 (2012)に従って製造)をとり、乾燥CH2Cl2 2 mLに溶かした。そこで、式(ii)のN-Boc-エチレンジアミン(150 mg, 922.8 μmol, Sigma-Aldrich社製)を滴下して加え、室温にて窒素雰囲気下で2時間撹拌した。TLC (DCM : MeOH = 20 : 1, Rf = 0.5, ニンヒドリンで呈色)で目的化合物の生成を確認し、エバポレーターで溶媒を留去した後にシリカゲルカラムクロマトグラフィーにて精製した。エバポレーターにて溶媒を減圧留去したところ、無色透明オイル状の式(iii)の化合物を得た。収量74 mg, 収率99%。
1H-NMR (600 MHz, CD3OD, TMS): δ 3.27 (t, 2H), 3.17 (t, 2H), 2.49 (t, 2H), 2.41 (t, 2H), 2.29 (s, 1H), 1.46 (s, 9H).
Compound (i) in a two-necked eggplant flask (25 mL) (produced according to 60.0 mg, 307.6 mmol, 1.0 eq, ED Funder, et al., J. Org. Chem., 77, 3134-3142 (2012)) And dissolved in 2 mL of dry CH 2 Cl 2 . Therefore, N-Boc-ethylenediamine of formula (ii) (150 mg, 922.8 μmol, manufactured by Sigma-Aldrich) was added dropwise, and the mixture was stirred at room temperature under a nitrogen atmosphere for 2 hours. The formation of the target compound was confirmed by TLC (DCM: MeOH = 20: 1, Rf = 0.5, colored by ninhydrin), and the solvent was distilled off by an evaporator, followed by purification by silica gel column chromatography. When the solvent was distilled off under reduced pressure with an evaporator, a colorless transparent oily compound of formula (iii) was obtained. Yield 74 mg, 99% yield.
1H-NMR (600 MHz, CD3OD, TMS): δ 3.27 (t, 2H), 3.17 (t, 2H), 2.49 (t, 2H), 2.41 (t, 2H), 2.29 (s, 1H), 1.46 ( s, 9H).
 (2)式(iv)の化合物の製造
Figure JPOXMLDOC01-appb-C000052
(2) Production of compound of formula (iv)
Figure JPOXMLDOC01-appb-C000052
 上記で製造した式(iii)の化合物(74 mg)の入った50 mLナスフラスコに4 N HCl/AcOEtを30 mL加え、室温にて30分間撹拌した。TLCにて化合物(iii)が消失したのを確認し、溶媒を減圧留去し真空下で一晩乾燥させ無色透明オイル状の式(iv)の化合物を得た。収量55.6 mg, 収率100%。
1H-NMR (600 MHz, CD3OD, TMS): δ 3.27 (t, 2H), 3.17 (t, 2H), 2.49 (t, 2H), 2.41 (t, 2H), 2.29 (s, 1H), 1.46 (s, 9H).
30 mL of 4 N HCl / AcOEt was added to the 50 mL eggplant flask containing the compound of formula (iii) (74 mg) prepared above, and the mixture was stirred at room temperature for 30 minutes. After confirming the disappearance of compound (iii) by TLC, the solvent was distilled off under reduced pressure and dried under vacuum overnight to obtain a colorless transparent oily compound of formula (iv). Yield 55.6 mg, 100% yield.
1H-NMR (600 MHz, CD3OD, TMS): δ 3.27 (t, 2H), 3.17 (t, 2H), 2.49 (t, 2H), 2.41 (t, 2H), 2.29 (s, 1H), 1.46 ( s, 9H).
 (3)式(vii)の化合物の製造
Figure JPOXMLDOC01-appb-C000053
[式中、nは約103である。]
(3) Production of compound of formula (vii)
Figure JPOXMLDOC01-appb-C000053
[Wherein n is about 103. ]
 25 mL二口ナスフラスコに式(v)のPA-050HC (平均分子量:5000)(200 mg, 40 μmol, 日油社製)を取り、窒素雰囲気下室温で乾燥CH2Cl2 (3.0 mL)に溶かした。また同時に25 mL二口ナスフラスコに式(vi)の化合物 (79.27 mg, 200 μmol, S. Takamori, et al., Chem. Commun., 49, 3013-3015 (2013) に従って製造)を取り、窒素雰囲気下室温で乾燥CH2Cl2 (2.0 mL)に溶かした。これをPA-050HCを含むフラスコに全量加え室温にて撹拌した。そこに予め蒸留しておいたEt3N (約 100 μL, 過剰量)を加えた。24時間の撹拌の後、TLC(ニンヒドリンでの呈色)にて原料の消失を確認し、溶液を30 mLのエーテル中に全量滴下し、ボルテックスミキサーにより良く撹拌した後-80 ℃に10分間静置した。この溶液を15000 Gにて10分間遠心し、上清をデカンテーションにより素早く除いた。その後、真空下で乾燥しジエチルエーテルを完全に除き、そこにTris / HCl バッファー(pH 8.0)を約6 mL加え、分子量分画3500の透析膜を用いて透析を行った。透析後の溶液を凍結乾燥したところ黄色固体を得た。収量:199 mg。
1H-NMR (600 MHz, CDCl3, TMS): δ 7.57 (s, 1H), 7.33 (s, 1H), 6.42 (brs, 1H), 5.55 (q, 1H), 4.11 (t, 2H), 3.98 (s, 3H), 3.50-3.80 (brm), 3.37 (q, 2H), 2.38 (t, 2H), 2.29 (s, 2H), 2.19 (quin, 2H), 1.76 (quin, 2H), 1.61 (m, 4H) , 1.54 (d, 3H) , 1.39 (m, 2H).
Take PA-050HC of formula (v) (average molecular weight: 5000) (200 mg, 40 μmol, NOF Corporation) in a 25 mL two-necked eggplant flask, and dry CH 2 Cl 2 (3.0 mL) at room temperature under a nitrogen atmosphere. Dissolved in. At the same time, take the compound of formula (vi) (79.27 mg, 200 μmol, manufactured according to S. Takamori, et al., Chem. Commun., 49, 3013-3015 (2013)) in a 25 mL two-necked eggplant flask and add nitrogen. Dissolved in dry CH 2 Cl 2 (2.0 mL) at room temperature under atmosphere. The whole amount was added to a flask containing PA-050HC and stirred at room temperature. Et 3 N (about 100 μL, excess amount) that had been distilled in advance was added thereto. After stirring for 24 hours, the disappearance of the raw materials was confirmed by TLC (coloration with ninhydrin), and the entire solution was dropped into 30 mL of ether, stirred well with a vortex mixer and then allowed to stand at -80 ° C for 10 minutes. I put it. This solution was centrifuged at 15000 G for 10 minutes, and the supernatant was quickly removed by decantation. Then, it dried under vacuum, diethyl ether was removed completely, about 6 mL of Tris / HCl buffer (pH 8.0) was added there, and it dialyzed using the dialysis membrane of the molecular weight fraction 3500. The solution after dialysis was freeze-dried to obtain a yellow solid. Yield: 199 mg.
1H-NMR (600 MHz, CDCl3, TMS): δ 7.57 (s, 1H), 7.33 (s, 1H), 6.42 (brs, 1H), 5.55 (q, 1H), 4.11 (t, 2H), 3.98 ( s, 3H), 3.50-3.80 (brm), 3.37 (q, 2H), 2.38 (t, 2H), 2.29 (s, 2H), 2.19 (quin, 2H), 1.76 (quin, 2H), 1.61 (m , 4H), 1.54 (d, 3H), 1.39 (m, 2H).
 (4)式(viii)の化合物の製造
Figure JPOXMLDOC01-appb-C000054
[式中、nは約103である。]
(4) Production of compound of formula (viii)
Figure JPOXMLDOC01-appb-C000054
[Wherein n is about 103. ]
 25 mL二口ナスフラスコに化合物(vii) (150 mg, 30 μmol)、化合物 (iv) (16.8 mg, 120 μmol)、N-ヒドロキシコハク酸イミド (12 mg, 104.3 μmol)、N,N'-ジシクロヘキシルカルボジイミド(24 mg, 116.3 μmol)を取り、窒素雰囲気下、室温で乾燥DMF (3.0 mL)に溶かした。そこに予め蒸留しておいたトリエチルアミン(約100 μL, 過剰量)を加えた。50 ℃にて12時間の撹拌の後、溶液を30 mLのエーテル中に全量滴下し、ボルテックスミキサーにより良く撹拌した後-80 ℃に10分間静置した。この溶液を15000 Gにて10分間遠心し、上清をデカンテーションにより素早く除いた。その後チューブを真空下で乾燥しジエチルエーテルを完全に除き、少量のmilliQに溶かした後にコスモナイスフィルター(水系)をかけて沈殿を除き、分子量分画3500の透析膜を用いて透析を行った。透析後の溶液を凍結乾燥したところ黄色固体を得た。収量:140 mg。
1H-NMR (600 MHz, CDCl3, TMS): δ 7.57 (s, 1H), 7.34 (s, 1H), 6.75 (brs, 1H), 6.56 (brs, 1H), 6.52 (brs, 1H), 5.55 (q, 1H), 4.11 (t, 2H), 3.98 (s, 3H), 3.50-3.80 (brm), 3.37 (m, 2H), 2.52 (t, 2H), 2.41 (m, 4H), 2.19 (quin, 2H), 2.00 (s, 1H), 1.77 (quin, 2H), 1.63 (m, 4H) , 1.54 (d, 3H) , 1.39 (m, 2H).
Compound (vii) (150 mg, 30 μmol), Compound (iv) (16.8 mg, 120 μmol), N-hydroxysuccinimide (12 mg, 104.3 μmol), N, N'- Dicyclohexylcarbodiimide (24 mg, 116.3 μmol) was taken and dissolved in dry DMF (3.0 mL) at room temperature under a nitrogen atmosphere. Triethylamine (about 100 μL, excess) previously distilled was added thereto. After stirring at 50 ° C. for 12 hours, the entire solution was dropped into 30 mL of ether, stirred well with a vortex mixer, and then allowed to stand at −80 ° C. for 10 minutes. This solution was centrifuged at 15000 G for 10 minutes, and the supernatant was quickly removed by decantation. Thereafter, the tube was dried under vacuum, diethyl ether was completely removed, dissolved in a small amount of milliQ, a precipitate was removed by applying a cosmony filter (aqueous system), and dialysis was performed using a dialysis membrane having a molecular weight fraction of 3500. The solution after dialysis was freeze-dried to obtain a yellow solid. Yield: 140 mg.
1H-NMR (600 MHz, CDCl3, TMS): δ 7.57 (s, 1H), 7.34 (s, 1H), 6.75 (brs, 1H), 6.56 (brs, 1H), 6.52 (brs, 1H), 5.55 ( q, 1H), 4.11 (t, 2H), 3.98 (s, 3H), 3.50-3.80 (brm), 3.37 (m, 2H), 2.52 (t, 2H), 2.41 (m, 4H), 2.19 (quin , 2H), 2.00 (s, 1H), 1.77 (quin, 2H), 1.63 (m, 4H), 1.54 (d, 3H), 1.39 (m, 2H).
 (5)式(II-b)の化合物の製造
Figure JPOXMLDOC01-appb-C000055
[式中、nは約103である。]
(5) Production of compound of formula (II-b)
Figure JPOXMLDOC01-appb-C000055
[Wherein n is about 103. ]
 アルミホイルで遮光した10 mL二口ナスフラスコに式(viii)の化合物 (32 mg, 6.0 μmol)を取り、窒素雰囲気下、室温で乾燥CH2Cl2 (1.0 mL)に溶かした。また同時に25 mL二口ナスフラスコにクロロギ酸4-ニトロフェニル (20 mg, 99.2 μmol)を取り、窒素雰囲気下室温で乾燥CH2Cl2 (1.0 mL)に溶かした。これを式(viii)の化合物を含むフラスコに全量加え室温にて撹拌した。そこに予め蒸留しておいたトリエチルアミン(約 100 μL, 過剰量)を加えた。一晩撹拌させた後、窒素雰囲気下で溶媒及びトリエチルアミンを減圧留去し、再び乾燥CH2Cl2に溶解させた後にエーテル沈殿により式(II-b)の化合物を得た。
1H-NMR (600 MHz, CDCl3, TMS): δ8.25 (d, 2H), 7.61 (s, 1H), 7.38 (d, 2H), 7.10 (s, 1H), 6.75 (brs, 1H), 6.54 (brs, 2H), 4.14 (t, 2H), 4.00 (s, 3H), 3.50-3.80 (brm), 3.37 (m, 2H), 2.52 (t, 2H), 2.42 (t, 2H), 2.39 (t, 2H), 2.20 (m, 2H), 2.00 (s, 1H), 1.78 (m, 5H), 1.63 (m, 4H) , 1.39 (m, 2H).
Compounds of formula (viii) in 10 mL two-neck eggplant-shaped flask, protected from light with aluminum foil (32 mg, 6.0 μmol) takes, under a nitrogen atmosphere, was dissolved in dry CH 2 Cl 2 (1.0 mL) at room temperature. At the same time, 4-nitrophenyl chloroformate (20 mg, 99.2 μmol) was placed in a 25 mL two-necked eggplant flask and dissolved in dry CH 2 Cl 2 (1.0 mL) at room temperature under a nitrogen atmosphere. The whole amount of this was added to a flask containing the compound of formula (viii) and stirred at room temperature. Triethylamine (about 100 μL, excess amount) previously distilled was added thereto. After stirring overnight, the solvent and triethylamine were distilled off under reduced pressure under a nitrogen atmosphere, and again dissolved in dry CH 2 Cl 2 , and then the compound of formula (II-b) was obtained by ether precipitation.
1H-NMR (600 MHz, CDCl3, TMS): δ8.25 (d, 2H), 7.61 (s, 1H), 7.38 (d, 2H), 7.10 (s, 1H), 6.75 (brs, 1H), 6.54 (brs, 2H), 4.14 (t, 2H), 4.00 (s, 3H), 3.50-3.80 (brm), 3.37 (m, 2H), 2.52 (t, 2H), 2.42 (t, 2H), 2.39 ( t, 2H), 2.20 (m, 2H), 2.00 (s, 1H), 1.78 (m, 5H), 1.63 (m, 4H), 1.39 (m, 2H).
 実施例2
 式(II-b)の化合物を用いたリゾチームへの化学修飾、及びその後のビオチニル基修飾
 リゾチーム粉末(ニワトリ卵白由来、和光純薬工業製)から、リゾチーム水溶液(3.21 mg / mL, 0.1 M ホウ酸ナトリウム緩衝液, pH 8.3)を調製した。次に、リゾチームに対して25当量となる式(II-b)の化合物を混合し、室温で一晩静置した。Crudeの状態のままSDS-PAGEにより修飾を確認し、その後、分子量分画12000の透析カップを用いてPBS中で透析を行った。このPEG基含有置換基により修飾されたリゾチーム水溶液(313 μL, 約3.2 mg/mL)に、Azide-PEG3-biotin(Sigma-Aldrich社製)の水溶液 (100 μL, 112.4 mM)、および、クリック反応触媒溶液 (80 μL)を加えてピペッティングにより撹拌し、一晩室温にて静置した。その後、12000分子量分画の透析カップを用いて透析し、BCA アッセイにより濃度を決定し、3.22 mg/mlであった。なお、クリック反応触媒溶液は、 9.6 mg CuSO4、60 mg L-アスコルビン酸をPBS(2 mL)に溶かしたものである。
Example 2
Chemical modification to lysozyme using the compound of formula (II-b) and subsequent biotinyl group modification From lysozyme powder (from chicken egg white, manufactured by Wako Pure Chemical Industries), lysozyme aqueous solution (3.21 mg / mL, 0.1 M boric acid Sodium buffer, pH 8.3) was prepared. Next, the compound of the formula (II-b) that was 25 equivalents with respect to lysozyme was mixed and allowed to stand overnight at room temperature. The modification was confirmed by SDS-PAGE in the Crude state, and then dialyzed in PBS using a dialysis cup having a molecular weight fraction of 12000. An aqueous solution (100 μL, 112.4 mM) of Azide-PEG3-biotin (manufactured by Sigma-Aldrich) and click reaction to a lysozyme aqueous solution (313 μL, approximately 3.2 mg / mL) modified with this PEG group-containing substituent A catalyst solution (80 μL) was added, stirred by pipetting, and allowed to stand overnight at room temperature. Then, it dialyzed using the dialysis cup of a 12000 molecular weight fraction, the density | concentration was determined by BCA assay, and was 3.22 mg / ml. The click reaction catalyst solution was prepared by dissolving 9.6 mg CuSO 4 , 60 mg L-ascorbic acid in PBS (2 mL).
 実施例3
 PEG基含有部位の除去及びタンパク質からの分離
 実施例2で得られた、ビオチニル基及びPEG基を含む基で置換されたリゾチーム(以下、単に「実施例2の修飾リゾチーム」とも呼ぶ)の水溶液を0.5 mg/mLに調整し、マイクロチューブに40 μL取って光照射機(MAX-302、朝日分光社製)を用いて360 nmの紫外光を32 J/cm2照射した。照射は270分間(2 mW/cm2)行った。一方、ストレプトアビジン(SA)修飾磁気ビーズ(MyOne(商標) Streptavidin C1、Life technologies社製)を懸濁させ、1 mL (10 mg)を別のマイクロチューブにとった。ネオジム磁石を用いてSA修飾ビーズ懸濁液の上清だけを捨て、PBSを加え再懸濁させて再び上清だけを捨てることを10回繰り返した(ビーズの洗浄)。ビーズのみをチューブ底面に集め、そこに光照射をしたPEG化リゾチーム水溶液を20 μL加えて懸濁させてから30分間静置した。ネオジム磁石を用いて、ビーズを吸わないようにして上清のみを回収した。リゾチームと連結しているPEG含有部位の除去前後での、SDS-PAGEによる分析結果を図2に示す。図2は、光照射によりPEG含有部位が除去されること、及びストレプトアビジン修飾ビーズを用いることでPEG含有部位がタンパク質と分離されて、高純度のリゾチームが得られることを示している。また、光照射後ストレプトアビジン処理後前の溶液とストレプトアビジン処理後に得られた上清の吸収スペクトルを測定した。結果を図3に示す。処理前の溶液では、除去された残渣に由来する吸収が観察されたが、上清の吸収スペクトルでは残渣に由来する吸収が観察されず、未修飾リゾチームの吸収スペクトルと一致した。
Example 3
Removal of PEG group-containing site and separation from protein The aqueous solution of lysozyme substituted with a group containing a biotinyl group and a PEG group (hereinafter also simply referred to as “modified lysozyme of Example 2”) obtained in Example 2 was used. It adjusted to 0.5 mg / mL, 40 microliters was taken to the microtube, and 360-nm ultraviolet light was irradiated to 32 J / cm < 2 > using the light irradiation machine (MAX-302, the Asahi Spectroscope company). Irradiation was performed for 270 minutes (2 mW / cm 2 ). On the other hand, streptavidin (SA) modified magnetic beads (MyOne (trademark) Streptavidin C1, manufactured by Life technologies) were suspended, and 1 mL (10 mg) was taken in another microtube. Using a neodymium magnet, only the supernatant of the SA-modified bead suspension was discarded, PBS was added for resuspension, and only the supernatant was discarded again 10 times (bead washing). Only the beads were collected on the bottom of the tube, and 20 μL of a light-irradiated PEGylated lysozyme aqueous solution was added and suspended therein, and then allowed to stand for 30 minutes. Using a neodymium magnet, only the supernatant was collected without sucking the beads. The analysis results by SDS-PAGE before and after removal of the PEG-containing site linked to lysozyme are shown in FIG. FIG. 2 shows that the PEG-containing site is removed by light irradiation, and that the PEG-containing site is separated from the protein by using streptavidin-modified beads, thereby obtaining highly pure lysozyme. Moreover, the absorption spectrum of the supernatant obtained after the light irradiation and before the streptavidin treatment and the supernatant obtained after the streptavidin treatment was measured. The results are shown in FIG. In the solution before the treatment, absorption derived from the removed residue was observed, but in the supernatant absorption spectrum, no absorption derived from the residue was observed, which coincided with the absorption spectrum of unmodified lysozyme.
 参考例1
 式(X)の化合物の製造
Figure JPOXMLDOC01-appb-C000056
[式中、nは約117である。]
Reference example 1
Production of compounds of formula (X)
Figure JPOXMLDOC01-appb-C000056
[Wherein n is about 117. ]
(1)式(x-ii)の化合物の製造
Figure JPOXMLDOC01-appb-C000057
[式中、nは約117である。]
(1) Production of compound of formula (x-ii)
Figure JPOXMLDOC01-appb-C000057
[Wherein n is about 117. ]
 アルミホイルで遮光した25 mL二口ナスフラスコにMEPA-50H (平均分子量5000)(150 mg, 30 μmol, 日油社製)を取り、窒素雰囲気下室温で乾燥 CH2Cl2 (1.0 mL)に溶かした。また同時に25 mL二口ナスフラスコに式(vi)の化合物 (35.7 mg, 90 μmol, 3 eq., S. Takamori, et al., Chem. Commun., 49, 3013-3015 (2013) に従って製造)を取り、窒素雰囲気下室温で乾燥 CH2Cl2 (1.0 mL)に溶かした。これをMEPA-50Hを含むフラスコに全量加え室温にて撹拌した。そこに、予め蒸留しておいたEt3N (約50 μL, 過剰量)を加えた。24時間の撹拌の後、TLC(ニンヒドリンでの呈色)にて原料の消失を確認し、溶液を30 mLのエーテル中に全量滴下し、ボルテックスミキサーによって十分に撹拌した後、-80 ℃にて10分間静置した。これを10 krpmにて10分間遠心し、上清をデカンテーションにより素早く除いた。更に同量のエーテルを加え、同様の操作を行った。その後、真空下で乾燥しジエチルエーテルを完全に除き、そこにTris / HCl緩衝液(pH 8.0)を約6 mL加え、3.5 krpmで5分間遠心した後、分子量分画3500の透析膜を用いて透析を行った。透析後の溶液を凍結乾燥したところ、黄色粉末を得た。収量:150.5 mg。
1H-NMR (600 MHz, CD3OD, TMS): δ 7.57 (s, 1H), 7.35 (s, 1H), 6.48 (bs, 1H), 5.55 (q, 1H), 4.11 (t, 2H), 3.98 (s, 3H), 3.50-3.80 (brm), 3.39 (m, 5H), 2.39 (t, 2H), 2.19 (quin, 2H) , 1.77 (quin, 2H), 1.53 (d, 3H).
25 mL two-necked eggplant flask MEPA-50H protected from light with aluminum foil (average molecular weight 5000) (0.99 mg, 30 [mu] mol, manufactured by NOF CORPORATION) takes, at room temperature under a nitrogen atmosphere in dry CH 2 Cl 2 (1.0 mL) Melted. At the same time, compound of formula (vi) in a 25 mL two-necked eggplant flask (produced according to 35.7 mg, 90 μmol, 3 eq., S. Takamori, et al., Chem. Commun., 49, 3013-3015 (2013)) Was dissolved in dry CH 2 Cl 2 (1.0 mL) at room temperature under a nitrogen atmosphere. The whole amount was added to a flask containing MEPA-50H and stirred at room temperature. Thereto was added Et 3 N (about 50 μL, excess) that had been distilled in advance. After stirring for 24 hours, the disappearance of the raw materials was confirmed by TLC (coloration with ninhydrin), and the whole solution was dropped into 30 mL of ether, and the mixture was thoroughly stirred with a vortex mixer, and then at -80 ° C. Let stand for 10 minutes. This was centrifuged at 10 krpm for 10 minutes, and the supernatant was quickly removed by decantation. Further, the same amount of ether was added and the same operation was performed. Then, dry under vacuum to completely remove diethyl ether, add about 6 mL of Tris / HCl buffer (pH 8.0), centrifuge at 3.5 krpm for 5 minutes, and then use a dialysis membrane with a molecular weight fraction of 3500. Dialysis was performed. The solution after dialysis was freeze-dried to obtain a yellow powder. Yield: 150.5 mg.
1 H-NMR (600 MHz, CD 3 OD, TMS): δ 7.57 (s, 1H), 7.35 (s, 1H), 6.48 (bs, 1H), 5.55 (q, 1H), 4.11 (t, 2H) , 3.98 (s, 3H), 3.50-3.80 (brm), 3.39 (m, 5H), 2.39 (t, 2H), 2.19 (quin, 2H), 1.77 (quin, 2H), 1.53 (d, 3H).
(2)式(X)の化合物の製造
Figure JPOXMLDOC01-appb-C000058
[式中、nは約117である。]
(2) Production of compound of formula (X)
Figure JPOXMLDOC01-appb-C000058
[Wherein n is about 117. ]
 アルミホイルで遮光した10 mL二口ナスフラスコに3 (30 mg, 6.0 μmol)を取り、窒素雰囲気下室温で乾燥 CH2Cl2 (1.0 mL)に溶かした。また同時に25 mL二口ナスフラスコにクロロギ酸4-ニトロフェニル (48.4 mg, 240 μmol, 40 eq.)を取り、窒素雰囲気下室温で乾燥 CH2Cl2 (1.0 mL)に溶かした。これを、上記を含むフラスコに全量加え室温にて撹拌した。そこに予め蒸留しておいたEt3N (約50 μL, 過剰量)を加えた。20時間後に溶媒を真空ポンプにより減圧留去することにより反応を停止させた。再び乾燥 CH2Cl2 (3.0 mL)を加えて生成物を溶かし、溶液を80 mLのエーテル中に全量滴下し、ボルテックスミキサーによって十分に撹拌した後-80 ℃に10分間静置した。これを10 krpmにて10分間遠心し、上清をデカンテーションにより素早く除いた。更に同量のエーテルを加え、同様の操作を行った。その後、真空下で乾燥し白色粉末を得た。
1H-NMR (600 MHz, CD3OD, TMS): δ8.25 (d, 2H), 7.61 (s, 1H), 7.38 (d, 2H), 7.10 (s, 1H), 6.60 (brs, 1H), 6.54 (m, 1H), 4.14 (t, 2H), 4.00 (s, 3H), 3.50-3.80 (brm), 3.39 (m, 5H), 2.39 (t, 2H), 2.19 (quin, 2H) , 1.80 (m, 5H).
3 (30 mg, 6.0 μmol) was placed in a 10 mL two-necked eggplant flask protected from light with aluminum foil, and dissolved in dry CH 2 Cl 2 (1.0 mL) at room temperature under a nitrogen atmosphere. At the same time, 4-nitrophenyl chloroformate (48.4 mg, 240 μmol, 40 eq.) Was placed in a 25 mL two-necked eggplant flask and dissolved in dry CH 2 Cl 2 (1.0 mL) at room temperature under a nitrogen atmosphere. The whole amount was added to the flask containing the above, and stirred at room temperature. Et3N (about 50 μL, excess amount) previously distilled was added thereto. After 20 hours, the reaction was stopped by distilling off the solvent under reduced pressure using a vacuum pump. Dry CH 2 Cl 2 (3.0 mL) was added again to dissolve the product, and the entire solution was dropped into 80 mL of ether, and the mixture was sufficiently stirred with a vortex mixer and allowed to stand at −80 ° C. for 10 minutes. This was centrifuged at 10 krpm for 10 minutes, and the supernatant was quickly removed by decantation. Further, the same amount of ether was added and the same operation was performed. Then, it dried under vacuum and obtained white powder.
1 H-NMR (600 MHz, CD 3 OD, TMS): δ8.25 (d, 2H), 7.61 (s, 1H), 7.38 (d, 2H), 7.10 (s, 1H), 6.60 (brs, 1H ), 6.54 (m, 1H), 4.14 (t, 2H), 4.00 (s, 3H), 3.50-3.80 (brm), 3.39 (m, 5H), 2.39 (t, 2H), 2.19 (quin, 2H) , 1.80 (m, 5H).
 参考例2
 式(X)の化合物を用いたリゾチームへの化学修飾
 リゾチーム粉末(ニワトリ卵白由来、和光純薬工業製)をホウ酸ナトリウム緩衝液(0.1 M, pH 8.3)に溶解し、450 μMのリゾチーム水溶液を用意した。次に、1当量、5当量、10当量又は25当量に相当する式(X)の化合物をそれぞれチューブにとった。このチューブにリゾチーム水溶液を加え、よくピペッティングした。室温にて一晩静置した後、分子量分画12000の透析カップを用いて、生理条件のリン酸緩衝液(PBS)中で透析した。1当量、5当量、10当量及び25当量に相当する式(X)の化合物をリゾチームと反応させて得られた生成物を、以下でそれぞれ「修飾リゾチーム(1eq)」、「修飾リゾチーム(5eq)」、「修飾リゾチーム(10eq)」、「修飾リゾチーム(25eq)」と呼ぶ。SDS-PAGEを用いて各修飾リゾチームのPEG修飾量を確認した。SDS-PAGEによる分析結果を図4に示す。
Reference example 2
Chemical modification to lysozyme using compound of formula (X) Lysozyme powder (from chicken egg white, manufactured by Wako Pure Chemical Industries) is dissolved in sodium borate buffer (0.1 M, pH 8.3), and 450 μM lysozyme aqueous solution is dissolved. Prepared. Next, the compounds of the formula (X) corresponding to 1 equivalent, 5 equivalents, 10 equivalents or 25 equivalents were each taken in tubes. An aqueous lysozyme solution was added to this tube and pipetted well. The mixture was allowed to stand overnight at room temperature, and dialyzed in a phosphate buffer solution (PBS) under physiological conditions using a dialysis cup having a molecular weight fraction of 12000. The products obtained by reacting the compound of the formula (X) corresponding to 1 equivalent, 5 equivalents, 10 equivalents and 25 equivalents with lysozyme are respectively referred to as “modified lysozyme (1 eq)” and “modified lysozyme (5 eq)”, respectively. ”,“ Modified lysozyme (10 eq) ”, and“ modified lysozyme (25 eq) ”. The amount of PEG modification of each modified lysozyme was confirmed using SDS-PAGE. The analysis result by SDS-PAGE is shown in FIG.
 式(X)の化合物の量を増大させると、リゾチームへのPEG分子の修飾量も増大した。修飾リゾチーム(25eq)では、未修飾リゾチームはほとんど観察されず、リゾチーム1分子に対して1~7個のPEG分子が修飾されていた。 Increasing the amount of the compound of formula (X) also increased the amount of PEG molecule modification to lysozyme. In the modified lysozyme (25 eq), almost no unmodified lysozyme was observed, and 1 to 7 PEG molecules were modified per lysozyme molecule.
 参考例3
 参考例2の修飾リゾチームの耐熱性試験
 1.0 mg / mLの未修飾リゾチーム及び参考例2の修飾リゾチームのPBS溶液を調製し、石英セル内に120 μLずつとり、蓋をした。吸光測定機(UV-2550、島津製作所社製)の測定部に石英セルをセットし、600 nmの吸収波長にて濁度測定を行った。変性凝集のための昇温は50 ℃から100 ℃まで、昇温速度0.1 ℃/ 分で行った。結果を図5に示す。
Reference example 3
Heat resistance test of the modified lysozyme of Reference Example 2 A PBS solution of 1.0 mg / mL unmodified lysozyme and the modified lysozyme of Reference Example 2 was prepared, and 120 μL each was placed in a quartz cell and capped. A quartz cell was set in the measurement part of an absorption spectrometer (UV-2550, manufactured by Shimadzu Corporation), and turbidity was measured at an absorption wavelength of 600 nm. The temperature for denaturation aggregation was increased from 50 ° C. to 100 ° C. at a temperature increase rate of 0.1 ° C./min. The results are shown in FIG.
 未修飾のリゾチームは、70 ℃付近で凝集し始め、濁度が上昇した。一方、リゾチームへのPEGの修飾により濁度の上昇が抑制された。特に修飾リゾチーム(25eq)においては、90℃を超えても濁度の上昇は観察されなかった。 Unmodified lysozyme began to aggregate near 70 ° C., and turbidity increased. On the other hand, the increase in turbidity was suppressed by the modification of PEG to lysozyme. In particular, in the modified lysozyme (25 eq), no increase in turbidity was observed even when the temperature exceeded 90 ° C.
 参考例4
 PEG基含有部位の除去
 参考例2で得られた修飾リゾチーム(25eq)(0.5 mg/mL、40 μL)をエッペンチューブにとり、光照射機(MAX-102、朝日分光社製)を用いて360 nmの光(2.0 mW/cm2)を、4 J/cm2(33分間)、16J/cm2(133分間)又は32 J/cm2(266分間)照射した。光照射後、SDS-PAGE(16%T)にてPEG修飾の分解を調べた。結果を図6に示す。光照射によって光分解性基が分解して、PEG含有部位がリゾチームから除去された。
Reference example 4
Removal of the PEG group-containing moiety Take the modified lysozyme (25eq) (0.5 mg / mL, 40 μL) obtained in Reference Example 2 in an Eppendorf tube, and use a light irradiation machine (MAX-102, manufactured by Asahi Spectroscope) at 360 nm. Of light (2.0 mW / cm 2 ) was irradiated at 4 J / cm 2 (33 minutes), 16 J / cm 2 (133 minutes) or 32 J / cm 2 (266 minutes). After light irradiation, degradation of PEG modification was examined by SDS-PAGE (16% T). The results are shown in FIG. Photodegradable groups were decomposed by light irradiation, and PEG-containing sites were removed from lysozyme.
 参考例5
 参考例2の修飾リゾチームの溶菌活性測定
 参考例2で得られた修飾リゾチーム(25eq)の溶液をセル内に2.0 μLとり、そこに120 μLのミクロコッカス・リゾデイクティカス(Micrococcus lysodeikticus)菌体懸濁液(1.0 mg / mL)を加えて3回ピペッティングした。素早くセルを吸光測定機(UV-2550、島津製作所社製)に取り付けて蓋をし、450 nmの濁度の時間変化を25 ℃条件下で1秒毎に測定した。測定開始後11~30秒までの濁度のデータを対象に最小二乗法による回帰直線の傾きを算出し、それを溶菌反応速度とした。各サンプルについて3回ずつ測定を行い、同濃度の未修飾のリゾチームの反応速度に対する割合を算出し、相対活性とした。結果を図7に示す。PEG基修飾により不活性化されていた修飾リゾチームが、光照射によるPEG含有部位の除去により活性が回復した。
Reference Example 5
Measurement of the lytic activity of the modified lysozyme of Reference Example 2 Take 2.0 μL of the modified lysozyme (25 eq) solution obtained in Reference Example 2 into the cell, and 120 μL of Micrococcus lysodeikticus cells The suspension (1.0 mg / mL) was added and pipetted 3 times. The cell was quickly attached to an absorptiometer (UV-2550, manufactured by Shimadzu Corporation), covered, and the time change of turbidity at 450 nm was measured every 1 second at 25 ° C. The slope of the regression line by the least square method was calculated for turbidity data from 11 to 30 seconds after the start of measurement, and was used as the lysis reaction rate. Each sample was measured in triplicate, and the ratio of the unmodified lysozyme at the same concentration to the reaction rate was calculated as the relative activity. The results are shown in FIG. The activity of the modified lysozyme that had been inactivated by PEG group modification was recovered by removing the PEG-containing site by light irradiation.
 実施例4
 式(II-b)の化合物を用いたトランスフェリンへの化学修飾
 10.9 mg / mL (142 μM)のトランスフェリン溶液(ヒト由来、holo体を使用、Sigma-Aldrich社製)を調製した。次に、2当量、9当量、18当量又は46当量に相当する式(II-b)の化合物をそれぞれチューブにとった。このチューブにトランスフェリン水溶液を加え、ピペッティングを10回行った。室温、遮光条件下で20.5時間静置した後、50 mM Tris/ HCl緩衝液(pH 8.0) 14μLを加え、室温、遮光条件下にて1時間静置した。その後、分子量分画12000の透析カップを用いて透析を行った。SDS-PAGEによる分析結果を図8に示す。なお、図8において、「Intact」は、未修飾のトランスフェリンのことである。また、「2 eq」、「9 eq」、「18 eq」、「46 eq」はそれぞれ、2当量、9当量、18当量及び46当量に相当する式(II-b)の化合物をトランスフェリンと反応させて得られた生成物のことであり、以下で、「修飾トランスフェリン(2 eq)」、「修飾トランスフェリン(9 eq)」、「修飾トランスフェリン(18 eq)」、「修飾トランスフェリン(46 eq)」とも呼ぶ。
Example 4
Chemical modification to transferrin using compound of formula (II-b) A 10.9 mg / mL (142 μM) transferrin solution (from human, using holo form, Sigma-Aldrich) was prepared. Next, compounds of formula (II-b) corresponding to 2 equivalents, 9 equivalents, 18 equivalents or 46 equivalents were taken in tubes, respectively. An aqueous transferrin solution was added to the tube, and pipetting was performed 10 times. The mixture was allowed to stand at room temperature for 20.5 hours under light-shielding conditions, 14 μL of 50 mM Tris / HCl buffer (pH 8.0) was added, and the mixture was allowed to stand at room temperature for one hour under light-shielding conditions. Thereafter, dialysis was performed using a dialysis cup having a molecular weight fraction of 12000. The analysis result by SDS-PAGE is shown in FIG. In FIG. 8, “Intact” refers to unmodified transferrin. In addition, “2 eq”, “9 eq”, “18 eq”, and “46 eq” respectively represent compounds of the formula (II-b) corresponding to 2 equivalent, 9 equivalent, 18 equivalent, and 46 equivalent with transferrin. `` Modified transferrin (2 eq) '', `` Modified transferrin (9 eq) '', `` Modified transferrin (18 eq) '', `` Modified transferrin (46 eq) '' Also called.
 式(II-b)の化合物の量を増大させると、トランスフェリンへのPEG分子の修飾量も増大した。式(II-b)の化合物を18当量以上加えると、未修飾トランスフェリンは観察されなくなった。 Increasing the amount of the compound of formula (II-b) also increased the amount of PEG molecule modification to transferrin. When 18 equivalents or more of the compound of formula (II-b) was added, no unmodified transferrin was observed.
 実施例5
 実施例4の修飾トランスフェリンの耐熱性試験
 5.38 mg / mLの、未修飾トランスフェリン及び実施例4の修飾トランスフェリン溶液40mLをチューブにとり、90℃に設定したヒートブロック上で10分間インキュベートした。14000 Gで10 分間遠心を行い、凝集物をチューブの底に落とした。未修飾トランスフェリンではチューブの底に凝集物が確認されたのに対して、修飾トランスフェリン (2 eq) 溶液では凝集物が減少し、修飾トランスフェリン (9 eq, 18 eq, 46 eq) 溶液では凝集物が観察されなかった。
Example 5
Thermostability test of the modified transferrin of Example 4 5.38 mg / mL unmodified transferrin and 40 mL of the modified transferrin solution of Example 4 were placed in a tube and incubated on a heat block set at 90 ° C. for 10 minutes. Centrifugation was performed at 14000 G for 10 minutes, and aggregates were dropped on the bottom of the tube. Aggregates were observed at the bottom of the tube with unmodified transferrin, whereas aggregates decreased with the modified transferrin (2 eq) solution and aggregates with the modified transferrin (9 eq, 18 eq, 46 eq) solution. Not observed.
 室温にて数分静置した後、それぞれのチューブの上清をnano drop (Thermo Fisher社)のUV-visモードにより3回測定し、280 nmにおける吸光度を調べた。ただし、溶液の濃度は365 nmにおける吸光度から280 nmにおける光分解性基の芳香環由来の吸光度を算出し、それを差し引いた値を用いて、トランスフェリン溶液の濃度を決定した。加熱変性操作前の溶液の濃度と加熱変性操作後の上清の濃度から相対濃度を算出した。結果を図9に示す。修飾トランスフェリンにおいて、加熱変性操作後での上清のトランスフェリン濃度の低下が抑制された。 After allowing to stand at room temperature for several minutes, the supernatant of each tube was measured three times in the UV-vis mode of nano-drop (Thermo-Fisher), and the absorbance at 280 nm was examined. However, the concentration of the solution was determined by calculating the absorbance derived from the aromatic ring of the photodegradable group at 280 nm from the absorbance at 365 nm, and using the value obtained by subtracting it. The relative concentration was calculated from the concentration of the solution before the heat denaturation operation and the concentration of the supernatant after the heat denaturation operation. The results are shown in FIG. In the modified transferrin, a decrease in the transferrin concentration in the supernatant after the heat denaturation operation was suppressed.
 実施例6
 PEG基含有部位の除去
 実施例4で得られた修飾トランスフェリン(46eq)(1.67 mg/mL)をミクロチューブにとり、光照射機(MAX-102、朝日分光社製)を用いて360 nmの光(5.0 mW/cm2)を、32 J/cm2(106分間)、87 J/cm2(290分間)照射した。光照射前後の溶液を、SDS-PAGE(6%)で電気泳動した。結果を図10に示す。光照射によって光分解性基が分解して、PEG含有部位がトランスフェリンから除去された。
Example 6
Removal of the PEG group-containing site Take the modified transferrin (46eq) (1.67 mg / mL) obtained in Example 4 in a microtube and use a light irradiator (MAX-102, manufactured by Asahi Spectroscopy) to light at 360 nm ( 5.0 mW / cm 2 ) was irradiated at 32 J / cm 2 (106 minutes) and 87 J / cm 2 (290 minutes). The solution before and after the light irradiation was electrophoresed by SDS-PAGE (6%). The results are shown in FIG. The photodegradable group was decomposed by light irradiation, and the PEG-containing site was removed from transferrin.
 本発明の化合物は、工業用及び医薬用タンパク質の安定化のために好適に利用できる。 The compound of the present invention can be suitably used for stabilizing industrial and pharmaceutical proteins.

Claims (15)

  1.  以下の式(I)
    Figure JPOXMLDOC01-appb-C000001
    [式中、
    1は、ヒドロキシル基であるか、又は活性基であり、
    2は、光分解性基であり、
    3は、オキシエチレン基であり、
    4は、捕獲分子のパートナー基であり、
    1及びL2は、それぞれリンカーであり、
    1及びk2は、それぞれ独立して0又は1であり、
    nは、オキシエチレン基の平均付加モル数を示し、かつ50≦n≦450である]
    で表される化合物。
    The following formula (I)
    Figure JPOXMLDOC01-appb-C000001
    [Where:
    A 1 is a hydroxyl group or an active group,
    A 2 is a photodegradable group,
    A 3 is an oxyethylene group,
    A 4 is a partner group of the capture molecule,
    L 1 and L 2 are each a linker,
    k 1 and k 2 are each independently 0 or 1,
    n represents the average number of moles added of the oxyethylene group and 50 ≦ n ≦ 450]
    A compound represented by
  2.  A1が、以下の置換基:
    [式中、矢印はA2への連結を示す]
    からなる群から選択される、請求項1に記載の化合物。
    A 1 is the following substituent:
    [Wherein the arrow indicates the connection to A 2 ]
    2. The compound of claim 1 selected from the group consisting of:
  3.  A2が、2-ニトロベンジル骨格、クマリン-4-イルメチル骨格、フェニルカルボニルメチル骨格及び7-ニトロインドリノカルボニル骨格からなる群から選択される骨格を有する二価の基である、請求項1又は2に記載の化合物。 2. A 2 is a divalent group having a skeleton selected from the group consisting of a 2-nitrobenzyl skeleton, a coumarin-4-ylmethyl skeleton, a phenylcarbonylmethyl skeleton, and a 7-nitroindolinocarbonyl skeleton. 2. The compound according to 2.
  4.  A4と捕獲分子との組み合わせが、ビオチニル基とストレプトアビジンとの組み合わせ、マルトシル基とマルトース結合タンパク質との組み合わせ、グルタチオニル基とグルタチオン-S-トランスフェラーゼとの組み合わせ、HaloTag(登録商標)リガンドとHaloTag(登録商標)タンパク質との組み合わせ、グアニリルメチルフェニル基とSNAP-tag(登録商標)との組み合わせ、シトシニルメチルフェニル基とCLIP-tag(登録商標)との組み合わせ、以下の基:
    Figure JPOXMLDOC01-appb-C000003
    [式中、
    矢印は、k2が0の場合にはA3への連結を示し、k2が1の場合にはL2への連結を示す]
    とジヒドロ葉酸還元酵素との組み合わせ、Strep-tag(登録商標)とStrep-tactin(登録商標)との組み合わせ、抗原と抗体との組み合わせ、アジド基とジベンゾシクロオクチンとの組み合わせからなる群から選択される、請求項1~3のいずれか1項に記載の化合物。
    The combination of A 4 and the capture molecule is a combination of biotinyl group and streptavidin, a combination of maltosyl group and maltose binding protein, a combination of glutathion group and glutathione-S-transferase, HaloTag® ligand and HaloTag ( (Registered trademark) protein combination, guanylylmethylphenyl group and SNAP-tag (registered trademark) combination, cytosynylmethylphenyl group and CLIP-tag (registered trademark) combination, the following groups:
    Figure JPOXMLDOC01-appb-C000003
    [Where:
    The arrow indicates a connection to A 3 when k 2 is 0, and a connection to L 2 when k 2 is 1]
    And a combination of dihydrofolate reductase, a combination of Strep-tag (registered trademark) and Strep-tactin (registered trademark), a combination of an antigen and an antibody, and a combination of an azido group and dibenzocyclooctyne. The compound according to any one of claims 1 to 3.
  5.  以下の式(I-a)
    Figure JPOXMLDOC01-appb-C000004
    [式中、
    1、A4、及びnは、請求項1で定義された通りであり、
    1、m2及びm3は、それぞれ独立して1~10の整数であり、
    11は、C1-20アルキレン基であって、ここで前記C1-20アルキレン基中のメチレン基は1~5個のオキソ基で置換されていてもよく、隣接するメチレン基同士が1~5個の不飽和結合で結ばれていてもよく、そして前記アルキレン基中のメチレン基のうち、1~10個のメチレン基がNH、N(C1-10アルキル)、O、S、C6-14アリーレン、5~10員のヘテロアリーレンで置き換えられていてもよい]
    で表される化合物である、請求項1~4のいずれか1項に記載の化合物。
    The following formula (Ia)
    Figure JPOXMLDOC01-appb-C000004
    [Where:
    A 1 , A 4 , and n are as defined in claim 1;
    m 1 , m 2 and m 3 are each independently an integer of 1 to 10,
    L 11 is a C 1-20 alkylene group, wherein the methylene group in the C 1-20 alkylene group may be substituted with 1 to 5 oxo groups, and adjacent methylene groups are 1 1 to 10 methylene groups among the methylene groups in the alkylene group may be NH, N (C 1-10 alkyl), O, S, C 6-14 arylene, may be replaced with 5-10 membered heteroarylene]
    The compound according to any one of claims 1 to 4, which is a compound represented by the formula:
  6.  以下の式(II)
    Figure JPOXMLDOC01-appb-C000005
    [式中、
    1、A2、A3、L1、k1及びnは、請求項1で定義された通りであり、
    3は、リンカーであり、
    3は、0又は1であり、
    1は、以下の式(III)
    Figure JPOXMLDOC01-appb-C000006
    (式中、
    4は、請求項1で定義された通りであり、
    4は、リンカーであり、
    4は、0又は1である)
    で表される化合物のB2と連結可能な置換基である]
    で表される化合物。
    The following formula (II)
    Figure JPOXMLDOC01-appb-C000005
    [Where:
    A 1 , A 2 , A 3 , L 1 , k 1 and n are as defined in claim 1;
    L 3 is a linker,
    k 3 is 0 or 1,
    B 1 is represented by the following formula (III)
    Figure JPOXMLDOC01-appb-C000006
    (Where
    A 4 is as defined in claim 1;
    L 4 is a linker,
    k 4 is 0 or 1)
    A substituent that can be linked to B 2 of the compound represented by
    A compound represented by
  7.  B1及びB2は、互いに独立してアジド基又はアルキニル基であるか、アジド基又はシクロオクチニル基であるか、アジド基又はホスフィノチオエステル基であるか、ビニル基又はチオール基であるか、或いはオキソ基で置換されたC1-10アルキル基又はヒドラジノ基であり、但し両者が同一であることはない、請求項6に記載の式(II)で表される化合物。 B 1 and B 2 are each independently an azide group or an alkynyl group, an azide group or a cyclooctynyl group, an azide group or a phosphinothioester group, a vinyl group or a thiol group, or A compound represented by formula (II) according to claim 6, which is a C 1-10 alkyl group or hydrazino group substituted with an oxo group, but the two are not the same.
  8.  以下の式(II-a)
    Figure JPOXMLDOC01-appb-C000007
    [式中、
    1、及びnは、請求項1で定義された通りであり、
    4、m5、m6及びm7は、それぞれ独立して1~10の整数である]
    で表される化合物である、請求項6又は7に記載の式(II)で表される化合物。
    The following formula (II-a)
    Figure JPOXMLDOC01-appb-C000007
    [Where:
    A 1 and n are as defined in claim 1;
    m 4 , m 5 , m 6 and m 7 are each independently an integer of 1 to 10]
    The compound represented by Formula (II) of Claim 6 or 7 which is a compound represented by these.
  9.  以下の式(II-b)
    Figure JPOXMLDOC01-appb-C000008
    [式中、
    nは、オキシエチレン基の平均付加モル数を示し、かつ50≦n≦450である]
    で表される化合物である、請求項6~8のいずれか1項に記載の式(II)で表される化合物。
    The following formula (II-b)
    Figure JPOXMLDOC01-appb-C000008
    [Where:
    n represents the average number of moles added of the oxyethylene group and 50 ≦ n ≦ 450]
    The compound represented by the formula (II) according to any one of claims 6 to 8, which is a compound represented by the formula:
  10.  式(III)で表される化合物が、以下の(III-a)
    Figure JPOXMLDOC01-appb-C000009
    で表される化合物である、請求項6~9のいずれか1項に記載の式(II)で表される化合物。
    The compound represented by the formula (III) is represented by the following (III-a):
    Figure JPOXMLDOC01-appb-C000009
    A compound represented by the formula (II) according to any one of claims 6 to 9, which is a compound represented by the formula:
  11.  タンパク質を請求項1~5のいずれか1項に記載の式(I)で表される化合物と反応させることを含む、修飾タンパク質の製造方法。 A method for producing a modified protein, comprising reacting a protein with the compound represented by the formula (I) according to any one of claims 1 to 5.
  12.  タンパク質を請求項6~10のいずれか1項に記載の式(II)で表される化合物と反応させることを含む、修飾タンパク質の製造方法。 A method for producing a modified protein, which comprises reacting a protein with the compound represented by the formula (II) according to any one of claims 6 to 10.
  13.  (1)タンパク質を請求項6~10のいずれか1項に記載の式(II)で表される化合物と反応させて修飾タンパク質の中間体を調製し;
     (2)前記中間体を、式(III)
    Figure JPOXMLDOC01-appb-C000010
    (式中、
    4、B2、L4及びk4は、請求項6で定義された通りである)
    で表される化合物と反応させること
    を含む、修飾タンパク質の製造方法。
    (1) preparing a modified protein intermediate by reacting the protein with the compound represented by formula (II) according to any one of claims 6 to 10;
    (2) The intermediate is represented by the formula (III)
    Figure JPOXMLDOC01-appb-C000010
    (Where
    A 4 , B 2 , L 4 and k 4 are as defined in claim 6)
    A method for producing a modified protein, which comprises reacting with a compound represented by the formula:
  14.  以下の式(IV):
    Figure JPOXMLDOC01-appb-C000011
    [式中、
    2、A3、A4、L1、L2、k1、k2及びnは、請求項1で定義された通りであり、
    矢印は、タンパク質中のヒドロキシル基、アミノ基又はチオール基との連結を示す]
    で表される置換基を有する、修飾タンパク質。
    The following formula (IV):
    Figure JPOXMLDOC01-appb-C000011
    [Where:
    A 2 , A 3 , A 4 , L 1 , L 2 , k 1 , k 2 and n are as defined in claim 1;
    Arrow indicates linkage with hydroxyl, amino or thiol group in protein]
    The modified protein which has a substituent represented by these.
  15.  以下の式(V):
    Figure JPOXMLDOC01-appb-C000012
    [式中、
    2、A3、B1、L1、L3、k1、k3及びnは、請求項6で定義された通りであり、
    矢印は、タンパク質中のヒドロキシル基、アミノ基又はチオール基との連結を示す]
    で表される置換基を有する、修飾タンパク質。
    The following formula (V):
    Figure JPOXMLDOC01-appb-C000012
    [Where:
    A 2 , A 3 , B 1 , L 1 , L 3 , k 1 , k 3 and n are as defined in claim 6;
    Arrow indicates linkage with hydroxyl, amino or thiol group in protein]
    The modified protein which has a substituent represented by these.
PCT/JP2016/076697 2015-09-11 2016-09-09 Compound for stabilizing protein WO2017043653A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017538555A JPWO2017043653A1 (en) 2015-09-11 2016-09-09 Compounds for stabilizing proteins

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015179135 2015-09-11
JP2015-179135 2015-09-11

Publications (1)

Publication Number Publication Date
WO2017043653A1 true WO2017043653A1 (en) 2017-03-16

Family

ID=58239979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076697 WO2017043653A1 (en) 2015-09-11 2016-09-09 Compound for stabilizing protein

Country Status (2)

Country Link
JP (1) JPWO2017043653A1 (en)
WO (1) WO2017043653A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109824565A (en) * 2019-03-25 2019-05-31 华东理工大学 A kind of optical Response multifunctional chemical crosslinking agent and the preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009102649A (en) * 2002-11-20 2009-05-14 Nof Corp Bio-related substance, process for producing the same, and intermediate thereof
JP2010526183A (en) * 2007-04-30 2010-07-29 インテザイン テクノロジーズ, インコーポレイテッド Hybrid block copolymers with mixed stereochemistry for the encapsulation of hydrophobic drugs
WO2014004278A1 (en) * 2012-06-26 2014-01-03 The Curators Of The University Of Missouri Photocleavable drug conjugates
JP2014226088A (en) * 2013-05-22 2014-12-08 独立行政法人産業技術総合研究所 Photodegradable and hydrolyzable crosslinking agent, photodegradable and hydrolyzable gel, cell culture device, cell arrangement/separation device, cell arrangement method, cell separation method, and method of forming tissue material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009102649A (en) * 2002-11-20 2009-05-14 Nof Corp Bio-related substance, process for producing the same, and intermediate thereof
JP2010526183A (en) * 2007-04-30 2010-07-29 インテザイン テクノロジーズ, インコーポレイテッド Hybrid block copolymers with mixed stereochemistry for the encapsulation of hydrophobic drugs
WO2014004278A1 (en) * 2012-06-26 2014-01-03 The Curators Of The University Of Missouri Photocleavable drug conjugates
JP2014226088A (en) * 2013-05-22 2014-12-08 独立行政法人産業技術総合研究所 Photodegradable and hydrolyzable crosslinking agent, photodegradable and hydrolyzable gel, cell culture device, cell arrangement/separation device, cell arrangement method, cell separation method, and method of forming tissue material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109824565A (en) * 2019-03-25 2019-05-31 华东理工大学 A kind of optical Response multifunctional chemical crosslinking agent and the preparation method and application thereof
CN109824565B (en) * 2019-03-25 2022-10-25 华东理工大学 Light-responsive multifunctional chemical cross-linking agent and preparation method and application thereof

Also Published As

Publication number Publication date
JPWO2017043653A1 (en) 2018-06-28

Similar Documents

Publication Publication Date Title
Link et al. Presentation and detection of azide functionality in bacterial cell surface proteins
Chatterjee et al. Boronic acid based dynamic click chemistry: recent advances and emergent applications
Dumas et al. Self-liganded Suzuki-Miyaura coupling for site-selective protein PEGylation.
Abedin et al. Synthesis of a cross-linked branched polymer network in the interior of a protein cage
Chen et al. Site-selective lysine modification of native proteins and peptides via kinetically controlled labeling
Thompson et al. Trifluoroethanethiol: an additive for efficient one-pot peptide ligation− desulfurization chemistry
Tornøe et al. Peptidotriazoles on solid phase:[1, 2, 3]-triazoles by regiospecific copper (I)-catalyzed 1, 3-dipolar cycloadditions of terminal alkynes to azides
Schlick et al. Dual-surface modification of the tobacco mosaic virus
Chatterji et al. A virus-based nanoblock with tunable electrostatic properties
JP2007529529A (en) Method for preparing macrocyclic dipeptide suitable for treatment of hepatitis C virus infection
CN112592331B (en) Oseltamivir PROTAC compound, preparation method thereof and application thereof in anti-influenza virus drugs
Koshiyama et al. Modification of porous protein crystals in development of biohybrid materials
CN105111265B (en) The method that one kind uses &#34; one kettle way &#34; mark modified biological macromolecular
WO2022170833A1 (en) Ionizable cationic lipid analog material and use thereof as drug delivery carrier
Bustos-Jaimes et al. Construction of protein-functionalized virus-like particles of parvovirus B19
Schoonen et al. Modular, bioorthogonal strategy for the controlled loading of cargo into a protein nanocage
Diez-Gonzalez The Use of Ligands in Copper-Catalyzed [3+ 2] Azide-Alkyne Cycloaddition: Clicker than Click Chemistry?
WO2017043653A1 (en) Compound for stabilizing protein
Sun et al. Pyridine-2, 6-dicarboxaldehyde-Enabled N-Terminal In Situ Growth of Polymer–Interferon α Conjugates with Significantly Improved Pharmacokinetics and In Vivo Bioactivity
Liu et al. An Fmoc compatible, O to S shift-mediated procedure for the preparation of C-terminal thioester peptides
Baharloui et al. Design and synthesis of novel triazole-based peptide analogues as anticancer agents
US20090082577A1 (en) Fluorescent probes for biological studies
CN112957463A (en) Immune activation type antibody and application thereof
WO2024030954A1 (en) Chemical modification of antibodies and functional fragments thereof
Okochi et al. Synthesis of small-molecule/DNA hybrids through on-bead amide-coupling approach

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844514

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017538555

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16844514

Country of ref document: EP

Kind code of ref document: A1