WO2017043593A1 - Sugar-sensing epigenome biomarker - Google Patents

Sugar-sensing epigenome biomarker Download PDF

Info

Publication number
WO2017043593A1
WO2017043593A1 PCT/JP2016/076497 JP2016076497W WO2017043593A1 WO 2017043593 A1 WO2017043593 A1 WO 2017043593A1 JP 2016076497 W JP2016076497 W JP 2016076497W WO 2017043593 A1 WO2017043593 A1 WO 2017043593A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
histone
serine
antibody
residue
Prior art date
Application number
PCT/JP2016/076497
Other languages
French (fr)
Japanese (ja)
Inventor
邦郎 塩田
瑞子 ▲高▼森
晃司 早川
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Priority to JP2017538513A priority Critical patent/JP7141679B2/en
Publication of WO2017043593A1 publication Critical patent/WO2017043593A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor

Definitions

  • the present invention relates to an antibody that specifically binds to N-acetylglucosamine (GlcNAc) serine 40 residue of histone H2A protein, a method for detecting GlcNAcation of serine 40 residue of histone H2A protein using the antibody, histone A method for screening an inhibitor or activator of GlcNAcylation of the serine 40 residue of H2A protein, a method for detecting a change in GlcNAcation of histone protein that occurs depending on the presence of glucose, a method for evaluating the stability of genomic DNA, And protein markers.
  • GlcNAc N-acetylglucosamine
  • Chromatin structure is known to be controlled by various modifications in histone proteins to regulate genomic function.
  • post-translational modifications of histone proteins have become important determinants for chromatin reorganization, and specific combinations of reversible histone modifications have an effect on chromatin activity. It is thought to be exerting.
  • This specific combination occurs epigenetically and, despite being stable, some of these are temporarily reconstituted in response to extracellular conditions and cellular activity.
  • Epigenetics systems are responsible for long-term genome control, and epigenetic modification is important as a role in cell genome control and as a basis for development and cell differentiation, and its disruption can cause disease.
  • epigenetic modifications there are many known epigenetic modifications. Among them, histone protein acetylation, methylation, and ubiquitination at specific residues at the histone end are related to gene expression control and genome stability. It has been known.
  • N-acetylglucosamine (GlcNAc) conversion as a modification of histone protein as described above has been found to be a new epigenetic phenomenon carved into histone proteins.
  • GlcNAcation is a reversible phenomenon, and the modification reaction is catalyzed by two enzymes, O-linked N-acetylglucosaminyltransferase (OGT) and O-linked N-acetylglucosaminase (OGA).
  • GCT O-linked N-acetylglucosaminyltransferase
  • OOA O-linked N-acetylglucosaminase
  • N-acetylglucosamine is obtained from UDP-GlcNAc produced in the cytosol by the hexosamine biosynthetic pathway (HBP).
  • Non-Patent Document 1 Since the initial source of UDP-GlcNAc is extracellular glucose, the degree of GlcNAcation is thought to vary with extracellular glucose concentration and intracellular HBP activity (see, for example, Non-Patent Document 1). In addition, abnormal blood glucose levels may cause long-term changes in genomic functions of cells and cause various diseases (see, for example, Non-Patent Document 2).
  • GlcNAc amino acid in the histone protein to be GlcNAc is serine or threonine.
  • GlcNAc sites are the 36 th serine, 52 th threonine, 55 th serine, 56 th serine, 64 th position from the N-terminal of the amino acid sequence of histone H2B.
  • Lukas Lercher., Et al., Generation of a synthetic GLcNAcylated nucleosome reveals regulation of stability by H2A-Thr101 GlcNAcylation, Nature Communications., 6, Article number: 7978, 25 August 2015. Jessica Gagnon., Et al., Undetectable histone O-GlcNAcylation in mammalian cells, Epigenetics, 10: 8, 677-691, August 2015.
  • GlcNAcation is thought to vary with extracellular glucose concentration, but GlcNAc is low molecular weight and neutral charge, so it is difficult to detect and histone modification caused by fluctuations in extracellular glucose concentration
  • the technology for monitoring has not been established yet (see, for example, Non-Patent Document 5).
  • the present invention has been made in view of the above circumstances, and provides a method for monitoring histone modification exerted by fluctuations in extracellular glucose concentration.
  • the present invention includes the following aspects.
  • Detecting GlcNAcation of serine 40 residue of histone H2A protein comprising measuring the level of GlcNAcation of serine 40 residue of histone H2A protein using the antibody according to [1] Method.
  • Screening method characterized by and a step of determining that the agent. [4] The screening method according to [3], wherein the measurement step is performed in the presence of glucose.
  • a protein or peptide marker which is a marker for monitoring histone modification exerted by fluctuations in extracellular glucose concentration, comprising an H2A protein or a peptide fragment thereof containing 40 GlcNAcylated serine residues.
  • a method for evaluating the stability of genomic DNA by epigenetic modification comprising the step of measuring the level of GlcNAcization of a 40-serine residue of histone H2A protein or a peptide fragment thereof.
  • the level of GlcNAcation of the serine 40 residue of the histone H2A protein or peptide fragment thereof is measured by an antibody that specifically binds to the GlcNAcated serine 40 residue of the histone H2A protein.
  • Method. A protein or peptide marker for detecting the stability of genomic DNA by epigenetic modification, comprising a H2A protein or a peptide fragment thereof containing a GlcNAcylated serine 40 residue.
  • FIG. 4 is a view showing differences in amino acid sequences of the 30th to 50th amino acids in histone H2A protein depending on species. It is a figure which shows the difference by the seed
  • FIG. 2 is an image showing the results of immunostaining of mouse ES cells using the H2A3-S40-GlcNAc antibody in Example 2.
  • FIG. 4 is an image showing the results of immunostaining of mouse ES cells using O-GlcNAc (RL2) antibody in Example 2.
  • FIG. It is an image which shows the detection result by the western blotting method using the mouse
  • FIG. 4 is an image showing the results of immunostaining of human EAhy cells cultured in media with different glucose concentrations using the H2A3-S40-GlcNAc antibody in Example 3, and a graph measuring changes in the number of GlcNAc dots in the nucleus.
  • FIG. 5 is an image showing the results of immunostaining of human RPTEC cells cultured in media with different glucose concentrations using the H2A3-S40-GlcNAc antibody in Example 3, and a graph measuring changes in the number of GlcNAc dots in the nucleus.
  • FIG. 10 shows the results of ChIP-seq using H2A3-S40-GlcNAc antibody in mouse ES cells cultured in a low sugar and high sugar environment in Example 4.
  • FIG. 10 shows the results of ChIP-seq using H2A3-S40-GlcNAc antibody in mouse ES cells cultured in a low sugar and high sugar environment in Example 4.
  • Example 6 shows the results of ChIP-seq using H2A3-S40-GlcNAc antibody in human EAhy cells cultured in a low sugar and high sugar environment in Example 5. It is an image which shows the detection result by the western blotting method about the histone variant and protein relevant to DNA damage in Example 6.
  • 6 is a graph showing the results of detecting DNA damage (pyrimidine dimer) induced by ultraviolet irradiation in human EAhy cells that highly expressed wild-type histone protein H2A or mutant histone protein H2A-S40A in Example 7.
  • the present invention provides an antibody that specifically binds to a GlcNAcylated serine 40 residue of a histone H2A protein.
  • the antibody of the present embodiment it is possible to easily and easily detect a 40-glycine Serine residue of histone H2A protein. Furthermore, by detecting the GlcNAc-modified serine 40 residue of the histone H2A protein using the antibody of this embodiment, abnormalities in epigenetics of various diseases in which metabolic abnormalities such as diabetes and obesity are risk factors are detected. be able to.
  • histone protein means a core histone protein (H2A, H2B, H3, H4) and a linker histone protein (H1) constituting a nucleosome which is a basic unit of chromatin. Furthermore, in the present specification, “histone protein” includes these variants such as H2AX and H2AZ. Originally, of the amino acid sequences of histone H2A protein, the 40th amino acid from the N-terminus was alanine (see FIG. 1A). It is known that there is a variant in which the 40th amino acid from the N-terminus is serine (see FIGS. 1A and 1B).
  • the present inventors focused on this histone H2A protein variant, and found that the serine 40 residue of the histone H2A protein is converted to GlcNAc, thereby completing the present invention.
  • the 40th amino acid from the N-terminal is referred to as “amino acid 40 residue”.
  • amino acid 40 residue the 40th amino acid from the N-terminal is serine, it is referred to as “serine 40 residue”.
  • GlcNAcation of the 40th serine of histone H2A protein is performed only in mammals and later. It is.
  • the level of GlcNAcization of serine 40 residue of histone H2A protein increases or decreases in response to changes in extracellular glucose concentration via the hexosamine biosynthetic pathway (HBP). This has been clarified for the first time by the present inventors. Therefore, it is considered that GlcNAcization of serine 40 residue of this histone H2A protein is related to abnormal epigenetics of various diseases in which metabolic abnormalities such as diabetes and obesity are a risk factor in animals after mammals.
  • the antibody of the present embodiment can specifically bind to the 40-glycine Serine residue of histone H2A protein.
  • the mode of binding of GlcNAc to the serine 40 residue of the histone H2A protein is an O-linked type. That is, the antibody of the present embodiment can specifically bind to the O-linked GlcNAc serine 40 residue of the histone H2A protein.
  • GlcNAcation of serine 40 residue of this histone H2A protein was newly found, and the antibody of this embodiment is included in the range that specifically binds to this novel antigen.
  • the type of “antibody” may be a polyclonal antibody, a monoclonal antibody, or a functional fragment of an antibody. Among these, a monoclonal antibody is preferable. “Antibodies” also includes all classes and subclasses of immunoglobulins.
  • binding affinity means that an antibody binds only to a target protein (antigen), for example, in vitro assay, preferably plasmon resonance assay using purified wild-type antigen (For example, BIAcore, GE-Healthcare Uppsala, Sweden, etc.) can be quantified by binding of an antigen to an epitope of an antibody.
  • the affinity of binding can be defined by ka (rate constant for antibody binding from antibody-antigen complex), kD (dissociation constant), and KD (kD / ka).
  • the binding affinity (KD) is preferably 10 ⁇ 8 mol / L or less, more preferably 10 ⁇ 9 M to 10 ⁇ 13 mol / L. preferable.
  • polyclonal antibody means an antibody preparation comprising different antibodies against different epitopes. That is, when the antibody of the present embodiment is a polyclonal antibody, it may contain a different antibody that specifically binds to an epitope comprising 40 residues of O-linked GlcNAc serine and having a different amino acid sequence.
  • the “monoclonal antibody” means an antibody (including an antibody fragment) obtained from a substantially homogeneous antibody population. Also, in contrast to polyclonal antibodies, monoclonal antibodies mean those that recognize a single determinant on an antigen. That is, when the antibody of this embodiment is a monoclonal antibody, it is an antibody isolated from components of the natural environment.
  • the “functional fragment” of an antibody means a part (partial fragment) of an antibody that specifically recognizes a target protein. Specifically, Fab, Fab ′, F (ab ′) 2, variable region fragment (Fv), disulfide bond Fv, single chain Fv (scFv), sc (Fv) 2, diabody, multispecific antibody, And polymers thereof.
  • an antigen for example, a histone H2A protein containing 40 GlcNAc serine residues, a peptide fragment containing 40 GlcNAc serine residues, or a cell expressing these
  • the immunized animal can be immunized and purified from the antiserum by conventional means (eg, salting out, centrifugation, dialysis, column chromatography, etc.).
  • the antibody of this embodiment is a monoclonal antibody, it can be produced by a hybridoma method or a recombinant DNA method.
  • hybridoma method examples include Kohler and Milstein methods (see, for example, Kohler & Milstein, Nature, 256: 495 (1975)).
  • antibody-producing cells used in the cell fusion step in this method include antigens (for example, histone H2A protein containing 40 GlcNAc-modified serine residues, peptide fragments containing 40 GlcNAc-ized serine residues, or these Spleen cells, lymph node cells, peripheral blood leukocytes, etc. of animals (eg, mice, rats, hamsters, rabbits, monkeys, goats, etc.) immunized with such cells.
  • antigens for example, histone H2A protein containing 40 GlcNAc-modified serine residues, peptide fragments containing 40 GlcNAc-ized serine residues, or these Spleen cells, lymph node cells, peripheral blood leukocytes, etc. of animals (eg, mice, rats, hamsters, rabbits, monkeys, goats,
  • antibody-producing cells obtained by allowing an antigen to act in a medium on the cells or lymphocytes previously isolated from an unimmunized animal can also be used.
  • Various known cell lines can be used as the myeloma cells.
  • the antibody-producing cells and myeloma cells may be derived from different animal species as long as they can be fused, but are preferably derived from the same animal species.
  • a method for obtaining a hybridoma for example, a spleen cell obtained from a mouse immunized with an antigen and a mouse myeloma cell are produced, and a monoclonal antibody specific to the target protein is obtained by subsequent screening. The method of obtaining the hybridoma to produce is mentioned.
  • Examples of a method for obtaining a monoclonal antibody produced by a hybridoma include a method in which a monoclonal antibody against a target protein is obtained by culturing the hybridoma or from ascites of a mammal to which the hybridoma has been administered.
  • a DNA encoding the antibody or the functional fragment of the antibody of the present embodiment is cloned from a hybridoma, a B cell or the like, and incorporated into an appropriate vector, which is then used as a host cell (for example, a mammalian cell line). , Escherichia coli, yeast cells, insect cells, plant cells, etc.) and producing the antibody of this embodiment as a recombinant antibody (for example, PJ Delves, Antibody Production: Essential Techniques, 1997). WILEY, P. Shepherd and C. Dean Monoclonal Antibodies, 2000 OXFORD UNIVERSITY PRESS, Vandame AM et al., Eur. J. Biochem.
  • DNA encoding heavy chain or light chain may be separately incorporated into an expression vector to transform a host cell.
  • DNA encoding heavy chain and light chain May be incorporated into a single expression vector to transform host cells (see, eg, International Patent Application No. 94/11523).
  • the antibody of the present embodiment can be obtained in a substantially pure and uniform form by culturing the above host cell, separating and purifying it from the host cell or culture medium. Separation and purification of the antibody can be performed by a method used in usual polypeptide purification.
  • transgenic animal production technique for example, a transgenic animal (for example, cow, goat, sheep or pig etc.) in which the antibody gene is incorporated is produced, and the antibody gene is derived from the milk of the transgenic animal. And a method for obtaining a large amount of monoclonal antibodies to be used.
  • a transgenic animal for example, cow, goat, sheep or pig etc.
  • the antibody gene is derived from the milk of the transgenic animal.
  • the antibody of this embodiment may be an amino acid sequence variant as long as it can specifically bind to GlcNAcylated serine 40 residue of histone H2A protein.
  • Amino acid sequence variants can be made by introducing mutations into the DNA encoding the antibody chain or by peptide synthesis.
  • the site where the amino acid sequence of the antibody is modified may be the constant region of the heavy chain or light chain of the antibody as long as it has an activity equivalent to that of the antibody before modification, and the variable region (framework region and CDR).
  • a method of screening an antibody having an improved affinity for an antigen by modifying CDR amino acids may be used (for example, PNAS, 102: 8466-8471 (2005), Protein Engineering, Design & Selection, 21: 485-493 (2008), International Publication No. 2002/051870, J. Biol. Chem., 280: 24880-24888 (2005), Protein Engineering, Design & Selection, 21: 345-351 (2008)).
  • the number of amino acids to be modified is preferably within 10 amino acids, more preferably within 5 amino acids, and most preferably within 3 amino acids (eg, within 2 amino acids, 1 amino acid).
  • the amino acid modification is preferably a conservative substitution.
  • conservative substitution means substitution with another amino acid residue having a chemically similar side chain. Groups of amino acid residues having chemically similar amino acid side chains are well known in the technical field to which the present invention belongs.
  • acidic amino acids for example, acidic amino acids (aspartic acid and glutamic acid), basic amino acids (lysine, arginine, histidine), neutral amino acids, amino acids with hydrocarbon chains (glycine, alanine, valine, leucine, isoleucine, proline), hydroxy groups Amino acids with amino acids (serine / threonine), amino acids with sulfur (cysteine / methionine), amino acids with amide groups (asparagine / glutamine), amino acids with imino groups (proline), amino acids with aromatic groups (phenylalanine / tyrosine / And tryptophan).
  • basic amino acids lysine, arginine, histidine
  • neutral amino acids amino acids with hydrocarbon chains (glycine, alanine, valine, leucine, isoleucine, proline), hydroxy groups Amino acids with amino acids (serine / threonine), amino acids with sulfur (cysteine
  • the amino acid sequence variant preferably has a higher binding activity to the antigen than a control antibody (for example, the O-GlcNAc (RL2) antibody described in Examples described later).
  • a control antibody for example, the O-GlcNAc (RL2) antibody described in Examples described later.
  • the binding activity to the antigen of the antibody of the present embodiment is evaluated by, for example, ELISA, Western blotting, immunoprecipitation, immunostaining, etc. be able to.
  • the present invention provides a method for detecting GlcNAcation of a serine 40 residue of a histone H2A protein, comprising measuring the level of GlcNAcylation of the serine 40 residue of the histone H2A protein using the antibody described above. To do.
  • the 40 residues of GlcNAc serine of the histone H2A protein can be detected easily and simply. Furthermore, abnormalities in epigenetics of various diseases such as metabolic abnormalities such as diabetes and obesity, neurological diseases and cardiovascular diseases can be detected.
  • the method for measuring the GlcNAc level of the serine 40 residue of histone H2A protein using the above-mentioned antibody is not particularly limited.
  • ELISA method Western blotting method
  • immunoprecipitation method immunostaining method Etc.
  • the detection method of the present embodiment includes a disease associated with GlcNAcylation of serine 40 residue of histone H2A protein associated with a disease, a disease state, a research tool for analysis of a disease state, a tool for monitoring lifestyle, a disease, a disease state, etc. It can be used as a diagnostic tool for predicting onset, sensitivity, and the like, and also as a drug discovery tool using a biomarker described later as an index.
  • the present invention provides a method for screening an inhibitor or activator of GlcNAcation of serine 40 residue of histone H2A protein, wherein the histone H2A protein or its protein is present in the presence and absence of a test substance.
  • the test substance is determined to be an inhibitor of GlcNAcylation of serine 40 residue of histone H2A protein, and the GlcNAc level in the presence of the test substance is the phosphorylation level in the absence of the test substance.
  • the test substance is a histone H2A protein serine 40
  • Provides a screening method comprising the step of determining that the active agent of the GlcNAc of the group, the.
  • an inhibitor or activator of GlcNAcation of serine 40 residue of histone H2A protein can be obtained easily and simply.
  • Step of measuring GlcNAc level First, the level of GlcNAcation of serine 40 residue of histone H2A protein or peptide fragment thereof in the presence and absence of the test substance is measured.
  • the histone H2A protein used in the measurement may be a peptide fragment containing 40 residues of GlcNAc serine in the histone H2A protein.
  • the “test compound” is not particularly limited.
  • the method for measuring the GlcNAc level is not particularly limited.
  • a method using mass spectrometry a method using an antibody that specifically binds to the GlcNAcated serine 40 residue of histone H2A protein, and histone H2A protein by autoradiography And a method of detecting serine 40 residues converted to GlcNAc.
  • the method using an antibody that specifically binds to the GlcNAc-modified serine 40 residue of the histone H2A protein is preferable.
  • examples of the method using an antibody include an ELISA method, a Western blotting method, an immunoprecipitation method, and an immunostaining method.
  • the antibody that specifically binds to the GlcNAcylated serine 40 residue of the histone H2A protein the same antibody as the above ⁇ antibody> can be used.
  • the histone H2A protein may be immobilized on a substrate, and the above antibody may be labeled with an enzyme or a fluorescent dye.
  • the level of GlcNAc of the serine 40 residue of the histone H2A protein is measured by reacting the substrate of the enzyme and measuring the coloration or luminescence of the substrate, or by measuring the fluorescence of the fluorescent dye. Can be measured.
  • the GlcNAc level can be measured by the following method.
  • the histone H2A protein is previously labeled with one of a set of fluorescent dyes that cause FRET (Fluorescence resonance energy transfer).
  • the antibody is labeled with the other of the set of fluorescent dyes.
  • a group of dye molecules that cause FRET is not particularly limited, and examples thereof include FAM and TAMRA, VIC and TAMRA, and the like.
  • this principle can be performed by a homogeneous assay (Homogeneous assay) in which this step is performed in a solution state throughout.
  • the homogeneous assay has an advantage that the operation is simple because no washing operation is required for the measurement.
  • a detection method in which reaction and washing are performed using an antigen or the like immobilized on a substrate, such as an ELISA method, is called a heterogeneous assay.
  • the level of GlcNAc of the serine 40 residue of histone H2A protein responds to changes in extracellular glucose concentration via the hexosamine biosynthetic pathway (HBP). Therefore, it is preferable to have a measurement step in the presence of glucose.
  • HBP hexosamine biosynthetic pathway
  • the level of GlcNAcization of the serine 40 residue of histone H2A protein increases or decreases in proportion to the repair ability of DNA. Therefore, in the screening method of this embodiment, It is preferable to have a measurement step under conditions that damage By such a process, for example, a drug having a genome repair ability can be screened.
  • Examples of the method of damaging DNA include ultraviolet (UV) irradiation, radiation irradiation, oxidative stress due to active oxygen, addition of an alkylating agent, addition of a topoisomerase II inhibitor (eg, etoposide, etc.), etc. It is not limited to these. Further, a method for confirming whether or not DNA has been damaged may be appropriately selected according to the DNA damage method. For example, when detecting pyrimidine dimer generated by ultraviolet irradiation or the like, a solution using a DNA damaging antibody (for example, anti-cyclobutane type pyrimidine dimer antibody, anti-6-4 type photoproduct antibody, anti-Dewar type photoproduct antibody, etc.) The back surface liquid method etc. are mentioned.
  • a DNA damaging antibody for example, anti-cyclobutane type pyrimidine dimer antibody, anti-6-4 type photoproduct antibody, anti-Dewar type photoproduct antibody, etc.
  • an ELISA method using ARP Aldehyde Reactive Probe
  • a phosphorylated antibody anti- ⁇ -H2AX antibody
  • a serine 139 residue of histone H2AX examples thereof include fluorescent staining.
  • the test substance when the GlcNAc level in the presence of the test substance is higher than the phosphorylation level in the absence of the test substance, the test substance is a GlcNAc of the serine 40 residue of histone H2A protein. It can be determined that it is a activating agent.
  • the present invention is a method for monitoring fluctuations in extracellular glucose concentration, comprising measuring the level of GlcNAcation of serine 40 residue of histone H2A protein that occurs in the presence of glucose. provide.
  • the method of the present embodiment it is possible to detect epigenetic abnormalities of various diseases in which metabolic abnormalities such as diabetes and obesity are risk factors.
  • the method for measuring the GlcNAc level is not particularly limited, and for example, the same method as the above ⁇ Method for screening inhibitor or activator of GlcNAc conversion of serine 40 residue of histone H2A protein> Can be mentioned.
  • the method using an antibody that specifically binds to the GlcNAc-modified serine 40 residue of the histone H2A protein is preferable. More specifically, examples of the method using an antibody include an ELISA method, a Western blotting method, an immunoprecipitation method, and an immunostaining method.
  • the antibody that specifically binds to the GlcNAcylated serine 40 residue of the histone H2A protein the same antibody as the above ⁇ antibody> can be used.
  • the present invention provides a marker for monitoring histone modification exerted by fluctuations in extracellular glucose concentration, comprising a protein or peptide marker comprising a H2A protein or a peptide fragment thereof comprising 40 GlcNAcylated serine residues. provide.
  • GlcNAc conversion of serine 40 residue of histone H2A protein there is no marker for monitoring histone modification (GlcNAc conversion of serine 40 residue of histone H2A protein) caused by fluctuations in extracellular glucose concentration.
  • serine 40 residue of histone H2A protein converted to GlcNAc is extracellular. It was revealed for the first time that it could be a marker for monitoring glucose concentration.
  • the marker of this embodiment it is possible to detect epigenetic abnormalities of various diseases in which metabolic abnormalities such as diabetes and obesity are risk factors. Moreover, since the glucose responsiveness of GlcNAcation of histone H2A protein changes in diabetic patients, the course of treatment can be determined by examining the recovery of responsiveness. Therefore, the marker of the present invention can be applied as a diagnostic marker for metabolic diseases and a follow-up marker for treatment.
  • the marker of the present embodiment only needs to contain a 40-glycine Serine residue, may be a histone H2A protein, or may be a peptide fragment thereof.
  • the marker detection method of the present embodiment includes the same method as described above ⁇ Screening Method for Inhibitor or Activator of GlcNAcation of Serine 40 Residue of Histone H2A Protein>.
  • the method using an antibody that specifically binds to the GlcNAc-modified serine 40 residue of the histone H2A protein is preferable. More specifically, examples of the method using an antibody include an ELISA method, a Western blotting method, an immunoprecipitation method, and an immunostaining method.
  • the antibody that specifically binds to the GlcNAcylated serine 40 residue of the histone H2A protein the same antibody as the above ⁇ antibody> can be used.
  • the present invention is a method for monitoring histone modifications caused by DNA damage, measuring the level of GlcNAcation of serine 40 residues of histone H2A protein or peptide fragments thereof that occurs in the presence of DNA damage.
  • a method comprising the steps of:
  • histone modification caused by DNA damage can be easily monitored.
  • the method for damaging DNA is, for example, the same as the method exemplified in the above ⁇ Screening Method for Inhibitor or Activator of GlcNAcation of Serine 40 Residue of Histone H2A Protein>
  • the method is mentioned.
  • the method for confirming whether or not DNA has been damaged may be appropriately selected according to the method for damaging DNA, and the above ⁇ inhibitor or activator of GlcNAcation of serine 40 residue of histone H2A protein Examples thereof include the same methods as those exemplified in Screening Method>.
  • the method for measuring the GlcNAc level is not particularly limited.
  • the same method is mentioned.
  • the method using an antibody that specifically binds to the GlcNAc-modified serine 40 residue of the histone H2A protein is preferable. More specifically, examples of the method using an antibody include an ELISA method, a Western blotting method, an immunoprecipitation method, and an immunostaining method.
  • an antibody that specifically binds to GlcNAcylated serine 40 residue of histone H2A protein the same antibodies as those described in ⁇ Antibodies> above can be used.
  • the present invention provides a protein or peptide marker consisting of an H2A protein or a peptide fragment thereof, comprising a GlcNAcylated serine 40 residue, which is a marker for monitoring histone modification caused by DNA damage.
  • histone modification caused by DNA damage can be easily monitored.
  • the marker of the present embodiment only needs to contain a 40-glycine Serine residue, and may be a histone H2A protein or a peptide fragment thereof.
  • the marker detection method of the present embodiment may be the same as the above ⁇ Screening method for inhibitors or activators of GlcNAcation of serine 40 residue of histone H2A protein>.
  • the method using an antibody that specifically binds to the GlcNAc-modified serine 40 residue of the histone H2A protein is preferable. More specifically, examples of the method using an antibody include an ELISA method, a Western blotting method, an immunoprecipitation method, and an immunostaining method.
  • the antibody that specifically binds to the GlcNAcylated serine 40 residue of the histone H2A protein the same antibody as the above ⁇ antibody> can be used.
  • the present invention is a method for evaluating the stability of genomic DNA by epigenetic modification, comprising the step of measuring the GlcNAcation level of serine 40 residue of histone H2A protein or peptide fragment thereof I will provide a.
  • the present inventors show that the repair ability of genomic DNA is exhibited and the damaged DNA is repaired by converting serine 40 residue of histone H2A protein into GlcNAc. Revealed. According to the method of the present embodiment, the stability of genomic DNA by epigenetic modification can be easily evaluated.
  • “stability of genomic DNA” means that genomic DNA is not damaged or is repaired even if genomic DNA is damaged. Means.
  • epigenetic modification in this embodiment, mainly GlcNAc conversion of serine 40 residue of H2A protein
  • epigenetic modification is present, past, and future in the expression of genes involved in the epigenetic modification.
  • Status (1) current transcription program (eg, if gene expression is active, chromatin structure is relaxed), (2) history of gene expression so far in differentiation and development, and (3) It is considered to reflect the state of gene expression in the future (reference: Hammaud SS, “Chromatin and Transcription Transitions of Mammalian Adult Germ Stem Cells and Spermatogen”). m Cell, vol. 15, p239-253, 2014.). Therefore, for example, when the chromatin structure is relaxed in the current transcription program and gene expression is active, it is considered that the DNA is susceptible to DNA damage.
  • the serine 40 residue of histone H2A protein is converted to GlcNAc, and thus genomic DNA Therefore, even if it is damaged, it can be repaired immediately and transfer can be performed without any problem.
  • the serine 40 residue of the histone H2A protein is converted to GlcNAc in advance, so that the gene can be protected from DNA damage until the expression is increased. Based on this newly discovered function, it is determined whether the serine 40 residue of histone H2A protein is sensitive or resistant to DNA damage in cells, tissues or individuals by analyzing the degree of GlcNAc modification. ⁇ Can be diagnosed.
  • the DNA repair pathway differs depending on the stage of cell differentiation (eg, stem cells, progenitor cells, mature cells, etc.) and the type of DNA damage, and the stability of the genome is lost due to abnormal DNA repair pathways. It is known that various diseases occur (reference document: McKinnon P. J., “Maintaining genome stability in the nervous system”, nature neuroscience, vol. 16, no. 11, p 15213-1529). . In the method of the present embodiment, the generation mechanism of epigenetic abnormality in various diseases can be verified by appropriately selecting the stage of cell differentiation and the method of damaging DNA.
  • the method for measuring the level of GlcNAc is not particularly limited, and is exemplified in the above-described ⁇ Method for screening an inhibitor or activator of GlcNAcation of serine 40 residue of histone H2A protein> described above.
  • the same method as that described above may be used.
  • the method using an antibody that specifically binds to the GlcNAc-modified serine 40 residue of the histone H2A protein is preferable. More specifically, examples of the method using an antibody include an ELISA method, a Western blotting method, an immunoprecipitation method, and an immunostaining method.
  • an antibody that specifically binds to GlcNAcylated serine 40 residue of histone H2A protein the same antibodies as those described in ⁇ Antibodies> above can be used.
  • the present invention provides a marker for detecting the stability of genomic DNA caused by epigenetic modification, comprising a protein or peptide marker comprising a H2A protein or a peptide fragment thereof comprising 40 GlcNAcylated serine residues. provide.
  • the GlcNAc serine 40 residue of histone H2A protein detects the stability of genomic DNA by epigenetic modification. First revealed that it can be a marker.
  • the stability of genomic DNA by epigenetic modification can be evaluated.
  • the marker of the present embodiment it can be determined that the gene region involved in GlcNAcization of the serine 40 residue of the histone H2A protein is protected from DNA damage, and the genomic DNA is stable.
  • the marker of the present embodiment it can be determined that the expression in the gene region involved in GlcNAcization of the serine 40 residue of the histone H2A protein is reduced or an epigenetic abnormality has occurred.
  • the marker of the present embodiment only needs to contain a 40-glycine Serine residue, may be a histone H2A protein, or may be a peptide fragment thereof.
  • the marker detection method of the present embodiment includes the same method as described above ⁇ Screening Method for Inhibitor or Activator of GlcNAcation of Serine 40 Residue of Histone H2A Protein>.
  • the method using an antibody that specifically binds to the GlcNAc-modified serine 40 residue of the histone H2A protein is preferable. More specifically, examples of the method using an antibody include an ELISA method, a Western blotting method, an immunoprecipitation method, and an immunostaining method.
  • the antibody that specifically binds to the GlcNAcylated serine 40 residue of the histone H2A protein the same antibody as the above ⁇ antibody> can be used.
  • GlcNAc-specific antibodies for histone proteins include, for example, performing the ChIP-seq method (a technique combining a chromatin immunoprecipitation (ChIP) and a next-generation sequencer) using the antibody.
  • ChIP chromatin immunoprecipitation
  • next-generation sequencer a technique combining a chromatin immunoprecipitation (ChIP) and a next-generation sequencer
  • epigenetics modification in different cells (in this embodiment, mainly GlcNAc conversion of serine 40 residue of H2A protein) is involved by the ChIP-seq method using the antibody. It is possible to analyze the difference in the gene group to be analyzed and the difference in the expression pattern of the gene group.
  • Example 1 Detection of GlcNAcation site of histone protein and preparation of GlcNAcation specific antibody of histone protein (1) Preparation of monoclonal antibody recognizing novel GlcNAcation histone GlcNAcation is performed by serine (S) or threonine (T ). Furthermore, a plurality of histone amino acid sequences ("... YT ! and “... YS !) are inferred from the information of GlcNAcated proteins revealed so far, and several types of GlcNAcated peptides was made.
  • mice were immunized according to a conventional method to obtain antibody-producing myeloma cells using a fusion protein obtained by binding the prepared GlcNAc-modified peptide with bovine serum albumin or GST protein as an antigen. A total of 300 or more clones were screened to obtain an antibody that recognizes GlcNAc-histone.
  • Histone extraction and fractionation and purification by HPLC High performance liquid chromatography
  • Histone was extracted from mouse embryonic stem (ES) cells using Histone purification mini kit (manufactured by Active Motif). Subsequently, the extracted histone was dialyzed with water, and acetonitrile (Solvent A (5) was obtained by HPLC-10Ai (manufactured by Shimadzu Corp.) with a reverse phase chromatography column (Aeris WIDEPORE 3.6 ⁇ m XB-C8) set. % Acetonitrile, 0.1% TFA) and Solvent B (90% acetonitrile, 0.1% TFA)) were used for fractionation by a gradient method (flow rate 0.5 ml / min). The result is shown in FIG. 2A. The fractionated fractions (15 to 72.5 minutes) were collected using a fraction collector FRC-10A (manufactured by Shimadzu Corporation).
  • FIG. 2B reveals that the antibody obtained in (1) specifically detects GlcNAcation of the 40th serine in the amino acid sequence of histone H2A3 protein.
  • the antibody obtained in (1) is referred to as H2A3-S40-GlcNAc antibody.
  • Example 2 Detection of GlcNAcation of serine 40 residue of histone H2A3 protein in mouse ES cells and mouse TS cells
  • Mouse ES cells are J1 Strains were used (Li, E., Bestor, T. & Jaenisch, R. Cell 1992, 69, 915-926.).
  • TS cells were obtained from C57BL / 6N mouse-derived scutellum according to the previous report (Hayakawa K1, et.al., Curr Protoc Stem Cell Biol. Fe2015 Feb 2; 32: 1E.4.1-1E4.32.). Established from the cell.
  • medium for TS cells (20% FBS (manufactured by Biowest), 2 mM L-glutamine (manufactured by Wako), 1 mM sodium pyruvate (manufactured by Wako), 2-mercaptoethanol, 50 U / mL penicillin (manufactured by Invitrogen) ), 50 ⁇ g / mL streptomycin (manufactured by Invitrogen) was added to RPMI-1640 (containing 25 mM glucose), 25 ng / mL FGF4, activin A (manufactured by Wako) and heparin (manufactured by Sigma) were added, Culture was performed.
  • glucose-free DMEM manufactured by Wako
  • TMPI-1640 glucose-free DMEM
  • ES cells and TS cells were cultured using each prepared culture solution until confluent.
  • the cultured cells were collected by centrifuging the cells into pellets, removing the culture solution. Subsequently, it was immediately frozen in liquid nitrogen and stored at ⁇ 80 ° C. until use.
  • FIGS. 3A and 3B show the results of staining with H2A3-S40-GlcNAc antibody
  • FIG. 3B shows the result of staining with O-GlcNAc (RL2) antibody.
  • ES cells immunostained with H2A3-S40-GlcNAc antibody differ from ES cells immunostained with O-GlcNAc (RL2) antibody, and a dot-like signal is detected in the nucleus. It was. In addition, no signal for GlcNAc formation was detected in ES cells treated with the GlcNAc-modified peptide prepared in Example 1 (1) and mouse IgG.
  • Example 3 Detection of GlcNAcation of serine 40 residue of histone H2A3 protein in human vascular endothelial (EAhy) cells and human renal proximal tubular epithelium (RPTEC) (1) Human vascular endothelial (EAhy) cells and human kidney Culture of Proximal Tubular Epithelial (RPTEC) Cells Human EAhy cells were purchased from American Type Culture Collection (ATCC).
  • Control medium (10% FBS (manufactured by Biowest), 50 U / mL penicillin (manufactured by Invitrogen), 50 ⁇ g / mL streptomycin (manufactured by Invitrogen) in DMEM (containing 5 mM glucose) (manufactured by Wako))
  • DMEM containing 5 mM glucose
  • control medium containing 5 mM glucose
  • high glucose medium containing 10 mM glucose or 25 mM glucose
  • 10% FBS manufactured by Biowest
  • 50 U / mL penicillin manufactured by Invitrogen
  • 50 ⁇ g / mL streptomycin was added to DMEM (containing 10 mM glucose or 25 mM glucose) (made by Wako)) for 4 days.
  • ChIP-seq using H2A3-S40-GlcNAc antibody in mouse ES cells under low and high sugar environments (1) Chromatin immunoprecipitation (ChIP) The ChIP assay was performed using ChIP-IT (registered trademark) Express Kit (manufactured by Active Motif) according to the manufacturer's instructions. First, a chromatin fragmentation reagent is added to mouse ES cells cultured in a low sugar (containing 1 mM glucose) and high sugar (containing 25 mM glucose) environment, incubated at 37 ° C. for 10 minutes, the cells are disrupted, and chromatin is fragmented. did.
  • ChIP-IT registered trademark
  • a chromatin fragmentation reagent is added to mouse ES cells cultured in a low sugar (containing 1 mM glucose) and high sugar (containing 25 mM glucose) environment, incubated at 37 ° C. for 10 minutes, the cells are disrupted, and chromatin is fragmented. did.
  • the library DNA was electrophoresed on a 2% agarose gel, and then purified using Zymoclean Gel DNA Recovery Kit (Dymo Research, D4007).
  • the purified library DNA was quantified using BioAnalyzer 2000 (manufactured by Agilent). The sequence was Illumina HiSeq 2000 systems.
  • pre-filtering processing is performed on the raw data of ChIP to delete the sequence adapter sequence and low-quality read information, and the tag is mapped from the mouse genome (mm9) using Bowtie software, and the Galaxy browser (www.galaxy) is used. Peak was detected using MACS software at .psu.edu).
  • the Venn diagram and gene ontology analysis were performed using BioVenn (http://www.cmbi.ru.nl/cdd/bioven/) and DAVID program (https://david.ncifcrf.gov/), respectively. These analysis results are all shown in FIG.
  • FIG. 5 shows that the mouse ES cells cultured in a low sugar (1 mM glucose) environment (58.9%) are more genomic (58.9%) than the mouse ES cells cultured in a high sugar (25 mM glucose) environment. It was revealed that there is a high proportion of histone H2A3 protein in which the serine 40 residue is converted to GlcNAc in the coding region.
  • a mouse ES cell cultured in a low sugar (1 mM glucose) environment was obtained by immunoprecipitation with the H2A3-S40-GlcNAc antibody rather than a mouse ES cell cultured in a high sugar (25 mM glucose) environment. There were many.
  • mouse ES cells cultured in a low sugar (1 mM glucose) environment it was revealed that many histone H2A3 proteins in which serine 40 residues were converted to GlcNAc were present at the transcription start site (8.1%).
  • gene ontology analysis shows that in a low sugar (1 mM glucose) environment and a high sugar (25 mM glucose) environment, a gene group controlled by a histone H2A3 protein in which a 40-serine residue is GlcNAc-converted is partially common (for example, There are also gene groups involved in the protein modification process, gene groups involved in the Wnt signal pathway, etc.), but it has been clarified that there are a plurality of different ones.
  • ChIP-seq using H2A3-S40-GlcNAc antibody in human vascular endothelial (EAhy) cells (1) Chromatin immunoprecipitation (ChIP) A ChIP assay was performed using the same method as that described in (1) of Example 4 except that human vascular endothelial (EAhy) cells were used instead of mouse ES cells to obtain DNA fragments.
  • FIG. 6 shows that the transcription start point, the coding region of the genome, and the serine in the non-coding region between human EAhy cells cultured in a high sugar (25 mM glucose) environment and human EAhy cells cultured in a low sugar (1 mM glucose) environment.
  • the amount of DNA fragments obtained by immunoprecipitation of human EAhy cells cultured in a high sugar (25 mM glucose) environment and human EAhy cells cultured in a low sugar (1 mM glucose) environment with an H2A3-S40-GlcNAc antibody There was no difference.
  • human EAhy cells cultured in a high sugar (25 mM glucose) environment it was revealed that many histone H2A3 proteins in which serine 40 residues were converted to GlcNAc were present at the transcription start site.
  • Example 6 Detection of DNA repair-related proteins by Western blotting in mouse ES cells under low and high sugar environments (1) Recovery of nuclear proteins First, low sugar (containing 1 mM glucose) and high sugar (containing 25 mM glucose) ) Using LysoPure Nuclear and Cytoplasmic Extract from mouse ES cells cultured under conditions of addition of camptothecin (CPT), etoposide (ETP), or CPT and ETP (non-treated). Then, according to the manufacturer's instructions, the nuclear protein was recovered.
  • CPT camptothecin
  • ETP etoposide
  • CPT is a quinoline alkaloid that inhibits the action of type I topoisomerase (topoI) of the DNA enzyme, and ETP forms a complex with topoisomerase II after cleaving DNA and inhibits recombination of DNA. Both are tumor agents and compounds that cause DNA damage.
  • topoI type I topoisomerase
  • FIG. 7 shows that serine 139 residue is phosphorylated in mouse ES cells cultured under low-sugar (containing 1 mM glucose) and high-sugar (containing 25 mM glucose) conditions without CPT and ETP added (non-treated). The detected histone H2AX protein was not detected.
  • serine 139 residue in histone H2AX protein Phosphorylation level of 53, and 53BP1 and Rad51 were further induced, while the acetylation level of histone H2AZ protein in the nucleus decreased.
  • Example 7 DNA repair ability test by difference in UV irradiation time in human vascular endothelial (EAhy) cells that highly expressed wild type histone H2A3 protein (WT) or mutant H2A3 protein (H2A-S40A) (1) wild type Preparation of human vascular endothelial (EAhy) cells highly expressing histone H2A3 protein (WT) or mutant H2A3 protein (H2A-S40A) High expression of wild-type histone H2A3 protein (WT) or mutant H2A3 protein (H2A-S40A) The human vascular endothelial (EAhy) cells were seeded in 3 ⁇ 10 5 cells in a 10 cm dish and cultured for 96 hours under DMEM (5 mM glucose) containing 10% FBS.
  • DMEM 5 mM glucose
  • UV-C ultraviolet rays
  • Genomic DNA was stored at 4 ° C. until use. Subsequently, 10 ng of genomic DNA was added to a 96 well protamine surface coated plate and incubated overnight at 37 ° C. Subsequently, blocking was performed by incubating at 37 ° C. for 30 minutes using PBS containing 2% fetal bovine serum and 0.1% Tween20.
  • an anti-cyclobutane-type pyrimidine dimer (CPD) antibody (manufactured by Cosmo Bio, NM-DND-001) (diluted 1: 1000 with PBS) was used as a primary antibody, and 37 Incubated for 1 hour at ° C. Subsequently, the plate was washed with PBS, and HRP-conjugated anti-mouse IgG antibody (manufactured by Jackson ImmunoResearch) (diluted 1: 2000 using PBS)) was used as a secondary antibody at 37 ° C. Incubated for 30 minutes.
  • CPD anti-cyclobutane-type pyrimidine dimer
  • FIG. 7 shows that human vascular endothelial (EAhy) cells highly expressing wild-type histone H2A3 protein (WT) are pyrimidine dimers more than human vascular endothelial (EAhy) cells highly expressing mutant H2A3 protein (H2A-S40A).
  • the production amount of was suppressed. This was presumed to be due to the fact that the serine 40 residue of the histone H2A3 protein was converted to GlcNAc, whereby DNA repairing ability was exhibited and a part of the primidine dimer generated by ultraviolet irradiation was repaired.
  • variation of extracellular glucose concentration exerts can be provided.
  • the stability of genomic DNA can be easily evaluated.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

An antibody of the present invention specifically bonds to a serine 40 residue modified with N-acetylglucosamine (GlcNAc) in a histone H2A protein. The present invention provides a method for detecting GlcNAc-modification of a serine 40 residue in a histone H2A protein, said method having a step for measuring the level of GlcNAc-modification of the serine 40 residue in the histone H2A protein using the antibody. A protein or a peptide marker of the present invention is a marker for monitoring histone modification caused by fluctuations in the concentration of extracellular glucose, said marker comprising an H2A protein, or a peptide fragment thereof, that contains a GlcNAc-modified serine 40 residue.

Description

糖感知エピゲノムバイオマーカーSugar-sensing epigenome biomarker
 本発明は、ヒストンH2Aタンパク質のN-アセチルグルコサミン(GlcNAc)化したセリン40残基に特異的に結合する抗体、前記抗体を用いたヒストンH2Aタンパク質のセリン40残基のGlcNAc化の検出方法、ヒストンH2Aタンパク質のセリン40残基のGlcNAc化の阻害剤又は活性化剤のスクリーニング方法、グルコースの存在依存的に生じるヒストンタンパク質のGlcNAc化の変化を検出する方法、ゲノムDNAの安定性を評価する方法、及びタンパク質マーカーに関する。
 本願は、2015年9月9日に、日本に出願された特願2015-177176号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an antibody that specifically binds to N-acetylglucosamine (GlcNAc) serine 40 residue of histone H2A protein, a method for detecting GlcNAcation of serine 40 residue of histone H2A protein using the antibody, histone A method for screening an inhibitor or activator of GlcNAcylation of the serine 40 residue of H2A protein, a method for detecting a change in GlcNAcation of histone protein that occurs depending on the presence of glucose, a method for evaluating the stability of genomic DNA, And protein markers.
This application claims priority based on Japanese Patent Application No. 2015-177176 filed in Japan on September 9, 2015, the contents of which are incorporated herein by reference.
 クロマチン構造は、ゲノム機能を調節するために、ヒストンタンパク質における様々な修飾によって制御されることが知られている。このような化学修飾において、ヒストンタンパク質の翻訳後修飾はクロマチン再編成のための重要な決定因子として明らかになっており、可逆的なヒストン修飾の特異的な組み合わせは、クロマチンの活性状態に影響を及ぼしていると考えられている。この特異的な組み合わせは後成的(epigenetically)に生じ、安定的であるにも関わらず、これらのいくつかは細胞外状態及び細胞活性に応答して一時的に再構成される。エピジェネティクス系はゲノムの長期的制御を担っており、エピジェネティクス修飾は細胞のゲノム制御に果たす役割や、発生や細胞分化の基盤として重要で、その破たんは疾患の原因となりうる。
 現在、エピジェネティクス修飾には多数知られており、そのうち、ヒストン末端の特異的残基におけるヒストンタンパク質のアセチル化、メチル化、ユビキチン化は遺伝子の発現制御やゲノム安定性に関連していることが知られている。
Chromatin structure is known to be controlled by various modifications in histone proteins to regulate genomic function. In such chemical modifications, post-translational modifications of histone proteins have become important determinants for chromatin reorganization, and specific combinations of reversible histone modifications have an effect on chromatin activity. It is thought to be exerting. This specific combination occurs epigenetically and, despite being stable, some of these are temporarily reconstituted in response to extracellular conditions and cellular activity. Epigenetics systems are responsible for long-term genome control, and epigenetic modification is important as a role in cell genome control and as a basis for development and cell differentiation, and its disruption can cause disease.
Currently, there are many known epigenetic modifications. Among them, histone protein acetylation, methylation, and ubiquitination at specific residues at the histone end are related to gene expression control and genome stability. It has been known.
 近年、上述のようなヒストンタンパク質の修飾として、N-アセチルグルコサミン(GlcNAc)化が、ヒストンタンパク質に刻まれる新しいエピジェネティクス現象であることが明らかとなった。GlcNAc化は可逆的な現象であり、修飾反応はO-結合型N-アセチルグルコサミン転移酵素(OGT)及びO-結合型N-アセチルグルコサミン化酵素(OGA)の二つの酵素により触媒されている。N-アセチルグルコサミンは、ヘキソサミン生合成経路(HBP)によりサイトゾルにおいて生成されるUDP-GlcNAcから得られる。UDP-GlcNAcの最初の供給源が細胞外グルコースであるため、GlcNAc化の程度は細胞外グルコース濃度及び細胞内のHBP活性と共に変動すると考えられている(例えば、非特許文献1参照。)。また、血糖値の異常は細胞の長期的なゲノム機能の変化を起こし、様々な疾患の原因になる可能性が挙げられている(例えば、非特許文献2参照。)。 Recently, N-acetylglucosamine (GlcNAc) conversion as a modification of histone protein as described above has been found to be a new epigenetic phenomenon carved into histone proteins. GlcNAcation is a reversible phenomenon, and the modification reaction is catalyzed by two enzymes, O-linked N-acetylglucosaminyltransferase (OGT) and O-linked N-acetylglucosaminase (OGA). N-acetylglucosamine is obtained from UDP-GlcNAc produced in the cytosol by the hexosamine biosynthetic pathway (HBP). Since the initial source of UDP-GlcNAc is extracellular glucose, the degree of GlcNAcation is thought to vary with extracellular glucose concentration and intracellular HBP activity (see, for example, Non-Patent Document 1). In addition, abnormal blood glucose levels may cause long-term changes in genomic functions of cells and cause various diseases (see, for example, Non-Patent Document 2).
 GlcNAc化されるヒストンタンパク質中のアミノ酸は、セリン又はスレオニンであることが知られている。ヒストンタンパク質のうち、現在判明しているGlcNAc化される部位は、ヒストンH2Bのアミノ酸配列のうちN末端から36番目のセリン、52番目のスレオニン、55番目のセリン、56番目のセリン、64番目のセリン、91番目のセリン、112番目のセリン及び123番目のセリン、ヒストンH2Aのアミノ酸配列のうちN末端から101番目のスレオニン、ヒストンH3又はH3.3のアミノ酸配列のうちN末端から10番目のセリン、32番目のスレオニン及び80番目のスレオニン、ヒストンH4のアミノ酸配列のうちN末端から47番目のセリンである(例えば、非特許文献3、4参照。)。 It is known that the amino acid in the histone protein to be GlcNAc is serine or threonine. Among the histone proteins, currently known GlcNAc sites are the 36 th serine, 52 th threonine, 55 th serine, 56 th serine, 64 th position from the N-terminal of the amino acid sequence of histone H2B. Serine, 91st serine, 112th serine and 123th serine, histone H2A amino acid sequence 101st threonine from N-terminal, histone H3 or H3.3 amino acid sequence 10th serine from N-terminal , Threonine at position 32, threonine at position 80, and the 47th serine from the N-terminal among the amino acid sequences of histone H4 (see, for example, Non-Patent Documents 3 and 4).
 上述のとおり、GlcNAc化は細胞外グルコース濃度と共に変動すると考えられているが、GlcNAcは低分子量であり中性電荷であるため、検出することが難しく、細胞外グルコース濃度の変動が及ぼすヒストン修飾をモニターする技術については、未だ確立されていなかった(例えば、非特許文献5参照。)。 As described above, GlcNAcation is thought to vary with extracellular glucose concentration, but GlcNAc is low molecular weight and neutral charge, so it is difficult to detect and histone modification caused by fluctuations in extracellular glucose concentration The technology for monitoring has not been established yet (see, for example, Non-Patent Document 5).
 本発明は、上記事情に鑑みてなされたものであって、細胞外グルコース濃度の変動が及ぼすヒストン修飾をモニターする方法を提供する。 The present invention has been made in view of the above circumstances, and provides a method for monitoring histone modification exerted by fluctuations in extracellular glucose concentration.
 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、核内においてヒストンタンパク質のうち、ヒストンH2Aタンパク質のセリン40残基がGlcNAc化されることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventors have found that, among histone proteins, serine 40 residue of histone H2A protein is converted to GlcNAc in the nucleus, thereby completing the present invention. It came.
 本発明は、以下の態様を含む。
[1]ヒストンH2Aタンパク質のN-アセチルグルコサミン(GlcNAc)化したセリン40残基に特異的に結合することを特徴とする抗体。
[2][1]に記載の抗体を用いて、ヒストンH2Aタンパク質のセリン40残基のGlcNAc化レベルを測定する工程を備えることを特徴とするヒストンH2Aタンパク質のセリン40残基のGlcNAc化の検出方法。
[3]ヒストンH2Aタンパク質のセリン40残基のGlcNAc化の阻害剤又は活性化剤のスクリーニング方法であって、被験物質の存在下及び非存在下において、ヒストンH2Aタンパク質又はそのペプチド断片のセリン40残基のGlcNAc化レベルを測定する工程と、被検物質の存在下における前記GlcNAc化レベルが、被検物質の非存在下における前記GlcNAc化レベルと比較して低かった場合に、前記被検物質はヒストンH2Aタンパク質のセリン40残基のGlcNAc化の阻害剤であると判定し、被検物質の存在下における前記GlcNAcレベルが、被検物質の非存在下における前記リン酸化レベルと比較して高かった場合に、前記被検物質はヒストンH2Aタンパク質のセリン40残基のGlcNAc化の活性化剤であると判定する工程と、を備えることを特徴とするスクリーニング方法。
[4]グルコースの存在下において、前記測定工程を行う[3]に記載のスクリーニング方法。
[5]DNAに損傷を与えた条件下において、前記測定工程を行う[3]又は[4]に記載のスクリーニング方法。
[6]前記ヒストンH2Aタンパク質又はそのペプチド断片のセリン40残基のGlcNAc化レベルが、ヒストンH2Aタンパク質のGlcNAc化したセリン40残基に特異的に結合する抗体により測定される[3]~[5]のいずれか一つに記載のスクリーニング方法。
[7]細胞外グルコース濃度の変動が及ぼすヒストン修飾をモニターする方法であって、グルコースの存在依存的に生じるヒストンH2Aタンパク質のセリン40残基のGlcNAc化レベルを測定する工程を備えることを特徴とする方法。
[8]前記ヒストンH2Aタンパク質のセリン40残基のGlcNAc化レベルが、ヒストンH2Aタンパク質のGlcNAc化したセリン40残基に特異的に結合する抗体により測定される[7]に記載の検出方法。
[9]細胞外グルコース濃度の変動が及ぼすヒストン修飾をモニターするマーカーであって、GlcNAc化したセリン40残基を含む、H2Aタンパク質又はそのペプチド断片からなることを特徴とするタンパク質又はペプチドマーカー。
[10]エピジェネティクス修飾によるゲノムDNAの安定性を評価する方法であって、ヒストンH2Aタンパク質又はそのペプチド断片のセリン40残基のGlcNAc化レベルを測定する工程を備えることを特徴とする方法。
[11]前記ヒストンH2Aタンパク質又はそのペプチド断片のセリン40残基のGlcNAc化レベルが、ヒストンH2Aタンパク質のGlcNAc化したセリン40残基に特異的に結合する抗体により測定される[10]に記載の方法。
[12]エピジェネティクス修飾によるゲノムDNAの安定性を検出するマーカーであって、GlcNAc化したセリン40残基を含む、H2Aタンパク質又はそのペプチド断片からなることを特徴とするタンパク質又はペプチドマーカー。
The present invention includes the following aspects.
[1] An antibody that specifically binds to N-acetylglucosamine (GlcNAc) serine 40 residue of histone H2A protein.
[2] Detecting GlcNAcation of serine 40 residue of histone H2A protein, comprising measuring the level of GlcNAcation of serine 40 residue of histone H2A protein using the antibody according to [1] Method.
[3] A method for screening an inhibitor or activator of GlcNAcation of serine 40 residue of histone H2A protein, wherein serine 40 residue of histone H2A protein or peptide fragment thereof is present in the presence and absence of a test substance. A step of measuring the GlcNAcation level of the group, and when the GlcNAcation level in the presence of the test substance is lower than the GlcNAcation level in the absence of the test substance, the test substance is Determined to be an inhibitor of GlcNAcylation of serine 40 residue of histone H2A protein, and the GlcNAc level in the presence of the test substance was higher than the phosphorylation level in the absence of the test substance In some cases, the test substance is an activity of GlcNAcization of serine 40 residue of histone H2A protein. Screening method characterized by and a step of determining that the agent.
[4] The screening method according to [3], wherein the measurement step is performed in the presence of glucose.
[5] The screening method according to [3] or [4], wherein the measurement step is performed under conditions in which DNA is damaged.
[6] The level of GlcNAcation of the serine 40 residue of the histone H2A protein or peptide fragment thereof is measured by an antibody that specifically binds to the GlcNAcated serine 40 residue of the histone H2A protein [3] to [5 ] The screening method as described in any one of.
[7] A method for monitoring histone modification exerted by fluctuations in extracellular glucose concentration, comprising the step of measuring the level of GlcNAcation of serine 40 residue of histone H2A protein that occurs depending on the presence of glucose. how to.
[8] The detection method according to [7], wherein the GlcNAc level of the serine 40 residue of the histone H2A protein is measured by an antibody that specifically binds to the GlcNAc-converted serine 40 residue of the histone H2A protein.
[9] A protein or peptide marker, which is a marker for monitoring histone modification exerted by fluctuations in extracellular glucose concentration, comprising an H2A protein or a peptide fragment thereof containing 40 GlcNAcylated serine residues.
[10] A method for evaluating the stability of genomic DNA by epigenetic modification, comprising the step of measuring the level of GlcNAcization of a 40-serine residue of histone H2A protein or a peptide fragment thereof.
[11] The level of GlcNAcation of the serine 40 residue of the histone H2A protein or peptide fragment thereof is measured by an antibody that specifically binds to the GlcNAcated serine 40 residue of the histone H2A protein. Method.
[12] A protein or peptide marker for detecting the stability of genomic DNA by epigenetic modification, comprising a H2A protein or a peptide fragment thereof containing a GlcNAcylated serine 40 residue.
 本発明によれば、細胞外グルコース濃度の変動が及ぼすヒストン修飾をモニターすることができる。 According to the present invention, it is possible to monitor histone modification exerted by fluctuations in extracellular glucose concentration.
ヒストンH2Aタンパク質における30番目~50番目のアミノ酸配列の種による違いを示す図である。FIG. 4 is a view showing differences in amino acid sequences of the 30th to 50th amino acids in histone H2A protein depending on species. ヒストンタンパク質の修飾の種による違いを示す図である。It is a figure which shows the difference by the seed | species of the modification of histone protein. 実施例1におけるHPLCのピーク推移を表したグラフと、HPLCにより得られた各フラクションのウエスタンブロッティング法による検出結果を示す画像である。It is an image which shows the detection result by the Western blotting method of the graph showing the peak transition of HPLC in Example 1, and each fraction obtained by HPLC. 実施例1における2種類の野生型Flag-H2A1A及びFlag-H2A3、並びに変異体Flag-H2A3-S40A(ヒストンH2A3タンパク質のアミノ酸配列のうち40番目のセリンをアラニンに変えた変異体)の組換えタンパク質を用いたウエスタンブロッティング法による検出結果を示す画像である。Recombinant proteins of two types of wild-type Flag-H2A1A and Flag-H2A3 in Example 1 and mutant Flag-H2A3-S40A (mutant in which the 40th serine in the amino acid sequence of histone H2A3 protein is changed to alanine) It is an image which shows the detection result by the western blotting method using. 実施例2におけるH2A3-S40-GlcNAc抗体を用いたマウスES細胞の免疫染色の結果を示す画像である。2 is an image showing the results of immunostaining of mouse ES cells using the H2A3-S40-GlcNAc antibody in Example 2. FIG. 実施例2におけるO-GlcNAc(RL2)抗体を用いたマウスES細胞の免疫染色の結果を示す画像である。FIG. 4 is an image showing the results of immunostaining of mouse ES cells using O-GlcNAc (RL2) antibody in Example 2. FIG. 実施例2における異なるグルコース濃度の培地で培養したマウスES細胞及びマウスTS細胞を用いたウエスタンブロッティング法による検出結果を示す画像である。It is an image which shows the detection result by the western blotting method using the mouse | mouth ES cell and mouse | mouth TS cell which were culture | cultivated in the culture medium of different glucose concentration in Example 2. FIG. 実施例3におけるH2A3-S40-GlcNAc抗体を用いた、異なるグルコース濃度の培地で培養したヒトEAhy細胞の免疫染色の結果を示す画像と、核内のGlcNAcドット数の変化を計測したグラフである。FIG. 4 is an image showing the results of immunostaining of human EAhy cells cultured in media with different glucose concentrations using the H2A3-S40-GlcNAc antibody in Example 3, and a graph measuring changes in the number of GlcNAc dots in the nucleus. 実施例3におけるH2A3-S40-GlcNAc抗体を用いた、異なるグルコース濃度の培地で培養したヒトRPTEC細胞の免疫染色の結果を示す画像と、核内のGlcNAcドット数の変化を計測したグラフである。FIG. 5 is an image showing the results of immunostaining of human RPTEC cells cultured in media with different glucose concentrations using the H2A3-S40-GlcNAc antibody in Example 3, and a graph measuring changes in the number of GlcNAc dots in the nucleus. 実施例4における低糖及び高糖環境下で培養したマウスES細胞でのH2A3-S40-GlcNAc抗体を用いたChIP-seqの結果を示す図である。FIG. 10 shows the results of ChIP-seq using H2A3-S40-GlcNAc antibody in mouse ES cells cultured in a low sugar and high sugar environment in Example 4. 実施例5における低糖及び高糖環境下で培養したヒトEAhy細胞でのH2A3-S40-GlcNAc抗体を用いたChIP-seqの結果を示す図である。FIG. 6 shows the results of ChIP-seq using H2A3-S40-GlcNAc antibody in human EAhy cells cultured in a low sugar and high sugar environment in Example 5. 実施例6におけるDNA損傷に関連するヒストンバリアント及びタンパク質についてウエスタンブロッティング法による検出結果を示す画像である。It is an image which shows the detection result by the western blotting method about the histone variant and protein relevant to DNA damage in Example 6. 実施例7における野生型ヒストンタンパク質H2A又は変異型ヒストンタンパク質H2A-S40Aを高発現したヒトEAhy細胞での紫外線照射により誘発されたDNA損傷(ピリミジンダイマー)を検出した結果を示すグラフである。6 is a graph showing the results of detecting DNA damage (pyrimidine dimer) induced by ultraviolet irradiation in human EAhy cells that highly expressed wild-type histone protein H2A or mutant histone protein H2A-S40A in Example 7.
 以下、必要に応じて図面を参照しながら、本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as necessary.
<抗体>
 一実施形態において、本発明は、ヒストンH2Aタンパク質のGlcNAc化したセリン40残基に特異的に結合する抗体を提供する。
<Antibody>
In one embodiment, the present invention provides an antibody that specifically binds to a GlcNAcylated serine 40 residue of a histone H2A protein.
 本実施形態の抗体によれば、ヒストンH2Aタンパク質のGlcNAc化したセリン40残基を容易かつ簡便に検出することができる。さらに、本実施形態の抗体を用いて、ヒストンH2Aタンパク質のGlcNAc化したセリン40残基を検出することで、糖尿病や肥満など代謝異常がリスク因子となる様々な疾患のエピジェネティクス異常を検出することができる。 According to the antibody of the present embodiment, it is possible to easily and easily detect a 40-glycine Serine residue of histone H2A protein. Furthermore, by detecting the GlcNAc-modified serine 40 residue of the histone H2A protein using the antibody of this embodiment, abnormalities in epigenetics of various diseases in which metabolic abnormalities such as diabetes and obesity are risk factors are detected. be able to.
 本明細書中において、「ヒストンタンパク質」とは、クロマチンの基本単位であるヌクレオソームを構成するコアヒストンタンパク質(H2A、H2B、H3、H4)及びリンカーヒストンタンパク質(H1)のことを意味する。さらに、本明細書中において、「ヒストンタンパク質」には、これらのバリアント、例えばH2AX、H2AZ等も含まれる。
 元来、ヒストンH2Aタンパク質のアミノ酸配列のうち、N末端から40番目のアミノ酸がアラニンであった(図1A参照)が、進化の過程から哺乳類以降の動物において、ヒストンH2Aタンパク質のアミノ酸配列のうち、N末端から40番目のアミノ酸がセリンであるバリアントが存在する(図1A及び図1B参照)ことが知られている。本発明者らは、このヒストンH2Aタンパク質のバリアントに着目したところ、ヒストンH2Aタンパク質のセリン40残基がGlcNAc化されることを見出し、本発明を完成するに至った。
 尚、本明細書及び特許請求の範囲において、N末端から40番目のアミノ酸を「アミノ酸40残基」という。例えば、N末端から40番目のアミノ酸がセリンの場合には「セリン40残基」という。
In the present specification, the “histone protein” means a core histone protein (H2A, H2B, H3, H4) and a linker histone protein (H1) constituting a nucleosome which is a basic unit of chromatin. Furthermore, in the present specification, “histone protein” includes these variants such as H2AX and H2AZ.
Originally, of the amino acid sequences of histone H2A protein, the 40th amino acid from the N-terminus was alanine (see FIG. 1A). It is known that there is a variant in which the 40th amino acid from the N-terminus is serine (see FIGS. 1A and 1B). The present inventors focused on this histone H2A protein variant, and found that the serine 40 residue of the histone H2A protein is converted to GlcNAc, thereby completing the present invention.
In the present specification and claims, the 40th amino acid from the N-terminal is referred to as “amino acid 40 residue”. For example, when the 40th amino acid from the N-terminal is serine, it is referred to as “serine 40 residue”.
 また、図1Bから、アセチル化、メチル化、GlcNAc化等のヒストンの修飾は様々な生物においてみられるが、ヒストンH2Aタンパク質の40番目のセリンのGlcNAc化は、哺乳類以降の動物においてのみ行われるものである。
 また、後述の実施例において示すように、ヒストンH2Aタンパク質のセリン40残基のGlcNAc化レベルは、ヘキソサミン生合成経路(HBP)を介した細胞外グルコース濃度の変化に応答して、増加又は減少することが、本発明者らにより初めて明らかとなった。よって、このヒストンH2Aタンパク質のセリン40残基のGlcNAc化は、哺乳類以降の動物における糖尿病や肥満等の代謝異常がリスク因子となる様々な疾患のエピジェネティクス異常に関連していると考えられる。
Also, from FIG. 1B, histone modifications such as acetylation, methylation, and GlcNAcation are observed in various organisms, but GlcNAcation of the 40th serine of histone H2A protein is performed only in mammals and later. It is.
In addition, as shown in Examples below, the level of GlcNAcization of serine 40 residue of histone H2A protein increases or decreases in response to changes in extracellular glucose concentration via the hexosamine biosynthetic pathway (HBP). This has been clarified for the first time by the present inventors. Therefore, it is considered that GlcNAcization of serine 40 residue of this histone H2A protein is related to abnormal epigenetics of various diseases in which metabolic abnormalities such as diabetes and obesity are a risk factor in animals after mammals.
 本実施形態の抗体は、ヒストンH2Aタンパク質のGlcNAc化したセリン40残基に特異的に結合することができる。また、GlcNAcのヒストンH2Aタンパク質のセリン40残基への結合の態様は、O結合型である。すなわち、本実施形態の抗体は、ヒストンH2Aタンパク質のO結合型GlcNAc化したセリン40残基に特異的に結合することができる。上述したように、このヒストンH2Aタンパク質のセリン40残基のGlcNAc化は新規に見出され、本実施形態の抗体は、この新規な抗原に対して特異的に結合する範囲において包含される。 The antibody of the present embodiment can specifically bind to the 40-glycine Serine residue of histone H2A protein. The mode of binding of GlcNAc to the serine 40 residue of the histone H2A protein is an O-linked type. That is, the antibody of the present embodiment can specifically bind to the O-linked GlcNAc serine 40 residue of the histone H2A protein. As described above, GlcNAcation of serine 40 residue of this histone H2A protein was newly found, and the antibody of this embodiment is included in the range that specifically binds to this novel antigen.
 本実施形態において、「抗体」の種類としては、ポリクローナル抗体であっても、モノクローナル抗体であってもよく、さらに抗体の機能的断片であってもよい。中でも、モノクローナル抗体であることが好ましい。また、「抗体」には、免疫グロブリンのすべてのクラスおよびサブクラスが含まれる。 In this embodiment, the type of “antibody” may be a polyclonal antibody, a monoclonal antibody, or a functional fragment of an antibody. Among these, a monoclonal antibody is preferable. “Antibodies” also includes all classes and subclasses of immunoglobulins.
 本明細書中において、「特異的に結合」とは、抗体が標的タンパク質(抗原)にのみ結合することを意味し、例えば試験管内におけるアッセイ、好ましくは精製した野生型抗原を用いたプラズモン共鳴アッセイ(例えば、BIAcore、GE-Healthcare Uppsala, Sweden等)における抗体の抗原のエピトープへの結合等により定量することができる。結合の親和性は、ka(抗体-抗原複合体からの抗体結合に関する速度定数)、kD(解離定数)、及びKD(kD/ka)によって規定することができる。抗体が抗原に特異的に結合している場合の結合親和性(KD)は、10-8mol/L以下であることが好ましく、10-9M~10-13mol/Lであることがより好ましい。 As used herein, “specifically binding” means that an antibody binds only to a target protein (antigen), for example, in vitro assay, preferably plasmon resonance assay using purified wild-type antigen (For example, BIAcore, GE-Healthcare Uppsala, Sweden, etc.) can be quantified by binding of an antigen to an epitope of an antibody. The affinity of binding can be defined by ka (rate constant for antibody binding from antibody-antigen complex), kD (dissociation constant), and KD (kD / ka). When the antibody specifically binds to the antigen, the binding affinity (KD) is preferably 10 −8 mol / L or less, more preferably 10 −9 M to 10 −13 mol / L. preferable.
 本実施形態において、「ポリクローナル抗体」とは、異なるエピトープに対する異なる抗体を含む抗体調製物を意味する。すなわち、本実施形態の抗体がポリクローナル抗体である場合、O結合型GlcNAc化したセリン40残基を含み、且つ、異なるアミノ酸配列からなるエピトープに対し、特異的に結合する異なる抗体を含み得る。
 また、「モノクローナル抗体」とは、実質的に均一な抗体の集団から得られる抗体(抗体断片を含む)を意味する。
 また、ポリクローナル抗体とは対照的に、モノクローナル抗体は、抗原上の単一の決定基を認識するものを意味する。すなわち、本実施形態の抗体がモノクローナル抗体である場合、自然環境の成分から単離された抗体である。
 本実施形態において、抗体の「機能的断片」とは、抗体の一部分(部分断片)であって、標的タンパク質を特異的に認識するものを意味する。具体的には、Fab、Fab’、F(ab’)2、可変領域断片(Fv)、ジスルフィド結合Fv、一本鎖Fv(scFv)、sc(Fv)2、ダイアボディー、多特異性抗体、およびこれらの重合体等が挙げられる。
In this embodiment, “polyclonal antibody” means an antibody preparation comprising different antibodies against different epitopes. That is, when the antibody of the present embodiment is a polyclonal antibody, it may contain a different antibody that specifically binds to an epitope comprising 40 residues of O-linked GlcNAc serine and having a different amino acid sequence.
The “monoclonal antibody” means an antibody (including an antibody fragment) obtained from a substantially homogeneous antibody population.
Also, in contrast to polyclonal antibodies, monoclonal antibodies mean those that recognize a single determinant on an antigen. That is, when the antibody of this embodiment is a monoclonal antibody, it is an antibody isolated from components of the natural environment.
In the present embodiment, the “functional fragment” of an antibody means a part (partial fragment) of an antibody that specifically recognizes a target protein. Specifically, Fab, Fab ′, F (ab ′) 2, variable region fragment (Fv), disulfide bond Fv, single chain Fv (scFv), sc (Fv) 2, diabody, multispecific antibody, And polymers thereof.
 本実施形態の抗体がポリクローナル抗体である場合、抗原(例えば、GlcNAc化したセリン40残基を含むヒストンH2Aタンパク質、そのGlcNAc化したセリン40残基を含むペプチド断片、またはこれらを発現する細胞等)で免疫動物を免疫し、その抗血清から、従来の手段(例えば、塩析、遠心分離、透析、カラムクロマトグラフィー等)によって、精製して取得することができる。また、本実施形態の抗体がモノクローナル抗体である場合は、ハイブリドーマ法や組換えDNA法によって作製することができる。 When the antibody of the present embodiment is a polyclonal antibody, an antigen (for example, a histone H2A protein containing 40 GlcNAc serine residues, a peptide fragment containing 40 GlcNAc serine residues, or a cell expressing these) The immunized animal can be immunized and purified from the antiserum by conventional means (eg, salting out, centrifugation, dialysis, column chromatography, etc.). Moreover, when the antibody of this embodiment is a monoclonal antibody, it can be produced by a hybridoma method or a recombinant DNA method.
ハイブリドーマ法としては、例えば、ケーラーおよびミルスタインの方法(例えば、Kohler & Milstein, Nature, 256:495(1975)参照)等が挙げられる。この方法における細胞融合工程に使用される抗体産生細胞としては、例えば抗原(例えば、GlcNAc化したセリン40残基を含むヒストンH2Aタンパク質、そのGlcNAc化したセリン40残基を含むペプチド断片、またはこれらを発現する細胞等)で免疫された動物(例えば、マウス、ラット、ハムスター、ウサギ、サル、ヤギ等)の脾臓細胞、リンパ節細胞、末梢血白血球等が挙げられる。また、免疫されていない動物から予め単離された上記の細胞またはリンパ球などに対して、抗原を培地中で作用させることによって得られた抗体産生細胞も使用することができる。ミエローマ細胞としては、公知の種々の細胞株を使用することができる。抗体産生細胞及びミエローマ細胞は、それらが融合可能であれば、異なる動物種起源のものでもよいが、同一の動物種起源のものであることが好ましい。ハイブリドーマを得る方法としては、例えば、抗原で免疫されたマウスから得られた脾臓細胞と、マウスミエローマ細胞との間の細胞融合により産生され、その後のスクリーニングにより、標的蛋白質に特異的なモノクローナル抗体を産生するハイブリドーマを得る方法等が挙げられる。ハイブリドーマにより産生されたモノクローナル抗体を得る方法としては、例えば標的蛋白質に対するモノクローナル抗体は、ハイブリドーマを培養することにより、また、ハイブリドーマを投与した哺乳動物の腹水から、取得する方法等が挙げられる。 Examples of the hybridoma method include Kohler and Milstein methods (see, for example, Kohler & Milstein, Nature, 256: 495 (1975)). Examples of antibody-producing cells used in the cell fusion step in this method include antigens (for example, histone H2A protein containing 40 GlcNAc-modified serine residues, peptide fragments containing 40 GlcNAc-ized serine residues, or these Spleen cells, lymph node cells, peripheral blood leukocytes, etc. of animals (eg, mice, rats, hamsters, rabbits, monkeys, goats, etc.) immunized with such cells. In addition, antibody-producing cells obtained by allowing an antigen to act in a medium on the cells or lymphocytes previously isolated from an unimmunized animal can also be used. Various known cell lines can be used as the myeloma cells. The antibody-producing cells and myeloma cells may be derived from different animal species as long as they can be fused, but are preferably derived from the same animal species. As a method for obtaining a hybridoma, for example, a spleen cell obtained from a mouse immunized with an antigen and a mouse myeloma cell are produced, and a monoclonal antibody specific to the target protein is obtained by subsequent screening. The method of obtaining the hybridoma to produce is mentioned. Examples of a method for obtaining a monoclonal antibody produced by a hybridoma include a method in which a monoclonal antibody against a target protein is obtained by culturing the hybridoma or from ascites of a mammal to which the hybridoma has been administered.
 組換えDNA法としては、例えば上記本実施形態の抗体又は抗体の機能的断片をコードするDNAをハイブリドーマやB細胞等からクローニングし、適当なベクターに組み込んで、これを宿主細胞(例えば哺乳類細胞株、大腸菌、酵母細胞、昆虫細胞、植物細胞等)に導入し、本実施形態の抗体を組換え抗体として産生させる手法等が挙げられる(例えば、P.J.Delves,Antibody Production:Essential Techniques,1997 WILEY、P.Shepherd and C.Dean Monoclonal Antibodies,2000 OXFORD UNIVERSITY PRESS、Vandamme A.M.et al.,Eur.J.Biochem.192:767-775(1990)参照)。
本実施形態の抗体をコードするDNAの発現においては、重鎖又は軽鎖をコードするDNAを別々に発現ベクターに組み込んで宿主細胞を形質転換してもよく、重鎖及び軽鎖をコードするDNAを単一の発現ベクターに組み込んで宿主細胞を形質転換してもよい(例えば、国際特許出願第94/11523号参照)。本実施形態の抗体は、上記宿主細胞を培養し、宿主細胞内又は培養液から分離及び精製し、実質的に純粋で均一な形態で取得することができる。抗体の分離及び精製は、通常のポリペプチドの精製で使用されている方法を使用することができる。トランスジェニック動物作製技術を用いた方法では、例えば、抗体遺伝子が組み込まれたトランスジェニック動物(例えば、ウシ、ヤギ、ヒツジまたはブタ等)を作製し、そのトランスジェニック動物のミルクから、抗体遺伝子に由来するモノクローナル抗体を大量に取得する方法等が挙げられる。
As a recombinant DNA method, for example, a DNA encoding the antibody or the functional fragment of the antibody of the present embodiment is cloned from a hybridoma, a B cell or the like, and incorporated into an appropriate vector, which is then used as a host cell (for example, a mammalian cell line). , Escherichia coli, yeast cells, insect cells, plant cells, etc.) and producing the antibody of this embodiment as a recombinant antibody (for example, PJ Delves, Antibody Production: Essential Techniques, 1997). WILEY, P. Shepherd and C. Dean Monoclonal Antibodies, 2000 OXFORD UNIVERSITY PRESS, Vandame AM et al., Eur. J. Biochem. 192: 767-775. 1990)).
In the expression of the DNA encoding the antibody of the present embodiment, DNA encoding heavy chain or light chain may be separately incorporated into an expression vector to transform a host cell. DNA encoding heavy chain and light chain May be incorporated into a single expression vector to transform host cells (see, eg, International Patent Application No. 94/11523). The antibody of the present embodiment can be obtained in a substantially pure and uniform form by culturing the above host cell, separating and purifying it from the host cell or culture medium. Separation and purification of the antibody can be performed by a method used in usual polypeptide purification. In the method using the transgenic animal production technique, for example, a transgenic animal (for example, cow, goat, sheep or pig etc.) in which the antibody gene is incorporated is produced, and the antibody gene is derived from the milk of the transgenic animal. And a method for obtaining a large amount of monoclonal antibodies to be used.
 本実施形態の抗体は、ヒストンH2Aタンパク質のGlcNAc化したセリン40残基に特異的に結合できるものであれば、アミノ酸配列変異体であってもかわない。
 アミノ酸配列変異体は、抗体鎖をコードするDNAへの変異導入によって、またはペプチド合成によって作製することができる。抗体のアミノ酸配列が改変される部位は、改変される前の抗体と同等の活性を有する限り、抗体の重鎖または軽鎖の定常領域であってもよく、また、可変領域(フレームワーク領域およびCDR)であってもよい。また、CDRのアミノ酸を改変して、抗原へのアフィニティーが高められた抗体をスクリーニングする手法等を用いてもよい(例えば、PNAS,102:8466-8471(2005)、Protein Engineering,Design&Selection,21:485-493(2008)、国際公開第2002/051870号、J.Biol.Chem.,280:24880-24887(2005)、Protein Engineering,Design&Selection,21:345-351(2008)参照)。
The antibody of this embodiment may be an amino acid sequence variant as long as it can specifically bind to GlcNAcylated serine 40 residue of histone H2A protein.
Amino acid sequence variants can be made by introducing mutations into the DNA encoding the antibody chain or by peptide synthesis. The site where the amino acid sequence of the antibody is modified may be the constant region of the heavy chain or light chain of the antibody as long as it has an activity equivalent to that of the antibody before modification, and the variable region (framework region and CDR). In addition, a method of screening an antibody having an improved affinity for an antigen by modifying CDR amino acids may be used (for example, PNAS, 102: 8466-8471 (2005), Protein Engineering, Design & Selection, 21: 485-493 (2008), International Publication No. 2002/051870, J. Biol. Chem., 280: 24880-24888 (2005), Protein Engineering, Design & Selection, 21: 345-351 (2008)).
改変されるアミノ酸数は、好ましくは、10アミノ酸以内、より好ましくは5アミノ酸以内、最も好ましくは3アミノ酸以内(例えば、2アミノ酸以内、1アミノ酸)である。
アミノ酸の改変は、好ましくは、保存的な置換である。
本明細書中において「保存的な置換」とは、化学的に同様な側鎖を有する他のアミノ酸残基で置換することを意味する。化学的に同様なアミノ酸側鎖を有するアミノ酸残基のグループは、本発明の属する技術分野でよく知られている。例えば、酸性アミノ酸(アスパラギン酸およびグルタミン酸)、塩基性アミノ酸(リシン・アルギニン・ヒスチジン)、中性アミノ酸においては、炭化水素鎖を持つアミノ酸(グリシン・アラニン・バリン・ロイシン・イソロイシン・プロリン)、ヒドロキシ基を持つアミノ酸(セリン・スレオニン)、硫黄を含むアミノ酸(システイン・メチオニン)、アミド基を持つアミノ酸(アスパラギン・グルタミン)、イミノ基を持つアミノ酸(プロリン)、芳香族基を持つアミノ酸(フェニルアラニン・チロシン・トリプトファン)等で分類することができる。アミノ酸配列変異体は、抗原への結合活性が対照抗体(例えば、後述の実施例に記載のO-GlcNAc(RL2)抗体等)よりも高いことが好ましい。
 本実施形態の抗体(上述の抗体の機能的断片、アミノ酸配列変異体等も含む)の抗原への結合活性は、例えば、ELISA法、ウエスタンブロッティング法、免疫沈降法、免疫染色法等により評価することができる。
The number of amino acids to be modified is preferably within 10 amino acids, more preferably within 5 amino acids, and most preferably within 3 amino acids (eg, within 2 amino acids, 1 amino acid).
The amino acid modification is preferably a conservative substitution.
As used herein, “conservative substitution” means substitution with another amino acid residue having a chemically similar side chain. Groups of amino acid residues having chemically similar amino acid side chains are well known in the technical field to which the present invention belongs. For example, acidic amino acids (aspartic acid and glutamic acid), basic amino acids (lysine, arginine, histidine), neutral amino acids, amino acids with hydrocarbon chains (glycine, alanine, valine, leucine, isoleucine, proline), hydroxy groups Amino acids with amino acids (serine / threonine), amino acids with sulfur (cysteine / methionine), amino acids with amide groups (asparagine / glutamine), amino acids with imino groups (proline), amino acids with aromatic groups (phenylalanine / tyrosine / And tryptophan). The amino acid sequence variant preferably has a higher binding activity to the antigen than a control antibody (for example, the O-GlcNAc (RL2) antibody described in Examples described later).
The binding activity to the antigen of the antibody of the present embodiment (including the functional fragment of the above-mentioned antibody, amino acid sequence variant, etc.) is evaluated by, for example, ELISA, Western blotting, immunoprecipitation, immunostaining, etc. be able to.
<抗体によるヒストンH2Aタンパク質のセリン40残基のGlcNAc化の検出方法>
 一実施形態において、本発明は、上述の抗体を用いて、ヒストンH2Aタンパク質のセリン40残基のGlcNAc化レベルを測定する工程を備えるヒストンH2Aタンパク質のセリン40残基のGlcNAc化の検出方法を提供する。
<Method for Detection of GlcNAcation of Serine 40 Residue of Histone H2A Protein by Antibody>
In one embodiment, the present invention provides a method for detecting GlcNAcation of a serine 40 residue of a histone H2A protein, comprising measuring the level of GlcNAcylation of the serine 40 residue of the histone H2A protein using the antibody described above. To do.
 本実施形態の検出方法によれば、ヒストンH2Aタンパク質のGlcNAc化したセリン40残基を容易かつ簡便に検出することができる。さらに、糖尿病や肥満など代謝異常、神経疾患、循環器疾患等の様々な疾患のエピジェネティクス異常を検出することができる。 According to the detection method of the present embodiment, the 40 residues of GlcNAc serine of the histone H2A protein can be detected easily and simply. Furthermore, abnormalities in epigenetics of various diseases such as metabolic abnormalities such as diabetes and obesity, neurological diseases and cardiovascular diseases can be detected.
 本実施形態において、上述の抗体を用いたヒストンH2Aタンパク質のセリン40残基のGlcNAc化レベルを測定する方法としては特に限定されず、例えば、ELISA法、ウエスタンブロッティング法、免疫沈降法、免疫染色法等が挙げられる。
 本実施形態の検出方法は、疾患、病態と関連するヒストンH2Aタンパク質のセリン40残基のGlcNAc化と関連する疾患、病態の解析用の研究ツール、生活習慣のモニタリングのツール、疾患、病態などの発症予測、感受性などの診断ツール、さらには、後述のバイオマーカーを指標とする創薬ツールとして用いることができる。
In the present embodiment, the method for measuring the GlcNAc level of the serine 40 residue of histone H2A protein using the above-mentioned antibody is not particularly limited. For example, ELISA method, Western blotting method, immunoprecipitation method, immunostaining method Etc.
The detection method of the present embodiment includes a disease associated with GlcNAcylation of serine 40 residue of histone H2A protein associated with a disease, a disease state, a research tool for analysis of a disease state, a tool for monitoring lifestyle, a disease, a disease state, etc. It can be used as a diagnostic tool for predicting onset, sensitivity, and the like, and also as a drug discovery tool using a biomarker described later as an index.
<ヒストンH2Aタンパク質のセリン40残基のGlcNAc化の阻害剤又は活性化剤のスクリーニング方法>
 一実施形態において、本発明は、ヒストンH2Aタンパク質のセリン40残基のGlcNAc化の阻害剤又は活性化剤のスクリーニング方法であって、被験物質の存在下及び非存在下において、ヒストンH2Aタンパク質又はそのペプチド断片のセリン40残基のGlcNAc化レベルを測定する工程と、被検物質の存在下における前記GlcNAc化レベルが、被検物質の非存在下における前記GlcNAc化レベルと比較して低かった場合に、前記被検物質はヒストンH2Aタンパク質のセリン40残基のGlcNAc化の阻害剤であると判定し、被検物質の存在下における前記GlcNAcレベルが、被検物質の非存在下における前記リン酸化レベルと比較して高かった場合に、前記被検物質はヒストンH2Aタンパク質のセリン40残基のGlcNAc化の活性化剤であると判定する工程と、を備えるスクリーニング方法を提供する。
<Screening Method for Inhibitor or Activator of GlcNAcation of Serine 40 Residue of Histone H2A Protein>
In one embodiment, the present invention provides a method for screening an inhibitor or activator of GlcNAcation of serine 40 residue of histone H2A protein, wherein the histone H2A protein or its protein is present in the presence and absence of a test substance. A step of measuring the GlcNAcation level of serine 40 residue of the peptide fragment, and when the GlcNAcation level in the presence of the test substance is lower than the GlcNAcation level in the absence of the test substance The test substance is determined to be an inhibitor of GlcNAcylation of serine 40 residue of histone H2A protein, and the GlcNAc level in the presence of the test substance is the phosphorylation level in the absence of the test substance. The test substance is a histone H2A protein serine 40 Provides a screening method comprising the step of determining that the active agent of the GlcNAc of the group, the.
 本実施形態のスクリーニング方法によれば、容易かつ簡便にヒストンH2Aタンパク質のセリン40残基のGlcNAc化の阻害剤又は活性化剤を得ることができる。 According to the screening method of the present embodiment, an inhibitor or activator of GlcNAcation of serine 40 residue of histone H2A protein can be obtained easily and simply.
[GlcNAc化レベルを測定する工程]
 まず、被検物質の存在下及び非存在下における、ヒストンH2Aタンパク質又はそのペプチド断片のセリン40残基のGlcNAc化レベルを測定する。測定に用いられるヒストンH2Aタンパク質としては、ヒストンH2Aタンパク質のうち、GlcNAc化したセリン40残基を含むペプチド断片であってもよい。
[Step of measuring GlcNAc level]
First, the level of GlcNAcation of serine 40 residue of histone H2A protein or peptide fragment thereof in the presence and absence of the test substance is measured. The histone H2A protein used in the measurement may be a peptide fragment containing 40 residues of GlcNAc serine in the histone H2A protein.
 本実施形態のスクリーニング方法において、「被験化合物」としては特に制限されることはなく、例えば、遺伝子ライブラリーの発現産物、合成低分子化合物ライブラリー、ペプチドライブラリー、抗体、細菌放出物質、細胞(微生物、植物細胞、動物細胞)の抽出液及び培養上清、精製または部分精製ポリペプチド、海洋生物、植物または動物由来の抽出物、土壌、ランダムファージペプチドディスプレイライブラリー等が挙げられる。 In the screening method of the present embodiment, the “test compound” is not particularly limited. For example, expression products of gene libraries, synthetic low molecular compound libraries, peptide libraries, antibodies, bacterial release substances, cells ( Microorganisms, plant cells, animal cells) extracts and culture supernatants, purified or partially purified polypeptides, marine organisms, plant or animal extracts, soil, random phage peptide display libraries, and the like.
 GlcNAc化レベルの測定方法は特に限定されず、例えば質量分析を用いた方法、ヒストンH2Aタンパク質のGlcNAc化したセリン40残基に特異的に結合する抗体を用いた方法、オートラジオグラフィーによりヒストンH2Aタンパク質のGlcNAc化したセリン40残基を検出する方法等が挙げられる。中でも、ヒストンH2Aタンパク質のGlcNAc化したセリン40残基に特異的に結合する抗体を用いた方法が好ましい。
抗体を用いた方法として、より具体的には、例えば、ELISA法、ウエスタンブロッティング法、免疫沈降法、免疫染色法等が挙げられる。ヒストンH2Aタンパク質のGlcNAc化したセリン40残基に特異的に結合する抗体としては、上述の<抗体>と同様のものを使用することができる。
The method for measuring the GlcNAc level is not particularly limited. For example, a method using mass spectrometry, a method using an antibody that specifically binds to the GlcNAcated serine 40 residue of histone H2A protein, and histone H2A protein by autoradiography And a method of detecting serine 40 residues converted to GlcNAc. Among them, the method using an antibody that specifically binds to the GlcNAc-modified serine 40 residue of the histone H2A protein is preferable.
More specifically, examples of the method using an antibody include an ELISA method, a Western blotting method, an immunoprecipitation method, and an immunostaining method. As the antibody that specifically binds to the GlcNAcylated serine 40 residue of the histone H2A protein, the same antibody as the above <antibody> can be used.
 例えば、ヒストンH2Aタンパク質が基板に固定されており、上記の抗体が酵素又は蛍光色素で標識されていてもよい。この場合、基板を洗浄後、酵素の基質を反応させて基質の発色若しくは発光を測定することにより、又は蛍光色素の蛍光を測定することにより、ヒストンH2Aタンパク質のセリン40残基のGlcNAc化レベルを測定することができる。 For example, the histone H2A protein may be immobilized on a substrate, and the above antibody may be labeled with an enzyme or a fluorescent dye. In this case, after washing the substrate, the level of GlcNAc of the serine 40 residue of the histone H2A protein is measured by reacting the substrate of the enzyme and measuring the coloration or luminescence of the substrate, or by measuring the fluorescence of the fluorescent dye. Can be measured.
 あるいは、ヒストンH2Aタンパク質が基板に固定されていない場合、例えば次のような方法によりGlcNAc化レベルを測定することもできる。例えば、ヒストンH2Aタンパク質を、予めFRET(Fluorescence resonance energy transfer)を起こす1組の蛍光色素の一方で標識しておく。また、上記の抗体を上記の1組の蛍光色素の他方で標識しておく。FRETを起こす色素分子の組としては特に限定されず、例えばFAMとTAMRA、VICとTAMRA等が挙げられる。 Alternatively, when the histone H2A protein is not immobilized on the substrate, for example, the GlcNAc level can be measured by the following method. For example, the histone H2A protein is previously labeled with one of a set of fluorescent dyes that cause FRET (Fluorescence resonance energy transfer). In addition, the antibody is labeled with the other of the set of fluorescent dyes. A group of dye molecules that cause FRET is not particularly limited, and examples thereof include FAM and TAMRA, VIC and TAMRA, and the like.
 この原理を利用すれば、本工程を終始溶液状態で行う均一系アッセイ(Homogeneous assay)で行うことができる。均一系アッセイでは、測定に洗浄操作が不要であるため、操作が簡便になるという利点がある。尚、ELISA法等の、基板上に固定化された抗原等を用いて反応、洗浄が行なわれる検出方法は、不均一系アッセイ(Heterogeneous assay)と呼ばれる。 If this principle is used, it can be performed by a homogeneous assay (Homogeneous assay) in which this step is performed in a solution state throughout. The homogeneous assay has an advantage that the operation is simple because no washing operation is required for the measurement. A detection method in which reaction and washing are performed using an antigen or the like immobilized on a substrate, such as an ELISA method, is called a heterogeneous assay.
 本実施形態のスクリーニング方法において、後述の実施例において示すように、ヒストンH2Aタンパク質のセリン40残基のGlcNAc化レベルは、ヘキソサミン生合成経路(HBP)を介した細胞外グルコース濃度の変化に応答して、増加又は減少することから、グルコースの存在下において、測定工程を有することが好ましい。 In the screening method of the present embodiment, as shown in the examples described later, the level of GlcNAc of the serine 40 residue of histone H2A protein responds to changes in extracellular glucose concentration via the hexosamine biosynthetic pathway (HBP). Therefore, it is preferable to have a measurement step in the presence of glucose.
 また、後述の実施例において示すように、ヒストンH2Aタンパク質のセリン40残基のGlcNAc化レベルは、DNAの修復能力に比例して、増加又は減少することから、本実施形態のスクリーニング方法において、DNAに損傷を与えた条件下において、測定工程を有することが好ましい。係る工程により、例えばゲノム修復能力を有する薬剤をスクリーニングすることができる。 Further, as shown in the examples described later, the level of GlcNAcization of the serine 40 residue of histone H2A protein increases or decreases in proportion to the repair ability of DNA. Therefore, in the screening method of this embodiment, It is preferable to have a measurement step under conditions that damage By such a process, for example, a drug having a genome repair ability can be screened.
 DNAに損傷を与える方法としては、例えば、紫外線(UV)照射、放射線照射、活性酸素等による酸化ストレス、アルキル化剤の添加、トポイソメラーゼII阻害剤(例えば、エトポシド等)の添加等が挙げられ、これらに限定されない。
 また、DNAに損傷を与えたかどうかの確認方法については、DNAの損傷方法に応じて適宜選択すればよい。
例えば、紫外線照射等により生じたピリミジンダイマーを検出する場合は、DNA損傷抗体(例えば、抗シクロブタン型ピリミジンダイマー抗体、抗6-4型光産物抗体、抗Dewar型光産物抗体等)を用いた液後面液法等が挙げられる。
または、例えば、酸化ストレス等により生じた脱塩基部位を検出する場合は、ARP(Aldehyde Reactive Probe)を用いたELISA法等が挙げられる。
または、例えば、放射線照射等により生じた二本鎖切断(double-strand breaks;DSBs)を検出する場合は、ヒストンH2AX のセリン139残基のリン酸化抗体(抗γ-H2AX抗体)を用いた免疫蛍光染色法等が挙げられる。
Examples of the method of damaging DNA include ultraviolet (UV) irradiation, radiation irradiation, oxidative stress due to active oxygen, addition of an alkylating agent, addition of a topoisomerase II inhibitor (eg, etoposide, etc.), etc. It is not limited to these.
Further, a method for confirming whether or not DNA has been damaged may be appropriately selected according to the DNA damage method.
For example, when detecting pyrimidine dimer generated by ultraviolet irradiation or the like, a solution using a DNA damaging antibody (for example, anti-cyclobutane type pyrimidine dimer antibody, anti-6-4 type photoproduct antibody, anti-Dewar type photoproduct antibody, etc.) The back surface liquid method etc. are mentioned.
Alternatively, for example, in the case of detecting an abasic site generated by oxidative stress or the like, an ELISA method using ARP (Aldehyde Reactive Probe) can be used.
Alternatively, for example, when detecting double-strand breaks (DSBs) caused by irradiation or the like, immunization using a phosphorylated antibody (anti-γ-H2AX antibody) of a serine 139 residue of histone H2AX Examples thereof include fluorescent staining.
[判定する工程]
 続いて、被検物質の存在下における前記GlcNAc化レベルが、被検物質の非存在下における前記GlcNAc化レベルと比較して低かった場合に、前記被検物質はヒストンH2Aタンパク質のセリン40残基のGlcNAc化の阻害剤であると判定することができる。
[Determining step]
Subsequently, when the GlcNAcation level in the presence of the test substance is lower than the GlcNAcation level in the absence of the test substance, the test substance has a serine 40 residue of histone H2A protein. It can be determined that it is an inhibitor of GlcNAcation.
 一方、被検物質の存在下における前記GlcNAcレベルが、被検物質の非存在下における前記リン酸化レベルと比較して高かった場合に、前記被検物質はヒストンH2Aタンパク質のセリン40残基のGlcNAc化の活性化剤であると判定することができる。 On the other hand, when the GlcNAc level in the presence of the test substance is higher than the phosphorylation level in the absence of the test substance, the test substance is a GlcNAc of the serine 40 residue of histone H2A protein. It can be determined that it is a activating agent.
<細胞外グルコース濃度の変動が及ぼすヒストン修飾をモニターする方法>
 一実施形態において、本発明は、細胞外グルコース濃度の変動をモニターする方法であって、グルコースの存在依存的に生じるヒストンH2Aタンパク質のセリン40残基のGlcNAc化レベルを測定する工程を備える方法を提供する。
<Method for monitoring histone modification caused by fluctuations in extracellular glucose concentration>
In one embodiment, the present invention is a method for monitoring fluctuations in extracellular glucose concentration, comprising measuring the level of GlcNAcation of serine 40 residue of histone H2A protein that occurs in the presence of glucose. provide.
 従来、ヒストンタンパク質のGlcNAc化がグルコース濃度と共に変動することを示すデータはなく、本発明において、ヒストンH2Aタンパク質のセリン40残基のGlcNAc化がグルコース濃度と共に変動することを初めて明らかにした。 Conventionally, there is no data indicating that GlcNAcation of histone proteins varies with glucose concentration, and in the present invention, for the first time, it was revealed that GlcNAcation of serine 40 residues of histone H2A protein varies with glucose concentration.
 本実施形態の方法によれば、糖尿病や肥満など代謝異常がリスク因子となる様々な疾患のエピジェネティクス異常を検出することができる。 According to the method of the present embodiment, it is possible to detect epigenetic abnormalities of various diseases in which metabolic abnormalities such as diabetes and obesity are risk factors.
 本実施形態の方法において、GlcNAc化レベルの測定方法は特に限定されず、例えば上述の<ヒストンH2Aタンパク質のセリン40残基のGlcNAc化の阻害剤又は活性化剤のスクリーニング方法>と同様のものが挙げられる。中でも、ヒストンH2Aタンパク質のGlcNAc化したセリン40残基に特異的に結合する抗体を用いた方法が好ましい。抗体を用いた方法として、より具体的には、例えば、ELISA法、ウエスタンブロッティング法、免疫沈降法、免疫染色法等が挙げられる。ヒストンH2Aタンパク質のGlcNAc化したセリン40残基に特異的に結合する抗体としては、上述の<抗体>と同様のものを使用することができる。 In the method of the present embodiment, the method for measuring the GlcNAc level is not particularly limited, and for example, the same method as the above <Method for screening inhibitor or activator of GlcNAc conversion of serine 40 residue of histone H2A protein> Can be mentioned. Among them, the method using an antibody that specifically binds to the GlcNAc-modified serine 40 residue of the histone H2A protein is preferable. More specifically, examples of the method using an antibody include an ELISA method, a Western blotting method, an immunoprecipitation method, and an immunostaining method. As the antibody that specifically binds to the GlcNAcylated serine 40 residue of the histone H2A protein, the same antibody as the above <antibody> can be used.
<細胞外グルコース濃度の変動が及ぼすヒストン修飾をモニターするマーカー>
 一実施形態において、本発明は、細胞外グルコース濃度の変動が及ぼすヒストン修飾をモニターするマーカーであって、GlcNAc化したセリン40残基を含む、H2Aタンパク質又はそのペプチド断片からなるタンパク質又はペプチドマーカーを提供する。
<Marker for monitoring histone modification caused by fluctuations in extracellular glucose concentration>
In one embodiment, the present invention provides a marker for monitoring histone modification exerted by fluctuations in extracellular glucose concentration, comprising a protein or peptide marker comprising a H2A protein or a peptide fragment thereof comprising 40 GlcNAcylated serine residues. provide.
 従来、細胞外グルコース濃度の変動が及ぼすヒストン修飾(ヒストンH2Aタンパク質のセリン40残基のGlcNAc化)をモニターするマーカーはなく、本発明において、ヒストンH2Aタンパク質のGlcNAc化したセリン40残基が細胞外グルコース濃度をモニターするマーカーとなり得ることを初めて明らかにした。 Conventionally, there is no marker for monitoring histone modification (GlcNAc conversion of serine 40 residue of histone H2A protein) caused by fluctuations in extracellular glucose concentration. In the present invention, serine 40 residue of histone H2A protein converted to GlcNAc is extracellular. It was revealed for the first time that it could be a marker for monitoring glucose concentration.
 本実施形態のマーカーによれば、糖尿病や肥満など代謝異常がリスク因子となる様々な疾患のエピジェネティクス異常を検出することができる。
また、糖尿病患者ではヒストンH2Aタンパク質のGlcNAc化のグルコース応答性が変化することから、応答性の回復を診ることで治療経過を判断することができる。このことから、本発明のマーカーは、代謝疾患の診断マーカー、治療の経過観察マーカーとして応用できる。
According to the marker of this embodiment, it is possible to detect epigenetic abnormalities of various diseases in which metabolic abnormalities such as diabetes and obesity are risk factors.
Moreover, since the glucose responsiveness of GlcNAcation of histone H2A protein changes in diabetic patients, the course of treatment can be determined by examining the recovery of responsiveness. Therefore, the marker of the present invention can be applied as a diagnostic marker for metabolic diseases and a follow-up marker for treatment.
本実施形態のマーカーは、GlcNAc化したセリン40残基を含んでいればよく、ヒストンH2Aタンパク質であってもよいし、又はそのペプチド断片であってもよい。 The marker of the present embodiment only needs to contain a 40-glycine Serine residue, may be a histone H2A protein, or may be a peptide fragment thereof.
本実施形態のマーカーの検出方法は、上述の<ヒストンH2Aタンパク質のセリン40残基のGlcNAc化の阻害剤又は活性化剤のスクリーニング方法>と同様のものが挙げられる。中でも、ヒストンH2Aタンパク質のGlcNAc化したセリン40残基に特異的に結合する抗体を用いた方法が好ましい。抗体を用いた方法として、より具体的には、例えば、ELISA法、ウエスタンブロッティング法、免疫沈降法、免疫染色法等が挙げられる。ヒストンH2Aタンパク質のGlcNAc化したセリン40残基に特異的に結合する抗体としては、上述の<抗体>と同様のものを使用することができる。 The marker detection method of the present embodiment includes the same method as described above <Screening Method for Inhibitor or Activator of GlcNAcation of Serine 40 Residue of Histone H2A Protein>. Among them, the method using an antibody that specifically binds to the GlcNAc-modified serine 40 residue of the histone H2A protein is preferable. More specifically, examples of the method using an antibody include an ELISA method, a Western blotting method, an immunoprecipitation method, and an immunostaining method. As the antibody that specifically binds to the GlcNAcylated serine 40 residue of the histone H2A protein, the same antibody as the above <antibody> can be used.
<DNA損傷が及ぼすヒストン修飾をモニターする方法>
 一実施形態において、本発明は、DNA損傷が及ぼすヒストン修飾をモニターする方法であって、DNAの損傷の存在依存的に生じるヒストンH2Aタンパク質又はそのペプチド断片のセリン40残基のGlcNAc化レベルを測定する工程を備える方法を提供する。
<Method for monitoring histone modification caused by DNA damage>
In one embodiment, the present invention is a method for monitoring histone modifications caused by DNA damage, measuring the level of GlcNAcation of serine 40 residues of histone H2A protein or peptide fragments thereof that occurs in the presence of DNA damage. A method comprising the steps of:
 本実施形態の方法によれば、簡便にDNA損傷が及ぼすヒストン修飾をモニターすることができる。 According to the method of this embodiment, histone modification caused by DNA damage can be easily monitored.
 本実施形態の方法において、DNAに損傷を与える方法としては、例えば、上述の<ヒストンH2Aタンパク質のセリン40残基のGlcNAc化の阻害剤又は活性化剤のスクリーニング方法>において例示された方法と同様の方法が挙げられる。
 また、DNAに損傷を与えたかどうかの確認方法については、DNAの損傷方法に応じて適宜選択すればよく、上述の<ヒストンH2Aタンパク質のセリン40残基のGlcNAc化の阻害剤又は活性化剤のスクリーニング方法>において例示された方法と同様の方法が挙げられる。
In the method of the present embodiment, the method for damaging DNA is, for example, the same as the method exemplified in the above <Screening Method for Inhibitor or Activator of GlcNAcation of Serine 40 Residue of Histone H2A Protein> The method is mentioned.
The method for confirming whether or not DNA has been damaged may be appropriately selected according to the method for damaging DNA, and the above <inhibitor or activator of GlcNAcation of serine 40 residue of histone H2A protein Examples thereof include the same methods as those exemplified in Screening Method>.
本実施形態の方法において、GlcNAc化レベルの測定方法は特に限定されず、例えば上述の<ヒストンH2Aタンパク質のセリン40残基のGlcNAc化の阻害剤又は活性化剤のスクリーニング方法>において例示された方法と同様の方法が挙げられる。中でも、ヒストンH2Aタンパク質のGlcNAc化したセリン40残基に特異的に結合する抗体を用いた方法が好ましい。
抗体を用いた方法として、より具体的には、例えば、ELISA法、ウエスタンブロッティング法、免疫沈降法、免疫染色法等が挙げられる。ヒストンH2Aタンパク質のGlcNAc化したセリン40残基に特異的に結合する抗体としては、上述の<抗体>に記載されたものと同様のものを使用することができる。
In the method of the present embodiment, the method for measuring the GlcNAc level is not particularly limited. For example, the method exemplified in <Method for screening inhibitor or activator of GlcNAcation of serine 40 residue of histone H2A protein> described above. The same method is mentioned. Among them, the method using an antibody that specifically binds to the GlcNAc-modified serine 40 residue of the histone H2A protein is preferable.
More specifically, examples of the method using an antibody include an ELISA method, a Western blotting method, an immunoprecipitation method, and an immunostaining method. As an antibody that specifically binds to GlcNAcylated serine 40 residue of histone H2A protein, the same antibodies as those described in <Antibodies> above can be used.
<DNA損傷が及ぼすヒストン修飾をモニターするマーカー>
 一実施形態において、本発明は、DNA損傷が及ぼすヒストン修飾をモニターするマーカーであって、GlcNAc化したセリン40残基を含む、H2Aタンパク質又はそのペプチド断片からなるタンパク質又はペプチドマーカーを提供する。
<Marker for monitoring histone modification caused by DNA damage>
In one embodiment, the present invention provides a protein or peptide marker consisting of an H2A protein or a peptide fragment thereof, comprising a GlcNAcylated serine 40 residue, which is a marker for monitoring histone modification caused by DNA damage.
 本実施形態のマーカーによれば、簡便にDNA損傷が及ぼすヒストン修飾をモニターすることができる。 According to the marker of the present embodiment, histone modification caused by DNA damage can be easily monitored.
 本実施形態のマーカーは、GlcNAc化したセリン40残基を含んでいればよく、ヒストンH2Aタンパク質であってもよいし、又はそのペプチド断片であってもよい。 The marker of the present embodiment only needs to contain a 40-glycine Serine residue, and may be a histone H2A protein or a peptide fragment thereof.
 本実施形態のマーカーの検出方法は、上述の<ヒストンH2Aタンパク質のセリン40残基のGlcNAc化の阻害剤又は活性化剤のスクリーニング方法>と同様のものが挙げられる。中でも、ヒストンH2Aタンパク質のGlcNAc化したセリン40残基に特異的に結合する抗体を用いた方法が好ましい。抗体を用いた方法として、より具体的には、例えば、ELISA法、ウエスタンブロッティング法、免疫沈降法、免疫染色法等が挙げられる。ヒストンH2Aタンパク質のGlcNAc化したセリン40残基に特異的に結合する抗体としては、上述の<抗体>と同様のものを使用することができる。 The marker detection method of the present embodiment may be the same as the above <Screening method for inhibitors or activators of GlcNAcation of serine 40 residue of histone H2A protein>. Among them, the method using an antibody that specifically binds to the GlcNAc-modified serine 40 residue of the histone H2A protein is preferable. More specifically, examples of the method using an antibody include an ELISA method, a Western blotting method, an immunoprecipitation method, and an immunostaining method. As the antibody that specifically binds to the GlcNAcylated serine 40 residue of the histone H2A protein, the same antibody as the above <antibody> can be used.
<エピジェネティクス修飾によるゲノムDNAの安定性を評価する方法>
 一実施形態において、本発明は、エピジェネティクス修飾によるゲノムDNAの安定性を評価する方法であって、ヒストンH2Aタンパク質又はそのペプチド断片のセリン40残基のGlcNAc化レベルを測定する工程を備える方法を提供する。
<Method for evaluating the stability of genomic DNA by epigenetic modification>
In one embodiment, the present invention is a method for evaluating the stability of genomic DNA by epigenetic modification, comprising the step of measuring the GlcNAcation level of serine 40 residue of histone H2A protein or peptide fragment thereof I will provide a.
 実施例にて後述するように、本発明者らは、ヒストンH2Aタンパク質のセリン40残基がGlcNAc化されることにより、ゲノムDNAの修復能が発揮され、損傷を受けたDNAが修復されることを明らかにした。
本実施形態の方法によれば、エピジェネティクス修飾によるゲノムDNAの安定性を簡便に評価することができる。
 尚、本明細書及び特許請求の範囲において、「ゲノムDNAの安定性」とは、ゲノムDNAが損傷を受けない状態、又はゲノムDNAが損傷を受けても修復される状態が維持されていることを意味する。
As will be described later in Examples, the present inventors show that the repair ability of genomic DNA is exhibited and the damaged DNA is repaired by converting serine 40 residue of histone H2A protein into GlcNAc. Revealed.
According to the method of the present embodiment, the stability of genomic DNA by epigenetic modification can be easily evaluated.
In the present specification and claims, “stability of genomic DNA” means that genomic DNA is not damaged or is repaired even if genomic DNA is damaged. Means.
 また、一般に、エピジェネティクス修飾(本実施形態においては、主にH2Aタンパク質のセリン40残基のGlcNAc化)は、該エピジェネティクス修飾が関与する遺伝子群の発現における現在、過去、及び未来の状況、すなわち(1)現在の転写プログラム(例えば、遺伝子発現が活発であれば、クロマチン構造が緩んでいる状態等)、(2)分化及び発達におけるこれまでの遺伝子発現の歴史、及び(3)今後の遺伝子発現の態勢、を反映していると考えられている(参考文献:Hammoud S. S., “Chromatin and Transcription Transitions of Mammalian Adult Germline Stem Cells and Spermatogenesis”, Cell Stem Cell, vol.15, p239-253, 2014.)。
 よって、例えば、現在の転写プログラムにおいてクロマチン構造が緩み、遺伝子発現が活発である場合、DNA損傷を受けやすいと考えられるが、ヒストンH2Aタンパク質のセリン40残基がGlcNAc化されることで、ゲノムDNAの修復能が発揮され、損傷を受けても直ちに修復され、問題なく転写を行うことができる。
 また、例えば、今後の遺伝子発現におい必要な遺伝子である場合、予めヒストンH2Aタンパク質のセリン40残基がGlcNAc化されることで、発現が上昇するまでDNA損傷から遺伝子を保護することができる。この新たに見出した機能より、ヒストンH2Aタンパク質のセリン40残基がGlcNAc修飾の程度を解析することにより、細胞、組織または個体のDNA損傷に対して感受性であるか、抵抗性であるかを判定・診断することができる。
In general, epigenetic modification (in this embodiment, mainly GlcNAc conversion of serine 40 residue of H2A protein) is present, past, and future in the expression of genes involved in the epigenetic modification. Status, (1) current transcription program (eg, if gene expression is active, chromatin structure is relaxed), (2) history of gene expression so far in differentiation and development, and (3) It is considered to reflect the state of gene expression in the future (reference: Hammaud SS, “Chromatin and Transcription Transitions of Mammalian Adult Germ Stem Cells and Spermatogen”). m Cell, vol. 15, p239-253, 2014.).
Therefore, for example, when the chromatin structure is relaxed in the current transcription program and gene expression is active, it is considered that the DNA is susceptible to DNA damage. However, the serine 40 residue of histone H2A protein is converted to GlcNAc, and thus genomic DNA Therefore, even if it is damaged, it can be repaired immediately and transfer can be performed without any problem.
For example, when the gene is necessary for future gene expression, the serine 40 residue of the histone H2A protein is converted to GlcNAc in advance, so that the gene can be protected from DNA damage until the expression is increased. Based on this newly discovered function, it is determined whether the serine 40 residue of histone H2A protein is sensitive or resistant to DNA damage in cells, tissues or individuals by analyzing the degree of GlcNAc modification.・ Can be diagnosed.
 また、一般に、細胞の分化の段階(例えば、幹細胞、前駆細胞、成熟細胞等)、及びDNA損傷のタイプによって、DNAの修復経路が異なり、さらにDNAの修復経路の異常によりゲノムの安定性が失われ、各種疾患が起こることが知られている(参考文献:McKinnon P. J., “Maintaining genome stability in the nervous system”, nature neurosciense, vol.16, no.11, p1523-1529, 2013.)。
 本実施形態の方法において、細胞の分化の段階、及びDNAの損傷を与える方法を適宜選択することで、各種疾患におけるエピジェネティクス異常の発生メカニズムを検証することができる。
In general, the DNA repair pathway differs depending on the stage of cell differentiation (eg, stem cells, progenitor cells, mature cells, etc.) and the type of DNA damage, and the stability of the genome is lost due to abnormal DNA repair pathways. It is known that various diseases occur (reference document: McKinnon P. J., “Maintaining genome stability in the nervous system”, nature neuroscience, vol. 16, no. 11, p 15213-1529). .
In the method of the present embodiment, the generation mechanism of epigenetic abnormality in various diseases can be verified by appropriately selecting the stage of cell differentiation and the method of damaging DNA.
本実施形態の方法において、GlcNAc化レベルの測定方法は特に限定されず、例えば上述の上述の<ヒストンH2Aタンパク質のセリン40残基のGlcNAc化の阻害剤又は活性化剤のスクリーニング方法>において例示された方法と同様の方法が挙げられる。中でも、ヒストンH2Aタンパク質のGlcNAc化したセリン40残基に特異的に結合する抗体を用いた方法が好ましい。
抗体を用いた方法として、より具体的には、例えば、ELISA法、ウエスタンブロッティング法、免疫沈降法、免疫染色法等が挙げられる。ヒストンH2Aタンパク質のGlcNAc化したセリン40残基に特異的に結合する抗体としては、上述の<抗体>に記載されたものと同様のものを使用することができる。
In the method of this embodiment, the method for measuring the level of GlcNAc is not particularly limited, and is exemplified in the above-described <Method for screening an inhibitor or activator of GlcNAcation of serine 40 residue of histone H2A protein> described above. The same method as that described above may be used. Among them, the method using an antibody that specifically binds to the GlcNAc-modified serine 40 residue of the histone H2A protein is preferable.
More specifically, examples of the method using an antibody include an ELISA method, a Western blotting method, an immunoprecipitation method, and an immunostaining method. As an antibody that specifically binds to GlcNAcylated serine 40 residue of histone H2A protein, the same antibodies as those described in <Antibodies> above can be used.
<エピジェネティクス修飾によるゲノムDNAの安定性を検出するマーカー>
 一実施形態において、本発明は、エピジェネティクス修飾によるゲノムDNAの安定性を検出するマーカーであって、GlcNAc化したセリン40残基を含む、H2Aタンパク質又はそのペプチド断片からなるタンパク質又はペプチドマーカーを提供する。
<Marker for detecting the stability of genomic DNA by epigenetic modification>
In one embodiment, the present invention provides a marker for detecting the stability of genomic DNA caused by epigenetic modification, comprising a protein or peptide marker comprising a H2A protein or a peptide fragment thereof comprising 40 GlcNAcylated serine residues. provide.
従来、エピジェネティクス修飾によるゲノムDNAの安定性を検出するマーカーは存在せず、本発明において、ヒストンH2Aタンパク質のGlcNAc化したセリン40残基がエピジェネティクス修飾によるゲノムDNAの安定性を検出するマーカーとなり得ることを初めて明らかにした。 Conventionally, there is no marker for detecting the stability of genomic DNA by epigenetic modification, and in the present invention, the GlcNAc serine 40 residue of histone H2A protein detects the stability of genomic DNA by epigenetic modification. First revealed that it can be a marker.
 本実施形態のマーカーによれば、エピジェネティクス修飾によるゲノムDNAの安定性を評価することができる。
本実施形態のマーカーが検出される場合、ヒストンH2Aタンパク質のセリン40残基のGlcNAc化に関与する遺伝子領域はDNA損傷から保護されており、ゲノムDNAは安定していると判定できる。
一方、本実施形態のマーカーが検出されない場合、ヒストンH2Aタンパク質のセリン40残基のGlcNAc化に関与する遺伝子領域での発現が低下している、又はエピジェネティクス異常が起きていると判定できる。
According to the marker of this embodiment, the stability of genomic DNA by epigenetic modification can be evaluated.
When the marker of the present embodiment is detected, it can be determined that the gene region involved in GlcNAcization of the serine 40 residue of the histone H2A protein is protected from DNA damage, and the genomic DNA is stable.
On the other hand, when the marker of the present embodiment is not detected, it can be determined that the expression in the gene region involved in GlcNAcization of the serine 40 residue of the histone H2A protein is reduced or an epigenetic abnormality has occurred.
本実施形態のマーカーは、GlcNAc化したセリン40残基を含んでいればよく、ヒストンH2Aタンパク質であってもよいし、又はそのペプチド断片であってもよい。 The marker of the present embodiment only needs to contain a 40-glycine Serine residue, may be a histone H2A protein, or may be a peptide fragment thereof.
本実施形態のマーカーの検出方法は、上述の<ヒストンH2Aタンパク質のセリン40残基のGlcNAc化の阻害剤又は活性化剤のスクリーニング方法>と同様のものが挙げられる。中でも、ヒストンH2Aタンパク質のGlcNAc化したセリン40残基に特異的に結合する抗体を用いた方法が好ましい。抗体を用いた方法として、より具体的には、例えば、ELISA法、ウエスタンブロッティング法、免疫沈降法、免疫染色法等が挙げられる。ヒストンH2Aタンパク質のGlcNAc化したセリン40残基に特異的に結合する抗体としては、上述の<抗体>と同様のものを使用することができる。 The marker detection method of the present embodiment includes the same method as described above <Screening Method for Inhibitor or Activator of GlcNAcation of Serine 40 Residue of Histone H2A Protein>. Among them, the method using an antibody that specifically binds to the GlcNAc-modified serine 40 residue of the histone H2A protein is preferable. More specifically, examples of the method using an antibody include an ELISA method, a Western blotting method, an immunoprecipitation method, and an immunostaining method. As the antibody that specifically binds to the GlcNAcylated serine 40 residue of the histone H2A protein, the same antibody as the above <antibody> can be used.
<抗体のその他用途>
 ヒストンタンパク質のGlcNAc化特異的抗体のその他用途としては、例えば、前記抗体を用いたChIP-seq法(クロマチン免疫沈降法(chromatin immunoprecipitation;ChIP)と次世代シークエンサーとを組み合わせた技術)を行うことで、GlcNAc化したセリン40残基を含むH2Aタンパク質の近くに存在し、DNA損傷から保護されているるゲノム上の領域を特定することができる。
<Other uses of antibodies>
Other uses of GlcNAc-specific antibodies for histone proteins include, for example, performing the ChIP-seq method (a technique combining a chromatin immunoprecipitation (ChIP) and a next-generation sequencer) using the antibody. , A region on the genome that is present near the H2A protein containing 40 GlcNAcylated serine residues and protected from DNA damage can be identified.
 また、後述の実施例に示す通り、前記抗体を用いたChIP-seq法によって、異なる細胞におけるエピジェネティクス修飾(本実施形態においては、主にH2Aタンパク質のセリン40残基のGlcNAc化)が関与する遺伝子群の違い、及び前記遺伝子群の発現パターンの違いを解析することができる。 In addition, as shown in Examples described later, epigenetics modification in different cells (in this embodiment, mainly GlcNAc conversion of serine 40 residue of H2A protein) is involved by the ChIP-seq method using the antibody. It is possible to analyze the difference in the gene group to be analyzed and the difference in the expression pattern of the gene group.
以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の構成等も含まれる。 The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and includes a configuration that does not depart from the gist of the present invention.
 以下、実施例及び比較例等を挙げて本発明をさらに詳述するが、本発明はこれらの実施例等に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples and the like.
[実施例1]ヒストンタンパク質のGlcNAc化部位の検出及びヒストンタンパク質のGlcNAc化特異的抗体の作製
(1)新規GlcNAc化ヒストンを認識するモノクローン抗体の作製
 GlcNAc化はセリン(S)又はスレオニン(T)で見られる。さらに、これまでに明らかにされたGlcNAc化タンパク質の情報から複数のヒストンアミノ酸配列(「・・・YT・・・」および「・・・YS・・・」)を推測し、数種類のGlcNAc化ペプチドを作製した。続いて、作製したGlcNAc化ペプチドをウシ血清アルブミン又はGSTタンパク質と結合させた融合タンパク質を抗原とし、常法に従いマウスに免疫し抗体産生ミエローマ細胞を得た。合計300以上のクローンをスクリーニングし、GlcNAc化ヒストンを認識する抗体を得た。
[Example 1] Detection of GlcNAcation site of histone protein and preparation of GlcNAcation specific antibody of histone protein (1) Preparation of monoclonal antibody recognizing novel GlcNAcation histone GlcNAcation is performed by serine (S) or threonine (T ). Furthermore, a plurality of histone amino acid sequences ("... YT ..." and "... YS ...") are inferred from the information of GlcNAcated proteins revealed so far, and several types of GlcNAcated peptides Was made. Subsequently, mice were immunized according to a conventional method to obtain antibody-producing myeloma cells using a fusion protein obtained by binding the prepared GlcNAc-modified peptide with bovine serum albumin or GST protein as an antigen. A total of 300 or more clones were screened to obtain an antibody that recognizes GlcNAc-histone.
(2)ヒストン抽出とHPLC(High performance liquid chromatography)による分画及び精製
 Histone purification mini kit(Active Motif社製)を用いて、マウス胚性幹(ES)細胞からヒストンを抽出した。続いて、抽出されたヒストンを水で透析し、逆相クロマトグラフィーカラム(Aeris WIDEPORE 3.6μm XB-C8)をセットしたHPLCユニット(LC-10Ai、島津製作所社製)により、アセトニトリル(SolventA(5%acetonitlie,0.1%TFA)、SolventB(90%acetonitlie,0.1%TFA))溶液を用いたグラジエント法(流速0.5ml/min)で分画した。結果を図2Aに示す。
 分画した各フラクション(15~72.5分)は、フラクションコレクターFRC-10A(島津製作所社製)を用いて、回収した。
(2) Histone extraction and fractionation and purification by HPLC (High performance liquid chromatography) Histone was extracted from mouse embryonic stem (ES) cells using Histone purification mini kit (manufactured by Active Motif). Subsequently, the extracted histone was dialyzed with water, and acetonitrile (Solvent A (5) was obtained by HPLC-10Ai (manufactured by Shimadzu Corp.) with a reverse phase chromatography column (Aeris WIDEPORE 3.6 μm XB-C8) set. % Acetonitrile, 0.1% TFA) and Solvent B (90% acetonitrile, 0.1% TFA)) were used for fractionation by a gradient method (flow rate 0.5 ml / min). The result is shown in FIG. 2A.
The fractionated fractions (15 to 72.5 minutes) were collected using a fraction collector FRC-10A (manufactured by Shimadzu Corporation).
(3)ヒストンのGlcNAc化部位の検出
 (2)で得られた各フラクションについて、常法に従い、(1)で得られた抗体、H2A抗体、H2B抗体、H3抗体及びH4抗体を用いたウエスタンブロッティング法による検出を行った。また、各フラクションに含まれるタンパク質量を比較する為に銀染色を行った。結果を図2Aに示す。
(3) Detection of GlcNAcation site of histone For each fraction obtained in (2), Western blotting using the antibody, H2A antibody, H2B antibody, H3 antibody and H4 antibody obtained in (1) according to a conventional method Detection by the method was performed. In addition, silver staining was performed to compare the amount of protein contained in each fraction. The result is shown in FIG. 2A.
 図2Aから、(1)で得られた抗体がH2AのGlcNAc化部位を認識していることが確かめられた。 From FIG. 2A, it was confirmed that the antibody obtained in (1) recognized the GlcNAc-ized site of H2A.
(4)抗体の特異性の検討
 常法に従い、2種類の野生型Flag-H2A1A及びFlag-H2A3、並びに変異体Flag-H2A3-S40A(ヒストンH2A3タンパク質のアミノ酸配列のうち、N末端から40番目のセリンをアラニンに変えた変異体)の組換えタンパク質を調製した。続いて、それぞれの組換えタンパク質について、(1)で得られた抗体、H2A抗体及びFlag抗体を用いたウエスタンブロッティング法による検出を行った。結果を図2Bに示す。
(4) Examination of antibody specificity According to a conventional method, two types of wild-type Flag-H2A1A and Flag-H2A3, and mutant Flag-H2A3-S40A (among the amino acid sequence of histone H2A3 protein, the 40th from the N-terminus) A recombinant protein in which serine was changed to alanine was prepared. Subsequently, each recombinant protein was detected by Western blotting using the antibody obtained in (1), the H2A antibody, and the Flag antibody. The result is shown in FIG. 2B.
 図2Bから、(1)で得られた抗体は、ヒストンH2A3タンパク質のアミノ酸配列のうち、40番目のセリンのGlcNAc化を特異的に検出することが明らかとなった。以下、(1)で得られた抗体を、H2A3-S40-GlcNAc抗体と呼ぶ。 FIG. 2B reveals that the antibody obtained in (1) specifically detects GlcNAcation of the 40th serine in the amino acid sequence of histone H2A3 protein. Hereinafter, the antibody obtained in (1) is referred to as H2A3-S40-GlcNAc antibody.
[実施例2]マウスES細胞及びマウスTS細胞におけるヒストンH2A3タンパク質のセリン40残基のGlcNAc化の検出
(1)マウスES細胞およびマウス胎盤栄養膜細胞幹(TS)細胞の培養
 マウスES細胞はJ1株を用いた(Li,E.,Bestor,T.&Jaenisch, R.Cell 1992,69,915-926.)。ES細胞用培地(15%FBS(Biowest社製)、2mM L-グルタミン(Wako社製)、1mMピルビン酸ナトリウム(Wako社製)、非必須アミノ酸、2-メルカプトエタノール、50U/mL penicillin(Invitrogen社製)、50μg/mL streptomycin(Invitrogen社製)をDMEM(25mMグルコース含有)(Wako社製)に添加したもの)に、1000UのLeukemia Inhibitory Factor(Millipore社製)を添加し、ゼラチンコート済み培養皿上で培養した。
[Example 2] Detection of GlcNAcation of serine 40 residue of histone H2A3 protein in mouse ES cells and mouse TS cells (1) Culture of mouse ES cells and mouse placental trophoblast stem (TS) cells Mouse ES cells are J1 Strains were used (Li, E., Bestor, T. & Jaenisch, R. Cell 1992, 69, 915-926.). Medium for ES cells (15% FBS (manufactured by Biowest), 2 mM L-glutamine (manufactured by Wako), 1 mM sodium pyruvate (manufactured by Wako), non-essential amino acids, 2-mercaptoethanol, 50 U / mL penicillin (Invitrogen) ), 50 μg / mL streptomycin (manufactured by Invitrogen) added to DMEM (containing 25 mM glucose) (manufactured by Wako)), 1000 U of Leukemia Inhibitory Factor (manufactured by Millipore), and gelatin-coated culture dish Incubated above.
 また、TS細胞は、既報に従い(Hayakawa K1,et.al.,Curr Protoc Stem Cell Biol. 2015 Feb 2;32:1E.4.1-1E.4.32.)、C57BL/6Nマウス由来胚盤胞より樹立した。続いて、TS細胞用培地 (20%FBS(Biowest社製)、2mM L-グルタミン(Wako社製)、1mMピルビン酸ナトリウム(Wako社製)、2-メルカプトエタノール、50U/mL penicillin(Invitrogen社製)、50μg/mL streptomycin(Invitrogen社製)をRPMI-1640(25mMグルコース含有)に添加したもの)に、25ng/mL FGF4 、アクチビンA(Wako社製)及びヘパリン(Sigma社製)を添加し、培養を行った。 In addition, TS cells were obtained from C57BL / 6N mouse-derived scutellum according to the previous report (Hayakawa K1, et.al., Curr Protoc Stem Cell Biol. Fe2015 Feb 2; 32: 1E.4.1-1E4.32.). Established from the cell. Subsequently, medium for TS cells (20% FBS (manufactured by Biowest), 2 mM L-glutamine (manufactured by Wako), 1 mM sodium pyruvate (manufactured by Wako), 2-mercaptoethanol, 50 U / mL penicillin (manufactured by Invitrogen) ), 50 μg / mL streptomycin (manufactured by Invitrogen) was added to RPMI-1640 (containing 25 mM glucose), 25 ng / mL FGF4, activin A (manufactured by Wako) and heparin (manufactured by Sigma) were added, Culture was performed.
 続いて、1、5、10mMグルコース含有ES細胞用培地及びTS細胞用培地を、グルコース不含DMEM(Wako社製)又はグルコース不含RMPI-1640を用いて、調製した。続いて、調製した各培養液を用いてES細胞及びTS細胞をコンフルエントになるまで培養した。続いて、培養した細胞を、遠心により細胞をペレット状にし、培養液を除去して、回収した。続いて、直ちに液体窒素中で凍結させ、使用するまで-80℃で保存した。 Subsequently, 1, 5, and 10 mM glucose-containing ES cell culture medium and TS cell culture medium were prepared using glucose-free DMEM (manufactured by Wako) or glucose-free RMPI-1640. Subsequently, ES cells and TS cells were cultured using each prepared culture solution until confluent. Subsequently, the cultured cells were collected by centrifuging the cells into pellets, removing the culture solution. Subsequently, it was immediately frozen in liquid nitrogen and stored at −80 ° C. until use.
(3)マウスES細胞の免疫染色
 マウスES細胞を4%パラホルムアルデヒドで20分間固定した。続いて、ブロッキング溶液(5%ウシ血清由来アルブミン(BSA))、0.1%Tween20、0.2%TritonX-100を含むPBS(-))を用いて、4℃で一晩処理した。続いて、5%BSA及び0.1%Tween20を含むPBS(-)で希釈したヒストンH2A3-S40-GlcNAc抗体又はO-GlcNAc(RL2)抗体を用いて、4℃で一晩反応させた。続いて、PBS(-)で希釈した二次抗体に室温1時間反応させた。さらに、1μg/mL DAPI(Dojindo社製)で室温10分間、核を染色した。続いて、封入液(VECTASHIELD社製)で封入し、プレパラートを作製した。観察は一体型共焦点レーザー顕微鏡(FV10i,オリンパス社製)を用いて行った。結果を図3A及び図3Bに示す。図3AがH2A3-S40-GlcNAc抗体で染色した結果であり、図3BがO-GlcNAc(RL2)抗体で染色した結果である。図3Aにおいて、「O-GlcNAcペプチド吸収」とは、実施例1の(1)で作製したGlcNAc化ペプチドを添加して免疫染色を行ったものを示し、「マウスIgG」とは、マウスIgGを用いて免疫染色を行ったものを示す。
(3) Immunostaining of mouse ES cells Mouse ES cells were fixed with 4% paraformaldehyde for 20 minutes. Subsequently, it was treated overnight at 4 ° C. with a blocking solution (PBS (−) containing 5% bovine serum-derived albumin (BSA)), 0.1% Tween 20, 0.2% Triton X-100). Subsequently, the reaction was performed overnight at 4 ° C. using a histone H2A3-S40-GlcNAc antibody or O-GlcNAc (RL2) antibody diluted with PBS (−) containing 5% BSA and 0.1% Tween20. Subsequently, the secondary antibody diluted with PBS (-) was reacted at room temperature for 1 hour. Further, nuclei were stained with 1 μg / mL DAPI (manufactured by Dojindo) for 10 minutes at room temperature. Subsequently, it was sealed with a sealing liquid (manufactured by VECTASHIELD) to prepare a preparation. Observation was performed using an integrated confocal laser microscope (FV10i, manufactured by Olympus Corporation). The results are shown in FIGS. 3A and 3B. FIG. 3A shows the result of staining with H2A3-S40-GlcNAc antibody, and FIG. 3B shows the result of staining with O-GlcNAc (RL2) antibody. In FIG. 3A, “O-GlcNAc peptide absorption” indicates that the GlcNAc-modified peptide prepared in (1) of Example 1 was added and immunostained, and “mouse IgG” represents mouse IgG. It shows what immunostained using.
 図3A及び図3Bから、H2A3-S40-GlcNAc抗体で免疫染色したES細胞は、O-GlcNAc(RL2)抗体で免疫染色したES細胞と染色像が異なり、核内にドット状のシグナルが検出された。また、実施例1の(1)で作製したGlcNAc化ペプチド及びマウスIgGで処理したES細胞では、GlcNAc化のシグナルが検出されなかった。 From FIGS. 3A and 3B, ES cells immunostained with H2A3-S40-GlcNAc antibody differ from ES cells immunostained with O-GlcNAc (RL2) antibody, and a dot-like signal is detected in the nucleus. It was. In addition, no signal for GlcNAc formation was detected in ES cells treated with the GlcNAc-modified peptide prepared in Example 1 (1) and mouse IgG.
(4)グルコース濃度の変化に応じたGlcNAc化の検証
 (2)で作製した異なるグルコース濃度で培養したマウスES細胞及びマウスTS細胞について、常法に従い、H2A3-S40-GlcNAc抗体、H2A抗体、及びコントロールとしてアクチンβ抗体を用いたウエスタンブロッティング法による検出を行った。結果を図3Cに示す。
(4) Verification of GlcNAc conversion according to change in glucose concentration For mouse ES cells and mouse TS cells cultured at different glucose concentrations prepared in (2), H2A3-S40-GlcNAc antibody, H2A antibody, and As a control, detection by Western blotting using actin β antibody was performed. The results are shown in FIG. 3C.
 図3Cから、マウスES細胞ではグルコース濃度の低下に伴いヒストンのGlcNAc化レベルは増加することが明らかとなった。一方、マウスTS細胞ではグルコース濃度の上昇に伴い、GlcNAc化レベルが増加することが明らかとなった。
 以上のことから、ヒストンH2A3タンパク質のアミノ酸配列のうち、N末端から40番目のセリンのGlcNAc化は、細胞の種類により異なったグルコース反応性を示すことが明らかとなった。
From FIG. 3C, it became clear that in mouse ES cells, the level of histone GlcNAc increased with decreasing glucose concentration. On the other hand, it was revealed that the level of GlcNAc increased in mouse TS cells with increasing glucose concentration.
From the above, it became clear that the GlcNAcation of the 40th serine from the N-terminal in the amino acid sequence of histone H2A3 protein shows different glucose reactivity depending on the cell type.
[実施例3]ヒト血管内皮(EAhy)細胞及びヒト腎近位尿細管上皮(RPTEC)におけるヒストンH2A3タンパク質のセリン40残基のGlcNAc化の検出
(1)ヒト血管内皮(EAhy)細胞及びヒト腎近位尿細管上皮(RPTEC)細胞の培養
 ヒトEAhy細胞はAmerican Type Culture Collection (ATCC)より購入したものを使用した。コントロール培地 (10%FBS(Biowest社製)、50 U/mL penicillin(Invitrogen社製)、50μg/mL streptomycin(Invitrogen社製)をDMEM(5mMグルコース含有)(Wako社製)に添加したもの)で維持したヒトEAhy細胞を、4ウェルディッシュに、1ウェル当たり1×10個になるように播種した。
続いて、コントロール培地(5mMグルコース含有)又は高グルコース培地(10mMグルコース含有又は25mMグルコース含有)(10%FBS(Biowest社製)、50 U/mL penicillin(Invitrogen社製)、50μg/mL streptomycin(Invitrogen社製)をDMEM(10mMグルコース含有又は25mMグルコース含有)(Wako社製)に添加したもの)で4日間培養した。
[Example 3] Detection of GlcNAcation of serine 40 residue of histone H2A3 protein in human vascular endothelial (EAhy) cells and human renal proximal tubular epithelium (RPTEC) (1) Human vascular endothelial (EAhy) cells and human kidney Culture of Proximal Tubular Epithelial (RPTEC) Cells Human EAhy cells were purchased from American Type Culture Collection (ATCC). Control medium (10% FBS (manufactured by Biowest), 50 U / mL penicillin (manufactured by Invitrogen), 50 μg / mL streptomycin (manufactured by Invitrogen) in DMEM (containing 5 mM glucose) (manufactured by Wako)) The maintained human EAhy cells were seeded in a 4-well dish at 1 × 10 4 cells per well.
Subsequently, control medium (containing 5 mM glucose) or high glucose medium (containing 10 mM glucose or 25 mM glucose) (10% FBS (manufactured by Biowest), 50 U / mL penicillin (manufactured by Invitrogen)), 50 μg / mL streptomycin (Invitrogen) Was added to DMEM (containing 10 mM glucose or 25 mM glucose) (made by Wako)) for 4 days.
(2)ヒトEAhy細胞及びヒトRPTEC細胞の免疫染色
 (1)で培養したヒトEAhy細胞及びヒトRPTEC細胞を用い、さらに、O-GlcNAc(RL2)抗体を用いた染色を行わなかった以外は、実施例2の(3)と同様の方法を用いて、免疫染色を行った。結果を図4A及び図4Bの左側に示す。図4Aは、ヒトEAhy細胞の免疫染色結果であり、図4BはヒトRPTEC細胞の免疫染色結果である。
 また、図4A及び図4Bの画像取得後、画像解析ソフトCell Profiler(www.cellprofiler.org)で核内のGlcNAc化シグナルのドット数を測定した。統計処理はウィルコクソンの順位和検定で行った。結果を図4A及び図4Bの右側に示す。
(2) Immunostaining of human EAhy cells and human RPTEC cells This was carried out except that human EAhy cells and human RPTEC cells cultured in (1) were used and staining was not performed using O-GlcNAc (RL2) antibody. Immunostaining was performed using the same method as in Example 2 (3). The results are shown on the left side of FIGS. 4A and 4B. FIG. 4A shows the result of immunostaining of human EAhy cells, and FIG. 4B shows the result of immunostaining of human RPTEC cells.
4A and 4B, the number of dots of the GlcNAc-ized signal in the nucleus was measured with image analysis software Cell Profiler (www.cellprofiler.org). Statistical processing was performed by Wilcoxon rank sum test. The results are shown on the right side of FIGS. 4A and 4B.
 図4A及び図4Bから、ヒトEAhy細胞及びヒトRPTEC細胞においても、グルコース濃度増加に伴い、GlcNAc化レベルが増加することが明らかとなった。 From FIG. 4A and FIG. 4B, it was revealed that the level of GlcNAcation increases with increasing glucose concentration also in human EAhy cells and human RPTEC cells.
[実施例4]低糖及び高糖環境下でのマウスES細胞におけるH2A3-S40-GlcNAc抗体を用いたChIP-seq
(1)クロマチン免疫沈降法(chromatin immunoprecipitation;ChIP)
 ChIPアッセイは、ChIP-IT(登録商標) Express Kit(アクティブモチーフ社製)を用いて、製造元の指示に従い、行った。
まず、低糖(1mMグルコース含有)及び高糖(25mMグルコース含有)環境下で培養したマウスES細胞にクロマチン断片化試薬を添加して37℃で10分間インキュベートし、細胞を破砕し、クロマチンを断片化した。続いて、100μLの断片化されたクロマチンを含む溶液に、3μgのH2A3-S40-GlcNAc抗体及び40μLの磁気ビーズ(ヒツジ抗マウスIgG抗体結合ダイナビーズM-280、又はプロテインG結合ダイナビーズ(インビトロゲン社製))を混合し、4℃で撹拌しながら一晩インキュベートした。免疫沈降後、溶出バッファー(10%SDS、300mM NaCl、10mM Tris-HCl、及び5mM EDTA、pH8.0)を用いて65℃で6時間インキュベーションし、DNAを溶出した。続いて、得られたDNAをChIP DNA Clean and Concentration Kit(ザイモリサーチ社製)を用いて精製し、続くシークエンスに用いた。
[Example 4] ChIP-seq using H2A3-S40-GlcNAc antibody in mouse ES cells under low and high sugar environments
(1) Chromatin immunoprecipitation (ChIP)
The ChIP assay was performed using ChIP-IT (registered trademark) Express Kit (manufactured by Active Motif) according to the manufacturer's instructions.
First, a chromatin fragmentation reagent is added to mouse ES cells cultured in a low sugar (containing 1 mM glucose) and high sugar (containing 25 mM glucose) environment, incubated at 37 ° C. for 10 minutes, the cells are disrupted, and chromatin is fragmented. did. Subsequently, in a solution containing 100 μL of fragmented chromatin, 3 μg of H2A3-S40-GlcNAc antibody and 40 μL of magnetic beads (sheep anti-mouse IgG antibody-conjugated Dynabead M-280 or protein G-binding Dynabead (Invitrogen) ) And mixed overnight at 4 ° C. with stirring. After immunoprecipitation, DNA was eluted by incubation at 65 ° C. for 6 hours using elution buffer (10% SDS, 300 mM NaCl, 10 mM Tris-HCl, and 5 mM EDTA, pH 8.0). Subsequently, the obtained DNA was purified using ChIP DNA Clean and Concentration Kit (manufactured by Zymo Research) and used for the subsequent sequence.
(2)シークエンス
 ハイスループットDNAシーケンシングのためのライブラリーは、TruSeq DNA Sample Preparation v2 Kit, Set A/B (イルミナ社製、FC-121-2001/-2002)を用いて製造元の指示に従い、準備した。
 まず、50ngの(1)で得られたDNA、又はインプットDNAの3’末端のアデニル化を修復し、アダプターオリゴを連結した。続いて、AMpure XP beads(ベックマン・コールター社製、A63880)を用いて、120~500bpのDNA断片を精製し、さらにPCRを用いて増幅した。続いて、ライブラリーDNAを2%アガロースゲル上で電気泳動し、その後、Zymoclean Gel DNA Recovery Kit(ザイモリサーチ社製、D4007)を用いて精製した。精製されたライブラリーDNAはBioAnalyzer2000(アジレント社製)を用いて定量した。シークエンスは、Illumina HiSeq 2000 systemsを用いた。
(2) Sequencing A library for high-throughput DNA sequencing was prepared according to the manufacturer's instructions using TruSeq DNA Sample Preparation v2 Kit, Set A / B (Illumina, FC-121-2001 / -2002). did.
First, 50 ng of the DNA obtained in (1) or the adenylation of the 3 ′ end of the input DNA was repaired, and the adapter oligo was ligated. Subsequently, a DNA fragment of 120 to 500 bp was purified using AMpure XP beads (A63880, manufactured by Beckman Coulter, Inc.), and further amplified using PCR. Subsequently, the library DNA was electrophoresed on a 2% agarose gel, and then purified using Zymoclean Gel DNA Recovery Kit (Dymo Research, D4007). The purified library DNA was quantified using BioAnalyzer 2000 (manufactured by Agilent). The sequence was Illumina HiSeq 2000 systems.
 続いて、ChIPの生データについてシークエンスのアダプター配列と低品質の読み込み情報を削除する事前フィルタリング処理を行い、Bowtie softwareを用いて、マウスゲノム(mm9)からタグをマッピングし、Galaxy browser(www.galaxy.psu.edu)におけるMACS softwareを用いて、ピークを検出した。また、ベン図及びジーンオントロジー分析はそれぞれ、BioVenn(http://www.cmbi.ru.nl/cdd/biovenn/)及びDAVID program(https://david.ncifcrf.gov/)を用いて行った。これらの解析結果を全て図5に示す。 Subsequently, pre-filtering processing is performed on the raw data of ChIP to delete the sequence adapter sequence and low-quality read information, and the tag is mapped from the mouse genome (mm9) using Bowtie software, and the Galaxy browser (www.galaxy) is used. Peak was detected using MACS software at .psu.edu). The Venn diagram and gene ontology analysis were performed using BioVenn (http://www.cmbi.ru.nl/cdd/bioven/) and DAVID program (https://david.ncifcrf.gov/), respectively. These analysis results are all shown in FIG.
 図5から、高糖(25mMグルコース)環境下で培養したマウスES細胞よりも(54.7%)、低糖(1mMグルコース)環境下で培養したマウスES細胞のほうが(58.9%)、ゲノムのコーディング領域にセリン40残基がGlcNAc化されたヒストンH2A3タンパク質が存在する割合が高いことが明らかとなった。
また、高糖(25mMグルコース)環境下で培養したマウスES細胞よりも、低糖(1mMグルコース)環境下で培養したマウスES細胞のほうが、H2A3-S40-GlcNAc抗体による免疫沈降で得られたDNA断片が多かった。
さらに、低糖(1mMグルコース)環境下で培養したマウスES細胞では、セリン40残基がGlcNAc化されたヒストンH2A3タンパク質が転写開始点に多く存在する(8.1%)ことが明らかとなった。
FIG. 5 shows that the mouse ES cells cultured in a low sugar (1 mM glucose) environment (58.9%) are more genomic (58.9%) than the mouse ES cells cultured in a high sugar (25 mM glucose) environment. It was revealed that there is a high proportion of histone H2A3 protein in which the serine 40 residue is converted to GlcNAc in the coding region.
In addition, a mouse ES cell cultured in a low sugar (1 mM glucose) environment was obtained by immunoprecipitation with the H2A3-S40-GlcNAc antibody rather than a mouse ES cell cultured in a high sugar (25 mM glucose) environment. There were many.
Furthermore, in mouse ES cells cultured in a low sugar (1 mM glucose) environment, it was revealed that many histone H2A3 proteins in which serine 40 residues were converted to GlcNAc were present at the transcription start site (8.1%).
また、ジーンオントロジー分析から、低糖(1mMグルコース)環境下及び高糖(25mMグルコース)環境下ではセリン40残基がGlcNAc化されたヒストンH2A3タンパク質により制御される遺伝子群は一部共通するもの(例えば、タンパク質修飾プロセスに関与する遺伝子群、Wntシグナル経路に関与する遺伝子群等)もあったが、異なるものが複数存在することが明らかとなった。 In addition, gene ontology analysis shows that in a low sugar (1 mM glucose) environment and a high sugar (25 mM glucose) environment, a gene group controlled by a histone H2A3 protein in which a 40-serine residue is GlcNAc-converted is partially common (for example, There are also gene groups involved in the protein modification process, gene groups involved in the Wnt signal pathway, etc.), but it has been clarified that there are a plurality of different ones.
[実施例5]ヒト血管内皮(EAhy)細胞におけるH2A3-S40-GlcNAc抗体を用いたChIP-seq
(1)クロマチン免疫沈降法(chromatin immunoprecipitation;ChIP)
 マウスES細胞の代わりにヒト血管内皮(EAhy)細胞を用いた以外は、実施例4の(1)に記載の方法と同様の方法を用いて、ChIPアッセイを行い、DNA断片を得た。
[Example 5] ChIP-seq using H2A3-S40-GlcNAc antibody in human vascular endothelial (EAhy) cells
(1) Chromatin immunoprecipitation (ChIP)
A ChIP assay was performed using the same method as that described in (1) of Example 4 except that human vascular endothelial (EAhy) cells were used instead of mouse ES cells to obtain DNA fragments.
(2)シークエンス
 マウスゲノムの代わりにヒトゲノムを用いて、実施例4の(2)と同様の方法を用いて、(1)で得られたDNA断片のシークエンスを行った。解析結果を図6に示す。
(2) Sequencing Using the human genome instead of the mouse genome, the DNA fragment obtained in (1) was sequenced using the same method as in (2) of Example 4. The analysis results are shown in FIG.
 図6から、高糖(25mMグルコース)環境下で培養したヒトEAhy細胞と低糖(1mMグルコース)環境下で培養したヒトEAhy細胞とで、転写開始点、ゲノムのコーディング領域、及びノンコーディング領域におけるセリン40残基がGlcNAc化されたヒストンH2A3タンパク質の存在比率に大きな差はなかった。
 また、高糖(25mMグルコース)環境下で培養したヒトEAhy細胞と低糖(1mMグルコース)環境下で培養したヒトEAhy細胞とで、H2A3-S40-GlcNAc抗体による免疫沈降で得られたDNA断片の量に差はなかった。
 さらに、高糖(25mMグルコース)環境下で培養したヒトEAhy細胞では、セリン40残基がGlcNAc化されたヒストンH2A3タンパク質が転写開始点に多く存在することが明らかとなった。
FIG. 6 shows that the transcription start point, the coding region of the genome, and the serine in the non-coding region between human EAhy cells cultured in a high sugar (25 mM glucose) environment and human EAhy cells cultured in a low sugar (1 mM glucose) environment. There was no significant difference in the abundance of histone H2A3 protein in which 40 residues were GlcNAcated.
In addition, the amount of DNA fragments obtained by immunoprecipitation of human EAhy cells cultured in a high sugar (25 mM glucose) environment and human EAhy cells cultured in a low sugar (1 mM glucose) environment with an H2A3-S40-GlcNAc antibody. There was no difference.
Furthermore, in human EAhy cells cultured in a high sugar (25 mM glucose) environment, it was revealed that many histone H2A3 proteins in which serine 40 residues were converted to GlcNAc were present at the transcription start site.
また、ジーンオントロジー分析から、高糖(25mMグルコース)環境下でセリン40残基がGlcNAc化されたヒストンH2A3タンパク質により制御される遺伝子群はプリン代謝に関与する遺伝子群等5種類の遺伝子群であることが明らかとなった。 From gene ontology analysis, the gene group controlled by histone H2A3 protein in which serine 40 residue is converted to GlcNAc in a high sugar (25 mM glucose) environment is five kinds of gene groups such as genes involved in purine metabolism. It became clear.
[実施例6]低糖及び高糖環境下でのマウスES細胞におけるウエスタンブロッティング法によるDNA修復関連タンパク質の検出
(1)核内タンパク質の回収
まず、低糖(1mMグルコース含有)及び高糖(25mMグルコース含有)環境下で、カンプトテシン(Camptothecin;CPT)、若しくはエトポシド(etoposide;ETP)添加、又はCPT及びETP無添加(non-treated)条件にて培養したマウスES細胞から、LysoPure Nuclear and Cytoplasmic Extractor Kitを用いて、製造元の指示に従い、核内タンパク質を回収した。
なお、CPTはDNA酵素のI型トポイソメラーゼ(トポI)の働きを阻害するキノリンアルカロイドであり、ETPはDNAを切断した後、トポイソメラーゼIIと複合体を形成し、DNAの再結合を阻害する抗悪性腫瘍剤であり、共にDNA傷害を引き起こす化合物である。
[Example 6] Detection of DNA repair-related proteins by Western blotting in mouse ES cells under low and high sugar environments (1) Recovery of nuclear proteins First, low sugar (containing 1 mM glucose) and high sugar (containing 25 mM glucose) ) Using LysoPure Nuclear and Cytoplasmic Extract from mouse ES cells cultured under conditions of addition of camptothecin (CPT), etoposide (ETP), or CPT and ETP (non-treated). Then, according to the manufacturer's instructions, the nuclear protein was recovered.
CPT is a quinoline alkaloid that inhibits the action of type I topoisomerase (topoI) of the DNA enzyme, and ETP forms a complex with topoisomerase II after cleaving DNA and inhibits recombination of DNA. Both are tumor agents and compounds that cause DNA damage.
(2)ウエスタンブロッティング法によるDNA修復関連タンパク質の検出
 次いで、回収された核内タンパク質を用いて、常法に従い、γH2AX抗体(セリン139残基がリン酸化されたH2AXに特異的に結合する抗体)、H2AX抗体、AcH2AZ抗体(リジン4残基、リジン7残基、及びリジン11残基がアセチル化されたH2AZに特異的に結合する抗体)、H2AZ抗体、H2A3-S40-GlcNAc抗体、H2A抗体、p53結合タンパク質1(p53-binding protein 1;53BP1)抗体(p53に結合し、p53の転写活性を増強するタンパク質である53BP1に特異的に結合する抗体)、及びRad51抗体(真核生物におけるDNA二重鎖切断の修復に関与するタンパク質であるRad51に特異的に結合する抗体)を用いたウエスタンブロッティング法による検出を行った。結果を図7に示す。
(2) Detection of DNA repair-related protein by Western blotting Next, using the collected nuclear protein, γH2AX antibody (an antibody that specifically binds to H2AX phosphorylated at serine 139 residue) according to a conventional method , H2AX antibody, AcH2AZ antibody (an antibody that specifically binds to H2AZ in which lysine 4 residue, lysine 7 residue, and lysine 11 residue are acetylated), H2AZ antibody, H2A3-S40-GlcNAc antibody, H2A antibody, p53-binding protein 1 (p53-binding protein 1; 53BP1) antibody (an antibody that binds to p53 and specifically binds to 53BP1, a protein that enhances the transcriptional activity of p53), and a Rad51 antibody (a second DNA in eukaryotes) Rad51, a protein involved in repair of heavy chain breaks Detection was by Western blotting using an antibody) that specifically binds. The results are shown in FIG.
 図7から、低糖(1mMグルコース含有)及び高糖(25mMグルコース含有)環境下であってCPT及びETP無添加(non-treated)条件にて培養したマウスES細胞では、セリン139残基がリン酸化されたヒストンH2AXタンパク質は検出されなかった。
 一方、低糖(1mMグルコース含有)及び高糖(25mMグルコース含有)環境下であって、CTP又はETP処理を行い、人工的にDNA損傷を生じさせたES細胞では、ヒストンH2AXタンパク質におけるセリン139残基のリン酸化レベルが増加し、さらに53BP1及びRad51が誘導されており、一方で、核内におけるヒストンH2AZタンパク質のアセチル化レベルは下がっていた。
FIG. 7 shows that serine 139 residue is phosphorylated in mouse ES cells cultured under low-sugar (containing 1 mM glucose) and high-sugar (containing 25 mM glucose) conditions without CPT and ETP added (non-treated). The detected histone H2AX protein was not detected.
On the other hand, in an ES cell under a low sugar (containing 1 mM glucose) and high sugar (containing 25 mM glucose) environment and having undergone CTP or ETP treatment to artificially cause DNA damage, serine 139 residue in histone H2AX protein Phosphorylation level of 53, and 53BP1 and Rad51 were further induced, while the acetylation level of histone H2AZ protein in the nucleus decreased.
 また、低糖(1mMグルコース含有)環境下で培養したマウスES細胞では、CTP又はETP処理の有無にかかわらず、ヒストンH2A3タンパク質のセリン40残基のGlcNAc化レベルが高かった。一方、高糖(25mMグルコース含有)環境下で培養したマウスES細胞では、CTP又はETP処理によって、ヒストンH2A3タンパク質のセリン40残基のGlcNAc化レベルが顕著に増加していた。 In addition, in mouse ES cells cultured in a low sugar (containing 1 mM glucose) environment, the GlcNAc level of histone H2A3 protein serine 40 residue was high regardless of the presence or absence of CTP or ETP treatment. On the other hand, in mouse ES cells cultured in a high sugar (containing 25 mM glucose) environment, the GlcNAcation level of serine 40 residue of histone H2A3 protein was remarkably increased by CTP or ETP treatment.
[実施例7]野生型ヒストンH2A3タンパク質(WT)又は変異型H2A3タンパク質(H2A-S40A)を高発現したヒト血管内皮(EAhy)細胞における紫外線照射時間の違いによるDNA修復能試験
(1)野生型ヒストンH2A3タンパク質(WT)又は変異型H2A3タンパク質(H2A-S40A)を高発現したヒト血管内皮(EAhy)細胞の調製
 野生型ヒストンH2A3タンパク質(WT)又は変異型H2A3タンパク質(H2A-S40A)を高発現したヒト血管内皮(EAhy)細胞をそれぞれ10cmディッシュに3×10個となるように播種し、10% FBSを含むDMEM(5mM グルコース)下で96時間培養した。
[Example 7] DNA repair ability test by difference in UV irradiation time in human vascular endothelial (EAhy) cells that highly expressed wild type histone H2A3 protein (WT) or mutant H2A3 protein (H2A-S40A) (1) wild type Preparation of human vascular endothelial (EAhy) cells highly expressing histone H2A3 protein (WT) or mutant H2A3 protein (H2A-S40A) High expression of wild-type histone H2A3 protein (WT) or mutant H2A3 protein (H2A-S40A) The human vascular endothelial (EAhy) cells were seeded in 3 × 10 5 cells in a 10 cm dish and cultured for 96 hours under DMEM (5 mM glucose) containing 10% FBS.
(2)紫外線照射
 続いて、(1)で予め培養しておいた細胞に紫外線(UV-C、254nm)を0分、1分、又は5分照射した。
(2) Ultraviolet irradiation Subsequently, the cells previously cultured in (1) were irradiated with ultraviolet rays (UV-C, 254 nm) for 0 minutes, 1 minute, or 5 minutes.
(3)抗シクロブタン型ピリミジンダイマー抗体を用いたELISA法
 続いて、(2)の紫外線照射処理後ただちに回収した細胞をLysisバッファー[100mM Tris-HCl(pH8.0)、5mM EDTA、0.2% SDS、200mM NaCl、100ug/ml proteinase K]で懸濁し、55℃で一晩振盪しながらインキュベートした。その後、フェノール/クロロホルム/イソアミルアルコール(以下、「PCI」と称する場合がある。)で1回抽出し、37℃、30分間RNase(Roche社製)処理し、RNAを分解させた。もう一度、PCI抽出し、エタノールでゲノムDNAを沈殿させ、エタノールを除去後、TEバッファー[10mM Tris-HCl、1mM EDTA(pH8.0)]で溶解した。ゲノムDNAは使用するまで4℃で保存した。
続いて、10ngのゲノムDNAを96ウェルプロタミン表面コートプレートに加えて、37℃で一晩インキュベートした。続いて、2%ウシ胎児血清及び0.1% Tween20を含むPBSを用いて、37℃で30分間インキュベートし、ブロッキングを行った。続いて、抗シクロブタン型ピリミジンダイマー(Cyclobutane Pyrimidine Dimers:CPD)抗体(コスモバイオ社製、NM-DND-001)(PBSを用いて、1000分の1に希釈)を1次抗体として用いて、37℃で1時間インキュベートした。続いて、PBSを用いてプレートを洗浄し、HRP結合抗マウスIgG抗体(ジャクソンイムノリサーチ社製)(PBSを用いて、2000分の1に希釈))を2次抗体として用いて、37℃で30分間インキュベートした。PBSを用いて3回洗浄後、OPD基質を含有した1×安定化過酸化物基質バッファー(テルモ社製)を加え、iMark microplate reader(Bio-Rad社製)を用いて490nmにおける吸光度を測定した。結果を図7に示す。
(3) ELISA method using anti-cyclobutane-type pyrimidine dimer antibody Subsequently, the cells collected immediately after the ultraviolet irradiation treatment in (2) were treated with Lysis buffer [100 mM Tris-HCl (pH 8.0), 5 mM EDTA, 0.2% It was suspended in SDS, 200 mM NaCl, 100 ug / ml proteinase K] and incubated overnight at 55 ° C. with shaking. Thereafter, extraction was performed once with phenol / chloroform / isoamyl alcohol (hereinafter sometimes referred to as “PCI”), and RNase (manufactured by Roche) was treated at 37 ° C. for 30 minutes to degrade RNA. PCI extraction was performed once again, and genomic DNA was precipitated with ethanol. After removing the ethanol, it was dissolved in TE buffer [10 mM Tris-HCl, 1 mM EDTA (pH 8.0)]. Genomic DNA was stored at 4 ° C. until use.
Subsequently, 10 ng of genomic DNA was added to a 96 well protamine surface coated plate and incubated overnight at 37 ° C. Subsequently, blocking was performed by incubating at 37 ° C. for 30 minutes using PBS containing 2% fetal bovine serum and 0.1% Tween20. Subsequently, an anti-cyclobutane-type pyrimidine dimer (CPD) antibody (manufactured by Cosmo Bio, NM-DND-001) (diluted 1: 1000 with PBS) was used as a primary antibody, and 37 Incubated for 1 hour at ° C. Subsequently, the plate was washed with PBS, and HRP-conjugated anti-mouse IgG antibody (manufactured by Jackson ImmunoResearch) (diluted 1: 2000 using PBS)) was used as a secondary antibody at 37 ° C. Incubated for 30 minutes. After washing 3 times with PBS, 1 × stabilized peroxide substrate buffer (Terumo) containing OPD substrate was added, and absorbance at 490 nm was measured using iMark microplate reader (Bio-Rad). . The results are shown in FIG.
 図7から、野生型ヒストンH2A3タンパク質(WT)を高発現したヒト血管内皮(EAhy)細胞は、変異型H2A3タンパク質(H2A-S40A)を高発現したヒト血管内皮(EAhy)細胞よりも、ピリミジンダイマーの生成量が抑えられていた。これは、ヒストンH2A3タンパク質のセリン40残基がGlcNAc化されることにより、DNA修復能が発揮され、紫外線照射により生じたプリミジンダイマーの一部が修復されたためであると推察された。 FIG. 7 shows that human vascular endothelial (EAhy) cells highly expressing wild-type histone H2A3 protein (WT) are pyrimidine dimers more than human vascular endothelial (EAhy) cells highly expressing mutant H2A3 protein (H2A-S40A). The production amount of was suppressed. This was presumed to be due to the fact that the serine 40 residue of the histone H2A3 protein was converted to GlcNAc, whereby DNA repairing ability was exhibited and a part of the primidine dimer generated by ultraviolet irradiation was repaired.
 本発明によれば、細胞外グルコース濃度の変動が及ぼすヒストン修飾をモニターする方法を提供することができる。
 また、本発明によれば、ゲノムDNAの安定性を簡便に評価することができる。
ADVANTAGE OF THE INVENTION According to this invention, the method of monitoring the histone modification which the fluctuation | variation of extracellular glucose concentration exerts can be provided.
Moreover, according to the present invention, the stability of genomic DNA can be easily evaluated.

Claims (12)

  1.  ヒストンH2Aタンパク質のN-アセチルグルコサミン(GlcNAc)化したセリン40残基に特異的に結合することを特徴とする抗体。 An antibody characterized in that it specifically binds to N-acetylglucosamine (GlcNAc) serine 40 residue of histone H2A protein.
  2.  請求項1に記載の抗体を用いて、ヒストンH2Aタンパク質のセリン40残基のGlcNAc化レベルを測定する工程を備えることを特徴とするヒストンH2Aタンパク質のセリン40残基のGlcNAc化の検出方法。 A method for detecting GlcNAcation of a serine 40 residue of a histone H2A protein, comprising the step of measuring the GlcNAcation level of a serine 40 residue of the histone H2A protein using the antibody according to claim 1.
  3.  ヒストンH2Aタンパク質のセリン40残基のGlcNAc化の阻害剤又は活性化剤のスクリーニング方法であって、
     被験物質の存在下及び非存在下において、ヒストンH2Aタンパク質又はそのペプチド断片のセリン40残基のGlcNAc化レベルを測定する工程と、
     被検物質の存在下における前記GlcNAc化レベルが、被検物質の非存在下における前記GlcNAc化レベルと比較して低かった場合に、前記被検物質はヒストンH2Aタンパク質のセリン40残基のGlcNAc化の阻害剤であると判定し、被検物質の存在下における前記GlcNAcレベルが、被検物質の非存在下における前記リン酸化レベルと比較して高かった場合に、前記被検物質はヒストンH2Aタンパク質のセリン40残基のGlcNAc化の活性化剤であると判定する工程と、
    を備えることを特徴とするスクリーニング方法。
    A method for screening an inhibitor or activator of GlcNAcation of serine 40 residue of histone H2A protein, comprising:
    Measuring the level of GlcNAcation of serine 40 residue of histone H2A protein or peptide fragment thereof in the presence and absence of a test substance;
    When the level of GlcNAcation in the presence of the test substance is lower than the level of GlcNAcation in the absence of the test substance, the test substance is converted to GlcNAc of serine 40 residue of histone H2A protein. When the GlcNAc level in the presence of the test substance is higher than the phosphorylation level in the absence of the test substance, the test substance is a histone H2A protein. Determining that it is an activator of GlcNAcation of serine 40 residues of
    A screening method comprising:
  4.  グルコースの存在下において、前記測定工程を行う請求項3に記載のスクリーニング方法。 The screening method according to claim 3, wherein the measurement step is performed in the presence of glucose.
  5.  DNAに損傷を与えた条件下において、前記測定工程を行う請求項3又は4に記載のスクリーニング方法。 The screening method according to claim 3 or 4, wherein the measurement step is performed under conditions in which DNA is damaged.
  6.  前記ヒストンH2Aタンパク質又はそのペプチド断片のセリン40残基のGlcNAc化レベルが、ヒストンH2Aタンパク質のGlcNAc化したセリン40残基に特異的に結合する抗体により測定される請求項3~5のいずれか一項に記載のスクリーニング方法。 The GlcNAc level of serine 40 residue of the histone H2A protein or peptide fragment thereof is measured by an antibody that specifically binds to the GlcNAc-converted serine 40 residue of histone H2A protein. The screening method according to item.
  7.  細胞外グルコース濃度の変動が及ぼすヒストン修飾をモニターする方法であって、
     グルコースの存在依存的に生じるヒストンH2Aタンパク質のセリン40残基のGlcNAc化レベルを測定する工程を備えることを特徴とする方法。
    A method for monitoring histone modifications caused by fluctuations in extracellular glucose concentration comprising:
    A method comprising measuring the level of GlcNAcylation of a serine 40 residue of a histone H2A protein that occurs depending on the presence of glucose.
  8.  前記ヒストンH2Aタンパク質のセリン40残基のGlcNAc化レベルが、ヒストンH2Aタンパク質のGlcNAc化したセリン40残基に特異的に結合する抗体により測定される請求項7に記載の方法。 The method according to claim 7, wherein the GlcNAcation level of the serine 40 residue of the histone H2A protein is measured by an antibody that specifically binds to the GlcNAcated serine 40 residue of the histone H2A protein.
  9.  細胞外グルコース濃度の変動が及ぼすヒストン修飾をモニターするマーカーであって、
     GlcNAc化したセリン40残基を含む、H2Aタンパク質又はそのペプチド断片からなることを特徴とするタンパク質又はペプチドマーカー。
    A marker for monitoring histone modifications caused by fluctuations in extracellular glucose concentration,
    A protein or peptide marker comprising a H2A protein or a peptide fragment thereof containing 40 residues of GlcNAc serine.
  10.  エピジェネティクス修飾によるゲノムDNAの安定性を評価する方法であって、
     ヒストンH2Aタンパク質又はそのペプチド断片のセリン40残基のGlcNAc化レベルを測定する工程を備えることを特徴とする方法。
    A method for evaluating the stability of genomic DNA by epigenetic modification comprising:
    A method comprising the step of measuring the GlcNAcation level of a serine 40 residue of a histone H2A protein or a peptide fragment thereof.
  11.  前記ヒストンH2Aタンパク質又はそのペプチド断片のセリン40残基のGlcNAc化レベルが、ヒストンH2Aタンパク質のGlcNAc化したセリン40残基に特異的に結合する抗体により測定される請求項10に記載の方法。 The method according to claim 10, wherein the GlcNAc level of serine 40 residue of the histone H2A protein or a peptide fragment thereof is measured by an antibody that specifically binds to the GlcNAc-converted serine 40 residue of the histone H2A protein.
  12.  エピジェネティクス修飾によるゲノムDNAの安定性を検出するマーカーであって、
     GlcNAc化したセリン40残基を含む、H2Aタンパク質又はそのペプチド断片からなることを特徴とするタンパク質又はペプチドマーカー。
    A marker for detecting the stability of genomic DNA by epigenetic modification,
    A protein or peptide marker comprising a H2A protein or a peptide fragment thereof containing 40 residues of GlcNAc serine.
PCT/JP2016/076497 2015-09-09 2016-09-08 Sugar-sensing epigenome biomarker WO2017043593A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017538513A JP7141679B2 (en) 2015-09-09 2016-09-08 Glucose-sensing epigenomic biomarkers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-177176 2015-09-09
JP2015177176 2015-09-09

Publications (1)

Publication Number Publication Date
WO2017043593A1 true WO2017043593A1 (en) 2017-03-16

Family

ID=58239783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076497 WO2017043593A1 (en) 2015-09-09 2016-09-08 Sugar-sensing epigenome biomarker

Country Status (2)

Country Link
JP (1) JP7141679B2 (en)
WO (1) WO2017043593A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110609078A (en) * 2019-09-20 2019-12-24 南京谱利健生物技术有限公司 Method for detecting protein phosphorylation and acetylglucosamine saccharification correlation effect

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012083193A (en) * 2010-10-12 2012-04-26 Univ Of Tokyo Method for detecting glycosylation of histone protein, and antibody to be used for the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012083193A (en) * 2010-10-12 2012-04-26 Univ Of Tokyo Method for detecting glycosylation of histone protein, and antibody to be used for the same

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CHEN Q. ET AL.: "TET2 promotes histone O-GlcNAcylation during gene transcription.", NATURE, vol. 493, no. 7433, 2013, pages 561 - 564, XP055374112 *
FONG JJ. ET AL.: "beta-N-Acetylglucosamine (O-GlcNAc) is a novel regulator of mitosis- specific phosphorylations on histone H3.", J BIOL CHEM., vol. 287, no. 15, 2012, pages 12195 - 12203, XP055374116 *
HIROSAWA M. ET AL.: "Novel O-GlcNAcylation on Ser(40) of canonical H2A isoforms specific to viviparity.", SCI REP., vol. 6, no. 1, October 2016 (2016-10-01), pages 1 - 11, XP055374127, Retrieved from the Internet <URL:http://www. nature . com/articles/srep31785> *
KALEEM A. ET AL.: "Immediate-early gene regulation by interplay between different post- translational modifications on human histone H3.", J CELL BIOCHEM., vol. 103, no. 3, 2008, pages 835 - 851 *
SAKABE K. ET AL.: "Beta-N-acetylglucosamine (O-GlcNAc) is part of the histone code.", PROC NATL ACAD SCI U S A., vol. 107, no. 46, 2010, pages 19915 - 19920, XP055374104 *
ZHONG R. ET AL.: "The primary structure and expression of four cloned human histone genes.", NUCLEIC ACIDS RES., vol. 11, no. 21, 1983, pages 7409 - 7425, XP055374103 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110609078A (en) * 2019-09-20 2019-12-24 南京谱利健生物技术有限公司 Method for detecting protein phosphorylation and acetylglucosamine saccharification correlation effect
CN110609078B (en) * 2019-09-20 2022-03-11 南京谱利健生物技术有限公司 Method for detecting protein phosphorylation and acetylglucosamine saccharification correlation effect

Also Published As

Publication number Publication date
JP7141679B2 (en) 2022-09-26
JPWO2017043593A1 (en) 2018-07-12

Similar Documents

Publication Publication Date Title
Fradet-Turcotte et al. 53BP1 is a reader of the DNA-damage-induced H2A Lys 15 ubiquitin mark
Cain et al. A CHO cell line engineered to express XBP1 and ERO1‐Lα has increased levels of transient protein expression
Baycin-Hizal et al. Proteomic analysis of Chinese hamster ovary cells
EP2572203B1 (en) Determination of antigen-specific antibody sequences in blood circulation
JP5941615B2 (en) Method for immunological measurement of human CXCL1 protein
CA2925099C (en) Method for detecting pancreatic tumor, antibodies, and kit for the detection of pancreatic tumor
Nagelreiter et al. OPP labeling enables total protein synthesis quantification in CHO production cell lines at the single‐cell level
Dong et al. Chlamydomonas IFT25 is dispensable for flagellar assembly but required to export the BBSome from flagella
CA2675024A1 (en) Stabilization of cyclic peptide structures
WO2015030585A2 (en) Methods for detecting post-translationally modified lysines in a polypeptide
US10604586B2 (en) Humanized monoclonal antibody and uses thereof
JP6338235B2 (en) Screening method and production method of low molecular weight antibody
Akimov et al. StUbEx: Stable tagged ubiquitin exchange system for the global investigation of cellular ubiquitination
Lau et al. A phase-separated CO2-fixing pyrenoid proteome determined by TurboID in Chlamydomonas reinhardtii
Hotta et al. EML2-S constitutes a new class of proteins that recognizes and regulates the dynamics of tyrosinated microtubules
JP6796773B2 (en) Non-fucosylated proteins and methods
WO2017043593A1 (en) Sugar-sensing epigenome biomarker
Strzalka et al. Arabidopsis thaliana proliferating cell nuclear antigen has several potential sumoylation sites
JP6914919B2 (en) Anti-hypusine antibody and its use
JP2020513800A (en) Methods for discovering alternative antigen-specific antibody variants
JP6815632B2 (en) Anti-sulfate phenyl derivative antibody
EP4031658A1 (en) Improved horseradish peroxidase polypeptides
Zhang et al. A versatile new tool derived from a bacterial deubiquitylase to detect and purify ubiquitylated substrates and their interacting proteins
KR102442204B1 (en) Antibody for detecting acetylation of cyclooxygenase 2 and uses thereof
EP2957571B1 (en) Monoclonal anti-pvhl antibodies and uses thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844454

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017538513

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16844454

Country of ref document: EP

Kind code of ref document: A1