WO2017043567A1 - Cylindrical tank construction method - Google Patents

Cylindrical tank construction method Download PDF

Info

Publication number
WO2017043567A1
WO2017043567A1 PCT/JP2016/076428 JP2016076428W WO2017043567A1 WO 2017043567 A1 WO2017043567 A1 WO 2017043567A1 JP 2016076428 W JP2016076428 W JP 2016076428W WO 2017043567 A1 WO2017043567 A1 WO 2017043567A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
inner tank
side wall
side plate
liner
Prior art date
Application number
PCT/JP2016/076428
Other languages
French (fr)
Japanese (ja)
Inventor
寿一郎 山田
成貴 加藤
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Publication of WO2017043567A1 publication Critical patent/WO2017043567A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H7/00Construction or assembling of bulk storage containers employing civil engineering techniques in situ or off the site
    • E04H7/02Containers for fluids or gases; Supports therefor
    • E04H7/18Containers for fluids or gases; Supports therefor mainly of concrete, e.g. reinforced concrete, or other stone-like material

Definitions

  • the present disclosure relates to a method for constructing a cylindrical tank. This application claims priority based on Japanese Patent Application No. 2015-179734 for which it applied to Japan on September 11, 2015, and uses the content here.
  • a cylindrical shell with a double shell structure having an inner tank and an outer tank is used for storing low-temperature liquids such as LNG (liquefied natural gas) and LPG (liquefied petroleum gas).
  • Patent Document 1 discloses a cylindrical tank having a metal inner tank and a concrete outer tank.
  • Patent Document 1 discloses a technique in which a metal inner tank and a concrete outer tank are simultaneously constructed in order to shorten the construction period of a cylindrical tank. Specifically, a jack stand is erected at the bottom of the outer tub, and the jack-up device is supported at a predetermined height (see FIG. 4B of Patent Document 1). And when performing the side wall construction of the outer tub, the inner tub roof and the outer tub roof are assembled on the bottom of the outer tub, and then the inner tub roof and the outer tub roof are raised by the jack-up device, By attaching the inner tank side plates to the tank roof in order from the top to the bottom, simultaneous construction of the metal inner tank and the concrete outer tank is realized.
  • the side wall of the outer tank is constructed as follows, for example. First, the bottom of the outer tub is constructed, and steel liner materials are sequentially stacked in layers on the bottom and fixed by welding. When the liner material has been assembled, the outer mold is then installed, and concrete is cast using the liner material as the inner mold to construct the sidewall of the outer tub. In this method, in order to prevent buckling due to wind load of an independent and independent liner material, the thickness of the liner material must be increased, and the amount of construction cannot be minimized.
  • the inventors of the present invention have assembled a liner material from the bottom of the outer tub, followed by assembling the liner material using the liner material as an inner mold, and assembling the side walls of the outer tub. Devised. According to this method, the assembling of the liner material and the placing of the concrete are performed in parallel with a certain interval, and the liner material is supported by the concrete within a certain range, so that buckling due to the wind load of the liner material can be suppressed. . In addition, it is possible to minimize the amount of construction by optimizing the thickness of the liner material.
  • the liner material (the uppermost liner material) assembled prior to the concrete is not supported by the concrete, and is independent and independent. For this reason, it is necessary to weld, for example, a yoke material or the like as a strong ring to the uppermost liner material.
  • a yoke material or the like gets in the way of the cold insulation work between the inner and outer tubs, it must be finally removed from the liner material. Therefore, a great deal of work is required to attach and remove the yoke material.
  • the present disclosure has been made in view of the above problems, and an object thereof is to provide a method for constructing a cylindrical tank that can easily maintain the shape of a liner material assembled prior to placing concrete.
  • the first aspect according to the present disclosure is a method for constructing a cylindrical tank having a metal inner tank and a concrete outer tank.
  • the steel liner material is assembled in advance from the bottom of the outer tub, and the concrete is cast using the liner material as the inner mold following the assembly of the liner material.
  • An outer tank side wall constructing step for constructing the side wall of the outer tank.
  • a plurality of scaffolding units including beam members are hooked on a plurality of receiving beams installed on an inward plate surface facing the inside of a tank of liner material assembled in advance.
  • a plurality of scaffolding units including beam members are hooked on a plurality of receiving beams installed on an inward plate surface of a liner material assembled prior to placing concrete, and the beams of the scaffolding unit
  • the members are connected in a ring shape.
  • an annular strong ring can be formed along the inward plate surface of the liner material.
  • the annularly connected beam members maintain the shape of an independent and self-supporting liner material and function as a buckling prevention material (so-called stiffener) due to wind load.
  • stiffener buckling prevention material due to wind load.
  • the scaffold units are connected in the circumferential direction of the tank by connecting the beam members, and the scaffold can be formed over the entire circumference of the tank, the construction of the liner material is facilitated.
  • the scaffold unit is hooked on the receiving beam of the liner material, the attachment and removal work of the scaffold unit is easy. Therefore, in the present disclosure, the shape of the liner material assembled prior to the concrete placement can be easily maintained.
  • FIG. 3 is an arrow B view shown in FIG. 2.
  • a ground type PC (prestressed concrete) double-shell storage tank for storing LNG is exemplified as the cylindrical tank.
  • FIG. 1 is a diagram illustrating a first step of a construction method according to an embodiment of the present disclosure.
  • this method first, construction of a substantially disk-shaped foundation plate 1 made of concrete (the bottom of the outer tub) is performed. Next, the bottom liner 6 is laid on the foundation plate 1. Then, the roof pedestal 7 is assembled at the center of the base plate 1. Moreover, the PC wall 2 (side wall of the outer tub) is constructed at the outer peripheral edge of the base plate 1 (outer tub side wall construction step).
  • the PC wall 2 is constructed by placing the side liner 2a (steel liner material) in advance from the base plate 1 and following the assembling of the side liner 2a to place concrete 2b using the side liner 2a as an inner mold. It is constructed by.
  • the side liner 2a is, for example, a large steel plate having a length of 4.5 m, a width of 12 m, and a thickness of 8 mm.
  • An outer scaffold 5 is installed on the outside of the side liner 2a, an outer mold (not shown) is assembled so as to face the side liner 2a, and concrete 2b is placed.
  • the side liner 2a is joined by welding in the circumferential direction so as to be cylindrical as a whole.
  • the next side liner 2a is welded to the upper part of the side liner 2a joined in a cylindrical shape, and similarly, the next side liner 2a is joined in a circumferential direction so as to be cylindrical as a whole.
  • Match it is preferable to perform welding of the side liners 2a by one-side welding from the inside of the tank.
  • the assembly of the side liner 2a and the placement of the concrete 2b are performed alternately. That is, when the side liner 2a is assembled in advance, the concrete 2b is placed using the lower side liner 2a as the inner mold. For this reason, the assembling of the side liner 2a and the placing of the concrete 2b are parallel operations with a certain interval. Thereby, the protrusion part L of the side liner 2a of the height which is not placing concrete 2b can be restrained to a certain fixed range. For this reason, when designing the side liner 2a, the thickness of the side liner 2a may be set so that the side liner 2a can stand independently in the projecting portion L, and the design amount is optimized to minimize the amount of construction. And cost can be reduced.
  • the protruding portion L of the side liner 2a receives a wind load alone.
  • an inner side scaffold is also required. Therefore, in this method, in the construction of the PC wall 2, the shape of the side liner 2a is maintained, used as a welding work scaffold for the side liner 2a, and also functions as a buckling prevention material (so-called stiffener) due to wind load.
  • the scaffold unit 100 is installed.
  • FIG. 2 is a side view showing an installation state of the scaffold unit 100 in the present embodiment.
  • FIG. 3 is an arrow A view shown in FIG. 4 is an arrow B view shown in FIG.
  • a plurality of receiving beams 101 are installed on the side liner 2a.
  • the receiving beam 101 is a steel material assembled in an L shape that extends in the horizontal direction from the side liner 2a and then rises in the vertical direction.
  • the receiving beam 101 is fixed to the inward plate surface 102 facing the tank inside of the side liner 2a by welding.
  • a plurality of receiving beams 101 are arranged at intervals in the longitudinal direction of the side liner 2a.
  • a plurality of receiving beams 101 are arranged so as to be hooked at three places in the longitudinal direction with respect to one scaffold unit 100.
  • the receiving beams 101 according to the present embodiment are arranged in two upper and lower rows, and are hooked to a total of six places on one scaffold unit 100.
  • the receiving beam 101 is preferably welded to the side liner 2a in advance on the ground before assembling the side liner 2a.
  • the scaffold unit 100 includes a beam member 110 that can be hooked on the receiving beam 101, and a scaffold 120 that is integrally fixed to the beam member 110.
  • the beam member 110 extends along the inward plate surface 102 in the longitudinal direction of the side liner 2a (the paper depth direction shown in FIG. 2).
  • the beam member 110 forms a stronger ring of the side liner 2a by being connected in an annular shape as will be described later, and maintains the shape of the side liner 2a.
  • the beam member 110 for example, an H-shaped steel having a cross-sectional dimension of 200 mm long ⁇ 200 mm wide is used.
  • the scaffold unit 100 includes two beam members 110 arranged one above the other. Each of the upper and lower beam members 110 is hooked on the receiving beam 101 at three locations as shown in FIG.
  • the scaffold unit 100 includes two scaffolds 120 that are fixed to the upper and lower beam members 110, respectively.
  • the scaffold 120 is supported by a plurality of projecting members 121 (see FIG. 4) welded to the beam member 110, a cross member 122 fixed to the ends of the plurality of projecting members 121, and the projecting member 121 and the cross member 122. Scaffolding plate 123.
  • An oblique member 124 is connected to the bottom of the scaffold 120 as shown in FIG.
  • One end of the oblique member 124 is fixed to the overhanging member 121 with a bolt or the like, and the other end of the oblique member 124 contacts the inward plate surface 102 of the side liner 2a.
  • the other end of the diagonal member 124 that supports the bottom of the upper scaffold 120 is fixed to a vertical member 125 that connects the upper and lower beam members 110 with a bolt or the like.
  • the other end of the diagonal member 124 that supports the bottom of the lower scaffold 120 is fixed to a vertical member 126 that extends downward from the lower beam member 110 with a bolt or the like.
  • the scaffold unit 100 includes a vertical member 126 that connects the upper and lower scaffolds 120. As shown in FIG. 3, a cross member 127 serving as a handrail is fixed to the vertical member 126. As shown in FIG. 3, a plurality of scaffold units 100 having the above configuration are attached to the side liner 2a. Specifically, a plurality of scaffold units 100 are attached by hooking the beam members 110 of the scaffold unit 100 to the receiving beam 101 as shown in FIG. The beam member 110 and the receiving beam 101 are preferably connected with a bolt or the like in order to maintain the hooked state. Note that the scaffold unit 100 may be attached to the side liner 2a in advance on the ground.
  • the beam members 110 of the scaffold unit 100 hooked to the receiving beam 101 are connected in an annular shape along the inward plate surface 102 of the side liner 2a (scaffold unit connecting step).
  • the beam members 110 are preferably connected to each other using a connection plate 130 such as a face plate to which a plurality of bolts can be fastened.
  • a connection plate 130 such as a face plate to which a plurality of bolts can be fastened.
  • the beam member 110 is connected by the connection plate 130 to form a strong ring having an annular shape (in detail, a polygonal annular shape close to a circle) that goes around the tank.
  • a plurality of scaffold units 100 including beam members 110 are hooked on a plurality of receiving beams 101 installed on the inward plate surface 102 of the side liner 2a assembled prior to the placing of the concrete 2b.
  • an annular strong ring is formed along the inward plate surface 102 of the side liner 2a.
  • the beam members 110 connected in an annular shape maintain the shape of the independent side liner 2a and function as a buckling prevention material (so-called stiffener) due to wind load.
  • stiffener a buckling prevention material due to wind load.
  • the scaffold unit 100 is connected in the circumferential direction of the tank by connecting the beam member 110 and can form a scaffold over the entire circumference of the tank, the side liner 2a can be easily constructed (welded or the like).
  • the scaffold unit 100 is hooked on the receiving beam 101 of the side liner 2a as shown in FIG. 2, the attachment and removal work of the scaffold unit 100 is easy. For example, if the bolting that maintains the hooked state of the beam member 110 and the receiving beam 101 is released, the scaffold unit 100 can be easily removed (lifted) from the side liner 2a with a crane or the like.
  • the receiving beams 101 are dotted and welded to the side liner 2a and each receiving beam 101 is small in a piece shape, the receiving beams 101 can be easily excised when disturbing during the cold insulation work described later.
  • the shape of the side liner 2a assembled prior to the placement of the concrete 2b can be easily maintained.
  • the scaffold unit 100 includes beam members 110 that are arranged above and below, and in the scaffold unit coupling step, each of the upper and lower beam members 110 is annularly coupled along the inward plate surface 102 of the side liner 2a.
  • the shape of the side liner 2a can be maintained with higher accuracy.
  • the radial position of the side liner 2a can be accurately adjusted by moving the side liner 2a in the radial direction with reference to the beam member 110 connected in an annular shape.
  • the assembly work of the scaffold unit 100 is performed. Etc. becomes easy.
  • the scaffold unit 100 includes a scaffold 120 fixed to each of the upper and lower beam members 110. According to this configuration, operations such as welding (vertical seam welding) between the side liners 2a adjacent to each other in the circumferential direction and inspection related to the welding are facilitated. Moreover, since the beam member 110 is H-shaped steel, the manufacturing cost of the scaffold unit 100 can be reduced as compared with the case where a custom-made steel material is used.
  • FIG. 5 is a diagram illustrating a second step of the construction method according to the embodiment of the present disclosure.
  • the PC wall 2 is constructed while attaching the scaffold unit 100 to the side liner 2a as described above.
  • an inner tank anchor strap 4 is installed on the base plate 1 inside the PC wall 2.
  • the construction port 8 for taking in the inner tank side plate 9 one by one in the base end part of the PC wall 2 is formed.
  • a plurality of gate-type mounts 10 for assembling the inner tank side plate are installed along the inside of the base end of the PC wall 2.
  • the gate-type gantry 10 is installed so that a cylindrical inner tank formed by combining a plurality of inner tank side plates 9 straddles the annular area X, which is an area to be finally lowered on the base plate 1.
  • the inner tank side plate 9 is placed on the gate-type gantry 10 and the inner tank side plates 9 adjacent in the circumferential direction are welded to each other so as to form a cylindrical shape as a whole. Further, the knuckle plate 11 is assembled to the upper end portion of the inner tank side plate 9.
  • the structural member 12 of the annular portion 13 such as a pearlite concrete block or a structural lightweight concrete block is temporarily placed in the annular region X under the portal frame 10.
  • the inner tank roof 14 is assembled on the roof mount 7. Further, the knuckle plate 11 is assembled to the outer peripheral edge portion of the inner tank roof 14.
  • the suspending side jack mount 16 (hanging point) is placed on the PC wall 2 above the knuckle plate 11.
  • the suspension-side jack mount 16 is installed so as to protrude substantially horizontally from the PC wall 2 having a predetermined height toward the inside of the tank.
  • the suspension-side jack mount 16 is fastened and fixed firmly, for example, to an anchor plate embedded in the PC wall 2 or the like.
  • a plurality of knuckle reinforcements 17 facing the plurality of suspension-side jack mounts 16 are installed on the knuckle plate 11.
  • the knuckle reinforcement member 17 projects from the knuckle plate 11 toward the inner / outer tank 15. Further, the knuckle reinforcing member 17 serves as a suspended base.
  • a jack-up device 18 is installed across the suspension-side jack mount 16 and the knuckle reinforcement member 17.
  • the jack-up device 18 is a center hole jack.
  • the device main body is installed on the suspension-side jack mount 16 and the lower end of the jack-up rod 19 is attached to the knuckle reinforcement member 17.
  • the jack-up device 18 When the jack-up device 18 is installed in this way, the roof mount 7 is removed, and the knuckle plate 11 is lifted by the jack-up device 18 to raise the inner tank side plate 9.
  • the jack-up device 18 When the inner tank side plate 9 is raised by the jack-up device 18 by one stroke of the jack-up rod 19 (corresponding to the vertical width of the inner tank side plate 9 alone in this embodiment), the jack-up device 18 lowers the inner tank side plate 9 by this jack-up.
  • the inner tank side plate 9 of the next stage is carried into the space formed.
  • FIG. 6 is a diagram illustrating a third step of the construction method according to the embodiment of the present disclosure.
  • the inner tank side plate 9 of the next stage is connected in the tank circumferential direction, the upper end thereof and the lower end of the raised inner tank side plate 9 are welded.
  • the inner tank side plate 9 integrated by this welding is jacked up by the jack-up device 18, and the next stage of the inner tank side plate 9 is carried into the space formed by the jack up in the lower part of the inner tank side plate 9.
  • the raising of the inner tank side plate 9 by the jack-up device 18 and the welding of the inner tank side plate 9 of the next stage to the lower part of the raised inner tank side plate 9 are alternately repeated (inner tank side wall construction step).
  • the inner tank side plate 9 is attached in order from the uppermost stage, and the first structure 9a excluding the lowermost stage of the inner tank side plate 9 is assembled.
  • the cold insulation work of the annular portion 13 is performed in parallel under the portal frame 10.
  • the leg portion 10 a disposed on the inner side of the tank than the annular portion 13 is moved onto the annular portion 13.
  • the foam glass 40 is placed on the bottom cooling resistance reducing material 39.
  • a pearlite concrete block (not shown) and an inner tank bottom plate (not shown) are laid on top of each other in this order.
  • FIG. 7 is a diagram illustrating a fourth step of the construction method according to the embodiment of the present disclosure.
  • the lowermost stage of the inner tank side plate 9 is assembled on the annular portion 13 separately from the first structure 9a.
  • the portal frame 10 After disassembling the portal frame 10, when the lowermost stage of the inner tank side plate 9 is placed on the annular portion 13, the inner tank side plates 9 adjacent to each other in the circumferential direction are welded together and joined together so as to be cylindrical.
  • the second structure 9b is assembled.
  • the inner tank anchor strap 4 installed on the foundation plate 1 is attached to the second structure 9b.
  • the outer tank roof 22 is assembled on the inner tank roof 14.
  • the outer tank roof 22 is connected to the inner tank roof 14 by a connecting material (not shown), and is assembled integrally with the inner tank roof 14.
  • an elevating staircase 23 is provided outside the PC wall 2.
  • the pump barrel 25 is carried inside the PC wall 2.
  • FIG. 8 is a diagram illustrating a fifth step of the construction method according to the embodiment of the present disclosure.
  • the first structure 9a is jacked down, the lower end portion of the first structure 9a is lowered to the upper end portion of the second structure 9b, and the first structure 9a is lowered.
  • the structure 9a and the second structure 9b are welded, and the inner tank 30 is assembled.
  • the assembly of the lowermost stage of the inner tank 30 is separated from the assembly of the inner tank 30 by the jack-up device 18, and the second structure 9 b that is the lowermost stage of the inner tank 30 is fixed on the annular portion 13. (See FIG. 7). Therefore, in this method, for example, fixing the inner tank 30 on the annular portion 13 which takes about one month does not become a critical path, and the construction period can be shortened compared to the conventional method.
  • the outer tub roof 22 is disconnected from the inner tub roof 14 by a connecting material (not shown) and installed on the upper end of the PC wall 2 assembled to the top.
  • a roof staircase 24 is provided on the outer tank roof 22.
  • a pump barrel 25 is also installed.
  • the knuckle reinforcement member 17 is cut off and the jackup device 18 is removed.
  • tension work on the PC wall 2 is performed.
  • the construction port 8 is closed, it is filled with water and a pressure and airtight test is performed.
  • FIG. 9 is a diagram illustrating a sixth step of the construction method according to the embodiment of the present disclosure.
  • the cold insulation material 44 is arranged between the inner and outer tanks 15 and the cold insulation material 44 is arranged between the inner tank roof 14 and the outer tank roof 22 to perform the cold insulation work.
  • the cylindrical tank 50 is constructed through painting work and pipe cooling work.
  • the above-described embodiment is a method for constructing a cylindrical tank 50 having a metal inner tank and a concrete outer tank.
  • this cylindrical tank construction method while assembling the steel side liner 2a in advance from the base plate 1, following the assembly of the side liner 2a, the concrete 2b is driven using the side liner 2a as the inner mold, It has an outer tank side wall construction process of constructing the PC wall 2.
  • the outer tub side wall construction step hangs a plurality of scaffold units 100 including beam members 110 on a plurality of receiving beams 101 installed on the inward plate surface 102 of the side liner 2a assembled in advance.
  • a scaffold unit connecting step of connecting the beam members 110 of the scaffold unit 100 hooked to 101 in a ring shape along the inward plate surface 102 of the side liner 2a is included.
  • the direction of the beam member 110A may be rotated by 90 ° with respect to the beam member 110 of the above embodiment.
  • the beam member 110A since the web connecting the flanges of the H-shaped steel is disposed perpendicular to the inward plate surface 102 (that is, the web extends in the horizontal direction), the beam member 110A is provided on the inward plate surface of the side liner 2a. It becomes strong against the load received from 102. Since it is difficult to connect the beam member 110A in this direction to the receiving beam 101 with a bolt or the like, it is preferable to fix the beam member 110A by driving a wedge member 140 into the gap as shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

This construction method for a cylindrical tank having a metal inner tank and a concrete outer tank involves an outer tank side wall construction step in which a PC wall 2 is constructed in that steel side liners 2a are built up from a base plate and, following the building up of the side liners 2a, concrete 2b is laid with the side liners 2a as the inside frame. In the outside tank side wall construction step, a method is adopted that involves a scaffolding unit linking step in which multiple scaffolding units 100 comprising a beam member 110 are hung on multiple beam receivers 101 installed on the inward-facing plate surface 102 of previously built-up side liners 2a, and the beam members 110 of the scaffolding units 100 hung on the beam receivers 101 are linked together in a ring shape along the inward-facing plate surface 102 of the side liners 2a.

Description

円筒型タンクの構築方法Construction method of cylindrical tank
 本開示は、円筒型タンクの構築方法に関する。
 本願は、2015年9月11日に日本に出願された特願2015-179734号に基づき優先権を主張し、その内容をここに援用する。
The present disclosure relates to a method for constructing a cylindrical tank.
This application claims priority based on Japanese Patent Application No. 2015-179734 for which it applied to Japan on September 11, 2015, and uses the content here.
 内槽と外槽とを有する二重殻構造の円筒型タンクは、LNG(液化天然ガス)やLPG(液化石油ガス)等の低温液体の貯蔵に用いられている。特許文献1には、金属製の内槽とコンクリート製の外槽とを有する円筒型タンクが開示されている。 A cylindrical shell with a double shell structure having an inner tank and an outer tank is used for storing low-temperature liquids such as LNG (liquefied natural gas) and LPG (liquefied petroleum gas). Patent Document 1 discloses a cylindrical tank having a metal inner tank and a concrete outer tank.
 特許文献1には、円筒型タンクの工期の短縮を図るため、金属製の内槽とコンクリート製の外槽とを同時に施工する手法が開示されている。具体的には、外槽の底部にジャッキ架台を立設させ、ジャッキアップ装置を所定高さに支持させる(特許文献1の図4(b)参照)。そして、外槽の側壁工事を行うときに、外槽の底部上で内槽屋根と外槽屋根とを組み立て、次いで、上記ジャッキアップ装置により内槽屋根と外槽屋根とを上昇させながら、内槽屋根に内槽側板を最上段から最下段へと順に取り付けることで、金属製の内槽とコンクリート製の外槽との同時施工を実現している。 Patent Document 1 discloses a technique in which a metal inner tank and a concrete outer tank are simultaneously constructed in order to shorten the construction period of a cylindrical tank. Specifically, a jack stand is erected at the bottom of the outer tub, and the jack-up device is supported at a predetermined height (see FIG. 4B of Patent Document 1). And when performing the side wall construction of the outer tub, the inner tub roof and the outer tub roof are assembled on the bottom of the outer tub, and then the inner tub roof and the outer tub roof are raised by the jack-up device, By attaching the inner tank side plates to the tank roof in order from the top to the bottom, simultaneous construction of the metal inner tank and the concrete outer tank is realized.
日本国特開平7-62924号公報Japanese Unexamined Patent Publication No. 7-62924
 ところで、外槽の側壁は、例えば、次のように構築される。先ず、外槽の底部を施工し、その上に鋼製のライナー材を層状に順次積み上げ溶接固定する。ライナー材を組み終えたら、次に外側型枠を設置し、ライナー材を内側型枠としてコンクリートを打設していき外槽の側壁を構築する。この手法では、独立で自立するライナー材の風荷重による座屈を防止するべく、ライナー材の板厚を厚くしなければならず、建設物量を必要最小限に抑えることができない。 By the way, the side wall of the outer tank is constructed as follows, for example. First, the bottom of the outer tub is constructed, and steel liner materials are sequentially stacked in layers on the bottom and fixed by welding. When the liner material has been assembled, the outer mold is then installed, and concrete is cast using the liner material as the inner mold to construct the sidewall of the outer tub. In this method, in order to prevent buckling due to wind load of an independent and independent liner material, the thickness of the liner material must be increased, and the amount of construction cannot be minimized.
 そこで、本願発明者らは、外槽の底部からライナー材を先行して組み上げつつ、ライナー材の組み上げに追従してライナー材を内側型枠としてコンクリートを打設し、外槽の側壁を組み上げる方法を考案した。この方法によれば、ライナー材の組み上げとコンクリートの打設が一定の間隔をあけた並行作業となり、ライナー材は一定の範囲でコンクリートに支えられるため、ライナー材の風荷重による座屈を抑制できる。また、ライナー材の板厚等を最適にして建設物量を必要最小限に抑えることが可能となる。 Therefore, the inventors of the present invention have assembled a liner material from the bottom of the outer tub, followed by assembling the liner material using the liner material as an inner mold, and assembling the side walls of the outer tub. Devised. According to this method, the assembling of the liner material and the placing of the concrete are performed in parallel with a certain interval, and the liner material is supported by the concrete within a certain range, so that buckling due to the wind load of the liner material can be suppressed. . In addition, it is possible to minimize the amount of construction by optimizing the thickness of the liner material.
 しかしながら、この方法においても、コンクリートに先行して組み上げられたライナー材(最上段のライナー材)は、コンクリートに支えられず、独立で自立することとなる。このため、最上段のライナー材に、例えば、強め環としてヨーク材等を溶接する必要があった。しかし、このヨーク材は、内外槽間の保冷工事の際に邪魔になるため、最終的にはライナー材から取り外さなければならない。したがって、このヨーク材の取り付け及び取り外しに、多大な作業が発生する。 However, even in this method, the liner material (the uppermost liner material) assembled prior to the concrete is not supported by the concrete, and is independent and independent. For this reason, it is necessary to weld, for example, a yoke material or the like as a strong ring to the uppermost liner material. However, since this yoke material gets in the way of the cold insulation work between the inner and outer tubs, it must be finally removed from the liner material. Therefore, a great deal of work is required to attach and remove the yoke material.
 本開示は、上記課題点に鑑みてなされたものであり、コンクリートの打設に先行して組み上げられたライナー材の形状を容易に維持できる円筒型タンクの構築方法の提供を目的とする。 The present disclosure has been made in view of the above problems, and an object thereof is to provide a method for constructing a cylindrical tank that can easily maintain the shape of a liner material assembled prior to placing concrete.
 本開示に係る第一の態様は、金属製の内槽とコンクリート製の外槽とを有する円筒型タンクの構築方法である。この円筒型タンクの構築方法は、外槽の底部から鋼製のライナー材を先行して組み上げつつ、ライナー材の組み上げに追従して前記ライナー材を内側型枠としてコンクリートを打設し、外槽の側壁を構築する外槽側壁構築工程を有する。外槽側壁構築工程は、先行して組み上げられたライナー材のタンクの内側を向く内向き板面に設置された複数の受梁に、梁部材を備える足場ユニットを複数掛止し、受梁に掛止された足場ユニットの梁部材同士をライナー材の内向き板面に沿って環状に連結する足場ユニット連結工程を含む。 The first aspect according to the present disclosure is a method for constructing a cylindrical tank having a metal inner tank and a concrete outer tank. In this cylindrical tank construction method, the steel liner material is assembled in advance from the bottom of the outer tub, and the concrete is cast using the liner material as the inner mold following the assembly of the liner material. An outer tank side wall constructing step for constructing the side wall of the outer tank. In the outer tank side wall construction process, a plurality of scaffolding units including beam members are hooked on a plurality of receiving beams installed on an inward plate surface facing the inside of a tank of liner material assembled in advance. A scaffold unit connecting step of connecting the beam members of the suspended scaffold units in an annular manner along the inward plate surface of the liner material;
 本開示によれば、コンクリートの打設に先行して組み上げられたライナー材の内向き板面に設置された複数の受梁に、梁部材を備える足場ユニットを複数掛止し、足場ユニットの梁部材同士を環状に連結する。これにより、ライナー材の内向き板面に沿って環状の強め環を形成することができる。環状に連結された梁部材は、独立で自立するライナー材の形状を維持し、また、風荷重による座屈防止材(所謂スティフナー)として機能する。さらに、梁部材の連結によって、足場ユニットはタンク周方向に連なり、タンク全周に渡る足場を形成できるため、ライナー材の施工が容易になる。また、足場ユニットは、ライナー材の受梁に掛止されるため、足場ユニットの取り付け及び取り外し作業は容易である。
 したがって、本開示では、コンクリートの打設に先行して組み上げられたライナー材の形状を容易に維持できる。
According to the present disclosure, a plurality of scaffolding units including beam members are hooked on a plurality of receiving beams installed on an inward plate surface of a liner material assembled prior to placing concrete, and the beams of the scaffolding unit The members are connected in a ring shape. Thereby, an annular strong ring can be formed along the inward plate surface of the liner material. The annularly connected beam members maintain the shape of an independent and self-supporting liner material and function as a buckling prevention material (so-called stiffener) due to wind load. Furthermore, since the scaffold units are connected in the circumferential direction of the tank by connecting the beam members, and the scaffold can be formed over the entire circumference of the tank, the construction of the liner material is facilitated. Further, since the scaffold unit is hooked on the receiving beam of the liner material, the attachment and removal work of the scaffold unit is easy.
Therefore, in the present disclosure, the shape of the liner material assembled prior to the concrete placement can be easily maintained.
本開示の実施形態における構築方法の第1工程を示す図である。It is a figure which shows the 1st process of the construction method in embodiment of this indication. 本開示の実施形態における足場ユニットの設置状態を示す側面図である。It is a side view which shows the installation state of the scaffold unit in embodiment of this indication. 図2に示す矢視A図である。It is arrow A figure shown in FIG. 図2に示す矢視B図である。FIG. 3 is an arrow B view shown in FIG. 2. 本開示の実施形態における構築方法の第2工程を示す図である。It is a figure which shows the 2nd process of the construction method in embodiment of this indication. 本開示の実施形態における構築方法の第3工程を示す図である。It is a figure showing the 3rd process of the construction method in the embodiment of this indication. 本開示の実施形態における構築方法の第4工程を示す図である。It is a figure which shows the 4th process of the construction method in embodiment of this indication. 本開示の実施形態における構築方法の第5工程を示す図である。It is a figure which shows the 5th process of the construction method in embodiment of this indication. 本開示の実施形態における構築方法の第6工程を示す図である。It is a figure which shows the 6th process of the construction method in embodiment of this indication. 本開示の別実施形態における足場ユニットの設置状態を示す側面図である。It is a side view which shows the installation state of the scaffold unit in another embodiment of this indication.
 以下、本開示の円筒型タンクの構築方法について図面を参照して説明する。以下の説明では、円筒型タンクとして、LNGを貯蔵する地上式のPC(プレストレスコンクリート)二重殻貯槽を例示する。 Hereinafter, the construction method of the cylindrical tank according to the present disclosure will be described with reference to the drawings. In the following description, a ground type PC (prestressed concrete) double-shell storage tank for storing LNG is exemplified as the cylindrical tank.
 図1は、本開示の実施形態における構築方法の第1工程を示す図である。
 図1に示すように、本手法では、先ず、コンクリート製の略円板状の基礎版1(外槽の底部)の工事を行う。次に、基礎版1上に底部ライナー6を敷設する。そして、基礎版1の中央部に屋根架台7を組み立てる。また、基礎版1の外周縁部には、PC壁2(外槽の側壁)を構築する(外槽側壁構築工程)。
FIG. 1 is a diagram illustrating a first step of a construction method according to an embodiment of the present disclosure.
As shown in FIG. 1, in this method, first, construction of a substantially disk-shaped foundation plate 1 made of concrete (the bottom of the outer tub) is performed. Next, the bottom liner 6 is laid on the foundation plate 1. Then, the roof pedestal 7 is assembled at the center of the base plate 1. Moreover, the PC wall 2 (side wall of the outer tub) is constructed at the outer peripheral edge of the base plate 1 (outer tub side wall construction step).
 PC壁2は、基礎版1から側ライナー2a(鋼製のライナー材)を先行して組み上げつつ、側ライナー2aの組み上げに追従して側ライナー2aを内側型枠としてコンクリート2bを打設することにより構築される。側ライナー2aは、例えば、縦4.5m、横12m、厚み8mmの大型の鋼板である。側ライナー2aの外側には外側足場5を設置し、側ライナー2aに対向するように図示しない外側型枠を組み、コンクリート2bを打設する。 The PC wall 2 is constructed by placing the side liner 2a (steel liner material) in advance from the base plate 1 and following the assembling of the side liner 2a to place concrete 2b using the side liner 2a as an inner mold. It is constructed by. The side liner 2a is, for example, a large steel plate having a length of 4.5 m, a width of 12 m, and a thickness of 8 mm. An outer scaffold 5 is installed on the outside of the side liner 2a, an outer mold (not shown) is assembled so as to face the side liner 2a, and concrete 2b is placed.
 側ライナー2aは、全体で円筒状になるように周方向に溶接によって繋ぎ合わせる。円筒状に繋ぎ合わせた側ライナー2aの上部には、次の段の側ライナー2aを溶接し、同様に、次の段の側ライナー2aを全体で円筒状になるように周方向に溶接によって繋ぎ合わせる。なお、側ライナー2a同士の溶接は、タンク内側からの片側溶接により行うことが好ましい。例えば、裏当て金を用いた裏当て付突合せ溶接を行うことが好ましい。このように、側ライナー2a同士の溶接をタンク内側からの片側溶接とすることにより、タンク外側におけるコンクリート2bの打設工事との干渉を回避することができる。 The side liner 2a is joined by welding in the circumferential direction so as to be cylindrical as a whole. The next side liner 2a is welded to the upper part of the side liner 2a joined in a cylindrical shape, and similarly, the next side liner 2a is joined in a circumferential direction so as to be cylindrical as a whole. Match. In addition, it is preferable to perform welding of the side liners 2a by one-side welding from the inside of the tank. For example, it is preferable to perform backing butt welding using a backing metal. In this way, by making the welding of the side liners 2a one-sided welding from the inside of the tank, interference with the concrete 2b placing work on the outside of the tank can be avoided.
 側ライナー2aの組み上げと、コンクリート2bの打設は、交互に行う。すなわち、側ライナー2aを先行して組み上げたら、下側の側ライナー2aを内側型枠としてコンクリート2bを打設する。このため、側ライナー2aの組み上げと、コンクリート2bの打設は、一定の間隔をあけた並行作業となる。これにより、コンクリート2bを打設していない高さの側ライナー2aの突出部分Lを、ある一定範囲に抑えることができる。このため、側ライナー2aを設計する際に、側ライナー2aの板厚は、突出部分Lにおいて側ライナー2aが独立で自立できるよう設定すればよく、設計を最適にして建設物量をミニマムにすることができ、コストを低減することができる。 The assembly of the side liner 2a and the placement of the concrete 2b are performed alternately. That is, when the side liner 2a is assembled in advance, the concrete 2b is placed using the lower side liner 2a as the inner mold. For this reason, the assembling of the side liner 2a and the placing of the concrete 2b are parallel operations with a certain interval. Thereby, the protrusion part L of the side liner 2a of the height which is not placing concrete 2b can be restrained to a certain fixed range. For this reason, when designing the side liner 2a, the thickness of the side liner 2a may be set so that the side liner 2a can stand independently in the projecting portion L, and the design amount is optimized to minimize the amount of construction. And cost can be reduced.
 ところで、先行して組み上げられた側ライナー2a(最上段の側ライナー2a)の周囲には、位置決め(特にタンク半径方向の位置決め)を行うための構造物がない。また、側ライナー2aの突出部分Lは、単体で風荷重を受ける。また、側ライナー2aの溶接作業をするために、内側足場も必要である。そこで、本手法では、PC壁2の構築において、側ライナー2aの形状を維持し、側ライナー2aの溶接作業足場として用いられ、かつ、風荷重による座屈防止材(所謂スティフナー)としても機能する足場ユニット100を設置する。 Incidentally, there is no structure for positioning (particularly positioning in the tank radial direction) around the side liner 2a (the uppermost side liner 2a) assembled in advance. Further, the protruding portion L of the side liner 2a receives a wind load alone. Moreover, in order to perform the welding operation | work of the side liner 2a, an inner side scaffold is also required. Therefore, in this method, in the construction of the PC wall 2, the shape of the side liner 2a is maintained, used as a welding work scaffold for the side liner 2a, and also functions as a buckling prevention material (so-called stiffener) due to wind load. The scaffold unit 100 is installed.
 図2は、本実施形態における足場ユニット100の設置状態を示す側面図である。図3は、図2に示す矢視A図である。図4は、図2に示す矢視B図である。
 図2に示すように、側ライナー2aには、受梁101が複数設置されている。受梁101は、側ライナー2aから水平方向に延びたのち、鉛直方向に立ち上がるL字に組まれた鋼材である。受梁101は、側ライナー2aのタンク内側を向く内向き板面102に溶接により固定される。
FIG. 2 is a side view showing an installation state of the scaffold unit 100 in the present embodiment. FIG. 3 is an arrow A view shown in FIG. 4 is an arrow B view shown in FIG.
As shown in FIG. 2, a plurality of receiving beams 101 are installed on the side liner 2a. The receiving beam 101 is a steel material assembled in an L shape that extends in the horizontal direction from the side liner 2a and then rises in the vertical direction. The receiving beam 101 is fixed to the inward plate surface 102 facing the tank inside of the side liner 2a by welding.
 受梁101は、図3に示すように、側ライナー2aの長手方向に間隔をあけて複数配置される。受梁101は、1つの足場ユニット100に対して長手方向において3カ所に掛止できるように複数配置される。本実施形態の受梁101は、上下2列に配置され、1つの足場ユニット100に対して合計で6カ所に掛止される。受梁101は、側ライナー2aを組み上げる前に、地上で予め側ライナー2aに溶接しておくことが好ましい。 As shown in FIG. 3, a plurality of receiving beams 101 are arranged at intervals in the longitudinal direction of the side liner 2a. A plurality of receiving beams 101 are arranged so as to be hooked at three places in the longitudinal direction with respect to one scaffold unit 100. The receiving beams 101 according to the present embodiment are arranged in two upper and lower rows, and are hooked to a total of six places on one scaffold unit 100. The receiving beam 101 is preferably welded to the side liner 2a in advance on the ground before assembling the side liner 2a.
 足場ユニット100は、図2に示すように、受梁101に掛止可能な梁部材110と、梁部材110に一体的に固定された足場120と、を備える。梁部材110は、内向き板面102に沿って側ライナー2aの長手方向(図2に示す紙面奥行方向)に延びる。梁部材110は、後述するように環状に連結することによって側ライナー2aの強め環を形成し、側ライナー2aの形状を維持する。本実施形態では、梁部材110として、例えば、断面寸法が縦200mm×横200mmのH形鋼が使用される。 As shown in FIG. 2, the scaffold unit 100 includes a beam member 110 that can be hooked on the receiving beam 101, and a scaffold 120 that is integrally fixed to the beam member 110. The beam member 110 extends along the inward plate surface 102 in the longitudinal direction of the side liner 2a (the paper depth direction shown in FIG. 2). The beam member 110 forms a stronger ring of the side liner 2a by being connected in an annular shape as will be described later, and maintains the shape of the side liner 2a. In the present embodiment, as the beam member 110, for example, an H-shaped steel having a cross-sectional dimension of 200 mm long × 200 mm wide is used.
 足場ユニット100は、上下に配置される2つの梁部材110を備える。上下の梁部材110のそれぞれは、図3に示すように、3カ所で受梁101に掛止される。また、足場ユニット100は、上下の梁部材110のそれぞれに固定される2つの足場120を備える。足場120は、梁部材110に溶接された複数の張り出し材121(図4参照)と、複数の張り出し材121の先端に固定される横材122と、張り出し材121及び横材122によって支持される足場板123と、を備える。 The scaffold unit 100 includes two beam members 110 arranged one above the other. Each of the upper and lower beam members 110 is hooked on the receiving beam 101 at three locations as shown in FIG. The scaffold unit 100 includes two scaffolds 120 that are fixed to the upper and lower beam members 110, respectively. The scaffold 120 is supported by a plurality of projecting members 121 (see FIG. 4) welded to the beam member 110, a cross member 122 fixed to the ends of the plurality of projecting members 121, and the projecting member 121 and the cross member 122. Scaffolding plate 123.
 足場120の底部には、図2に示すように、斜め材124が連結されている。斜め材124の一端は張り出し材121にボルト等で固定され、斜め材124の他端は側ライナー2aの内向き板面102に当接する。上側の足場120の底部を支える斜め材124の他端は、上下の梁部材110を連結する縦材125にボルト等で固定される。また、下側の足場120の底部を支える斜め材124の他端は、下側の梁部材110から下方に延びる縦材126にボルト等で固定される。 An oblique member 124 is connected to the bottom of the scaffold 120 as shown in FIG. One end of the oblique member 124 is fixed to the overhanging member 121 with a bolt or the like, and the other end of the oblique member 124 contacts the inward plate surface 102 of the side liner 2a. The other end of the diagonal member 124 that supports the bottom of the upper scaffold 120 is fixed to a vertical member 125 that connects the upper and lower beam members 110 with a bolt or the like. The other end of the diagonal member 124 that supports the bottom of the lower scaffold 120 is fixed to a vertical member 126 that extends downward from the lower beam member 110 with a bolt or the like.
 また、足場ユニット100は、上下の足場120を連結する縦材126を備える。縦材126には、図3に示すように、手摺りとなる横材127が固定される。
 上記構成を有する足場ユニット100は、図3に示すように、側ライナー2aに複数取り付けられる。具体的には、足場ユニット100の梁部材110を、図2に示すように、受梁101に掛止することで、足場ユニット100を複数取り付ける。なお、梁部材110と受梁101は、掛止状態を維持するためにボルト等で連結することが好ましい。なお、足場ユニット100の側ライナー2aへの取り付けは、予め地上で行っても良い。
In addition, the scaffold unit 100 includes a vertical member 126 that connects the upper and lower scaffolds 120. As shown in FIG. 3, a cross member 127 serving as a handrail is fixed to the vertical member 126.
As shown in FIG. 3, a plurality of scaffold units 100 having the above configuration are attached to the side liner 2a. Specifically, a plurality of scaffold units 100 are attached by hooking the beam members 110 of the scaffold unit 100 to the receiving beam 101 as shown in FIG. The beam member 110 and the receiving beam 101 are preferably connected with a bolt or the like in order to maintain the hooked state. Note that the scaffold unit 100 may be attached to the side liner 2a in advance on the ground.
 次に、受梁101に掛止された足場ユニット100の梁部材110同士を、図3に示すように、側ライナー2aの内向き板面102に沿って環状に連結する(足場ユニット連結工程)。梁部材110同士の連結は、図4に示すように、ボルトが複数締結できる目板等の連結プレート130を使用することが好ましい。また、連結プレート130を用いて、図3に示すように、梁部材110(H形鋼)のフランジの上下それぞれを連結することが好ましい。梁部材110は、連結プレート130によって連結されることで、タンクを一周する環状(詳細には、円形に近い多角形の環状)の強め環を形成する。 Next, as shown in FIG. 3, the beam members 110 of the scaffold unit 100 hooked to the receiving beam 101 are connected in an annular shape along the inward plate surface 102 of the side liner 2a (scaffold unit connecting step). . As shown in FIG. 4, the beam members 110 are preferably connected to each other using a connection plate 130 such as a face plate to which a plurality of bolts can be fastened. Moreover, it is preferable to connect the upper and lower sides of the flange of the beam member 110 (H-section steel) using the connection plate 130 as shown in FIG. The beam member 110 is connected by the connection plate 130 to form a strong ring having an annular shape (in detail, a polygonal annular shape close to a circle) that goes around the tank.
 本手法によれば、コンクリート2bの打設に先行して組み上げられた側ライナー2aの内向き板面102に設置された複数の受梁101に、梁部材110を備える足場ユニット100を複数掛止する。足場ユニット100の梁部材110同士を環状に連結することにより、側ライナー2aの内向き板面102に沿って環状の強め環を形成する。環状に連結された梁部材110は、図2に示すように、独立で自立する側ライナー2aの形状を維持し、また、風荷重による座屈防止材(所謂スティフナー)として機能する。さらに、梁部材110の連結によって、足場ユニット100はタンク周方向に連なり、タンク全周に渡る足場を形成できるため、側ライナー2aの施工(溶接等)が容易になる。 According to this method, a plurality of scaffold units 100 including beam members 110 are hooked on a plurality of receiving beams 101 installed on the inward plate surface 102 of the side liner 2a assembled prior to the placing of the concrete 2b. To do. By connecting the beam members 110 of the scaffold unit 100 in an annular shape, an annular strong ring is formed along the inward plate surface 102 of the side liner 2a. As shown in FIG. 2, the beam members 110 connected in an annular shape maintain the shape of the independent side liner 2a and function as a buckling prevention material (so-called stiffener) due to wind load. Furthermore, since the scaffold unit 100 is connected in the circumferential direction of the tank by connecting the beam member 110 and can form a scaffold over the entire circumference of the tank, the side liner 2a can be easily constructed (welded or the like).
 また、足場ユニット100は、図2に示すように、側ライナー2aの受梁101に掛止されるため、足場ユニット100の取り付け及び取り外し作業は容易である。
 例えば、梁部材110と受梁101との掛止状態を維持するボルト止めを解除すれば、クレーン等で側ライナー2aから足場ユニット100を容易に取り外す(吊り上げる)ことができる。また、受梁101は、側ライナー2aに点在して溶接され、一つ一つの受梁101はピース状で小さいため、後述する保冷工事の際に邪魔になる場合は、容易に切除できる。このように、本手法によれば、コンクリート2bの打設に先行して組み上げられた側ライナー2aの形状を容易に維持できる。
Moreover, since the scaffold unit 100 is hooked on the receiving beam 101 of the side liner 2a as shown in FIG. 2, the attachment and removal work of the scaffold unit 100 is easy.
For example, if the bolting that maintains the hooked state of the beam member 110 and the receiving beam 101 is released, the scaffold unit 100 can be easily removed (lifted) from the side liner 2a with a crane or the like. In addition, since the receiving beams 101 are dotted and welded to the side liner 2a and each receiving beam 101 is small in a piece shape, the receiving beams 101 can be easily excised when disturbing during the cold insulation work described later. Thus, according to this method, the shape of the side liner 2a assembled prior to the placement of the concrete 2b can be easily maintained.
 また、足場ユニット100は、上下に配置される梁部材110を備え、足場ユニット連結工程では、上下の梁部材110のそれぞれを側ライナー2aの内向き板面102に沿って環状に連結する。この手法によれば、独立で自立する側ライナー2aが、上下の2つの強め環によって支えられるため、側ライナー2aの形状をより精度よく維持することができる。例えば、環状に連結された梁部材110を基準にして側ライナー2aを径方向に移動させ、側ライナー2aの半径位置を精度よく調整することができる。また、この手法によれば、1つの梁部材110を用いて側ライナー2aの剛性を確保する場合に比べ、梁部材110の一つ当たりの断面の寸法を小さくできるため、足場ユニット100の組み立て作業等が容易になる。 Also, the scaffold unit 100 includes beam members 110 that are arranged above and below, and in the scaffold unit coupling step, each of the upper and lower beam members 110 is annularly coupled along the inward plate surface 102 of the side liner 2a. According to this method, since the independent and independent side liner 2a is supported by the two upper and lower strong rings, the shape of the side liner 2a can be maintained with higher accuracy. For example, the radial position of the side liner 2a can be accurately adjusted by moving the side liner 2a in the radial direction with reference to the beam member 110 connected in an annular shape. Further, according to this method, since the size of the cross section per beam member 110 can be reduced as compared with the case where the rigidity of the side liner 2a is ensured by using one beam member 110, the assembly work of the scaffold unit 100 is performed. Etc. becomes easy.
 また、足場ユニット100は、上下の梁部材110のそれぞれに固定される足場120を備える。この構成によれば、周方向に隣り合う側ライナー2a同士の溶接(縦シーム溶接)やこの溶接に係る検査等の作業が容易になる。
 また、梁部材110は、H形鋼であるため、特注の鋼材を使用する場合に比べ、足場ユニット100の製造コストを小さくすることができる。
The scaffold unit 100 includes a scaffold 120 fixed to each of the upper and lower beam members 110. According to this configuration, operations such as welding (vertical seam welding) between the side liners 2a adjacent to each other in the circumferential direction and inspection related to the welding are facilitated.
Moreover, since the beam member 110 is H-shaped steel, the manufacturing cost of the scaffold unit 100 can be reduced as compared with the case where a custom-made steel material is used.
 図5は、本開示の実施形態における構築方法の第2工程を示す図である。
 図5に示すように、本手法では、上述したように足場ユニット100を側ライナー2aに取り付けながら、PC壁2を構築する。また、PC壁2より内側の基礎版1に内槽アンカーストラップ4を設置する。また、PC壁2の基端部に内槽側板9を一枚ずつ取り込むための工事口8を形成する。また、PC壁2の基端部の内側に沿って、内槽側板組立用の門型架台10を複数設置する。門型架台10は、内槽側板9が複数組み合わされてなる円筒状の内槽が基礎版1上に最終的に下ろされるべき領域であるアニュラー領域Xを跨ぐように設置する。
FIG. 5 is a diagram illustrating a second step of the construction method according to the embodiment of the present disclosure.
As shown in FIG. 5, in this method, the PC wall 2 is constructed while attaching the scaffold unit 100 to the side liner 2a as described above. In addition, an inner tank anchor strap 4 is installed on the base plate 1 inside the PC wall 2. Moreover, the construction port 8 for taking in the inner tank side plate 9 one by one in the base end part of the PC wall 2 is formed. A plurality of gate-type mounts 10 for assembling the inner tank side plate are installed along the inside of the base end of the PC wall 2. The gate-type gantry 10 is installed so that a cylindrical inner tank formed by combining a plurality of inner tank side plates 9 straddles the annular area X, which is an area to be finally lowered on the base plate 1.
 次に、門型架台10上に内槽側板9を載置し、周方向に隣り合う内槽側板9同士を溶接し、全体で円筒状になるように繋ぎ合わせる。また、内槽側板9の上端部にナックルプレート11を組み付ける。また、門型架台10の下のアニュラー領域Xにパーライトコンクリートブロックや構造用軽量コンクリートブロック等のアニュラー部13(図6参照)の構成部材12を仮置きする。また、屋根架台7上に内槽屋根14を組み立てる。また、内槽屋根14の外周縁部に、ナックルプレート11を組み付ける。 Next, the inner tank side plate 9 is placed on the gate-type gantry 10 and the inner tank side plates 9 adjacent in the circumferential direction are welded to each other so as to form a cylindrical shape as a whole. Further, the knuckle plate 11 is assembled to the upper end portion of the inner tank side plate 9. In addition, the structural member 12 of the annular portion 13 (see FIG. 6) such as a pearlite concrete block or a structural lightweight concrete block is temporarily placed in the annular region X under the portal frame 10. Further, the inner tank roof 14 is assembled on the roof mount 7. Further, the knuckle plate 11 is assembled to the outer peripheral edge portion of the inner tank roof 14.
 次に、基礎版1よりも上方の内外槽間15(PC壁2と内槽側板9との間)において、ナックルプレート11よりも上方のPC壁2に、吊側ジャッキ架台16(吊り点)を、タンク周方向に沿って複数設置する。吊側ジャッキ架台16は、所定高さのPC壁2からタンク内側に向けて略水平に突出するよう設置される。この吊側ジャッキ架台16を、例えばPC壁2に埋め込んだアンカープレート等に強固かつ着脱可能に締結固定する。 Next, between the inner and outer tubs 15 above the base plate 1 (between the PC wall 2 and the inner tub side plate 9), the suspending side jack mount 16 (hanging point) is placed on the PC wall 2 above the knuckle plate 11. Are installed along the circumferential direction of the tank. The suspension-side jack mount 16 is installed so as to protrude substantially horizontally from the PC wall 2 having a predetermined height toward the inside of the tank. The suspension-side jack mount 16 is fastened and fixed firmly, for example, to an anchor plate embedded in the PC wall 2 or the like.
 また、ナックルプレート11には、複数の吊側ジャッキ架台16に対向する複数のナックル補強材17を設置する。ナックル補強材17は、ナックルプレート11から内外槽間15に向けて突出する。また、このナックル補強材17は、被吊側の架台となる。この吊側ジャッキ架台16とナックル補強材17との間に渡って、ジャッキアップ装置18を設置する。ジャッキアップ装置18は、センターホールジャッキであり、装置本体を吊側ジャッキ架台16に設置し、ジャッキアップロッド19の下端部をナックル補強材17に取り付ける。 Also, a plurality of knuckle reinforcements 17 facing the plurality of suspension-side jack mounts 16 are installed on the knuckle plate 11. The knuckle reinforcement member 17 projects from the knuckle plate 11 toward the inner / outer tank 15. Further, the knuckle reinforcing member 17 serves as a suspended base. A jack-up device 18 is installed across the suspension-side jack mount 16 and the knuckle reinforcement member 17. The jack-up device 18 is a center hole jack. The device main body is installed on the suspension-side jack mount 16 and the lower end of the jack-up rod 19 is attached to the knuckle reinforcement member 17.
 このようにジャッキアップ装置18を設置したら、屋根架台7を除去し、ジャッキアップ装置18によってナックルプレート11を吊り上げることで、内槽側板9を上昇させる。ジャッキアップ装置18により、内槽側板9をジャッキアップロッド19の1ストローク分(本実施形態では内槽側板9単体の上下幅に相当)だけ上昇させたら、このジャッキアップにより内槽側板9の下部にできた空間に、次の段の内槽側板9を搬入する。 When the jack-up device 18 is installed in this way, the roof mount 7 is removed, and the knuckle plate 11 is lifted by the jack-up device 18 to raise the inner tank side plate 9. When the inner tank side plate 9 is raised by the jack-up device 18 by one stroke of the jack-up rod 19 (corresponding to the vertical width of the inner tank side plate 9 alone in this embodiment), the jack-up device 18 lowers the inner tank side plate 9 by this jack-up. The inner tank side plate 9 of the next stage is carried into the space formed.
 図6は、本開示の実施形態における構築方法の第3工程を示す図である。
 次の段の内槽側板9をタンク周方向に繋ぎ合わせたら、その上端と、上昇した内槽側板9の下端とを溶接する。次に、この溶接により一体となった内槽側板9をジャッキアップ装置18によりジャッキアップさせ、このジャッキアップにより内槽側板9の下部にできた空間に、次の段の内槽側板9を搬入する。このように、ジャッキアップ装置18による内槽側板9の上昇と、上昇した内槽側板9の下部への次の段の内槽側板9の溶接と、を交互に繰り返す(内槽側壁構築工程)。本手法では、内槽側板9を最上段から順に取り付け、内槽側板9の最下段を除く第1の構造物9aを組み立てる。
FIG. 6 is a diagram illustrating a third step of the construction method according to the embodiment of the present disclosure.
When the inner tank side plate 9 of the next stage is connected in the tank circumferential direction, the upper end thereof and the lower end of the raised inner tank side plate 9 are welded. Next, the inner tank side plate 9 integrated by this welding is jacked up by the jack-up device 18, and the next stage of the inner tank side plate 9 is carried into the space formed by the jack up in the lower part of the inner tank side plate 9. To do. Thus, the raising of the inner tank side plate 9 by the jack-up device 18 and the welding of the inner tank side plate 9 of the next stage to the lower part of the raised inner tank side plate 9 are alternately repeated (inner tank side wall construction step). . In this method, the inner tank side plate 9 is attached in order from the uppermost stage, and the first structure 9a excluding the lowermost stage of the inner tank side plate 9 is assembled.
 また、この工程中、門型架台10の下でアニュラー部13の保冷工事が並行して行われる。
 アニュラー部13の保冷工事が完了したら、図6に示すように、アニュラー部13よりもタンク内側に配置されていた脚部10aをアニュラー部13上に移設する。このような移設によって、アニュラー部13よりもタンクの内側には干渉物がなくなるため、基礎版1上の中央部の保冷工事を行うことができる。中央部の保冷工事では、底部冷熱抵抗緩和材39の上に泡ガラス40を載置する。そして、その上に不図示のパーライトコンクリートブロックと不図示の内槽底板を順に重ねて敷設する。
In addition, during this process, the cold insulation work of the annular portion 13 is performed in parallel under the portal frame 10.
When the cold insulation work of the annular portion 13 is completed, as shown in FIG. 6, the leg portion 10 a disposed on the inner side of the tank than the annular portion 13 is moved onto the annular portion 13. By such relocation, there is no interfering substance inside the tank with respect to the annular portion 13, so that the cold insulation work at the central portion on the foundation plate 1 can be performed. In the cold insulation work in the center, the foam glass 40 is placed on the bottom cooling resistance reducing material 39. Then, a pearlite concrete block (not shown) and an inner tank bottom plate (not shown) are laid on top of each other in this order.
 図7は、本開示の実施形態における構築方法の第4工程を示す図である。
 本実施形態では、図7に示すように、内槽側板9の最下段を、第1の構造物9aとは別にアニュラー部13上に組み立てる。門型架台10の解体後、内槽側板9の最下段をアニュラー部13上に載置したら、周方向に隣り合う内槽側板9同士を溶接し、全体で円筒状になるように繋ぎ合わせ、第2の構造物9bを組み立てる。第2の構造物9bを組み立てたら、第2の構造物9bに、基礎版1に設置された内槽アンカーストラップ4を取り付ける。
FIG. 7 is a diagram illustrating a fourth step of the construction method according to the embodiment of the present disclosure.
In the present embodiment, as shown in FIG. 7, the lowermost stage of the inner tank side plate 9 is assembled on the annular portion 13 separately from the first structure 9a. After disassembling the portal frame 10, when the lowermost stage of the inner tank side plate 9 is placed on the annular portion 13, the inner tank side plates 9 adjacent to each other in the circumferential direction are welded together and joined together so as to be cylindrical. The second structure 9b is assembled. When the second structure 9b is assembled, the inner tank anchor strap 4 installed on the foundation plate 1 is attached to the second structure 9b.
 また、図7に示すように、内槽屋根14上で外槽屋根22を組み立てる。外槽屋根22は、内槽屋根14と不図示の連結材で連結され、内槽屋根14と一体的に組み立てられる。また、PC壁2の外部に昇降階段23を設ける。また、PC壁2の内側に、ポンプバレル25を搬入する。 Moreover, as shown in FIG. 7, the outer tank roof 22 is assembled on the inner tank roof 14. The outer tank roof 22 is connected to the inner tank roof 14 by a connecting material (not shown), and is assembled integrally with the inner tank roof 14. Further, an elevating staircase 23 is provided outside the PC wall 2. Further, the pump barrel 25 is carried inside the PC wall 2.
 図8は、本開示の実施形態における構築方法の第5工程を示す図である。
 次に、本手法では、図8に示すように、第1の構造物9aをジャッキダウンし、第1の構造物9aの下端部を第2の構造物9bの上端部に降ろし、第1の構造物9aと第2の構造物9bとを溶接し、内槽30を組み立てる。本手法では、ジャッキアップ装置18による内槽30の組み立てから、内槽30の最下段の組み立てを分離し、内槽30の最下段である第2の構造物9bのアニュラー部13上への固定を先行して行っている(図7参照)。したがって、本手法では、例えば1カ月程度かかる内槽30のアニュラー部13上への固定がクリティカルパスとならず、従来手法よりも工期の短縮化を図ることができる。
FIG. 8 is a diagram illustrating a fifth step of the construction method according to the embodiment of the present disclosure.
Next, in this method, as shown in FIG. 8, the first structure 9a is jacked down, the lower end portion of the first structure 9a is lowered to the upper end portion of the second structure 9b, and the first structure 9a is lowered. The structure 9a and the second structure 9b are welded, and the inner tank 30 is assembled. In this method, the assembly of the lowermost stage of the inner tank 30 is separated from the assembly of the inner tank 30 by the jack-up device 18, and the second structure 9 b that is the lowermost stage of the inner tank 30 is fixed on the annular portion 13. (See FIG. 7). Therefore, in this method, for example, fixing the inner tank 30 on the annular portion 13 which takes about one month does not become a critical path, and the construction period can be shortened compared to the conventional method.
 内槽30が完成したら、外槽屋根22は、不図示の連結材による内槽屋根14との連結を解除し、最上段まで組み立てられたPC壁2の上端部に据え付ける。また、外槽屋根22に屋根階段24を設ける。また、ポンプバレル25を設置する。
 その後、ナックル補強材17を切除してジャッキアップ装置18を撤去する。その後、PC壁2の緊張工事を行う。そして、工事口8の閉鎖後、水張りをして耐圧・気密試験を実施する。
When the inner tub 30 is completed, the outer tub roof 22 is disconnected from the inner tub roof 14 by a connecting material (not shown) and installed on the upper end of the PC wall 2 assembled to the top. A roof staircase 24 is provided on the outer tank roof 22. A pump barrel 25 is also installed.
Thereafter, the knuckle reinforcement member 17 is cut off and the jackup device 18 is removed. After that, tension work on the PC wall 2 is performed. Then, after the construction port 8 is closed, it is filled with water and a pressure and airtight test is performed.
 図9は、本開示の実施形態における構築方法の第6工程を示す図である。
 最後に、図9に示すように、内外槽間15に保冷材44を配置し、また、内槽屋根14と外槽屋根22の間にも保冷材44を配置して保冷工事を行い、その後、塗装工事、配管保冷工事を経て円筒型タンク50が構築される。
FIG. 9 is a diagram illustrating a sixth step of the construction method according to the embodiment of the present disclosure.
Finally, as shown in FIG. 9, the cold insulation material 44 is arranged between the inner and outer tanks 15 and the cold insulation material 44 is arranged between the inner tank roof 14 and the outer tank roof 22 to perform the cold insulation work. The cylindrical tank 50 is constructed through painting work and pipe cooling work.
 上述の本実施形態は、金属製の内槽とコンクリート製の外槽とを有する円筒型タンク50の構築方法である。この円筒型タンクの構築方法は、基礎版1から鋼製の側ライナー2aを先行して組み上げつつ、側ライナー2aの組み上げに追従して側ライナー2aを内側型枠としてコンクリート2bを打設し、PC壁2を構築する外槽側壁構築工程を有する。外槽側壁構築工程は、先行して組み上げられた側ライナー2aの内向き板面102に設置された複数の受梁101に、梁部材110を備える足場ユニット100を複数掛止すると共に、受梁101に掛止された足場ユニット100の梁部材110同士を側ライナー2aの内向き板面102に沿って環状に連結する足場ユニット連結工程を含む。上記手法を採用することによって、コンクリート2bの打設に先行して組み上げられた側ライナー2aの形状を容易に維持できる。 The above-described embodiment is a method for constructing a cylindrical tank 50 having a metal inner tank and a concrete outer tank. In this cylindrical tank construction method, while assembling the steel side liner 2a in advance from the base plate 1, following the assembly of the side liner 2a, the concrete 2b is driven using the side liner 2a as the inner mold, It has an outer tank side wall construction process of constructing the PC wall 2. The outer tub side wall construction step hangs a plurality of scaffold units 100 including beam members 110 on a plurality of receiving beams 101 installed on the inward plate surface 102 of the side liner 2a assembled in advance. A scaffold unit connecting step of connecting the beam members 110 of the scaffold unit 100 hooked to 101 in a ring shape along the inward plate surface 102 of the side liner 2a is included. By adopting the above method, the shape of the side liner 2a assembled prior to the placing of the concrete 2b can be easily maintained.
 以上、図面を参照しながら本開示の好適な実施形態について説明したが、本開示は上記実施形態に限定されるものではない。上述した実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本開示の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。 The preferred embodiments of the present disclosure have been described above with reference to the drawings, but the present disclosure is not limited to the above embodiments. Various shapes, combinations, and the like of the constituent members shown in the above-described embodiments are examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present disclosure.
 例えば、図10に示す別実施形態のように、梁部材110A(H形鋼)の向きを上記実施形態の梁部材110に対して90°回転させてもよい。この場合、H形鋼のフランジを接続するウェブが内向き板面102に対して垂直に配置される(すなわち、ウェブが水平方向に延びる)ため、梁部材110Aは側ライナー2aの内向き板面102から受ける荷重に対して強くなる。なお、この向きの梁部材110Aは、受梁101にボルト等で連結することが難しいため、図10に示すように、楔部材140を隙間に打ち込んで梁部材110Aを固定することが好ましい。 For example, as in another embodiment shown in FIG. 10, the direction of the beam member 110A (H-shaped steel) may be rotated by 90 ° with respect to the beam member 110 of the above embodiment. In this case, since the web connecting the flanges of the H-shaped steel is disposed perpendicular to the inward plate surface 102 (that is, the web extends in the horizontal direction), the beam member 110A is provided on the inward plate surface of the side liner 2a. It becomes strong against the load received from 102. Since it is difficult to connect the beam member 110A in this direction to the receiving beam 101 with a bolt or the like, it is preferable to fix the beam member 110A by driving a wedge member 140 into the gap as shown in FIG.
 本開示によれば、コンクリートの打設に先行して組み上げられたライナー材の形状を容易に維持できる円筒型タンクの構築方法を提供することができる。 According to the present disclosure, it is possible to provide a method for constructing a cylindrical tank that can easily maintain the shape of the liner material assembled prior to placing concrete.
1 基礎版(外槽の底部)
2 PC壁(外槽の側壁)
2a 側ライナー(鋼製のライナー材)
2b コンクリート
50 円筒型タンク
100 足場ユニット
101 受梁
102 内向き板面
110 梁部材
120 足場
1 Basic version (bottom of outer tank)
2 PC wall (side wall of outer tank)
2a Side liner (steel liner)
2b Concrete 50 Cylindrical tank 100 Scaffolding unit 101 Receiving beam 102 Inward plate surface 110 Beam member 120 Scaffolding

Claims (8)

  1.  金属製の内槽とコンクリート製の外槽とを有する円筒型タンクの構築方法であって、
     前記外槽の底部から鋼製のライナー材を先行して組み上げつつ、前記ライナー材の組み上げに追従して前記ライナー材を内側型枠としてコンクリートを打設し、前記外槽の側壁を構築する外槽側壁構築工程を有し、
     前記外槽側壁構築工程は、先行して組み上げられた前記ライナー材のタンクの内側を向く内向き板面に設置された複数の受梁に、梁部材を備える足場ユニットを複数掛止し、前記受梁に掛止された前記足場ユニットの前記梁部材同士を前記ライナー材の前記内向き板面に沿って環状に連結する足場ユニット連結工程を含む円筒型タンクの構築方法。
    A construction method of a cylindrical tank having a metal inner tank and a concrete outer tank,
    While assembling the steel liner material in advance from the bottom of the outer tub, following the assembling of the liner material, the concrete is cast using the liner material as an inner mold, and the side wall of the outer tub is constructed. A tank side wall construction process,
    The outer tub side wall construction step includes hooking a plurality of scaffolding units including beam members to a plurality of receiving beams installed on an inward plate surface facing the inside of the tank of the liner material assembled in advance, A construction method of a cylindrical tank including a scaffold unit coupling step of annularly coupling the beam members of the scaffold unit hooked to a receiving beam along the inward plate surface of the liner material.
  2.  前記足場ユニットは、上下に配置される前記梁部材を備え、
     前記足場ユニット連結工程では、前記上下の梁部材のそれぞれを前記ライナー材の前記内向き板面に沿って環状に連結する請求項1に記載の円筒型タンクの構築方法。
    The scaffold unit includes the beam members arranged above and below,
    The method for constructing a cylindrical tank according to claim 1, wherein in the scaffold unit connecting step, each of the upper and lower beam members is connected annularly along the inward plate surface of the liner material.
  3.  前記足場ユニットは、前記上下の梁部材のそれぞれに固定される足場を備える請求項2に記載の円筒型タンクの構築方法。 The construction method of a cylindrical tank according to claim 2, wherein the scaffold unit includes a scaffold fixed to each of the upper and lower beam members.
  4.  前記梁部材は、H形鋼である請求項1~3のいずれか一項に記載の円筒型タンクの構築方法。 The method for constructing a cylindrical tank according to any one of claims 1 to 3, wherein the beam member is H-shaped steel.
  5.  前記外槽の側壁の内側において、ジャッキアップ装置による内槽側板の上昇と、前記上昇した内槽側板の下部への次の段の内槽側板の溶接と、を交互に繰り返して前記内槽の側壁を構築する内槽側壁構築工程をさらに有する請求項1に記載の円筒型タンクの構築方法。 Inside the side wall of the outer tank, the inner tank side plate is lifted by a jack-up device and the welding of the inner tank side plate of the next stage to the lower portion of the raised inner tank side plate is alternately repeated. The cylindrical tank construction method according to claim 1, further comprising an inner tank side wall construction step of constructing the side wall.
  6.  前記外槽の側壁の内側において、ジャッキアップ装置による内槽側板の上昇と、前記上昇した内槽側板の下部への次の段の内槽側板の溶接と、を交互に繰り返して前記内槽の側壁を構築する内槽側壁構築工程をさらに有する請求項2に記載の円筒型タンクの構築方法。 Inside the side wall of the outer tank, the inner tank side plate is lifted by a jack-up device and the welding of the inner tank side plate of the next stage to the lower portion of the raised inner tank side plate is alternately repeated. The cylindrical tank construction method according to claim 2, further comprising an inner tank side wall construction step of constructing the side wall.
  7.  前記外槽の側壁の内側において、ジャッキアップ装置による内槽側板の上昇と、前記上昇した内槽側板の下部への次の段の内槽側板の溶接と、を交互に繰り返して前記内槽の側壁を構築する内槽側壁構築工程をさらに有する請求項3に記載の円筒型タンクの構築方法。 Inside the side wall of the outer tank, the inner tank side plate is lifted by a jack-up device and the welding of the inner tank side plate of the next stage to the lower portion of the raised inner tank side plate is alternately repeated. The method for constructing a cylindrical tank according to claim 3, further comprising an inner tank side wall construction step of constructing the side wall.
  8.  前記外槽の側壁の内側において、ジャッキアップ装置による内槽側板の上昇と、前記上昇した内槽側板の下部への次の段の内槽側板の溶接と、を交互に繰り返して前記内槽の側壁を構築する内槽側壁構築工程をさらに有する請求項4に記載の円筒型タンクの構築方法。 Inside the side wall of the outer tank, the inner tank side plate is lifted by a jack-up device and the welding of the inner tank side plate of the next stage to the lower portion of the raised inner tank side plate is alternately repeated. The construction method of the cylindrical tank according to claim 4, further comprising an inner tank side wall construction step of constructing the side wall.
PCT/JP2016/076428 2015-09-11 2016-09-08 Cylindrical tank construction method WO2017043567A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-179734 2015-09-11
JP2015179734A JP6465488B2 (en) 2015-09-11 2015-09-11 Construction method of cylindrical tank

Publications (1)

Publication Number Publication Date
WO2017043567A1 true WO2017043567A1 (en) 2017-03-16

Family

ID=58239766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076428 WO2017043567A1 (en) 2015-09-11 2016-09-08 Cylindrical tank construction method

Country Status (3)

Country Link
JP (1) JP6465488B2 (en)
TW (1) TWI620861B (en)
WO (1) WO2017043567A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014058793A (en) * 2012-09-14 2014-04-03 Taisei Corp Construction method of dike utilizing multi-purpose post and construction method of wall body
JP2015048621A (en) * 2013-08-30 2015-03-16 川崎重工業株式会社 Low temperature storage tank and construction method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5422793B2 (en) * 2008-10-29 2014-02-19 株式会社竹中工務店 Low temperature storage construction method
CN101435276B (en) * 2008-12-18 2010-06-02 中建二局第三建筑工程有限公司 Cabin top steel beam hydraulic hoisting and positioning apparatus of cylinder cabin structure building and construction method thereof
JP5732262B2 (en) * 2011-01-18 2015-06-10 株式会社Ihi Construction method of cylindrical tank
JP5998616B2 (en) * 2012-04-26 2016-09-28 株式会社Ihi Independent liner unit and tank construction method
JP6018865B2 (en) * 2012-09-28 2016-11-02 株式会社Ihi Construction method of cylindrical tank
JP6127453B2 (en) * 2012-11-06 2017-05-17 株式会社Ihi Construction method of cylindrical tank
US9217255B2 (en) * 2012-11-30 2015-12-22 Chicago Bridge & Iron Company Self-jacking scaffold for large cylindrical tanks
JP6319869B2 (en) * 2013-06-27 2018-05-09 株式会社Ihi Construction method of cylindrical tank
JP6106540B2 (en) * 2013-06-27 2017-04-05 株式会社Ihi Construction method of cylindrical tank

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014058793A (en) * 2012-09-14 2014-04-03 Taisei Corp Construction method of dike utilizing multi-purpose post and construction method of wall body
JP2015048621A (en) * 2013-08-30 2015-03-16 川崎重工業株式会社 Low temperature storage tank and construction method thereof

Also Published As

Publication number Publication date
TWI620861B (en) 2018-04-11
JP6465488B2 (en) 2019-02-06
TW201713835A (en) 2017-04-16
JP2017053182A (en) 2017-03-16

Similar Documents

Publication Publication Date Title
US9441389B2 (en) Method for constructing cylindrical tank
JP5422793B2 (en) Low temperature storage construction method
US9556607B2 (en) Method for constructing cylindrical tank
JP5732262B2 (en) Construction method of cylindrical tank
TWI577866B (en) Method for constructing cylindrical tank
WO2012137671A1 (en) Method for constructing cylindrical tank
WO2014208660A1 (en) Method for constructing cylindrical tank
WO2017043567A1 (en) Cylindrical tank construction method
JP2018059300A (en) Construction method of tank
JP2018066232A (en) Embedded hardware and method of constructing tank
TWI498470B (en) Construction method of cylindrical tank
JP6971761B2 (en) How to build a tank
WO2014208705A1 (en) Method for constructing cylindrical tank
WO2018056402A1 (en) Method for constructing tank
TWI688699B (en) Top support, top support system and construction method for tank
JP2019078051A (en) Storage tank and construction method of storage tank
JP6934796B2 (en) How to build a tank
JP2019070294A (en) Construction method of tank, and tank
JP6749820B2 (en) Top support
JP2018127860A (en) Construction method of tank
JP2018053429A (en) Tank and construction method of tank
TW201632702A (en) Construction method for cylindrical tank

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844428

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16844428

Country of ref document: EP

Kind code of ref document: A1