WO2017043534A1 - 無線通信に関する装置及び方法 - Google Patents
無線通信に関する装置及び方法 Download PDFInfo
- Publication number
- WO2017043534A1 WO2017043534A1 PCT/JP2016/076316 JP2016076316W WO2017043534A1 WO 2017043534 A1 WO2017043534 A1 WO 2017043534A1 JP 2016076316 W JP2016076316 W JP 2016076316W WO 2017043534 A1 WO2017043534 A1 WO 2017043534A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- base station
- terminal device
- protocol
- data unit
- unit
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/1607—Details of the supervisory signal
- H04L1/1657—Implicit acknowledgement of correct or incorrect reception, e.g. with a moving window
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1829—Arrangements specially adapted for the receiver end
- H04L1/1864—ARQ related signaling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1867—Arrangements specially adapted for the transmitter end
- H04L1/1874—Buffer management
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W80/00—Wireless network protocols or protocol adaptations to wireless operation
- H04W80/06—Transport layer protocols, e.g. TCP [Transport Control Protocol] over wireless
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W48/00—Access restriction; Network selection; Access point selection
- H04W48/18—Selecting a network or a communication service
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
- H04W76/15—Setup of multiple wireless link connections
- H04W76/16—Involving different core network technologies, e.g. a packet-switched [PS] bearer in combination with a circuit-switched [CS] bearer
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W80/00—Wireless network protocols or protocol adaptations to wireless operation
- H04W80/02—Data link layer protocols
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/10—Small scale networks; Flat hierarchical networks
- H04W84/12—WLAN [Wireless Local Area Networks]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
- H04W88/06—Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
Definitions
- the present invention relates to an apparatus and a method related to wireless communication.
- Layer 2 of LTE Long Term Evolution
- MAC Medium Access Control
- RLC Radio Link Control
- PDCP Packet Data Convergence Protocol
- Non-Patent Document 1 Layer 2 of LTE (Long Term Evolution) is divided into three sublayers: MAC (Medium Access Control), RLC (Radio Link Control), and PDCP (Packet Data Convergence Protocol) (see Non-Patent Document 1).
- RLC has a delivery confirmation function (Status Report of RLC AM mode) (see Non-Patent Document 2).
- the RLC notifies the PDCP (that is, the upper layer of the RLC) whether or not the data has arrived.
- the reordering window re-ordering window
- the data is deleted from the buffer, and a sequence number is assigned to new data to which no sequence number is assigned.
- 3GPP 3rd Generation Partnership Project
- LTE eNB evolved Node B
- WLAN wireless local area network
- AP wireless local area network
- UE User Equipment
- a technique for communication that is, LTE-WLAN aggregation
- data paths are divided in layers below PDCP.
- PDCP PDU Packet Data Unit
- a certain PDCP PDU Packet Data Unit
- RLC and MAC Radio Link Control
- another PDCP PDU is transmitted from the eNB to the UE via the WLAN AP.
- 3GPP TS 36.300 V13.0.0 (2015-06) 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio; U 2 (Release 13) 3GPP TS 36.322 V12.2.0 (2015-03) 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Link Control (RLC) protocol specification12 (Release) RP-150753: On the impacts of LTE-WLAN Aggregation on WLAN Nodes and terminals Broadcom Corporation
- Non-Patent Document 3 when the data path is divided in layers below PDCP in LTE-WLAN aggregation, RLC is not used for data transmission via the WLAN AP, and Delivery confirmation may not be performed due to data. For example, even if the data is lost between the eNB and the AP or between the AP and the UE, the eNB does not detect the loss of the data. As a result, data can stay in a buffer managed in PDCP. As a result, data transmission may be stagnant, and further data loss may occur due to buffer overflow.
- An object of the present invention is to enable delivery confirmation of data transmitted from a base station to a terminal device via an access point.
- the first apparatus of the present invention uses an information acquisition unit that acquires a data unit from a PDCP (Packet Data Convergence Protocol) layer of a base station and a protocol that enables delivery confirmation to access a wireless local area network.
- a communication processing unit that transmits the data unit to the terminal device via the point.
- PDCP Packet Data Convergence Protocol
- the second device of the present invention is a data unit from the PDCP layer of the base station, and the data transmitted to the terminal device via the access point of the wireless local area network using a protocol that enables delivery confirmation
- An information acquisition unit that acquires a unit
- a communication processing unit that performs reception processing of the data unit in the terminal device.
- the first method of the present invention obtains the data unit from the PDCP layer of the base station and transmits the data to the terminal device via the access point of the wireless local area network using a protocol that enables delivery confirmation. Sending the unit.
- the second method of the present invention is a data unit from the PDCP layer of the base station, wherein the data is transmitted to the terminal device via the access point of the wireless local area network using a protocol that enables delivery confirmation. Acquiring a unit and performing reception processing of the data unit in the terminal device.
- an eNB or a gateway uses TCP (Transmission Control Protocol) (or other protocol that enables delivery confirmation), and the PDCP packet of the eNB (that is, , PDCP PDU) to the UE via the AP.
- TCP Transmission Control Protocol
- the UE performs the PDCP packet reception process in the PDCP layer of the UE.
- FIG. 1 is an explanatory diagram illustrating an example of a schematic configuration of a system 1 according to the first embodiment.
- the system 1 includes a gateway 100, a base station (eNB) 200, a terminal apparatus (UE) 300, and an access point 40.
- the gateway 100 and the base station 200 transmit and receive signals via the network 51, and the gateway 100 and the access point 40 transmit and receive signals via the network 53.
- the gateway 100, the base station 200, and the terminal device 300 may be nodes / entities that comply with 3GPP (Third Generation Partnership Project) standards. More specifically, for example, the gateway 100, the base station 200, and the terminal device 300 may be nodes / entities conforming to LTE (Long Term Evolution) / LTE-Advanced.
- the gateway 100 may be a WT (WLAN Termination).
- WT WLAN Termination
- Base station 200 is a node of a radio access network (RAN), and performs radio communication with a terminal device (for example, terminal device 300) located within the coverage of base station 200.
- a terminal device for example, terminal device 300 located within the coverage of base station 200.
- the base station 200 is an eNB.
- the access point 40 is another RAT access point different from the RAT (Radio Access Technology) (for example, LTE) of the base station 200, and performs wireless communication with a terminal device (for example, the terminal device 300).
- the other RAT is a wireless local area network (WLAN)
- the access point 40 is a WLAN access point.
- the access point 40 is an access point conforming to any one of the IEEE802.11 series (IEEE802.11b / a / g / n / ac / ad / j etc.).
- the other RATs are not limited to WLANs, and the access point 40 is not limited to WLAN access points.
- the other RAT may be a wireless personal area network (WPAN) (specifically, Bluetooth (registered trademark), UWB (Ultra WideBand), or ZigBee (registered trademark)).
- WPAN wireless personal area network
- the access point 40 may be a WPAN access point and may conform to any of the IEEE 802.15 series.
- the other RAT is a wireless metropolitan area network (WMAN) (specifically, WiMAX (Worldwide Interoperability for Microwave Access) (registered trademark), flash-OFDM (registered trademark), or iBurst (registered trademark), etc.), and the access point 40 may be a WMAN access point and may conform to either the IEEE 802.16 series or the IEEE 802.20 series. . Further, the access point 40 may be referred to as a “base station” instead of an “access point”.
- WMAN wireless metropolitan area network
- WiMAX Worldwide Interoperability for Microwave Access
- flash-OFDM registered trademark
- iBurst registered trademark
- Terminal device 300 The terminal device 300 performs wireless communication with the base station 200. For example, when the terminal device 300 is located within the coverage of the base station 200, the terminal device 300 performs wireless communication with the base station 200.
- the terminal device 300 performs wireless communication with the access point 40. For example, when the terminal device 300 is located within the coverage of the access point 40, the terminal device 300 performs wireless communication with the access point 40.
- the base station 200 communicates not only directly with the terminal device 300 but also with the terminal device 300 via the access point 40.
- the gateway 100 receives data from the base station 200 and transmits the data to the terminal device 300 via the access point 40 instead of the base station 200.
- the gateway 100 receives data transmitted by the terminal device 300 via the access point 40 and transmits the data to the base station 200.
- FIG. 2 is a block diagram illustrating an example of a schematic configuration of the gateway 100 according to the first embodiment.
- the gateway 100 includes a network communication unit 110, a storage unit 120, and a processing unit 130.
- the network communication unit 110 receives a signal from the network 51 and transmits the signal to the network 51. Further, the network communication unit 110 receives a signal from the network 53 and transmits the signal to the network 53.
- the storage unit 120 temporarily or permanently stores programs and parameters for operating the gateway 100 and various data.
- the processing unit 130 provides various functions of the gateway 100.
- the processing unit 130 includes an information acquisition unit 131, an information provision unit 133, and a communication processing unit 135. Note that the processing unit 130 may further include other components other than these components. That is, the processing unit 130 can perform operations other than the operations of these components.
- the network communication unit 110 may include a network adapter or a network interface card.
- the storage unit 120 may include a memory (for example, a nonvolatile memory and / or a volatile memory) and / or a hard disk.
- the processing unit 130 may include a processor.
- FIG. 3 is a block diagram illustrating an example of a schematic configuration of the base station 200 according to the first embodiment.
- the base station 200 includes a wireless communication unit 210, a network communication unit 220, a storage unit 230, and a processing unit 240.
- the wireless communication unit 210 transmits and receives signals wirelessly. For example, the wireless communication unit 210 receives a signal from the terminal device and transmits a signal to the terminal device.
- the network communication unit 220 receives a signal from the network 51 and transmits the signal to the network 51.
- the storage unit 230 temporarily or permanently stores programs and parameters for operating the base station 200 and various data.
- the processing unit 240 provides various functions of the base station 200.
- the processing unit 240 includes a communication processing unit 241 and an information providing unit 243.
- the processing unit 240 may further include other components other than these components. That is, the processing unit 240 can perform operations other than the operations of these components.
- the wireless communication unit 210 may include an antenna and a radio frequency (RF) circuit.
- the network communication unit 220 may include a network adapter or a network interface card.
- the storage unit 230 may include a memory (for example, a nonvolatile memory and / or a volatile memory) and / or a hard disk.
- the processing unit 240 may include a baseband (BB) processor and / or another processor.
- BB baseband
- FIG. 4 is a block diagram illustrating an example of a schematic configuration of the terminal device 300 according to the first embodiment.
- the terminal device 300 includes a wireless communication unit 310, a storage unit 320, and a processing unit 330.
- the wireless communication unit 310 transmits and receives signals wirelessly. For example, the wireless communication unit 310 receives a signal from the base station and transmits a signal to the base station.
- the storage unit 320 temporarily or permanently stores programs and parameters for operation of the terminal device 300 and various data.
- the processing unit 330 provides various functions of the terminal device 300.
- the processing unit 330 includes a first communication processing unit 331, an information acquisition unit 333, an information providing unit 335, and a second communication processing unit 337.
- the processing unit 330 may further include other components other than these components. That is, the processing unit 330 can perform operations other than the operations of these components.
- the wireless communication unit 310 may include an antenna and a radio frequency (RF) circuit.
- the storage unit 320 may include a memory (for example, a nonvolatile memory and / or a volatile memory) and / or a hard disk.
- the processing unit 330 may include a baseband (BB) processor and / or another processor.
- BB baseband
- the base station 200 (communication processing unit 241) performs transmission processing in the PDCP layer of the base station 200.
- the base station 200 (communication processing unit 241) generates a PDCP layer data unit.
- the data unit is a PDCP PDU (Packet Data Unit) or a PDCP packet.
- the base station 200 when transmitting the data unit to the terminal device 300 via the access point 40, the base station 200 (information providing unit 243) provides the data unit to the gateway 100. That is, the base station 200 (information providing unit 243) transmits the data unit to the gateway 100.
- the base station 200 may generate another data unit of the PDCP layer and directly transmit the other data unit to the terminal device 300.
- the base station 200 (communication processing unit 241) may perform transmission processing in the RLC layer and the MAC layer.
- the gateway 100 (information acquisition unit 131) acquires the data unit (that is, the data unit from the PDCP layer of the base station 200). As described above, in other words, the data unit is a PDCP PDU or a PDCP packet. Then, the gateway 100 (communication processing unit 135) transmits the data unit to the terminal device 300 via the access point 40 using a protocol that enables delivery confirmation.
- the above protocol is a transport layer protocol.
- the protocol is TCP (Transmission Control Protocol). That is, the gateway 100 (communication processing unit 135) transmits the data unit to the terminal device 300 via the access point 40 using TCP. More specifically, for example, the gateway 100 (communication processing unit 135) generates a TCP packet including the data unit, generates an IP (Internet Protocol) packet including the TCP packet, and transmits the IP packet. .
- the IP address (that is, the IP address of the gateway 100 and / or the IP address of the terminal device 300) used for transmission / reception of the data unit via the access point 40 is the base station 200 (communication processing unit 241). ) To the terminal device 300.
- the IP address is provided to the base station 200 by the gateway 100 (information providing unit 133).
- the gateway 100 transmits an AP Addition Request Acknowledge message including the IP address of the terminal device 300 to the base station 200, and the base station 200 transmits an RRC Connection Reconfiguration message including the IP address of the terminal device 300 to the terminal device 300.
- the IP address of the terminal device 300 may be assigned by the gateway 100. Further, the IP address of the gateway 100 may be transmitted to the base station 200 and the terminal device 300 in the same manner as the IP address of the terminal device 300.
- the gateway 100 (communication processing unit 135) manages the correspondence between the PDCP sequence number for the data packet and the sequence number of the packet (for example, TCP packet) of the protocol including the data packet.
- the above protocol is not limited to TCP, and may be another protocol.
- the protocol may be SCTP (Stream Control Transmission Protocol).
- the terminal device 300 uses the protocol (for example, TCP) to transmit the data unit (that is, the base station 200). Data unit transmitted from the PDCP layer to the terminal device 300 via the access point 40 using the above protocol. For example, the terminal device 300 transmits ACK (Acknowledgements) to the gateway 100 when the reception of the data unit is normally completed, and NACK (when the reception of the data unit is not normally completed. Negative Acknowledgments) is transmitted to the gateway 100. As a result, for example, the gateway 100 can actually confirm the delivery of data.
- TCP Transmission Control Protocol
- NACK negative Acknowledgements
- (B) Reception process in PDCP layer Furthermore, the terminal device 300 (information acquisition unit 333) acquires the data unit. Then, the terminal device 300 (first communication processing unit 331) performs reception processing of the data unit in the terminal device 300. For example, the terminal device 300 (first communication processing unit 331) performs reception processing of the data unit in the PDCP layer of the terminal device 300.
- the reception process includes reordering of the PDCP layer of the terminal device 300.
- a data unit transmitted directly from the base station 200 to the terminal device 300 and a data unit transmitted from the base station 200 to the terminal device 300 via the access point 60 can be processed in the correct order.
- the reception process includes removal of a PDCP header, decryption and / or header decompression.
- the first communication processing unit 331 performs processing such as an RLC layer, a MAC layer, a physical layer, and / or an RRC (Radio Resource Control) layer in addition to the PDCP layer (that is, direct communication with the base station 200). Send / receive processing).
- the second communication processing unit 337 performs processing of the above-described protocol (for example, TCP) layer and lower layers (that is, processing of transmission / reception via the access point 40).
- the information acquisition unit 333 acquires information (for example, the data unit) from the second communication processing unit 337 for the first communication processing unit 331, and the information providing unit 335 receives the information from the first communication processing unit 331. Information is provided to the second communication processing unit 337.
- the gateway 100 provides the result of delivery confirmation of the protocol (for example, TCP) to the PDCP layer of the base station 200.
- the result includes information (for example, ACK) indicating that delivery of the data unit has been confirmed.
- the result includes information (eg, NACK) indicating that delivery of the data unit has not been confirmed.
- the PDCP layer of the base station 200 uses the RLC. It is possible to operate in the same manner as in
- the base station 200 (communication processing unit 241) advances the reordering window of the PDCP layer based on the delivery confirmation result of the protocol (eg, TCP) (advance ).
- the protocol eg, TCP
- the base station 200 (communication processing unit 241) performs the above processing for the one or more data units. Advance the reordering window. Also, the base station 200 (communication processing unit 241) deletes the one or more data units from the buffer.
- the base station 200 (communication processing unit 241) only requires the one or more data units.
- the reordering window is automatically advanced.
- the base station 200 (communication processing unit 241) deletes the one or more data units from the buffer.
- FIG. 5 is an explanatory diagram for describing an example of data transmission / reception in the first embodiment.
- a gateway 100 a base station 200, a terminal device 300, and an access point 40 are shown.
- the base station 200 directly transmits the PDCP PDU of the base station 200 to the terminal device 300 using RLC, MAC, or the like.
- the gateway 100 transmits the PDCP PDU of the base station 200 to the terminal device 300 via the access point 40 using TCP, IP, or the like instead of the base station 200.
- FIG. 6 is a sequence diagram illustrating an example of a schematic flow of the first process in the first embodiment.
- the first process is a process related to data transmission / reception via the access point 40.
- the access point 40 is not explicitly shown in FIG. 6, but it is noted that the access point 40 is located between the gateway 100 and the terminal device 300.
- the base station 200 generates a PDCP packet (sequence number 1001) and transmits the PDCP packet to the gateway 100 (S401).
- the gateway 100 generates a TCP packet (sequence number: 80) including the PDCP packet, and transmits the TCP packet to the terminal device 300 (via the access point 60) (S403).
- the terminal device 300 receives the TCP packet (and the PDCP packet), and the reception is normally completed. Therefore, the terminal device 300 transmits an ACK corresponding to the TCP packet to the gateway 100 (S405), and further, the gateway 100 transmits an ACK corresponding to the PDCP packet to the base station 200 (S407).
- the base station 200 advances the reordering window.
- the terminal device 300 acquires the PDCP packet included in the TCP packet for the PDCP layer (S409), and performs reception processing in the PDCP layer.
- the base station 200 generates a PDCP packet (sequence number 1002) and transmits the PDCP packet to the gateway 100 (S411).
- the gateway 100 generates a TCP packet (sequence number: 81) including the PDCP packet, and transmits the TCP packet (via the access point 60) to the terminal device 300 (S413).
- the terminal device 300 receives the TCP packet (and the PDCP packet), and the reception is normally completed. Therefore, the terminal device 300 transmits an ACK corresponding to the TCP packet to the gateway 100 (S415), and further, the gateway 100 transmits an ACK corresponding to the PDCP packet to the base station 200 (S417).
- the base station 200 advances the reordering window.
- the terminal device 300 acquires the PDCP packet included in the TCP packet for PDCP (S419), and performs reception processing in the PDCP layer.
- the base station 200 generates a PDCP packet (sequence number 1003) and transmits the PDCP packet to the gateway 100 (S421).
- the gateway 100 generates a TCP packet (sequence number: 82) including the PDCP packet, and transmits the TCP packet to the terminal device 300 (via the access point 60) (S423).
- the reception of the TCP packet is not normally completed in the terminal device 300, and an ACK timeout is detected (S425).
- the base station 200 advances the reordering window.
- the base station 200 generates a PDCP packet (sequence number 1004) and transmits the PDCP packet to the gateway 100 (S431).
- the gateway 100 generates a TCP packet (sequence number: 83) including the PDCP packet, and transmits the TCP packet (via the access point 60) to the terminal device 300 (S433).
- the terminal device 300 receives the TCP packet (and the PDCP packet), and the reception is normally completed. Therefore, the terminal apparatus 300 transmits an ACK corresponding to the TCP packet to the gateway 100 (S435), and further, the gateway 100 transmits an ACK corresponding to the PDCP packet to the base station 200 (S437).
- the base station 200 advances the reordering window.
- the terminal device 300 acquires the PDCP packet included in the TCP packet for the PDCP layer (S439), and performs reception processing in the PDCP layer.
- transmission / reception and delivery confirmation of another PDCP packet are performed after transmission / reception and delivery confirmation of one PDCP packet, but the processing in the first embodiment is not limited to this example.
- transmission / reception and delivery confirmation of a plurality of PDCP packets may be performed in parallel.
- the gateway 100 does not retransmit the TCP packet (sequence number: 82), but the processing in the first embodiment is not limited to this example.
- the gateway 100 may retransmit the TCP packet (sequence number: 82).
- FIG. 7 is a sequence diagram showing an example of a schematic flow of the second process in the first embodiment.
- the second process is a process related to transmission of an IP address to the terminal device 300.
- the base station 200 transmits an AP Addition Request message to the gateway 100 (S451). Then, the gateway 100 transmits an AP Addition Request Acknowledge message including the IP address of the terminal device 300 to the base station 200 (S453).
- the base station 200 transmits an RRC Connection Reconfiguration message including the IP address of the terminal device 300 to the terminal device 300 (S455). Then, the terminal device 300 transmits an RRC Connection Reconfiguration Complete message to the base station 200 (S457).
- the base station 200 transmits an AP Reconfiguration Complete message to the gateway 100 (S459).
- the terminal device 300 and the access point 40 perform a WLAN access procedure (S461).
- the gateway 100 may transmit the IP address of the gateway 100 to the base station 200 in addition to the IP address of the terminal device 300.
- the base station 200 may transmit the IP address of the gateway 100 to the terminal device 300 in addition to the IP address of the terminal device 300.
- the terminal device 300 (first communication processing unit 331) is transmitted to the terminal device 300 via the access point 40 using the data unit (that is, the protocol (for example, TCP)).
- a PDCP status report indicating that the data unit has been received may be transmitted to the base station 200.
- the terminal device 300 (first communication processing unit 331) may directly transmit the PDCP status report to the base station 200. Further, the transmission of the PDCP status report may be performed regardless of the presence or absence of handover. Thereby, for example, the base station 200 can confirm delivery of the data unit more reliably.
- the base station 200 may perform congestion control between the base station 200 and the terminal device 300 based on information from the protocol (for example, TCP).
- the control may include adjusting the amount of data directly transmitted from the base station 200 to the terminal device 300 and the amount of data transmitted from the base station 200 to the terminal device 300 via the access point 40. Good.
- the information from the protocol may be provided to the base station 200 by the gateway 100.
- the base station 200 detects congestion in the direct data path from the base station 200 to the terminal device 300 and / or congestion in the data path via the access point 40. May be. Then, the base station 200 (communication processing unit 241) may adjust the amount of data transmitted between these data paths. For example, when the base station 200 (communication processing unit 241) detects congestion in the direct data path, the base station 200 (communication processing unit 241) reduces the amount of data transmitted in the direct data path, and the data path via the access point 40 The amount of data to be transmitted may be increased.
- the base station 200 (communication processing unit 241) detects congestion in the data path via the access point 40
- the base station 200 reduces the amount of data transmitted on the data path via the access point 40, and the direct The amount of data transmitted in the data path may be increased.
- the base station 200 may detect congestion in the data path via the access point 40 based on the result of delivery confirmation of the protocol (for example, TCP). As another example, the base station 200 (communication processing unit 241) may detect congestion in the data path via the access point 40 based on whether or not the slow start of the protocol is executed. As yet another example, the base station 200 (communication processing unit 241) detects congestion in the data path via the access point 40 based on the buffer usage information indicated in the ACK transmitted by the terminal device 300. May be. As yet another example, the base station 200 (communication processing unit 241) supports the SNMP (Simple Network Management Protocol) protocol, and is based on MIB (Management Information Base) information in the above data path via the access point 40. Congestion may be detected.
- TCP delivery confirmation of the protocol
- the base station 200 may detect congestion in the data path via the access point 40 based on whether or not the slow start of the protocol is executed.
- the base station 200 (communication processing unit 241) detects congestion in the data path via the access point 40 based on the
- the throughput of the terminal device 300 can be improved.
- the example of the first embodiment has been described above.
- the example mentioned above is an example of the data transmission in a downlink
- the data transmission in an uplink may be performed similarly.
- the information acquisition unit 333, the information provision unit 335, and the second communication processing unit 337 of the terminal device 300 are the same as the above-described processes of the information acquisition unit 131, the information provision unit 133, and the communication processing unit 135 of the gateway 100, respectively. Processing may be performed, and the first communication processing unit 331 of the terminal device 300 may perform processing similar to the processing described above of the communication processing unit 241 of the base station 200.
- the information acquisition unit 131, the information provision unit 133, and the communication processing unit 135 of the gateway 100 are the same as the above-described processes of the information acquisition unit 333, the information provision unit 335, and the second communication processing unit 337 of the terminal device 300, respectively.
- the communication processing unit 241 of the base station 200 may perform the same processing as the above-described processing of the first communication processing unit 331 of the terminal device 300.
- the gateway 100 and the base station 200 exist, but in the second embodiment, the gateway 100 does not exist, and the function of the gateway 100 is implemented in the base station 200.
- FIG. 8 is an explanatory diagram illustrating an example of a schematic configuration of the system 2 according to the second embodiment.
- the system 2 includes a base station 200, a terminal device 300, and an access point 40.
- Base station 200 and access point 40 transmit and receive signals via network 55.
- the base station 200 In the description of the base station 200, the access point 40, and the terminal device 300, there is no particular difference between the first embodiment and the second embodiment. Therefore, the overlapping description is omitted here.
- FIG. 9 is a block diagram illustrating an example of a schematic configuration of the base station 200 according to the second embodiment.
- the base station 200 includes a wireless communication unit 210, a network communication unit 220, a storage unit 230, and a processing unit 250.
- the wireless communication unit 210 In the description of the wireless communication unit 210, the network communication unit 220, and the storage unit 230, there is no particular difference between the first embodiment and the second embodiment. Therefore, the overlapping description is omitted here.
- the processing unit 250 provides various functions of the base station 200.
- the processing unit 250 includes a first communication processing unit 251, an information acquisition unit 253, an information providing unit 255, and a second communication processing unit 257.
- the processing unit 250 may further include other components other than these components. That is, the processing unit 250 can perform operations other than the operations of these components.
- first communication processing unit 251, the information acquisition unit 253, the information providing unit 255, and the second communication processing unit 257 corresponds to the communication processing unit 241 of the base station 200 in the first embodiment.
- the information acquisition unit 253, the information provision unit 255, and the second communication processing unit 257 in the second embodiment are added to the information acquisition unit 131, the information provision unit 133, and the communication processing unit 135 of the gateway 100 in the first embodiment.
- processing unit 250 may include a baseband (BB) processor and / or another processor.
- BB baseband
- FIG. 10 is a block diagram illustrating an example of a schematic configuration of a terminal device 300 according to the second embodiment.
- the terminal device 300 includes a wireless communication unit 310, a storage unit 320, and a processing unit 340.
- the processing unit 340 provides various functions of the terminal device 300.
- the processing unit 340 includes a first communication processing unit 341, an information acquisition unit 343, an information providing unit 345, and a second communication processing unit 347.
- the processing unit 340 may further include other components other than these components. That is, the processing unit 340 can perform operations other than the operations of these components.
- the first communication processing unit 341, the information acquisition unit 343, the information providing unit 345, and the second communication processing unit 347 in the second embodiment are respectively the first communication processing unit 331 and the information acquisition in the first embodiment.
- the unit 333, the information providing unit 335, and the second communication processing unit 337 corresponds to the unit 333, the information providing unit 335, and the second communication processing unit 337.
- the processing unit 340 may include a baseband (BB) processor and / or another processor.
- BB baseband
- the base station 200 (first communication processing unit 251) performs transmission processing in the PDCP layer of the base station 200.
- the base station 200 (first communication processing unit 251) generates a PDCP layer data unit.
- the base station 200 acquires the data unit (that is, the data unit from the PDCP layer of the base station 200). Then, the base station 200 (second communication processing unit 257) transmits the data unit to the terminal device 300 via the access point 40 using a protocol that enables delivery confirmation.
- the IP address used for transmission / reception of the data unit via the access point 40 (that is, the IP address of the base station 200 and / or the IP address of the terminal device 300) is the base station 200 (the first address). 1 communication processing unit 251). At this time, the IP address of the terminal device 300 is transmitted using, for example, an RRC Connection Setup message or an RRC Connection Reconfiguration message.
- the base station 200 (first communication processing unit 251) transmits an RRC Connection Setup message or an RRC Connection Reconfiguration message including the IP address of the terminal device 300 to the terminal device 300.
- the IP address of the terminal device 300 may be assigned by the base station 200. Further, the IP address of the base station 200 may be transmitted to the terminal device 300 in the same manner as the IP address of the terminal device 300.
- the terminal device 300 (second communication processing unit 347) is a data unit from the PDCP layer of the base station 200 using the protocol (for example, TCP).
- the data unit transmitted to the terminal device 300 via the access point 40 using the above protocol is received.
- the terminal device 300 acquires the data unit. Then, the terminal device 300 (first communication processing unit 341) performs the reception process of the data unit in the terminal device 300. For example, the terminal device 300 (first communication processing unit 341) performs reception processing of the data unit in the PDCP layer of the terminal device 300.
- the base station 200 (information providing unit 255) provides the result of delivery confirmation of the above protocol (for example, TCP) to the PDCP layer of the base station 200.
- the above protocol for example, TCP
- the base station 200 advances the reordering window of the PDCP layer based on the result of delivery confirmation of the protocol (for example, TCP) (advance).
- the protocol for example, TCP
- FIG. 11 is an explanatory diagram for describing an example of data transmission / reception in the second embodiment.
- a base station 200 directly transmits the PDCP PDU of the base station 200 to the terminal device 300 using RLC, MAC, or the like.
- the base station 200 transmits the PDCP PDU of the base station 200 to the terminal device 300 via the access point 40 using TCP, IP, or the like.
- FIG. 12 is a sequence diagram illustrating an example of a schematic flow of the first process in the second embodiment.
- the first process is a process related to data transmission / reception via the access point 40.
- the access point 40 is not clearly shown, but it should be noted that the access point 40 is located between the base station 200 and the terminal device 300.
- the description of the example of the schematic flow of the first processing is different in the operation subject (that is, the gateway 100 and the base station 200 exist on the transmission side in the first embodiment, but the transmission in the second embodiment. There is no particular difference between the first embodiment and the second embodiment, except that only the base station 200 exists on the side) and the difference in reference numerals. Therefore, the overlapping description is omitted here.
- FIG. 13 is a sequence diagram illustrating an example of a schematic flow of the second process in the second embodiment.
- the second process is a process related to transmission of the IP address to the terminal device 300 (specifically, for example, a call setup flow process).
- the terminal device 300 transmits an RRC Connection Request message to the base station 200 (S551). Then, the base station 200 transmits an RRC Connection Setup message including the IP address of the terminal device 300 to the terminal device 300 (S553). Then, the terminal device 300 transmits an RRC Connection Setup Complete message to the base station 200 (S555).
- the base station 200 transmits an Initial UE Message to the MME (S557), and the MME transmits an Initial Context Setup Request message to the base station 200 (S559).
- the base station 200 transmits an RRC Connection Reconfiguration message to the terminal device 300 (S561). Then, the terminal device 300 transmits an RRC Connection Reconfiguration Complete message to the base station 200 (S563).
- the base station 200 transmits an Initial Context Setup Complete message to the MME (S565). Then, the MME, S-GW (Serving Gateway) and P-GW (Packet data network Gateway) transmit and receive the Modify Bearer Request message and the Modify Bearer Response message (S567).
- MME MME
- S-GW Serving Gateway
- P-GW Packet data network Gateway
- the base station 200 instead of (or sending) the RRC Connection Setup message including the IP address of the terminal device 300, the base station 200 transmits an RRC Connection Reconfiguration message including the IP address of the terminal device 300 in step S561. You may transmit to 300.
- the base station 200 may transmit the IP address of the base station 200 in addition to the IP address of the terminal device 300.
- the example of the second embodiment has been described above.
- the example mentioned above is an example of the data transmission in a downlink
- the data transmission in an uplink may be performed similarly.
- the first communication processing unit 341, the information acquisition unit 343, the information providing unit 345, and the second communication processing unit 347 of the terminal device 300 are respectively the first communication processing unit 251, the information acquisition unit 253, and the information of the base station 200. Processing similar to the processing described above of the providing unit 255 and the second communication processing unit 257 may be performed.
- the first communication processing unit 251, the information acquisition unit 253, the information providing unit 255, and the second communication processing unit 257 of the base station 200 are respectively the first communication processing unit 341, the information acquisition unit 343, Processing similar to the above-described processing of the information providing unit 345 and the second communication processing unit 347 may be performed.
- FIG. 14 is a block diagram illustrating an example of a schematic configuration of the gateway 100 according to the third embodiment.
- the gateway 100 includes an information acquisition unit 151 and a communication processing unit 153.
- the information acquisition unit 151 and the communication processing unit 153 may be implemented by a processor or the like.
- FIG. 15 is a block diagram illustrating an example of a schematic configuration of a terminal device 300 according to the third embodiment.
- the terminal device 300 includes an information acquisition unit 351 and a communication processing unit 353.
- the information acquisition unit 351 and the communication processing unit 353 may be implemented by a baseband (BB) processor and / or another processor.
- BB baseband
- Gateway 100 (information acquisition unit 151) acquires a data unit from the PDCP layer of base station 200. Then, the gateway 100 (communication processing unit 153) transmits the data unit to the terminal device 300 via the access point 40 using a protocol that enables delivery confirmation.
- the terminal device 300 (information acquisition unit 333) is a data unit (that is, a data unit from the PDCP layer of the base station 200), and is connected to the terminal via the access point 40 using the above protocol.
- the data unit transmitted to the device 300 is acquired.
- the terminal device 300 (first communication processing unit 331) performs reception processing of the data unit in the terminal device 300.
- FIG. 16 is a sequence diagram illustrating an example of a schematic process flow in the third embodiment.
- the gateway 100 acquires a data unit from the PDCP layer of the base station 200 (S601). Then, the gateway 100 transmits the data unit to the terminal device 300 via the access point 40 using a protocol that enables delivery confirmation (S603, S605).
- the terminal device 300 acquires the data unit (S607). Then, the terminal device 300 performs reception processing of the data unit in the terminal device 300 (S609).
- each of “PDCP”, “PDCP layer”, and “PDCP sublayer” may be replaced with another expression of “PDCP”, “PDCP layer”, and “PDCP sublayer”.
- the steps in the processing described in this specification do not necessarily have to be executed in time series in the order described in the sequence diagram.
- the steps in the processing may be executed in an order different from the order described as the sequence diagram or may be executed in parallel.
- a module including the gateway components for example, an information acquisition unit, an information provision unit, and / or a communication processing unit
- the components of the base station described in this specification for example, the first communication processing unit, the information acquisition unit, the information providing unit and / or the second communication processing unit, or the communication processing unit and / or the information providing unit
- a device including a BBU (Base Band Unit) or BBU) or a module thereof for example, a BBU or a BBU module.
- a module including the components of the terminal device described in this specification may be provided.
- a method including processing of such components may be provided, and a program for causing a processor to execute processing of such components may be provided.
- a recording medium in which the program is recorded may be provided.
- a base station apparatus, module, method, program, and recording medium are also included in the present invention.
- a communication processing unit that transmits the data unit to the terminal device via a wireless local area network access point using a protocol that enables delivery confirmation;
- a device comprising:
- Appendix 2 The apparatus according to claim 1, further comprising: an information providing unit that provides a result of delivery confirmation of the protocol to the PDCP layer of the base station.
- Appendix 5 The apparatus according to any one of appendices 1 to 4, wherein the apparatus is a gateway different from the base station or a module for the gateway.
- Appendix 6 The apparatus according to any one of appendices 1 to 4, wherein the apparatus is the base station, a base station apparatus for the base station, or a module for the base station apparatus.
- Appendix 7 Further comprising another communication processing unit for performing transmission processing in the PDCP layer, The other communication processing unit advances a reordering window of the PDCP layer based on a result of delivery confirmation of the protocol.
- the apparatus according to appendix 6.
- Appendix 8 Further comprising another communication processing unit for performing transmission processing in the PDCP layer, The other communication processing unit performs congestion control between the base station and the terminal device based on information from the protocol.
- the apparatus according to any one of appendices 6 or 7.
- the control includes adjusting the amount of data directly transmitted from the base station to the terminal device and the amount of data transmitted from the base station to the terminal device via the access point, The device described in 1.
- An information acquisition unit for acquiring the data unit transmitted from the PDCP layer of the base station to the terminal device via the access point of the wireless local area network using a protocol that enables delivery confirmation;
- a communication processing unit for receiving the data unit in the terminal device;
- a device comprising:
- Appendix 12 The apparatus according to appendix 10 or 11, wherein the reception process includes reordering of the PDCP layer.
- Appendix 13 The apparatus according to any one of appendices 10 to 12, wherein the communication processing unit transmits a PDCP status report indicating that the data unit has been received to the base station.
- Appendix 14 The device according to any one of appendices 10 to 13, wherein the device is the terminal device or a module for the terminal device.
- Appendix 15 15. The apparatus according to any one of appendices 1 to 14, wherein the protocol is a transport layer protocol.
- Appendix 16 The apparatus according to appendix 15, wherein the protocol is TCP (Transmission Control Protocol) or SCTP (Stream Control Transmission Protocol).
- TCP Transmission Control Protocol
- SCTP Stream Control Transmission Protocol
- Appendix 20 Transmitting a data unit from the PDCP layer of the base station to a terminal device via a wireless local area network access point using a protocol that enables delivery confirmation at a gateway or base station; In the terminal device, performing reception processing of the data unit in the terminal device; Including methods.
- Appendix 24 Obtaining a data unit from a PDCP layer of a base station, the data unit transmitted to a terminal device via an access point of a wireless local area network using a protocol that enables delivery confirmation; Performing reception processing of the data unit in the terminal device; A readable recording medium on which a program for causing a processor to execute is recorded.
- a communication processing unit for performing transmission processing in the PDCP layer of the base station An information providing unit that provides a data unit generated by the transmission process to a gateway that transmits the data unit to a terminal device via a wireless local area network access point using a protocol that enables delivery confirmation;
- a device comprising:
- Appendix 26 The apparatus according to appendix 25, wherein the apparatus is the base station, a base station apparatus for the base station, or a module for the base station apparatus.
- Appendix 27 27.
- Appendix 28 The apparatus according to any one of appendices 25 to 27, wherein the communication processing unit controls congestion between the base station and the terminal apparatus based on information from the protocol.
- the control includes adjusting the amount of data directly transmitted from the base station to the terminal device and the amount of data transmitted from the base station to the terminal device via the access point, 28 The device described in 1.
- (Appendix 30) Performing transmission processing in the PDCP layer of the base station; Providing a data unit generated by the transmission process to a gateway that transmits the data unit to a terminal device via a wireless local area network access point using a protocol that enables delivery confirmation; Including methods.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computer Security & Cryptography (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
1.本発明の実施形態の概要
2.第1の実施形態
2.1.システムの構成例
2.2.ゲートウェイの構成例
2.3.基地局の構成例
2.4.端末装置の構成例
2.5.技術的特徴
3.第2の実施形態
3.1.システムの構成例
3.2.基地局の構成例
3.3.端末装置の構成例
3.4.技術的特徴
4.第3の実施形態
4.1.システムの構成例
4.2.ゲートウェイの構成例
4.3.端末装置の構成例
4.4.技術的特徴
まず、本発明の実施形態の概要を説明する。
LTE-WLANアグリゲーションにおいてPDCP以下のレイヤでデータパスが分かれる場合には、WLANのAP経由でのデータの送信にはRLCが使用されず、当該データのために送達確認が行われなくなり得る。例えば、eNBとAPとの間、又はAPとUEとの間で、上記データがロスしたとしても、eNBは、当該データのロスを検出しない。その結果、PDCPにおいて管理されているバッファにデータが滞留し得る。これにより、データ送信が停滞する可能性があり、また、バッファ溢れによるさらなるデータロスが発生する可能性がある。
本発明の実施形態では、例えば、eNB又はゲートウェイが、TCP(Transmission Control Protocol)(又は送達確認を可能にする他のプロトコル)を使用して、当該eNBのPDCPパケット(即ち、PDCPのPDU)をAP経由でUEへ送信する。UEは、当該UEのPDCPレイヤにおいて上記PDCPパケットの受信処理を行う。
続いて、図1~図6を参照して、本発明の第1の実施形態を説明する。
まず、図1を参照して、第1の実施形態に係るシステム1の構成の例を説明する。図1は、第1の実施形態に係るシステム1の概略的な構成の一例を示す説明図である。図1を参照すると、システム1は、ゲートウェイ100、基地局(eNB)200、端末装置(UE)300及びアクセスポイント40を含む。ゲートウェイ100及び基地局200は、ネットワーク51を介して信号を送受信し、ゲートウェイ100及びアクセスポイント40は、ネットワーク53を介して信号を送受信する。
基地局200は、無線アクセスネットワーク(Radio Access Network:RAN)のノードであり、基地局200のカバレッジ内に位置する端末装置(例えば、端末装置300)との無線通信を行う。例えば、基地局200は、eNBである。
アクセスポイント40は、基地局200のRAT(Radio Access Technology)(例えば、LTE)とは異なる他のRATのアクセスポイントであり、端末装置(例えば、端末装置300)との無線通信を行う。例えば、当該他のRATは、無線ローカルエリアネットワーク(WLAN)であり、アクセスポイント40は、WLANのアクセスポイントである。より具体的には、例えば、アクセスポイント40は、IEEE802.11シリーズ(IEEE802.11b/a/g/n/ac/ad/j等)のうちのいずれかに準拠したアクセスポイントである。
端末装置300は、基地局200との無線通信を行う。例えば、端末装置300は、基地局200のカバレッジ内に位置する場合に、基地局200との無線通信を行う。
とりわけ本発明の実施形態では、基地局200は、端末装置300と直接通信するのみではなく、アクセスポイント40経由でも端末装置300と通信する。例えば、ゲートウェイ100は、基地局200からデータを受信し、基地局200の代わりに、アクセスポイント40経由で端末装置300へ当該データを送信する。さらに、例えば、ゲートウェイ100は、基地局200の代わりに、アクセスポイント40経由で端末装置300により送信されるデータを受信し、当該データを基地局200へ送信する。
次に、図2を参照して、第1の実施形態に係るゲートウェイ100の構成の例を説明する。図2は、第1の実施形態に係るゲートウェイ100の概略的な構成の例を示すブロック図ある。図2を参照すると、ゲートウェイ100は、ネットワーク通信部110、記憶部120及び処理部130を備える。
次に、図3を参照して、第1の実施形態に係る基地局200の構成の例を説明する。図3は、第1の実施形態に係る基地局200の概略的な構成の例を示すブロック図ある。図3を参照すると、基地局200は、無線通信部210、ネットワーク通信部220、記憶部230及び処理部240を備える。
次に、図4を参照して、第1の実施形態に係る端末装置300の構成の例を説明する。図4は、第1の実施形態に係る端末装置300の概略的な構成の例を示すブロック図ある。図4を参照すると、端末装置300は、無線通信部310、記憶部320及び処理部330を備える。
次に、図5及び図6を参照して、第1の実施形態に係る技術的特徴を説明する。
(a)基地局200の動作
基地局200(通信処理部241)は、基地局200のPDCPレイヤにおける送信処理を行う。例えば、基地局200(通信処理部241)は、PDCPレイヤのデータユニットを生成する。当該データユニットは、換言すると、PDCPのPDU(Packet Data Unit)又はPDCPパケットである。
ゲートウェイ100(情報取得部131)は、上記データユニット(即ち、基地局200のPDCPレイヤからのデータユニット)を取得する。上述したように、当該データユニットは、換言すると、PDCPのPDU又はPDCPパケットである。そして、ゲートウェイ100(通信処理部135)は、送達確認を可能にするプロトコルを使用して、アクセスポイント40経由で端末装置300へ上記データユニットを送信する。
(a)アクセスポイント60経由での受信
端末装置300(第2通信処理部337)は、上記プロトコル(例えば、TCP)を使用して上記データユニット(即ち、基地局200のPDCPレイヤからのデータユニットであって、上記プロトコルを使用してアクセスポイント40経由で端末装置300へ送信された当該データユニット)を受信する。例えば、端末装置300は、上記データユニットの受信が正常に完了した場合には、ACK(Acknowledgements)をゲートウェイ100へ送信し、上記データユニットの受信が正常に完了しなかった場合には、NACK(Negative Acknowledgements)をゲートウェイ100へ送信する。これにより、例えば、ゲートウェイ100がデータの送達確認を実際に行うことが可能になる。
さらに、端末装置300(情報取得部333)は、上記データユニットを取得する。そして、端末装置300(第1通信処理部331)は、端末装置300における上記データユニットの受信処理を行う。例えば、端末装置300(第1通信処理部331)は、端末装置300のPDCPレイヤにおける上記データユニットの受信処理を行う。
(a)送達確認の結果の提供
例えば、ゲートウェイ100(情報提供部133)は、上記プロトコル(例えば、TCP)の送達確認の結果を基地局200のPDCPレイヤに提供する。例えば、当該結果は、上記データユニットの送達が確認されたことを示す情報(例えば、ACK)を含む。例えば、上記結果は、上記データユニットの送達が確認されなかったことを示す情報(例えば、NACK)を含む。
例えば、基地局200(通信処理部241)は、上記プロトコル(例えば、TCP)の送達確認の結果に基づいて、上記PDCPレイヤのリオーダリングウィンドウを進める(advance)。
図5は、第1の実施形態におけるデータの送受信の例を説明するための説明図である。図5を参照すると、ゲートウェイ100、基地局200、端末装置300及びアクセスポイント40が示されている。例えば、基地局200は、RLC及びMAC等を使用して、基地局200のPDCPのPDUを端末装置300へ直接的に送信する。また、例えば、ゲートウェイ100は、基地局200の代わりに、TCP及びIP等を使用して、基地局200のPDCPのPDUを、アクセスポイント40経由で端末装置300へ送信する。
(a)第1の処理
図6は、第1の実施形態における第1の処理の概略的な流れの一例を示すシーケンス図である。当該第1の処理は、アクセスポイント40経由でのデータの送受信に関する処理である。なお、図6には、アクセスポイント40は明示されていないが、アクセスポイント40はゲートウェイ100と端末装置300との間に位置することに留意する。
図7は、第1の実施形態における第2の処理の概略的な流れの一例を示すシーケンス図である。当該第2の処理は、端末装置300へのIPアドレスの送信に関する処理である。
(a)ステータスレポート
端末装置300(第1通信処理部331)は、上記データユニット(即ち、上記プロトコル(例えば、TCP)を使用してアクセスポイント40経由で端末装置300へ送信された当該データユニット)が受信されたことを示すPDCPステータスレポートを基地局200へ送信してもよい。端末装置300(第1通信処理部331)は、当該PDCPステータスレポートを基地局200へ直接送信してもよい。また、当該PDCPステータスレポートの送信は、ハンドオーバの有無にかかわらず行われてもよい。これにより、例えば、基地局200は、データユニットの送達確認をより確実に行うことが可能になる。
基地局200(通信処理部241)は、上記プロトコル(例えば、TCP)からの情報に基づいて、基地局200と端末装置300との間の輻輳の制御を行ってもよい。例えば、当該制御は、基地局200から端末装置300へ直接送信されるデータの量と、基地局200からアクセスポイント40経由で端末装置300へ送信されるデータの量とを調整することを含んでもよい。なお、上記プロトコルからの上記情報は、ゲートウェイ100により基地局200に提供されてもよい。
続いて、図8~図13を参照して、本発明の第2の実施形態を説明する。
まず、図8を参照して、第2の実施形態に係るシステム2の構成の例を説明する。図8は、第2の実施形態に係るシステム2の概略的な構成の一例を示す説明図である。図8を参照すると、システム2は、基地局200、端末装置300及びアクセスポイント40を含む。基地局200及びアクセスポイント40は、ネットワーク55を介して信号を送受信する。
次に、図9を参照して、第2の実施形態に係る基地局200の構成の例を説明する。図9は、第2の実施形態に係る基地局200の概略的な構成の例を示すブロック図ある。図9を参照すると、基地局200は、無線通信部210、ネットワーク通信部220、記憶部230及び処理部250を備える。
次に、図10を参照して、第2の実施形態に係る端末装置300の構成の例を説明する。図10は、第2の実施形態に係る端末装置300の概略的な構成の例を示すブロック図ある。図10を参照すると、端末装置300は、無線通信部310、記憶部320及び処理部340を備える。
次に、図11~図13を参照して、第2の実施形態に係る技術的特徴を説明する。
基地局200(第1通信処理部251)は、基地局200のPDCPレイヤにおける送信処理を行う。例えば、基地局200(第1通信処理部251)は、PDCPレイヤのデータユニットを生成する。
端末装置300(第2通信処理部347)は、上記プロトコル(例えば、TCP)を使用して上記データユニット(即ち、基地局200のPDCPレイヤからのデータユニットであって、上記プロトコルを使用してアクセスポイント40経由で端末装置300へ送信された当該データユニット)を受信する。
例えば、基地局200(情報提供部255)は、上記プロトコル(例えば、TCP)の送達確認の結果を基地局200のPDCPレイヤに提供する。
図11は、第2の実施形態におけるデータの送受信の例を説明するための説明図である。図11を参照すると、基地局200、端末装置300及びアクセスポイント40が示されている。例えば、基地局200は、RLC及びMAC等を使用して、基地局200のPDCPのPDUを端末装置300へ直接的に送信する。また、例えば、基地局200は、TCP及びIP等を使用して、基地局200のPDCPのPDUを、アクセスポイント40経由で端末装置300へ送信する。
(a)第1の処理
図12は、第2の実施形態における第1の処理の概略的な流れの一例を示すシーケンス図である。当該第1の処理は、アクセスポイント40経由でのデータの送受信に関する処理である。なお、図12には、アクセスポイント40は明示されていないが、アクセスポイント40は基地局200と端末装置300との間に位置することに留意する。
図13は、第2の実施形態における第2の処理の概略的な流れの一例を示すシーケンス図である。当該第2の処理は、端末装置300へのIPアドレスの送信に関する処理(具体的には、例えば、call setup flowの処理)である。
PDCPステータスレポート及び輻輳制御についての説明も、第1の実施形態と第2の実施形態との間に特段の差異はない。よって、ここでは重複する説明を省略する。
続いて、図14~図16を参照して、本発明の第3の実施形態を説明する。
第3の実施形態に係るシステムの構成の例の説明は、例えば、第1の実施形態に係るシステムの構成の例の説明と同じである。よって、ここでは重複する説明を省略する。
次に、図14を参照して、第3の実施形態に係るゲートウェイ100の構成の例を説明する。図14は、第3の実施形態に係るゲートウェイ100の概略的な構成の例を示すブロック図ある。図14を参照すると、ゲートウェイ100は、情報取得部151及び通信処理部153を備える。
次に、図15を参照して、第3の実施形態に係る端末装置300の構成の例を説明する。図15は、第3の実施形態に係る端末装置300の概略的な構成の例を示すブロック図ある。図15を参照すると、端末装置300は、情報取得部351及び通信処理部353を備える。
次に、図16を参照して、第3の実施形態に係る技術的特徴を説明する。
ゲートウェイ100(情報取得部151)は、基地局200のPDCPレイヤからのデータユニットを取得する。そして、ゲートウェイ100(通信処理部153)は、送達確認を可能にするプロトコルを使用して、アクセスポイント40経由で端末装置300へ上記データユニットを送信する。
端末装置300(情報取得部333)は、上記データユニット(即ち、基地局200のPDCPレイヤからのデータユニットであって、上記プロトコルを使用してアクセスポイント40経由で端末装置300へ送信された当該データユニット)を取得する。そして、端末装置300(第1通信処理部331)は、端末装置300における上記データユニットの受信処理を行う。
図16は、第3の実施形態における処理の概略的な流れの一例を示すシーケンス図である。
基地局のPDCP(Packet Data Convergence Protocol)レイヤからのデータユニットを取得する情報取得部と、
送達確認を可能にするプロトコルを使用して、無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ前記データユニットを送信する通信処理部と、
を備える装置。
前記プロトコルの送達確認の結果を前記基地局の前記PDCPレイヤに提供する情報提供部をさらに備える、付記1に記載の装置。
前記プロトコルの送達確認の前記結果は、前記データユニットの送達が確認されたことを示す情報を含む、付記2項に記載の装置。
前記プロトコルの送達確認の前記結果は、前記データユニットの送達が確認されなかったことを示す情報を含む、付記2又は3に記載の装置。
前記装置は、前記基地局とは異なるゲートウェイ、又は当該ゲートウェイのためのモジュールである、付記1~4のいずれか1項に記載の装置。
前記装置は、前記基地局、前記基地局のための基地局装置、又は当該基地局装置のためのモジュールである、付記1~4のいずれか1項に記載の装置。
前記PDCPレイヤにおける送信処理を行う他の通信処理部
をさらに備え、
前記他の通信処理部は、前記プロトコルの送達確認の結果に基づいて、前記PDCPレイヤのリオーダリングウィンドウを進める、
付記6に記載の装置。
前記PDCPレイヤにおける送信処理を行う他の通信処理部
をさらに備え、
前記他の通信処理部は、前記プロトコルからの情報に基づいて、前記基地局と前記端末装置との間の輻輳の制御を行う、
付記6又は7のいずれか1項に記載の装置。
前記制御は、前記基地局から前記端末装置へ直接送信されるデータの量と、前記基地局から前記アクセスポイント経由で前記端末装置へ送信されるデータの量とを調整することを含む、付記8に記載の装置。
基地局のPDCPレイヤからのデータユニットであって、送達確認を可能にするプロトコルを使用して無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ送信された前記データユニットを取得する情報取得部と、
前記端末装置における前記データユニットの受信処理を行う通信処理部と、
を備える装置。
前記プロトコルを使用して前記データユニットを受信する他の通信処理部をさらに備える、付記10に記載の装置。
前記受信処理は、前記PDCPレイヤのリオーダリングを含む、付記10又は11に記載の装置。
前記通信処理部は、前記データユニットが受信されたことを示すPDCPステータスレポートを前記基地局へ送信する、付記10~12のいずれか1項に記載の装置。
前記装置は、前記端末装置、又は前記端末装置のためのモジュールである、付記10~13のいずれか1項に記載の装置。
前記プロトコルは、トランスポートレイヤのプロトコルである、付記1~14のいずれか1項に記載の装置。
前記プロトコルは、TCP(Transmission Control Protocol)又はSCTP(Stream Control Transmission Protocol)である、付記15に記載の装置。
基地局のPDCPレイヤからのデータユニットを取得することと、
送達確認を可能にするプロトコルを使用して、無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ前記データユニットを送信することと、
を含む方法。
基地局のPDCPレイヤからのデータユニットであって、送達確認を可能にするプロトコルを使用して無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ送信された前記データユニットを取得することと、
前記端末装置における前記データユニットの受信処理を行うことと、
を含む方法。
送達確認を可能にするプロトコルを使用して、基地局のPDCPレイヤからのデータユニットを、無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ送信するゲートウェイ又は前記基地局と、
前記端末装置における前記データユニットの受信処理を行う前記端末装置と、
を含むシステム。
ゲートウェイ又は基地局において、送達確認を可能にするプロトコルを使用して、前記基地局のPDCPレイヤからのデータユニットを、無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ送信することと、
前記端末装置において、前記端末装置における前記データユニットの受信処理を行うことと、
を含む方法。
基地局のPDCPレイヤからのデータユニットを取得することと、
送達確認を可能にするプロトコルを使用して、無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ前記データユニットを送信することと、
をプロセッサに実行させるためのプログラム。
基地局のPDCPレイヤからのデータユニットを取得することと、
送達確認を可能にするプロトコルを使用して、無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ前記データユニットを送信することと、
をプロセッサに実行させるためのプログラムを記録した読み取り可能な記録媒体。
基地局のPDCPレイヤからのデータユニットであって、送達確認を可能にするプロトコルを使用して無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ送信された前記データユニットを取得することと、
前記端末装置における前記データユニットの受信処理を行うことと、
をプロセッサに実行させるためのプログラム。
基地局のPDCPレイヤからのデータユニットであって、送達確認を可能にするプロトコルを使用して無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ送信された前記データユニットを取得することと、
前記端末装置における前記データユニットの受信処理を行うことと、
をプロセッサに実行させるためのプログラムを記録した読み取り可能な記録媒体。
基地局のPDCPレイヤにおける送信処理を行う通信処理部と、
前記送信処理により生成されるデータユニットを、送達確認を可能にするプロトコルを使用して無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ前記データユニットを送信するゲートウェイに提供する情報提供部と、
を備える装置。
前記装置は、前記基地局、前記基地局のための基地局装置、又は当該基地局装置のためのモジュールである、付記25に記載の装置。
前記通信処理部は、前記プロトコルの送達確認の結果に基づいて、前記PDCPレイヤのリオーダリングウィンドウを進める、付記25又は26に記載の装置。
前記通信処理部は、前記プロトコルからの情報に基づいて、前記基地局と前記端末装置との間の輻輳の制御を行う、付記25~27のいずれか1項に記載の装置。
前記制御は、前記基地局から前記端末装置へ直接送信されるデータの量と、前記基地局から前記アクセスポイント経由で前記端末装置へ送信されるデータの量とを調整することを含む、付記28に記載の装置。
基地局のPDCPレイヤにおける送信処理を行うことと、
前記送信処理により生成されるデータユニットを、送達確認を可能にするプロトコルを使用して無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ前記データユニットを送信するゲートウェイに提供することと、
を含む方法。
基地局のPDCPレイヤにおける送信処理を行うことと、
前記送信処理により生成されるデータユニットを、送達確認を可能にするプロトコルを使用して無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ前記データユニットを送信するゲートウェイに提供することと、
をプロセッサに実行させるためのプログラム。
基地局のPDCPレイヤにおける送信処理を行うことと、
前記送信処理により生成されるデータユニットを、送達確認を可能にするプロトコルを使用して無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ前記データユニットを送信するゲートウェイに提供することと、
をプロセッサに実行させるためのプログラムを記録した読み取り可能な記録媒体。
40 アクセスポイント
51、53、55 ネットワーク
100 ゲートウェイ
131、151 情報取得部
133 情報提供部
135、153 通信処理部
200 基地局
241 通信処理部
251 第1通信処理部
253 情報取得部
255 情報提供部
257 第2通信処理部
300 端末装置
331、341 第1通信処理部
333、343、351 情報取得部
335、345 情報提供部
337、347 第2通信処理部
353 通信処理部
Claims (32)
- 基地局のPDCP(Packet Data Convergence Protocol)レイヤからのデータユニットを取得する情報取得部と、
送達確認を可能にするプロトコルを使用して、無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ前記データユニットを送信する通信処理部と、
を備える装置。 - 前記プロトコルの送達確認の結果を前記基地局の前記PDCPレイヤに提供する情報提供部をさらに備える、請求項1に記載の装置。
- 前記プロトコルの送達確認の前記結果は、前記データユニットの送達が確認されたことを示す情報を含む、請求項2項に記載の装置。
- 前記プロトコルの送達確認の前記結果は、前記データユニットの送達が確認されなかったことを示す情報を含む、請求項2又は3に記載の装置。
- 前記装置は、前記基地局とは異なるゲートウェイ、又は当該ゲートウェイのためのモジュールである、請求項1~4のいずれか1項に記載の装置。
- 前記装置は、前記基地局、前記基地局のための基地局装置、又は当該基地局装置のためのモジュールである、請求項1~4のいずれか1項に記載の装置。
- 前記PDCPレイヤにおける送信処理を行う他の通信処理部
をさらに備え、
前記他の通信処理部は、前記プロトコルの送達確認の結果に基づいて、前記PDCPレイヤのリオーダリングウィンドウを進める、
請求項6に記載の装置。 - 前記PDCPレイヤにおける送信処理を行う他の通信処理部
をさらに備え、
前記他の通信処理部は、前記プロトコルからの情報に基づいて、前記基地局と前記端末装置との間の輻輳の制御を行う、
請求項6又は7のいずれか1項に記載の装置。 - 前記制御は、前記基地局から前記端末装置へ直接送信されるデータの量と、前記基地局から前記アクセスポイント経由で前記端末装置へ送信されるデータの量とを調整することを含む、請求項8に記載の装置。
- 基地局のPDCPレイヤからのデータユニットであって、送達確認を可能にするプロトコルを使用して無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ送信された前記データユニットを取得する情報取得部と、
前記端末装置における前記データユニットの受信処理を行う通信処理部と、
を備える装置。 - 前記プロトコルを使用して前記データユニットを受信する他の通信処理部をさらに備える、請求項10に記載の装置。
- 前記受信処理は、前記PDCPレイヤのリオーダリングを含む、請求項10又は11に記載の装置。
- 前記通信処理部は、前記データユニットが受信されたことを示すPDCPステータスレポートを前記基地局へ送信する、請求項10~12のいずれか1項に記載の装置。
- 前記装置は、前記端末装置、又は前記端末装置のためのモジュールである、請求項10~13のいずれか1項に記載の装置。
- 前記プロトコルは、トランスポートレイヤのプロトコルである、請求項1~14のいずれか1項に記載の装置。
- 前記プロトコルは、TCP(Transmission Control Protocol)又はSCTP(Stream Control Transmission Protocol)である、請求項15に記載の装置。
- 基地局のPDCPレイヤからのデータユニットを取得することと、
送達確認を可能にするプロトコルを使用して、無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ前記データユニットを送信することと、
を含む方法。 - 基地局のPDCPレイヤからのデータユニットであって、送達確認を可能にするプロトコルを使用して無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ送信された前記データユニットを取得することと、
前記端末装置における前記データユニットの受信処理を行うことと、
を含む方法。 - 送達確認を可能にするプロトコルを使用して、基地局のPDCPレイヤからのデータユニットを、無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ送信するゲートウェイ又は前記基地局と、
前記端末装置における前記データユニットの受信処理を行う前記端末装置と、
を含むシステム。 - ゲートウェイ又は基地局において、送達確認を可能にするプロトコルを使用して、前記基地局のPDCPレイヤからのデータユニットを、無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ送信することと、
前記端末装置において、前記端末装置における前記データユニットの受信処理を行うことと、
を含む方法。 - 基地局のPDCPレイヤからのデータユニットを取得することと、
送達確認を可能にするプロトコルを使用して、無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ前記データユニットを送信することと、
をプロセッサに実行させるためのプログラム。 - 基地局のPDCPレイヤからのデータユニットを取得することと、
送達確認を可能にするプロトコルを使用して、無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ前記データユニットを送信することと、
をプロセッサに実行させるためのプログラムを記録した読み取り可能な記録媒体。 - 基地局のPDCPレイヤからのデータユニットであって、送達確認を可能にするプロトコルを使用して無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ送信された前記データユニットを取得することと、
前記端末装置における前記データユニットの受信処理を行うことと、
をプロセッサに実行させるためのプログラム。 - 基地局のPDCPレイヤからのデータユニットであって、送達確認を可能にするプロトコルを使用して無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ送信された前記データユニットを取得することと、
前記端末装置における前記データユニットの受信処理を行うことと、
をプロセッサに実行させるためのプログラムを記録した読み取り可能な記録媒体。 - 基地局のPDCPレイヤにおける送信処理を行う通信処理部と、
前記送信処理により生成されるデータユニットを、送達確認を可能にするプロトコルを使用して無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ前記データユニットを送信するゲートウェイに提供する情報提供部と、
を備える装置。 - 前記装置は、前記基地局、前記基地局のための基地局装置、又は当該基地局装置のためのモジュールである、請求項25に記載の装置。
- 前記通信処理部は、前記プロトコルの送達確認の結果に基づいて、前記PDCPレイヤのリオーダリングウィンドウを進める、請求項25又は26に記載の装置。
- 前記通信処理部は、前記プロトコルからの情報に基づいて、前記基地局と前記端末装置との間の輻輳の制御を行う、請求項25~27のいずれか1項に記載の装置。
- 前記制御は、前記基地局から前記端末装置へ直接送信されるデータの量と、前記基地局から前記アクセスポイント経由で前記端末装置へ送信されるデータの量とを調整することを含む、請求項28に記載の装置。
- 基地局のPDCPレイヤにおける送信処理を行うことと、
前記送信処理により生成されるデータユニットを、送達確認を可能にするプロトコルを使用して無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ前記データユニットを送信するゲートウェイに提供することと、
を含む方法。 - 基地局のPDCPレイヤにおける送信処理を行うことと、
前記送信処理により生成されるデータユニットを、送達確認を可能にするプロトコルを使用して無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ前記データユニットを送信するゲートウェイに提供することと、
をプロセッサに実行させるためのプログラム。 - 基地局のPDCPレイヤにおける送信処理を行うことと、
前記送信処理により生成されるデータユニットを、送達確認を可能にするプロトコルを使用して無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ前記データユニットを送信するゲートウェイに提供することと、
をプロセッサに実行させるためのプログラムを記録した読み取り可能な記録媒体。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16844395.0A EP3349486B1 (en) | 2015-09-11 | 2016-09-07 | Device and method relating to wireless communication |
JP2017539193A JP6540812B2 (ja) | 2015-09-11 | 2016-09-07 | 無線通信に関するゲートウェイ、方法、システム、及び、プログラム |
CN201680051933.0A CN108029000B (zh) | 2015-09-11 | 2016-09-07 | 用于无线通信的设备和方法 |
US15/751,721 US10742365B2 (en) | 2015-09-11 | 2016-09-07 | Apparatus and method for radio communication |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-179745 | 2015-09-11 | ||
JP2015179745 | 2015-09-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017043534A1 true WO2017043534A1 (ja) | 2017-03-16 |
Family
ID=58239785
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/076316 WO2017043534A1 (ja) | 2015-09-11 | 2016-09-07 | 無線通信に関する装置及び方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10742365B2 (ja) |
EP (1) | EP3349486B1 (ja) |
JP (1) | JP6540812B2 (ja) |
CN (1) | CN108029000B (ja) |
WO (1) | WO2017043534A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021241345A1 (ja) * | 2020-05-27 | 2021-12-02 | ソニーグループ株式会社 | 情報処理装置、通信システム及び情報処理方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012148482A1 (en) * | 2011-04-29 | 2012-11-01 | Nageen Himayat | Control and data plane solutions for carrier- aggregation based wlan offload |
WO2015170722A1 (ja) * | 2014-05-08 | 2015-11-12 | 京セラ株式会社 | 通信制御方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003049354A1 (en) * | 2001-12-04 | 2003-06-12 | Nokia Corporation | Method and system for dispatching multiple tcp packets from communication systems |
US20090168723A1 (en) * | 2007-11-27 | 2009-07-02 | Qualcomm Incorporated | Method and apparatus for handling out-of-order packets during handover in a wireless communication system |
CN105704759A (zh) * | 2011-05-27 | 2016-06-22 | 上海华为技术有限公司 | 一种数据流传输方法及网络设备 |
US8867501B2 (en) * | 2011-06-23 | 2014-10-21 | Qualcomm Incorporated | Multi-radio coexistence |
US9445431B2 (en) | 2013-08-08 | 2016-09-13 | Mediatek Inc. | Wireless communications devices supporting WiFi and LTE communications and methods for transmission control thereof |
JP6251522B2 (ja) | 2013-08-30 | 2017-12-20 | 株式会社Nttドコモ | 移動通信方法及び無線基地局 |
US9661657B2 (en) * | 2013-11-27 | 2017-05-23 | Intel Corporation | TCP traffic adaptation in wireless systems |
CN104753627A (zh) | 2013-12-26 | 2015-07-01 | 中兴通讯股份有限公司 | 多路径传输方法、系统及数据发送装置和数据接收装置 |
US20160323919A1 (en) | 2014-01-10 | 2016-11-03 | Lg Electronics Inc. | Method and apparatus for obtaining information for 3gpp lte-wlan interworking in wireless communication system |
US9838282B2 (en) * | 2014-05-09 | 2017-12-05 | Telefonaktiebolaget Lm Ericsson (Publ) | PDCP and flow control for split bearer |
KR102319836B1 (ko) * | 2014-12-16 | 2021-11-01 | 삼성전자 주식회사 | 무선 통신 시스템에서 기지국과 단말 간 통신 방법을 결정하는 방법 및 장치 |
-
2016
- 2016-09-07 JP JP2017539193A patent/JP6540812B2/ja active Active
- 2016-09-07 US US15/751,721 patent/US10742365B2/en active Active
- 2016-09-07 WO PCT/JP2016/076316 patent/WO2017043534A1/ja active Application Filing
- 2016-09-07 EP EP16844395.0A patent/EP3349486B1/en active Active
- 2016-09-07 CN CN201680051933.0A patent/CN108029000B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012148482A1 (en) * | 2011-04-29 | 2012-11-01 | Nageen Himayat | Control and data plane solutions for carrier- aggregation based wlan offload |
WO2015170722A1 (ja) * | 2014-05-08 | 2015-11-12 | 京セラ株式会社 | 通信制御方法 |
Non-Patent Citations (4)
Title |
---|
BROADCOM CORPORATION: "User Plane Architecture solutions based on DuCo Solution 3C", 3GPP TSG- RAN WG2#91 R2-153723, 14 August 2015 (2015-08-14), XP050992350, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_91/Docs/R2-153723.zip> * |
CATT: "Discussion on UP Architecture of LTE/WLAN Aggregation", 3GPP TSG-RAN WG2#89BIS R2-151298, 24 April 2015 (2015-04-24), XP050936247, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_89bis/Docs/R2-151298.zip> * |
FUJITSU: "Flow control and feedback for LWA", 3GPP TSG-RAN WG2#90 R2-152188, 15 May 2015 (2015-05-15), XP050972826, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_90/Docs/R2-152188.zip> * |
See also references of EP3349486A4 * |
Also Published As
Publication number | Publication date |
---|---|
CN108029000A (zh) | 2018-05-11 |
EP3349486A1 (en) | 2018-07-18 |
EP3349486B1 (en) | 2021-03-24 |
JPWO2017043534A1 (ja) | 2018-05-31 |
JP6540812B2 (ja) | 2019-07-10 |
EP3349486A4 (en) | 2019-02-20 |
US10742365B2 (en) | 2020-08-11 |
US20180241516A1 (en) | 2018-08-23 |
CN108029000B (zh) | 2020-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7288941B2 (ja) | 無線システムにおける段階的再構成のためのシステムおよび方法 | |
AU2021282555B2 (en) | Radio access network node, radio terminal, and methods and non-transitory computer-readable media therefor | |
TWI601435B (zh) | 處理同時通訊的方法及其通訊裝置 | |
US20200112885A1 (en) | Handover control method and apparatus | |
US10784994B2 (en) | Method for transmitting information for LTE-WLAN aggregation system and a device therefor | |
CN103533586B (zh) | 切换过程中的信令交互及层重建的方法和设备 | |
JP6046138B2 (ja) | デュアルモード端末の性能情報報告方法及び装置 | |
US11265769B2 (en) | Handover method, terminal device, and network device | |
US9392510B2 (en) | Handover method and apparatus in wireless communication system | |
EP3122115B1 (en) | Wireless communication apparatus and wireless communication method | |
CN109714136B (zh) | 一种通讯方法和终端 | |
TW201904347A (zh) | 處理雙連結中次要節點改變的裝置及方法 | |
CN107615809B (zh) | 用户装置、基站以及通信方法 | |
TWI754018B (zh) | 處理在一雙連結中的通訊的裝置及方法 | |
WO2017043534A1 (ja) | 無線通信に関する装置及び方法 | |
WO2017024581A1 (zh) | 数据传输方法、基站及用户设备 | |
US20160337099A1 (en) | Coordinated communication method and system and apparatus | |
US20190380108A1 (en) | Master base station, secondary base station, and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16844395 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017539193 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15751721 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016844395 Country of ref document: EP |