WO2017043534A1 - 無線通信に関する装置及び方法 - Google Patents

無線通信に関する装置及び方法 Download PDF

Info

Publication number
WO2017043534A1
WO2017043534A1 PCT/JP2016/076316 JP2016076316W WO2017043534A1 WO 2017043534 A1 WO2017043534 A1 WO 2017043534A1 JP 2016076316 W JP2016076316 W JP 2016076316W WO 2017043534 A1 WO2017043534 A1 WO 2017043534A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
terminal device
protocol
data unit
unit
Prior art date
Application number
PCT/JP2016/076316
Other languages
English (en)
French (fr)
Inventor
林 貞福
小椋 大輔
尚 二木
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to EP16844395.0A priority Critical patent/EP3349486B1/en
Priority to JP2017539193A priority patent/JP6540812B2/ja
Priority to CN201680051933.0A priority patent/CN108029000B/zh
Priority to US15/751,721 priority patent/US10742365B2/en
Publication of WO2017043534A1 publication Critical patent/WO2017043534A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1657Implicit acknowledgement of correct or incorrect reception, e.g. with a moving window
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1874Buffer management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/06Transport layer protocols, e.g. TCP [Transport Control Protocol] over wireless
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • H04W76/16Involving different core network technologies, e.g. a packet-switched [PS] bearer in combination with a circuit-switched [CS] bearer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present invention relates to an apparatus and a method related to wireless communication.
  • Layer 2 of LTE Long Term Evolution
  • MAC Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • Non-Patent Document 1 Layer 2 of LTE (Long Term Evolution) is divided into three sublayers: MAC (Medium Access Control), RLC (Radio Link Control), and PDCP (Packet Data Convergence Protocol) (see Non-Patent Document 1).
  • RLC has a delivery confirmation function (Status Report of RLC AM mode) (see Non-Patent Document 2).
  • the RLC notifies the PDCP (that is, the upper layer of the RLC) whether or not the data has arrived.
  • the reordering window re-ordering window
  • the data is deleted from the buffer, and a sequence number is assigned to new data to which no sequence number is assigned.
  • 3GPP 3rd Generation Partnership Project
  • LTE eNB evolved Node B
  • WLAN wireless local area network
  • AP wireless local area network
  • UE User Equipment
  • a technique for communication that is, LTE-WLAN aggregation
  • data paths are divided in layers below PDCP.
  • PDCP PDU Packet Data Unit
  • a certain PDCP PDU Packet Data Unit
  • RLC and MAC Radio Link Control
  • another PDCP PDU is transmitted from the eNB to the UE via the WLAN AP.
  • 3GPP TS 36.300 V13.0.0 (2015-06) 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio; U 2 (Release 13) 3GPP TS 36.322 V12.2.0 (2015-03) 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Link Control (RLC) protocol specification12 (Release) RP-150753: On the impacts of LTE-WLAN Aggregation on WLAN Nodes and terminals Broadcom Corporation
  • Non-Patent Document 3 when the data path is divided in layers below PDCP in LTE-WLAN aggregation, RLC is not used for data transmission via the WLAN AP, and Delivery confirmation may not be performed due to data. For example, even if the data is lost between the eNB and the AP or between the AP and the UE, the eNB does not detect the loss of the data. As a result, data can stay in a buffer managed in PDCP. As a result, data transmission may be stagnant, and further data loss may occur due to buffer overflow.
  • An object of the present invention is to enable delivery confirmation of data transmitted from a base station to a terminal device via an access point.
  • the first apparatus of the present invention uses an information acquisition unit that acquires a data unit from a PDCP (Packet Data Convergence Protocol) layer of a base station and a protocol that enables delivery confirmation to access a wireless local area network.
  • a communication processing unit that transmits the data unit to the terminal device via the point.
  • PDCP Packet Data Convergence Protocol
  • the second device of the present invention is a data unit from the PDCP layer of the base station, and the data transmitted to the terminal device via the access point of the wireless local area network using a protocol that enables delivery confirmation
  • An information acquisition unit that acquires a unit
  • a communication processing unit that performs reception processing of the data unit in the terminal device.
  • the first method of the present invention obtains the data unit from the PDCP layer of the base station and transmits the data to the terminal device via the access point of the wireless local area network using a protocol that enables delivery confirmation. Sending the unit.
  • the second method of the present invention is a data unit from the PDCP layer of the base station, wherein the data is transmitted to the terminal device via the access point of the wireless local area network using a protocol that enables delivery confirmation. Acquiring a unit and performing reception processing of the data unit in the terminal device.
  • an eNB or a gateway uses TCP (Transmission Control Protocol) (or other protocol that enables delivery confirmation), and the PDCP packet of the eNB (that is, , PDCP PDU) to the UE via the AP.
  • TCP Transmission Control Protocol
  • the UE performs the PDCP packet reception process in the PDCP layer of the UE.
  • FIG. 1 is an explanatory diagram illustrating an example of a schematic configuration of a system 1 according to the first embodiment.
  • the system 1 includes a gateway 100, a base station (eNB) 200, a terminal apparatus (UE) 300, and an access point 40.
  • the gateway 100 and the base station 200 transmit and receive signals via the network 51, and the gateway 100 and the access point 40 transmit and receive signals via the network 53.
  • the gateway 100, the base station 200, and the terminal device 300 may be nodes / entities that comply with 3GPP (Third Generation Partnership Project) standards. More specifically, for example, the gateway 100, the base station 200, and the terminal device 300 may be nodes / entities conforming to LTE (Long Term Evolution) / LTE-Advanced.
  • the gateway 100 may be a WT (WLAN Termination).
  • WT WLAN Termination
  • Base station 200 is a node of a radio access network (RAN), and performs radio communication with a terminal device (for example, terminal device 300) located within the coverage of base station 200.
  • a terminal device for example, terminal device 300 located within the coverage of base station 200.
  • the base station 200 is an eNB.
  • the access point 40 is another RAT access point different from the RAT (Radio Access Technology) (for example, LTE) of the base station 200, and performs wireless communication with a terminal device (for example, the terminal device 300).
  • the other RAT is a wireless local area network (WLAN)
  • the access point 40 is a WLAN access point.
  • the access point 40 is an access point conforming to any one of the IEEE802.11 series (IEEE802.11b / a / g / n / ac / ad / j etc.).
  • the other RATs are not limited to WLANs, and the access point 40 is not limited to WLAN access points.
  • the other RAT may be a wireless personal area network (WPAN) (specifically, Bluetooth (registered trademark), UWB (Ultra WideBand), or ZigBee (registered trademark)).
  • WPAN wireless personal area network
  • the access point 40 may be a WPAN access point and may conform to any of the IEEE 802.15 series.
  • the other RAT is a wireless metropolitan area network (WMAN) (specifically, WiMAX (Worldwide Interoperability for Microwave Access) (registered trademark), flash-OFDM (registered trademark), or iBurst (registered trademark), etc.), and the access point 40 may be a WMAN access point and may conform to either the IEEE 802.16 series or the IEEE 802.20 series. . Further, the access point 40 may be referred to as a “base station” instead of an “access point”.
  • WMAN wireless metropolitan area network
  • WiMAX Worldwide Interoperability for Microwave Access
  • flash-OFDM registered trademark
  • iBurst registered trademark
  • Terminal device 300 The terminal device 300 performs wireless communication with the base station 200. For example, when the terminal device 300 is located within the coverage of the base station 200, the terminal device 300 performs wireless communication with the base station 200.
  • the terminal device 300 performs wireless communication with the access point 40. For example, when the terminal device 300 is located within the coverage of the access point 40, the terminal device 300 performs wireless communication with the access point 40.
  • the base station 200 communicates not only directly with the terminal device 300 but also with the terminal device 300 via the access point 40.
  • the gateway 100 receives data from the base station 200 and transmits the data to the terminal device 300 via the access point 40 instead of the base station 200.
  • the gateway 100 receives data transmitted by the terminal device 300 via the access point 40 and transmits the data to the base station 200.
  • FIG. 2 is a block diagram illustrating an example of a schematic configuration of the gateway 100 according to the first embodiment.
  • the gateway 100 includes a network communication unit 110, a storage unit 120, and a processing unit 130.
  • the network communication unit 110 receives a signal from the network 51 and transmits the signal to the network 51. Further, the network communication unit 110 receives a signal from the network 53 and transmits the signal to the network 53.
  • the storage unit 120 temporarily or permanently stores programs and parameters for operating the gateway 100 and various data.
  • the processing unit 130 provides various functions of the gateway 100.
  • the processing unit 130 includes an information acquisition unit 131, an information provision unit 133, and a communication processing unit 135. Note that the processing unit 130 may further include other components other than these components. That is, the processing unit 130 can perform operations other than the operations of these components.
  • the network communication unit 110 may include a network adapter or a network interface card.
  • the storage unit 120 may include a memory (for example, a nonvolatile memory and / or a volatile memory) and / or a hard disk.
  • the processing unit 130 may include a processor.
  • FIG. 3 is a block diagram illustrating an example of a schematic configuration of the base station 200 according to the first embodiment.
  • the base station 200 includes a wireless communication unit 210, a network communication unit 220, a storage unit 230, and a processing unit 240.
  • the wireless communication unit 210 transmits and receives signals wirelessly. For example, the wireless communication unit 210 receives a signal from the terminal device and transmits a signal to the terminal device.
  • the network communication unit 220 receives a signal from the network 51 and transmits the signal to the network 51.
  • the storage unit 230 temporarily or permanently stores programs and parameters for operating the base station 200 and various data.
  • the processing unit 240 provides various functions of the base station 200.
  • the processing unit 240 includes a communication processing unit 241 and an information providing unit 243.
  • the processing unit 240 may further include other components other than these components. That is, the processing unit 240 can perform operations other than the operations of these components.
  • the wireless communication unit 210 may include an antenna and a radio frequency (RF) circuit.
  • the network communication unit 220 may include a network adapter or a network interface card.
  • the storage unit 230 may include a memory (for example, a nonvolatile memory and / or a volatile memory) and / or a hard disk.
  • the processing unit 240 may include a baseband (BB) processor and / or another processor.
  • BB baseband
  • FIG. 4 is a block diagram illustrating an example of a schematic configuration of the terminal device 300 according to the first embodiment.
  • the terminal device 300 includes a wireless communication unit 310, a storage unit 320, and a processing unit 330.
  • the wireless communication unit 310 transmits and receives signals wirelessly. For example, the wireless communication unit 310 receives a signal from the base station and transmits a signal to the base station.
  • the storage unit 320 temporarily or permanently stores programs and parameters for operation of the terminal device 300 and various data.
  • the processing unit 330 provides various functions of the terminal device 300.
  • the processing unit 330 includes a first communication processing unit 331, an information acquisition unit 333, an information providing unit 335, and a second communication processing unit 337.
  • the processing unit 330 may further include other components other than these components. That is, the processing unit 330 can perform operations other than the operations of these components.
  • the wireless communication unit 310 may include an antenna and a radio frequency (RF) circuit.
  • the storage unit 320 may include a memory (for example, a nonvolatile memory and / or a volatile memory) and / or a hard disk.
  • the processing unit 330 may include a baseband (BB) processor and / or another processor.
  • BB baseband
  • the base station 200 (communication processing unit 241) performs transmission processing in the PDCP layer of the base station 200.
  • the base station 200 (communication processing unit 241) generates a PDCP layer data unit.
  • the data unit is a PDCP PDU (Packet Data Unit) or a PDCP packet.
  • the base station 200 when transmitting the data unit to the terminal device 300 via the access point 40, the base station 200 (information providing unit 243) provides the data unit to the gateway 100. That is, the base station 200 (information providing unit 243) transmits the data unit to the gateway 100.
  • the base station 200 may generate another data unit of the PDCP layer and directly transmit the other data unit to the terminal device 300.
  • the base station 200 (communication processing unit 241) may perform transmission processing in the RLC layer and the MAC layer.
  • the gateway 100 (information acquisition unit 131) acquires the data unit (that is, the data unit from the PDCP layer of the base station 200). As described above, in other words, the data unit is a PDCP PDU or a PDCP packet. Then, the gateway 100 (communication processing unit 135) transmits the data unit to the terminal device 300 via the access point 40 using a protocol that enables delivery confirmation.
  • the above protocol is a transport layer protocol.
  • the protocol is TCP (Transmission Control Protocol). That is, the gateway 100 (communication processing unit 135) transmits the data unit to the terminal device 300 via the access point 40 using TCP. More specifically, for example, the gateway 100 (communication processing unit 135) generates a TCP packet including the data unit, generates an IP (Internet Protocol) packet including the TCP packet, and transmits the IP packet. .
  • the IP address (that is, the IP address of the gateway 100 and / or the IP address of the terminal device 300) used for transmission / reception of the data unit via the access point 40 is the base station 200 (communication processing unit 241). ) To the terminal device 300.
  • the IP address is provided to the base station 200 by the gateway 100 (information providing unit 133).
  • the gateway 100 transmits an AP Addition Request Acknowledge message including the IP address of the terminal device 300 to the base station 200, and the base station 200 transmits an RRC Connection Reconfiguration message including the IP address of the terminal device 300 to the terminal device 300.
  • the IP address of the terminal device 300 may be assigned by the gateway 100. Further, the IP address of the gateway 100 may be transmitted to the base station 200 and the terminal device 300 in the same manner as the IP address of the terminal device 300.
  • the gateway 100 (communication processing unit 135) manages the correspondence between the PDCP sequence number for the data packet and the sequence number of the packet (for example, TCP packet) of the protocol including the data packet.
  • the above protocol is not limited to TCP, and may be another protocol.
  • the protocol may be SCTP (Stream Control Transmission Protocol).
  • the terminal device 300 uses the protocol (for example, TCP) to transmit the data unit (that is, the base station 200). Data unit transmitted from the PDCP layer to the terminal device 300 via the access point 40 using the above protocol. For example, the terminal device 300 transmits ACK (Acknowledgements) to the gateway 100 when the reception of the data unit is normally completed, and NACK (when the reception of the data unit is not normally completed. Negative Acknowledgments) is transmitted to the gateway 100. As a result, for example, the gateway 100 can actually confirm the delivery of data.
  • TCP Transmission Control Protocol
  • NACK negative Acknowledgements
  • (B) Reception process in PDCP layer Furthermore, the terminal device 300 (information acquisition unit 333) acquires the data unit. Then, the terminal device 300 (first communication processing unit 331) performs reception processing of the data unit in the terminal device 300. For example, the terminal device 300 (first communication processing unit 331) performs reception processing of the data unit in the PDCP layer of the terminal device 300.
  • the reception process includes reordering of the PDCP layer of the terminal device 300.
  • a data unit transmitted directly from the base station 200 to the terminal device 300 and a data unit transmitted from the base station 200 to the terminal device 300 via the access point 60 can be processed in the correct order.
  • the reception process includes removal of a PDCP header, decryption and / or header decompression.
  • the first communication processing unit 331 performs processing such as an RLC layer, a MAC layer, a physical layer, and / or an RRC (Radio Resource Control) layer in addition to the PDCP layer (that is, direct communication with the base station 200). Send / receive processing).
  • the second communication processing unit 337 performs processing of the above-described protocol (for example, TCP) layer and lower layers (that is, processing of transmission / reception via the access point 40).
  • the information acquisition unit 333 acquires information (for example, the data unit) from the second communication processing unit 337 for the first communication processing unit 331, and the information providing unit 335 receives the information from the first communication processing unit 331. Information is provided to the second communication processing unit 337.
  • the gateway 100 provides the result of delivery confirmation of the protocol (for example, TCP) to the PDCP layer of the base station 200.
  • the result includes information (for example, ACK) indicating that delivery of the data unit has been confirmed.
  • the result includes information (eg, NACK) indicating that delivery of the data unit has not been confirmed.
  • the PDCP layer of the base station 200 uses the RLC. It is possible to operate in the same manner as in
  • the base station 200 (communication processing unit 241) advances the reordering window of the PDCP layer based on the delivery confirmation result of the protocol (eg, TCP) (advance ).
  • the protocol eg, TCP
  • the base station 200 (communication processing unit 241) performs the above processing for the one or more data units. Advance the reordering window. Also, the base station 200 (communication processing unit 241) deletes the one or more data units from the buffer.
  • the base station 200 (communication processing unit 241) only requires the one or more data units.
  • the reordering window is automatically advanced.
  • the base station 200 (communication processing unit 241) deletes the one or more data units from the buffer.
  • FIG. 5 is an explanatory diagram for describing an example of data transmission / reception in the first embodiment.
  • a gateway 100 a base station 200, a terminal device 300, and an access point 40 are shown.
  • the base station 200 directly transmits the PDCP PDU of the base station 200 to the terminal device 300 using RLC, MAC, or the like.
  • the gateway 100 transmits the PDCP PDU of the base station 200 to the terminal device 300 via the access point 40 using TCP, IP, or the like instead of the base station 200.
  • FIG. 6 is a sequence diagram illustrating an example of a schematic flow of the first process in the first embodiment.
  • the first process is a process related to data transmission / reception via the access point 40.
  • the access point 40 is not explicitly shown in FIG. 6, but it is noted that the access point 40 is located between the gateway 100 and the terminal device 300.
  • the base station 200 generates a PDCP packet (sequence number 1001) and transmits the PDCP packet to the gateway 100 (S401).
  • the gateway 100 generates a TCP packet (sequence number: 80) including the PDCP packet, and transmits the TCP packet to the terminal device 300 (via the access point 60) (S403).
  • the terminal device 300 receives the TCP packet (and the PDCP packet), and the reception is normally completed. Therefore, the terminal device 300 transmits an ACK corresponding to the TCP packet to the gateway 100 (S405), and further, the gateway 100 transmits an ACK corresponding to the PDCP packet to the base station 200 (S407).
  • the base station 200 advances the reordering window.
  • the terminal device 300 acquires the PDCP packet included in the TCP packet for the PDCP layer (S409), and performs reception processing in the PDCP layer.
  • the base station 200 generates a PDCP packet (sequence number 1002) and transmits the PDCP packet to the gateway 100 (S411).
  • the gateway 100 generates a TCP packet (sequence number: 81) including the PDCP packet, and transmits the TCP packet (via the access point 60) to the terminal device 300 (S413).
  • the terminal device 300 receives the TCP packet (and the PDCP packet), and the reception is normally completed. Therefore, the terminal device 300 transmits an ACK corresponding to the TCP packet to the gateway 100 (S415), and further, the gateway 100 transmits an ACK corresponding to the PDCP packet to the base station 200 (S417).
  • the base station 200 advances the reordering window.
  • the terminal device 300 acquires the PDCP packet included in the TCP packet for PDCP (S419), and performs reception processing in the PDCP layer.
  • the base station 200 generates a PDCP packet (sequence number 1003) and transmits the PDCP packet to the gateway 100 (S421).
  • the gateway 100 generates a TCP packet (sequence number: 82) including the PDCP packet, and transmits the TCP packet to the terminal device 300 (via the access point 60) (S423).
  • the reception of the TCP packet is not normally completed in the terminal device 300, and an ACK timeout is detected (S425).
  • the base station 200 advances the reordering window.
  • the base station 200 generates a PDCP packet (sequence number 1004) and transmits the PDCP packet to the gateway 100 (S431).
  • the gateway 100 generates a TCP packet (sequence number: 83) including the PDCP packet, and transmits the TCP packet (via the access point 60) to the terminal device 300 (S433).
  • the terminal device 300 receives the TCP packet (and the PDCP packet), and the reception is normally completed. Therefore, the terminal apparatus 300 transmits an ACK corresponding to the TCP packet to the gateway 100 (S435), and further, the gateway 100 transmits an ACK corresponding to the PDCP packet to the base station 200 (S437).
  • the base station 200 advances the reordering window.
  • the terminal device 300 acquires the PDCP packet included in the TCP packet for the PDCP layer (S439), and performs reception processing in the PDCP layer.
  • transmission / reception and delivery confirmation of another PDCP packet are performed after transmission / reception and delivery confirmation of one PDCP packet, but the processing in the first embodiment is not limited to this example.
  • transmission / reception and delivery confirmation of a plurality of PDCP packets may be performed in parallel.
  • the gateway 100 does not retransmit the TCP packet (sequence number: 82), but the processing in the first embodiment is not limited to this example.
  • the gateway 100 may retransmit the TCP packet (sequence number: 82).
  • FIG. 7 is a sequence diagram showing an example of a schematic flow of the second process in the first embodiment.
  • the second process is a process related to transmission of an IP address to the terminal device 300.
  • the base station 200 transmits an AP Addition Request message to the gateway 100 (S451). Then, the gateway 100 transmits an AP Addition Request Acknowledge message including the IP address of the terminal device 300 to the base station 200 (S453).
  • the base station 200 transmits an RRC Connection Reconfiguration message including the IP address of the terminal device 300 to the terminal device 300 (S455). Then, the terminal device 300 transmits an RRC Connection Reconfiguration Complete message to the base station 200 (S457).
  • the base station 200 transmits an AP Reconfiguration Complete message to the gateway 100 (S459).
  • the terminal device 300 and the access point 40 perform a WLAN access procedure (S461).
  • the gateway 100 may transmit the IP address of the gateway 100 to the base station 200 in addition to the IP address of the terminal device 300.
  • the base station 200 may transmit the IP address of the gateway 100 to the terminal device 300 in addition to the IP address of the terminal device 300.
  • the terminal device 300 (first communication processing unit 331) is transmitted to the terminal device 300 via the access point 40 using the data unit (that is, the protocol (for example, TCP)).
  • a PDCP status report indicating that the data unit has been received may be transmitted to the base station 200.
  • the terminal device 300 (first communication processing unit 331) may directly transmit the PDCP status report to the base station 200. Further, the transmission of the PDCP status report may be performed regardless of the presence or absence of handover. Thereby, for example, the base station 200 can confirm delivery of the data unit more reliably.
  • the base station 200 may perform congestion control between the base station 200 and the terminal device 300 based on information from the protocol (for example, TCP).
  • the control may include adjusting the amount of data directly transmitted from the base station 200 to the terminal device 300 and the amount of data transmitted from the base station 200 to the terminal device 300 via the access point 40. Good.
  • the information from the protocol may be provided to the base station 200 by the gateway 100.
  • the base station 200 detects congestion in the direct data path from the base station 200 to the terminal device 300 and / or congestion in the data path via the access point 40. May be. Then, the base station 200 (communication processing unit 241) may adjust the amount of data transmitted between these data paths. For example, when the base station 200 (communication processing unit 241) detects congestion in the direct data path, the base station 200 (communication processing unit 241) reduces the amount of data transmitted in the direct data path, and the data path via the access point 40 The amount of data to be transmitted may be increased.
  • the base station 200 (communication processing unit 241) detects congestion in the data path via the access point 40
  • the base station 200 reduces the amount of data transmitted on the data path via the access point 40, and the direct The amount of data transmitted in the data path may be increased.
  • the base station 200 may detect congestion in the data path via the access point 40 based on the result of delivery confirmation of the protocol (for example, TCP). As another example, the base station 200 (communication processing unit 241) may detect congestion in the data path via the access point 40 based on whether or not the slow start of the protocol is executed. As yet another example, the base station 200 (communication processing unit 241) detects congestion in the data path via the access point 40 based on the buffer usage information indicated in the ACK transmitted by the terminal device 300. May be. As yet another example, the base station 200 (communication processing unit 241) supports the SNMP (Simple Network Management Protocol) protocol, and is based on MIB (Management Information Base) information in the above data path via the access point 40. Congestion may be detected.
  • TCP delivery confirmation of the protocol
  • the base station 200 may detect congestion in the data path via the access point 40 based on whether or not the slow start of the protocol is executed.
  • the base station 200 (communication processing unit 241) detects congestion in the data path via the access point 40 based on the
  • the throughput of the terminal device 300 can be improved.
  • the example of the first embodiment has been described above.
  • the example mentioned above is an example of the data transmission in a downlink
  • the data transmission in an uplink may be performed similarly.
  • the information acquisition unit 333, the information provision unit 335, and the second communication processing unit 337 of the terminal device 300 are the same as the above-described processes of the information acquisition unit 131, the information provision unit 133, and the communication processing unit 135 of the gateway 100, respectively. Processing may be performed, and the first communication processing unit 331 of the terminal device 300 may perform processing similar to the processing described above of the communication processing unit 241 of the base station 200.
  • the information acquisition unit 131, the information provision unit 133, and the communication processing unit 135 of the gateway 100 are the same as the above-described processes of the information acquisition unit 333, the information provision unit 335, and the second communication processing unit 337 of the terminal device 300, respectively.
  • the communication processing unit 241 of the base station 200 may perform the same processing as the above-described processing of the first communication processing unit 331 of the terminal device 300.
  • the gateway 100 and the base station 200 exist, but in the second embodiment, the gateway 100 does not exist, and the function of the gateway 100 is implemented in the base station 200.
  • FIG. 8 is an explanatory diagram illustrating an example of a schematic configuration of the system 2 according to the second embodiment.
  • the system 2 includes a base station 200, a terminal device 300, and an access point 40.
  • Base station 200 and access point 40 transmit and receive signals via network 55.
  • the base station 200 In the description of the base station 200, the access point 40, and the terminal device 300, there is no particular difference between the first embodiment and the second embodiment. Therefore, the overlapping description is omitted here.
  • FIG. 9 is a block diagram illustrating an example of a schematic configuration of the base station 200 according to the second embodiment.
  • the base station 200 includes a wireless communication unit 210, a network communication unit 220, a storage unit 230, and a processing unit 250.
  • the wireless communication unit 210 In the description of the wireless communication unit 210, the network communication unit 220, and the storage unit 230, there is no particular difference between the first embodiment and the second embodiment. Therefore, the overlapping description is omitted here.
  • the processing unit 250 provides various functions of the base station 200.
  • the processing unit 250 includes a first communication processing unit 251, an information acquisition unit 253, an information providing unit 255, and a second communication processing unit 257.
  • the processing unit 250 may further include other components other than these components. That is, the processing unit 250 can perform operations other than the operations of these components.
  • first communication processing unit 251, the information acquisition unit 253, the information providing unit 255, and the second communication processing unit 257 corresponds to the communication processing unit 241 of the base station 200 in the first embodiment.
  • the information acquisition unit 253, the information provision unit 255, and the second communication processing unit 257 in the second embodiment are added to the information acquisition unit 131, the information provision unit 133, and the communication processing unit 135 of the gateway 100 in the first embodiment.
  • processing unit 250 may include a baseband (BB) processor and / or another processor.
  • BB baseband
  • FIG. 10 is a block diagram illustrating an example of a schematic configuration of a terminal device 300 according to the second embodiment.
  • the terminal device 300 includes a wireless communication unit 310, a storage unit 320, and a processing unit 340.
  • the processing unit 340 provides various functions of the terminal device 300.
  • the processing unit 340 includes a first communication processing unit 341, an information acquisition unit 343, an information providing unit 345, and a second communication processing unit 347.
  • the processing unit 340 may further include other components other than these components. That is, the processing unit 340 can perform operations other than the operations of these components.
  • the first communication processing unit 341, the information acquisition unit 343, the information providing unit 345, and the second communication processing unit 347 in the second embodiment are respectively the first communication processing unit 331 and the information acquisition in the first embodiment.
  • the unit 333, the information providing unit 335, and the second communication processing unit 337 corresponds to the unit 333, the information providing unit 335, and the second communication processing unit 337.
  • the processing unit 340 may include a baseband (BB) processor and / or another processor.
  • BB baseband
  • the base station 200 (first communication processing unit 251) performs transmission processing in the PDCP layer of the base station 200.
  • the base station 200 (first communication processing unit 251) generates a PDCP layer data unit.
  • the base station 200 acquires the data unit (that is, the data unit from the PDCP layer of the base station 200). Then, the base station 200 (second communication processing unit 257) transmits the data unit to the terminal device 300 via the access point 40 using a protocol that enables delivery confirmation.
  • the IP address used for transmission / reception of the data unit via the access point 40 (that is, the IP address of the base station 200 and / or the IP address of the terminal device 300) is the base station 200 (the first address). 1 communication processing unit 251). At this time, the IP address of the terminal device 300 is transmitted using, for example, an RRC Connection Setup message or an RRC Connection Reconfiguration message.
  • the base station 200 (first communication processing unit 251) transmits an RRC Connection Setup message or an RRC Connection Reconfiguration message including the IP address of the terminal device 300 to the terminal device 300.
  • the IP address of the terminal device 300 may be assigned by the base station 200. Further, the IP address of the base station 200 may be transmitted to the terminal device 300 in the same manner as the IP address of the terminal device 300.
  • the terminal device 300 (second communication processing unit 347) is a data unit from the PDCP layer of the base station 200 using the protocol (for example, TCP).
  • the data unit transmitted to the terminal device 300 via the access point 40 using the above protocol is received.
  • the terminal device 300 acquires the data unit. Then, the terminal device 300 (first communication processing unit 341) performs the reception process of the data unit in the terminal device 300. For example, the terminal device 300 (first communication processing unit 341) performs reception processing of the data unit in the PDCP layer of the terminal device 300.
  • the base station 200 (information providing unit 255) provides the result of delivery confirmation of the above protocol (for example, TCP) to the PDCP layer of the base station 200.
  • the above protocol for example, TCP
  • the base station 200 advances the reordering window of the PDCP layer based on the result of delivery confirmation of the protocol (for example, TCP) (advance).
  • the protocol for example, TCP
  • FIG. 11 is an explanatory diagram for describing an example of data transmission / reception in the second embodiment.
  • a base station 200 directly transmits the PDCP PDU of the base station 200 to the terminal device 300 using RLC, MAC, or the like.
  • the base station 200 transmits the PDCP PDU of the base station 200 to the terminal device 300 via the access point 40 using TCP, IP, or the like.
  • FIG. 12 is a sequence diagram illustrating an example of a schematic flow of the first process in the second embodiment.
  • the first process is a process related to data transmission / reception via the access point 40.
  • the access point 40 is not clearly shown, but it should be noted that the access point 40 is located between the base station 200 and the terminal device 300.
  • the description of the example of the schematic flow of the first processing is different in the operation subject (that is, the gateway 100 and the base station 200 exist on the transmission side in the first embodiment, but the transmission in the second embodiment. There is no particular difference between the first embodiment and the second embodiment, except that only the base station 200 exists on the side) and the difference in reference numerals. Therefore, the overlapping description is omitted here.
  • FIG. 13 is a sequence diagram illustrating an example of a schematic flow of the second process in the second embodiment.
  • the second process is a process related to transmission of the IP address to the terminal device 300 (specifically, for example, a call setup flow process).
  • the terminal device 300 transmits an RRC Connection Request message to the base station 200 (S551). Then, the base station 200 transmits an RRC Connection Setup message including the IP address of the terminal device 300 to the terminal device 300 (S553). Then, the terminal device 300 transmits an RRC Connection Setup Complete message to the base station 200 (S555).
  • the base station 200 transmits an Initial UE Message to the MME (S557), and the MME transmits an Initial Context Setup Request message to the base station 200 (S559).
  • the base station 200 transmits an RRC Connection Reconfiguration message to the terminal device 300 (S561). Then, the terminal device 300 transmits an RRC Connection Reconfiguration Complete message to the base station 200 (S563).
  • the base station 200 transmits an Initial Context Setup Complete message to the MME (S565). Then, the MME, S-GW (Serving Gateway) and P-GW (Packet data network Gateway) transmit and receive the Modify Bearer Request message and the Modify Bearer Response message (S567).
  • MME MME
  • S-GW Serving Gateway
  • P-GW Packet data network Gateway
  • the base station 200 instead of (or sending) the RRC Connection Setup message including the IP address of the terminal device 300, the base station 200 transmits an RRC Connection Reconfiguration message including the IP address of the terminal device 300 in step S561. You may transmit to 300.
  • the base station 200 may transmit the IP address of the base station 200 in addition to the IP address of the terminal device 300.
  • the example of the second embodiment has been described above.
  • the example mentioned above is an example of the data transmission in a downlink
  • the data transmission in an uplink may be performed similarly.
  • the first communication processing unit 341, the information acquisition unit 343, the information providing unit 345, and the second communication processing unit 347 of the terminal device 300 are respectively the first communication processing unit 251, the information acquisition unit 253, and the information of the base station 200. Processing similar to the processing described above of the providing unit 255 and the second communication processing unit 257 may be performed.
  • the first communication processing unit 251, the information acquisition unit 253, the information providing unit 255, and the second communication processing unit 257 of the base station 200 are respectively the first communication processing unit 341, the information acquisition unit 343, Processing similar to the above-described processing of the information providing unit 345 and the second communication processing unit 347 may be performed.
  • FIG. 14 is a block diagram illustrating an example of a schematic configuration of the gateway 100 according to the third embodiment.
  • the gateway 100 includes an information acquisition unit 151 and a communication processing unit 153.
  • the information acquisition unit 151 and the communication processing unit 153 may be implemented by a processor or the like.
  • FIG. 15 is a block diagram illustrating an example of a schematic configuration of a terminal device 300 according to the third embodiment.
  • the terminal device 300 includes an information acquisition unit 351 and a communication processing unit 353.
  • the information acquisition unit 351 and the communication processing unit 353 may be implemented by a baseband (BB) processor and / or another processor.
  • BB baseband
  • Gateway 100 (information acquisition unit 151) acquires a data unit from the PDCP layer of base station 200. Then, the gateway 100 (communication processing unit 153) transmits the data unit to the terminal device 300 via the access point 40 using a protocol that enables delivery confirmation.
  • the terminal device 300 (information acquisition unit 333) is a data unit (that is, a data unit from the PDCP layer of the base station 200), and is connected to the terminal via the access point 40 using the above protocol.
  • the data unit transmitted to the device 300 is acquired.
  • the terminal device 300 (first communication processing unit 331) performs reception processing of the data unit in the terminal device 300.
  • FIG. 16 is a sequence diagram illustrating an example of a schematic process flow in the third embodiment.
  • the gateway 100 acquires a data unit from the PDCP layer of the base station 200 (S601). Then, the gateway 100 transmits the data unit to the terminal device 300 via the access point 40 using a protocol that enables delivery confirmation (S603, S605).
  • the terminal device 300 acquires the data unit (S607). Then, the terminal device 300 performs reception processing of the data unit in the terminal device 300 (S609).
  • each of “PDCP”, “PDCP layer”, and “PDCP sublayer” may be replaced with another expression of “PDCP”, “PDCP layer”, and “PDCP sublayer”.
  • the steps in the processing described in this specification do not necessarily have to be executed in time series in the order described in the sequence diagram.
  • the steps in the processing may be executed in an order different from the order described as the sequence diagram or may be executed in parallel.
  • a module including the gateway components for example, an information acquisition unit, an information provision unit, and / or a communication processing unit
  • the components of the base station described in this specification for example, the first communication processing unit, the information acquisition unit, the information providing unit and / or the second communication processing unit, or the communication processing unit and / or the information providing unit
  • a device including a BBU (Base Band Unit) or BBU) or a module thereof for example, a BBU or a BBU module.
  • a module including the components of the terminal device described in this specification may be provided.
  • a method including processing of such components may be provided, and a program for causing a processor to execute processing of such components may be provided.
  • a recording medium in which the program is recorded may be provided.
  • a base station apparatus, module, method, program, and recording medium are also included in the present invention.
  • a communication processing unit that transmits the data unit to the terminal device via a wireless local area network access point using a protocol that enables delivery confirmation;
  • a device comprising:
  • Appendix 2 The apparatus according to claim 1, further comprising: an information providing unit that provides a result of delivery confirmation of the protocol to the PDCP layer of the base station.
  • Appendix 5 The apparatus according to any one of appendices 1 to 4, wherein the apparatus is a gateway different from the base station or a module for the gateway.
  • Appendix 6 The apparatus according to any one of appendices 1 to 4, wherein the apparatus is the base station, a base station apparatus for the base station, or a module for the base station apparatus.
  • Appendix 7 Further comprising another communication processing unit for performing transmission processing in the PDCP layer, The other communication processing unit advances a reordering window of the PDCP layer based on a result of delivery confirmation of the protocol.
  • the apparatus according to appendix 6.
  • Appendix 8 Further comprising another communication processing unit for performing transmission processing in the PDCP layer, The other communication processing unit performs congestion control between the base station and the terminal device based on information from the protocol.
  • the apparatus according to any one of appendices 6 or 7.
  • the control includes adjusting the amount of data directly transmitted from the base station to the terminal device and the amount of data transmitted from the base station to the terminal device via the access point, The device described in 1.
  • An information acquisition unit for acquiring the data unit transmitted from the PDCP layer of the base station to the terminal device via the access point of the wireless local area network using a protocol that enables delivery confirmation;
  • a communication processing unit for receiving the data unit in the terminal device;
  • a device comprising:
  • Appendix 12 The apparatus according to appendix 10 or 11, wherein the reception process includes reordering of the PDCP layer.
  • Appendix 13 The apparatus according to any one of appendices 10 to 12, wherein the communication processing unit transmits a PDCP status report indicating that the data unit has been received to the base station.
  • Appendix 14 The device according to any one of appendices 10 to 13, wherein the device is the terminal device or a module for the terminal device.
  • Appendix 15 15. The apparatus according to any one of appendices 1 to 14, wherein the protocol is a transport layer protocol.
  • Appendix 16 The apparatus according to appendix 15, wherein the protocol is TCP (Transmission Control Protocol) or SCTP (Stream Control Transmission Protocol).
  • TCP Transmission Control Protocol
  • SCTP Stream Control Transmission Protocol
  • Appendix 20 Transmitting a data unit from the PDCP layer of the base station to a terminal device via a wireless local area network access point using a protocol that enables delivery confirmation at a gateway or base station; In the terminal device, performing reception processing of the data unit in the terminal device; Including methods.
  • Appendix 24 Obtaining a data unit from a PDCP layer of a base station, the data unit transmitted to a terminal device via an access point of a wireless local area network using a protocol that enables delivery confirmation; Performing reception processing of the data unit in the terminal device; A readable recording medium on which a program for causing a processor to execute is recorded.
  • a communication processing unit for performing transmission processing in the PDCP layer of the base station An information providing unit that provides a data unit generated by the transmission process to a gateway that transmits the data unit to a terminal device via a wireless local area network access point using a protocol that enables delivery confirmation;
  • a device comprising:
  • Appendix 26 The apparatus according to appendix 25, wherein the apparatus is the base station, a base station apparatus for the base station, or a module for the base station apparatus.
  • Appendix 27 27.
  • Appendix 28 The apparatus according to any one of appendices 25 to 27, wherein the communication processing unit controls congestion between the base station and the terminal apparatus based on information from the protocol.
  • the control includes adjusting the amount of data directly transmitted from the base station to the terminal device and the amount of data transmitted from the base station to the terminal device via the access point, 28 The device described in 1.
  • (Appendix 30) Performing transmission processing in the PDCP layer of the base station; Providing a data unit generated by the transmission process to a gateway that transmits the data unit to a terminal device via a wireless local area network access point using a protocol that enables delivery confirmation; Including methods.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】アクセスポイント経由で基地局から端末装置へ送信されるデータの送達確認を行うことを可能にすること。 【解決手段】本発明の装置は、基地局のPDCP(Packet Data Convergence Protocol)レイヤからのデータユニットを取得する情報取得部と、送達確認を可能にするプロトコルを使用して、無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ上記データユニットを送信する通信処理部と、を備える。

Description

無線通信に関する装置及び方法
 本発明は、無線通信に関する装置及び方法に関する。
 LTE(Long Term Evolution)のレイヤ2は、MAC(Medium Access Control)、RLC(Radio Link Control)及びPDCP(Packet Data Convergence Protocol)という3つのサブレイヤに分かれる(非特許文献1を参照)。また、上記3つのサブレイヤの中では、RLCが送達確認機能(RLC AMモードのStatus Report)を有する(非特許文献2を参照)。例えば、RLCは、データが到達したか否かをPDCP(即ち、RLCの上位レイヤ)に通知し、例えば、PDCPはデータが到達したことを通知された場合、リオーダリングウィンドウ(re-ordering window)を進め、バッファから当該データを削除し、シーケンス番号が割り当てられていない新たなデータにシーケンス番号を付与する。
 一方、3GPP(3rd Generation Partnership Project)では、LTEのeNB(evolved Node B)と無線ローカルエリアネットワーク(Wireless Local Area Network:WLAN)のアクセスポイント(Access Point:AP)との双方を利用してUEと通信する技術(即ち、LTE-WLANアグリゲーション)が検討されている(非特許文献3を参照)。例えば、LTE-WLANアグリゲーションでは、PDCP以下のレイヤでデータパスが分かれる。具体的には、例えば、あるPDCP PDU(Packet Data Unit)は、RLC及びMAC等を使用してeNBからUEへ直接送信され、別のPDCP PDUは、WLANのAP経由でeNBからUEへ送信される。
3GPP TS 36.300 V13.0.0 (2015-06) 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 13) 3GPP TS 36.322 V12.2.0 (2015-03) 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Link Control (RLC) protocol specification (Release 12) RP-150753: On the impacts of LTE - WLAN Aggregation on WLAN Nodes and terminals  Broadcom Corporation
 しかし、非特許文献3に記載されているように、LTE-WLANアグリゲーションにおいてPDCP以下のレイヤでデータパスが分かれる場合には、WLANのAP経由でのデータの送信にはRLCが使用されず、当該データのために送達確認が行われなくなり得る。例えば、eNBとAPとの間、又はAPとUEとの間で、上記データがロスしたとしても、eNBは、当該データのロスを検出しない。その結果、PDCPにおいて管理されているバッファにデータが滞留し得る。これにより、データ送信が停滞する可能性があり、また、バッファ溢れによるさらなるデータロスが発生する可能性がある。
 本発明の目的は、アクセスポイント経由で基地局から端末装置へ送信されるデータの送達確認を行うことを可能にすることにある。
 本発明の第1の装置は、基地局のPDCP(Packet Data Convergence Protocol)レイヤからのデータユニットを取得する情報取得部と、送達確認を可能にするプロトコルを使用して、無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ上記データユニットを送信する通信処理部と、を備える。
 本発明の第2の装置は、基地局のPDCPレイヤからのデータユニットであって、送達確認を可能にするプロトコルを使用して無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ送信された上記データユニットを取得する情報取得部と、上記端末装置における上記データユニットの受信処理を行う通信処理部と、を備える。
 本発明の第1の方法は、基地局のPDCPレイヤからのデータユニットを取得することと、送達確認を可能にするプロトコルを使用して、無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ上記データユニットを送信することと、を含む。
 本発明の第2の方法は、基地局のPDCPレイヤからのデータユニットであって、送達確認を可能にするプロトコルを使用して無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ送信された上記データユニットを取得することと、上記端末装置における上記データユニットの受信処理を行うことと、を含む。
 本発明によれば、アクセスポイント経由で基地局から端末装置へ送信されるデータの送達確認を行うことが可能になる。なお、本発明により、当該効果の代わりに、又は当該効果とともに、他の効果が奏されてもよい。
第1の実施形態に係るシステムの概略的な構成の一例を示す説明図である。 第1の実施形態に係るゲートウェイの概略的な構成の例を示すブロック図ある。 第1の実施形態に係る基地局の概略的な構成の例を示すブロック図ある。 第1の実施形態に係る端末装置の概略的な構成の例を示すブロック図ある。 第1の実施形態におけるデータの送受信の例を説明するための説明図である。 第1の実施形態における第1の処理の概略的な流れの一例を示すシーケンス図である。 第1の実施形態における第2の処理の概略的な流れの一例を示すシーケンス図である。 第2の実施形態に係るシステムの概略的な構成の一例を示す説明図である。 第2の実施形態に係る基地局の概略的な構成の例を示すブロック図ある。 第2の実施形態に係る端末装置の概略的な構成の例を示すブロック図ある。 第2の実施形態におけるデータの送受信の例を説明するための説明図である。 第2の実施形態における第1の処理の概略的な流れの一例を示すシーケンス図である。 第2の実施形態における第2の処理の概略的な流れの一例を示すシーケンス図である。 第3の実施形態に係るゲートウェイの概略的な構成の例を示すブロック図ある。 第3の実施形態に係る端末装置の概略的な構成の例を示すブロック図ある。 第3の実施形態における処理の概略的な流れの一例を示すシーケンス図である。
 以下、添付の図面を参照して本発明の実施形態を詳細に説明する。なお、本明細書及び図面において、同様に説明されることが可能な要素については、同一の符号を付することにより重複説明が省略され得る。
 説明は、以下の順序で行われる。
 1.本発明の実施形態の概要
 2.第1の実施形態
  2.1.システムの構成例
  2.2.ゲートウェイの構成例
  2.3.基地局の構成例
  2.4.端末装置の構成例
  2.5.技術的特徴
 3.第2の実施形態
  3.1.システムの構成例
  3.2.基地局の構成例
  3.3.端末装置の構成例
  3.4.技術的特徴
 4.第3の実施形態
  4.1.システムの構成例
  4.2.ゲートウェイの構成例
  4.3.端末装置の構成例
  4.4.技術的特徴
 <<1.本発明の実施形態の概要>>
 まず、本発明の実施形態の概要を説明する。
 (1)技術的課題
 LTE-WLANアグリゲーションにおいてPDCP以下のレイヤでデータパスが分かれる場合には、WLANのAP経由でのデータの送信にはRLCが使用されず、当該データのために送達確認が行われなくなり得る。例えば、eNBとAPとの間、又はAPとUEとの間で、上記データがロスしたとしても、eNBは、当該データのロスを検出しない。その結果、PDCPにおいて管理されているバッファにデータが滞留し得る。これにより、データ送信が停滞する可能性があり、また、バッファ溢れによるさらなるデータロスが発生する可能性がある。
 (2)技術的特徴
 本発明の実施形態では、例えば、eNB又はゲートウェイが、TCP(Transmission Control Protocol)(又は送達確認を可能にする他のプロトコル)を使用して、当該eNBのPDCPパケット(即ち、PDCPのPDU)をAP経由でUEへ送信する。UEは、当該UEのPDCPレイヤにおいて上記PDCPパケットの受信処理を行う。
 これにより、例えば、AP経由でeNBからUEへ送信されるデータの送達確認を行うことが可能になる。
 なお、上述した技術的特徴は本発明の実施形態の具体的な一例であり、当然ながら、本発明の実施形態は上述した技術的特徴に限定されない。
 <<2.第1の実施形態>>
 続いて、図1~図6を参照して、本発明の第1の実施形態を説明する。
 <2.1.システムの構成例>
 まず、図1を参照して、第1の実施形態に係るシステム1の構成の例を説明する。図1は、第1の実施形態に係るシステム1の概略的な構成の一例を示す説明図である。図1を参照すると、システム1は、ゲートウェイ100、基地局(eNB)200、端末装置(UE)300及びアクセスポイント40を含む。ゲートウェイ100及び基地局200は、ネットワーク51を介して信号を送受信し、ゲートウェイ100及びアクセスポイント40は、ネットワーク53を介して信号を送受信する。
 例えば、ゲートウェイ100、基地局200及び端末装置300は、3GPP(Third Generation Partnership Project)の規格に準拠したノード/エンティティであってもよい。より具体的には、例えば、ゲートウェイ100、基地局200及び端末装置300は、LTE(Long Term Evolution)/LTE-Advancedに準拠したノード/エンティティであってもよい。例えば、ゲートウェイ100は、WT(WLAN Termination)であってもよい。当然ながら、ゲートウェイ100、基地局200及び端末装置300は、これらの例に限定されない。
 (1)基地局200
 基地局200は、無線アクセスネットワーク(Radio Access Network:RAN)のノードであり、基地局200のカバレッジ内に位置する端末装置(例えば、端末装置300)との無線通信を行う。例えば、基地局200は、eNBである。
 (2)アクセスポイント40
 アクセスポイント40は、基地局200のRAT(Radio Access Technology)(例えば、LTE)とは異なる他のRATのアクセスポイントであり、端末装置(例えば、端末装置300)との無線通信を行う。例えば、当該他のRATは、無線ローカルエリアネットワーク(WLAN)であり、アクセスポイント40は、WLANのアクセスポイントである。より具体的には、例えば、アクセスポイント40は、IEEE802.11シリーズ(IEEE802.11b/a/g/n/ac/ad/j等)のうちのいずれかに準拠したアクセスポイントである。
 なお、上記他のRATは、WLANに限られず、アクセスポイント40は、WLANのアクセスポイントに限られない。一例として、上記他のRATは、無線パーソナルエリアネットワーク(Wireless Personal Area Network:WPAN)(具体的には、Bluetooth(登録商標)、UWB(Ultra WideBand)又はZigBee(登録商標)等)であってもよく、アクセスポイント40は、WPANのアクセスポイントであってもよく、IEEE802.15シリーズのいずれかに準拠してもよい。別の例として、上記他のRATは、無線メトロポリタンエリアネットワーク(Wireless Metropolitan Area Network:WMAN)(具体的には、WiMAX(Worldwide Interoperability for Microwave Access)(登録商標)、flash-OFDM(登録商標)又はiBurst(登録商標)等)であってもよく、アクセスポイント40は、WMANのアクセスポイントであってもよく、IEEE802.16シリーズのいずれか、又はIEEE802.20シリーズのいずれかに準拠してもよい。また、アクセスポイント40は、「アクセスポイント」ではなく「基地局」と呼ばれてもよい。
 (3)端末装置300
 端末装置300は、基地局200との無線通信を行う。例えば、端末装置300は、基地局200のカバレッジ内に位置する場合に、基地局200との無線通信を行う。
 さらに、端末装置300は、アクセスポイント40との無線通信を行う。例えば、端末装置300は、アクセスポイント40のカバレッジ内に位置する場合に、アクセスポイント40との無線通信を行う。
 (4)ゲートウェイ100
 とりわけ本発明の実施形態では、基地局200は、端末装置300と直接通信するのみではなく、アクセスポイント40経由でも端末装置300と通信する。例えば、ゲートウェイ100は、基地局200からデータを受信し、基地局200の代わりに、アクセスポイント40経由で端末装置300へ当該データを送信する。さらに、例えば、ゲートウェイ100は、基地局200の代わりに、アクセスポイント40経由で端末装置300により送信されるデータを受信し、当該データを基地局200へ送信する。
 <2.2.ゲートウェイの構成例>
 次に、図2を参照して、第1の実施形態に係るゲートウェイ100の構成の例を説明する。図2は、第1の実施形態に係るゲートウェイ100の概略的な構成の例を示すブロック図ある。図2を参照すると、ゲートウェイ100は、ネットワーク通信部110、記憶部120及び処理部130を備える。
 ネットワーク通信部110は、ネットワーク51から信号を受信し、ネットワーク51へ信号を送信する。また、ネットワーク通信部110は、ネットワーク53から信号を受信し、ネットワーク53へ信号を送信する。
 記憶部120は、ゲートウェイ100の動作のためのプログラム及びパラメータ、並びに様々なデータを、一時的に又は恒久的に記憶する。
 処理部130は、ゲートウェイ100の様々な機能を提供する。処理部130は、情報取得部131、情報提供部133及び通信処理部135を含む。なお、処理部130は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部130は、これらの構成要素の動作以外の動作も行い得る。
 情報取得部131、情報提供部133及び通信処理部135の具体的な動作は、後に詳細に説明する。
 ネットワーク通信部110は、ネットワークアダプタ又はネットワークインタフェースカードなどを含んでもよい。記憶部120は、メモリ(例えば、不揮発性メモリ及び/若しくは揮発性メモリ)並びに/又はハードディスクなどを含んでもよい。処理部130は、プロセッサなどを含んでもよい。
 <2.3.基地局の構成例>
 次に、図3を参照して、第1の実施形態に係る基地局200の構成の例を説明する。図3は、第1の実施形態に係る基地局200の概略的な構成の例を示すブロック図ある。図3を参照すると、基地局200は、無線通信部210、ネットワーク通信部220、記憶部230及び処理部240を備える。
 無線通信部210は、信号を無線で送受信する。例えば、無線通信部210は、端末装置からの信号を受信し、端末装置への信号を送信する。
 ネットワーク通信部220は、ネットワーク51から信号を受信し、ネットワーク51へ信号を送信する。
 記憶部230は、基地局200の動作のためのプログラム及びパラメータ、並びに様々なデータを、一時的に又は恒久的に記憶する。
 処理部240は、基地局200の様々な機能を提供する。処理部240は、通信処理部241及び情報提供部243を含む。なお、処理部240は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部240は、これらの構成要素の動作以外の動作も行い得る。
 通信処理部241及び情報提供部243の具体的な動作は、後に詳細に説明する。
 なお、無線通信部210は、アンテナ及び高周波(Radio Frequency:RF)回路などを含んでもよい。ネットワーク通信部220は、ネットワークアダプタ又はネットワークインタフェースカードなどを含んでもよい。記憶部230は、メモリ(例えば、不揮発性メモリ及び/若しくは揮発性メモリ)並びに/又はハードディスクなどを含んでもよい。処理部240は、ベースバンド(Baseband:BB)プロセッサ及び/又は他のプロセッサなどを含んでもよい。
 <2.4.端末装置の構成例>
 次に、図4を参照して、第1の実施形態に係る端末装置300の構成の例を説明する。図4は、第1の実施形態に係る端末装置300の概略的な構成の例を示すブロック図ある。図4を参照すると、端末装置300は、無線通信部310、記憶部320及び処理部330を備える。
 無線通信部310は、信号を無線で送受信する。例えば、無線通信部310は、基地局からの信号を受信し、基地局への信号を送信する。
 記憶部320は、端末装置300の動作のためのプログラム及びパラメータ、並びに様々なデータを、一時的に又は恒久的に記憶する。
 処理部330は、端末装置300の様々な機能を提供する。処理部330は、第1通信処理部331、情報取得部333、情報提供部335及び第2通信処理部337を含む。なお、処理部330は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部330は、これらの構成要素の動作以外の動作も行い得る。
 第1通信処理部331、情報取得部333、情報提供部335及び第2通信処理部337の具体的な動作は、後に詳細に説明する。
 無線通信部310は、アンテナ及び高周波(RF)回路などを含んでもよい。記憶部320は、メモリ(例えば、不揮発性メモリ及び/若しくは揮発性メモリ)並びに/又はハードディスクなどを含んでもよい。処理部330は、ベースバンド(BB)プロセッサ及び/又は他のプロセッサなどを含んでもよい。
 <2.5.技術的特徴>
 次に、図5及び図6を参照して、第1の実施形態に係る技術的特徴を説明する。
 (1)AP経由での端末装置への送信
 (a)基地局200の動作
 基地局200(通信処理部241)は、基地局200のPDCPレイヤにおける送信処理を行う。例えば、基地局200(通信処理部241)は、PDCPレイヤのデータユニットを生成する。当該データユニットは、換言すると、PDCPのPDU(Packet Data Unit)又はPDCPパケットである。
 例えば、基地局200(情報提供部243)は、上記データユニットをアクセスポイント40経由で端末装置300へ送信する場合に、上記データユニットをゲートウェイ100に提供する。即ち、基地局200(情報提供部243)は、上記データユニットをゲートウェイ100へ送信する。
 なお、基地局200(通信処理部241)は、PDCPレイヤの他のデータユニットを生成し、当該他のデータユニットを端末装置300へ直接送信してもよい。この場合に、基地局200(通信処理部241)は、RLCレイヤ及びMACレイヤにおける送信処理を行ってもよい。
 (b)ゲートウェイ100の動作
 ゲートウェイ100(情報取得部131)は、上記データユニット(即ち、基地局200のPDCPレイヤからのデータユニット)を取得する。上述したように、当該データユニットは、換言すると、PDCPのPDU又はPDCPパケットである。そして、ゲートウェイ100(通信処理部135)は、送達確認を可能にするプロトコルを使用して、アクセスポイント40経由で端末装置300へ上記データユニットを送信する。
 例えば、上記プロトコルは、トランスポートレイヤのプロトコルである。一例として、上記プロトコルは、TCP(Transmission Control Protocol)である。即ち、ゲートウェイ100(通信処理部135)は、TCPを使用して、アクセスポイント40経由で端末装置300へ上記データユニットを送信する。より具体的には、例えば、ゲートウェイ100(通信処理部135)は、上記データユニットを含むTCPパケットを生成し、当該TCPパケットを含むIP(Internet Protocol)パケットを生成し、当該IPパケットを送信する。例えば、アクセスポイント40経由での上記データユニットの送受信のために使用されるIPアドレス(即ち、ゲートウェイ100のIPアドレス、及び/又は端末装置300のIPアドレス)は、基地局200(通信処理部241)により端末装置300へ送信される。例えば、当該IPアドレスは、ゲートウェイ100(情報提供部133)により基地局200に提供される。例えば、ゲートウェイ100は、端末装置300のIPアドレスを含むAP Addition Request Acknowledgeメッセージを基地局200へ送信し、基地局200は、端末装置300のIPアドレスを含むRRC Connection Reconfigurationメッセージを端末装置300へ送信する。端末装置300のIPアドレスは、ゲートウェイ100により割り当てられてもよい。また、ゲートウェイ100のIPアドレスも、端末装置300のIPアドレスと同様に基地局200及び端末装置300へ送信されてもよい。
 また、例えば、ゲートウェイ100(通信処理部135)は、上記データパケットについてのPDCPシーケンス番号と、上記データパケットを含む上記プロトコルのパケット(例えば、TCPパケット)のシーケンス番号との対応関係を管理する。
 これにより、例えば、アクセスポイント40経由で基地局200から端末装置300へ送信されるデータの送達確認を行うことが可能になる。また、アクセスポイント40に新たな機能を追加する必要がないので、既存のアクセスポイントが利用可能になる。
 当然ながら、上記プロトコルは、TCPに限られず、他のプロトコルであってもよい。一例として、上記プロトコルは、SCTP(Stream Control Transmission Protocol)であってもよい。
 (2)端末装置による受信
 (a)アクセスポイント60経由での受信
 端末装置300(第2通信処理部337)は、上記プロトコル(例えば、TCP)を使用して上記データユニット(即ち、基地局200のPDCPレイヤからのデータユニットであって、上記プロトコルを使用してアクセスポイント40経由で端末装置300へ送信された当該データユニット)を受信する。例えば、端末装置300は、上記データユニットの受信が正常に完了した場合には、ACK(Acknowledgements)をゲートウェイ100へ送信し、上記データユニットの受信が正常に完了しなかった場合には、NACK(Negative Acknowledgements)をゲートウェイ100へ送信する。これにより、例えば、ゲートウェイ100がデータの送達確認を実際に行うことが可能になる。
 (b)PDCPレイヤにおける受信処理
 さらに、端末装置300(情報取得部333)は、上記データユニットを取得する。そして、端末装置300(第1通信処理部331)は、端末装置300における上記データユニットの受信処理を行う。例えば、端末装置300(第1通信処理部331)は、端末装置300のPDCPレイヤにおける上記データユニットの受信処理を行う。
 例えば、上記受信処理は、端末装置300の上記PDCPレイヤのリオーダリングを含む。これにより、例えば、基地局200から端末装置300へ直接送信されたデータユニットと、アクセスポイント60経由で基地局200から端末装置300へ送信されたデータユニットとを、正しい順序で処理することが可能になる。また、例えば、上記受信処理は、PDCPヘッダの除去、暗号解読(deciphering)及び/又はヘッダデコンプレッション(header decompression)等を含む。
 なお、例えば、第1通信処理部331は、PDCPレイヤに加えて、RLCレイヤ、MACレイヤ、物理レイヤ及び/又はRRC(Radio Resource Control)レイヤ等の処理(即ち、基地局200との直接的な送受信の処理)を行う。また、第2通信処理部337は、上記プロトコル(例えば、TCP)のレイヤ及びそれ以下のレイヤの処理(即ち、アクセスポイント40経由での送受信の処理)を行う。また、情報取得部333は、第1通信処理部331のために第2通信処理部337から情報(例えば、上記データユニット)を取得し、情報提供部335は、第1通信処理部331からの情報を第2通信処理部337に提供する。
 (3)送達確認の結果
 (a)送達確認の結果の提供
 例えば、ゲートウェイ100(情報提供部133)は、上記プロトコル(例えば、TCP)の送達確認の結果を基地局200のPDCPレイヤに提供する。例えば、当該結果は、上記データユニットの送達が確認されたことを示す情報(例えば、ACK)を含む。例えば、上記結果は、上記データユニットの送達が確認されなかったことを示す情報(例えば、NACK)を含む。
 これにより、例えば、アクセスポイント60経由でPDCPのPDUが送信されたとしても(即ち、RLCが使用されずにPDCPのPDUが送信されたとしても)、基地局200のPDCPレイヤは、RLCを使用される場合と同様に動作することが可能になる。
 (b)送達確認の結果に基づく動作
 例えば、基地局200(通信処理部241)は、上記プロトコル(例えば、TCP)の送達確認の結果に基づいて、上記PDCPレイヤのリオーダリングウィンドウを進める(advance)。
 具体的には、例えば、基地局200(通信処理部241)は、上記リオーダリングウィンドウの前方にある1つ以上のデータの送達が確認されると、当該1つ以上のデータユニットの分だけ上記リオーダリングウィンドウを進める。また、基地局200(通信処理部241)は、上記1つ以上のデータユニットをバッファから削除する。
 また、例えば、基地局200(通信処理部241)は、上記リオーダリングウィンドウの前方にある1つ以上のデータの送達が一定期間内に確認できなければ、当該1つ以上のデータユニットの分だけ上記リオーダリングウィンドウを自動的に進める。また、基地局200(通信処理部241)は、上記1つ以上のデータユニットをバッファから削除する。
 これにより、例えば、バッファにおけるデータの滞留を回避することが可能になる。そのため、データ送信の滞留、及びバッファ溢れによるデータロスも回避され得る。また、端末装置300についてのスループットも向上し得る。
 (4)送受信の例
 図5は、第1の実施形態におけるデータの送受信の例を説明するための説明図である。図5を参照すると、ゲートウェイ100、基地局200、端末装置300及びアクセスポイント40が示されている。例えば、基地局200は、RLC及びMAC等を使用して、基地局200のPDCPのPDUを端末装置300へ直接的に送信する。また、例えば、ゲートウェイ100は、基地局200の代わりに、TCP及びIP等を使用して、基地局200のPDCPのPDUを、アクセスポイント40経由で端末装置300へ送信する。
 (5)処理の流れ
 (a)第1の処理
 図6は、第1の実施形態における第1の処理の概略的な流れの一例を示すシーケンス図である。当該第1の処理は、アクセスポイント40経由でのデータの送受信に関する処理である。なお、図6には、アクセスポイント40は明示されていないが、アクセスポイント40はゲートウェイ100と端末装置300との間に位置することに留意する。
 基地局200は、PDCPパケット(シーケンス番号1001)を生成し、当該PDCPパケットをゲートウェイ100へ送信する(S401)。ゲートウェイ100は、当該PDCPパケットを含むTCPパケット(シーケンス番号:80)を生成し、当該TCPパケットを(アクセスポイント60経由で)端末装置300へ送信する(S403)。端末装置300は、当該TCPパケット(及び上記PDCPパケット)を受信し、この受信は正常に完了する。そのため、端末装置300は、上記TCPパケットに対応するACKをゲートウェイ100へ送信し(S405)、さらに、ゲートウェイ100は、上記PDCPパケットに対応するACKを基地局200へ送信する(S407)。例えば、基地局200は、リオーダリングウィンドウを進める。端末装置300は、上記TCPパケットに含まれる上記PDCPパケットをPDCPレイヤのために取得し(S409)、PDCPレイヤにおける受信処理を行う。
 基地局200は、PDCPパケット(シーケンス番号1002)を生成し、当該PDCPパケットをゲートウェイ100へ送信する(S411)。ゲートウェイ100は、当該PDCPパケットを含むTCPパケット(シーケンス番号:81)を生成し、当該TCPパケットを(アクセスポイント60経由で)端末装置300へ送信する(S413)。端末装置300は、当該TCPパケット(及び上記PDCPパケット)を受信し、この受信は正常に完了する。そのため、端末装置300は、上記TCPパケットに対応するACKをゲートウェイ100へ送信し(S415)、さらに、ゲートウェイ100は、上記PDCPパケットに対応するACKを基地局200へ送信する(S417)。例えば、基地局200は、リオーダリングウィンドウを進める。端末装置300は、上記TCPパケットに含まれる上記PDCPパケットをPDCPのために取得し(S419)、PDCPレイヤにおける受信処理を行う。
 基地局200は、PDCPパケット(シーケンス番号1003)を生成し、当該PDCPパケットをゲートウェイ100へ送信する(S421)。ゲートウェイ100は、当該PDCPパケットを含むTCPパケット(シーケンス番号:82)を生成し、当該TCPパケットを(アクセスポイント60経由で)端末装置300へ送信する(S423)。しかし、当該TCPパケットの受信が端末装置300において正常に完了することはなく、ACKのタイムアウトが検出される(S425)。例えば、この場合にも、基地局200は、リオーダリングウィンドウを進める。
 基地局200は、PDCPパケット(シーケンス番号1004)を生成し、当該PDCPパケットをゲートウェイ100へ送信する(S431)。ゲートウェイ100は、当該PDCPパケットを含むTCPパケット(シーケンス番号:83)を生成し、当該TCPパケットを(アクセスポイント60経由で)端末装置300へ送信する(S433)。端末装置300は、当該TCPパケット(及び上記PDCPパケット)を受信し、この受信は正常に完了する。そのため、端末装置300は、上記TCPパケットに対応するACKをゲートウェイ100へ送信し(S435)、さらに、ゲートウェイ100は、上記PDCPパケットに対応するACKを基地局200へ送信する(S437)。例えば、基地局200は、リオーダリングウィンドウを進める。端末装置300は、上記TCPパケットに含まれる上記PDCPパケットをPDCPレイヤのために取得し(S439)、PDCPレイヤにおける受信処理を行う。
 以上、第1の実施形態における処理の概略的な流れの一例を説明した。なお、上述した例では、1つのPDCPパケットの送受信及び送達確認の後に、別のPDCPパケットの送受信及び送達確認が行われているが、第1の実施形態における処理はこの例に限定されない。当然ながら、複数のPDCPパケットの送受信及び送達確認が並列で行われてもよい。また、上述した例では、ゲートウェイ100はTCPパケット(シーケンス番号:82)を再送していないが、第1の実施形態における処理はこの例に限定されない。当然ながら、ゲートウェイ100はTCPパケット(シーケンス番号:82)を再送してもよい。
 (b)第2の処理
 図7は、第1の実施形態における第2の処理の概略的な流れの一例を示すシーケンス図である。当該第2の処理は、端末装置300へのIPアドレスの送信に関する処理である。
 基地局200は、AP Addition Requestメッセージをゲートウェイ100へ送信する(S451)。すると、ゲートウェイ100は、端末装置300のIPアドレスを含むAP Addition Request Acknowledgeメッセージを基地局200へ送信する(S453)。
 さらに、基地局200は、端末装置300のIPアドレスを含むRRC Connection Reconfigurationメッセージを端末装置300へ送信する(S455)。そして、端末装置300は、RRC Connection Reconfiguration Completeメッセージを基地局200へ送信する(S457)。
 基地局200は、AP Reconfiguration Completeメッセージをゲートウェイ100へ送信する(S459)。
 端末装置300及びアクセスポイント40は、WLANアクセス手続きを行う(S461)。
 以上、上記第2の処理の概略的な流れの一例を説明したが、上記第2の処理はこの例に限定されない。例えば、ゲートウェイ100は、端末装置300のIPアドレスに加えて、ゲートウェイ100のIPアドレスを基地局200へ送信してもよい。また、基地局200は、端末装置300のIPアドレスに加えて、ゲートウェイ100のIPアドレスを端末装置300へ送信してもよい。
 (6)その他
 (a)ステータスレポート
 端末装置300(第1通信処理部331)は、上記データユニット(即ち、上記プロトコル(例えば、TCP)を使用してアクセスポイント40経由で端末装置300へ送信された当該データユニット)が受信されたことを示すPDCPステータスレポートを基地局200へ送信してもよい。端末装置300(第1通信処理部331)は、当該PDCPステータスレポートを基地局200へ直接送信してもよい。また、当該PDCPステータスレポートの送信は、ハンドオーバの有無にかかわらず行われてもよい。これにより、例えば、基地局200は、データユニットの送達確認をより確実に行うことが可能になる。
 (b)輻輳制御
 基地局200(通信処理部241)は、上記プロトコル(例えば、TCP)からの情報に基づいて、基地局200と端末装置300との間の輻輳の制御を行ってもよい。例えば、当該制御は、基地局200から端末装置300へ直接送信されるデータの量と、基地局200からアクセスポイント40経由で端末装置300へ送信されるデータの量とを調整することを含んでもよい。なお、上記プロトコルからの上記情報は、ゲートウェイ100により基地局200に提供されてもよい。
 具体的には、基地局200(通信処理部241)は、基地局200から端末装置300への直接的なデータパスでの輻輳、及び/又は、アクセスポイント40経由のデータパスでの輻輳を検出してもよい。そして、基地局200(通信処理部241)は、これらのデータパスの間で、送信されるデータの量を調整してもよい。例えば、基地局200(通信処理部241)は、上記直接的なデータパスでの輻輳を検出すると、上記直接的なデータパスにおいて送信されるデータの量を減らし、アクセスポイント40経由の上記データパスにおいて送信されるデータの量を増やしてもよい。また、基地局200(通信処理部241)は、アクセスポイント40経由の上記データパスでの輻輳を検出すると、アクセスポイント40経由の上記データパスにおいて送信されるデータの量を減らし、上記直接的なデータパスにおいて送信されるデータの量を増やしてもよい。
 一例として、基地局200(通信処理部241)は、上記プロトコル(例えば、TCP)の送達確認の結果に基づいて、アクセスポイント40経由の上記データパスでの輻輳を検出してもよい。別の例として、基地局200(通信処理部241)は、上記プロトコルのスロースタートの実行の有無に基づいて、アクセスポイント40経由の上記データパスでの輻輳を検出してもよい。さらに別の例として、基地局200(通信処理部241)は、端末装置300により送信されるACKに示されるバッファ使用量情報に基づいて、アクセスポイント40経由の上記データパスでの輻輳を検出してもよい。さらに別の例として、基地局200(通信処理部241)は、SNMP(Simple Network Management Protocol)プロトコルをサポートし、MIB(Management Information Base)情報に基づいて、アクセスポイント40経由の上記データパスでの輻輳を検出してもよい。
 このような輻輳制御により、端末装置300についてのスループットも向上し得る。
 以上、第1の実施形態の例を説明した。なお、上述した例は、ダウンリンクでのデータ送信の例であるが、第1の実施形態では、アップリンクでのデータ送信も同様に行われてもよい。例えば、端末装置300の情報取得部333、情報提供部335及び第2通信処理部337が、それぞれ、ゲートウェイ100の情報取得部131、情報提供部133及び通信処理部135の上述した処理と同様の処理を行ってもよく、端末装置300の第1通信処理部331が、基地局200の通信処理部241の上述した処理と同様の処理を行ってもよい。反対に、ゲートウェイ100の情報取得部131、情報提供部133及び通信処理部135が、それぞれ、端末装置300の情報取得部333、情報提供部335及び第2通信処理部337の上述した処理と同様の処理を行ってもよく、基地局200の通信処理部241が、端末装置300の第1通信処理部331の上述した処理と同様の処理を行ってもよい。
 <<3.第2の実施形態>>
 続いて、図8~図13を参照して、本発明の第2の実施形態を説明する。
 第1の実施形態では、ゲートウェイ100及び基地局200が存在するが、第2の実施形態では、ゲートウェイ100は存在せず、ゲートウェイ100の機能が基地局200内に実装される。
 <3.1.システムの構成例>
 まず、図8を参照して、第2の実施形態に係るシステム2の構成の例を説明する。図8は、第2の実施形態に係るシステム2の概略的な構成の一例を示す説明図である。図8を参照すると、システム2は、基地局200、端末装置300及びアクセスポイント40を含む。基地局200及びアクセスポイント40は、ネットワーク55を介して信号を送受信する。
 基地局200、アクセスポイント40及び端末装置300についての説明は、第1の実施形態と第2の実施形態との間に特段の差異はない。よって、ここでは重複する説明を省略する。
 <3.2.基地局の構成例>
 次に、図9を参照して、第2の実施形態に係る基地局200の構成の例を説明する。図9は、第2の実施形態に係る基地局200の概略的な構成の例を示すブロック図ある。図9を参照すると、基地局200は、無線通信部210、ネットワーク通信部220、記憶部230及び処理部250を備える。
 無線通信部210、ネットワーク通信部220及び記憶部230についての説明は、第1の実施形態と第2の実施形態との間に特段の差異はない。よって、ここでは重複する説明を省略する。
 処理部250は、基地局200の様々な機能を提供する。処理部250は、第1通信処理部251、情報取得部253、情報提供部255及び第2通信処理部257を含む。なお、処理部250は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部250は、これらの構成要素の動作以外の動作も行い得る。
 第1通信処理部251、情報取得部253、情報提供部255及び第2通信処理部257の具体的な動作は、後に説明する。なお、第2の実施形態における第1通信処理部251は、第1の実施形態における基地局200の通信処理部241に対応する。また、第2の実施形態における情報取得部253、情報提供部255及び第2通信処理部257は、第1の実施形態におけるゲートウェイ100の情報取得部131、情報提供部133及び通信処理部135に対応する。
 なお、処理部250は、ベースバンド(BB)プロセッサ及び/又は他のプロセッサなどを含んでもよい。
 <3.3.端末装置の構成例>
 次に、図10を参照して、第2の実施形態に係る端末装置300の構成の例を説明する。図10は、第2の実施形態に係る端末装置300の概略的な構成の例を示すブロック図ある。図10を参照すると、端末装置300は、無線通信部310、記憶部320及び処理部340を備える。
 無線通信部310及び記憶部320についての説明は、第1の実施形態と第2の実施形態との間に特段の差異はない。よって、ここでは重複する説明を省略する。
 処理部340は、端末装置300の様々な機能を提供する。処理部340は、第1通信処理部341、情報取得部343、情報提供部345及び第2通信処理部347を含む。なお、処理部340は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部340は、これらの構成要素の動作以外の動作も行い得る。
 第1通信処理部341、情報取得部343、情報提供部345及び第2通信処理部347の具体的な動作は、後に説明する。なお、第2の実施形態における第1通信処理部341、情報取得部343、情報提供部345及び第2通信処理部347は、それぞれ、第1の実施形態における第1通信処理部331、情報取得部333、情報提供部335及び第2通信処理部337に対応する。
 処理部340は、ベースバンド(BB)プロセッサ及び/又は他のプロセッサなどを含んでもよい。
 <3.4.技術的特徴>
 次に、図11~図13を参照して、第2の実施形態に係る技術的特徴を説明する。
 (1)AP経由での端末装置への送信
 基地局200(第1通信処理部251)は、基地局200のPDCPレイヤにおける送信処理を行う。例えば、基地局200(第1通信処理部251)は、PDCPレイヤのデータユニットを生成する。
 また、基地局200(情報取得部253)は、上記データユニット(即ち、基地局200のPDCPレイヤからのデータユニット)を取得する。そして、基地局200(第2通信処理部257)は、送達確認を可能にするプロトコルを使用して、アクセスポイント40経由で端末装置300へ上記データユニットを送信する。
 これらの点についての説明は、動作主体の相違(即ち、第1の実施形態では動作主体がゲートウェイ100及び基地局200であるが、第2の実施形態では動作主体が基地局200のみであること)を除き、第1の実施形態と第2の実施形態との間に特段の差異はない。よって、ここでは重複する説明を省略する。なお、例えば、アクセスポイント40経由での上記データユニットの送受信のために使用されるIPアドレス(即ち、基地局200のIPアドレス、及び/又は端末装置300のIPアドレス)は、基地局200(第1通信処理部251)により端末装置300へ送信される。このとき、端末装置300のIPアドレスは、例えば、RRC Connection Setupメッセージ、又はRRC Connection Reconfigurationメッセージを用いて送信される。即ち、基地局200(第1通信処理部251)は、端末装置300のIPアドレスを含むRRC Connection Setupメッセージ又はRRC Connection Reconfigurationメッセージを、端末装置300へ送信する。端末装置300のIPアドレスは、基地局200により割り当てられてもよい。また、基地局200のIPアドレスも、端末装置300のIPアドレスと同様に端末装置300へ送信されてもよい。
 (2)端末装置による受信
 端末装置300(第2通信処理部347)は、上記プロトコル(例えば、TCP)を使用して上記データユニット(即ち、基地局200のPDCPレイヤからのデータユニットであって、上記プロトコルを使用してアクセスポイント40経由で端末装置300へ送信された当該データユニット)を受信する。
 さらに、端末装置300(情報取得部343)は、上記データユニットを取得する。そして、端末装置300(第1通信処理部341)は、端末装置300における上記データユニットの受信処理を行う。例えば、端末装置300(第1通信処理部341)は、端末装置300のPDCPレイヤにおける上記データユニットの受信処理を行う。
 これらの点についての説明は、端末装置300の構成要素の符号の相違を除き、第1の実施形態と第2の実施形態との間に特段の差異はない。よって、ここでは重複する説明を省略する。
 (3)送達確認の結果
 例えば、基地局200(情報提供部255)は、上記プロトコル(例えば、TCP)の送達確認の結果を基地局200のPDCPレイヤに提供する。
例えば、基地局200(第1通信処理部251)は、上記プロトコル(例えば、TCP)の送達確認の結果に基づいて、上記PDCPレイヤのリオーダリングウィンドウを進める(advance)。
 これらの点についての説明は、動作主体の相違(即ち、第1の実施形態では動作主体がゲートウェイ100及び基地局200であるが、第2の実施形態では動作主体が基地局200のみであること)を除き、第1の実施形態と第2の実施形態との間に特段の差異はない。よって、ここでは重複する説明を省略する。
 (4)送受信の例
 図11は、第2の実施形態におけるデータの送受信の例を説明するための説明図である。図11を参照すると、基地局200、端末装置300及びアクセスポイント40が示されている。例えば、基地局200は、RLC及びMAC等を使用して、基地局200のPDCPのPDUを端末装置300へ直接的に送信する。また、例えば、基地局200は、TCP及びIP等を使用して、基地局200のPDCPのPDUを、アクセスポイント40経由で端末装置300へ送信する。
 (5)処理の流れ
 (a)第1の処理
 図12は、第2の実施形態における第1の処理の概略的な流れの一例を示すシーケンス図である。当該第1の処理は、アクセスポイント40経由でのデータの送受信に関する処理である。なお、図12には、アクセスポイント40は明示されていないが、アクセスポイント40は基地局200と端末装置300との間に位置することに留意する。
 当該第1の処理の概略的な流れの例の説明は、動作主体の相違(即ち、第1の実施形態では送信側にゲートウェイ100及び基地局200が存在するが、第2の実施形態では送信側に基地局200のみが存在すること)と、符号の相違とを除き、第1の実施形態と第2の実施形態との間に特段の差異はない。よって、ここでは重複する説明を省略する。
 (b)第2の処理
 図13は、第2の実施形態における第2の処理の概略的な流れの一例を示すシーケンス図である。当該第2の処理は、端末装置300へのIPアドレスの送信に関する処理(具体的には、例えば、call setup flowの処理)である。
 端末装置300は、RRC Connection Requestメッセージを基地局200へ送信する(S551)。すると、基地局200は、端末装置300のIPアドレスを含むRRC Connection Setupメッセージを端末装置300へ送信する(S553)。そして、端末装置300は、RRC Connection Setup Completeメッセージを基地局200へ送信する(S555)。
 基地局200は、Initial UE MessageをMMEへ送信し(S557)、当該MMEは、Initial Context Setup Requestメッセージを基地局200へ送信する(S559)。
 基地局200は、RRC Connection Reconfigurationメッセージを端末装置300へ送信する(S561)。そして、端末装置300は、RRC Connection Reconfiguration Completeメッセージを基地局200へ送信する(S563)。
 基地局200は、Initial Context Setup Completeメッセージを上記MMEへ送信する(S565)。そして、上記MME、S-GW(Serving Gateway)及びP-GW(Packet data network Gateway)は、Modify Bearer Requestメッセージ及びModify Bearer Responseメッセージを送受信する(S567)。
 以上、上記第2の処理の概略的な流れの一例を説明したが、上記第2の処理はこの例に限定されない。
 例えば、基地局200は、端末装置300のIPアドレスを含むRRC Connection Setupメッセージを送信する代わりに(又は送信するとともに)、ステップS561において、端末装置300のIPアドレスを含むRRC Connection Reconfigurationメッセージを端末装置300へ送信してもよい。
 また、例えば、基地局200は、端末装置300のIPアドレスに加えて、基地局200のIPアドレスも送信してもよい。
 (6)その他
 PDCPステータスレポート及び輻輳制御についての説明も、第1の実施形態と第2の実施形態との間に特段の差異はない。よって、ここでは重複する説明を省略する。
 以上、第2の実施形態の例を説明した。なお、上述した例は、ダウンリンクでのデータ送信の例であるが、第2の実施形態では、アップリンクでのデータ送信も同様に行われてもよい。例えば、端末装置300の第1通信処理部341、情報取得部343、情報提供部345及び第2通信処理部347が、それぞれ、基地局200の第1通信処理部251、情報取得部253、情報提供部255及び第2通信処理部257の上述した処理と同様の処理を行ってもよい。反対に、基地局200の第1通信処理部251、情報取得部253、情報提供部255及び第2通信処理部257が、それぞれ、端末装置300の第1通信処理部341、情報取得部343、情報提供部345及び第2通信処理部347の上述した処理と同様の処理を行ってもよい。
 <<4.第3の実施形態>>
 続いて、図14~図16を参照して、本発明の第3の実施形態を説明する。
 <4.1.システムの構成例>
 第3の実施形態に係るシステムの構成の例の説明は、例えば、第1の実施形態に係るシステムの構成の例の説明と同じである。よって、ここでは重複する説明を省略する。
 <4.2.ゲートウェイの構成例>
 次に、図14を参照して、第3の実施形態に係るゲートウェイ100の構成の例を説明する。図14は、第3の実施形態に係るゲートウェイ100の概略的な構成の例を示すブロック図ある。図14を参照すると、ゲートウェイ100は、情報取得部151及び通信処理部153を備える。
 情報取得部151及び通信処理部153の具体的な動作は、後に説明する。
 情報取得部151及び通信処理部153は、プロセッサなどで実装されてもよい。
 <4.3.端末装置の構成例>
 次に、図15を参照して、第3の実施形態に係る端末装置300の構成の例を説明する。図15は、第3の実施形態に係る端末装置300の概略的な構成の例を示すブロック図ある。図15を参照すると、端末装置300は、情報取得部351及び通信処理部353を備える。
 情報取得部351及び通信処理部353の具体的な動作は、後に説明する。
 情報取得部351及び通信処理部353は、ベースバンド(BB)プロセッサ及び/又は他のプロセッサなどで実装されてもよい。
 <4.4.技術的特徴>
 次に、図16を参照して、第3の実施形態に係る技術的特徴を説明する。
 (1)AP経由での端末装置への送信
 ゲートウェイ100(情報取得部151)は、基地局200のPDCPレイヤからのデータユニットを取得する。そして、ゲートウェイ100(通信処理部153)は、送達確認を可能にするプロトコルを使用して、アクセスポイント40経由で端末装置300へ上記データユニットを送信する。
 この点についての説明は、例えば、ゲートウェイ100の構成要素の符号の相違を除き、第1の実施形態における説明と同じである。よって、ここでは重複する説明を省略する。
 (2)端末装置による受信
 端末装置300(情報取得部333)は、上記データユニット(即ち、基地局200のPDCPレイヤからのデータユニットであって、上記プロトコルを使用してアクセスポイント40経由で端末装置300へ送信された当該データユニット)を取得する。そして、端末装置300(第1通信処理部331)は、端末装置300における上記データユニットの受信処理を行う。
 この点についての説明は、例えば、端末装置300の構成要素の符号の相違を除き、第1の実施形態における説明と同じである。よって、ここでは重複する説明を省略する。
 (3)処理の流れ
 図16は、第3の実施形態における処理の概略的な流れの一例を示すシーケンス図である。
 ゲートウェイ100は、基地局200のPDCPレイヤからのデータユニットを取得する(S601)。そして、ゲートウェイ100は、送達確認を可能にするプロトコルを使用して、アクセスポイント40経由で端末装置300へ上記データユニットを送信する(S603、S605)。
 端末装置300は、上記データユニットを取得する(S607)。そして、端末装置300は、端末装置300における上記データユニットの受信処理を行う(S609)。
 以上、本発明の実施形態を説明した。本発明は上述した実施形態に限定されるものではなく、本発明の要旨の範囲内において種々に変形して実施をすることが可能である。上述した実施形態は例示であり、実施形態の組合せやそれらの各構成要素や各処理プロセスの組合せに様々な変形例が可能なこと、またそうした変形例も本発明の範囲にあることは、当業者に理解されるところである。
 例えば、「PDCP」、「PDCPレイヤ」及び「PDCPサブレイヤ」の各々は、「PDCP」、「PDCPレイヤ」及び「PDCPサブレイヤ」のうちの他の表現に置換えられてもよい。
 例えば、本明細書に記載されている処理におけるステップは、必ずしもシーケンス図に記載された順序に沿って時系列に実行されなくてよい。例えば、処理におけるステップは、シーケンス図として記載した順序と異なる順序で実行されても、並列的に実行されてもよい。
 また、本明細書において説明したゲートウェイの構成要素(例えば、情報取得部、情報提供部及び/又は通信処理部)を備えるモジュールが提供されてもよい。また、本明細書において説明した基地局の構成要素(例えば、第1通信処理部、情報取得部、情報提供部及び/若しくは第2通信処理部、又は、通信処理部及び/若しくは情報提供部)を備える基地局装置(例えば、BBU(Base Band Unit)を含む装置、若しくはBBU)又はそのモジュール(例えば、BBU、若しくはBBUのモジュール)が提供されてもよい。また、本明細書において説明した端末装置の構成要素(例えば、第1通信処理部、情報取得部、情報提供部及び/又は第2通信処理部)を備えるモジュールが提供されてもよい。また、このような構成要素の処理を含む方法が提供されてもよく、このような構成要素の処理をプロセッサに実行させるためのプログラムが提供されてもよい。また、当該プログラムを記録した記録媒体が提供されてもよい。当然ながら、このような基地局装置、モジュール、方法、プログラム及び記録媒体も本発明に含まれる。
 上記実施形態の一部又は全部は、以下の付記のようにも記載され得るが、以下には限られない。
(付記1)
 基地局のPDCP(Packet Data Convergence Protocol)レイヤからのデータユニットを取得する情報取得部と、
 送達確認を可能にするプロトコルを使用して、無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ前記データユニットを送信する通信処理部と、
を備える装置。
(付記2)
 前記プロトコルの送達確認の結果を前記基地局の前記PDCPレイヤに提供する情報提供部をさらに備える、付記1に記載の装置。
(付記3)
 前記プロトコルの送達確認の前記結果は、前記データユニットの送達が確認されたことを示す情報を含む、付記2項に記載の装置。
(付記4)
 前記プロトコルの送達確認の前記結果は、前記データユニットの送達が確認されなかったことを示す情報を含む、付記2又は3に記載の装置。
(付記5)
 前記装置は、前記基地局とは異なるゲートウェイ、又は当該ゲートウェイのためのモジュールである、付記1~4のいずれか1項に記載の装置。
(付記6)
 前記装置は、前記基地局、前記基地局のための基地局装置、又は当該基地局装置のためのモジュールである、付記1~4のいずれか1項に記載の装置。
(付記7)
 前記PDCPレイヤにおける送信処理を行う他の通信処理部
をさらに備え、
 前記他の通信処理部は、前記プロトコルの送達確認の結果に基づいて、前記PDCPレイヤのリオーダリングウィンドウを進める、
付記6に記載の装置。
(付記8)
 前記PDCPレイヤにおける送信処理を行う他の通信処理部
をさらに備え、
 前記他の通信処理部は、前記プロトコルからの情報に基づいて、前記基地局と前記端末装置との間の輻輳の制御を行う、
付記6又は7のいずれか1項に記載の装置。
(付記9)
 前記制御は、前記基地局から前記端末装置へ直接送信されるデータの量と、前記基地局から前記アクセスポイント経由で前記端末装置へ送信されるデータの量とを調整することを含む、付記8に記載の装置。
(付記10)
 基地局のPDCPレイヤからのデータユニットであって、送達確認を可能にするプロトコルを使用して無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ送信された前記データユニットを取得する情報取得部と、
 前記端末装置における前記データユニットの受信処理を行う通信処理部と、
を備える装置。
(付記11)
 前記プロトコルを使用して前記データユニットを受信する他の通信処理部をさらに備える、付記10に記載の装置。
(付記12)
 前記受信処理は、前記PDCPレイヤのリオーダリングを含む、付記10又は11に記載の装置。
(付記13)
 前記通信処理部は、前記データユニットが受信されたことを示すPDCPステータスレポートを前記基地局へ送信する、付記10~12のいずれか1項に記載の装置。
(付記14)
 前記装置は、前記端末装置、又は前記端末装置のためのモジュールである、付記10~13のいずれか1項に記載の装置。
(付記15)
 前記プロトコルは、トランスポートレイヤのプロトコルである、付記1~14のいずれか1項に記載の装置。
(付記16)
 前記プロトコルは、TCP(Transmission Control Protocol)又はSCTP(Stream Control Transmission Protocol)である、付記15に記載の装置。
(付記17)
 基地局のPDCPレイヤからのデータユニットを取得することと、
 送達確認を可能にするプロトコルを使用して、無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ前記データユニットを送信することと、
を含む方法。
(付記18)
 基地局のPDCPレイヤからのデータユニットであって、送達確認を可能にするプロトコルを使用して無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ送信された前記データユニットを取得することと、
 前記端末装置における前記データユニットの受信処理を行うことと、
を含む方法。
(付記19)
 送達確認を可能にするプロトコルを使用して、基地局のPDCPレイヤからのデータユニットを、無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ送信するゲートウェイ又は前記基地局と、
 前記端末装置における前記データユニットの受信処理を行う前記端末装置と、
を含むシステム。
(付記20)
 ゲートウェイ又は基地局において、送達確認を可能にするプロトコルを使用して、前記基地局のPDCPレイヤからのデータユニットを、無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ送信することと、
 前記端末装置において、前記端末装置における前記データユニットの受信処理を行うことと、
を含む方法。
(付記21)
 基地局のPDCPレイヤからのデータユニットを取得することと、
 送達確認を可能にするプロトコルを使用して、無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ前記データユニットを送信することと、
をプロセッサに実行させるためのプログラム。
(付記22)
 基地局のPDCPレイヤからのデータユニットを取得することと、
 送達確認を可能にするプロトコルを使用して、無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ前記データユニットを送信することと、
をプロセッサに実行させるためのプログラムを記録した読み取り可能な記録媒体。
(付記23)
 基地局のPDCPレイヤからのデータユニットであって、送達確認を可能にするプロトコルを使用して無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ送信された前記データユニットを取得することと、
 前記端末装置における前記データユニットの受信処理を行うことと、
をプロセッサに実行させるためのプログラム。
(付記24)
 基地局のPDCPレイヤからのデータユニットであって、送達確認を可能にするプロトコルを使用して無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ送信された前記データユニットを取得することと、
 前記端末装置における前記データユニットの受信処理を行うことと、
をプロセッサに実行させるためのプログラムを記録した読み取り可能な記録媒体。
(付記25)
 基地局のPDCPレイヤにおける送信処理を行う通信処理部と、
 前記送信処理により生成されるデータユニットを、送達確認を可能にするプロトコルを使用して無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ前記データユニットを送信するゲートウェイに提供する情報提供部と、
を備える装置。
(付記26)
 前記装置は、前記基地局、前記基地局のための基地局装置、又は当該基地局装置のためのモジュールである、付記25に記載の装置。
(付記27)
 前記通信処理部は、前記プロトコルの送達確認の結果に基づいて、前記PDCPレイヤのリオーダリングウィンドウを進める、付記25又は26に記載の装置。
(付記28)
 前記通信処理部は、前記プロトコルからの情報に基づいて、前記基地局と前記端末装置との間の輻輳の制御を行う、付記25~27のいずれか1項に記載の装置。
(付記29)
 前記制御は、前記基地局から前記端末装置へ直接送信されるデータの量と、前記基地局から前記アクセスポイント経由で前記端末装置へ送信されるデータの量とを調整することを含む、付記28に記載の装置。
(付記30)
 基地局のPDCPレイヤにおける送信処理を行うことと、
 前記送信処理により生成されるデータユニットを、送達確認を可能にするプロトコルを使用して無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ前記データユニットを送信するゲートウェイに提供することと、
を含む方法。
(付記31)
 基地局のPDCPレイヤにおける送信処理を行うことと、
 前記送信処理により生成されるデータユニットを、送達確認を可能にするプロトコルを使用して無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ前記データユニットを送信するゲートウェイに提供することと、
をプロセッサに実行させるためのプログラム。
(付記32)
 基地局のPDCPレイヤにおける送信処理を行うことと、
 前記送信処理により生成されるデータユニットを、送達確認を可能にするプロトコルを使用して無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ前記データユニットを送信するゲートウェイに提供することと、
をプロセッサに実行させるためのプログラムを記録した読み取り可能な記録媒体。
 この出願は、2015年9月11日に出願された日本出願特願2015-179745を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 1、2         システム
 40          アクセスポイント
 51、53、55    ネットワーク
 100         ゲートウェイ
 131、151     情報取得部
 133         情報提供部
 135、153     通信処理部
 200         基地局
 241         通信処理部
 251         第1通信処理部
 253         情報取得部
 255         情報提供部
 257         第2通信処理部
 300         端末装置
 331、341     第1通信処理部
 333、343、351 情報取得部
 335、345     情報提供部
 337、347     第2通信処理部
 353         通信処理部
 

 

Claims (32)

  1.  基地局のPDCP(Packet Data Convergence Protocol)レイヤからのデータユニットを取得する情報取得部と、
     送達確認を可能にするプロトコルを使用して、無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ前記データユニットを送信する通信処理部と、
    を備える装置。
  2.  前記プロトコルの送達確認の結果を前記基地局の前記PDCPレイヤに提供する情報提供部をさらに備える、請求項1に記載の装置。
  3.  前記プロトコルの送達確認の前記結果は、前記データユニットの送達が確認されたことを示す情報を含む、請求項2項に記載の装置。
  4.  前記プロトコルの送達確認の前記結果は、前記データユニットの送達が確認されなかったことを示す情報を含む、請求項2又は3に記載の装置。
  5.  前記装置は、前記基地局とは異なるゲートウェイ、又は当該ゲートウェイのためのモジュールである、請求項1~4のいずれか1項に記載の装置。
  6.  前記装置は、前記基地局、前記基地局のための基地局装置、又は当該基地局装置のためのモジュールである、請求項1~4のいずれか1項に記載の装置。
  7.  前記PDCPレイヤにおける送信処理を行う他の通信処理部
    をさらに備え、
     前記他の通信処理部は、前記プロトコルの送達確認の結果に基づいて、前記PDCPレイヤのリオーダリングウィンドウを進める、
    請求項6に記載の装置。
  8.  前記PDCPレイヤにおける送信処理を行う他の通信処理部
    をさらに備え、
     前記他の通信処理部は、前記プロトコルからの情報に基づいて、前記基地局と前記端末装置との間の輻輳の制御を行う、
    請求項6又は7のいずれか1項に記載の装置。
  9.  前記制御は、前記基地局から前記端末装置へ直接送信されるデータの量と、前記基地局から前記アクセスポイント経由で前記端末装置へ送信されるデータの量とを調整することを含む、請求項8に記載の装置。
  10.  基地局のPDCPレイヤからのデータユニットであって、送達確認を可能にするプロトコルを使用して無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ送信された前記データユニットを取得する情報取得部と、
     前記端末装置における前記データユニットの受信処理を行う通信処理部と、
    を備える装置。
  11.  前記プロトコルを使用して前記データユニットを受信する他の通信処理部をさらに備える、請求項10に記載の装置。
  12.  前記受信処理は、前記PDCPレイヤのリオーダリングを含む、請求項10又は11に記載の装置。
  13.  前記通信処理部は、前記データユニットが受信されたことを示すPDCPステータスレポートを前記基地局へ送信する、請求項10~12のいずれか1項に記載の装置。
  14.  前記装置は、前記端末装置、又は前記端末装置のためのモジュールである、請求項10~13のいずれか1項に記載の装置。
  15.  前記プロトコルは、トランスポートレイヤのプロトコルである、請求項1~14のいずれか1項に記載の装置。
  16.  前記プロトコルは、TCP(Transmission Control Protocol)又はSCTP(Stream Control Transmission Protocol)である、請求項15に記載の装置。
  17.  基地局のPDCPレイヤからのデータユニットを取得することと、
     送達確認を可能にするプロトコルを使用して、無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ前記データユニットを送信することと、
    を含む方法。
  18.  基地局のPDCPレイヤからのデータユニットであって、送達確認を可能にするプロトコルを使用して無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ送信された前記データユニットを取得することと、
     前記端末装置における前記データユニットの受信処理を行うことと、
    を含む方法。
  19.  送達確認を可能にするプロトコルを使用して、基地局のPDCPレイヤからのデータユニットを、無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ送信するゲートウェイ又は前記基地局と、
     前記端末装置における前記データユニットの受信処理を行う前記端末装置と、
    を含むシステム。
  20.  ゲートウェイ又は基地局において、送達確認を可能にするプロトコルを使用して、前記基地局のPDCPレイヤからのデータユニットを、無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ送信することと、
     前記端末装置において、前記端末装置における前記データユニットの受信処理を行うことと、
    を含む方法。
  21.  基地局のPDCPレイヤからのデータユニットを取得することと、
     送達確認を可能にするプロトコルを使用して、無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ前記データユニットを送信することと、
    をプロセッサに実行させるためのプログラム。
  22.  基地局のPDCPレイヤからのデータユニットを取得することと、
     送達確認を可能にするプロトコルを使用して、無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ前記データユニットを送信することと、
    をプロセッサに実行させるためのプログラムを記録した読み取り可能な記録媒体。
  23.  基地局のPDCPレイヤからのデータユニットであって、送達確認を可能にするプロトコルを使用して無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ送信された前記データユニットを取得することと、
     前記端末装置における前記データユニットの受信処理を行うことと、
    をプロセッサに実行させるためのプログラム。
  24.  基地局のPDCPレイヤからのデータユニットであって、送達確認を可能にするプロトコルを使用して無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ送信された前記データユニットを取得することと、
     前記端末装置における前記データユニットの受信処理を行うことと、
    をプロセッサに実行させるためのプログラムを記録した読み取り可能な記録媒体。
  25.  基地局のPDCPレイヤにおける送信処理を行う通信処理部と、
     前記送信処理により生成されるデータユニットを、送達確認を可能にするプロトコルを使用して無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ前記データユニットを送信するゲートウェイに提供する情報提供部と、
    を備える装置。
  26.  前記装置は、前記基地局、前記基地局のための基地局装置、又は当該基地局装置のためのモジュールである、請求項25に記載の装置。
  27.  前記通信処理部は、前記プロトコルの送達確認の結果に基づいて、前記PDCPレイヤのリオーダリングウィンドウを進める、請求項25又は26に記載の装置。
  28.  前記通信処理部は、前記プロトコルからの情報に基づいて、前記基地局と前記端末装置との間の輻輳の制御を行う、請求項25~27のいずれか1項に記載の装置。
  29.  前記制御は、前記基地局から前記端末装置へ直接送信されるデータの量と、前記基地局から前記アクセスポイント経由で前記端末装置へ送信されるデータの量とを調整することを含む、請求項28に記載の装置。
  30.  基地局のPDCPレイヤにおける送信処理を行うことと、
     前記送信処理により生成されるデータユニットを、送達確認を可能にするプロトコルを使用して無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ前記データユニットを送信するゲートウェイに提供することと、
    を含む方法。
  31.  基地局のPDCPレイヤにおける送信処理を行うことと、
     前記送信処理により生成されるデータユニットを、送達確認を可能にするプロトコルを使用して無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ前記データユニットを送信するゲートウェイに提供することと、
    をプロセッサに実行させるためのプログラム。
  32.  基地局のPDCPレイヤにおける送信処理を行うことと、
     前記送信処理により生成されるデータユニットを、送達確認を可能にするプロトコルを使用して無線ローカルエリアネットワークのアクセスポイント経由で端末装置へ前記データユニットを送信するゲートウェイに提供することと、
    をプロセッサに実行させるためのプログラムを記録した読み取り可能な記録媒体。
     

     
PCT/JP2016/076316 2015-09-11 2016-09-07 無線通信に関する装置及び方法 WO2017043534A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16844395.0A EP3349486B1 (en) 2015-09-11 2016-09-07 Device and method relating to wireless communication
JP2017539193A JP6540812B2 (ja) 2015-09-11 2016-09-07 無線通信に関するゲートウェイ、方法、システム、及び、プログラム
CN201680051933.0A CN108029000B (zh) 2015-09-11 2016-09-07 用于无线通信的设备和方法
US15/751,721 US10742365B2 (en) 2015-09-11 2016-09-07 Apparatus and method for radio communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-179745 2015-09-11
JP2015179745 2015-09-11

Publications (1)

Publication Number Publication Date
WO2017043534A1 true WO2017043534A1 (ja) 2017-03-16

Family

ID=58239785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076316 WO2017043534A1 (ja) 2015-09-11 2016-09-07 無線通信に関する装置及び方法

Country Status (5)

Country Link
US (1) US10742365B2 (ja)
EP (1) EP3349486B1 (ja)
JP (1) JP6540812B2 (ja)
CN (1) CN108029000B (ja)
WO (1) WO2017043534A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241345A1 (ja) * 2020-05-27 2021-12-02 ソニーグループ株式会社 情報処理装置、通信システム及び情報処理方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012148482A1 (en) * 2011-04-29 2012-11-01 Nageen Himayat Control and data plane solutions for carrier- aggregation based wlan offload
WO2015170722A1 (ja) * 2014-05-08 2015-11-12 京セラ株式会社 通信制御方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003049354A1 (en) * 2001-12-04 2003-06-12 Nokia Corporation Method and system for dispatching multiple tcp packets from communication systems
US20090168723A1 (en) * 2007-11-27 2009-07-02 Qualcomm Incorporated Method and apparatus for handling out-of-order packets during handover in a wireless communication system
CN105704759A (zh) * 2011-05-27 2016-06-22 上海华为技术有限公司 一种数据流传输方法及网络设备
US8867501B2 (en) * 2011-06-23 2014-10-21 Qualcomm Incorporated Multi-radio coexistence
US9445431B2 (en) 2013-08-08 2016-09-13 Mediatek Inc. Wireless communications devices supporting WiFi and LTE communications and methods for transmission control thereof
JP6251522B2 (ja) 2013-08-30 2017-12-20 株式会社Nttドコモ 移動通信方法及び無線基地局
US9661657B2 (en) * 2013-11-27 2017-05-23 Intel Corporation TCP traffic adaptation in wireless systems
CN104753627A (zh) 2013-12-26 2015-07-01 中兴通讯股份有限公司 多路径传输方法、系统及数据发送装置和数据接收装置
US20160323919A1 (en) 2014-01-10 2016-11-03 Lg Electronics Inc. Method and apparatus for obtaining information for 3gpp lte-wlan interworking in wireless communication system
US9838282B2 (en) * 2014-05-09 2017-12-05 Telefonaktiebolaget Lm Ericsson (Publ) PDCP and flow control for split bearer
KR102319836B1 (ko) * 2014-12-16 2021-11-01 삼성전자 주식회사 무선 통신 시스템에서 기지국과 단말 간 통신 방법을 결정하는 방법 및 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012148482A1 (en) * 2011-04-29 2012-11-01 Nageen Himayat Control and data plane solutions for carrier- aggregation based wlan offload
WO2015170722A1 (ja) * 2014-05-08 2015-11-12 京セラ株式会社 通信制御方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BROADCOM CORPORATION: "User Plane Architecture solutions based on DuCo Solution 3C", 3GPP TSG- RAN WG2#91 R2-153723, 14 August 2015 (2015-08-14), XP050992350, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_91/Docs/R2-153723.zip> *
CATT: "Discussion on UP Architecture of LTE/WLAN Aggregation", 3GPP TSG-RAN WG2#89BIS R2-151298, 24 April 2015 (2015-04-24), XP050936247, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_89bis/Docs/R2-151298.zip> *
FUJITSU: "Flow control and feedback for LWA", 3GPP TSG-RAN WG2#90 R2-152188, 15 May 2015 (2015-05-15), XP050972826, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_90/Docs/R2-152188.zip> *
See also references of EP3349486A4 *

Also Published As

Publication number Publication date
CN108029000A (zh) 2018-05-11
EP3349486A1 (en) 2018-07-18
EP3349486B1 (en) 2021-03-24
JPWO2017043534A1 (ja) 2018-05-31
JP6540812B2 (ja) 2019-07-10
EP3349486A4 (en) 2019-02-20
US10742365B2 (en) 2020-08-11
US20180241516A1 (en) 2018-08-23
CN108029000B (zh) 2020-12-18

Similar Documents

Publication Publication Date Title
JP7288941B2 (ja) 無線システムにおける段階的再構成のためのシステムおよび方法
AU2021282555B2 (en) Radio access network node, radio terminal, and methods and non-transitory computer-readable media therefor
TWI601435B (zh) 處理同時通訊的方法及其通訊裝置
US20200112885A1 (en) Handover control method and apparatus
US10784994B2 (en) Method for transmitting information for LTE-WLAN aggregation system and a device therefor
CN103533586B (zh) 切换过程中的信令交互及层重建的方法和设备
JP6046138B2 (ja) デュアルモード端末の性能情報報告方法及び装置
US11265769B2 (en) Handover method, terminal device, and network device
US9392510B2 (en) Handover method and apparatus in wireless communication system
EP3122115B1 (en) Wireless communication apparatus and wireless communication method
CN109714136B (zh) 一种通讯方法和终端
TW201904347A (zh) 處理雙連結中次要節點改變的裝置及方法
CN107615809B (zh) 用户装置、基站以及通信方法
TWI754018B (zh) 處理在一雙連結中的通訊的裝置及方法
WO2017043534A1 (ja) 無線通信に関する装置及び方法
WO2017024581A1 (zh) 数据传输方法、基站及用户设备
US20160337099A1 (en) Coordinated communication method and system and apparatus
US20190380108A1 (en) Master base station, secondary base station, and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844395

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017539193

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15751721

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016844395

Country of ref document: EP