WO2017043387A1 - Magnetic gear device - Google Patents

Magnetic gear device Download PDF

Info

Publication number
WO2017043387A1
WO2017043387A1 PCT/JP2016/075471 JP2016075471W WO2017043387A1 WO 2017043387 A1 WO2017043387 A1 WO 2017043387A1 JP 2016075471 W JP2016075471 W JP 2016075471W WO 2017043387 A1 WO2017043387 A1 WO 2017043387A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
magnetic gear
gear device
magnetic
rotation axis
Prior art date
Application number
PCT/JP2016/075471
Other languages
French (fr)
Japanese (ja)
Inventor
山田 裕之
顕 杉浦
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015225747A external-priority patent/JP6576800B2/en
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2017043387A1 publication Critical patent/WO2017043387A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings

Definitions

  • the present invention relates to a magnetic gear device in which a driving rotor and a driven rotor transmit power without contact with each other.
  • Rotating electric motors such as motors are installed in driving units of automobiles, railways, industrial machines, and home appliances.
  • the output of the rotary electric motor is converted into a desired torque or rotation speed by a gear and transmitted to the action portion.
  • a gear In a conventional general mechanical gear, a pair of gear teeth meshing with each other transmits power while being in contact with each other, so that friction occurs between the teeth. Therefore, there were the following problems.
  • the teeth are worn and worn.
  • Vibration and noise are generated.
  • the teeth are damaged by the limit torque or fatigue failure.
  • Lubricants such as oil and grease are required and cannot be used in a clean environment.
  • Patent Documents 1 and 2 describe a speed change mechanism using a magnetic gear.
  • the driving side and driven side rotors (external gears, internal gears) are arranged concentrically, and a stator (stator gear) is interposed between the rotors.
  • a stator stator gear
  • Each rotor and the stator are opposed to each other via a radial gap.
  • the stator is provided with a plurality of pole pieces (magnetic tooth portions) arranged in the circumferential direction.
  • a stator (a magnetic pole piece) that opposes the first and second rotors via a radial gap is interposed between the first and second rotors.
  • a large torque can be transmitted by using a structure in which a permanent magnet of a rotor is embedded in a soft magnetic material. Furthermore, the permanent magnet is divided in the axial direction, so that eddy currents generated inside the rotating magnet are reduced and highly efficient torque transmission is possible.
  • both the rotor on the driving side and the driven side face the stator via the radial gap.
  • the overall radial dimension is increased.
  • the first rotor of the driving and driven rotors faces the stator via a radial gap, and the second rotor is an axial gap.
  • a magnetic gear device having a configuration facing the stator via a pin is conceivable.
  • the magnetic flux Since the flow has directionality, it is effective to use laminated electromagnetic steel sheets for the pole pieces.
  • the flow of magnetic flux in the pole piece becomes three-dimensional. Therefore, even if laminated magnetic steel sheets are used for the pole piece, the vortex in one direction out of the radial direction and the axial direction Only the current component can be reduced, and the torque transmission efficiency is reduced.
  • the object of the present invention is to provide a three-dimensional structure in which the first rotor of the two rotors faces the stator via a radial gap and the second rotor faces the stator via an axial gap. It is an object of the present invention to provide a magnetic gear device that can suppress eddy current loss of a magnetic flux that flows and can realize high torque transmission efficiency.
  • a magnetic gear device includes first and second rotors each having a plurality of permanent magnets, magnetically positioned between the first rotor and the second rotor, and a magnetic flux. And a stator having a plurality of pole pieces (magnetic pole pieces) for modulating the first rotor, the first rotor and the stator via a radial gap in a direction perpendicular to the rotation axis of the first rotor.
  • the second rotor faces the stator through an axial gap in a direction parallel to the rotation axis of the second rotor, and the pole piece is formed of a dust core. .
  • the rotation of the rotor on the driving side is transmitted to the rotor on the driven side at a gear ratio according to the number of pole pairs of the permanent magnets of both rotors. Since the first rotor faces the stator via the radial gap and the second rotor faces the stator via the axial gap, both the first and second rotors pass through the radial gap.
  • the radial dimension of the entire magnetic gear device can be reduced. Further, the axial dimension of the entire magnetic gear device can be reduced as compared with the configuration in which the first and second rotors both face the stator via the axial gap.
  • the direction of magnetic flux flowing through the pole piece of the stator is three-dimensional. It becomes.
  • the direction of the magnetic flux acting between the magnetic poles of the first rotor and the second rotor is approximately the direction of the rotation axis of each rotor, but the magnetic pole boundary between the first rotor and the second rotor. In the part facing the vicinity, the magnetic flux is generated in the circumferential direction.
  • the pole piece is composed of laminated electromagnetic steel sheets having only a two-dimensional magnetic flux direction suppressing effect, the effect of reducing eddy current loss is weak and torque transmission efficiency is reduced.
  • the pole piece is configured from the dust core as in this configuration, the effect of reducing eddy currents in the three-dimensional magnetic flux direction is high, so eddy current loss can be suppressed and torque transmission efficiency can be improved. it can.
  • the plurality of permanent magnets are arranged on the same circumference so that directions of magnetic poles of two adjacent permanent magnets of the plurality of permanent magnets of the second rotor are different from each other. They may be arranged at an equal angle.
  • the plurality of permanent magnets may be arranged in a Halbach array. In either case, eddy current loss can be suppressed and torque transmission efficiency can be improved.
  • At least a portion of the pole piece that faces the first rotor may have a cross-sectional area that is perpendicular to the rotation axis of the first rotor as it approaches the second rotor.
  • the cross-sectional area may increase continuously as it approaches the second rotor, or may increase stepwise.
  • the mutual magnetic flux acts without waste between the first rotor and the second rotor.
  • the cross-sectional area of the pole piece increases as it approaches the second rotor, the flow of magnetic flux in the pole piece becomes smooth, and the leakage magnetic flux generated at a location far from the second rotor in the pole piece Can be minimized.
  • the magnetic flux acting on the second rotor is increased, and the transmission torque and transmission efficiency are improved.
  • the portion other than the portion facing the first rotor in the pole piece has a smaller cross-sectional area perpendicular to the rotation axis of the first rotor as it approaches the second rotor. Also good.
  • the axial cross-sectional area of the portion other than the portion facing the first rotor of the pole piece increases as it approaches the second rotor.
  • the facing area of the pole piece with the second rotor becomes too large, and one pole piece is opposed across the N pole and N pole or the S pole and S pole adjacent in the circumferential direction. . Therefore, the axial cross-sectional area of the portion other than the portion facing the first rotor of the pole piece is reduced as it approaches the second rotor, so that the area of the pole piece facing the second rotor is reduced. This prevents the pole piece from straddling the adjacent N pole and N pole or S pole and S pole.
  • the shape of the surface of the pole piece facing the second rotor is two concentric arcs having different radii around the rotation axis of the second rotor, and the rotation of the second rotor.
  • a fan-shaped shape surrounded by two straight lines extending radially from the shaft in different directions may be used.
  • the shape of the surface of the pole piece facing the second rotor is substantially square, the same phenomenon as when the skew angle is provided in the motor occurs, and the effect of suppressing cogging torque and torque ripple can be expected.
  • the maximum torque decreases.
  • the shape of the surface of the pole piece facing the second rotor is the above-mentioned fan shape, it is possible to suppress the decrease in the maximum torque.
  • the first rotor may be disposed radially inside the stator with respect to the rotation axis. Instead, the first rotor may be disposed radially outside the stator with the rotation axis as a reference. In either case, eddy current loss can be suppressed and torque transmission efficiency can be improved.
  • a magnetic field reinforcing back yoke made of a magnetic material may be provided on the back surface of the first and second rotors as viewed from the stator of one or both of the rotors. In this case, the magnetic field of the rotor provided with the back yoke is strengthened, and the transmittable torque increases.
  • the permanent magnet of the first rotor may be magnetized from the radial direction around the rotation axis of the first rotor. Instead, the permanent magnet of the first rotor may be magnetized from one direction along a plane perpendicular to the rotation axis of the first rotor. Further, the permanent magnets of the first rotor may be arranged in a Halbach array. In either case, eddy current loss can be suppressed and torque transmission efficiency can be improved.
  • FIG. 1 is a perspective view of a magnetic gear device according to a first embodiment of the present invention. It is a figure which shows the flow of the magnetic flux of the pole piece in the magnetic gear apparatus of FIG. It is a perspective view of the magnetic gear apparatus concerning 2nd Embodiment of this invention. It is a perspective view of the magnetic gear apparatus concerning 3rd Embodiment of this invention.
  • FIG. 11 is a diagram showing a magnetic flux flow of a pole piece in the magnetic gear device of FIGS. 1 and 3 to 10.
  • FIG. 11 is a diagram showing a first example of the shape (bottom surface) of the pole piece facing the second rotor in the magnetic gear device of FIGS. 1 and 3 to 10, and is a second example in which the bottom surface is hatched. It is a top view of the rotor of.
  • FIG. 11 is a diagram illustrating a second example of the shape (bottom surface) of the pole piece facing the second rotor in the magnetic gear device of FIGS. 1 and 3 to 10, and is a second example in which the bottom surface is hatched. It is a top view of the rotor of. It is a perspective view of the magnetic gear apparatus concerning 10th Embodiment of this invention. It is a perspective view of the magnetic gear apparatus concerning 11th Embodiment of this invention.
  • FIG. 1 It is a figure which shows the flow of the magnetic flux of the pole piece in the magnetic gear apparatus of FIG. It is a perspective view of the magnetic gear apparatus concerning the 12th Embodiment of this invention. It is a perspective view of the magnetic gear apparatus concerning 13th Embodiment of this invention. It is a perspective view of the magnetic gear apparatus concerning 14th Embodiment of this invention. It is a perspective view of the magnetic gear apparatus concerning 15th Embodiment of this invention. It is a top view of the 1st example of the 1st rotor. It is a top view of the 2nd example of the 1st rotor. It is a top view of the 3rd example of the 1st rotor.
  • FIG. 1 shows a magnetic gear device MG according to the first embodiment.
  • the magnetic gear device MG includes two rotors including first and second rotors 1 and 2 and a stator 3 magnetically interposed between the first and second rotors 1 and 2. Is provided.
  • the first rotor 1 faces the stator 3 via a radial gap RG in a direction perpendicular to the rotation axis O1, that is, a radial direction
  • the second rotor 2 is parallel to the rotation axis O2, that is, an axial direction. It faces the stator 3 through the axial gap AG.
  • the rotation axes O1 and O2 of the first and second rotors 1 and 2 are located on the same axis.
  • a plurality of permanent magnets 1a are arranged on the circumference so as to form a cylinder around the rotation axis O1.
  • Each permanent magnet 1a is magnetized in the radial direction, for example, as shown in FIG.
  • Two adjacent permanent magnets 1a have opposite magnetic poles. That is, it is an NS arrangement in which N poles and S poles are alternately arranged.
  • the first rotor 1 shown in FIG. 1 has two permanent magnets 1a.
  • the second rotor 2 has a plurality of permanent magnets 2a arranged on the circumference so as to form a cylinder around the rotation axis O2.
  • Each permanent magnet 2a is magnetized in the direction of the rotation axis O2, for example.
  • Two adjacent permanent magnets 2a have opposite magnetic poles. That is, it is an NS arrangement in which N poles and S poles are alternately arranged.
  • the second rotor 2 shown in FIG. 1 has six permanent magnets 2a.
  • the stator 3 is composed of a plurality of pole pieces (magnetic pole pieces) 3a arranged at equal intervals on a circumference around the rotation axis O1 of the first rotor 1.
  • Each pole piece 3a has an inner peripheral surface (a surface on the inner side in the radial direction with respect to the first rotor 1) of the first end portion (upper part in FIG. 1) as an outer peripheral surface of the first rotor 1.
  • the second end face (end face) (the bottom face in FIG. 1) faces the one end face of the second rotor 2.
  • the pole piece 3a has an L shape.
  • the inner peripheral surface that is the surface facing the first rotor 1 is the same cylindrical surface over the entire axial direction, and the outer periphery that is the surface on the back side when viewed from the first rotor 1.
  • the surface (the surface on the outer side in the radial direction with respect to the first rotor 1) is such that the diameter of a part of the second rotor 2 (the lower end in FIG. 1) is larger than the diameter of the other part. Is stepped.
  • the width of the pole piece 3a in the circumferential direction is the same over the entire axial direction.
  • the shape of the pole piece 3a may be other than the above.
  • the number of pole pieces 3 a is the sum of the number of pole pairs of the first and second rotors 1 and 2.
  • the first rotor 1 is a 2-pole or 1-pole pair
  • the number of pole pairs of the first and second rotors 1 and 2 is different from the number of pole pairs of the rotors 1 and 2 of this embodiment, the number of pole pairs and poles of the first and second rotors 1 and 2 The above relationship with the number of pieces 3a can be established.
  • the stator 3 faces the first rotor 1 via the radial gap RG, and faces the second rotor 2 via the axial gap AG, so that the stator 3 becomes the rotor. 1 and 2 are magnetically coupled.
  • the rotation direction of the rotor on the driven side is opposite to the rotation direction of the rotor on the driving side.
  • the magnetic gear device MG serves as a speed increaser. When the driving side and the driven side are switched, the magnetic gear device MG becomes a reduction gear.
  • the pole piece 3a is composed of a dust core.
  • the dust core is an iron core obtained by making a magnetic material into a fine powder, covering the surface of the powder with an insulating coating and hardening it, and is also called a dust core. Since the dust core has a structure insulated at the powder level, the effect of reducing eddy currents in all magnetic flux directions is high.
  • each pole piece of the stator 3 The direction of magnetic flux flowing through 3a is three-dimensional. As shown in FIG. 2, the direction of the magnetic flux acting between the magnetic poles of the first rotor 1 and the second rotor 2 is approximately the direction of the rotation axes O1 and O2 of the rotors 1 and 2, Magnetic flux is generated in the circumferential direction at a portion facing the vicinity of the magnetic pole boundary of the first rotor 1 and the second rotor 2.
  • the pole piece 3a is formed of a laminated electromagnetic steel sheet having only a two-dimensional magnetic flux direction suppressing effect, the effect of reducing eddy current loss is weak and torque transmission efficiency is reduced.
  • the pole piece is formed from the dust core, the effect of reducing eddy currents in the three-dimensional magnetic flux direction is high, so that eddy current loss can be suppressed and torque transmission efficiency can be improved.
  • this magnetic gear device since the first and second rotors 1 and 2 transmit torque without contact with each other, the merit of the magnetic gear device is applicable as it is. Further, a partition wall can be inserted in both or one of the radial gap RG portion between the first rotor 1 and the stator 3 and the axial gap AG portion between the second rotor 2 and the stator 3. Therefore, the first and second rotors 1 and 2 can be driven in different media. Therefore, this magnetic gear device is suitable for applications such as a pump.
  • FIG. 3 shows a magnetic gear device MG according to the second embodiment.
  • the first rotor 1 is disposed on the inner peripheral side of the stator 3, whereas the magnetic gear device MG of FIG.
  • the rotor 1 is arranged on the outer side in the radial direction of the stator 3 with the rotation axis O1 as a reference.
  • Other configurations are the same as those of the magnetic gear device of FIG. Even if the first rotor 1 is arranged on the inner side in the radial direction of the stator 3 and on the outer side in the radial direction with respect to the rotation axis O1, the effect of reducing the three-dimensional eddy current is similarly obtained. can get.
  • the magnitude relationship between the first rotor 1 and the second rotor 2 can be arbitrarily determined.
  • the first rotor 1 is arranged on the inner peripheral side of the stator 3 as in the magnetic gear device of FIG. 1, the shape of the pole piece 3a of the stator 3 is devised.
  • the diameter of the first rotor 1 may be larger than the diameter of the second rotor 2.
  • the first rotor 1 is arranged on the outer side in the radial direction of the stator 3 with respect to the rotation axis O1 as in the magnetic gear device of FIG. 3, the first rotor 1 May be smaller than the diameter of the second rotor 2.
  • FIG. 4 shows a magnetic gear device MG according to the third embodiment.
  • This magnetic gear device MG is obtained by adding first and second back yokes 4 and 5 for magnetic field enhancement to the magnetic gear device of FIG.
  • Each of the back yokes 4 and 5 is made of a magnetic material.
  • the first back yoke 4 is provided on the inner peripheral surface of the first rotor 1
  • the second back yoke 5 is provided on the bottom surface of the second rotor 2.
  • the inner peripheral surface of the first rotor 1 and the bottom surface of the second rotor 2 are surfaces on the back side when viewed from the stator 3 in the first and second rotors 1 and 2, respectively.
  • FIG. 5 shows a magnetic gear device MG according to the fourth embodiment.
  • This magnetic gear device MG is obtained by adding first and second back yokes 4 and 5 for magnetic field reinforcement to the magnetic gear device of FIG.
  • the first back yoke 4 is provided on the outer peripheral surface of the first rotor 1
  • the second back yoke 5 is provided on the bottom surface of the second rotor 2.
  • the magnetic fields of the first and second rotors 1 and 2 are strengthened, and the transmittable torque is increased.
  • the back yokes 4 and 5 are provided on both the first and second rotors 1 and 2, but the back yoke 4 (only on one rotor 1 (2) is provided. 5) may be provided.
  • FIG. 6 shows a magnetic gear device MG according to the fifth embodiment.
  • the magnetic gear device MG is different from the magnetic gear device of FIG. 1 in that the arrangement of the permanent magnets of the second rotor 2 is not the NS arrangement of the magnetic gear apparatus but the Halbach arrangement. That is, axially magnetized permanent magnets 2b magnetized in the direction of the rotation axis O2 and circumferentially magnetized permanent magnets 2c magnetized in the circumferential direction are alternately arranged on the same circumference.
  • the magnetization directions of two adjacent axially magnetized permanent magnets 2b are opposite to each other, and the magnetization directions of two adjacent circumferentially magnetized permanent magnets 2c are opposite to each other.
  • Other configurations are the same as those of the magnetic gear device of FIG.
  • FIGS. 7 to 9 show magnetic gear devices MG according to the sixth to eighth embodiments, respectively.
  • These magnetic gear devices MG are different from the magnetic gear devices shown in FIGS. 3, 4 and 5 in that the arrangement of the permanent magnets of the second rotor 2 is not an NS arrangement but a Halbach arrangement. There is a point.
  • Other configurations are the same as those of the magnetic gear devices of FIGS. 3, 4, and 5. Also in this case, the same operation and effect as described above can be obtained.
  • FIG. 10 shows a magnetic gear device MG according to the ninth embodiment.
  • Each pole piece 3a of the magnetic gear device MG has a taper in which the outer peripheral surface, which is the back surface as viewed from the first rotor 1, continuously increases in diameter from the upper end to the vicinity of the lower end in FIG. It is formed into a shape.
  • the inner peripheral surface of the pole piece 3a is provided with a step 12 at the boundary between the first portion 10 facing the first rotor 1 and the second portion 11 which is the other portion.
  • the inner peripheral diameter of the second portion 11 is larger than the inner peripheral diameter of the first portion 10 facing the child 1.
  • the axial cross-sectional area that is, the cross-sectional area of the cross section perpendicular to the rotation axis O1 is continuously increased as the second rotor 2 is approached.
  • the axial cross-sectional area of the second portion 11 is continuously increased as the second portion 11 approaches the second rotor 2.
  • the flow of magnetic flux in the pole piece 3a becomes smooth, and the leakage magnetic flux generated at a location far away from the second rotor 2 in the pole piece 3a. ⁇ can be minimized. This was confirmed by testing. By suppressing the leakage magnetic flux, the magnetic flux acting on the second rotor 2 is increased, and the transmission torque and the transmission efficiency are improved.
  • the pole piece 3a has a continuously increasing diameter on the outer peripheral surface from the upper end of the figure to the vicinity of the lower end of the figure, but it may be increased stepwise. Also in that case, there is an effect of suppressing the leakage magnetic flux generated in the part far away from the second rotor 2 in the pole piece 3a.
  • the magnetic gear device of the first to ninth embodiments described so far has a bottom surface 13 (a hatched portion) which is a surface facing the second rotor 2 in the pole piece 3a. ) May be substantially rectangular.
  • the shape of the bottom surface 13 of the pole piece 3a is substantially square, the same phenomenon as when the skew angle is provided in the motor occurs, and the effect of suppressing the cogging torque and torque ripple can be expected. Will decline.
  • the shape of the bottom surface 13 of the pole piece 3a may be a fan shape shown in FIG.
  • the fan-shaped shape is such that two concentric arcs 14 and 15 having different radii around the rotation axis O2 of the second rotor 2 and radial directions from the rotation axis O2 of the second rotor 2 in different directions.
  • the shape is surrounded by two extending radial lines 16 and 16.
  • the radii of the two concentric arcs 14 and 15 coincide with the outer diameter and the inner diameter of the second rotor 2, respectively.
  • the fall of the maximum torque can be suppressed by making the shape of the bottom face 13 of the pole piece 3a into a fan-shaped shape.
  • the optimum angle of the central angle ⁇ formed by the two radial straight lines 16 and 16 depends on the number of poles of the second rotor 2 and the axial gap AG (FIG. 10) between the second rotor 2 and the pole piece 3a. Dependent.
  • the optimum angle of the center angle ⁇ is obtained by magnetic field analysis or the like.
  • the magnetic gear device MG of FIG. 10 not only has the axial cross-sectional area of the first portion 10 of the pole piece 3a continuously increased as it approaches the second rotor 2,
  • the axial cross-sectional area of the portion 11 also increases continuously as it approaches the second rotor 2. This is to make the flow of magnetic flux in the pole piece 3a smooth.
  • the second portion 11 has the above shape. You may not be able to.
  • the second portion 11 corresponds to “a portion other than the portion directly facing the first rotor”.
  • the number of poles of the second rotor 2 is larger than that of the magnetic gear device according to the first to ninth embodiments.
  • the axial cross-sectional area of the second portion 11 of the pole piece 3a increases as it approaches the second rotor 2
  • the area of the pole piece 3a facing the second rotor 2 is increased. Is too large, and there is a possibility that one pole piece 3a is opposed across the N pole and N pole or the S pole and S pole adjacent in the circumferential direction.
  • the pole piece 3a is prevented from straddling adjacent N poles and N poles or S poles and S poles.
  • the first rotor 1 has two poles (one pole pair), the second rotor 2 has twelve poles (six pole pairs), and a pole piece.
  • 3a is 7 pieces (one pole pair + six pole pairs).
  • the axial cross-sectional area of the pole piece 3 a is reduced in a tapered shape as it approaches the second rotor 2, but may be reduced stepwise.
  • FIG. 15 shows a magnetic gear device MG according to the eleventh embodiment.
  • the pole piece 3a of this magnetic gear device MG has the same outer diameter from the upper end of the figure to the lower end of the figure.
  • the inner peripheral surface of the pole piece 3a has a stepped portion 12 at the boundary between the first portion 10 and the second portion 11 as in the embodiment shown in FIG.
  • the vertical cross-sectional shape of the pole piece 3a is almost a rectangle.
  • the cross-sectional shape along the radial direction of the pole piece 3a is a shape close to a rectangle, as shown in FIG. Therefore, the cross-sectional shape along the radial direction of the pole piece 3a close to the rectangle is not so preferable from the viewpoint of torque transmission efficiency.
  • the shape is simple, there is an advantage that it is easy to mold and can be easily fixed and positioned with respect to the housing in which the magnetic gear device is accommodated.
  • FIG. 17 shows a magnetic gear device MG according to the twelfth embodiment.
  • the pole piece 3a of the magnetic gear device MG has both the outer peripheral surface and the inner peripheral surface having the same diameter from the upper end of the drawing to the lower end of the drawing, and the cross section along the radial direction is completely rectangular.
  • the complete rectangular shape is simpler and easier to form than the cross-sectional shape along the radial direction, which is close to the rectangle in FIG.
  • the torque transmission efficiency is substantially the same as that of the magnetic gear device of FIG.
  • the L-shaped pole piece 3a shown in FIG. 1 has a shape in which the outer diameter of the lower end portion in the drawing is stepwise larger than the outer diameter of the portion other than the lower end portion. It is a kind of form in which the directional cross-sectional area increases in steps. However, if the pole piece 3a is limited to the portion facing the first rotor 1, the axial cross-sectional area does not increase as the second rotor 2 is approached.
  • the magnetic gear device of FIG. 1 provided with the L-shaped pole piece 3a having the above-described configuration is the same as the magnetic gear device provided with the pole piece 3a having the tapered outer peripheral surface shown in FIG. 10 and the rectangular shape shown in FIGS. Or it has an intermediate characteristic with the magnetic gear apparatus provided with the pole piece 3a of the cross-sectional shape along the radial direction close
  • the shape of the pole piece 3a to be used may be determined according to the purpose and application of the magnetic gear device.
  • FIG. 18 shows a magnetic gear device MG according to the thirteenth embodiment.
  • the pole piece 3a of the magnetic gear device MG is cut out in a substantially triangular pyramid shape from the outer peripheral surface to the side surface facing the circumferential direction in the upper portion of the figure, so that the axial sectional area becomes closer to the second rotor 2.
  • the form gradually increases.
  • By forming the pole piece 3a in this way it is possible to suppress the leakage magnetic flux generated at a position far away from the second rotor 2 in the pole piece 3a, and to improve the transmission torque and the transmission efficiency.
  • combining the technique of notching in a substantially triangular pyramid and the technique of forming the outer peripheral surface in a tapered shape has an effect of improving the transmission torque and transmission efficiency.
  • FIG. 19 shows a magnetic gear device MG according to a fourteenth embodiment.
  • This magnetic gear device MG is a pole piece that suppresses leakage of magnetic flux with respect to a magnetic gear device in which the first rotor 1 is arranged radially outside the stator 3 with respect to the rotation axis O1.
  • the shape of 3a is applied.
  • the pole piece 3a of this magnetic gear device has a taper whose diameter continuously increases from the upper end of the drawing toward the vicinity of the lower end of the drawing from the inner peripheral surface, which is the surface on the back side when viewed from the first rotor 1. It is formed into a shape.
  • the diameter of the lower end part of a figure is larger stepwise than the diameter of another part.
  • the shape of the pole piece 3a also increases in the axial cross-sectional area as it approaches the second rotor 2, similarly to the magnetic gear device of FIG. For this reason, the leakage magnetic flux which generate
  • FIG. 20 shows a magnetic gear device MG according to the fifteenth embodiment.
  • This magnetic gear device MG is obtained by adding first and second back yokes 4 and 5 for magnetic field enhancement to the magnetic gear device of FIG.
  • the first back yoke 4 is provided on the inner peripheral surface of the first rotor 1
  • the second back yoke 5 is provided on the bottom surface of the second rotor 2.
  • the first rotor 1 shown in FIG. 21 has an NS arrangement in which N poles and S poles are alternately arranged on the circumference, and is radial magnetization in which the permanent magnet 1a is magnetized from the radial direction.
  • the rotor 1 shown in FIG. 22 has an NS arrangement, but is a parallel magnetization in which the permanent magnet 1a is magnetized from one direction on a plane perpendicular to the rotation axis O1.
  • a permanent magnet 1b magnetized in the radial direction and a permanent magnet 1c magnetized in the circumferential direction are arranged in a Halbach array.
  • the magnetic gear device of each of the above embodiments shows an example in which the first rotor 1 is an NS array (FIG. 21 or FIG. 22), but the first rotor 1 is a Halbach array (FIG. 23). It is also good. In this case, the magnetic field of the first rotor 1 is strengthened, the transmittable torque of the magnetic gear device is increased, and drive transmission is possible even if the radial gap RG is widened.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Abstract

Provided is a magnetic gear device capable of suppressing the loss of eddy current three-dimensionally flowing in a magnetic flux, and of providing high torque transmission efficiency. The magnetic gear device is provided with: first and second rotors (1, 2) each having a plurality of permanent magnets (1a, 2a); and a stator (3) that is disposed magnetically between the first rotor (1) and the second rotor (2) and that has a plurality of pole pieces (3a) capable of modulating a magnetic flux. The first rotor (1) is opposed to the stator (3) via a radial gap (RG) perpendicular to the rotation axis (O1) of the first rotor (1). The second rotor (2) is opposed to the stator (3) via an axial gap (AG) parallel to the rotation axis (O2) of the second rotor (2). The pole pieces 3a are formed of powder magnetic cores.

Description

磁気歯車装置Magnetic gear unit 関連出願Related applications
 本出願は、2015年9月7日出願の特願2015-175461および2015年11月18日出願の特願2015-225747の優先権を主張するものであり、それらの全体を参照により本願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2015-175461 filed on September 7, 2015 and Japanese Patent Application No. 2015-225747 filed on November 18, 2015, which is incorporated herein by reference in its entirety. Quote as part.
 この発明は、原動側の回転子と従動側の回転子とが互いに非接触で動力を伝達する磁気歯車装置に関する。 The present invention relates to a magnetic gear device in which a driving rotor and a driven rotor transmit power without contact with each other.
 自動車、鉄道、産業用機械および家電製品等の駆動部には、モータ等の回転電動機が装備されている。この回転電動機の出力は、歯車によって所望のトルクまたは回転数に変換されて、作用部に伝達される。従来の一般的な機械式歯車では、互いに噛み合う一対の歯車の歯が接触しながら動力を伝達するため、歯と歯の間に摩擦が生じる。そのため、以下の問題があった。
(i) 歯が擦れて摩耗する。
(ii) 振動や騒音が発生する。
(iii) 限界トルクや疲労破壊等により歯が損傷する。
(iv) オイルやグリス等の潤滑剤が必要となり、クリーンな環境で使用できない。
Rotating electric motors such as motors are installed in driving units of automobiles, railways, industrial machines, and home appliances. The output of the rotary electric motor is converted into a desired torque or rotation speed by a gear and transmitted to the action portion. In a conventional general mechanical gear, a pair of gear teeth meshing with each other transmits power while being in contact with each other, so that friction occurs between the teeth. Therefore, there were the following problems.
(i) The teeth are worn and worn.
(ii) Vibration and noise are generated.
(iii) The teeth are damaged by the limit torque or fatigue failure.
(iv) Lubricants such as oil and grease are required and cannot be used in a clean environment.
 歯と歯の接触が無ければ上記問題はすべて解決する。歯と歯の接触が無い動力伝達機構として磁気歯車がある。磁気歯車の特徴は非接触で動力を伝達することであるから、伝達可能トルクの絶対値は機械式歯車に比べて低いものの、以下の多くのメリットがある。
(i) 振動や騒音がほぼ無い。
(ii) 発塵が無い。このためクリーンな環境で使用できる。
(iii) 摩擦や摩耗による劣化がほぼ無く、メンテナンスフリーが実現できる。
(iv) 歯と歯の間に隔壁があっても、その隔壁が非磁性体であれば動力の伝達が可能である。このため、2つの歯がそれぞれ異なる媒質中に存在することが可能である。
(v) 能力以上のトルクがかかった場合に脱調するトルクリミッタ機能を有する。機械式歯車に能力以上のトルクがかかった場合は、歯が損傷する可能性がある。
(vi) 摩擦損失が無いため、構成によっては高効率のトルク伝達が可能である。
All of the above problems will be solved if there is no contact between the teeth. There is a magnetic gear as a power transmission mechanism without contact between teeth. Since the magnetic gear is characterized in that it transmits power without contact, the absolute value of the transmittable torque is lower than that of a mechanical gear, but has the following many merits.
(i) There is almost no vibration or noise.
(ii) No dust generation. For this reason, it can be used in a clean environment.
(iii) There is almost no deterioration due to friction and wear, and maintenance-free can be realized.
(iv) Even if there is a partition between teeth, power transmission is possible if the partition is nonmagnetic. For this reason, it is possible for two teeth to exist in different media.
(v) It has a torque limiter function that steps out when torque exceeding the capacity is applied. If the mechanical gear receives more torque than it can, the teeth may be damaged.
(vi) Since there is no friction loss, high-efficiency torque transmission is possible depending on the configuration.
 磁気歯車を用いた変速機構が、特許文献1および2に記載されている。
 特許文献1の磁気歯車装置は、原動側および従動側の各回転子(外歯車、内歯車)が同心円状に配置され、各回転子間に固定子(ステータ歯車)が介在している。各回転子と固定子とは、それぞれラジアルギャップを介して対向している。固定子には、円周方向に並ぶ複数のポールピース(磁性歯部)が設けられている。このポールピースに積層電磁鋼板を用いることで、回転中の渦電流を低減させ、高効率での変速を可能としている。さらに、ポールピースを軸方向に対してスキューさせることで、磁界の急峻な変化を低減しコギングトルクを抑制している。
Patent Documents 1 and 2 describe a speed change mechanism using a magnetic gear.
In the magnetic gear device of Patent Document 1, the driving side and driven side rotors (external gears, internal gears) are arranged concentrically, and a stator (stator gear) is interposed between the rotors. Each rotor and the stator are opposed to each other via a radial gap. The stator is provided with a plurality of pole pieces (magnetic tooth portions) arranged in the circumferential direction. By using laminated electromagnetic steel sheets for this pole piece, eddy currents during rotation are reduced, and high-efficiency shifting is possible. Furthermore, the pole piece is skewed with respect to the axial direction, thereby reducing a steep change in the magnetic field and suppressing the cogging torque.
 特許文献2の磁気歯車機構も、第1および第2の回転子間に、これら第1および第2の回転子とそれぞれラジアルギャップを介して対向する固定子(磁極片体)が介在している。特許文献2では、回転子の永久磁石を軟磁性材料の内部へ埋め込む構造にすることで、大きなトルク伝達を可能にする。さらに、永久磁石を軸方向に分割構造とすることで、回転中の磁石内部に発生する渦電流を低減し、高効率のトルク伝達を可能としている。 Also in the magnetic gear mechanism of Patent Document 2, a stator (a magnetic pole piece) that opposes the first and second rotors via a radial gap is interposed between the first and second rotors. . In Patent Document 2, a large torque can be transmitted by using a structure in which a permanent magnet of a rotor is embedded in a soft magnetic material. Furthermore, the permanent magnet is divided in the axial direction, so that eddy currents generated inside the rotating magnet are reduced and highly efficient torque transmission is possible.
特許第5389122号Patent No. 5389122 特許第5526281号Japanese Patent No. 5526281
 上記のように、特許文献1および2の磁気歯車を用いた変速機構は、原動側および従動側の回転子が共に、ラジアルギャップを介して固定子に対向している。この構成であると、全体の径方向寸法が大きくなる。これに対して、全体の径方向寸法を抑えるために、原動側および従動側の回転子のうち第1の回転子はラジアルギャップを介して固定子に対向し、第2の回転子はアキシアルギャップを介して固定子に対向する構成からなる磁気歯車装置が考えられる。 As described above, in the speed change mechanism using the magnetic gears of Patent Documents 1 and 2, both the rotor on the driving side and the driven side face the stator via the radial gap. With this configuration, the overall radial dimension is increased. On the other hand, in order to suppress the overall radial dimension, the first rotor of the driving and driven rotors faces the stator via a radial gap, and the second rotor is an axial gap. A magnetic gear device having a configuration facing the stator via a pin is conceivable.
 第1および第2の回転子が共にラジアルギャップを介して固定子に対向する構成や、第1および第2の回転子が共にアキシアルギャップを介して固定子に対向する構成であれば、磁束の流れに方向性があるため、ポールピースに積層電磁鋼板を用いることが有効である。しかし、ラジアルギャップとアキシアルギャップを組み合わせた構成では、ポールピースにおける磁束の流れが3次元的となるため、ポールピースに積層電磁鋼板を用いても、ラジアル方向およびアキシアル方向のうちの一方向の渦電流成分しか低減することができず、トルク伝達効率が低下する。 If the first and second rotors are both opposed to the stator via the radial gap, or the first and second rotors are both opposed to the stator via the axial gap, the magnetic flux Since the flow has directionality, it is effective to use laminated electromagnetic steel sheets for the pole pieces. However, in the configuration in which the radial gap and the axial gap are combined, the flow of magnetic flux in the pole piece becomes three-dimensional. Therefore, even if laminated magnetic steel sheets are used for the pole piece, the vortex in one direction out of the radial direction and the axial direction Only the current component can be reduced, and the torque transmission efficiency is reduced.
 この発明の目的は、2つの回転子のうち第1の回転子はラジアルギャップを介して固定子に対向し、第2の回転子はアキシアルギャップを介して固定子に対向する構成において、3次元的に流れる磁束の渦電流損失を抑制し、高いトルク伝達効率を実現できる磁気歯車装置を提供することである。 The object of the present invention is to provide a three-dimensional structure in which the first rotor of the two rotors faces the stator via a radial gap and the second rotor faces the stator via an axial gap. It is an object of the present invention to provide a magnetic gear device that can suppress eddy current loss of a magnetic flux that flows and can realize high torque transmission efficiency.
 この発明の一構成にかかる磁気歯車装置は、それぞれ複数の永久磁石を有する第1および第2の回転子と、磁気的に前記第1の回転子と第2の回転子間に位置し、磁束を変調する複数のポールピース(磁極片)を有する固定子とを備え、前記第1の回転子は、この第1の回転子の回転軸と垂直な方向のラジアルギャップを介して前記固定子と対向し、かつ前記第2の回転子は、この第2の回転子の回転軸と平行な方向のアキシアルギャップを介して前記固定子と対向し、前記ポールピースは圧粉磁心から構成されている。 A magnetic gear device according to one configuration of the present invention includes first and second rotors each having a plurality of permanent magnets, magnetically positioned between the first rotor and the second rotor, and a magnetic flux. And a stator having a plurality of pole pieces (magnetic pole pieces) for modulating the first rotor, the first rotor and the stator via a radial gap in a direction perpendicular to the rotation axis of the first rotor. The second rotor faces the stator through an axial gap in a direction parallel to the rotation axis of the second rotor, and the pole piece is formed of a dust core. .
 この構成によると、原動側となる回転子の回転が従動側となる回転子へ、両回転子の永久磁石の極対数に応じた変速比で伝達される。第1の回転子はラジアルギャップを介して固定子に対向し、第2の回転子はアキシアルギャップを介して固定子に対向するため、第1および第2の回転子が共にラジアルギャップを介して固定子に対向する構成に比べて、磁気歯車装置全体の径方向寸法を抑えることができる。また、第1および第2の回転子が共にアキシアルギャップを介して固定子に対向する構成に比べて、磁気歯車装置全体の軸方向寸法を抑えることができる。 According to this configuration, the rotation of the rotor on the driving side is transmitted to the rotor on the driven side at a gear ratio according to the number of pole pairs of the permanent magnets of both rotors. Since the first rotor faces the stator via the radial gap and the second rotor faces the stator via the axial gap, both the first and second rotors pass through the radial gap. Compared to the configuration facing the stator, the radial dimension of the entire magnetic gear device can be reduced. Further, the axial dimension of the entire magnetic gear device can be reduced as compared with the configuration in which the first and second rotors both face the stator via the axial gap.
 第1の回転子はラジアルギャップを介して固定子に対向し、第2の回転子はアキシアルギャップを介して固定子に対向する構成の場合、固定子のポールピースを流れる磁束方向が3次元的となる。例えば、第1の回転子と第2の回転子の各磁極間で作用する磁束方向はおおよそ各回転子の回転軸の方向となるが、第1の回転子や第2の回転子の磁極境界付近と面している部位では、磁束は周方向に発生する。そのため、2次元的な磁束方向の抑制効果しか持たない積層電磁鋼板でポールピースが構成されていると、渦電流損失の低減効果が弱く、トルク伝達効率が低下する。しかし、この構成のように、圧粉磁心からポールピースを構成すると、3次元的な磁束方向に対する渦電流の低減効果が高いため、渦電流損失を抑制して、トルク伝達効率を向上させることができる。 In the case where the first rotor faces the stator via a radial gap and the second rotor faces the stator via an axial gap, the direction of magnetic flux flowing through the pole piece of the stator is three-dimensional. It becomes. For example, the direction of the magnetic flux acting between the magnetic poles of the first rotor and the second rotor is approximately the direction of the rotation axis of each rotor, but the magnetic pole boundary between the first rotor and the second rotor. In the part facing the vicinity, the magnetic flux is generated in the circumferential direction. For this reason, if the pole piece is composed of laminated electromagnetic steel sheets having only a two-dimensional magnetic flux direction suppressing effect, the effect of reducing eddy current loss is weak and torque transmission efficiency is reduced. However, if the pole piece is configured from the dust core as in this configuration, the effect of reducing eddy currents in the three-dimensional magnetic flux direction is high, so eddy current loss can be suppressed and torque transmission efficiency can be improved. it can.
 前記第2の回転子は、この第2の回転子が有する前記複数の永久磁石の隣接する2つの永久磁石それぞれの磁極の向きが互いに異なるように、前記複数の永久磁石が同一円周上に等角度で配置されていても良い。また、前記第2の回転子は、前記複数の永久磁石がハルバッハ配列で配置されていても良い。いずれの場合も、渦電流損失を抑制して、トルク伝達効率を向上させることができる。 In the second rotor, the plurality of permanent magnets are arranged on the same circumference so that directions of magnetic poles of two adjacent permanent magnets of the plurality of permanent magnets of the second rotor are different from each other. They may be arranged at an equal angle. In the second rotor, the plurality of permanent magnets may be arranged in a Halbach array. In either case, eddy current loss can be suppressed and torque transmission efficiency can be improved.
 前記ポールピースにおける少なくとも前記第1の回転子と正対する部分は、前記第2の回転子に近づくに従って、前記第1の回転子の回転軸と垂直な断面の断面積が大きくなっていても良い。前記断面積は、第2の回転子に近づくに従って連続的に大きくなっていても良く、段階的に大きくなっていても良い。 At least a portion of the pole piece that faces the first rotor may have a cross-sectional area that is perpendicular to the rotation axis of the first rotor as it approaches the second rotor. . The cross-sectional area may increase continuously as it approaches the second rotor, or may increase stepwise.
 第1および第2の回転子間のトルク伝達性能の面からは、第1の回転子と第2の回転子の間で互いの磁束が無駄なく作用することが望ましい。ポールピースの断面積が第2の回転子に近づくに従って大きくなっていると、ポールピース内の磁束の流れがスムーズになり、ポールピースにおける第2の回転子から遠く離れた部位で発生する漏洩磁束を最小限に抑制できる。その結果、第2の回転子に作用する磁束が増え、伝達トルクおよび伝達効率が向上する。 From the aspect of torque transmission performance between the first and second rotors, it is desirable that the mutual magnetic flux acts without waste between the first rotor and the second rotor. When the cross-sectional area of the pole piece increases as it approaches the second rotor, the flow of magnetic flux in the pole piece becomes smooth, and the leakage magnetic flux generated at a location far from the second rotor in the pole piece Can be minimized. As a result, the magnetic flux acting on the second rotor is increased, and the transmission torque and transmission efficiency are improved.
 前記ポールピースにおける前記第1の回転子と正対する部分以外の部分は、前記第2の回転子に近づくに従って、前記第1の回転子の回転軸と垂直な断面の断面積が小さくなっていても良い。 The portion other than the portion facing the first rotor in the pole piece has a smaller cross-sectional area perpendicular to the rotation axis of the first rotor as it approaches the second rotor. Also good.
 第2の回転子の極数が多い磁気歯車装置の場合、ポールピースの第1の回転子と正対する部分以外の部分の軸方向断面積が第2の回転子に近づくに従って大きくなっていると、ポールピースの第2の回転子との対向面積が大きくなり過ぎて、一つのポールピースが周方向に隣合うN極とN極、またはS極とS極に跨って対向する可能性がある。そこで、ポールピースの第1の回転子と正対する部分以外の部分の軸方向断面積を第2の回転子に近づくに従って小さくして、ポールピースの第2の回転子との対向面積を小さくすることで、上記ポールピースが隣り合うN極とN極またはS極とS極に跨るのを回避する。 In the case of a magnetic gear device in which the number of poles of the second rotor is large, the axial cross-sectional area of the portion other than the portion facing the first rotor of the pole piece increases as it approaches the second rotor. There is a possibility that the facing area of the pole piece with the second rotor becomes too large, and one pole piece is opposed across the N pole and N pole or the S pole and S pole adjacent in the circumferential direction. . Therefore, the axial cross-sectional area of the portion other than the portion facing the first rotor of the pole piece is reduced as it approaches the second rotor, so that the area of the pole piece facing the second rotor is reduced. This prevents the pole piece from straddling the adjacent N pole and N pole or S pole and S pole.
 前記ポールピースの前記第2の回転子と対向する面の形状が、前記第2の回転子の回転軸を中心とする互いに半径が異なる2本の同心円弧と、前記第2の回転子の回転軸から互いに異なる方向に放射状に延びる2本の直線とで囲まれた扇台形状であっても良い。 The shape of the surface of the pole piece facing the second rotor is two concentric arcs having different radii around the rotation axis of the second rotor, and the rotation of the second rotor. A fan-shaped shape surrounded by two straight lines extending radially from the shaft in different directions may be used.
 ポールピースの第2の回転子と対向する面の形状が略四角形である場合、モータにスキュー角を設けた場合と同じ現象が生じて、コギングトルクやトルクリップルの抑制効果を期待できるが、一方で最大トルクは低下する。これに対して、ポールピースの第2の回転子と対向する面の形状を上記扇台形状とすると、最大トルクの低下を抑制することができる。 When the shape of the surface of the pole piece facing the second rotor is substantially square, the same phenomenon as when the skew angle is provided in the motor occurs, and the effect of suppressing cogging torque and torque ripple can be expected. The maximum torque decreases. On the other hand, when the shape of the surface of the pole piece facing the second rotor is the above-mentioned fan shape, it is possible to suppress the decrease in the maximum torque.
 前記第1の回転子がその回転軸を基準として前記固定子の径方向内側に配置されていても良い。代わりに、前記第1の回転子がその回転軸を基準として前記固定子の径方向外側に配置されていても良い。いずれの場合も、渦電流損失を抑制して、トルク伝達効率を向上させることができる。 The first rotor may be disposed radially inside the stator with respect to the rotation axis. Instead, the first rotor may be disposed radially outside the stator with the rotation axis as a reference. In either case, eddy current loss can be suppressed and torque transmission efficiency can be improved.
 前記第1および第2の回転子の一方または両方の回転子における前記固定子から見て背面側の面に、磁性材料からなる磁界強化用のバックヨークが設けられても良い。この場合、バックヨークが設けられた回転子の磁界が強化され、伝達可能トルクが上昇する。 A magnetic field reinforcing back yoke made of a magnetic material may be provided on the back surface of the first and second rotors as viewed from the stator of one or both of the rotors. In this case, the magnetic field of the rotor provided with the back yoke is strengthened, and the transmittable torque increases.
 前記第1の回転子の前記永久磁石は、前記第1の回転子の回転軸を中心として径方向から着磁されていても良い。代わりに、前記第1の回転子の前記永久磁石は、前記第1の回転子の回転軸と垂直な平面に沿う一方向から着磁されていても良い。さらに、前記第1の回転子の各永久磁石がハルバッハ配列で配置されていても良い。いずれの場合も、渦電流損失を抑制して、トルク伝達効率を向上させることができる。 The permanent magnet of the first rotor may be magnetized from the radial direction around the rotation axis of the first rotor. Instead, the permanent magnet of the first rotor may be magnetized from one direction along a plane perpendicular to the rotation axis of the first rotor. Further, the permanent magnets of the first rotor may be arranged in a Halbach array. In either case, eddy current loss can be suppressed and torque transmission efficiency can be improved.
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。 Any combination of at least two configurations disclosed in the claims and / or the specification and / or drawings is included in the present invention. In particular, any combination of two or more of each claim in the claims is included in the present invention.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の第1の実施形態にかかる磁気歯車装置の斜視図である。 図1の磁気歯車装置におけるポールピースの磁束の流れを示す図である。 この発明の第2の実施形態にかかる磁気歯車装置の斜視図である。 この発明の第3の実施形態にかかる磁気歯車装置の斜視図である。 この発明の第4の実施形態にかかる磁気歯車装置の斜視図である。 この発明の第5の実施形態にかかる磁気歯車装置の斜視図である。 この発明の第6の実施形態にかかる磁気歯車装置の斜視図である。 この発明の第7の実施形態にかかる磁気歯車装置の斜視図である。 この発明の第8の実施形態にかかる磁気歯車装置の斜視図である。 この発明の第9の実施形態にかかる磁気歯車装置の斜視図である。 図1および図3~10の磁気歯車装置におけるポールピースの磁束の流れを示す図である。 図1および図3~10の磁気歯車装置におけるポールピースの第2の回転子と対向する面(底面)の形状の第1の例を示す図であって、この底面をハッチングで示した第2の回転子の上面図である。 図1および図3~10の磁気歯車装置におけるポールピースの第2の回転子と対向する面(底面)の形状の第2の例を示す図であって、この底面をハッチングで示した第2の回転子の上面図である。 この発明の第10の実施形態にかかる磁気歯車装置の斜視図である。 この発明の第11の実施形態にかかる磁気歯車装置の斜視図である。 図15の磁気歯車装置におけるポールピースの磁束の流れを示す図である。 この発明の第12の実施形態にかかる磁気歯車装置の斜視図である。 この発明の第13の実施形態にかかる磁気歯車装置の斜視図である。 この発明の第14の実施形態にかかる磁気歯車装置の斜視図である。 この発明の第15の実施形態にかかる磁気歯車装置の斜視図である。 第1の回転子の第1の例の平面図である。 第1の回転子の第2の例の平面図である。 第1の回転子の第3の例の平面図である。
The present invention will be more clearly understood from the following description of preferred embodiments with reference to the accompanying drawings. However, the embodiments and drawings are for illustration and description only and should not be used to define the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same reference numerals in a plurality of drawings indicate the same or corresponding parts.
1 is a perspective view of a magnetic gear device according to a first embodiment of the present invention. It is a figure which shows the flow of the magnetic flux of the pole piece in the magnetic gear apparatus of FIG. It is a perspective view of the magnetic gear apparatus concerning 2nd Embodiment of this invention. It is a perspective view of the magnetic gear apparatus concerning 3rd Embodiment of this invention. It is a perspective view of the magnetic gear apparatus concerning 4th Embodiment of this invention. It is a perspective view of the magnetic gear apparatus concerning 5th Embodiment of this invention. It is a perspective view of the magnetic gear apparatus concerning the 6th Embodiment of this invention. It is a perspective view of the magnetic gear apparatus concerning the 7th Embodiment of this invention. It is a perspective view of the magnetic gear apparatus concerning the 8th Embodiment of this invention. It is a perspective view of the magnetic gear apparatus concerning the 9th Embodiment of this invention. FIG. 11 is a diagram showing a magnetic flux flow of a pole piece in the magnetic gear device of FIGS. 1 and 3 to 10. FIG. 11 is a diagram showing a first example of the shape (bottom surface) of the pole piece facing the second rotor in the magnetic gear device of FIGS. 1 and 3 to 10, and is a second example in which the bottom surface is hatched. It is a top view of the rotor of. FIG. 11 is a diagram illustrating a second example of the shape (bottom surface) of the pole piece facing the second rotor in the magnetic gear device of FIGS. 1 and 3 to 10, and is a second example in which the bottom surface is hatched. It is a top view of the rotor of. It is a perspective view of the magnetic gear apparatus concerning 10th Embodiment of this invention. It is a perspective view of the magnetic gear apparatus concerning 11th Embodiment of this invention. It is a figure which shows the flow of the magnetic flux of the pole piece in the magnetic gear apparatus of FIG. It is a perspective view of the magnetic gear apparatus concerning the 12th Embodiment of this invention. It is a perspective view of the magnetic gear apparatus concerning 13th Embodiment of this invention. It is a perspective view of the magnetic gear apparatus concerning 14th Embodiment of this invention. It is a perspective view of the magnetic gear apparatus concerning 15th Embodiment of this invention. It is a top view of the 1st example of the 1st rotor. It is a top view of the 2nd example of the 1st rotor. It is a top view of the 3rd example of the 1st rotor.
 この発明の各実施形態を図面と共に説明する。
 図1に、第1の実施形態にかかる磁気歯車装置MGを示す。この磁気歯車装置MGは、第1および第2の回転子1,2からなる2つの回転子と、磁気的に前記第1および第2の回転子1,2の間に介在する固定子3とを備える。第1の回転子1はその回転軸O1と垂直な方向すなわち径方向のラジアルギャップRGを介して固定子3と対向し、第2の回転子2はその回転軸O2と平行な方向すなわち軸方向のアキシアルギャップAGを介して固定子3と対向している。第1および第2の回転子1,2の回転軸O1,O2は、同軸上に位置する。
Each embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a magnetic gear device MG according to the first embodiment. The magnetic gear device MG includes two rotors including first and second rotors 1 and 2 and a stator 3 magnetically interposed between the first and second rotors 1 and 2. Is provided. The first rotor 1 faces the stator 3 via a radial gap RG in a direction perpendicular to the rotation axis O1, that is, a radial direction, and the second rotor 2 is parallel to the rotation axis O2, that is, an axial direction. It faces the stator 3 through the axial gap AG. The rotation axes O1 and O2 of the first and second rotors 1 and 2 are located on the same axis.
 前記第1の回転子1は、複数の永久磁石1aが、回転軸O1を中心に円筒を構成するように円周上に配置されている。各永久磁石1aは、例えば図21に示すように、径方向に着磁されている。隣合う2つの永久磁石1aは、互いに磁極の向きが逆である。つまり、N極とS極が交互に並ぶN-S配列となっている。図1に示す第1の回転子1は2個の永久磁石1aを有する。 In the first rotor 1, a plurality of permanent magnets 1a are arranged on the circumference so as to form a cylinder around the rotation axis O1. Each permanent magnet 1a is magnetized in the radial direction, for example, as shown in FIG. Two adjacent permanent magnets 1a have opposite magnetic poles. That is, it is an NS arrangement in which N poles and S poles are alternately arranged. The first rotor 1 shown in FIG. 1 has two permanent magnets 1a.
 図1において、前記第2の回転子2は、複数の永久磁石2aが、回転軸O2を中心に円筒を構成するように円周上に配置されている。各永久磁石2aは、例えば回転軸O2の方向に着磁されている。隣合う2つの永久磁石2aは、互いに磁極の向きが逆である。つまり、N極とS極が交互に並ぶN-S配列となっている。図1に示す第2の回転子2は6個の永久磁石2aを有する。 In FIG. 1, the second rotor 2 has a plurality of permanent magnets 2a arranged on the circumference so as to form a cylinder around the rotation axis O2. Each permanent magnet 2a is magnetized in the direction of the rotation axis O2, for example. Two adjacent permanent magnets 2a have opposite magnetic poles. That is, it is an NS arrangement in which N poles and S poles are alternately arranged. The second rotor 2 shown in FIG. 1 has six permanent magnets 2a.
 前記固定子3は、第1の回転子1の回転軸O1を中心とする円周上に等間隔で配置された複数のポールピース(磁極片)3aからなる。各ポールピース3aは、その第1の端の部分(図1の上部)の内周面(第1の回転子1を基準として径方向内側の面)が第1の回転子1の外周面と対向し、その第2の端の面(端面)(図1の底面)が第2の回転子2の一端面と対向している。 The stator 3 is composed of a plurality of pole pieces (magnetic pole pieces) 3a arranged at equal intervals on a circumference around the rotation axis O1 of the first rotor 1. Each pole piece 3a has an inner peripheral surface (a surface on the inner side in the radial direction with respect to the first rotor 1) of the first end portion (upper part in FIG. 1) as an outer peripheral surface of the first rotor 1. The second end face (end face) (the bottom face in FIG. 1) faces the one end face of the second rotor 2.
 この実施形態において、ポールピース3aの形状がL型とされている。すなわち、第1の回転子1に対向する面である内周面は、軸方向の全体に亘って同一の円筒面からなり、かつ第1の回転子1から見て背面側の面である外周面(第1の回転子1を基準として径方向外側の面)は、第2の回転子2側の一部分(図1の下端部)の径が他の部分の径よりも大きく、前記外周面は段状である。ポールピース3aの周方向の幅は、軸方向の全体に亘って同じである。後で説明するように、ポールピース3aの形状は、上記以外の形状としても良い。 In this embodiment, the pole piece 3a has an L shape. In other words, the inner peripheral surface that is the surface facing the first rotor 1 is the same cylindrical surface over the entire axial direction, and the outer periphery that is the surface on the back side when viewed from the first rotor 1. The surface (the surface on the outer side in the radial direction with respect to the first rotor 1) is such that the diameter of a part of the second rotor 2 (the lower end in FIG. 1) is larger than the diameter of the other part. Is stepped. The width of the pole piece 3a in the circumferential direction is the same over the entire axial direction. As will be described later, the shape of the pole piece 3a may be other than the above.
 ポールピース3aの個数は、第1および第2の回転子1,2の極対数の和とされている。この例の場合、第1の回転子1は2極すなわち1極対であり、第2の回転子2は6極すなわち3極対であるから、1(極対数)+3(極対数)=4(ポールピースの個数)となり、固定子3は4個のポールピース3aを有する。第1および第2の回転子1,2の極対数が、この実施形態の回転子1,2の極対数と異なっていても、第1および第2の回転子1,2の極対数とポールピース3aの個数との上記関係は成立し得る。 The number of pole pieces 3 a is the sum of the number of pole pairs of the first and second rotors 1 and 2. In this example, the first rotor 1 is a 2-pole or 1-pole pair, and the second rotor 2 is a 6-pole or 3-pole pair, so 1 (number of pole pairs) +3 (number of pole pairs) = 4 (The number of pole pieces), and the stator 3 has four pole pieces 3a. Even if the number of pole pairs of the first and second rotors 1 and 2 is different from the number of pole pairs of the rotors 1 and 2 of this embodiment, the number of pole pairs and poles of the first and second rotors 1 and 2 The above relationship with the number of pieces 3a can be established.
 前述したように、固定子3が第1の回転子1とラジアルギャップRGを介して対向し、かつ第2の回転子2とアキシアルギャップAGを介して対向することで、固定子3は回転子1,2と磁気回路的に結合している。これにより、原動側となる回転子の回転が従動側となる回転子へ、両回転子の極対数に応じた変速比で伝達される。従動側となる回転子の回転方向は、原動側となる回転子の回転方向の逆向きとなる。例えば、第2の回転子2が原動側となる回転子、第1の回転子1が従動側となる回転子とすると、第2の回転子2の回転に対して、第1の回転子1が3倍の速度で逆方向に回転する。この場合、磁気歯車装置MGは増速機となる。原動側と従動側とが入れ換わると、磁気歯車装置MGは減速機となる。 As described above, the stator 3 faces the first rotor 1 via the radial gap RG, and faces the second rotor 2 via the axial gap AG, so that the stator 3 becomes the rotor. 1 and 2 are magnetically coupled. As a result, the rotation of the rotor on the driving side is transmitted to the rotor on the driven side at a gear ratio according to the number of pole pairs of both rotors. The rotation direction of the rotor on the driven side is opposite to the rotation direction of the rotor on the driving side. For example, if the second rotor 2 is a rotor on the driving side, and the first rotor 1 is a rotor on the driven side, the first rotor 1 with respect to the rotation of the second rotor 2. Rotates in the reverse direction at 3 times the speed. In this case, the magnetic gear device MG serves as a speed increaser. When the driving side and the driven side are switched, the magnetic gear device MG becomes a reduction gear.
 前記ポールピース3aは、圧粉磁心から構成されている。圧粉磁心とは、磁性体を微細な粉末にし、粉末の表面を絶縁被膜で覆い加圧して固めた鉄心であり、ダストコアとも呼ばれる。圧粉磁心は、粉末レベルで絶縁された構造であるため、あらゆる磁束方向に対する渦電流の低減効果が高い。 The pole piece 3a is composed of a dust core. The dust core is an iron core obtained by making a magnetic material into a fine powder, covering the surface of the powder with an insulating coating and hardening it, and is also called a dust core. Since the dust core has a structure insulated at the powder level, the effect of reducing eddy currents in all magnetic flux directions is high.
 ポールピース3aを圧粉磁心から構成する理由を説明する。
 第1の回転子1がラジアルギャップRGを介して固定子3に対向し、第2の回転子2がアキシアルギャップAGを介して固定子3に対向する構成の場合、固定子3の各ポールピース3aを流れる磁束方向が3次元的となる。図2に示すように、第1の回転子1と第2の回転子2の各磁極間で作用する磁束方向はおおよそ各回転子1,2の回転軸O1,O2の方向となるが、第1の回転子1や第2の回転子2の磁極境界付近と面している部位では磁束が周方向に発生する。そのため、2次元的な磁束方向の抑制効果しか持たない積層電磁鋼板でポールピース3aが構成されていると、渦電流損失の低減効果が弱く、トルク伝達効率が低下する。しかし、圧粉磁心からポールピースを構成すると、3次元的な磁束方向に対する渦電流の低減効果が高いため、渦電流損失を抑制して、トルク伝達効率を向上させることができる。
The reason why the pole piece 3a is composed of a dust core will be described.
When the first rotor 1 is opposed to the stator 3 via the radial gap RG and the second rotor 2 is opposed to the stator 3 via the axial gap AG, each pole piece of the stator 3 The direction of magnetic flux flowing through 3a is three-dimensional. As shown in FIG. 2, the direction of the magnetic flux acting between the magnetic poles of the first rotor 1 and the second rotor 2 is approximately the direction of the rotation axes O1 and O2 of the rotors 1 and 2, Magnetic flux is generated in the circumferential direction at a portion facing the vicinity of the magnetic pole boundary of the first rotor 1 and the second rotor 2. For this reason, when the pole piece 3a is formed of a laminated electromagnetic steel sheet having only a two-dimensional magnetic flux direction suppressing effect, the effect of reducing eddy current loss is weak and torque transmission efficiency is reduced. However, if the pole piece is formed from the dust core, the effect of reducing eddy currents in the three-dimensional magnetic flux direction is high, so that eddy current loss can be suppressed and torque transmission efficiency can be improved.
 この磁気歯車装置は、第1および第2の回転子1,2が互いに非接触でトルクを伝達するため、磁気歯車装置のメリットがそのまま該当する。また、第1の回転子1と固定子3間のラジアルギャップRGの部分、および第2の回転子2と固定子3間のアキシアルギャップAGの部分の両方または片方に隔壁を介挿できる。そのため、第1および第2の回転子1,2をそれぞれ異なる媒質中で駆動することができる。よって、この磁気歯車装置は、例えばポンプ等の用途に適している。 In this magnetic gear device, since the first and second rotors 1 and 2 transmit torque without contact with each other, the merit of the magnetic gear device is applicable as it is. Further, a partition wall can be inserted in both or one of the radial gap RG portion between the first rotor 1 and the stator 3 and the axial gap AG portion between the second rotor 2 and the stator 3. Therefore, the first and second rotors 1 and 2 can be driven in different media. Therefore, this magnetic gear device is suitable for applications such as a pump.
 図3に、第2の実施形態にかかる磁気歯車装置MGを示す。図1の第1の実施形態にかかる磁気歯車装置は、第1の回転子1が固定子3の内周側に配置されているのに対し、この図3の磁気歯車装置MGは、第1の回転子1がその回転軸O1を基準として固定子3の径方向外側に配置されている。他の構成は、図1の磁気歯車装置と同じである。第1の回転子1がその回転軸O1を基準として固定子3の径方向内側に配置されていても径方向外側に配置されていても、同様に3次元的な渦電流を低減する効果が得られる。 FIG. 3 shows a magnetic gear device MG according to the second embodiment. In the magnetic gear device according to the first embodiment of FIG. 1, the first rotor 1 is disposed on the inner peripheral side of the stator 3, whereas the magnetic gear device MG of FIG. The rotor 1 is arranged on the outer side in the radial direction of the stator 3 with the rotation axis O1 as a reference. Other configurations are the same as those of the magnetic gear device of FIG. Even if the first rotor 1 is arranged on the inner side in the radial direction of the stator 3 and on the outer side in the radial direction with respect to the rotation axis O1, the effect of reducing the three-dimensional eddy current is similarly obtained. can get.
 図1の磁気歯車装置および図3の磁気歯車装置のいずれについても、第1の回転子1と第2の回転子2の大小関係は任意に決めることができる。例えば、図1の磁気歯車装置のように、第1の回転子1が固定子3の内周側に配置されている構成であっても、固定子3のポールピース3aの形状を工夫することで、第1の回転子1の直径を第2の回転子2の直径より大きくしても良い。また、図3の磁気歯車装置のように、第1の回転子1がその回転軸O1を基準として固定子3の径方向外側に配置されている構成であっても、第1の回転子1の直径を第2の回転子2の直径より小さくしても良い。 In both the magnetic gear device of FIG. 1 and the magnetic gear device of FIG. 3, the magnitude relationship between the first rotor 1 and the second rotor 2 can be arbitrarily determined. For example, even if the first rotor 1 is arranged on the inner peripheral side of the stator 3 as in the magnetic gear device of FIG. 1, the shape of the pole piece 3a of the stator 3 is devised. Thus, the diameter of the first rotor 1 may be larger than the diameter of the second rotor 2. Further, even if the first rotor 1 is arranged on the outer side in the radial direction of the stator 3 with respect to the rotation axis O1 as in the magnetic gear device of FIG. 3, the first rotor 1 May be smaller than the diameter of the second rotor 2.
 図4に、第3の実施形態にかかる磁気歯車装置MGを示す。この磁気歯車装置MGは、図1の磁気歯車装置に、磁界強化用の第1および第2のバックヨーク4,5を追加したものである。各バックヨーク4,5は磁性材料からなる。第1のバックヨーク4は第1の回転子1の内周面に設けられ、第2のバックヨーク5は第2の回転子2の底面に設けられている。第1の回転子1の内周面および第2の回転子2の底面は、それぞれ、第1および第2の回転子1,2における固定子3から見て背面側の面である。第1および第2のバックヨーク4,5がそれぞれ設けられていると、第1および第2の回転子1,2の磁界が強化され、伝達可能トルクが上昇する。 FIG. 4 shows a magnetic gear device MG according to the third embodiment. This magnetic gear device MG is obtained by adding first and second back yokes 4 and 5 for magnetic field enhancement to the magnetic gear device of FIG. Each of the back yokes 4 and 5 is made of a magnetic material. The first back yoke 4 is provided on the inner peripheral surface of the first rotor 1, and the second back yoke 5 is provided on the bottom surface of the second rotor 2. The inner peripheral surface of the first rotor 1 and the bottom surface of the second rotor 2 are surfaces on the back side when viewed from the stator 3 in the first and second rotors 1 and 2, respectively. When the first and second back yokes 4 and 5 are provided, the magnetic fields of the first and second rotors 1 and 2 are strengthened, and the transmittable torque is increased.
 図5に、第4の実施形態にかかる磁気歯車装置MGを示す。この磁気歯車装置MGは、図3の磁気歯車装置に、磁界強化用の第1および第2のバックヨーク4,5を追加したものである。第1のバックヨーク4は第1の回転子1の外周面に設けられ、第2のバックヨーク5は第2の回転子2の底面に設けられている。この第4の実施形態も、前記第3の実施形態と同様に、第1および第2の回転子1,2の磁界が強化され、伝達可能トルクが上昇する。 FIG. 5 shows a magnetic gear device MG according to the fourth embodiment. This magnetic gear device MG is obtained by adding first and second back yokes 4 and 5 for magnetic field reinforcement to the magnetic gear device of FIG. The first back yoke 4 is provided on the outer peripheral surface of the first rotor 1, and the second back yoke 5 is provided on the bottom surface of the second rotor 2. In the fourth embodiment, similarly to the third embodiment, the magnetic fields of the first and second rotors 1 and 2 are strengthened, and the transmittable torque is increased.
 図4、図5の実施形態では、第1および第2の回転子1,2の両方にバックヨーク4,5が設けられているが、片方の回転子1(2)だけにバックヨーク4(5)を設けた構成としても良い。 4 and 5, the back yokes 4 and 5 are provided on both the first and second rotors 1 and 2, but the back yoke 4 (only on one rotor 1 (2) is provided. 5) may be provided.
 図6に、第5の実施形態にかかる磁気歯車装置MGを示す。この磁気歯車装置MGが、図1の磁気歯車装置と異なる点は、第2の回転子2の永久磁石の配列が、磁気歯車装置のN-S配列ではなく、ハルバッハ配列である点である。つまり、回転軸O2の方向に着磁された軸方向着磁永久磁石2bと、周方向に着磁された周方向着磁永久磁石2cとが、同一円周上に交互に配置されている。隣合う2つの軸方向着磁永久磁石2bの着磁方向は互いに逆向きであり、かつ隣合う2つの周方向着磁永久磁石2cの着磁方向は互いに逆向きである。他の構成は、図1の磁気歯車装置と同じである。 FIG. 6 shows a magnetic gear device MG according to the fifth embodiment. The magnetic gear device MG is different from the magnetic gear device of FIG. 1 in that the arrangement of the permanent magnets of the second rotor 2 is not the NS arrangement of the magnetic gear apparatus but the Halbach arrangement. That is, axially magnetized permanent magnets 2b magnetized in the direction of the rotation axis O2 and circumferentially magnetized permanent magnets 2c magnetized in the circumferential direction are alternately arranged on the same circumference. The magnetization directions of two adjacent axially magnetized permanent magnets 2b are opposite to each other, and the magnetization directions of two adjacent circumferentially magnetized permanent magnets 2c are opposite to each other. Other configurations are the same as those of the magnetic gear device of FIG.
 このように、第2の回転子2の永久磁石2b,2cの配列をハルバッハ配列とすることにより、第2の回転子2の磁界が強化され、磁気歯車装置の伝達可能トルクが上昇すると共に、アキシアルギャップAGを広くしても駆動伝達が可能となる。 Thus, by making the arrangement of the permanent magnets 2b, 2c of the second rotor 2 a Halbach arrangement, the magnetic field of the second rotor 2 is strengthened, and the transmittable torque of the magnetic gear device is increased. Drive transmission is possible even when the axial gap AG is widened.
 図7~図9に、それぞれ第6~第8の実施形態にかかる磁気歯車装置MGを示す。これらの磁気歯車装置MGが、図3、図4、図5の各磁気歯車装置とそれぞれ異なる点は、第2の回転子2の永久磁石の配列が、N-S配列ではなく、ハルバッハ配列である点である。他の構成は、図3、図4、図5の各磁気歯車装置とそれぞれ同じである。この場合も、前記同様の作用・効果が得られる。 7 to 9 show magnetic gear devices MG according to the sixth to eighth embodiments, respectively. These magnetic gear devices MG are different from the magnetic gear devices shown in FIGS. 3, 4 and 5 in that the arrangement of the permanent magnets of the second rotor 2 is not an NS arrangement but a Halbach arrangement. There is a point. Other configurations are the same as those of the magnetic gear devices of FIGS. 3, 4, and 5. Also in this case, the same operation and effect as described above can be obtained.
 以下、ポールピース3aの形状が第1~第8の実施形態にかかる磁気歯車装置とは異なる実施形態について説明する。
 図10に、第9の実施形態にかかる磁気歯車装置MGを示す。この磁気歯車装置MGの各ポールピース3aは、第1の回転子1から見て背面側の面である外周面が、図10の上端から下端の近傍に行くに従い径が連続的に大きくなるテーパ形状に形成されている。ポールピース3aの内周面は、第1の回転子1と正対する第1の部分10とその他の部分である第2の部分11との境界に段差12が設けられており、第1の回転子1と正対する第1の部分10の内周径に比べて、第2の部分11の内周径が大きい。このポールピース3aの形状は、少なくとも第1の部分10については、第2の回転子2に近づくに従って軸方向断面積、つまり回転軸O1と垂直な断面の断面積が連続的に大きくなっている。また、第2の部分11についても、第2の回転子2に近づくに従って軸方向断面積が連続的に大きくなっている。
Hereinafter, embodiments in which the shape of the pole piece 3a is different from the magnetic gear device according to the first to eighth embodiments will be described.
FIG. 10 shows a magnetic gear device MG according to the ninth embodiment. Each pole piece 3a of the magnetic gear device MG has a taper in which the outer peripheral surface, which is the back surface as viewed from the first rotor 1, continuously increases in diameter from the upper end to the vicinity of the lower end in FIG. It is formed into a shape. The inner peripheral surface of the pole piece 3a is provided with a step 12 at the boundary between the first portion 10 facing the first rotor 1 and the second portion 11 which is the other portion. The inner peripheral diameter of the second portion 11 is larger than the inner peripheral diameter of the first portion 10 facing the child 1. As for the shape of the pole piece 3a, at least for the first portion 10, the axial cross-sectional area, that is, the cross-sectional area of the cross section perpendicular to the rotation axis O1 is continuously increased as the second rotor 2 is approached. . Further, the axial cross-sectional area of the second portion 11 is continuously increased as the second portion 11 approaches the second rotor 2.
 ポールピース3aが上記形状であると、図11に示すように、ポールピース3a内の磁束の流れがスムーズになり、ポールピース3aにおける第2の回転子2から遠く離れた部位で発生する漏洩磁束Φを最小限に抑制できる。このことは、試験により確かめられた。漏洩磁束が抑制されることで、第2の回転子2に作用する磁束が増え、伝達トルクおよび伝達効率が向上する。 When the pole piece 3a has the above shape, as shown in FIG. 11, the flow of magnetic flux in the pole piece 3a becomes smooth, and the leakage magnetic flux generated at a location far away from the second rotor 2 in the pole piece 3a. Φ can be minimized. This was confirmed by testing. By suppressing the leakage magnetic flux, the magnetic flux acting on the second rotor 2 is increased, and the transmission torque and the transmission efficiency are improved.
 ポールピース3aは、図の上端から図の下端の近傍にかけて外周面の径が連続して大きくなっているが、段階的に大きくなっていても良い。その場合も、ポールピース3aにおける第2の回転子2から遠く離れた部位で発生する漏洩磁束を抑制する効果がある。 The pole piece 3a has a continuously increasing diameter on the outer peripheral surface from the upper end of the figure to the vicinity of the lower end of the figure, but it may be increased stepwise. Also in that case, there is an effect of suppressing the leakage magnetic flux generated in the part far away from the second rotor 2 in the pole piece 3a.
 ここまで説明してきた第1~第9の実施形態の磁気歯車装置は、図12に示すように、ポールピース3aにおける第2の回転子2と対向する面である底面13(ハッチングを付した部分)の形状が略四角形であってもよい。このようにポールピース3aの底面13の形状が略四角形である場合、モータにスキュー角を設けた場合と同じ現象が生じて、コギングトルクやトルクリップルの抑制効果を期待できるが、一方で最大トルクは低下する。 As shown in FIG. 12, the magnetic gear device of the first to ninth embodiments described so far has a bottom surface 13 (a hatched portion) which is a surface facing the second rotor 2 in the pole piece 3a. ) May be substantially rectangular. Thus, when the shape of the bottom surface 13 of the pole piece 3a is substantially square, the same phenomenon as when the skew angle is provided in the motor occurs, and the effect of suppressing the cogging torque and torque ripple can be expected. Will decline.
 この対策として、第1~第9の実施形態の磁気歯車装置は、そのポールピース3aの底面13の形状を、図13に示す扇台形状としても良い。扇台形状は、第2の回転子2の回転軸O2を中心とする互いに半径が異なる2本の同心円弧14,15と、第2の回転子2の回転軸O2から互いに異なる方向に放射状の延びる2本の放射状直線16,16とで囲まれた形状である。この例では、2本の同心円弧14,15の半径は、それぞれ第2の回転子2の外径と内径に一致する。このようにポールピース3aの底面13の形状を扇台形状とすることで、最大トルクの低下を抑制することができる。2本の放射状直線16,16の成す中心角θの最適角度は、第2の回転子2の極数や、第2の回転子2とポールピース3aとのアキシアルギャップAG(図10)等に依存する。前記中心角θの最適角度は、磁場解析等により求める。 As a countermeasure, in the magnetic gear device according to the first to ninth embodiments, the shape of the bottom surface 13 of the pole piece 3a may be a fan shape shown in FIG. The fan-shaped shape is such that two concentric arcs 14 and 15 having different radii around the rotation axis O2 of the second rotor 2 and radial directions from the rotation axis O2 of the second rotor 2 in different directions. The shape is surrounded by two extending radial lines 16 and 16. In this example, the radii of the two concentric arcs 14 and 15 coincide with the outer diameter and the inner diameter of the second rotor 2, respectively. Thus, the fall of the maximum torque can be suppressed by making the shape of the bottom face 13 of the pole piece 3a into a fan-shaped shape. The optimum angle of the central angle θ formed by the two radial straight lines 16 and 16 depends on the number of poles of the second rotor 2 and the axial gap AG (FIG. 10) between the second rotor 2 and the pole piece 3a. Dependent. The optimum angle of the center angle θ is obtained by magnetic field analysis or the like.
 また、図10の磁気歯車装置MGは、ポールピース3aの第1の部分10の軸方向断面積が、第2の回転子2に近づくに従って連続的に大きくなっているだけでなく、第2の部分11の軸方向断面積も、第2の回転子2に近づくに従って連続的に大きくなっている。これはポールピース3a内の磁束の流れをスムーズにさせるためであるが、第1の回転子1と第2の回転子2の極対数の関係によっては、第2の部分11については上記形状とすることができない場合がある。なお、第2の部分11は、「第1の回転子と正対する部分以外の部分」に相当する。 The magnetic gear device MG of FIG. 10 not only has the axial cross-sectional area of the first portion 10 of the pole piece 3a continuously increased as it approaches the second rotor 2, The axial cross-sectional area of the portion 11 also increases continuously as it approaches the second rotor 2. This is to make the flow of magnetic flux in the pole piece 3a smooth. However, depending on the number of pole pairs of the first rotor 1 and the second rotor 2, the second portion 11 has the above shape. You may not be able to. The second portion 11 corresponds to “a portion other than the portion directly facing the first rotor”.
 例えば、図14に示す第10の実施形態にかかる磁気歯車装置では、第2の回転子2の極数が、第1~第9の実施形態にかかる磁気歯車装置に比べて多い。この磁気歯車装置では、ポールピース3aの第2の部分11の軸方向断面積が第2の回転子2に近づくに従って大きくなっていると、ポールピース3aの第2の回転子2との対向面積が大きくなり過ぎて、一つのポールピース3aが周方向に隣り合うN極とN極またはS極とS極に跨って対向する可能性がある。そこで、ポールピース3aの第2の部分11の軸方向断面積を第2の回転子2に近づくに従って小さくして、ポールピース3aの第2の回転子2との対向面積を小さくすることで、ポールピース3aが隣り合うN極とN極またはS極とS極に跨るのを回避する。 For example, in the magnetic gear device according to the tenth embodiment shown in FIG. 14, the number of poles of the second rotor 2 is larger than that of the magnetic gear device according to the first to ninth embodiments. In this magnetic gear device, when the axial cross-sectional area of the second portion 11 of the pole piece 3a increases as it approaches the second rotor 2, the area of the pole piece 3a facing the second rotor 2 is increased. Is too large, and there is a possibility that one pole piece 3a is opposed across the N pole and N pole or the S pole and S pole adjacent in the circumferential direction. Therefore, by reducing the axial cross-sectional area of the second portion 11 of the pole piece 3a as it approaches the second rotor 2, the area of the pole piece 3a facing the second rotor 2 is reduced, The pole piece 3a is prevented from straddling adjacent N poles and N poles or S poles and S poles.
 なお、図14の第10の実施形態にかかる磁気歯車装置MGは、第1の回転子1が2極(1極対)、第2の回転子2が12極(6極対)、ポールピース3aが7個(1極対+6極対)とした例である。一般的に、第2の回転子2の極数が多くなるほど、ポールピース3aの第2の回転子2との対向面積を小さくする必要がある。図14の磁気歯車装置は、ポールピース3aの軸方向断面積が第2の回転子2に近づくに従ってテーパ状に小さくなっているが、段階的に小さくなっていてもよい。 In the magnetic gear device MG according to the tenth embodiment shown in FIG. 14, the first rotor 1 has two poles (one pole pair), the second rotor 2 has twelve poles (six pole pairs), and a pole piece. In this example, 3a is 7 pieces (one pole pair + six pole pairs). Generally, as the number of poles of the second rotor 2 increases, the area of the pole piece 3a facing the second rotor 2 needs to be reduced. In the magnetic gear device of FIG. 14, the axial cross-sectional area of the pole piece 3 a is reduced in a tapered shape as it approaches the second rotor 2, but may be reduced stepwise.
 図15に、第11の実施形態にかかる磁気歯車装置MGを示す。この磁気歯車装置MGのポールピース3aは、図の上端から図の下端に亘り外周面が同一径である。ポールピース3aの内周面は、図10に示す実施形態と同様に、第1の部分10と第2の部分11との境界に段差部12を有する。このポールピース3aの縦断面形状は、ほぼ矩形に近い形状である。 FIG. 15 shows a magnetic gear device MG according to the eleventh embodiment. The pole piece 3a of this magnetic gear device MG has the same outer diameter from the upper end of the figure to the lower end of the figure. The inner peripheral surface of the pole piece 3a has a stepped portion 12 at the boundary between the first portion 10 and the second portion 11 as in the embodiment shown in FIG. The vertical cross-sectional shape of the pole piece 3a is almost a rectangle.
 ポールピース3aの径方向に沿った断面が矩形に近い形状であると、図16に示すように、ポールピース3aにおける第2の回転子2から遠く離れた部位で漏洩磁束Φが発生し易い。よって、この矩形に近いポールピース3aの径方向に沿った断面形状は、トルクの伝達効率の面からはあまり好ましくはない。しかし、形状がシンプルであるので、成形がし易く、磁気歯車装置が収容される筐体との固定や位置決めがし易いといった利点がある。 When the cross-section along the radial direction of the pole piece 3a is a shape close to a rectangle, as shown in FIG. Therefore, the cross-sectional shape along the radial direction of the pole piece 3a close to the rectangle is not so preferable from the viewpoint of torque transmission efficiency. However, since the shape is simple, there is an advantage that it is easy to mold and can be easily fixed and positioned with respect to the housing in which the magnetic gear device is accommodated.
 図17に、第12の実施形態にかかる磁気歯車装置MGを示す。この磁気歯車装置MGのポールピース3aは、外周面および内周面が共に、図の上端から図の下端に亘って同一径であり、径方向に沿った断面が完全に矩形形状である。完全な矩形形状であると、図15の矩形に近い、径方向に沿った断面形状よりも、より一層形状がシンプルで、成形がし易い。トルクの伝達効率は、図15の磁気歯車装置とほぼ同じである。 FIG. 17 shows a magnetic gear device MG according to the twelfth embodiment. The pole piece 3a of the magnetic gear device MG has both the outer peripheral surface and the inner peripheral surface having the same diameter from the upper end of the drawing to the lower end of the drawing, and the cross section along the radial direction is completely rectangular. The complete rectangular shape is simpler and easier to form than the cross-sectional shape along the radial direction, which is close to the rectangle in FIG. The torque transmission efficiency is substantially the same as that of the magnetic gear device of FIG.
 図1に示すL型のポールピース3aは、図の下端部の外径がこの下端部以外の部分の外径よりも段状に大きい形状であるから、第2の回転子2に近づくに従って軸方向断面積が段階的に大きくなっている形態の一種である。但し、ポールピース3aの第1の回転子1と正対する部分に限定すると、第2の回転子2に近づくに従って軸方向断面積が大きくなっていない。 The L-shaped pole piece 3a shown in FIG. 1 has a shape in which the outer diameter of the lower end portion in the drawing is stepwise larger than the outer diameter of the portion other than the lower end portion. It is a kind of form in which the directional cross-sectional area increases in steps. However, if the pole piece 3a is limited to the portion facing the first rotor 1, the axial cross-sectional area does not increase as the second rotor 2 is approached.
 上記形態であるL型のポールピース3aを備えた図1の磁気歯車装置は、図10に示す外周面がテーパ形状のポールピース3aを備えた磁気歯車装置と、図15、図17に示す矩形または矩形に近い、径方向に沿った断面形状のポールピース3aを備えた磁気歯車装置との中間的な特性を有する。すなわち、トルクの伝達効率については、図15または図17の磁気歯車装置よりも優れるが、図10の磁気歯車装置よりは劣る。その一方、成形のし易さについては、図10の磁気歯車装置よりも優れるが、図15または図17の磁気歯車装置よりは劣る。どの形状のポールピース3aを採用するかは、磁気歯車装置の目的や用途等に応じて決めればよい。 The magnetic gear device of FIG. 1 provided with the L-shaped pole piece 3a having the above-described configuration is the same as the magnetic gear device provided with the pole piece 3a having the tapered outer peripheral surface shown in FIG. 10 and the rectangular shape shown in FIGS. Or it has an intermediate characteristic with the magnetic gear apparatus provided with the pole piece 3a of the cross-sectional shape along the radial direction close | similar to a rectangle. That is, the torque transmission efficiency is superior to the magnetic gear device of FIG. 15 or FIG. 17, but is inferior to the magnetic gear device of FIG. On the other hand, the ease of molding is superior to the magnetic gear device of FIG. 10, but inferior to the magnetic gear device of FIG. 15 or FIG. The shape of the pole piece 3a to be used may be determined according to the purpose and application of the magnetic gear device.
 図18に、第13の実施形態にかかる磁気歯車装置MGを示す。この磁気歯車装置MGのポールピース3aは、図の上側部分における外周面から円周方向を向く側面にかけて略三角錐状に切欠くことで、第2の回転子2に近づくに従って軸方向断面積が次第に大きくなる形態としたものである。このようにポールピース3aを形成することによっても、ポールピース3aにおける第2の回転子2から遠く離れた部位で発生する漏洩磁束を抑制して、伝達トルクおよび伝達効率の向上を図ることができる。図示しないが、この略三角錐状に切欠く手法と、外周面をテーパ形状に形成する手法とを組み合わせても、伝達トルクおよび伝達効率を向上させる効果がある。 FIG. 18 shows a magnetic gear device MG according to the thirteenth embodiment. The pole piece 3a of the magnetic gear device MG is cut out in a substantially triangular pyramid shape from the outer peripheral surface to the side surface facing the circumferential direction in the upper portion of the figure, so that the axial sectional area becomes closer to the second rotor 2. The form gradually increases. By forming the pole piece 3a in this way, it is possible to suppress the leakage magnetic flux generated at a position far away from the second rotor 2 in the pole piece 3a, and to improve the transmission torque and the transmission efficiency. . Although not shown, combining the technique of notching in a substantially triangular pyramid and the technique of forming the outer peripheral surface in a tapered shape has an effect of improving the transmission torque and transmission efficiency.
 図19に、第14の実施形態にかかる磁気歯車装置MGを示す。この磁気歯車装置MGは、第1の回転子1がその回転軸O1を基準として固定子3の径方向外側に配置されている形態の磁気歯車装置に対して、磁束の漏洩を抑制するポールピース3aの形状を適用したものである。この磁気歯車装置のポールピース3aは、第1の回転子1から見て背面側の面である内周面が、図の上端から図の下端の近傍に行くに従い径が連続的に大きくなるテーパ形状に形成されている。ポールピース3aの外周面は、図の下端部の径が他の部分の径よりも段状に大きくなっている。 FIG. 19 shows a magnetic gear device MG according to a fourteenth embodiment. This magnetic gear device MG is a pole piece that suppresses leakage of magnetic flux with respect to a magnetic gear device in which the first rotor 1 is arranged radially outside the stator 3 with respect to the rotation axis O1. The shape of 3a is applied. The pole piece 3a of this magnetic gear device has a taper whose diameter continuously increases from the upper end of the drawing toward the vicinity of the lower end of the drawing from the inner peripheral surface, which is the surface on the back side when viewed from the first rotor 1. It is formed into a shape. As for the outer peripheral surface of the pole piece 3a, the diameter of the lower end part of a figure is larger stepwise than the diameter of another part.
 このポールピース3aの形状も、図10の磁気歯車装置と同様に、第2の回転子2に近づくに従って軸方向断面積が大きくなっている。このため、ポールピース3aにおける第2の回転子2から遠く離れた部位で発生する漏洩磁束を最小限に抑制でき、伝達トルクおよび伝達効率が向上する。 The shape of the pole piece 3a also increases in the axial cross-sectional area as it approaches the second rotor 2, similarly to the magnetic gear device of FIG. For this reason, the leakage magnetic flux which generate | occur | produces in the site | part far away from the 2nd rotor 2 in the pole piece 3a can be suppressed to the minimum, and transmission torque and transmission efficiency improve.
 図20に、第15の実施形態にかかる磁気歯車装置MGを示す。この磁気歯車装置MGは、図10の磁気歯車装置に、磁界強化用の第1および第2のバックヨーク4,5を追加したものである。第1のバックヨーク4は第1の回転子1の内周面に設けられ、第2のバックヨーク5は第2の回転子2の底面に設けられている。このような、漏洩磁束を抑制できる形状のポールピース3aを備えた磁気歯車装置に第1および第2のバックヨーク4,5を追加することで、第1および第2の回転子1,2の磁界がより一層強化され、伝達可能トルクが上昇する。 FIG. 20 shows a magnetic gear device MG according to the fifteenth embodiment. This magnetic gear device MG is obtained by adding first and second back yokes 4 and 5 for magnetic field enhancement to the magnetic gear device of FIG. The first back yoke 4 is provided on the inner peripheral surface of the first rotor 1, and the second back yoke 5 is provided on the bottom surface of the second rotor 2. By adding the first and second back yokes 4 and 5 to the magnetic gear device having the pole piece 3a having such a shape that can suppress the leakage magnetic flux, the first and second rotors 1 and 2 are added. The magnetic field is further strengthened and the transmittable torque is increased.
 図21~図23は、互いに異なる第1の回転子を軸方向から見た図である。図21に示す第1の回転子1は、円周上にN極とS極が交互に並ぶN-S配列であり、永久磁石1aが径方向から着磁されたラジアル着磁である。図22に示す回転子1は、N-S配列であるが、永久磁石1aが回転軸O1と垂直な平面上の一方向から着磁された平行着磁である。また、図23に示す第1の回転子1は、径方向に着磁された永久磁石1bと周方向に着磁された永久磁石1cがハルバッハ配列で配置されている。 21 to 23 are views of different first rotors as viewed from the axial direction. The first rotor 1 shown in FIG. 21 has an NS arrangement in which N poles and S poles are alternately arranged on the circumference, and is radial magnetization in which the permanent magnet 1a is magnetized from the radial direction. The rotor 1 shown in FIG. 22 has an NS arrangement, but is a parallel magnetization in which the permanent magnet 1a is magnetized from one direction on a plane perpendicular to the rotation axis O1. Further, in the first rotor 1 shown in FIG. 23, a permanent magnet 1b magnetized in the radial direction and a permanent magnet 1c magnetized in the circumferential direction are arranged in a Halbach array.
 上記各実施形態の磁気歯車装置は、第1の回転子1がN-S配列である例(図21または図22)を示しているが、第1の回転子1をハルバッハ配列(図23)としても良い。その場合、第1の回転子1の磁界が強化され、磁気歯車装置の伝達可能トルクが上昇すると共に、ラジアルギャップRGを広くしても駆動伝達が可能となる。 The magnetic gear device of each of the above embodiments shows an example in which the first rotor 1 is an NS array (FIG. 21 or FIG. 22), but the first rotor 1 is a Halbach array (FIG. 23). It is also good. In this case, the magnetic field of the first rotor 1 is strengthened, the transmittable torque of the magnetic gear device is increased, and drive transmission is possible even if the radial gap RG is widened.
 以上、実施例に基づいて本発明を実施するための形態を説明したが、ここで開示した実施の形態はすべての点で例示であって制限的なものではない。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 As mentioned above, although the form for implementing this invention based on the Example was demonstrated, embodiment disclosed here is an illustration and restrictive at no points. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
1        第1の回転子
1a,1b,1c 永久磁石
2        第2の回転子
2a,2b,2c 永久磁石
3        固定子
3a       ポールピース
AG       アキシアルギャップ
O1       第1の回転子の回転軸
O2       第2の回転子の回転軸
RG       ラジアルギャップ
DESCRIPTION OF SYMBOLS 1 1st rotor 1a, 1b, 1c Permanent magnet 2 2nd rotor 2a, 2b, 2c Permanent magnet 3 Stator 3a Pole piece AG Axial gap O1 Rotation axis O2 of 1st rotor 2nd rotor Axis of rotation RG radial gap

Claims (13)

  1.  それぞれ複数の永久磁石を有する第1および第2の回転子と、
     磁気的に前記第1の回転子と前記第2の回転子の間に位置し、磁束を変調する複数のポールピースを有する固定子とを備え、
     前記第1の回転子は、この第1の回転子の回転軸と垂直な方向のラジアルギャップを介して前記固定子と対向し、かつ前記第2の回転子は、この第2の回転子の回転軸と平行な方向のアキシアルギャップを介して前記固定子と対向し、
     前記ポールピースが圧粉磁心から構成されている、磁気歯車装置。
    First and second rotors each having a plurality of permanent magnets;
    A stator magnetically positioned between the first rotor and the second rotor and having a plurality of pole pieces for modulating magnetic flux;
    The first rotor faces the stator through a radial gap in a direction perpendicular to the rotation axis of the first rotor, and the second rotor is the second rotor. Facing the stator through an axial gap in a direction parallel to the rotation axis,
    A magnetic gear device in which the pole piece is composed of a dust core.
  2.  請求項1に記載の磁気歯車装置において、前記第2の回転子は、この第2の回転子が有する前記複数の永久磁石の隣接する2つの永久磁石それぞれの磁極の向きが互いに異なるように、前記複数の永久磁石が同一円周上に等角度で配置されている磁気歯車装置。 2. The magnetic gear device according to claim 1, wherein the second rotor is configured such that the directions of the magnetic poles of two adjacent permanent magnets of the plurality of permanent magnets of the second rotor are different from each other. A magnetic gear device in which the plurality of permanent magnets are arranged at an equal angle on the same circumference.
  3.  請求項1に記載の磁気歯車装置において、前記第2の回転子は、前記複数の永久磁石がハルバッハ配列で配置されている磁気歯車装置。 2. The magnetic gear device according to claim 1, wherein the second rotor includes the plurality of permanent magnets arranged in a Halbach array.
  4.  請求項1ないし請求項3のいずれか1項に記載の磁気歯車装置において、前記ポールピースにおける少なくとも前記第1の回転子と正対する部分は、前記第2の回転子に近づくに従って、前記第1の回転子の回転軸と垂直な断面の断面積が大きくなっている磁気歯車装置。 4. The magnetic gear device according to claim 1, wherein at least a portion of the pole piece that is directly opposed to the first rotor approaches the first rotor as the first rotor approaches. The magnetic gear device in which the cross-sectional area of the cross section perpendicular to the rotation axis of the rotor is large.
  5.  請求項4に記載の磁気歯車装置において、前記ポールピースにおける少なくとも前記第1の回転子と正対する部分は、前記第2の回転子に近づくに従って、前記第1の回転子の回転軸と垂直な断面の断面積が連続的に大きくなっている磁気歯車装置。 5. The magnetic gear device according to claim 4, wherein at least a portion of the pole piece that is opposed to the first rotor is perpendicular to a rotation axis of the first rotor as the second rotor is approached. A magnetic gear device having a continuously increasing cross-sectional area.
  6.  請求項4または請求項5に記載の磁気歯車装置において、前記ポールピースにおける前記第1の回転子と正対する部分以外の部分は、前記第2の回転子に近づくに従って、前記第1の回転子の回転軸と垂直な断面の断面積が小さくなっている磁気歯車装置。 6. The magnetic gear device according to claim 4, wherein a portion of the pole piece other than a portion facing the first rotor is closer to the second rotor as the first rotor is reached. The magnetic gear device in which the cross-sectional area of the cross section perpendicular to the rotation axis is small.
  7.  請求項1ないし請求項6のいずれか1項に記載の磁気歯車装置において、前記ポールピースの前記第2の回転子と対向する面の形状が、前記第2の回転子の回転軸を中心とする互いに半径が異なる2本の同心円弧と、前記第2の回転子の回転軸から互いに異なる方向に放射状に延びる2本の直線とで囲まれた扇台形状である磁気歯車装置。 The magnetic gear device according to any one of claims 1 to 6, wherein a shape of a surface of the pole piece facing the second rotor is centered on a rotation axis of the second rotor. A magnetic gear device having a fan-like shape surrounded by two concentric arcs having different radii and two straight lines extending radially from the rotation axis of the second rotor in different directions.
  8.  請求項1ないし請求項7のいずれか1項に記載の磁気歯車装置において、前記第1の回転子がその回転軸を基準として前記固定子の径方向内側に配置された磁気歯車装置。 The magnetic gear device according to any one of claims 1 to 7, wherein the first rotor is disposed radially inward of the stator with reference to a rotation axis thereof.
  9.  請求項1ないし請求項7のいずれか1項に記載の磁気歯車装置において、前記第1の回転子がその回転軸を基準として前記固定子の径方向外側に配置された磁気歯車装置。 The magnetic gear device according to any one of claims 1 to 7, wherein the first rotor is disposed radially outside the stator with respect to a rotation axis thereof.
  10.  請求項1ないし請求項9のいずれか1項に記載の磁気歯車装置において、前記第1および第2の回転子の一方または両方の回転子における前記固定子から見て背面側の面に、磁性材料からなる磁界強化用のバックヨークが設けられた磁気歯車装置。 10. The magnetic gear device according to claim 1, wherein one or both of the first and second rotors has a magnetic surface on a back surface as viewed from the stator. 10. A magnetic gear device provided with a magnetic field reinforcing back yoke made of a material.
  11.  請求項1ないし請求項10のいずれか1項に記載の磁気歯車装置において、前記第1の回転子の前記永久磁石は、前記第1の回転子の回転軸を中心として径方向から着磁されている磁気歯車装置。 11. The magnetic gear device according to claim 1, wherein the permanent magnet of the first rotor is magnetized from a radial direction around a rotation axis of the first rotor. Magnetic gear unit.
  12.  請求項1ないし請求項10のいずれか1項に記載の磁気歯車装置において、前記第1の回転子の前記永久磁石は、前記第1の回転子の回転軸と垂直な平面に沿う一方向から着磁されている磁気歯車装置。 The magnetic gear device according to any one of claims 1 to 10, wherein the permanent magnet of the first rotor is from one direction along a plane perpendicular to the rotation axis of the first rotor. Magnetic gear unit that is magnetized.
  13.  請求項1ないし請求項10のいずれか1項に記載の磁気歯車装置において、前記第1の回転子の前記永久磁石がハルバッハ配列で配置されている磁気歯車装置。 The magnetic gear device according to any one of claims 1 to 10, wherein the permanent magnets of the first rotor are arranged in a Halbach array.
PCT/JP2016/075471 2015-09-07 2016-08-31 Magnetic gear device WO2017043387A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015175461 2015-09-07
JP2015-175461 2015-09-07
JP2015-225747 2015-11-18
JP2015225747A JP6576800B2 (en) 2015-09-07 2015-11-18 Magnetic gear unit

Publications (1)

Publication Number Publication Date
WO2017043387A1 true WO2017043387A1 (en) 2017-03-16

Family

ID=58239635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075471 WO2017043387A1 (en) 2015-09-07 2016-08-31 Magnetic gear device

Country Status (1)

Country Link
WO (1) WO2017043387A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108496298A (en) * 2017-04-28 2018-09-04 深圳市大疆创新科技有限公司 Driving device, laser measuring device for measuring and mobile platform
CN111193378A (en) * 2020-01-13 2020-05-22 合肥工业大学 Permanent magnet clutch and assembling method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012157205A (en) * 2011-01-28 2012-08-16 Hitachi Ltd Magnetic gear
WO2013001557A1 (en) * 2011-06-27 2013-01-03 株式会社 日立製作所 Magnetic gear type electric rotating machine
WO2013137252A1 (en) * 2012-03-16 2013-09-19 日立金属株式会社 Magnetic gear device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012157205A (en) * 2011-01-28 2012-08-16 Hitachi Ltd Magnetic gear
WO2013001557A1 (en) * 2011-06-27 2013-01-03 株式会社 日立製作所 Magnetic gear type electric rotating machine
WO2013137252A1 (en) * 2012-03-16 2013-09-19 日立金属株式会社 Magnetic gear device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108496298A (en) * 2017-04-28 2018-09-04 深圳市大疆创新科技有限公司 Driving device, laser measuring device for measuring and mobile platform
CN108496298B (en) * 2017-04-28 2020-04-17 深圳市大疆创新科技有限公司 Driving device, laser measuring device and mobile platform
CN111342631A (en) * 2017-04-28 2020-06-26 深圳市大疆创新科技有限公司 Driving device, laser measuring device and mobile platform
CN111342631B (en) * 2017-04-28 2021-04-02 深圳市大疆创新科技有限公司 Driving device, laser measuring device and mobile platform
US11469655B2 (en) 2017-04-28 2022-10-11 SZ DJI Technology Co., Ltd. Driving device, laser measurement device and movable platform
CN111193378A (en) * 2020-01-13 2020-05-22 合肥工业大学 Permanent magnet clutch and assembling method thereof
CN111193378B (en) * 2020-01-13 2021-04-30 合肥工业大学 Permanent magnet clutch and assembling method thereof

Similar Documents

Publication Publication Date Title
JP6093592B2 (en) Magnetic wave gear device
US9729040B2 (en) Magnetic gear device having a plurality of magnetic bodies arranged in a particular configuration
US9071118B2 (en) Axial motor
US20160006335A1 (en) Magnetic gear device
JP5813254B2 (en) Permanent magnet rotating electric machine
CN103051136B (en) Motor
WO2016115722A1 (en) Permanent magnet synchronous motor
WO2015097767A1 (en) Permanent magnet type rotating electrical machine
WO2010097838A1 (en) Permanent magnet type rotary machine
CN103427520A (en) Rotor and motor including the rotor
US9172293B2 (en) Hybrid stepping motor
WO2014196353A1 (en) Synchronous motor
WO2017043387A1 (en) Magnetic gear device
US9172292B2 (en) Hybrid stepping motor
JP6576800B2 (en) Magnetic gear unit
JP6834064B1 (en) Stator and rotary machine using it
CN109586433B (en) Modularized rotary linear flux switching permanent magnet motor
JP6358158B2 (en) Rotating electric machine
KR102103200B1 (en) Magnetic gear having air barrier
JP5510079B2 (en) Axial gap motor
JP4704883B2 (en) Permanent magnet rotating electrical machine and cylindrical linear motor
KR20090019627A (en) Brushless direct current motor
JP3204358U (en) Permanent magnet embedded motor with enhanced magnetic flux
WO2021149131A1 (en) Stator and rotating electrical machine using the same
JP7174376B2 (en) magnetic gear mechanism

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844248

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16844248

Country of ref document: EP

Kind code of ref document: A1