WO2017042903A1 - Vehicle-use image processing apparatus - Google Patents

Vehicle-use image processing apparatus Download PDF

Info

Publication number
WO2017042903A1
WO2017042903A1 PCT/JP2015/075573 JP2015075573W WO2017042903A1 WO 2017042903 A1 WO2017042903 A1 WO 2017042903A1 JP 2015075573 W JP2015075573 W JP 2015075573W WO 2017042903 A1 WO2017042903 A1 WO 2017042903A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
video
image
motion
amount
Prior art date
Application number
PCT/JP2015/075573
Other languages
French (fr)
Japanese (ja)
Inventor
浩朗 伊藤
甲 展明
Original Assignee
日立マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立マクセル株式会社 filed Critical 日立マクセル株式会社
Priority to PCT/JP2015/075573 priority Critical patent/WO2017042903A1/en
Publication of WO2017042903A1 publication Critical patent/WO2017042903A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/683Vibration or motion blur correction performed by a processor, e.g. controlling the readout of an image memory
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast

Definitions

  • the present invention relates to a vehicular image processing device that corrects image blur due to vibration of a vehicle with respect to a captured image obtained by capturing the surroundings of a vehicle with a camera mounted on the vehicle.
  • photographing apparatuses such as video cameras have become widespread, and their uses and usage methods have been diversified.
  • a camera is mounted on an automobile, construction machine, railway vehicle, etc., and the vehicle operator detects the road surface condition in the traveling direction and obstacles around the vehicle while the vehicle is running, and notifies the vehicle operator.
  • applications such as remote control for remotely operating a vehicle using the above-mentioned photographed video.
  • the camera also vibrates due to the vibration of the vehicle, causing a phenomenon (video blur) that the shot video shakes up, down, left and right.
  • video blur a phenomenon that the shot video shakes up, down, left and right.
  • Patent Document 1 has a tilt detection device that detects the tilt of a vehicle and a vibration detection device that detects the vibration of the vehicle, and based on the detection result of the tilt and vibration of the vehicle, A configuration is disclosed that corrects image blur by calculating cutout coordinates and cutting out some images from a captured image based on the cutout coordinates.
  • the driving direction of the vehicle is based on the operation of the operator, and naturally includes not only straight but also left and right turns, and vertical movements in construction machinery.
  • the inclination and vibration of the vehicle caused by the vehicle operation are also determined as “image blurring” and corrected.
  • image blurring As a result, for example, even when a left turn operation is performed, a video portion in the straight traveling direction is always cut out, and there is a possibility that a video in the traveling direction (left turn direction) is lost and the operability is hindered.
  • the present invention makes it possible to follow the movement of a photographed image that accompanies a vehicle operation when correcting the image blur of a photographed image around the vehicle, and to reduce the image blur caused by the vibration of the vehicle.
  • An object is to provide an apparatus.
  • the vehicle image processing device includes a video acquisition unit that acquires a vehicle surrounding image captured by a video imaging device attached to the vehicle, and a plurality of temporally different vehicle surrounding images acquired by the video acquisition unit.
  • a surrounding image motion calculating unit that calculates the amount of movement (MV1), an operation information acquiring unit that acquires operation information of the vehicle, and an amount of motion of the vehicle surrounding image accompanying the operation of the vehicle from the operation information acquired by the operation information acquiring unit ( MV2) is calculated, and the motion amount (MV2) calculated by the vehicle motion calculation unit is subtracted from the motion amount (MV1) calculated by the surrounding image motion calculation unit, and the image blur amount (MV3) due to vehicle vibration is subtracted.
  • a structure comprising a correcting unit.
  • the image blur caused by the vibration of the vehicle is reduced, and the movement of the photographed image accompanying the vehicle operation is followed, thereby hindering the operability. It is possible to provide a video processing apparatus for a vehicle that is not given.
  • FIG. 10 is a diagram illustrating an example of the operation of the image blur correction unit 106.
  • FIG. 10 is a diagram illustrating an example of a vehicle movement amount calculated by a vehicle movement calculation unit 104 (third embodiment).
  • FIG. 10 is a block diagram illustrating an example of a configuration when the video processing apparatus is applied to a vehicle remote control system (Example 4).
  • FIG. 1 is a block diagram illustrating the configuration of the vehicle video processing system according to the first embodiment.
  • the vehicle video processing system has a configuration in which a video imaging device 107 such as a camera, a vehicle operation unit 108, and a video display device 109 such as a liquid crystal display are connected to a vehicle video processing device (hereinafter referred to as a video processing device) 100.
  • a video processing device a vehicle video processing device
  • the video photographing device 107 is attached to the front, rear, side, etc. of the vehicle, and photographs the situation (road surface condition and obstacles) around the vehicle.
  • the video display device 109 is installed on the dashboard of the vehicle, and displays the video imaged by the video image capturing device 107 and processed by the video processing device 100.
  • the vehicle operation unit 108 is a part for inputting a vehicle operation by an operator (driver), and corresponds to a steering wheel (steering), an accelerator (speed), or a transmission mechanism thereof.
  • the video processing device 100 processes the video shot by the video shooting device 107, and particularly corrects video blur in this embodiment.
  • the video processing device 100, the surrounding video motion calculation unit 102, and the operation information acquisition unit 103 are used.
  • a vehicle motion calculation unit 104, a video blur calculation unit 105, and a video blur correction unit 106 are provided. Details of the operation of the video processing apparatus 100 will be described below.
  • the video acquisition unit 101 receives the captured video 120 captured by the video imaging device 107 and outputs the captured video 120 to the ambient video motion calculation unit 102 and the video blur correction unit 106 as a vehicle ambient video 121.
  • the surrounding video motion calculation unit 102 calculates a motion amount (motion vector MV1) of the vehicle surrounding video from a plurality of temporally different vehicle surrounding images 121 received from the video acquisition unit 101, and outputs the surrounding video motion amount 122 To do.
  • the operation information acquisition unit 103 acquires operation information 127 for the vehicle by the operator from the vehicle operation unit 108, and outputs the operation information 127 to the vehicle movement calculation unit 104 as vehicle operation information 123.
  • the vehicle operation information 123 includes vehicle steering angle information and speed information.
  • the vehicle motion calculation unit 104 uses the vehicle operation information 123 based on the mounting position and the shooting direction of the video shooting device 107 with respect to the vehicle, and displays the video shot by the video shooting device 107 when the vehicle is operated.
  • a motion amount (motion vector MV2) is calculated, and a vehicle motion amount 124 is output.
  • the video blur calculation unit 105 calculates a video blur (motion vector MV3) based only on vehicle vibration by calculating a difference between the ambient video motion amount 122 and the vehicle motion amount 124, and outputs a video blur amount 125. That is, the ambient image motion amount 122 includes a component due to vehicle vibration and a component due to vehicle operation. By taking the difference between the ambient image motion amount 122 and the vehicle motion amount 124, only the component due to vehicle vibration is obtained. Can be extracted.
  • a video blur motion vector MV3
  • the image blur correction unit 106 corrects the image blur amount 125 for the vehicle surrounding image 121. This correction processing is performed by shifting the cutout range of the video with respect to the vehicle surrounding video 121 according to the video blur amount 125.
  • the corrected vehicle surrounding image 126 is output to the image display device 109 for display.
  • FIG. 2 is a diagram illustrating an example of an internal configuration of the surrounding image motion calculation unit 102.
  • the video buffer unit 201 stores the vehicle surrounding video 121 to be input.
  • the motion vector calculation unit 202 calculates the motion vector 122 of the vehicle surrounding image 121 from the two images of the vehicle surrounding image 121 to be input and the vehicle surrounding image 221 read from the image buffer unit 201. That is, the motion vector calculation unit 202 compares the vehicle surrounding image 221 input in the past with the current input vehicle surrounding image 121 and calculates the motion vector of the current image 121 with respect to the past image 221. It is.
  • a block matching method, a gradient method, or the like can be used.
  • FIG. 3 is a diagram illustrating an example of a vehicle surrounding image captured by the image capturing device 107.
  • the image capturing device 107 is attached to the front of the vehicle and the vehicle travels forward.
  • C) shows the operation of the motion vector calculation unit 202 in FIG. 2, and calculates a vehicle image motion amount (motion vector, indicated by an arrow) 122 indicating where each pixel in (a) has moved in (b). .
  • (c) shows motion vectors for representative pixels in the captured video. As the vehicle travels forward, each motion vector in the vehicle surrounding image is directed toward the front.
  • FIG. 4 is a diagram illustrating an example of a vehicle surrounding image when the vehicle vibrates.
  • the image capturing device 107 also vibrates in the same manner. Therefore, the vehicle surrounding image 121 vibrates vertically and horizontally and image blur occurs.
  • (A) is an example of a vehicle surrounding image
  • reference numeral 401 indicates a vehicle surrounding image (reference position) before vibration occurs.
  • the range of the vehicle surrounding image acquired shifts in the upper right direction with respect to the reference image 401 as indicated by reference numeral 402.
  • the range of the vehicle surrounding image acquired shifts in the lower left direction with respect to the reference image 401 as indicated by reference numeral 403.
  • (B) to (d) show vehicle surrounding images acquired in the respective shift states 401 to 403 of (a). Also, in (b) to (d), the vertical and horizontal center lines of each video range are displayed with a one-dot chain line for easy understanding of the video shift amount.
  • the imaging area is shifted in the upper right direction, and the lower left area of the screen in (b) is out of the acquisition range.
  • the imaging area is shifted in the lower left direction, and the upper right area of the screen in (b) is outside the acquisition range. For this reason, when the vehicle surrounding image including the states (c) and (d) is output and displayed, an image that vibrates in the upper right direction and the lower left direction is displayed, and image blurring occurs.
  • the display image vibrates up and down and left and right due to the vibration of the vehicle, thereby suppressing image blurring that is difficult to see. Furthermore, in this embodiment, the amount of movement of the surrounding image (vehicle movement amount) accompanying the operation of the vehicle is calculated and subtracted from the amount of movement of the captured surrounding image so as to correct the image blur due to only the vibration of the vehicle. did.
  • FIG. 5 is a diagram illustrating an example of the vehicle movement amount 124 calculated by the vehicle movement calculation unit 104.
  • the video photographing device 107 is attached to the front of the vehicle, and the photographing direction is the vehicle traveling direction.
  • the vehicle movement amount 124 represents how the image captured by the image capturing device 107 changes by operating the vehicle as a motion vector at each pixel position.
  • the motion vector is generated radially from the center of the screen, which is the vehicle traveling direction, toward the periphery of the screen, and the motion vector increases as the periphery of the screen increases.
  • the greater the speed of the vehicle the greater the motion vector 124a.
  • (B) shows the distribution of the motion vector 124b when the vehicle turns to the left, and the radiation vector of the motion vector moves to the left side of the screen according to the steering angle.
  • (C) shows the distribution of the motion vector 124c when the vehicle turns right and the motion vector radiation center moves to the right side of the screen.
  • the distribution in the screen of the vehicle movement amount (motion vector) 124 shown above depends on the mounting position and shooting direction of the video imaging device 107 to be mounted on the vehicle. Therefore, the vehicle motion calculation unit 104 acquires in advance the mounting position and shooting direction of the video imaging device 107, and based on this, the vehicle by the operator is obtained from the speed information and the steering angle information received from the operation information acquisition unit 103. The amount of motion (motion vector) 124 of the captured video based on the above operation is calculated.
  • the video blur calculation unit 105 uses the ambient video motion amount 122 (MV1) calculated by the ambient video motion calculation unit 102 and the vehicle motion amount 124 (MV2) calculated by the vehicle motion calculation unit 104 to generate a video blur amount based only on vehicle vibration. (MV3) is calculated. Specifically, the difference amount (MV1-MV2) is obtained by subtracting the vehicle movement amount 124 (MV2) from the surrounding image movement amount 122 (MV1), and this is obtained as the image blur amount 125 (MV3) to the image blur correction unit 106. Output. That is, the component of the vehicle movement amount 124 (MV2) is removed from the image blur amount 125 (MV3). The image blur amount 125 (MV3) is sent to the image blur correction unit 106 to correct the image blur for the vehicle surrounding image 121.
  • FIG. 6 is a diagram illustrating an example of the operation of the image blur correction unit 106.
  • 4A is a reproduction of FIG. 4A
  • 401 is a vehicle surrounding image when the vehicle is not vibrating
  • 402 is a vehicle surrounding image when the vehicle vibrates to the upper right
  • 403 is the vehicle surrounding image.
  • the image around the vehicle when it vibrates in the lower left is shown.
  • the shift in the upper right and lower left directions of each image corresponds to the image blur amount 125 (MV3) calculated by the image blur calculation unit 105, and the component due to the operation of the vehicle is removed, and only by the vibration of the vehicle.
  • MV3 image blur amount 125
  • the video blur correction unit 106 sets a video cutout frame area indicated by a two-dot chain line, and cuts out each of the vehicle surrounding videos 401 to 403 and outputs the cutout video.
  • FIGS. (B) to (d) show video cutout frames for the vehicle surrounding images 401 to 403, respectively.
  • the video cutout frame 601 is set so that the horizontal and vertical center points are the same with respect to the vehicle surrounding image 401.
  • an image cutout frame 602 in which the horizontal and vertical center points are shifted to the lower left with respect to the vehicle surrounding image 402 is set.
  • an image cutout frame 603 in which the horizontal and vertical center points are shifted to the upper right with respect to the vehicle surrounding image 403 is set.
  • the shift amount is set according to the video blur amount 125 calculated by the video blur calculation unit 105.
  • the image to be cut out is corrected so that the image blur is removed and the same image range is obtained.
  • the motion of the vehicle surrounding image is calculated from the plurality of temporally different vehicle surrounding images acquired by the video acquisition unit that acquires the surrounding image of the vehicle, and the vehicle The movement of the vehicle is calculated from the operation information, and the amount of image blur due to only the vibration of the vehicle is calculated from the difference between the surrounding image movement amount and the vehicle movement amount. Then, based on the calculated video blur amount, it is possible to reduce the video blur by correcting the cut-out position of the vehicle surrounding video and display the video following the vehicle operation.
  • the video photographing device 107 is attached to the front of the vehicle has been described.
  • the video photographing device 107 is attached to the rear or side of the vehicle.
  • the configuration of the video processing device 107 in the second embodiment is the same as that in FIG. 1, and hereinafter, the vehicle motion amount 124 calculated by the vehicle motion calculation unit 104 will be described.
  • FIG. 7 is a diagram illustrating an example of the amount of vehicle movement calculated by the vehicle movement calculation unit 104 in the second embodiment.
  • the video photographing device 107 is attached to the rear of the vehicle, and the photographing direction is opposite to the vehicle traveling direction.
  • the motion vector is generated radially from the periphery of the screen toward the center of the screen, which is the direction opposite to the traveling direction of the vehicle, and the motion vector increases toward the periphery of the screen.
  • (B) shows a distribution of a motion vector 124b 'in which the radiation center of the motion vector moves to the left side of the screen according to the steering angle when the vehicle turns left.
  • (C) shows a distribution of a motion vector 124c ′ in which the radiation center of the motion vector moves to the right side of the screen when the vehicle turns to the right.
  • FIG. 8 is a diagram showing the amount of vehicle movement when the image capturing device 107 is attached to the side of the vehicle.
  • A shows the motion vector 124a ′′ calculated when the video photographing device 107 is attached to the left side of the vehicle and the vehicle goes straight.
  • (b) shows the motion vector 124a ′′ attached to the right side of the vehicle and the vehicle goes straight.
  • a motion vector 124b "calculated sometimes is shown.
  • the image blur calculation unit 105 the difference amount between the surrounding image motion amount 122 (MV1) calculated by the surrounding image motion calculation unit 102 and the vehicle motion amount 124 (MV2) described in FIG. 7 or FIG. From this, the image blur amount 125 (MV3) is calculated. Further, the image blur correction unit 106 corrects the vehicle surrounding image 121 based on the image blur amount 125 (MV3).
  • the amount of vehicle movement is calculated based on the vehicle mounting position of the video imaging apparatus 107 even when the video imaging apparatus 107 is mounted on the rear or side of the vehicle. I tried to do it.
  • the amount of image blur due to only the vibration of the vehicle is calculated from the difference between the amount of motion of the surrounding image and the amount of vehicle motion, and based on the calculated image blur, the image blur is reduced by correcting the clipping position of the vehicle surrounding image, An image following the vehicle operation can be displayed.
  • the third embodiment a case will be described in which at least a part of the host vehicle is reflected in the vehicle surrounding image 120 captured by the video imaging device 107 in the first or second embodiment.
  • the configuration of the video processing apparatus 100 according to the third embodiment is the same as that in FIG. 1, and the vehicle movement amount 124 calculated by the vehicle movement calculation unit 104 will be described below.
  • FIG. 9 is a diagram illustrating an example of the amount of vehicle movement calculated by the vehicle movement calculation unit 104 in the third embodiment.
  • the video photographing device 107 is attached to the front of the vehicle, and the photographing direction is the vehicle traveling direction.
  • an area 900 indicates an area (for example, a bonnet) in which the subject vehicle is reflected in the vehicle surrounding image 121 captured by the image capturing device 107.
  • (A) shows an example in which the vehicle motion amount (motion vector) 124a is calculated when the vehicle is traveling straight.
  • the reflection area 900 of the own vehicle is an area in which the image is not changed even when the vehicle moves and is always a still image. That is, when the above-described vehicle movement amount correction is performed in the area 900, an image of the own vehicle that is originally stationary moves or disappears in the screen, and an incorrect image is displayed. Therefore, the motion vectors 911, 912, and 913 included in the area 900 are all corrected to zero, and the corrected motion vector is output to the image blur calculation unit 105 as the vehicle motion amount 124a as shown in (a ′).
  • (B) shows an example in which the vehicle motion amount (motion vector) 124b at the time of a left turn is calculated. Also in this case, the motion vectors 921 and 922 included in the host vehicle area 900 are set to zero, and the corrected motion vector shown in (b ′) is output to the image blur calculation unit 105 as the vehicle motion amount 124b. Further, (c) shows an example in which a vehicle motion amount (motion vector) 124c at the time of a right turn is calculated. Also in this case, the motion vectors 931 and 932 included in the host vehicle area 900 are set to zero, and the corrected motion vector shown in (c ′) is output to the image blur calculation unit 105 as the vehicle motion amount 124c.
  • the vehicle motion amount (motion vector) is calculated excluding the area of the host vehicle.
  • Embodiment 4 describes a case where the above-described video processing device is applied to a vehicle remote control system.
  • FIG. 10 is a block diagram showing an example of the configuration when the video processing apparatus is applied to a vehicle remote control system. Parts that are the same as those in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
  • the remote operation system includes a remote operation vehicle 1000 and a remote operation device 1001 for operating the vehicle, and the video processing device 100 described in the above embodiment is applied to the remote operation device 1001.
  • the remote operation vehicle 1000 includes an image capturing device 107 that captures images around the vehicle and a vehicle drive unit 1002 that drives the vehicle.
  • the video imaging device 107 outputs the captured vehicle surrounding video to the remote control device 1001 via a transmission path 1020 that is either wireless or wired or both.
  • the vehicle drive unit 1002 receives vehicle operation information output from the vehicle operation unit 108 included in the remote operation device 1001 via a transmission path 1021 that is either wireless or wired or both.
  • the remote operation device 1001 receives the video shot by the video shooting device 107, processes it by the video processing device 100, and displays it on the video display device 109.
  • the vehicle operator operates the vehicle at the vehicle operation unit 108 while viewing the vehicle surrounding image displayed on the video display device 109, and the operation information is transmitted to the vehicle drive unit 1002. Further, since the remote operation vehicle 1000 and the remote operation device 1001 are connected via transmission lines 1020 and 1021, the remote operation vehicle 1000 can be operated from a location apart from the location where the remote operation vehicle 1000 is located. Is possible.
  • the operator operates the vehicle 1000 while viewing the video on the video display device 109.
  • image blurring occurs in the video displayed on the video display device 109 due to vibration of the remote control vehicle 1000.
  • the operability becomes worse. Therefore, by applying the video processing device 100 shown in the first to third embodiments to the remote operation device 1001, not only the blurring of the video displayed on the video display device 109 is reduced, but also the vehicle operation is followed. An image can be displayed.
  • the remote operation device that remotely operates the vehicle
  • the movement of the display image following the vehicle operation is tracked, and the image blur of the display image due to the vibration of the vehicle is reduced. Therefore, the operability for the remotely operated vehicle is improved.
  • the output of the image blur correction unit 106 is displayed on the image display device 109 and used for assisting the operation of the vehicle operator.
  • 100 Vehicle image processing device, 101: Video acquisition unit 102: Ambient image motion calculation unit, 103: Operation information acquisition unit, 104: Vehicle motion calculation unit, 105: Image blur calculation unit, 106: Image blur correction unit, 107: video shooting device, 108: Vehicle operation unit, 109: Video display device, 120: Shooting video, 121, 221: Vehicle surrounding image, 122: Ambient image motion amount (motion vector MV1), 123: Vehicle operation information, 124: Vehicle movement amount (motion vector MV2), 125: Video blur amount (motion vector MV3), 126: Corrected vehicle surrounding image, 127: Operation information, 201: Video buffer unit, 202: Motion vector calculation unit, 401, 402, 403: Vehicle surrounding image, 601, 602, 603: video clipping frame, 900: Own vehicle area, 911 to 913, 921, 922, 931, 932: motion vectors in the host vehicle area, 1000: remotely operated vehicle, 1001: remote control device, 1020, 1021: Transmission path.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Studio Devices (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

A vehicle-use image processing apparatus 100 comprises: a peripheral image motion calculation unit 102 that calculates an image motion amount (MV1) from vehicle peripheral images captured by an image capture apparatus 107 fixed on a vehicle; a vehicle motion calculation unit 104 that calculates, from vehicle operation information, a vehicle peripheral image motion amount (MV2) that is the amount of a vehicle peripheral image motion accompanying an operation of the vehicle; an image unsteadiness calculation unit 105 that subtracts the motion amount (MV2) from the motion amount (MV1), thereby calculating an image unsteadiness amount (MV3) that is the amount of an image unsteadiness caused by a vehicle vibration; and an image unsteadiness correction unit 106 that performs, on the basis of the image unsteadiness amount (MV3), an image unsteadiness correction of the captured vehicle peripheral images. In this way, image unsteadiness accompanying vehicle vibrations can be reduced and the motions of captured images accompanying vehicle operations can be followed.

Description

車両用映像処理装置Vehicle image processing device
 本発明は、車両に搭載したカメラにより車両周囲を撮影した撮影映像に対して、車両の振動による映像ブレを補正する車両用映像処理装置に関する。 The present invention relates to a vehicular image processing device that corrects image blur due to vibration of a vehicle with respect to a captured image obtained by capturing the surroundings of a vehicle with a camera mounted on the vehicle.
 近年、ビデオカメラ等の撮影装置が広く普及し、その用途、使用方法などについて多様化が図られている。一例として、自動車や建設機械、鉄道車両等にカメラを搭載し、車両走行中に進行方向の路面状況や車両周囲の障害物を検出して車両操作者に通知する等の用途や、車両操作者が上記撮影映像を用いて遠隔から車両操作を行う遠隔操作等の用途に使用されている。 In recent years, photographing apparatuses such as video cameras have become widespread, and their uses and usage methods have been diversified. As an example, a camera is mounted on an automobile, construction machine, railway vehicle, etc., and the vehicle operator detects the road surface condition in the traveling direction and obstacles around the vehicle while the vehicle is running, and notifies the vehicle operator. Is used for applications such as remote control for remotely operating a vehicle using the above-mentioned photographed video.
 ここで、車両に搭載したカメラによる撮影映像においては、車両の振動によってカメラも振動し、撮影映像が上下左右に揺れる現象(映像ブレ)が発生する。映像ブレが生じると操作者の操作性が悪くなるだけでなく、長時間このような映像を見続けると、船酔いをしたように気分を悪くしてしまう。 Here, in the video shot by the camera mounted on the vehicle, the camera also vibrates due to the vibration of the vehicle, causing a phenomenon (video blur) that the shot video shakes up, down, left and right. When image blurring occurs, not only the operator's operability deteriorates, but if such a video is continuously viewed for a long time, it will make you feel sick like seasickness.
 映像ブレの対策として、例えば特許文献1では、車両の傾きを検出する傾き検出装置と車両の振動を検出する振動検出装置を有し、車両の傾きと振動の検出結果に基づいて撮影画像からの切り出し座標を算出し、切り出し座標に基づいて撮影画像から一部の画像を切り出すことで映像のブレを補正する構成が開示されている。 As a countermeasure against image blurring, for example, Patent Document 1 has a tilt detection device that detects the tilt of a vehicle and a vibration detection device that detects the vibration of the vehicle, and based on the detection result of the tilt and vibration of the vehicle, A configuration is disclosed that corrects image blur by calculating cutout coordinates and cutting out some images from a captured image based on the cutout coordinates.
特開2014-26046号公報JP 2014-26046 A
 車両の走行方向は操作者の操作に基づき、当然ながら、直進だけでなく左折や右折、建設機械においては上下方向の動きも含まれる。その場合特許文献1の方式によれば、車両操作により生じた車両の傾きや振動についても「映像ブレ」と判断し、その補正を行うことになる。その結果、例えば左折操作した場合であっても、常に直進方向の映像部分が切り出されることになり、進行方向(左折方向)の映像が欠落して操作性に支障を与える恐れがある。 The driving direction of the vehicle is based on the operation of the operator, and naturally includes not only straight but also left and right turns, and vertical movements in construction machinery. In that case, according to the method of Patent Document 1, the inclination and vibration of the vehicle caused by the vehicle operation are also determined as “image blurring” and corrected. As a result, for example, even when a left turn operation is performed, a video portion in the straight traveling direction is always cut out, and there is a possibility that a video in the traveling direction (left turn direction) is lost and the operability is hindered.
 本発明は、上記の課題に鑑み、車両周囲の撮影映像の映像ブレを補正する際、車両操作に伴う撮影映像の動きについては追従させ、車両の振動に伴う映像ブレを低減する車両用映像処理装置を提供することを目的とする。 In view of the above-described problems, the present invention makes it possible to follow the movement of a photographed image that accompanies a vehicle operation when correcting the image blur of a photographed image around the vehicle, and to reduce the image blur caused by the vibration of the vehicle. An object is to provide an apparatus.
 本発明に係る車両用映像処理装置は、車両に取り付けた映像撮影装置により撮影した車両周囲映像を取得する映像取得部と、映像取得部で取得した時間的に異なる複数の車両周囲映像から映像の動き量(MV1)を算出する周囲映像動き算出部と、車両の操作情報を取得する操作情報取得部と、操作情報取得部で取得した操作情報から車両の操作に伴う車両周囲映像の動き量(MV2)を算出する車両動き算出部と、周囲映像動き算出部により算出した動き量(MV1)から車両動き算出部により算出した動き量(MV2)を差し引き、車両の振動による映像ブレ量(MV3)を算出する映像ブレ算出部と、映像ブレ算出部により算出した映像ブレ量(MV3)に基づいて、映像取得部で取得した車両周囲映像の映像ブレ補正を行う映像ブレ補正部と、を備える構成とする。 The vehicle image processing device according to the present invention includes a video acquisition unit that acquires a vehicle surrounding image captured by a video imaging device attached to the vehicle, and a plurality of temporally different vehicle surrounding images acquired by the video acquisition unit. A surrounding image motion calculating unit that calculates the amount of movement (MV1), an operation information acquiring unit that acquires operation information of the vehicle, and an amount of motion of the vehicle surrounding image accompanying the operation of the vehicle from the operation information acquired by the operation information acquiring unit ( MV2) is calculated, and the motion amount (MV2) calculated by the vehicle motion calculation unit is subtracted from the motion amount (MV1) calculated by the surrounding image motion calculation unit, and the image blur amount (MV3) due to vehicle vibration is subtracted. Based on the image blur calculation unit that calculates the image blur amount and the image blur amount (MV3) calculated by the image blur calculation unit. A structure comprising a correcting unit.
 本発明によれば、車両周囲の撮影映像の映像ブレを補正する際、車両の振動に伴う映像ブレを低減するとともに車両操作に伴う撮影映像の動きについては追従させることで、操作性に支障を与えることのない車両用映像処理装置を提供することができる。 According to the present invention, when correcting the image blur of the photographed image around the vehicle, the image blur caused by the vibration of the vehicle is reduced, and the movement of the photographed image accompanying the vehicle operation is followed, thereby hindering the operability. It is possible to provide a video processing apparatus for a vehicle that is not given.
車両用映像処理システムの構成を示すブロック図(実施例1)。The block diagram which shows the structure of the video processing system for vehicles (Example 1). 周囲映像動き算出部102の内部構成の一例を示す図。The figure which shows an example of an internal structure of the surrounding image motion calculation part. 映像撮影装置107で撮影される車両周囲映像の一例を示した図。The figure which showed an example of the vehicle periphery image | video image | photographed with the video imaging device 107. FIG. 車両が振動した場合の車両周囲映像の一例を示す図。The figure which shows an example of the vehicle periphery image | video when a vehicle vibrates. 車両動き算出部104で算出する車両動き量124の一例を示す図。The figure which shows an example of the vehicle movement amount 124 which the vehicle movement calculation part 104 calculates. 映像ブレ補正部106の動作の一例を示す図。FIG. 10 is a diagram illustrating an example of the operation of the image blur correction unit 106. 車両動き算出部104で算出する車両動き量の一例を示す図(実施例2)。The figure which shows an example of the amount of vehicle movements calculated by the vehicle movement calculation part 104 (Example 2). 映像撮影装置107を車両側方に取り付けた場合における車両動き量を示す図。The figure which shows the vehicle movement amount at the time of attaching the video imaging device 107 to the vehicle side. 車両動き算出部104で算出した車両動き量の一例を示す図(実施例3)。FIG. 10 is a diagram illustrating an example of a vehicle movement amount calculated by a vehicle movement calculation unit 104 (third embodiment). 映像処理装置を車両の遠隔操作システムに適用した場合の構成の一例を示すブロック図(実施例4)。FIG. 10 is a block diagram illustrating an example of a configuration when the video processing apparatus is applied to a vehicle remote control system (Example 4).
 以下、本発明の実施形態を図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、実施例1の車両用映像処理システムの構成を示すブロック図である。車両用映像処理システムは、車両用映像処理装置(以下、映像処理装置)100に、カメラ等の映像撮影装置107、車両操作部108、液晶ディスプレイ等の映像表示装置109が接続された構成となっている。例えば車両が自動車の場合には、映像撮影装置107は車両の前方、後方、側方などに取付けられ、車両周囲の状況(路面状況や障害物)を撮影する。映像表示装置109は車両のダッシュボード等に設置し、映像撮影装置107にて撮影され、映像処理装置100にて処理された映像を表示する。車両操作部108は、操作者(運転者)による車両操作を入力する部分で、ハンドル(操舵)やアクセル(速度)、あるいはその伝達機構が相当する。 FIG. 1 is a block diagram illustrating the configuration of the vehicle video processing system according to the first embodiment. The vehicle video processing system has a configuration in which a video imaging device 107 such as a camera, a vehicle operation unit 108, and a video display device 109 such as a liquid crystal display are connected to a vehicle video processing device (hereinafter referred to as a video processing device) 100. ing. For example, when the vehicle is an automobile, the video photographing device 107 is attached to the front, rear, side, etc. of the vehicle, and photographs the situation (road surface condition and obstacles) around the vehicle. The video display device 109 is installed on the dashboard of the vehicle, and displays the video imaged by the video image capturing device 107 and processed by the video processing device 100. The vehicle operation unit 108 is a part for inputting a vehicle operation by an operator (driver), and corresponds to a steering wheel (steering), an accelerator (speed), or a transmission mechanism thereof.
 映像処理装置100は、映像撮影装置107にて撮影された映像を処理し、特に本実施例では映像ブレを補正するもので、映像取得部101、周囲映像動き算出部102、操作情報取得部103、車両動き算出部104、映像ブレ算出部105、映像ブレ補正部106が設けられている。以下、映像処理装置100の動作の詳細について説明する。 The video processing device 100 processes the video shot by the video shooting device 107, and particularly corrects video blur in this embodiment. The video processing device 100, the surrounding video motion calculation unit 102, and the operation information acquisition unit 103 are used. A vehicle motion calculation unit 104, a video blur calculation unit 105, and a video blur correction unit 106 are provided. Details of the operation of the video processing apparatus 100 will be described below.
 映像取得部101は、映像撮影装置107で撮影した撮影映像120を受信し、車両周囲映像121として周囲映像動き算出部102および映像ブレ補正部106へ出力する。
  周囲映像動き算出部102は、映像取得部101から受信した、時間的に異なる複数枚の車両周囲映像121から車両周囲映像の動き量(動きベクトルMV1)を算出し、周囲映像動き量122を出力する。
The video acquisition unit 101 receives the captured video 120 captured by the video imaging device 107 and outputs the captured video 120 to the ambient video motion calculation unit 102 and the video blur correction unit 106 as a vehicle ambient video 121.
The surrounding video motion calculation unit 102 calculates a motion amount (motion vector MV1) of the vehicle surrounding video from a plurality of temporally different vehicle surrounding images 121 received from the video acquisition unit 101, and outputs the surrounding video motion amount 122 To do.
 操作情報取得部103は、操作者による車両に対する操作情報127を車両操作部108から取得し、車両操作情報123として車両動き算出部104へ出力する。車両操作情報123には車両の舵角情報や速度情報が含まれる。
  車両動き算出部104は、車両に対する前記映像撮影装置107の取り付け位置と撮影方向をもとに、前記車両操作情報123を用いて、車両の操作に伴う前記映像撮影装置107で撮影される映像の動き量(動きベクトルMV2)を算出し、車両動き量124を出力する。
The operation information acquisition unit 103 acquires operation information 127 for the vehicle by the operator from the vehicle operation unit 108, and outputs the operation information 127 to the vehicle movement calculation unit 104 as vehicle operation information 123. The vehicle operation information 123 includes vehicle steering angle information and speed information.
The vehicle motion calculation unit 104 uses the vehicle operation information 123 based on the mounting position and the shooting direction of the video shooting device 107 with respect to the vehicle, and displays the video shot by the video shooting device 107 when the vehicle is operated. A motion amount (motion vector MV2) is calculated, and a vehicle motion amount 124 is output.
 映像ブレ算出部105は、周囲映像動き量122と車両動き量124を差分演算して車両の振動のみによる映像ブレ(動きベクトルMV3)を算出し、映像ブレ量125を出力する。すなわち、周囲映像動き量122には、車両の振動による成分と車両操作による成分とが含まれるが、周囲映像動き量122と車両動き量124の差分をとることで、車両の振動による成分のみを抽出することができる。 The video blur calculation unit 105 calculates a video blur (motion vector MV3) based only on vehicle vibration by calculating a difference between the ambient video motion amount 122 and the vehicle motion amount 124, and outputs a video blur amount 125. That is, the ambient image motion amount 122 includes a component due to vehicle vibration and a component due to vehicle operation. By taking the difference between the ambient image motion amount 122 and the vehicle motion amount 124, only the component due to vehicle vibration is obtained. Can be extracted.
 映像ブレ補正部106は、車両周囲映像121に対して映像ブレ量125の補正を行う。この補正処理は、映像ブレ量125に応じて車両周囲映像121に対する映像の切り出し範囲をシフトさせることで行う。補正後の車両周囲映像126は映像表示装置109へ出力して表示させる。 The image blur correction unit 106 corrects the image blur amount 125 for the vehicle surrounding image 121. This correction processing is performed by shifting the cutout range of the video with respect to the vehicle surrounding video 121 according to the video blur amount 125. The corrected vehicle surrounding image 126 is output to the image display device 109 for display.
 以下、各部の動作を詳細に説明する。
  図2は、周囲映像動き算出部102の内部構成の一例を示す図である。映像バッファ部201は、入力する車両周囲映像121を記憶する。動きベクトル算出部202は、入力する車両周囲映像121と、映像バッファ部201から読み出した車両周囲映像221の2つの映像から、車両周囲映像121の動きベクトル122を算出する。すなわち、動きベクトル算出部202では、時間的に過去に入力した車両周囲映像221と、現在入力した車両周囲映像121とを比較し、過去の映像221に対する現在の映像121の動きベクトルを算出するものである。動きベクトルの算出方法では、ブロックマッチング法や勾配法等を用いることが可能である。
Hereinafter, the operation of each unit will be described in detail.
FIG. 2 is a diagram illustrating an example of an internal configuration of the surrounding image motion calculation unit 102. The video buffer unit 201 stores the vehicle surrounding video 121 to be input. The motion vector calculation unit 202 calculates the motion vector 122 of the vehicle surrounding image 121 from the two images of the vehicle surrounding image 121 to be input and the vehicle surrounding image 221 read from the image buffer unit 201. That is, the motion vector calculation unit 202 compares the vehicle surrounding image 221 input in the past with the current input vehicle surrounding image 121 and calculates the motion vector of the current image 121 with respect to the past image 221. It is. In the motion vector calculation method, a block matching method, a gradient method, or the like can be used.
 図3は、映像撮影装置107で撮影される車両周囲映像の一例を示した図である。映像撮影装置107は車両前方に取り付け、車両が前進走行した場合である。(a)は時刻=t1における車両周囲映像を示し、(b)は時刻=t2における車両周囲映像を示す。時刻t2は時刻t1よりも時間的に後とすれば、(a)は図2における車両周囲映像221に相当し、(b)は図2における車両周囲映像121に相当する。(c)は図2の動きベクトル算出部202の動作を示し、(a)の各画素が(b)においてどこに移動したかを示す車両映像動き量(動きベクトル、矢印で示す)122を算出する。なお、(c)では説明の容易化のため、撮影映像内の代表的な画素についての動きベクトルを示している。車両の前進走行に伴い、車両周囲映像の各動きベクトルは手前方向に向かっている。 FIG. 3 is a diagram illustrating an example of a vehicle surrounding image captured by the image capturing device 107. The image capturing device 107 is attached to the front of the vehicle and the vehicle travels forward. (A) shows a vehicle surrounding image at time = t1, and (b) shows a vehicle surrounding image at time = t2. If the time t2 is temporally later than the time t1, (a) corresponds to the vehicle surrounding image 221 in FIG. 2, and (b) corresponds to the vehicle surrounding image 121 in FIG. (C) shows the operation of the motion vector calculation unit 202 in FIG. 2, and calculates a vehicle image motion amount (motion vector, indicated by an arrow) 122 indicating where each pixel in (a) has moved in (b). . For ease of explanation, (c) shows motion vectors for representative pixels in the captured video. As the vehicle travels forward, each motion vector in the vehicle surrounding image is directed toward the front.
 図4は、車両が振動した場合の車両周囲映像の一例を示す図である。車両に振動が発生した場合、映像撮影装置107も同様に振動することから、車両周囲映像121は上下左右に振動して映像ブレが発生する。 FIG. 4 is a diagram illustrating an example of a vehicle surrounding image when the vehicle vibrates. When vibration occurs in the vehicle, the image capturing device 107 also vibrates in the same manner. Therefore, the vehicle surrounding image 121 vibrates vertically and horizontally and image blur occurs.
 (a)は車両周囲映像の例であり、符号401は振動が生じる前の車両周囲映像(基準位置)を示す。振動により車両が右上方向に動いた場合、取得される車両周囲映像の範囲は符号402に示すように、基準映像401に対して右上方向にシフトする。逆に、振動により車両が左下方向に動いた場合、取得される車両周囲映像の範囲は符号403に示すように、基準映像401に対して左下方向にシフトする。 (A) is an example of a vehicle surrounding image, and reference numeral 401 indicates a vehicle surrounding image (reference position) before vibration occurs. When the vehicle moves in the upper right direction due to vibration, the range of the vehicle surrounding image acquired shifts in the upper right direction with respect to the reference image 401 as indicated by reference numeral 402. Conversely, when the vehicle moves in the lower left direction due to vibration, the range of the vehicle surrounding image acquired shifts in the lower left direction with respect to the reference image 401 as indicated by reference numeral 403.
 (b)~(d)は、(a)の各シフト状態401~403にて取得される車両周囲映像を示している。また、(b)~(d)では、映像のシフト量を分かりやすくするため、各映像範囲の垂直方向と水平方向の中心線を一点鎖線で表示している。 (B) to (d) show vehicle surrounding images acquired in the respective shift states 401 to 403 of (a). Also, in (b) to (d), the vertical and horizontal center lines of each video range are displayed with a one-dot chain line for easy understanding of the video shift amount.
 振動なしの状態(b)を基準にすると、(d)では撮像領域が右上方向にシフトされ、(b)の画面の左下部の領域が取得範囲外となる。一方、(c)では撮像領域が左下方向にシフトされ、(b)の画面の右上部の領域が取得範囲外となる。このため、(c)や(d)の状態を含んだ車両周囲映像を出力表示した場合、右上向きと左下向きに振動した映像が表示され、映像ブレが発生することになる。 Referring to the state (b) without vibration as a reference, in (d), the imaging area is shifted in the upper right direction, and the lower left area of the screen in (b) is out of the acquisition range. On the other hand, in (c), the imaging area is shifted in the lower left direction, and the upper right area of the screen in (b) is outside the acquisition range. For this reason, when the vehicle surrounding image including the states (c) and (d) is output and displayed, an image that vibrates in the upper right direction and the lower left direction is displayed, and image blurring occurs.
 本実施例では、車両の振動により表示映像が上下左右に振動し、見づらい表示となる映像ブレを抑えるものである。さらに本実施例では、車両の操作に伴う周囲映像の動き量(車両動き量)を算出し、撮影された周囲映像の動き量から差し引くことで、車両の振動のみによる映像ブレを補正するようにした。 In the present embodiment, the display image vibrates up and down and left and right due to the vibration of the vehicle, thereby suppressing image blurring that is difficult to see. Furthermore, in this embodiment, the amount of movement of the surrounding image (vehicle movement amount) accompanying the operation of the vehicle is calculated and subtracted from the amount of movement of the captured surrounding image so as to correct the image blur due to only the vibration of the vehicle. did.
 図5は、車両動き算出部104で算出する車両動き量124の一例を示す図である。映像撮影装置107は車両前方に取り付けられ、撮影方向は車両進行方向としている。車両動き量124とは、車両を操作することにより、映像撮影装置107にて撮影される映像がどのように変化するかを各画素位置における動きベクトルで表したものである。 FIG. 5 is a diagram illustrating an example of the vehicle movement amount 124 calculated by the vehicle movement calculation unit 104. The video photographing device 107 is attached to the front of the vehicle, and the photographing direction is the vehicle traveling direction. The vehicle movement amount 124 represents how the image captured by the image capturing device 107 changes by operating the vehicle as a motion vector at each pixel position.
 (a)は車両が直進すなわち舵角=0度の場合で、車両の速度に応じた動きベクトル124aが算出される。動きベクトルは、車両進行方向である画面中央から画面周囲に向かい放射状に発生し、画面周囲ほど動きベクトルが大きくなる。当然ながら、車両の速度が大きくなるほど、動きベクトル124aも大きくなる。 (A) is a case where the vehicle goes straight, that is, the steering angle = 0 degree, and the motion vector 124a corresponding to the speed of the vehicle is calculated. The motion vector is generated radially from the center of the screen, which is the vehicle traveling direction, toward the periphery of the screen, and the motion vector increases as the periphery of the screen increases. Of course, the greater the speed of the vehicle, the greater the motion vector 124a.
 (b)は車両が左折した場合で、その舵角に応じて動きベクトルの放射中心が画面左側に移動した動きベクトル124bの分布となる。また(c)は車両が右折した場合で、動きベクトルの放射中心が画面右側に移動した動きベクトル124cの分布となっている。 (B) shows the distribution of the motion vector 124b when the vehicle turns to the left, and the radiation vector of the motion vector moves to the left side of the screen according to the steering angle. (C) shows the distribution of the motion vector 124c when the vehicle turns right and the motion vector radiation center moves to the right side of the screen.
 以上に示す車両動き量(動きベクトル)124の画面内分布は、車両に取り付ける映像撮影装置107の取り付け位置や撮影方向に依存する。よって車両動き算出部104では、映像撮影装置107の取り付け位置および撮影方向を予め取得しておき、これを基に、操作情報取得部103より受信した速度情報と舵角情報により、操作者による車両の操作に基づいた撮影映像の動き量(動きベクトル)124を算出するものである。 The distribution in the screen of the vehicle movement amount (motion vector) 124 shown above depends on the mounting position and shooting direction of the video imaging device 107 to be mounted on the vehicle. Therefore, the vehicle motion calculation unit 104 acquires in advance the mounting position and shooting direction of the video imaging device 107, and based on this, the vehicle by the operator is obtained from the speed information and the steering angle information received from the operation information acquisition unit 103. The amount of motion (motion vector) 124 of the captured video based on the above operation is calculated.
 次に、映像ブレ算出部105の動作について説明する。映像ブレ算出部105は、周囲映像動き算出部102で算出した周囲映像動き量122(MV1)と車両動き算出部104で算出した車両動き量124(MV2)から、車両の振動のみによる映像ブレ量(MV3)を算出する。具体的には、周囲映像動き量122(MV1)から車両動き量124(MV2)を差し引いて差分量(MV1-MV2)を求め、これを映像ブレ量125(MV3)として映像ブレ補正部106に出力する。すなわち映像ブレ量125(MV3)では、車両動き量124(MV2)の成分が除去されている。
  映像ブレ量125(MV3)は映像ブレ補正部106に送られ、車両周囲映像121に対して映像ブレの補正を行う。
Next, the operation of the image blur calculation unit 105 will be described. The video blur calculation unit 105 uses the ambient video motion amount 122 (MV1) calculated by the ambient video motion calculation unit 102 and the vehicle motion amount 124 (MV2) calculated by the vehicle motion calculation unit 104 to generate a video blur amount based only on vehicle vibration. (MV3) is calculated. Specifically, the difference amount (MV1-MV2) is obtained by subtracting the vehicle movement amount 124 (MV2) from the surrounding image movement amount 122 (MV1), and this is obtained as the image blur amount 125 (MV3) to the image blur correction unit 106. Output. That is, the component of the vehicle movement amount 124 (MV2) is removed from the image blur amount 125 (MV3).
The image blur amount 125 (MV3) is sent to the image blur correction unit 106 to correct the image blur for the vehicle surrounding image 121.
 図6は、映像ブレ補正部106の動作の一例を示す図である。
  (a)は図4(a)を再掲したものであり、401は車両に振動が生じていない時の車両周囲映像、402では車両が右上に振動をした時の車両周囲映像、403では車両が左下に振動した時の車両周囲映像を示している。なお、各映像の右上、左下方向へのシフトは、映像ブレ算出部105で算出した映像ブレ量125(MV3)に対応するもので、車両の操作による成分は除去され、車両の振動のみによるものである。ここで映像ブレ補正部106は、二点鎖線で示す映像切り出し枠の領域を設定し、車両周囲映像401~403から各々切り出して出力する。
FIG. 6 is a diagram illustrating an example of the operation of the image blur correction unit 106.
4A is a reproduction of FIG. 4A, 401 is a vehicle surrounding image when the vehicle is not vibrating, 402 is a vehicle surrounding image when the vehicle vibrates to the upper right, and 403 is the vehicle surrounding image. The image around the vehicle when it vibrates in the lower left is shown. The shift in the upper right and lower left directions of each image corresponds to the image blur amount 125 (MV3) calculated by the image blur calculation unit 105, and the component due to the operation of the vehicle is removed, and only by the vibration of the vehicle. It is. Here, the video blur correction unit 106 sets a video cutout frame area indicated by a two-dot chain line, and cuts out each of the vehicle surrounding videos 401 to 403 and outputs the cutout video.
 (b)~(d)は、各車両周囲映像401~403に対する映像切り出し枠を示す。車両の振動がない時には(b)に示すように、車両周囲映像401に対して水平方向および垂直方向の中心点が同一となるように映像切り出し枠601を設定する。車両が右上に振動した際には、(d)に示すように、車両周囲映像402に対して水平方向および垂直方向の中心点が左下にシフトした映像切り出し枠602を設定する。車両が左下に振動した際には、(c)に示すように、車両周囲映像403に対して水平方向および垂直方向の中心点が右上にシフトした映像切り出し枠603を設定する。いずれもシフト量は映像ブレ算出部105で算出した映像ブレ量125に応じて設定する。 (B) to (d) show video cutout frames for the vehicle surrounding images 401 to 403, respectively. When there is no vehicle vibration, as shown in (b), the video cutout frame 601 is set so that the horizontal and vertical center points are the same with respect to the vehicle surrounding image 401. When the vehicle vibrates to the upper right, as shown in (d), an image cutout frame 602 in which the horizontal and vertical center points are shifted to the lower left with respect to the vehicle surrounding image 402 is set. When the vehicle vibrates to the lower left, as shown in (c), an image cutout frame 603 in which the horizontal and vertical center points are shifted to the upper right with respect to the vehicle surrounding image 403 is set. In either case, the shift amount is set according to the video blur amount 125 calculated by the video blur calculation unit 105.
 このように映像ブレ量125に応じて映像切り出し枠601~603をシフトさせて設定することで、切り出される映像では映像ブレが除去されて同一の映像範囲となるよう補正される。 As described above, by setting the image cutout frames 601 to 603 by shifting according to the image blur amount 125, the image to be cut out is corrected so that the image blur is removed and the same image range is obtained.
 以上のように、実施例1の車両用映像処理装置では、車両周囲の映像を取得する映像取得部で取得した時間的に異なる複数の車両周囲映像から車両周囲映像の動きを算出するとともに、車両の操作情報から車両の動きを算出し、上記周囲映像動き量と上記車両動き量の差分量から車両の振動のみによる映像ブレ量を算出する。そして、算出した映像ブレ量に基づき、車両周囲映像の切り出し位置を補正することで映像ブレを低減し、車両操作に追従した映像を表示させることが可能となる。 As described above, in the vehicle image processing device according to the first embodiment, the motion of the vehicle surrounding image is calculated from the plurality of temporally different vehicle surrounding images acquired by the video acquisition unit that acquires the surrounding image of the vehicle, and the vehicle The movement of the vehicle is calculated from the operation information, and the amount of image blur due to only the vibration of the vehicle is calculated from the difference between the surrounding image movement amount and the vehicle movement amount. Then, based on the calculated video blur amount, it is possible to reduce the video blur by correcting the cut-out position of the vehicle surrounding video and display the video following the vehicle operation.
 前記実施例1では、映像撮影装置107を車両前方に取り付けた場合について説明したが、実施例2では、映像撮影装置107を車両後方あるいは車両側方に取り付けた場合について説明する。実施例2における映像処理装置107の構成は図1と同等であり、以下では、車両動き算出部104の算出する車両動き量124について説明する。 In the first embodiment, the case where the video photographing device 107 is attached to the front of the vehicle has been described. In the second embodiment, the case where the video photographing device 107 is attached to the rear or side of the vehicle will be described. The configuration of the video processing device 107 in the second embodiment is the same as that in FIG. 1, and hereinafter, the vehicle motion amount 124 calculated by the vehicle motion calculation unit 104 will be described.
 図7は、実施例2において、車両動き算出部104で算出する車両動き量の一例を示す図である。この場合、映像撮影装置107は車両後方に取り付け、撮影方向は車両進行方向に対して反対方向とする。 FIG. 7 is a diagram illustrating an example of the amount of vehicle movement calculated by the vehicle movement calculation unit 104 in the second embodiment. In this case, the video photographing device 107 is attached to the rear of the vehicle, and the photographing direction is opposite to the vehicle traveling direction.
 (a)は車両が直進すなわち舵角=0度の場合で、車両の速度に応じた動きベクトル124a’が算出される。動きベクトルは、画面周囲から車両進行方向の反対方向である画面中央に向かい放射状に発生し、画面周囲ほど動きベクトルが大きくなる。 (A) is a case where the vehicle goes straight, that is, the steering angle = 0 degree, and a motion vector 124a 'corresponding to the speed of the vehicle is calculated. The motion vector is generated radially from the periphery of the screen toward the center of the screen, which is the direction opposite to the traveling direction of the vehicle, and the motion vector increases toward the periphery of the screen.
 (b)は車両が左折した場合で、その舵角に応じて動きベクトルの放射中心が画面左側に移動した動きベクトル124b’の分布となる。また(c)は車両が右折した場合で、動きベクトルの放射中心が画面右側に移動した動きベクトル124c’ の分布となる。 (B) shows a distribution of a motion vector 124b 'in which the radiation center of the motion vector moves to the left side of the screen according to the steering angle when the vehicle turns left. (C) shows a distribution of a motion vector 124c ′ in which the radiation center of the motion vector moves to the right side of the screen when the vehicle turns to the right.
 次に図8は、映像撮影装置107を車両側方に取り付けた場合における車両動き量を示す図である。(a)は、映像撮影装置107を車両左側に取り付け、車両が直進する時に算出される動きベクトル124a”を示す。また(b)は、映像撮影装置107を車両右側に取り付け、車両が直進する時に算出される動きベクトル124b”を示す。 Next, FIG. 8 is a diagram showing the amount of vehicle movement when the image capturing device 107 is attached to the side of the vehicle. (A) shows the motion vector 124a ″ calculated when the video photographing device 107 is attached to the left side of the vehicle and the vehicle goes straight. Further, (b) shows the motion vector 124a ″ attached to the right side of the vehicle and the vehicle goes straight. A motion vector 124b "calculated sometimes is shown.
 実施例2においても、映像ブレ算出部105では、周囲映像動き算出部102で算出した周囲映像動き量122(MV1)と、図7または図8で説明した車両動き量124(MV2)の差分量から映像ブレ量125(MV3)を算出する。また映像ブレ補正部106では、映像ブレ量125(MV3)に基づいて車両周囲映像121の補正を行う。 Also in the second embodiment, in the image blur calculation unit 105, the difference amount between the surrounding image motion amount 122 (MV1) calculated by the surrounding image motion calculation unit 102 and the vehicle motion amount 124 (MV2) described in FIG. 7 or FIG. From this, the image blur amount 125 (MV3) is calculated. Further, the image blur correction unit 106 corrects the vehicle surrounding image 121 based on the image blur amount 125 (MV3).
 以上のように、実施例2の車両用映像処理装置では、映像撮影装置107を車両後方あるいは車両側方に取り付けた場合においても、映像撮影装置107の車両取り付け位置に基づいて車両動き量を算出するようにした。これにより、周囲映像動き量と車両動き量の差分から車両の振動のみによる映像ブレ量を算出し、算出した映像ブレに基づき、車両周囲映像の切り出し位置を補正することで映像ブレを低減し、車両操作に追従した映像を表示させることが可能となる。 As described above, in the vehicular video processing apparatus according to the second embodiment, the amount of vehicle movement is calculated based on the vehicle mounting position of the video imaging apparatus 107 even when the video imaging apparatus 107 is mounted on the rear or side of the vehicle. I tried to do it. Thereby, the amount of image blur due to only the vibration of the vehicle is calculated from the difference between the amount of motion of the surrounding image and the amount of vehicle motion, and based on the calculated image blur, the image blur is reduced by correcting the clipping position of the vehicle surrounding image, An image following the vehicle operation can be displayed.
 実施例3では、前記実施例1または実施例2において映像撮影装置107で撮影した車両周囲映像120に自車両の少なくとも一部が写っている場合について説明する。実施例3における映像処理装置100の構成は図1と同等であり、以下では、車両動き算出部104の算出する車両動き量124について説明する。 In the third embodiment, a case will be described in which at least a part of the host vehicle is reflected in the vehicle surrounding image 120 captured by the video imaging device 107 in the first or second embodiment. The configuration of the video processing apparatus 100 according to the third embodiment is the same as that in FIG. 1, and the vehicle movement amount 124 calculated by the vehicle movement calculation unit 104 will be described below.
 図9は、実施例3において、車両動き算出部104で算出した車両動き量の一例を示す図である。この場合、映像撮影装置107は車両前方に取り付けられ、撮影方向は車両進行方向とする。また図9において、領域900は映像撮影装置107で撮影した車両周囲映像121において、自車両を写り込んだ領域(例えばボンネット)を示す。 FIG. 9 is a diagram illustrating an example of the amount of vehicle movement calculated by the vehicle movement calculation unit 104 in the third embodiment. In this case, the video photographing device 107 is attached to the front of the vehicle, and the photographing direction is the vehicle traveling direction. In FIG. 9, an area 900 indicates an area (for example, a bonnet) in which the subject vehicle is reflected in the vehicle surrounding image 121 captured by the image capturing device 107.
 (a)は、車両が直進している場合の車両動き量(動きベクトル)124aを算出した例を示している。このうち、自車両の写り込み領域900では、車両が動いても映像の変化がなく常に静止画となる領域である。即ち、領域900において前記した車両動き量の補正を行うと、本来静止している自車両の映像が画面内を移動または消失して誤った映像を表示することになる。そこで、領域900に含まれる動きベクトル911、912、913を全てゼロに補正し、(a’)に示すように補正処理後の動きベクトルを車両動き量124aとして映像ブレ算出部105に出力する。 (A) shows an example in which the vehicle motion amount (motion vector) 124a is calculated when the vehicle is traveling straight. Among these, the reflection area 900 of the own vehicle is an area in which the image is not changed even when the vehicle moves and is always a still image. That is, when the above-described vehicle movement amount correction is performed in the area 900, an image of the own vehicle that is originally stationary moves or disappears in the screen, and an incorrect image is displayed. Therefore, the motion vectors 911, 912, and 913 included in the area 900 are all corrected to zero, and the corrected motion vector is output to the image blur calculation unit 105 as the vehicle motion amount 124a as shown in (a ′).
 (b)は、左折時の車両動き量(動きベクトル)124bを算出した例を示している。この場合も、自車両領域900に含まれる動きベクトル921、922をゼロとして、(b’)に示す補正後の動きベクトルを車両動き量124bとして映像ブレ算出部105に出力する。また(c)は、右折時の車両動き量(動きベクトル)124cを算出した例を示している。この場合も、自車両領域900に含まれる動きベクトル931、932をゼロとして、(c’)に示す補正後の動きベクトルを車両動き量124cとして映像ブレ算出部105に出力する。 (B) shows an example in which the vehicle motion amount (motion vector) 124b at the time of a left turn is calculated. Also in this case, the motion vectors 921 and 922 included in the host vehicle area 900 are set to zero, and the corrected motion vector shown in (b ′) is output to the image blur calculation unit 105 as the vehicle motion amount 124b. Further, (c) shows an example in which a vehicle motion amount (motion vector) 124c at the time of a right turn is calculated. Also in this case, the motion vectors 931 and 932 included in the host vehicle area 900 are set to zero, and the corrected motion vector shown in (c ′) is output to the image blur calculation unit 105 as the vehicle motion amount 124c.
 以上のように、実施例3の車両用映像処理装置では、車両周囲映像に自車両の少なくとも一部が写っていた場合に、自車両の領域を除いて車両動き量(動きベクトル)を計算することにより、より精度良く映像ブレを補正することが可能となる。 As described above, in the vehicle image processing device according to the third embodiment, when at least a part of the host vehicle is captured in the vehicle surrounding image, the vehicle motion amount (motion vector) is calculated excluding the area of the host vehicle. Thus, it is possible to correct the image blur more accurately.
 実施例4では、前記した映像処理装置を車両の遠隔操作システムに適用した場合について説明する。 Embodiment 4 describes a case where the above-described video processing device is applied to a vehicle remote control system.
 図10は、映像処理装置を車両の遠隔操作システムに適用した場合の構成の一例を示すブロック図である。前記実施例と同一処理となる箇所については同一符号を付して、その説明を省略する。遠隔操作システムは、遠隔操作車両1000とこれを操作する遠隔操作装置1001より構成され、遠隔操作装置1001には、前記実施例で述べた映像処理装置100を適用している。 FIG. 10 is a block diagram showing an example of the configuration when the video processing apparatus is applied to a vehicle remote control system. Parts that are the same as those in the embodiment are given the same reference numerals, and descriptions thereof are omitted. The remote operation system includes a remote operation vehicle 1000 and a remote operation device 1001 for operating the vehicle, and the video processing device 100 described in the above embodiment is applied to the remote operation device 1001.
 遠隔操作車両1000は、車両周囲の映像を撮影する映像撮影装置107および車両を駆動する車両駆動部1002より構成される。映像撮影装置107は、撮影した車両周囲映像を無線あるいは有線のいずれか一方あるいは両方からなる伝送路1020を経由して遠隔操作装置1001に出力する。車両駆動部1002は、遠隔操作装置1001に含まれる車両操作部108から出力される車両操作情報を無線あるいは有線のいずれか一方あるいは両方からなる伝送路1021を経由して受信する。 The remote operation vehicle 1000 includes an image capturing device 107 that captures images around the vehicle and a vehicle drive unit 1002 that drives the vehicle. The video imaging device 107 outputs the captured vehicle surrounding video to the remote control device 1001 via a transmission path 1020 that is either wireless or wired or both. The vehicle drive unit 1002 receives vehicle operation information output from the vehicle operation unit 108 included in the remote operation device 1001 via a transmission path 1021 that is either wireless or wired or both.
 遠隔操作装置1001は、映像撮影装置107で撮影した映像を受信し、映像処理装置100で処理して映像表示装置109に表示する。車両操作者は、映像表示装置109に表示される車両周囲映像を見ながら、車両操作部108にて車両の操作を行い、その操作情報は車両駆動部1002へ送信される。また、遠隔操作車両1000と遠隔操作装置1001とは伝送路1020および1021で接続する構成としているため、遠隔操作車両1000の置かれている場所とは別の離れた場所から遠隔操作車両1000を操作することが可能である。 The remote operation device 1001 receives the video shot by the video shooting device 107, processes it by the video processing device 100, and displays it on the video display device 109. The vehicle operator operates the vehicle at the vehicle operation unit 108 while viewing the vehicle surrounding image displayed on the video display device 109, and the operation information is transmitted to the vehicle drive unit 1002. Further, since the remote operation vehicle 1000 and the remote operation device 1001 are connected via transmission lines 1020 and 1021, the remote operation vehicle 1000 can be operated from a location apart from the location where the remote operation vehicle 1000 is located. Is possible.
 このような遠隔操作システムでは、操作者は映像表示装置109の映像を見ながら車両1000の操作を行う訳であるが、遠隔操作車両1000の振動により映像表示装置109の表示映像に映像ブレが発生すると操作性が悪くなる。そこで、実施例1~実施例3に示した映像処理装置100を遠隔操作装置1001に適用することにより、映像表示装置109に表示される映像のブレを低減するだけでなく、車両操作に追従した映像を表示することが可能となる。 In such a remote control system, the operator operates the vehicle 1000 while viewing the video on the video display device 109. However, image blurring occurs in the video displayed on the video display device 109 due to vibration of the remote control vehicle 1000. Then, the operability becomes worse. Therefore, by applying the video processing device 100 shown in the first to third embodiments to the remote operation device 1001, not only the blurring of the video displayed on the video display device 109 is reduced, but also the vehicle operation is followed. An image can be displayed.
 以上のように、実施例4の遠隔操作システムでは、遠隔から車両を操作する遠隔操作装置において、車両操作に伴う表示映像の動きについては追従し、車両の振動による表示映像の映像ブレを低減することが可能となり、遠隔操作車両に対する操作性が向上する。 As described above, in the remote operation system according to the fourth embodiment, in the remote operation device that remotely operates the vehicle, the movement of the display image following the vehicle operation is tracked, and the image blur of the display image due to the vibration of the vehicle is reduced. Therefore, the operability for the remotely operated vehicle is improved.
 なお、前記の実施例1~実施例4では、映像ブレ補正部106の出力を映像表示装置109で表示して車両操作者の操作補助のために用いる構成としたが、映像表示装置109の代わりに、車両周囲の障害物等を検出するための画像処理部に出力して使用する構成も可能である。 In the first to fourth embodiments, the output of the image blur correction unit 106 is displayed on the image display device 109 and used for assisting the operation of the vehicle operator. In addition, it is possible to output the image processing unit for detecting obstacles around the vehicle.
 100:車両用映像処理装置、
 101:映像取得部、
 102:周囲映像動き算出部、
 103:操作情報取得部、
 104:車両動き算出部、
 105:映像ブレ算出部、
 106:映像ブレ補正部、
 107:映像撮影装置、
 108:車両操作部、
 109:映像表示装置、
 120:撮影映像、
 121,221:車両周囲映像、
 122:周囲映像動き量(動きベクトルMV1)、
 123:車両操作情報、
 124:車両動き量(動きベクトルMV2)、
 125:映像ブレ量(動きベクトルMV3)、
 126:補正後車両周囲映像、
 127:操作情報、
 201:映像バッファ部、
 202:動きベクトル算出部、
 401,402,403:車両周囲映像、
 601,602,603:映像切り出し枠、
 900:自車両領域、
 911~913,921,922,931,932:自車両領域内の動きベクトル、
 1000:遠隔操作車両、
 1001:遠隔操作装置、
 1020,1021:伝送路。
100: Vehicle image processing device,
101: Video acquisition unit
102: Ambient image motion calculation unit,
103: Operation information acquisition unit,
104: Vehicle motion calculation unit,
105: Image blur calculation unit,
106: Image blur correction unit,
107: video shooting device,
108: Vehicle operation unit,
109: Video display device,
120: Shooting video,
121, 221: Vehicle surrounding image,
122: Ambient image motion amount (motion vector MV1),
123: Vehicle operation information,
124: Vehicle movement amount (motion vector MV2),
125: Video blur amount (motion vector MV3),
126: Corrected vehicle surrounding image,
127: Operation information,
201: Video buffer unit,
202: Motion vector calculation unit,
401, 402, 403: Vehicle surrounding image,
601, 602, 603: video clipping frame,
900: Own vehicle area,
911 to 913, 921, 922, 931, 932: motion vectors in the host vehicle area,
1000: remotely operated vehicle,
1001: remote control device,
1020, 1021: Transmission path.

Claims (6)

  1.  車両に取り付けた映像撮影装置により撮影した車両周囲映像を処理する車両用映像処理装置において、
     前記映像撮影装置により撮影した車両周囲映像を取得する映像取得部と、
     前記映像取得部で取得した時間的に異なる複数の車両周囲映像から映像の動き量(MV1)を算出する周囲映像動き算出部と、
     車両の操作情報を取得する操作情報取得部と、
     前記操作情報取得部で取得した操作情報から車両の操作に伴う車両周囲映像の動き量(MV2)を算出する車両動き算出部と、
     前記周囲映像動き算出部により算出した動き量(MV1)から前記車両動き算出部により算出した動き量(MV2)を差し引き、車両の振動による映像ブレ量(MV3)を算出する映像ブレ算出部と、
     前記映像ブレ算出部により算出した映像ブレ量(MV3)に基づいて、前記映像取得部で取得した車両周囲映像の映像ブレ補正を行う映像ブレ補正部と、
     を備えることを特徴とする車両用映像処理装置。
    In a vehicle image processing device for processing a vehicle surrounding image captured by a video image capturing device attached to a vehicle,
    An image acquisition unit for acquiring a vehicle surrounding image captured by the image capturing device;
    A surrounding image motion calculating unit that calculates a motion amount (MV1) of the image from a plurality of vehicle surrounding images that are acquired by the image acquiring unit and that are different in time;
    An operation information acquisition unit for acquiring operation information of the vehicle;
    A vehicle motion calculation unit that calculates a motion amount (MV2) of a vehicle surrounding image accompanying the operation of the vehicle from the operation information acquired by the operation information acquisition unit;
    A video blur calculation unit that subtracts the motion amount (MV2) calculated by the vehicle motion calculation unit from the motion amount (MV1) calculated by the surrounding video motion calculation unit, and calculates a video blur amount (MV3) due to vehicle vibration;
    A video blur correction unit that performs video blur correction on the vehicle surrounding video acquired by the video acquisition unit based on the video blur amount (MV3) calculated by the video blur calculation unit;
    An image processing apparatus for a vehicle, comprising:
  2.  請求項1に記載の車両用映像処理装置において、
     前記操作情報取得部の取得する操作情報には、車両の速度情報と操舵情報が含まれることを特徴とする車両用映像処理装置。
    The vehicle image processing device according to claim 1,
    The operation information acquired by the operation information acquisition unit includes vehicle speed information and steering information.
  3.  請求項1に記載の車両用映像処理装置において、
     前記車両動き算出部は、前記映像撮影装置の前記車両への取り付け位置と撮影方向を基に、前記操作情報から車両の操作に伴う車両周囲映像の動き量を算出することを特徴とする車両用映像処理装置。
    The vehicle image processing device according to claim 1,
    The vehicle motion calculation unit calculates a motion amount of a vehicle surrounding image accompanying the operation of the vehicle from the operation information based on an attachment position of the video imaging device to the vehicle and a shooting direction. Video processing device.
  4.  請求項1に記載の車両用映像処理装置において、
     前記車両動き算出部は、前記映像取得部で取得した車両周囲映像の中に自車の写り込み領域が存在する場合、該写り込み領域内の動き量(MV2)をゼロに補正して動き量を算出することを特徴とする車両用映像処理装置。
    The vehicle image processing device according to claim 1,
    The vehicle motion calculation unit corrects the amount of movement (MV2) in the reflection region to zero when the reflection region of the own vehicle exists in the vehicle surrounding image acquired by the video acquisition unit. An image processing apparatus for a vehicle, characterized in that
  5.  請求項1に記載の車両用映像処理装置において、
     前記映像ブレ補正部は、前記映像ブレ算出部により算出した映像ブレ量(MV3)に基づいて、前記映像取得部で取得した車両周囲映像の映像切り出し枠の位置をシフトさせて映像を切り出すことを特徴とする車両用映像処理装置。
    The vehicle image processing device according to claim 1,
    The video blur correction unit shifts the position of the video clipping frame of the vehicle surrounding video acquired by the video acquisition unit based on the video blur amount (MV3) calculated by the video blur calculation unit, and cuts out the video. A video processing apparatus for vehicles.
  6.  遠隔操作車両を操作する遠隔操作装置において、
     前記遠隔操作車両に対して伝送路を介して操作情報を送信し操作を行う車両操作部と、
     前記遠隔操作車両に取り付けた映像撮影装置により撮影した車両周囲映像を受信して処理する車両用映像処理装置と、
     前記車両用映像処理装置にて処理した車両周囲映像を表示する映像表示装置とを備え、
     前記車両用映像処理装置は、
     前記映像撮影装置により撮影した車両周囲映像を伝送路を介して受信する映像取得部と、
     前記映像取得部で受信した時間的に異なる複数の車両周囲映像から映像の動き量(MV1)を算出する周囲映像動き算出部と、
     前記車両操作部から前記遠隔操作車両の操作情報を取得する操作情報取得部と、
     前記操作情報取得部で取得した操作情報から前記遠隔操作車両の操作に伴う車両周囲映像の動き量(MV2)を算出する車両動き算出部と、
     前記周囲映像動き算出部により算出した動き量(MV1)から前記車両動き算出部により算出した動き量(MV2)を差し引き、前記遠隔操作車両の振動による映像ブレ量(MV3)を算出する映像ブレ算出部と、
     前記映像ブレ算出部により算出した映像ブレ量(MV3)に基づいて、前記映像取得部で受信した車両周囲映像の映像ブレ補正を行う映像ブレ補正部と、
     を有することを特徴とする遠隔操作装置。
    In a remote control device for operating a remote control vehicle,
    A vehicle operation unit that transmits operation information to the remote operation vehicle via a transmission line and performs an operation;
    A vehicle image processing device for receiving and processing a vehicle surrounding image captured by the image capturing device attached to the remote operation vehicle;
    An image display device for displaying a vehicle surrounding image processed by the vehicle image processing device,
    The vehicle image processing device includes:
    A video acquisition unit that receives a vehicle surrounding image captured by the video imaging device via a transmission path;
    A surrounding image motion calculating unit that calculates a motion amount (MV1) of the image from a plurality of vehicle surrounding images that are received by the image acquisition unit in time;
    An operation information acquisition unit for acquiring operation information of the remote operation vehicle from the vehicle operation unit;
    A vehicle motion calculation unit that calculates a motion amount (MV2) of a vehicle surrounding image associated with the operation of the remotely operated vehicle from the operation information acquired by the operation information acquisition unit;
    Video blur calculation for subtracting the motion amount (MV2) calculated by the vehicle motion calculation unit from the motion amount (MV1) calculated by the surrounding video motion calculation unit to calculate a video blur amount (MV3) due to vibration of the remotely operated vehicle. And
    A video blur correction unit that performs video blur correction of the vehicle surrounding video received by the video acquisition unit based on the video blur amount (MV3) calculated by the video blur calculation unit;
    A remote control device characterized by comprising:
PCT/JP2015/075573 2015-09-09 2015-09-09 Vehicle-use image processing apparatus WO2017042903A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/075573 WO2017042903A1 (en) 2015-09-09 2015-09-09 Vehicle-use image processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/075573 WO2017042903A1 (en) 2015-09-09 2015-09-09 Vehicle-use image processing apparatus

Publications (1)

Publication Number Publication Date
WO2017042903A1 true WO2017042903A1 (en) 2017-03-16

Family

ID=58239319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075573 WO2017042903A1 (en) 2015-09-09 2015-09-09 Vehicle-use image processing apparatus

Country Status (1)

Country Link
WO (1) WO2017042903A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06282655A (en) * 1993-03-30 1994-10-07 Toyota Motor Corp Device for recognizing moving object
JPH07177419A (en) * 1994-12-19 1995-07-14 Hitachi Ltd Signal processor
JP2005318568A (en) * 2004-03-30 2005-11-10 Fuji Photo Film Co Ltd Image compensation device and image compensation method
JP2006134035A (en) * 2004-11-05 2006-05-25 Fuji Heavy Ind Ltd Moving object detecting device and moving object detecting method
JP2007011732A (en) * 2005-06-30 2007-01-18 Sumitomo Electric Ind Ltd Method for discriminating attached position, attached position discrimination system and discrimination apparatus
JP2008172310A (en) * 2007-01-09 2008-07-24 Fujifilm Corp Electronic hand blurring correction method, device and program, and imaging apparatus
JP2010010798A (en) * 2008-06-24 2010-01-14 Canon Inc Moving picture processing unit, image recording device integrated with camera, moving picture reproducing unit, remote operation system, moving picture processing method, moving picture processing program, storage medium, and moving picture processing system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06282655A (en) * 1993-03-30 1994-10-07 Toyota Motor Corp Device for recognizing moving object
JPH07177419A (en) * 1994-12-19 1995-07-14 Hitachi Ltd Signal processor
JP2005318568A (en) * 2004-03-30 2005-11-10 Fuji Photo Film Co Ltd Image compensation device and image compensation method
JP2006134035A (en) * 2004-11-05 2006-05-25 Fuji Heavy Ind Ltd Moving object detecting device and moving object detecting method
JP2007011732A (en) * 2005-06-30 2007-01-18 Sumitomo Electric Ind Ltd Method for discriminating attached position, attached position discrimination system and discrimination apparatus
JP2008172310A (en) * 2007-01-09 2008-07-24 Fujifilm Corp Electronic hand blurring correction method, device and program, and imaging apparatus
JP2010010798A (en) * 2008-06-24 2010-01-14 Canon Inc Moving picture processing unit, image recording device integrated with camera, moving picture reproducing unit, remote operation system, moving picture processing method, moving picture processing program, storage medium, and moving picture processing system

Similar Documents

Publication Publication Date Title
TWI600559B (en) System and method for image processing
JP3679988B2 (en) Image processing apparatus and image processing method
JP4863922B2 (en) Driving support system and vehicle
KR101611194B1 (en) Apparatus and method for peripheral image generation of vehicle
US20080151053A1 (en) Operation Support Device
JP2009231936A (en) Image processing device and method, drive support system, and vehicle
JP2008027138A (en) Vehicle monitoring device
JP2008085710A (en) Driving support system
JP2012003604A (en) Mobile body detector and mobile body detection method
JP2016078484A (en) Image generation apparatus and image generation method
WO2019156072A1 (en) Attitude estimating device
JP2018142884A (en) Bird's eye video creation device, bird's eye video creation system, bird's eye video creation method, and program
JP5126549B2 (en) Driving support device, driving support method, and driving support program
JP5907914B2 (en) Vehicle driving support device
JP4857159B2 (en) Vehicle driving support device
JP6504086B2 (en) vehicle
JP2016002779A (en) Vehicular display apparatus
JP7029350B2 (en) Image processing device and image processing method
WO2017042903A1 (en) Vehicle-use image processing apparatus
KR101815840B1 (en) Around view monitoring apparatus based on video estimation process
JP2020017942A (en) Method and system for presenting situation around vehicle while reducing artifact
JP7009209B2 (en) Camera misalignment detection device, camera misalignment detection method and abnormality detection device
JP6941949B2 (en) Vehicle image display device
WO2016157666A1 (en) Camera attitude estimating device, operation supporting device and camera attitude estimating method
JP4696825B2 (en) Blind spot image display device for vehicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15903568

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15903568

Country of ref document: EP

Kind code of ref document: A1