WO2017042418A1 - Biomarkers in exhaled air for the diagnosis, classification and monitoring of lung cancer - Google Patents

Biomarkers in exhaled air for the diagnosis, classification and monitoring of lung cancer Download PDF

Info

Publication number
WO2017042418A1
WO2017042418A1 PCT/ES2016/070640 ES2016070640W WO2017042418A1 WO 2017042418 A1 WO2017042418 A1 WO 2017042418A1 ES 2016070640 W ES2016070640 W ES 2016070640W WO 2017042418 A1 WO2017042418 A1 WO 2017042418A1
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
metabolites
lung cancer
diagnosis
individuals
Prior art date
Application number
PCT/ES2016/070640
Other languages
Spanish (es)
French (fr)
Inventor
Bernabé JURADO GÁMEZ
María Dolores LUQUE DE CASTRO
Feliciano PRIEGO CAPOTE
Mónica CALDERÓN SANTIAGO
Ángela PERALBO MOLINA
Original Assignee
Servicio Andaluz De Salud
Universidad de Córdoba
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Servicio Andaluz De Salud, Universidad de Córdoba filed Critical Servicio Andaluz De Salud
Publication of WO2017042418A1 publication Critical patent/WO2017042418A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/497Physical analysis of biological material of gaseous biological material, e.g. breath

Definitions

  • the present invention is within the field of biomedicine and biotechnology, and specifically refers to a method of obtaining useful data for the diagnosis, classification and monitoring of cancer, preferably lung cancer, by analyzing Biomarkers: p-cresol, cumyl alcohol, eicosenamide, hexadecyldane, 2,4-bis-dimethylbenzyl-6-f-butylphenol, monosterate, spiro-2,4-heptane-1, 5-6-methylene, 13-heptadecin- 1-ol, methyl stearate, glycerol-1-palmitate, benzyl alcohol, 2,4-diphenyl-4-methyl-2- E-pentane in an isolated biological sample, preferably condensate of exhaled air.
  • Biomarkers p-cresol, cumyl alcohol, eicosenamide, hexadecyldane, 2,4-bis-dimethylbenzyl-6-f-butylphenol, monosterate, s
  • Chronic respiratory disease is a generic term that encompasses long-term pathological conditions that affect the airways and other lung structures involved in breathing.
  • chronic diseases two pathologies can be highlighted: chronic obstructive pulmonary disease (COPD) and lung cancer, the latter belonging to the list of the main causes of death related to the disease in the more developed countries [1,2].
  • COPD chronic obstructive pulmonary disease
  • lung cancer the latter belonging to the list of the main causes of death related to the disease in the more developed countries [1,2].
  • the high mortality rate due to the most serious respiratory diseases is associated with the low efficiency of screening methods for their detection in early stages [3].
  • the search for diagnostic tests for the early detection of chronic respiratory diseases has intensified in recent decades.
  • CT computed tomography
  • nitrite levels in the epithelial fluid have demonstrated their ability as a biomarker since an increase in this anion is directly associated with cancer [9].
  • Individual cytokines have also been investigated in the exhaled breath of patients with lung cancer using enzymatic immunoassays (EIA), but commercially available evidence with the required sensitivity for the detection of these compounds is lacking [10-13].
  • EIA enzymatic immunoassays
  • Other biomarkers allow discrimination between patients with COPD and healthy controls; however, they are not able to discriminate between these two groups of individuals and patients with lung cancer [16].
  • the sample to be analyzed may be condensed exhaled air (EBC); that is to say, the exhaled gas that condenses as a liquid solution by cooling, whose analysis can allow to know approximately the composition of the extracellular liquid and soluble exhaled gases.
  • EBC condensed exhaled air
  • the main component of EBC is water vapor, it has hundreds of different components, it can be found from small inorganic ions through large organic molecules to peptides, proteins, surfactants and macromolecules [23] in trace concentrations [24-27 ].
  • the sampling protocol for the EBC there are commercial devices that allow collection of two EBC fractions by separating the air from the upper and central airways (upper breath, UA) and the distal airway (lower breath, DA) .
  • UA contains compounds without clinical relevance [23]
  • the fractionation of the EBC allows the comparison of the composition profiles of the UA and DA to find metabolomic differences in patients with lung cancer compared with a group of risk factor composed of patients with COPD and with active smokers.
  • a third group was used as a control group, which was formed by healthy non-smoking individuals.
  • the UA and DA composition profiles for the three groups were obtained using gas chromatography coupled to high resolution mode mass spectrometry (GC-TOF / MS).
  • a first aspect of the invention relates to the use of p-cresol metabolites, cumyl alcohol, eicosenamide, hexadecyldane, 2,4-dis-dimethylbenzyl-6-t-butylphenol, monostetin, spiro-2, 4-heptane-1, 5-6-methylene, 13-heptadecin-1-ol, methyl stearate, glycerol-1-palmitate, benzyl alcohol and 2,4-diphenyl-4-methyl-2-E -pentane for the diagnosis, classification and monitoring of cancer.
  • the cancer is lung cancer.
  • a second aspect of the invention relates to a method of obtaining useful data for the diagnosis, classification and monitoring of an individual or subject potentially suffering from cancer, henceforth the first method of the invention, comprising: a) quantifying the p-cresol metabolites, cumyl alcohol, eicosenamide and hexadecylindane in a biological sample isolated from said individual.
  • the first method of the invention further comprises: b) comparing the amounts obtained in step (a) with a reference amount, where the reference amount for each metabolite is the average levels of said metabolites in healthy individuals.
  • the cancer is lung cancer.
  • the biological sample isolated from step (a) is exhaled air, preferably condensate of exhaled air.
  • the quantification of the metabolites of step (a) is performed by GC-TOF / MS analysis, preferably with electronic impact ionization (IE).
  • a third aspect of the invention relates to a method of diagnosis, classification and monitoring of cancer, hereinafter second method of the invention, comprising steps (a) - (b) of the first method of the invention, and furthermore it comprises: c) including the individual from step a) in the group of individuals presenting with cancer, when levels of at least 3 metabolites are detected, preferably of the 4 metabolites of step (a), in amounts significantly different from the reference amount .
  • the cancer is lung cancer.
  • a fourth aspect of the invention relates to a method of obtaining useful data for the diagnosis, classification and monitoring of an individual or subject potentially suffering from cancer, henceforth the third method of the invention, comprising: a) quantifying the 2,4-bis-dimethylbenzyl-6-t-butylphenol metabolites, monostetin, spiro-2,4-heptane-1, 5-6-methylene, 13-heptadecin-1-ol and methyl stearate in a sample biological isolated from said individual.
  • the third method of the invention further comprises: b) comparing the amounts obtained in step (a) with a reference amount, where the reference amount for each metabolite is the average levels of said metabolites in individuals with at least one risk factor for cancer, preferably smoking or with COPD.
  • the cancer is lung cancer.
  • the biological sample isolated from step (a) is exhaled air, preferably condensate of exhaled air.
  • the quantification of the metabolites of step (a) is performed by GC-TOF / MS analysis, preferably with electronic impact ionization (IE).
  • a fifth aspect of the invention relates to a method of diagnosis, classification and monitoring of cancer, hereafter referred to as the fourth method of the invention, comprising steps (a) - (b) of the third method of the invention, and also it comprises: c) including the individual from step a) in the group of individuals presenting with cancer, when levels of at least 3 metabolites, preferably of 4 metabolites, and more preferably of 5 metabolites of step (a) are detected, in amounts significantly Different reference quantity.
  • the cancer is lung cancer.
  • a sixth aspect of the invention relates to a method of obtaining useful data for the diagnosis, classification and monitoring of an individual or subject potentially suffering from cancer, hereafter referred to as the fifth method of the invention, which comprises: a) quantifying the Metabolites glycerol-1-palmitate, benzyl alcohol, monostetin, 2,4-diphenyl-4-methyl-2-E-pentane and p-cresol in a biological sample isolated from said individual.
  • the fifth method of the invention further comprises: b) comparing the amounts obtained in step (a) with a reference amount, where the reference amount for each metabolite is the average levels of said metabolites in healthy individuals.
  • the cancer is lung cancer.
  • the biological sample isolated from step (a) is exhaled air, preferably condensate of exhaled air.
  • the quantification of the metabolites of step (a) is performed by GC-TOF / MS analysis, preferably with electronic impact ionization (IE).
  • a seventh aspect of the invention relates to a method of diagnosis, classification and monitoring of cancer, hereafter sixth method of the invention, comprising steps (a) - (b) of the fifth method of the invention, and furthermore It comprises: c) including the individual from step a) in the group of individuals at high risk for cancer, when levels of at least 2 metabolites are detected, preferably 3 metabolites, more preferably 4 metabolites, and even more preferably 5 metabolites of step (a), in significantly different amounts of reference amount.
  • An eighth aspect of the invention relates to a kit or device comprising the elements necessary to quantify p-cresol metabolites, cumyl alcohol, eicosenamide, hexadecyldane, 2,4-bis-dimethylbenzyl-6-t-butylphenol , monostearin, spiro-2,4-heptane-1, 5-6-methylene, 13-heptadecin-1-ol, methyl stearate, glycerol-1 palmitate, benzyl alcohol and / or 2, 4-diphenyl-4-methyl-2-E-pentane, as described in any of the methods of the invention.
  • a ninth aspect of the invention relates to the use of the kit or device according to the preceding claim, for the diagnosis, classification and monitoring of cancer.
  • the cancer is lung cancer.
  • Figure 1 Bar chart comparing the composition of EBC samples collected from the upper and central airways (UA) and the distal airway (DA).
  • Figure 2 Discriminant analysis by partial least squares (PLS-DA) performed from the data set obtained after the analysis of expired condensed air extracts from upper and central airways comparing patients (A) with lung cancer (LC) and people with risk factor (FR), (B) patients with lung cancer and control (control) individuals, and (C) individuals with risk factor and control (control) individuals.
  • PLS-DA partial least squares
  • FIG 3. Discriminant partial least squares analysis (PLS-DA) performed from the data set obtained after the analysis of expired condensed air extracts from the distal airway comparing patients (A) with lung cancer (LC) and people with risk factor (FR), (B) patients with lung cancer and control (control) individuals, and (C) individuals with risk factor and control (control) individuals.
  • PLS-DA Discriminant partial least squares analysis
  • Box and whisker diagrams showing the variability of (A) four metabolites - monopalmitin, n-hexadecyldane, monostearin and squalene - in patients with lung cancer (LC) compared to individuals with risk factor (FR) and the cohort of control individuals, and (B) four metabolites— 1 1-eicosenamide, p-cresol, indole, benzoic acid 4-ethoxy ethyl ester in control individuals compared to lung cancer patients and individuals with risk factor.
  • PCA Principal Component Analysis
  • PCA Principal Component Analysis
  • PCA Principal Component Analysis
  • the authors of the present invention have identified and calculated the relative concentration of the different exhaled air condensate metabolites in individuals suffering from lung cancer, in individuals who present some risk factor of suffering it, and in healthy individuals. . They have found a series of markers for the diagnosis of individuals with lung cancer, differentiating subjects with lung cancer from those who do not. Thus, the present invention provides a method of obtaining useful data for the diagnosis, classification and monitoring of individuals with lung cancer.
  • a first aspect of the invention relates to the use of p-cresol metabolites, cumyl alcohol, eicosenamide, hexadecyldane, 2,4-bis-dimethylbenzyl-6-t-butylphenol, monostetin, spiro -2,4-heptane-1, 5-6-methylene, 13-heptadecin-1-ol, methyl stearate, glycerol-1-palmitate, benzyl alcohol and 2,4-diphenyl-4-methyl- 2-E-pentane for the diagnosis, classification and monitoring of cancer.
  • the cancer is lung cancer.
  • any metabolite, or any combination thereof, can be used, more preferably the metabolites are used grouped as follows.
  • the cancer is lung cancer.
  • p-Cresol a phenolic compound of low molecular weight known, among other things, as a degradation product of toluene and which, therefore, can be directly related to the tobacco use
  • p-Cresol a phenolic compound of low molecular weight known, among other things, as a degradation product of toluene and which, therefore, can be directly related to the tobacco use
  • it is a metabolite of the amino acid tyrosine and to some extent phenylalanine, due to the conversion to 4-hydroxyphenylacetic acid caused by intestinal bacteria before being decarboxylated to p-cresol (putrefaction).
  • Cumyl alcohol Monoterpene proposed as a marker for the detection of lung cancer in other studies that use exhaled air (vapor) as biofluid.
  • Eicosenamide A fatty acid derivative known for its potential as an antimicrobial agent.
  • Hexadecylindane Derived from the indanes proposed as a marker for the detection of lung cancer in other studies using exhaled air (vapor) as biofluid.
  • 2,4-Bis-dimethylbenzyl-6-t-butylphenol Compound derived from benzene related to tobacco consumption.
  • Monostearin It belongs to the family of monoacrylic glycerols, glycerides that consist of a fatty acid chain covalently linked to a glycerol molecule through an ester bond.
  • Espiro-2,4-heptane-1, 5-6-methylene There is no information about its existence in exhaled air or in any other biofluid.
  • Methyl stearate A fatty acid derivative previously identified in feces.
  • Glycerol-1-palmitate It belongs to the family of monoacrylic glycerols, glycerides that consist of a fatty acid chain covalently linked to a glycerol molecule through an ester bond.
  • Benzyl alcohol Benzene derivative known to be a product of the degradation of toluene and, therefore, can be directly related to tobacco consumption.
  • 2,4-Diphenyl-4-methyl-2-E-pentane Compound derived from benzene related to tobacco consumption.
  • a second aspect of the invention relates to a method of obtaining useful data for the diagnosis, classification and monitoring of cancer, hereinafter the first method of the invention, comprising: a) obtaining an isolated biological sample from an individual, b) quantify the metabolites p-cresol, cumyl alcohol, eicosenamide and hexadecylindane in the sample from step a).
  • the first method of the invention further comprises: c) comparing the amounts obtained in step (b) with a reference amount, where the reference amount for each metabolite is the average levels of said metabolites in healthy individuals.
  • the cancer is lung cancer.
  • the biological sample isolated from step (a) is exhaled air, preferably condensate of exhaled air.
  • the quantification of the metabolites of step (b) is performed by GC-TOF / MS analysis, preferably with electronic impact ionization (IE).
  • a third aspect of the invention relates to a method of diagnosis, classification and monitoring of cancer, hereinafter second method of the invention, comprising steps (a) - (c) of the first method of the invention, and furthermore it comprises: d) including the individual from step a) in the group of individuals presenting with cancer, when levels of at least 3 metabolites are detected, preferably of the 4 metabolites of step (b), in amounts significantly different from the reference amount .
  • a fourth aspect of the invention relates to a method of obtaining useful data for the diagnosis, classification and monitoring of an individual or subject potentially suffering from cancer, henceforth a third method of the invention, comprising: a) obtaining a biological sample isolated from an individual, b) quantify the metabolites 2,4-bis-dimethylbenzyl-6-t-butylphenol, monostetin, spiro-2,4-heptane-1, 5-6-methylene, 13-heptadecin -1-ol and methyl stearate in the sample from step a).
  • the third method of the invention further comprises: c) comparing the amounts obtained in step (a) with a reference amount, where the reference amount for each metabolite is the average levels of said metabolites in individuals with at least one risk factor for cancer, preferably smoking or with COPD.
  • the cancer is lung cancer.
  • the biological sample isolated from step (a) is exhaled air, preferably condensate of exhaled air.
  • the quantification of the metabolites of step (b) is performed by GC-TOF / MS analysis, preferably with electronic impact ionization (IE).
  • a fifth aspect of the invention relates to a method of diagnosis, classification and monitoring of cancer, hereafter referred to as the fourth method of the invention, comprising steps (a) - (c) of the third method of the invention, and also it comprises: d) including the individual from step a) in the group of individuals presenting with cancer, when levels of at least 3 metabolites, preferably of 4 metabolites, and more preferably of 5 metabolites of step (b) are detected, in amounts significantly other than the reference quantity.
  • the cancer is lung cancer.
  • a sixth aspect of the invention relates to a method of obtaining useful data for the diagnosis, classification and monitoring of an individual or subject potentially suffering from cancer, hereinafter fifth method of the invention, comprising: a) obtaining a isolated biological sample an individual, b) quantify the metabolites glycerol-1-palmitate, benzyl alcohol, monostetin, 2,4-diphenyl-4-methyl-2-E-pentane and p-cresol in the sample from step a ).
  • the fifth method of the invention further comprises: c) comparing the amounts obtained in step (b) with a reference amount, where the reference amount for each metabolite is the average levels of said metabolites in healthy individuals.
  • the cancer is lung cancer.
  • the biological sample isolated from step (a) is exhaled air, preferably condensate of exhaled air.
  • the quantification of the metabolites of step (b) is performed by GC-TOF / MS analysis, preferably with electronic impact ionization (IE).
  • a seventh aspect of the invention relates to a method of diagnosis, classification and monitoring of cancer, hereafter referred to as the sixth method of the invention, comprising steps (a) - (c) of the fifth method of the invention, and also It comprises: c) including the individual from step a) in the group of individuals at high risk for cancer, when levels of at least 2 metabolites are detected, preferably 3 metabolites, more preferably 4 metabolites, and even more preferably 5 metabolites of step (b), in significantly different amounts of reference amount.
  • the cancer is lung cancer.
  • a "biological sample”, as defined herein, is a small part of a subject, representative of the whole and may be a biopsy or a sample of body fluid.
  • Biopsies are small pieces of tissue and can be fresh, frozen or fixed, as fixed with formalin and embedded in paraffin (formalin-fixed and paraffin embedded FFPE).
  • Samples of body fluids can be blood, plasma, serum, urine, sputum, cerebrospinal fluid, milk or ductal fluid samples and can also be fresh, frozen or fixed. Samples can be surgically removed, by extraction, that is, by hypodermic or other needles, by microdissection or laser capture.
  • the sample must contain any suitable biological material to detect the desired biomarker or biomarkers / s, therefore, said sample could comprise material from the subject's cells.
  • the sample (s) used to develop the methods of the invention are a gas sample or bronchoalveolar lavage.
  • the sample is exhaled air, and more preferably condensate of exhaled air.
  • a “reference sample”, as used herein, means a sample obtained from individuals, preferably two or more individuals, known to be disease free (cancer, preferably lung cancer) or, alternatively, of the general population. Suitable levels of metabolites can be determined by measuring the levels of said metabolites in several suitable individuals, and such reference levels can be adjusted for populations of specific individuals or subjects.
  • the reference sample is obtained from a group of healthy individuals or subjects or of subjects without a previous history of lung cancer.
  • the amount and / or concentration of the metabolites in the reference sample can preferably be generated from a population of two or more individuals; for example, the population may comprise 3, 4, 5, 10, 15, 20, 30, 40, 50 or more individuals or subjects.
  • the reference sample is obtained from a group of risk individuals, preferably smokers and / or COPD patients.
  • an “individual” or “subject”, as used herein, refers to a mammal, human or non-human, under observation, and more preferably a human being.
  • the individual can be anyone, an individual predisposed to a disease (for example, lung cancer) or an individual suffering from said disease.
  • Quantity refers to, but is not limited to, the absolute or relative amount of metabolites, of their concentration in exhaled air, preferably in exhaled air condensate, as well. as to any other value or parameter related to them or that may be derived from them.
  • the amount of metabolites can be measured directly or indirectly.
  • comparison refers to, but is not limited to, the comparison of the quantity and / or concentration of the metabolites of the biological sample to be analyzed, also called the biological problem sample, with a quantity and / or concentration of metabolites of one or several desirable reference samples.
  • the reference sample can be analyzed, for example, simultaneously or consecutively, together with the problem biological sample.
  • the comparison described in section (c) of the method of the present invention can be performed manually or assisted by a computer.
  • Suitable reference amounts can be determined by the method of the present invention from a reference sample that can be analyzed, for example, simultaneously or consecutively, together with the problem biological sample.
  • the reference sample may be the negative controls, that is, the amounts detected by the methods of the invention in samples of individuals who do not suffer from the disease or in individuals with risk factor for suffering from the disease. (smoking and COPD). Steps (b) and / or (c) of the methods described above can be fully or partially automated.
  • the metabolites that are determined in step (b) can be determined individually, or any of their combinations can be determined.
  • the metabolites can be determined by any means known to the person skilled in the art.
  • the quantification of the metabolites of step (b) of the methods of the invention is preferably performed by analysis by GC-TOF / MS, preferably with electronic impact ionization (IE).
  • IE electronic impact ionization
  • the analytical equipment used and designated by GC-TOF / MS from the English Gas Chromatography-Time of Flight Mass Spectrometry, has allowed the development of a suitable method for the detection of organic molecules with a molecular weights of up to approximately 1000 Da.
  • the GC-Q / TOF offers high sensitivity and selectivity with the added value of providing accurate and high resolution information for the structural confirmation of metabolites.
  • the determination of the amount and / or concentration of metabolites can be done, for example, but not limited to, by means of an indicator system prepared on a solid support (paper or solid sorbent) in which selective or specific reagents for the compounds have been immobilized. identified as markers.
  • An eighth aspect of the invention relates to a kit or device comprising the elements necessary to quantify the metabolites p-cresol, cumyl alcohol, eicosenamide, hexadecyldane, 2,4-bis-dimethylbenzyl-6-t-butylphenol , monostetin, spiro-2,4-heptane-1, 5-6-methylene, 13-heptadecin-1-ol, methyl stearate, glycerol-1 palmitate, benzyl alcohol and / or 2 , 4-diphenyl-4-methyl-2-E-pentane, as described in any of the methods of the invention.
  • kit or device of the invention further comprises all those elements necessary to carry out an analysis by GC-TOF / MS.
  • the kit can also include, without any limitation, buffers, solutions for protein extraction, agents to prevent contamination, inhibitors of protein degradation, derivatizing reagents, etc.
  • the kit or device of the invention is a kit of parts, comprising a component A, formed by a device for collecting the sample from step a), and a component B, formed by the elements necessary to carry out the qualitative, semi-quantitative or quantitative analysis in the sample of step a) or any of the methods of the invention
  • the kit can include all the supports and containers necessary for its start-up and optimization.
  • the kit further comprises instructions for carrying out the methods of the invention.
  • a ninth aspect of the invention relates to the use of the kit or device according to the preceding claim, for the diagnosis, classification and monitoring of cancer.
  • the cancer is lung cancer.
  • TraceSELECT® hexane from Sigma-Aldrich (St. Louis, USA) was used as the organic solvent for sample preparation, a standard mixture of alkanes (from C10 to C40) also from Sigma-Aldrich for separation tests of GC and to establish the retention index calibration (Rl).
  • Deionized water (18 mO ⁇ cm) of a Millipore Milli-Q water purification system was also used.
  • the risk factor group consisted of 130 people, 83 of them active smokers (> 20 packages / year) and 47 individuals diagnosed with COPD using spirometry (FVC / FEV1 ratio ⁇ 0.7). Two reasons supported the inclusion of smokers and patients with COPD in the risk factor group: first, smoking is considered the most important risk factor for developing lung cancer and COPD; second, the increase in oxidative stress or the presence of inflammatory cells infiltrated in COPD and in lung cancer are common forms of theoretical explanation of lung damage (especially the latter).
  • the risk factor group clinical control for at least one year, was characterized by an average age of 61 ⁇ 8 years, with 82.4% of male individuals. The existence of lung cancer was ruled out in this group through CT and bronchoscopy.
  • the control group consists of 61 healthy individuals with an average of 60 ⁇ 9 years, 87% of them male individuals. All of them were non-active or passive smokers, without clinical symptoms and with a normal profile established by the chest radiograph.
  • the criteria for the exclusion of patients were: a) the coexistence of extrapulmonary tumor pathology or a treatment with cytostatic drugs for a different neoplasm; b) diagnosis of neoplasia in the last five years; c) unjustified weight loss ( ⁇ 7 kg) during the past year; d) serious disorder of any organ with negative influence on the prognosis or that prevented the application of the protocol (in the cases it was included the degree IV of heart failure according to the New York Heart Association, advanced liver cirrhosis, renal failure in phase V with the substitute treatment with hemodialysis or peritoneal dialysis, and the diagnostic lung disease not related to smoking, including interstitial pneumopathy, pneumonia, tuberculosis, etc. [8]). All experiments were carried out in accordance with the ethical principles of medical research in humans (World Medical Association, Declaration of Helsinki). The ethics committee of the Reina del Hospital Sof ⁇ a (Córdoba, Spain) approved and supervised the clinical study. EBC collection procedure
  • the ECOScreen2 device used for sampling allows direct collection and condensation of the EBC in disposable polyethylene bags. It is operated at -20 ° C, the collection of controlled EBC is carried out in two separate bags for the physical separation between the air contained within UA and that of DA [23].
  • the main modification was the insertion of a commercial protection filter from Scharlab (Barcelona, Spain) on the air inlet valve to prevent the entry of exogenous organic compounds and particles from the ambient atmosphere. This filter was changed periodically to avoid saturation.
  • the sampling of the breath was carried out for 15 minutes, time needed to collect an average volume of EBC of 1.5 ml of the DA and 1 ml of the UA. Only 101 people were able to provide a sufficient volume of the two fractions for analysis.
  • the samples were divided into 100 ⁇ aliquots and the vials were stored at -80 ° C until analysis. All samples were analyzed within 3 months after collection.
  • Sample preparation Sample preparation consisted of liquid-liquid extraction using hexane as an extractant. In all cases, 100 ⁇ of aliquots of EBC and the same volume of hexane were vortexed in a glass insert at room temperature for 1 min. Then, the organic phase was isolated and placed in a new glass insert for analysis. To eliminate exogenous interference, the targets were prepared by using treated water as the samples.
  • GC-TOF / MS analyzes were performed with electron impact ionization (El) at 70 eV and controlled by Masstiunter Acquisition B.06. Chromatographic separation was carried out on a fused silica capillary column DB-5MS-UI 30 m ⁇ 0.25 mm id, 0.25 ⁇ thick.
  • the temperature program for separation in the GC started at 60 ° C (1 min), followed by a temperature rise of 10 ° C / min to a final 300 ° C (2 min). A column temperature increase to 310 ° C was programmed for 4 min to ensure complete elution of all components of the injected sample.
  • Injections of 1 ⁇ of sample were carried out at 250 ° C without division of the flow, and ultrapure grade helium was used as carrier gas at a flow rate of 1.0 ml / min.
  • the interface, ion source and quadrupole temperatures were set at 280, 300 and 200 ° C, respectively.
  • the ion source filament was turned off until 5.5 minutes to prevent damage from the solvent front outlet.
  • the TOF detector performed 5 spectra / s in the m / z range from 50 to 550 and the resolution was 8500 (width at half the maximum peak height, FWHM) at m / z 501, 9706.
  • the high purity PFTBA perfluorotri-n-butylamine
  • the metabolites were identified by searching the MS spectra in the NIST 1 1 database taking into account the Rl values.
  • the Unknown Analysis software version 7.0, Agilent Technologies, Santa Clara, CA, USA
  • the processing of raw data files was initiated by deconvolution of potential molecular entities (MFs) with the appropriate algorithm included in the software.
  • MFs potential molecular entities
  • the deconvolution algorithm for the absolute height parameter considered all ions greater than 1,500 counts.
  • the precision error and window size were set at 50 ppm and 150, respectively.
  • the data files in compound file sharing format (.cef) were created for each sample and exported to the Mass Profiler Professional (MPP) software (version 12.1, Agilent Technologies, Santa Clara, CA, USA) for further processing.
  • MPP Mass Profiler Professional
  • the data was processed by aligning the potential MFs according to their retention time and the m / z value using a 0.3 min tolerance window and an accuracy error of 15 ppm.
  • the MFs from the analysis present in the targets treated as samples were removed from the final MFs data set for the EBC samples.
  • the extraction algorithm confirmed the effectiveness of this filtering stage. This correction was applied to all the treatments of the analyzed samples.
  • the gradual reduction of the number of MFs is based on the frequency of occurrence by comparing repetitions of the same group of people. A 100% frequency filter was set, thus ensuring the detection of each MF in all repetitions of each group of injected samples (lung cancer, risk factor group and control of healthy individuals).
  • the resulting MFs were exported (.cef file) for recursive analysis.
  • Quantitative Analysis software version 7.0, Agilent Technologies, Santa Clara, CA, USA
  • the resulting table is exported in comma separated values format (.csv file) and reprocessed with the Mass Profiler Professional (MPP) software package.
  • MPP Mass Profiler Professional
  • a filter was applied to remove the samples with a replication within the variability above 10% to ensure the effectiveness of the recursive analysis.
  • the data set was normalized by logarithmic transformation of the relationship between the peak area of each molecular entity and the total sum of the areas of the MFs present in 100% of the samples (MSTUS).
  • the identification was first carried out by searching for MS spectra in the NIST1 database 1. Only identifications with a coincidence factor and an inverse coincidence factor greater than 700 were considered valid. Rl values included in The NIST database was also taken into account to support the identifications.
  • An Rl calibration model was constructed by comparing the Rl values of a standard mixture of alkanes (composed of C10 and C40 alkane between an even number of carbon atoms) using the chromatographic method proposed in this investigation and the values of Rl provided by the NIST database.
  • Figure 1 Supplementary shows the Rl calibration line obtained by this approach. The requirement to accept the NIST identifications was that the difference between the theoretical and experimental Rl, obtained by extrapolation of the calibration curve, must be within ⁇ 100 units.
  • the NIST database does not contain high resolution MS information as provided by the TOF detector. For this reason, a third step was included to validate the identification of each MF through the use of high resolution mass spectrometry. Therefore, the molecular formula for the tentative precursor ion ([M] + ) and the most intense product ions obtained for each MF must fit the NIST identification by setting a mass cut-off value of 10 ppm. Table 1 contains the identified compounds classified by chemical families.
  • the sampling device contains valves that allow separation according to the expiration route, in addition to the fractionation of the exhaled volume according to a volume threshold in the two cavities. This configuration makes saliva contamination highly unlikely [28].
  • EBC fractionation is supposed to separate exogenous and endogenous components, there are no previous studies that have evaluated the composition of the two EBC fractions. All the compounds identified were present in both UA and DA samples, but some of them showed differences between the fractions in terms of their relative concentration.
  • Figure 1 shows the bar chart comparing the average relative concentration for the 47 compounds detected in the samples. As can be seen, most of the identified compounds were found in DA at higher concentrations than in the UA.
  • the most interesting model to help in the diagnosis of lung cancer is the comparison between patients with lung cancer and the risk factor group.
  • the DA fraction was characterized by a higher classification capacity than the UA fraction.
  • the model provided by the DA analysis is well balanced in terms of sensitivity and specificity, these parameters being 89.8 and 79.5%, respectively. For this reason, the DA fraction was selected for other studies that deal with the identification of important compounds that help explain the observed patterns.
  • Monopalmitin and monostearin were characterized by different behaviors: monopalmitin was more concentrated in the risk factor group than in the patients with lung cancer, which also had a higher concentration of this monoacrylic glycerol than healthy individuals.
  • the monostearin presented the opposite profile: as the risk factor group gave a lower relative concentration than patients with lung cancer. Squalane gave a concentration profile similar to that of monopalmitin.
  • the fourth compound (hexadecyldane, a derivative of indane) has not been related to any endogenous source and, therefore, could be attributed to an exogenous origin.
  • Phillips et al. [31] have also detected indane derivatives in respiration, and even selected one of them as a biomarker of lung cancer [32].
  • the benzoic acid ester derivative was found in lower concentrations in the lung cancer group and individuals with a risk factor than in the healthy group. Philipps et to the. They have identified this compound in human respiration as a potential candidate marker to discriminate lung cancer patients [32].
  • indole Another interesting compound was indole, which is involved in tryptophan metabolism, particularly in bacteria [34].
  • indole has been found in cigarette smoke and, in this context, could be associated with tobacco use [35].
  • the relative concentration profile of this compound is characterized by a higher concentration in the risk factor group followed by patients with lung cancer and then at a lower level in healthy individuals.
  • other compounds that contribute to differentiate healthy individuals were eicosenamide and erucamide, present at lower levels in this group compared to individuals in the risk factor and lung cancer group.
  • fatty amides had not been described endogenously, but some analogue such as oleamide, which was also found in EBC, is structurally related to the endogenous cannabinoid anandamide, implicated in many biological functions. Fatty amides are also used as plastic additives and, for this reason, a source of contamination could also explain the presence of eicosenamide and erucamide in the EBC.
  • EBC has not been widely exploited in the clinical field despite the advantages associated with its sampling.
  • a method of metabolomic analysis of EBC based on GC-TOF / MS profiles in high resolution mode has been developed using liquid-liquid extraction for sample preparation.
  • the identified compounds have been used to discriminate between three different groups: individuals diagnosed with lung cancer, individuals with risk factor (including smokers and patients with COPD) and the control formed by healthy individuals.
  • These compounds include the presence of monoacrylic glycerol derivatives of two of the four main saturated fatty acids and squalene, It could be considered as an intermediate product in the pathway for in vivo formation by the peroxidation of isoprene in human breath [39], and also involved in cholesterol synthesis [40].
  • Table 4 Summary of markers useful in the diagnosis, classification and monitoring of lung cancer.
  • the values provided in this table are expressed as both by one with respect to all the metabolites detected in the sample (44 metabolites). That is, the area of each of the compounds was divided by the sum of the area of the 44 metabolites, thus obtaining the contribution of each compound to the total metabolites detected. On these final values the panels have been obtained, so that the results can be compared with those obtained using other instrumentation.
  • the panels themselves, they are configured so that, although they are composed of 4-5 metabolites, it is only necessary that 2 or 3 of them meet the established cut-off point for the panel to be considered positive.
  • an individual whose EBC has levels, expressed in both by one, of p-cresol less than 0.0143707, of cumyl alcohol greater than 0.172175 and of eicosenamide greater than 0.00450892 will be classified as a cancer patient, without import the levels of dehexadecyldane that you present.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physiology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Urology & Nephrology (AREA)
  • Pulmonology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

The invention relates to a method for obtaining data that can be used for the diagnosis, classification and monitoring of lung cancer, to a kit or device, and to the use thereof.

Description

Biomarcadores en aire exhalado para el diagnóstico, clasificación y seguimiento del cáncer de pulmón  Biomarkers in exhaled air for the diagnosis, classification and monitoring of lung cancer
CAMPO DE LA INVENCIÓN La presente invención se encuentra dentro del campo de la biomedicina y la biotecnología, y específicamente se refiere a un método de obtención de datos útiles para el diagnóstico, clasificación y seguimiento del cáncer, preferiblemente cáncer de pulmón, mediante el análisis de los biomarcadores: p-cresol, alcohol cumílico , eicosenamida, hexadecilindano, 2,4-bis-dimetilbencil-6-f-butilfenol, monostearina, espiro-2,4-heptano-1 ,5-6-metileno, 13- heptadecin-1-ol, metil estearato, glicerol-1-palmitato, alcohol bencílico, 2,4-difenil-4-metil-2- E-pentano en una muestra biológica aislada, preferiblemente condensado de aire exhalado. FIELD OF THE INVENTION The present invention is within the field of biomedicine and biotechnology, and specifically refers to a method of obtaining useful data for the diagnosis, classification and monitoring of cancer, preferably lung cancer, by analyzing Biomarkers: p-cresol, cumyl alcohol, eicosenamide, hexadecyldane, 2,4-bis-dimethylbenzyl-6-f-butylphenol, monosterate, spiro-2,4-heptane-1, 5-6-methylene, 13-heptadecin- 1-ol, methyl stearate, glycerol-1-palmitate, benzyl alcohol, 2,4-diphenyl-4-methyl-2- E-pentane in an isolated biological sample, preferably condensate of exhaled air.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
La enfermedad respiratoria crónica es un término genérico que abarca condiciones patológicas a largo plazo que afectan a las vías respiratorias y otras estructuras pulmonares implicadas en la respiración. Entre estas enfermedades crónicas se pueden destacar dos patologías: enfermedad pulmonar obstructiva crónica (EPOC) y el cáncer de pulmón, este último perteneciente a la lista de las principales causas de muerte relacionada con la enfermedad en los países más desarrollados [1 ,2]. La alta tasa de mortalidad a causa de las enfermedades respiratorias más graves está asociada a la baja eficiencia de los métodos de cribado para su detección en etapas iniciales [3]. La búsqueda de pruebas de diagnóstico para la detección precoz de las enfermedades respiratorias crónicas se ha intensificado en las últimas décadas. La tomografía computarizada (TC) a dosis baja es en la actualidad la prueba más utilizada para la detección del cáncer de pulmón, ya que reduce la mortalidad de la población de alto riesgo alrededor del 20% en comparación con la radiografía de tórax, según el Estudio Nacional de Exámenes de pulmón [4]. La TC también ha demostrado ser útil para la evaluación de la EPOC [5]. Chronic respiratory disease is a generic term that encompasses long-term pathological conditions that affect the airways and other lung structures involved in breathing. Among these chronic diseases, two pathologies can be highlighted: chronic obstructive pulmonary disease (COPD) and lung cancer, the latter belonging to the list of the main causes of death related to the disease in the more developed countries [1,2]. The high mortality rate due to the most serious respiratory diseases is associated with the low efficiency of screening methods for their detection in early stages [3]. The search for diagnostic tests for the early detection of chronic respiratory diseases has intensified in recent decades. Low-dose computed tomography (CT) is currently the most widely used test for lung cancer, as it reduces the mortality of the high-risk population by about 20% compared to chest radiography, according to the National Study of Lung Exams [4]. CT has also proven useful for the evaluation of COPD [5].
Además de las pruebas basadas en técnicas de imagen, diferentes estudios basados en las disciplinas "ómicas" se han centrado en el desarrollo de herramientas de evaluación para diagnosticar enfermedades respiratorias, buscando principalmente potenciales biomarcadores ya sea en tejidos o en biofluidos. Los métodos que utilizan muestras de biofluidos obtenidos de manera no invasiva están ganando popularidad frente a los muéstreos invasivos. Ese es el caso de la orina o el esputo y, más recientemente, del aliento exhalado o el sudor [6]. Un estudio reciente sobre el sudor que discrimina patrones de metabolitos para el cribado del cáncer de pulmón [7], ha dado lugar a un panel óptimo de 5 compuestos que proporcionan el 80% de especificidad y 79% de sensibilidad y conducen a tasas de falsas positivas y negativas en torno al 20% [8]. En cuanto a la respiración exhalada, los niveles de nitrito en el líquido epitelial han demostrado su capacidad como biomarcador ya que un aumento de este anión está directamente asociado con el cáncer [9]. Se han investigado citoquinas individuales también en el aliento exhalado de pacientes con cáncer de pulmón utilizando inmunoensayos enzimáticos (EIA), pero faltan pruebas disponibles comercialmente con la sensibilidad exigida para la detección de estos compuestos [10-13]. Otros biomarcadores (por ejemplo, peróxido de hidrógeno [14], 8- isoprostano [14] o el valor del pH [15]) permite la discriminación entre los pacientes con EPOC y controles sanos; sin embargo, no son capaces de discriminar entre estos dos grupos de individuos y pacientes con cáncer de pulmón [16]. Phillips et al., centrándose en vapor de aire exhalado, han desarrollado un modelo matemático constituido por 22 compuestos (principalmente alcanos y sus derivados y los derivados del benceno) como biomarcadores de cáncer de pulmón primario. El modelo reportó valores de sensibilidad y selectividad de 71 ,7% y 66,7%, respectivamente, incluso para las etapas avanzadas de la enfermedad [17]. Este estudio se mejoró posteriormente mediante la inclusión en el modelo de un conjunto de productos del estrés oxidativo excretados en la respiración [18], y se logró una sensibilidad y especificidad del 85, 1 % y 80,5%, respectivamente. Más adelante, otro estudio concluyó que una prueba de aliento de dos minutos puede predecir el cáncer pulmonar independientemente de la histología, estadio de la enfermedad o el consumo de tabaco, con el 84,6% de sensibilidad y 80% de especificidad [19]. Un estudio reciente ha proporcionado un panel de 23 compuestos orgánicos volátiles en el aliento exhalado con capacidad para distinguir entre pacientes y controles de cáncer de pulmón con 96,5% de sensibilidad y 97,5% de especificidad [20]. Sin embargo, los criterios para la clasificación de los compuestos endógenos no fue restrictiva y algunos de los compuestos incluidos en el panel también se detectaron en el aire de la sala de toma de muestras. In addition to tests based on imaging techniques, different studies based on the "omic" disciplines have focused on the development of assessment tools to diagnose respiratory diseases, mainly looking for potential biomarkers either in tissues or in biofluids. The methods that use samples of biofluids obtained in a non-invasive way are gaining popularity against invasive sampling. This is the case of urine or sputum and, more recently, exhaled breath or sweat [6]. A recent study on sweat that discriminates patterns of Metabolites for lung cancer screening [7], has resulted in an optimal panel of 5 compounds that provide 80% specificity and 79% sensitivity and lead to false positive and negative rates around 20% [8 ]. As for exhaled breathing, nitrite levels in the epithelial fluid have demonstrated their ability as a biomarker since an increase in this anion is directly associated with cancer [9]. Individual cytokines have also been investigated in the exhaled breath of patients with lung cancer using enzymatic immunoassays (EIA), but commercially available evidence with the required sensitivity for the detection of these compounds is lacking [10-13]. Other biomarkers (for example, hydrogen peroxide [14], 8-isoprostane [14] or the pH value [15]) allow discrimination between patients with COPD and healthy controls; however, they are not able to discriminate between these two groups of individuals and patients with lung cancer [16]. Phillips et al., Focusing on exhaled air vapor, have developed a mathematical model consisting of 22 compounds (mainly alkanes and their derivatives and benzene derivatives) as biomarkers of primary lung cancer. The model reported sensitivity and selectivity values of 71.7% and 66.7%, respectively, even for the advanced stages of the disease [17]. This study was subsequently improved by including in the model a set of oxidative stress products excreted in the breath [18], and a sensitivity and specificity of 85, 1% and 80.5%, respectively, were achieved. Later, another study concluded that a two-minute breath test can predict lung cancer regardless of histology, disease stage or tobacco use, with 84.6% sensitivity and 80% specificity [19] . A recent study has provided a panel of 23 volatile organic compounds in exhaled breath with the ability to distinguish between patients and lung cancer controls with 96.5% sensitivity and 97.5% specificity [20]. However, the criteria for the classification of endogenous compounds was not restrictive and some of the compounds included in the panel were also detected in the air of the sampling room.
Además del análisis directo del aire exhalado utilizando la interfaz adecuada, la muestra a analizar puede ser el aire exhalado condensado (EBC); es decir el gas exhalado que condensa como una solución líquida por enfriamiento, cuyo análisis puede permitir conocer de forma aproximada la composición del líquido extracelular y de gases exhalados solubles. A pesar de que el componente principal del EBC es vapor de agua, posee cientos de componentes diferentes, se pueden encontrar desde pequeños iones inorgánicos pasando por grandes moléculas orgánicas hasta péptidos, proteínas, tensioactivos y macromoléculas [23] en concentraciones traza [24-27]. En cuanto el protocolo de muestreo para el EBC, existen dispositivos comerciales que permiten recolección de dos fracciones del EBC separando el aire procedente de las vías respiratorias superiores y centrales (aliento superior, UA) y de la vía aérea distal (aliento inferior, DA). A pesar de que se cree que el UA contiene compuestos sin relevancia clínica [23], no se han establecido claramente diferencias entre ambos tipos de muestras. El fraccionamiento del EBC permite la comparación de los perfiles de composición de la UA y DA para encontrar diferencias metabolómicas en pacientes con cáncer de pulmón en comparación con un grupo de factor de riesgo compuesto por pacientes con EPOC y con los fumadores activos. Se utilizó un tercer grupo como grupo de control, que estaba formado por individuos sanos no fumadores. Los perfiles de composición de UA y DA para los tres grupos se obtuvieron usando cromatografía de gases acoplada a espectrometría de masas en modo de alta resolución (GC-TOF/MS). In addition to the direct analysis of exhaled air using the appropriate interface, the sample to be analyzed may be condensed exhaled air (EBC); that is to say, the exhaled gas that condenses as a liquid solution by cooling, whose analysis can allow to know approximately the composition of the extracellular liquid and soluble exhaled gases. Although the main component of EBC is water vapor, it has hundreds of different components, it can be found from small inorganic ions through large organic molecules to peptides, proteins, surfactants and macromolecules [23] in trace concentrations [24-27 ]. As for the sampling protocol for the EBC, there are commercial devices that allow collection of two EBC fractions by separating the air from the upper and central airways (upper breath, UA) and the distal airway (lower breath, DA) . Although it is believed that the UA contains compounds without clinical relevance [23], no differences between both types of samples have been clearly established. The fractionation of the EBC allows the comparison of the composition profiles of the UA and DA to find metabolomic differences in patients with lung cancer compared with a group of risk factor composed of patients with COPD and with active smokers. A third group was used as a control group, which was formed by healthy non-smoking individuals. The UA and DA composition profiles for the three groups were obtained using gas chromatography coupled to high resolution mode mass spectrometry (GC-TOF / MS).
BREVE DESCRIPCIÓN DE LA INVENCIÓN BRIEF DESCRIPTION OF THE INVENTION
Un primer aspecto de la invención se refiere al uso de los metabolitos p-cresol, el alcohol cumílico, la eicosenamida, el hexadecilindano, el 2,4-dis-dimetilbencil-6-t-butilfenol, la monostearina, el espiro-2,4-heptano-1 ,5-6-metileno, el 13-heptadecin-1-ol, el metil estearato, el glicerol-1-palmitato, el alcohol bencílico y el 2,4-difenil-4-metil-2-E-pentano para el diagnóstico, clasificación y seguimiento del cáncer. A first aspect of the invention relates to the use of p-cresol metabolites, cumyl alcohol, eicosenamide, hexadecyldane, 2,4-dis-dimethylbenzyl-6-t-butylphenol, monostetin, spiro-2, 4-heptane-1, 5-6-methylene, 13-heptadecin-1-ol, methyl stearate, glycerol-1-palmitate, benzyl alcohol and 2,4-diphenyl-4-methyl-2-E -pentane for the diagnosis, classification and monitoring of cancer.
En una realización preferida de este aspecto de la invención, el cáncer es cáncer de pulmón. Un segundo aspecto de la invención se refiere a un método de obtención de datos útiles para el diagnóstico, clasificación y seguimiento de un individuo o sujeto que potencialmente sufra cáncer, de ahora en adelante primer método de la invención, que comprende: a) cuantificar los metabolitos p-cresol, el alcohol cumílico, la eicosenamida y el hexadecilindano en una muestra biológica aislada de dicho individuo. En una realización preferida de este aspecto de la invención, el primer método de la invención además comprende: b) comparar las cantidades obtenidas en el paso (a) con una cantidad de referencia, donde la cantidad de referencia para cada metabolito son los niveles medios de dichos metabolitos en individuos sanos. En otra realización preferida de este aspecto de la invención, el cáncer es cáncer de pulmón. En otra realización preferida de este aspecto de la invención, la muestra biológica aislada del paso (a) es aire exhalado, preferiblemente condensado de aire exhalado. In a preferred embodiment of this aspect of the invention, the cancer is lung cancer. A second aspect of the invention relates to a method of obtaining useful data for the diagnosis, classification and monitoring of an individual or subject potentially suffering from cancer, henceforth the first method of the invention, comprising: a) quantifying the p-cresol metabolites, cumyl alcohol, eicosenamide and hexadecylindane in a biological sample isolated from said individual. In a preferred embodiment of this aspect of the invention, the first method of the invention further comprises: b) comparing the amounts obtained in step (a) with a reference amount, where the reference amount for each metabolite is the average levels of said metabolites in healthy individuals. In another preferred embodiment of this aspect of the invention, the cancer is lung cancer. In another preferred embodiment of this aspect of the invention, the biological sample isolated from step (a) is exhaled air, preferably condensate of exhaled air.
En otra realización preferida de este aspecto de la invención, la cuantificación de los metabolitos del paso (a) se realiza por análisis GC-TOF/MS, preferiblemente con ionización por impacto electrónico (IE). In another preferred embodiment of this aspect of the invention, the quantification of the metabolites of step (a) is performed by GC-TOF / MS analysis, preferably with electronic impact ionization (IE).
Un tercer aspecto de la invención se refiere a un método de diagnóstico, clasificación y seguimiento del cáncer, de ahora en adelante segundo método de la invención, que comprende los pasos (a)-(b) del primer método de la invención, y además comprende: c) incluir al individuo del paso a) en el grupo de individuos que presentan cáncer, cuando se detectan niveles de al menos 3 metabolitos, preferiblemente de los 4 metabolitos del paso (a), en cantidades significativamente distintas a la cantidad de referencia. A third aspect of the invention relates to a method of diagnosis, classification and monitoring of cancer, hereinafter second method of the invention, comprising steps (a) - (b) of the first method of the invention, and furthermore it comprises: c) including the individual from step a) in the group of individuals presenting with cancer, when levels of at least 3 metabolites are detected, preferably of the 4 metabolites of step (a), in amounts significantly different from the reference amount .
En una realización preferida de este aspecto de la invención, el cáncer es cáncer de pulmón. In a preferred embodiment of this aspect of the invention, the cancer is lung cancer.
Un cuarto aspecto de la invención se refiere a un método de obtención de datos útiles para el diagnóstico, clasificación y seguimiento de un individuo o sujeto que potencialmente sufra cáncer, de ahora en adelante tercer método de la invención, que comprende: a) cuantificar los metabolitos 2,4-bis-dimetilbencil-6-t-butilfenol, la monostearina, el espiro-2,4-heptano-1 ,5-6-metileno, el 13-heptadecin-1-ol y el metil estearato en una muestra biológica aislada de dicho individuo. A fourth aspect of the invention relates to a method of obtaining useful data for the diagnosis, classification and monitoring of an individual or subject potentially suffering from cancer, henceforth the third method of the invention, comprising: a) quantifying the 2,4-bis-dimethylbenzyl-6-t-butylphenol metabolites, monostetin, spiro-2,4-heptane-1, 5-6-methylene, 13-heptadecin-1-ol and methyl stearate in a sample biological isolated from said individual.
En una realización preferida de este aspecto de la invención, el tercer método de la invención además comprende: b) comparar las cantidades obtenidas en el paso (a) con una cantidad de referencia, donde la cantidad de referencia para cada metabolito son los niveles medios de dichos metabolitos en individuos que presentan al menos un factor de riesgo de padecer cáncer, preferiblemente tabaquismo o con EPOC. En otra realización preferida de este aspecto de la invención, el cáncer es cáncer de pulmón. In a preferred embodiment of this aspect of the invention, the third method of the invention further comprises: b) comparing the amounts obtained in step (a) with a reference amount, where the reference amount for each metabolite is the average levels of said metabolites in individuals with at least one risk factor for cancer, preferably smoking or with COPD. In another preferred embodiment of this aspect of the invention, the cancer is lung cancer.
En otra realización preferida de este aspecto de la invención, la muestra biológica aislada del paso (a) es aire exhalado, preferiblemente condensado de aire exhalado. En otra realización preferida de este aspecto de la invención, la cuantificación de los metabolitos del paso (a) se realiza por análisis GC-TOF/MS, preferiblemente con ionización por impacto electrónico (IE). In another preferred embodiment of this aspect of the invention, the biological sample isolated from step (a) is exhaled air, preferably condensate of exhaled air. In another preferred embodiment of this aspect of the invention, the quantification of the metabolites of step (a) is performed by GC-TOF / MS analysis, preferably with electronic impact ionization (IE).
Un quinto aspecto de la invención se refiere a un método de diagnóstico, clasificación y seguimiento del cáncer, de ahora en adelante cuarto método de la invención, que comprende los pasos (a)-(b) del tercer método de la invención, y además comprende: c) incluir al individuo del paso a) en el grupo de individuos que presentan cáncer, cuando se detectan niveles de al menos 3 metabolitos, preferiblemente de 4 metabolitos, y más preferiblemente de 5 metabolitos del paso (a), en cantidades significativamente distintas cantidad de referencia. A fifth aspect of the invention relates to a method of diagnosis, classification and monitoring of cancer, hereafter referred to as the fourth method of the invention, comprising steps (a) - (b) of the third method of the invention, and also it comprises: c) including the individual from step a) in the group of individuals presenting with cancer, when levels of at least 3 metabolites, preferably of 4 metabolites, and more preferably of 5 metabolites of step (a) are detected, in amounts significantly Different reference quantity.
En una realización preferida de este aspecto de la invención, el cáncer es cáncer de pulmón. In a preferred embodiment of this aspect of the invention, the cancer is lung cancer.
Un sexto aspecto de la invención se refiere a un método de obtención de datos útiles para el diagnóstico, clasificación y seguimiento de un individuo o sujeto que potencialmente sufra cáncer, de ahora en adelante quinto método de la invención, que comprende: a) cuantificar los metabolitos glicerol-1-palmitato, alcohol bencílico, la monostearina, el 2,4- difenil-4-metil-2-E-pentano y el p-cresol en una muestra biológica aislada de dicho individuo. A sixth aspect of the invention relates to a method of obtaining useful data for the diagnosis, classification and monitoring of an individual or subject potentially suffering from cancer, hereafter referred to as the fifth method of the invention, which comprises: a) quantifying the Metabolites glycerol-1-palmitate, benzyl alcohol, monostetin, 2,4-diphenyl-4-methyl-2-E-pentane and p-cresol in a biological sample isolated from said individual.
En una realización preferida de este aspecto de la invención, el quinto método de la invención además comprende: b) comparar las cantidades obtenidas en el paso (a) con una cantidad de referencia, donde la cantidad de referencia para cada metabolito son los niveles medios de dichos metabolitos en individuos sanos. In a preferred embodiment of this aspect of the invention, the fifth method of the invention further comprises: b) comparing the amounts obtained in step (a) with a reference amount, where the reference amount for each metabolite is the average levels of said metabolites in healthy individuals.
En otra realización preferida de este aspecto de la invención, el cáncer es cáncer de pulmón. In another preferred embodiment of this aspect of the invention, the cancer is lung cancer.
En otra realización preferida de este aspecto de la invención, la muestra biológica aislada del paso (a) es aire exhalado, preferiblemente condensado de aire exhalado. In another preferred embodiment of this aspect of the invention, the biological sample isolated from step (a) is exhaled air, preferably condensate of exhaled air.
En otra realización preferida de este aspecto de la invención, la cuantificación de los metabolitos del paso (a) se realiza por análisis GC-TOF/MS, preferiblemente con ionización por impacto electrónico (IE). Un séptimo aspecto de la invención se refiere a un método de diagnóstico, clasificación y seguimiento del cáncer, de ahora en adelante sexto método de la invención, que comprende los pasos (a)-(b) del quinto método de la invención, y además comprende: c) incluir al individuo del paso a) en el grupo de individuos de alto riesgo de padecer cáncer, cuando se detectan niveles de al menos 2 metabolitos, preferiblemente de 3 metabolitos, más preferiblemente de 4 metabolitos, y aún más preferiblemente de 5 metabolitos del paso (a), en cantidades significativamente distintas cantidad de referencia. In another preferred embodiment of this aspect of the invention, the quantification of the metabolites of step (a) is performed by GC-TOF / MS analysis, preferably with electronic impact ionization (IE). A seventh aspect of the invention relates to a method of diagnosis, classification and monitoring of cancer, hereafter sixth method of the invention, comprising steps (a) - (b) of the fifth method of the invention, and furthermore It comprises: c) including the individual from step a) in the group of individuals at high risk for cancer, when levels of at least 2 metabolites are detected, preferably 3 metabolites, more preferably 4 metabolites, and even more preferably 5 metabolites of step (a), in significantly different amounts of reference amount.
Un octavo aspecto de la invención se refiere a un kit o dispositivo que comprende los elementos necesarios para cuantificar los metabolitos p-cresol, el alcohol cumílico, la eicosenamida, el hexadecilindano, el 2,4-bis-dimetilbenzil-6-t-butilfenol, la monostearina, el espiro-2,4-heptano-1 ,5-6-metileno, el 13-heptadecin-1-ol, el metil estearato, el glicerol-1- palmitato, el benzil alcohol y/o el 2,4-difenil-4-metil-2-E-pentano, según se describe en cualquiera de los métodos de la invención. An eighth aspect of the invention relates to a kit or device comprising the elements necessary to quantify p-cresol metabolites, cumyl alcohol, eicosenamide, hexadecyldane, 2,4-bis-dimethylbenzyl-6-t-butylphenol , monostearin, spiro-2,4-heptane-1, 5-6-methylene, 13-heptadecin-1-ol, methyl stearate, glycerol-1 palmitate, benzyl alcohol and / or 2, 4-diphenyl-4-methyl-2-E-pentane, as described in any of the methods of the invention.
Un noveno aspecto de la invención se refiere al uso del kit o dispositivo según la reivindicación anterior, para el diagnóstico, clasificación y seguimiento del cáncer. A ninth aspect of the invention relates to the use of the kit or device according to the preceding claim, for the diagnosis, classification and monitoring of cancer.
En una realización preferida de este aspecto de la invención, el cáncer es cáncer de pulmón. In a preferred embodiment of this aspect of the invention, the cancer is lung cancer.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
Figura 1. Diagrama de barras que compara la composición de muestras de EBC recogidas de las vías aéreas superiores y centrales (UA) y de la vía aérea distal (DA). Figure 1. Bar chart comparing the composition of EBC samples collected from the upper and central airways (UA) and the distal airway (DA).
Figura 2. Análisis discriminante por mínimos cuadrados parciales (PLS-DA) realizado a partir del conjunto de datos obtenidos tras el análisis de extractos de aire expirado condensado de vías respiratorias superiores y centrales comparando pacientes (A) con cáncer de pulmón (LC) y las personas con factor de riesgo (FR), (B) pacientes con cáncer de pulmón e individuos control (control), y (C) los individuos con factor de riesgo e individuos control (control). Figure 2. Discriminant analysis by partial least squares (PLS-DA) performed from the data set obtained after the analysis of expired condensed air extracts from upper and central airways comparing patients (A) with lung cancer (LC) and people with risk factor (FR), (B) patients with lung cancer and control (control) individuals, and (C) individuals with risk factor and control (control) individuals.
Figura 3. Análisis discriminante por mínimos cuadrados parciales (PLS-DA) realizado a partir del conjunto de datos obtenidos tras el análisis de extractos de aire expirado condensado de la vía aérea distal comparando pacientes (A) con cáncer de pulmón (LC) y las personas con factor de riesgo (FR), (B) pacientes con cáncer de pulmón e individuos control (control), y (C) los individuos con factor de riesgo e individuos control (control). Figura 4. Diagramas de caja y bigotes que presentan la variabilidad de (A) cuatro metabolitos— monopalmitin, n-hexadecilindano, monoestearina y escualeno— en pacientes con cáncer de pulmón (LC) en comparación con los individuos con factor de riesgo (FR) y la cohorte de individuos control, y (B) cuatro metabolitos— 1 1-eicosenamida, p-cresol, indol, ácido benzoico 4-etoxi etil éster en los individuos de control en comparación con los pacientes de cáncer de pulmón y los individuos con factor de riesgo. Figure 3. Discriminant partial least squares analysis (PLS-DA) performed from the data set obtained after the analysis of expired condensed air extracts from the distal airway comparing patients (A) with lung cancer (LC) and people with risk factor (FR), (B) patients with lung cancer and control (control) individuals, and (C) individuals with risk factor and control (control) individuals. Figure 4. Box and whisker diagrams showing the variability of (A) four metabolites - monopalmitin, n-hexadecyldane, monostearin and squalene - in patients with lung cancer (LC) compared to individuals with risk factor (FR) and the cohort of control individuals, and (B) four metabolites— 1 1-eicosenamide, p-cresol, indole, benzoic acid 4-ethoxy ethyl ester in control individuals compared to lung cancer patients and individuals with risk factor.
Figura 5. Curva de calibración del índice de retención proporcionada por la mezcla estándar de alcanos aplicando el método cromatográfico utilizado. Figure 5. Calibration curve of the retention index provided by the standard mixture of alkanes using the chromatographic method used.
Figura 6. Análisis de Componentes Principales (PCA) construido a partir de los datos obtenidos con los extractos de aire expirado condensado de las vías aéreas superiores y centrales y de la vía aérea distal de los pacientes con cáncer de pulmón (LC), personas con factor de riesgo (FR) y los individuos control. Figure 6. Principal Component Analysis (PCA) constructed from the data obtained with the expired condensed air extracts of the upper and central airways and the distal airway of patients with lung cancer (LC), people with risk factor (FR) and control individuals.
Figura 7. Análisis de Componentes Principales (PCA) construido a partir del conjunto de datos obtenidos mediante el análisis de extractos de aire expirado condensado de las vías aéreas superiores y centrales comparando pacientes (A) de cáncer de pulmón (LC) y las personas con factor de riesgo (FR), (B) de los pacientes con cáncer de pulmón e individuos de control (Control), e individuos de control (C) y los individuos con factor de riesgo. Figure 7. Principal Component Analysis (PCA) constructed from the data set obtained through the analysis of expired condensed air extracts from the upper and central airways comparing patients (A) of lung cancer (LC) and people with risk factor (FR), (B) of lung cancer patients and control individuals (Control), and control individuals (C) and individuals with risk factor.
Figura 8. Análisis de Componentes Principales (PCA) construido a partir del conjunto de datos obtenidos tras el análisis de extractos de aire expirado condensado de la vía aérea distal comparando pacientes (A) de cáncer de pulmón (LC) y las personas con factor de riesgo (FR), (B) de los pacientes con cáncer de pulmón y los individuos de control (control), y de control (C) y los individuos con factor de riesgo particulares. Figure 8. Principal Component Analysis (PCA) constructed from the data set obtained after the analysis of expired condensed air extracts from the distal airway comparing patients (A) of lung cancer (LC) and people with factor of risk (FR), (B) of lung cancer patients and control (control), and control (C) individuals and individuals with particular risk factor.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN Los autores de la presente invención han identificado y calculado la concentración relativa de los distintos metabolitos de condensado de aire exhalado en individuos que padecen cáncer de pulmón, en individuos que presentan algún factor de riesgo de padecerlo, y en individuos sanos. Han encontrado una serie de marcadores para el diagnóstico de los individuos con cáncer de pulmón, diferenciando los sujetos con cáncer de pulmón de aquéllos que no lo padecen. Así pues, la presente invención proporciona un método de obtención de datos útiles para el diagnóstico, clasificación y seguimiento de individuos con cáncer de pulmón. Por tanto, un primer aspecto de la invención se refiere al uso de los metabolitos p-cresol, el alcohol cumílico, la eicosenamida, el hexadecilindano, el 2,4-bis-dimetilbencil-6-t-butilfenol, la monostearina, el espiro-2,4-heptano-1 ,5-6-metileno, el 13-heptadecin-1-ol, el metil estearato, el glicerol-1-palmitato, el alcohol bencílico y el 2,4-difenil-4-metil-2-E-pentano para el diagnóstico, clasificación y seguimiento del cáncer. DETAILED DESCRIPTION OF THE INVENTION The authors of the present invention have identified and calculated the relative concentration of the different exhaled air condensate metabolites in individuals suffering from lung cancer, in individuals who present some risk factor of suffering it, and in healthy individuals. . They have found a series of markers for the diagnosis of individuals with lung cancer, differentiating subjects with lung cancer from those who do not. Thus, the present invention provides a method of obtaining useful data for the diagnosis, classification and monitoring of individuals with lung cancer. Therefore, a first aspect of the invention relates to the use of p-cresol metabolites, cumyl alcohol, eicosenamide, hexadecyldane, 2,4-bis-dimethylbenzyl-6-t-butylphenol, monostetin, spiro -2,4-heptane-1, 5-6-methylene, 13-heptadecin-1-ol, methyl stearate, glycerol-1-palmitate, benzyl alcohol and 2,4-diphenyl-4-methyl- 2-E-pentane for the diagnosis, classification and monitoring of cancer.
En una realización preferida de este aspecto de la invención, el cáncer es cáncer de pulmón. In a preferred embodiment of this aspect of the invention, the cancer is lung cancer.
Aunque se puede usar cualquier metabolito, o cualquiera de sus combinaciones, más preferiblemente los metabolitos se usan agrupados de la siguiente forma Although any metabolite, or any combination thereof, can be used, more preferably the metabolites are used grouped as follows.
Grupo I) p-cresol, alcohol cumílico , eicosenamida y/o hexadecilindano, Group I) p-cresol, cumyl alcohol, eicosenamide and / or hexadecyldane,
Grupo II) 2,4-bis-dimetilbenzil-6-t-butilfenol, monostearina, espiro-2,4-heptano-1 ,5-6- metileno, 13-heptadecin-1-ol y/o metil estearato, y  Group II) 2,4-bis-dimethylbenzyl-6-t-butylphenol, monosterate, spiro-2,4-heptane-1, 5-6-methylene, 13-heptadecin-1-ol and / or methyl stearate, and
Grupo III) glicerol-1-palmitato, alcohol bencílico, monostearina, 2,4-difenil-4-metil-2- E-pentano y/o p-cresol, usando al menos un grupo. En una realización preferida de este aspecto de la invención el cáncer es el cáncer de pulmón. Group III) glycerol-1-palmitate, benzyl alcohol, monosterate, 2,4-diphenyl-4-methyl-2- E-pentane and / or p-cresol, using at least one group. In a preferred embodiment of this aspect of the invention the cancer is lung cancer.
A continuación se describen las características de los metabolitos que son objeto del estudio: p-Cresol: Compuesto fenólico de bajo peso molecular conocido, entre otras cosas, por ser un producto de degradación del tolueno y que, por tanto, puede relacionarse directamente con el consumo de tabaco. Además, es un metabolito del aminoácido tirosina y en cierta medida de la fenilalanina, por la conversión en ácido 4-hidroxifenilacético provocada por las bacterias intestinales antes de ser descarboxilado a p-cresol (putrefacción). The characteristics of the metabolites that are the object of the study are described below: p-Cresol: a phenolic compound of low molecular weight known, among other things, as a degradation product of toluene and which, therefore, can be directly related to the tobacco use In addition, it is a metabolite of the amino acid tyrosine and to some extent phenylalanine, due to the conversion to 4-hydroxyphenylacetic acid caused by intestinal bacteria before being decarboxylated to p-cresol (putrefaction).
Alcohol cumílico: Monoterpeno propuesto como marcador para la detección de cáncer de pulmón en otros estudios que utilizan de aire exhalado (vapor) como biofluido. Cumyl alcohol: Monoterpene proposed as a marker for the detection of lung cancer in other studies that use exhaled air (vapor) as biofluid.
Eicosenamida: Derivado ácido graso conocido por su potencial como agente antimicrobiano. Eicosenamide: A fatty acid derivative known for its potential as an antimicrobial agent.
Hexadecilindano: Derivado de los indanos propuesto como marcador para la detección de cáncer de pulmón en otros estudios que utilizan aire exhalado (vapor) como biofluido. 2,4-Bis-dimetilbencil-6-t-butilfenol: Compuesto derivado del benceno relacionado con el consumo de tabaco. Hexadecylindane: Derived from the indanes proposed as a marker for the detection of lung cancer in other studies using exhaled air (vapor) as biofluid. 2,4-Bis-dimethylbenzyl-6-t-butylphenol: Compound derived from benzene related to tobacco consumption.
Monostearina: Pertenece a la familia de monoacilgliceroles, glicéridos que consisten en una cadena de ácido graso unido covalentemente a una molécula de glicerol a través de un enlace éster. Monostearin: It belongs to the family of monoacrylic glycerols, glycerides that consist of a fatty acid chain covalently linked to a glycerol molecule through an ester bond.
Espiro-2,4-heptano-1 ,5-6-metileno: No existe información sobre su existencia en aire exhalado o en cualquier otro biofluido. Espiro-2,4-heptane-1, 5-6-methylene: There is no information about its existence in exhaled air or in any other biofluid.
13-Heptadecin-1-ol: No existe información sobre su existencia en aire exhalado o en cualquier otro biofluido. Estearato de metilo: Derivado de ácido graso previamente identificado en heces. 13-Heptadecin-1-ol: There is no information about its existence in exhaled air or in any other biofluid. Methyl stearate: A fatty acid derivative previously identified in feces.
Glicerol-1-palmitato: Pertenece a la familia de monoacilgliceroles, glicéridos que consisten en una cadena de ácido graso unido covalentemente a una molécula de glicerol a través de un enlace éster. Glycerol-1-palmitate: It belongs to the family of monoacrylic glycerols, glycerides that consist of a fatty acid chain covalently linked to a glycerol molecule through an ester bond.
Alcohol bencílico: Derivado del benceno conocido por ser producto de la degradación del tolueno y que, por tanto, puede relacionarse directamente con el consumo de tabaco. Benzyl alcohol: Benzene derivative known to be a product of the degradation of toluene and, therefore, can be directly related to tobacco consumption.
2,4-Difenil-4-metil-2-E-pentano: Compuesto derivado del benceno relacionado con el consumo de tabaco. 2,4-Diphenyl-4-methyl-2-E-pentane: Compound derived from benzene related to tobacco consumption.
Un segundo aspecto de la invención se refiere a un método de obtención de datos útiles para el diagnóstico, clasificación y seguimiento del cáncer, de ahora en adelante primer método de la invención, que comprende: a) obtener una muestra biológica aislada de un individuo, b) cuantificar los metabolitos p-cresol, el alcohol cumílico, la eicosenamida y el hexadecilindano en la muestra del paso a). A second aspect of the invention relates to a method of obtaining useful data for the diagnosis, classification and monitoring of cancer, hereinafter the first method of the invention, comprising: a) obtaining an isolated biological sample from an individual, b) quantify the metabolites p-cresol, cumyl alcohol, eicosenamide and hexadecylindane in the sample from step a).
En una realización preferida de este aspecto de la invención, el primer método de la invención además comprende: c) comparar las cantidades obtenidas en el paso (b) con una cantidad de referencia, donde la cantidad de referencia para cada metabolito son los niveles medios de dichos metabolitos en individuos sanos. En otra realización preferida de este aspecto de la invención, el cáncer es cáncer de pulmón. In a preferred embodiment of this aspect of the invention, the first method of the invention further comprises: c) comparing the amounts obtained in step (b) with a reference amount, where the reference amount for each metabolite is the average levels of said metabolites in healthy individuals. In another preferred embodiment of this aspect of the invention, the cancer is lung cancer.
En otra realización preferida de este aspecto de la invención, la muestra biológica aislada del paso (a) es aire exhalado, preferiblemente condensado de aire exhalado. En otra realización preferida de este aspecto de la invención, la cuantificación de los metabolitos del paso (b) se realiza por análisis mediante GC-TOF/MS, preferiblemente con ionización por impacto electrónico (IE). In another preferred embodiment of this aspect of the invention, the biological sample isolated from step (a) is exhaled air, preferably condensate of exhaled air. In another preferred embodiment of this aspect of the invention, the quantification of the metabolites of step (b) is performed by GC-TOF / MS analysis, preferably with electronic impact ionization (IE).
Un tercer aspecto de la invención se refiere a un método de diagnóstico, clasificación y seguimiento del cáncer, de ahora en adelante segundo método de la invención, que comprende los pasos (a)-(c) del primer método de la invención, y además comprende: d) incluir al individuo del paso a) en el grupo de individuos que presentan cáncer, cuando se detectan niveles de al menos 3 metabolitos, preferiblemente de los 4 metabolitos del paso (b), en cantidades significativamente distintas a la cantidad de referencia. A third aspect of the invention relates to a method of diagnosis, classification and monitoring of cancer, hereinafter second method of the invention, comprising steps (a) - (c) of the first method of the invention, and furthermore it comprises: d) including the individual from step a) in the group of individuals presenting with cancer, when levels of at least 3 metabolites are detected, preferably of the 4 metabolites of step (b), in amounts significantly different from the reference amount .
En una realización preferida de este aspecto de la invención, el cáncer es cáncer de pulmón. Un cuarto aspecto de la invención se refiere a un método de obtención de datos útiles para el diagnóstico, clasificación y seguimiento de un individuo o sujeto que potencialmente sufra cáncer, de ahora en adelante tercer método de la invención, que comprende: a) obtener una muestra biológica aislada de un individuo, b) cuantificar los metabolitos 2,4-bis-dimetilbenzil-6-t-butilfenol, la monostearina, el espiro-2,4-heptano-1 ,5-6-metileno, el 13-heptadecin-1-ol y el estearato de metilo en la muestra del paso a). In a preferred embodiment of this aspect of the invention, the cancer is lung cancer. A fourth aspect of the invention relates to a method of obtaining useful data for the diagnosis, classification and monitoring of an individual or subject potentially suffering from cancer, henceforth a third method of the invention, comprising: a) obtaining a biological sample isolated from an individual, b) quantify the metabolites 2,4-bis-dimethylbenzyl-6-t-butylphenol, monostetin, spiro-2,4-heptane-1, 5-6-methylene, 13-heptadecin -1-ol and methyl stearate in the sample from step a).
En una realización preferida de este aspecto de la invención, el tercer método de la invención además comprende: c) comparar las cantidades obtenidas en el paso (a) con una cantidad de referencia, donde la cantidad de referencia para cada metabolito son los niveles medios de dichos metabolitos en individuos que presentan al menos un factor de riesgo de padecer cáncer, preferiblemente tabaquismo o con EPOC. In a preferred embodiment of this aspect of the invention, the third method of the invention further comprises: c) comparing the amounts obtained in step (a) with a reference amount, where the reference amount for each metabolite is the average levels of said metabolites in individuals with at least one risk factor for cancer, preferably smoking or with COPD.
En otra realización preferida de este aspecto de la invención, el cáncer es cáncer de pulmón. En otra realización preferida de este aspecto de la invención, la muestra biológica aislada del paso (a) es aire exhalado, preferiblemente condensado de aire exhalado. In another preferred embodiment of this aspect of the invention, the cancer is lung cancer. In another preferred embodiment of this aspect of the invention, the biological sample isolated from step (a) is exhaled air, preferably condensate of exhaled air.
En otra realización preferida de este aspecto de la invención, la cuantificación de los metabolitos del paso (b) se realiza por análisis mediante GC-TOF/MS, preferiblemente con ionización por impacto electrónico (IE). In another preferred embodiment of this aspect of the invention, the quantification of the metabolites of step (b) is performed by GC-TOF / MS analysis, preferably with electronic impact ionization (IE).
Un quinto aspecto de la invención se refiere a un método de diagnóstico, clasificación y seguimiento del cáncer, de ahora en adelante cuarto método de la invención, que comprende los pasos (a)-(c) del tercer método de la invención, y además comprende: d) incluir al individuo del paso a) en el grupo de individuos que presentan cáncer, cuando se detectan niveles de al menos 3 metabolitos, preferiblemente de 4 metabolitos, y más preferiblemente de 5 metabolitos del paso (b), en cantidades significativamente distintas a la cantidad de referencia. A fifth aspect of the invention relates to a method of diagnosis, classification and monitoring of cancer, hereafter referred to as the fourth method of the invention, comprising steps (a) - (c) of the third method of the invention, and also it comprises: d) including the individual from step a) in the group of individuals presenting with cancer, when levels of at least 3 metabolites, preferably of 4 metabolites, and more preferably of 5 metabolites of step (b) are detected, in amounts significantly other than the reference quantity.
En otra realización preferida de este aspecto de la invención, el cáncer es cáncer de pulmón. Un sexto aspecto de la invención se refiere a un método de obtención de datos útiles para el diagnóstico, clasificación y seguimiento de un individuo o sujeto que potencialmente sufra cáncer, de ahora en adelante quinto método de la invención, que comprende: a) obtener una muestra biológica aislada un individuo, b) cuantificar los metabolitos glicerol-1-palmitato, alcohol bencílico, la monostearina, el 2,4-difenil-4-metil-2-E-pentano y el p-cresol en la muestra del paso a). In another preferred embodiment of this aspect of the invention, the cancer is lung cancer. A sixth aspect of the invention relates to a method of obtaining useful data for the diagnosis, classification and monitoring of an individual or subject potentially suffering from cancer, hereinafter fifth method of the invention, comprising: a) obtaining a isolated biological sample an individual, b) quantify the metabolites glycerol-1-palmitate, benzyl alcohol, monostetin, 2,4-diphenyl-4-methyl-2-E-pentane and p-cresol in the sample from step a ).
En una realización preferida de este aspecto de la invención, el quinto método de la invención además comprende: c) comparar las cantidades obtenidas en el paso (b) con una cantidad de referencia, donde la cantidad de referencia para cada metabolito son los niveles medios de dichos metabolitos en individuos sanos. In a preferred embodiment of this aspect of the invention, the fifth method of the invention further comprises: c) comparing the amounts obtained in step (b) with a reference amount, where the reference amount for each metabolite is the average levels of said metabolites in healthy individuals.
En otra realización preferida de este aspecto de la invención, el cáncer es cáncer de pulmón. In another preferred embodiment of this aspect of the invention, the cancer is lung cancer.
En otra realización preferida de este aspecto de la invención, la muestra biológica aislada del paso (a) es aire exhalado, preferiblemente condensado de aire exhalado. En otra realización preferida de este aspecto de la invención, la cuantificación de los metabolitos del paso (b) se realiza por análisis mediante GC-TOF/MS, preferiblemente con ionización por impacto electrónico (IE). In another preferred embodiment of this aspect of the invention, the biological sample isolated from step (a) is exhaled air, preferably condensate of exhaled air. In another preferred embodiment of this aspect of the invention, the quantification of the metabolites of step (b) is performed by GC-TOF / MS analysis, preferably with electronic impact ionization (IE).
Un séptimo aspecto de la invención se refiere a un método de diagnóstico, clasificación y seguimiento del cáncer, de ahora en adelante sexto método de la invención, que comprende los pasos (a)-(c) del quinto método de la invención, y además comprende: c) incluir al individuo del paso a) en el grupo de individuos de alto riesgo de padecer cáncer, cuando se detectan niveles de al menos 2 metabolitos, preferiblemente de 3 metabolitos, más preferiblemente de 4 metabolitos, y aún más preferiblemente de 5 metabolitos del paso (b), en cantidades significativamente distintas cantidad de referencia. A seventh aspect of the invention relates to a method of diagnosis, classification and monitoring of cancer, hereafter referred to as the sixth method of the invention, comprising steps (a) - (c) of the fifth method of the invention, and also It comprises: c) including the individual from step a) in the group of individuals at high risk for cancer, when levels of at least 2 metabolites are detected, preferably 3 metabolites, more preferably 4 metabolites, and even more preferably 5 metabolites of step (b), in significantly different amounts of reference amount.
En otra realización preferida de este aspecto de la invención, el cáncer es cáncer de pulmón. In another preferred embodiment of this aspect of the invention, the cancer is lung cancer.
Una "muestra biológica", como se define aquí, es una pequeña parte de un sujeto, representativa del conjunto y puede estar constituido por una biopsia o una muestra de fluido corporal. Las biopsias son pequeñas piezas de tejido y pueden ser frescas, congeladas o fijas, como fijada con formalina y embebidas en parafina (formalin- fixed and paraffin embedded FFPE). Muestras de fluidos corporales puede ser sangre, plasma, suero, orina, esputo, líquido cefalorraquídeo, leche o muestras de fluido ductal y pueden asimismo ser frescos, congelados o fijadas. Las muestras se pueden extirpar quirúrgicamente, mediante extracción es decir, por agujas hipodérmicas o de otro tipo, por microdisección o captura láser. La muestra debe contener cualquier material biológico adecuado para detectar el biomarcador o biomarcadores deseado/s, por lo tanto, dicha muestra podría comprender material de las células del sujeto. La/s muestra/s usada/s para desarrollar los métodos de la invención son una muestra gaseosa o de lavado broncoalveolar. Preferiblemente la muestra es aire exhalado, y más preferiblemente condensado de aire exhalado. A "biological sample", as defined herein, is a small part of a subject, representative of the whole and may be a biopsy or a sample of body fluid. Biopsies are small pieces of tissue and can be fresh, frozen or fixed, as fixed with formalin and embedded in paraffin (formalin-fixed and paraffin embedded FFPE). Samples of body fluids can be blood, plasma, serum, urine, sputum, cerebrospinal fluid, milk or ductal fluid samples and can also be fresh, frozen or fixed. Samples can be surgically removed, by extraction, that is, by hypodermic or other needles, by microdissection or laser capture. The sample must contain any suitable biological material to detect the desired biomarker or biomarkers / s, therefore, said sample could comprise material from the subject's cells. The sample (s) used to develop the methods of the invention are a gas sample or bronchoalveolar lavage. Preferably the sample is exhaled air, and more preferably condensate of exhaled air.
Una "muestra de referencia", como se usa aquí, significa una muestra obtenida de los individuos, preferiblemente dos o más individuos, de los que se sabe que están libres de la enfermedad (cáncer, preferiblemente de cáncer de pulmón) o, alternativamente, de la población general. Los niveles adecuados de metabolitos se pueden determinar mediante la medición de los niveles de dichos metabolitos en varios individuos adecuados, y tales niveles de referencia se pueden ajusfar para poblaciones de individuos o sujetos específicos. En una realización preferida, la muestra de referencia se obtiene de un grupo de individuos o sujetos sanos o de sujetos sin historia previa de padecer cáncer de pulmón. La cantidad y/o concentración de los metabolitos en la muestra de referencia puede, preferiblemente, generarse a partir de una población de dos o más individuos; por ejemplo, la población puede comprender 3, 4, 5, 10, 15, 20, 30, 40, 50 o más individuos o sujetos. En otra realización preferida la muestra de referencia se obtiene de un grupo de individuos de riesgo, preferiblemente fumadores y/o pacientes de EPOC. A "reference sample", as used herein, means a sample obtained from individuals, preferably two or more individuals, known to be disease free (cancer, preferably lung cancer) or, alternatively, of the general population. Suitable levels of metabolites can be determined by measuring the levels of said metabolites in several suitable individuals, and such reference levels can be adjusted for populations of specific individuals or subjects. In a preferred embodiment, the reference sample is obtained from a group of healthy individuals or subjects or of subjects without a previous history of lung cancer. The amount and / or concentration of the metabolites in the reference sample can preferably be generated from a population of two or more individuals; for example, the population may comprise 3, 4, 5, 10, 15, 20, 30, 40, 50 or more individuals or subjects. In another preferred embodiment the reference sample is obtained from a group of risk individuals, preferably smokers and / or COPD patients.
Un "individuo" o "sujeto", como se usa aquí, se refiere a un mamífero, humano o no humano, en observación, y más preferiblemente un ser humano. El individuo puede ser cualquiera, un individuo predispuesto a una enfermedad (por ejemplo, cáncer de pulmón) o un individuo que padece dicha enfermedad. An "individual" or "subject", as used herein, refers to a mammal, human or non-human, under observation, and more preferably a human being. The individual can be anyone, an individual predisposed to a disease (for example, lung cancer) or an individual suffering from said disease.
El término "cantidad", tal y como se utiliza en la descripción, se refiere pero no se limita, a la cantidad absoluta o relativa de los metabolitos, de su concentración en el exhalado de aire, preferiblemente en el condensado de aire exhalado, así como a cualquier otro valor o parámetro relacionado con los mismos o que pueda derivarse de éstos. La cantidad de los metabolitos puede medirse de manera directa o indirecta. The term "quantity", as used in the description, refers to, but is not limited to, the absolute or relative amount of metabolites, of their concentration in exhaled air, preferably in exhaled air condensate, as well. as to any other value or parameter related to them or that may be derived from them. The amount of metabolites can be measured directly or indirectly.
El término "comparación", tal y como se utiliza en la descripción, se refiere pero no se limita, a la comparación de la cantidad y/o concentración de los metabolitos de la muestra biológica a analizar, también llamada muestra biológica problema, con una cantidad y/o concentración de los metabolitos de una o varias muestras de referencia deseable. La muestra de referencia puede ser analizada, por ejemplo, simultánea o consecutivamente, junto con la muestra biológica problema. La comparación descrita en el apartado (c) del método de la presente invención puede ser realizada manualmente o asistida por ordenador. The term "comparison", as used in the description, refers to, but is not limited to, the comparison of the quantity and / or concentration of the metabolites of the biological sample to be analyzed, also called the biological problem sample, with a quantity and / or concentration of metabolites of one or several desirable reference samples. The reference sample can be analyzed, for example, simultaneously or consecutively, together with the problem biological sample. The comparison described in section (c) of the method of the present invention can be performed manually or assisted by a computer.
Las cantidades de referencia adecuadas pueden ser determinadas por el método de la presente invención a partir de una muestra de referencia que puede ser analizada, por ejemplo, simultánea o consecutivamente, junto con la muestra biológica problema. Así, por ejemplo pero sin limitarnos, la muestra de referencia pueden ser los controles negativos, esto es, las cantidades detectadas por los métodos de la invención en muestras de individuos que no padecen la enfermedad o en individuos con factor de riesgo de padecer la enfermedad (tabaquismo y EPOC). Los pasos (b) y/o (c) de los métodos descritos anteriormente pueden ser total o parcialmente automatizados. Los metabolitos que se determinan en el paso (b) pueden determinarse individualmente, o se puede determinar cualquiera de sus combinaciones. La determinación de los metabolitos se puede hacer por cualquier medio conocido por el experto en la materia. La cuantificación de los metabolitos del paso (b) de los métodos de la invención se realiza preferiblemente por análisis mediante GC-TOF/MS, preferiblemente con ionización por impacto electrónico (IE). En esta memoria el equipo analítico utilizado y designado por GC-TOF/MS, del inglés Gas Chromatography-Time of Flight Mass Spectrometry, ha permitido desarrollar un método adecuado para la detección de moléculas orgánicas con un pesos moleculares de hasta aproximadamente 1000 Da. El GC-Q/TOF ofrece alta sensibilidad y selectividad con el valor añadido de proporcionar información precisa y de alta resolución para la confirmación estructural de los metabolitos. Suitable reference amounts can be determined by the method of the present invention from a reference sample that can be analyzed, for example, simultaneously or consecutively, together with the problem biological sample. Thus, for example but without limiting ourselves, the reference sample may be the negative controls, that is, the amounts detected by the methods of the invention in samples of individuals who do not suffer from the disease or in individuals with risk factor for suffering from the disease. (smoking and COPD). Steps (b) and / or (c) of the methods described above can be fully or partially automated. The metabolites that are determined in step (b) can be determined individually, or any of their combinations can be determined. The metabolites can be determined by any means known to the person skilled in the art. The quantification of the metabolites of step (b) of the methods of the invention is preferably performed by analysis by GC-TOF / MS, preferably with electronic impact ionization (IE). In this report, the analytical equipment used and designated by GC-TOF / MS, from the English Gas Chromatography-Time of Flight Mass Spectrometry, has allowed the development of a suitable method for the detection of organic molecules with a molecular weights of up to approximately 1000 Da. The GC-Q / TOF offers high sensitivity and selectivity with the added value of providing accurate and high resolution information for the structural confirmation of metabolites.
La determinación de la cantidad y/o concentración metabolitos, se puede hacer, por ejemplo, aunque sin limitarnos, mediante un sistema indicador preparado sobre un soporte sólido (papel o sorbente sólido) en el que se han inmovilizado reactivos selectivos o específicos para los compuestos identificados como marcadores. Un octavo aspecto de la invención se refiere a un kit o dispositivo que comprende los elementos necesarios para cuantificar los metabolitos p-cresol, el alcohol cumílico, la eicosenamida, el hexadecilindano, el 2,4-bis-dimetilbencil-6-t-butilfenol, la monostearina, el espiro-2,4-heptano-1 ,5-6-metileno, el 13-heptadecin-1-ol, el estearato de metilo, el glicerol-1- palmitato, el alcohol bencílico y/o el 2,4-difenil-4-metil-2-E-pentano, según se describe en cualquiera de los métodos de la invención. The determination of the amount and / or concentration of metabolites can be done, for example, but not limited to, by means of an indicator system prepared on a solid support (paper or solid sorbent) in which selective or specific reagents for the compounds have been immobilized. identified as markers. An eighth aspect of the invention relates to a kit or device comprising the elements necessary to quantify the metabolites p-cresol, cumyl alcohol, eicosenamide, hexadecyldane, 2,4-bis-dimethylbenzyl-6-t-butylphenol , monostetin, spiro-2,4-heptane-1, 5-6-methylene, 13-heptadecin-1-ol, methyl stearate, glycerol-1 palmitate, benzyl alcohol and / or 2 , 4-diphenyl-4-methyl-2-E-pentane, as described in any of the methods of the invention.
En otra realización preferida de este aspecto de la invención, el kit o dispositivo de la invención además comprende todos aquellos elementos necesarios para llevar a cabo un análisis mediante GC-TOF/MS. In another preferred embodiment of this aspect of the invention, the kit or device of the invention further comprises all those elements necessary to carry out an analysis by GC-TOF / MS.
El kit además puede incluir, sin ningún tipo de limitación, tampones, disoluciones para la extracción de proteínas, agentes para prevenir la contaminación, inhibidores de la degradación de las proteínas, reactivos derivatizantes, etc. The kit can also include, without any limitation, buffers, solutions for protein extraction, agents to prevent contamination, inhibitors of protein degradation, derivatizing reagents, etc.
En otra realización preferida de este aspecto de la invención, el kit o dispositivo de la invención es un kit de partes, que comprende un componente A, formado por un dispositivo para la recogida de la muestra del paso a), y un componente B, formado por los elementos necesarios para llevar a cabo el análisis cualitativo, sem ¡cuantitativo o cuantitativo en la muestra del paso a) o cualquiera de los métodos de la invención Por otro lado, el kit puede incluir todos los soportes y recipientes necesarios para su puesta en marcha y optimización. Preferiblemente, el kit comprende además las instrucciones para llevar a cabo los métodos de la invención. In another preferred embodiment of this aspect of the invention, the kit or device of the invention is a kit of parts, comprising a component A, formed by a device for collecting the sample from step a), and a component B, formed by the elements necessary to carry out the qualitative, semi-quantitative or quantitative analysis in the sample of step a) or any of the methods of the invention On the other hand, the kit can include all the supports and containers necessary for its start-up and optimization. Preferably, the kit further comprises instructions for carrying out the methods of the invention.
Un noveno aspecto de la invención se refiere al uso del kit o dispositivo según la reivindicación anterior, para el diagnóstico, clasificación y seguimiento del cáncer. A ninth aspect of the invention relates to the use of the kit or device according to the preceding claim, for the diagnosis, classification and monitoring of cancer.
En una realización preferida de este aspecto de la invención, el cáncer es cáncer de pulmón. In a preferred embodiment of this aspect of the invention, the cancer is lung cancer.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y dibujos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. Throughout the description and the claims the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and features of the invention will be derived partly from the description and partly from the practice of the invention. The following examples and drawings are provided by way of illustration, and are not intended to be limiting of the present invention.
EJEMPLO DE LA INVENCIÓN Materiales y métodos EXAMPLE OF THE INVENTION Materials and methods
Reactivos Reagents
Se usó hexano TraceSELECT® de Sigma-Aldrich (St. Louis, EE.UU.) como disolvente orgánico para la preparación de muestras, una mezcla estándar de alcanos (de C10 a C40) también de Sigma-Aldrich para las pruebas de separación de GC y para establecer la calibración del índice de retención (Rl). También se utilizó agua desionizada (18 mO · cm) de un sistema de purificación de agua Millipore Milli-Q. TraceSELECT® hexane from Sigma-Aldrich (St. Louis, USA) was used as the organic solvent for sample preparation, a standard mixture of alkanes (from C10 to C40) also from Sigma-Aldrich for separation tests of GC and to establish the retention index calibration (Rl). Deionized water (18 mO · cm) of a Millipore Milli-Q water purification system was also used.
Instrumentos y dispositivos Instruments and devices
Para la recogida de EBC se utilizó un dispositivo de ECOScreen2 (FILT Thorax-und LungenDiagnostik GmbH, Berlín, Alemania). La homogeneización de los extractos se llevó a cabo por un MS2 Minishaker Vortex (IKA, Alemania). An ECOScreen2 device (FILT Thorax-und LungenDiagnostik GmbH, Berlin, Germany) was used to collect EBC. The homogenization of the extracts was carried out by an MS2 Minishaker Vortex (IKA, Germany).
Se utilizó un sistema Agilent 7890A Series GC acoplado a un Agilent 7200 UHD Accurate- Mass QTOF espectrómetro de masas híbrido equipado con una fuente de impacto electrónico (El) (Santa Clara, CA, EE.UU.). La muestra analítica se monitorizo en el modo de alta resolución. Cohorte seleccionada para el estudio Las muestras de EBC se obtuvieron de 239 individuos en ayunas, y se almacenaron a -80 °C en el bio-repositorio del Hospital Reina Sofía (Córdoba, España). Todos los individuos se reclutaron en el Departamento de Medicina Respiratoria. La cohorte incluyó a 48 pacientes con diagnóstico de cáncer de pulmón entre noviembre de 2012 y mayo de 2014. Todos los pacientes se diagnosticaron con cáncer de pulmón y se confirmaron citohistológicamente después de las pruebas clínicas basadas en la broncoscopia, biopsia con aguja fina o videotoracoscopia. Estos pacientes tenían una media de 63±7 años y el 94% de ellos eran varones. El diagnóstico más frecuente fue el carcinoma de células escamosas (15 pacientes, 31 ,25%), seguido de adenocarcinoma (13 pacientes, 27%), carcinoma de células pequeñas (7 pacientes, 14,5%), carcinoma de células grandes (6 pacientes, 12,5%). Siete personas (14%) fueron diagnosticadas de cáncer de pulmón de células no pequeñas y sin clasificación histológica. An Agilent 7890A Series GC system coupled to an Agilent 7200 UHD Accurate-Mass QTOF hybrid mass spectrometer equipped with an electronic impact source (El) (Santa Clara, CA, USA) was used. The analytical sample was monitored in high resolution mode. Cohort selected for the study The EBC samples were obtained from 239 fasting individuals, and stored at -80 ° C in the bio-repository of the Reina Sofía Hospital (Córdoba, Spain). All individuals were recruited in the Department of Respiratory Medicine. The cohort included 48 patients diagnosed with lung cancer between November 2012 and May 2014. All patients were diagnosed with lung cancer and were confirmed cytohistologically after clinical trials based on bronchoscopy, fine needle biopsy or videothoracoscopy. . These patients had a mean of 63 ± 7 years and 94% of them were male. The most frequent diagnosis was squamous cell carcinoma (15 patients, 31, 25%), followed by adenocarcinoma (13 patients, 27%), small cell carcinoma (7 patients, 14.5%), large cell carcinoma ( 6 patients, 12.5%). Seven people (14%) were diagnosed with non-small cell lung cancer without histological classification.
El grupo de factor de riesgo estaba formado por 130 personas, 83 de ellos fumadores activos (>20 paquetes/año) y 47 individuos diagnosticados con EPOC mediante espirometría (FVC/FEV1 ratio<0,7). Dos razones apoyaron la inclusión de los fumadores y pacientes con EPOC en el grupo de factores de riesgo: en primer lugar, el tabaquismo es considerado el factor de riesgo más importante para desarrollar cáncer de pulmón y la EPOC; en segundo lugar, el aumento del estrés oxidativo o la presencia de células inflamatorias infiltradas en la EPOC y en el cáncer de pulmón son formas comunes de explicación teórica de daño pulmonar (especialmente esta última). El grupo con factor de riesgo, control clínico al menos por un año, se caracterizó por una edad promedio de 61 ± 8 años, con el 82,4% de los individuos del sexo masculino. La existencia de cáncer de pulmón fue descartada en este grupo a través de la TC y la broncoscopia. El grupo de control formado por 61 individuos sanos con una media de 60 ± 9 años, 87% de ellos los individuos masculinos. Todos ellos eran no fumadores activos ni pasivos, sin síntomas clínicos y con un perfil normal establecido por la radiografía de tórax. The risk factor group consisted of 130 people, 83 of them active smokers (> 20 packages / year) and 47 individuals diagnosed with COPD using spirometry (FVC / FEV1 ratio <0.7). Two reasons supported the inclusion of smokers and patients with COPD in the risk factor group: first, smoking is considered the most important risk factor for developing lung cancer and COPD; second, the increase in oxidative stress or the presence of inflammatory cells infiltrated in COPD and in lung cancer are common forms of theoretical explanation of lung damage (especially the latter). The risk factor group, clinical control for at least one year, was characterized by an average age of 61 ± 8 years, with 82.4% of male individuals. The existence of lung cancer was ruled out in this group through CT and bronchoscopy. The control group consists of 61 healthy individuals with an average of 60 ± 9 years, 87% of them male individuals. All of them were non-active or passive smokers, without clinical symptoms and with a normal profile established by the chest radiograph.
Los criterios para la exclusión de pacientes fueron: a) la coexistencia de patología tumoral extrapulmonar o un tratamiento con fármacos citostáticos para una neoplasia diferente; b) diagnóstico de neoplasia en los últimos cinco años; c) la pérdida de peso injustificada (≥7 kg) durante el año pasado; d) grave trastorno de cualquier órgano con influencia negativa en el pronóstico o que impidió aplicar el protocolo (en los casos se trataba de incluir el grado IV de insuficiencia cardiaca según la Asociación del Corazón de Nueva York, la cirrosis hepática avanzada, la insuficiencia renal en fase V con el tratamiento sustitutivo con hemodiálisis o diálisis peritoneal, y la enfermedad pulmonar de diagnóstico no relacionado con fumar, incluyendo neumopatía intersticial, neumonía, tuberculosis, etc. [8]). Todos los experimentos se desarrollaron de acuerdo con los principios éticos de la investigación médica en humanos (Asociación Médica Mundial, Declaración de Helsinki). El comité de ética de la Reina del Hospital Sofía (Córdoba, España) aprobó y supervisó el estudio clínico. Procedimiento de recolección del EBC The criteria for the exclusion of patients were: a) the coexistence of extrapulmonary tumor pathology or a treatment with cytostatic drugs for a different neoplasm; b) diagnosis of neoplasia in the last five years; c) unjustified weight loss (≥7 kg) during the past year; d) serious disorder of any organ with negative influence on the prognosis or that prevented the application of the protocol (in the cases it was included the degree IV of heart failure according to the New York Heart Association, advanced liver cirrhosis, renal failure in phase V with the substitute treatment with hemodialysis or peritoneal dialysis, and the diagnostic lung disease not related to smoking, including interstitial pneumopathy, pneumonia, tuberculosis, etc. [8]). All experiments were carried out in accordance with the ethical principles of medical research in humans (World Medical Association, Declaration of Helsinki). The ethics committee of the Reina del Hospital Sofía (Córdoba, Spain) approved and supervised the clinical study. EBC collection procedure
El dispositivo ECOScreen2 utilizado para el muestreo permite recoger directamente y condensar la EBC en bolsas de polietileno desechables. Se opera a -20 °C, se realiza la recolección de EBC controlado en dos bolsas separadas para la separación física entre el aire contenido dentro de UA de la de DA [23]. La principal modificación fue la inserción de un filtro de protección comercial de Scharlab (Barcelona, España) sobre la válvula de entrada de aire para evitar la entrada de compuestos orgánicos exógenos y las partículas de la atmósfera ambiente. Este filtro se cambió periódicamente para evitar la saturación. The ECOScreen2 device used for sampling allows direct collection and condensation of the EBC in disposable polyethylene bags. It is operated at -20 ° C, the collection of controlled EBC is carried out in two separate bags for the physical separation between the air contained within UA and that of DA [23]. The main modification was the insertion of a commercial protection filter from Scharlab (Barcelona, Spain) on the air inlet valve to prevent the entry of exogenous organic compounds and particles from the ambient atmosphere. This filter was changed periodically to avoid saturation.
El muestreo de la respiración (con un clip de nariz) se realizó durante 15 minutos, tiempo necesario para recoger un volumen medio de EBC de 1 ,5 mi de la DA y 1 mi de la UA. Sólo 101 personas fueron capaces de proporcionar un volumen suficiente de las dos fracciones para el análisis. Las muestras se dividieron en alícuotas de 100 μΙ y los viales se almacenaron a -80 °C hasta su análisis. Se analizaron todas las muestras dentro de los 3 meses después de la recolección. The sampling of the breath (with a nose clip) was carried out for 15 minutes, time needed to collect an average volume of EBC of 1.5 ml of the DA and 1 ml of the UA. Only 101 people were able to provide a sufficient volume of the two fractions for analysis. The samples were divided into 100 μΙ aliquots and the vials were stored at -80 ° C until analysis. All samples were analyzed within 3 months after collection.
Preparación de la muestra La preparación de la muestra consistió en extracción líquido-líquido utilizando hexano como extractante. En todos los casos, 100 μΙ de alícuotas de EBC y el mismo volumen de hexano se agitaron mediante vórtex en un inserto de vidrio a temperatura ambiente durante 1 min. Después, la fase orgánica se aisló y se puso en un nuevo inserto de vidrio para su análisis. Para eliminar las interferencias exógenas, los blancos se prepararon mediante el uso de agua tratada como las muestras. Sample preparation Sample preparation consisted of liquid-liquid extraction using hexane as an extractant. In all cases, 100 μΙ of aliquots of EBC and the same volume of hexane were vortexed in a glass insert at room temperature for 1 min. Then, the organic phase was isolated and placed in a new glass insert for analysis. To eliminate exogenous interference, the targets were prepared by using treated water as the samples.
Análisis GC-TOF/MS GC-TOF / MS analysis
Los análisis mediante GC-TOF/MS se realizaron con ionización por impacto de electrones (El) a 70 eV y controlado por Masstiunter Acquisition B.06. La separación cromatográfica se llevó a cabo en una columna capilar de sílice fundida DB-5MS-UI 30 m χ 0,25 mm i.d., de 0,25 μηι de grosor. El programa de temperatura para la separación en el GC comenzó a 60 °C (1 min), seguido por una ascenso de temperatura de 10 °C/min hasta 300 °C finales (2 min). Se programó un aumento de temperatura de la columna hasta 310 °C durante 4 min para asegurar la elución completa de todos los componentes de la muestra inyectada. Se llevaron a cabo inyecciones de 1 μΙ de muestra a 250 °C sin división del flujo, y se utilizó helio de grado ultrapuro como gas portador a un caudal de 1 ,0 ml/min. Las temperaturas de interfaz, fuente de iones y cuadrupolo se fijaron en 280, 300 y 200 °C, respectivamente. El filamento de la fuente de iones se apagó hasta el minuto 5.5 para evitar daños por la salida del frente del disolvente. El detector TOF realizó 5 espectros/s en el intervalo de m/z de 50 a 550 y la resolución fue 8500 (anchura a la mitad de la altura máxima del pico, FWHM) a m/z 501 ,9706. El PFTBA (perfluorotri-n-butilamina) de alta pureza para espectrometría de masas se utilizó para la calibración diaria del eje de masas. La identificación de los metabolitos se realizó mediante la búsqueda en los espectros de MS en la base de datos NIST 1 1 teniendo en cuenta los valores de Rl. GC-TOF / MS analyzes were performed with electron impact ionization (El) at 70 eV and controlled by Masstiunter Acquisition B.06. Chromatographic separation was carried out on a fused silica capillary column DB-5MS-UI 30 m χ 0.25 mm id, 0.25 μηι thick. The temperature program for separation in the GC started at 60 ° C (1 min), followed by a temperature rise of 10 ° C / min to a final 300 ° C (2 min). A column temperature increase to 310 ° C was programmed for 4 min to ensure complete elution of all components of the injected sample. Injections of 1 μΙ of sample were carried out at 250 ° C without division of the flow, and ultrapure grade helium was used as carrier gas at a flow rate of 1.0 ml / min. The interface, ion source and quadrupole temperatures were set at 280, 300 and 200 ° C, respectively. The ion source filament was turned off until 5.5 minutes to prevent damage from the solvent front outlet. The TOF detector performed 5 spectra / s in the m / z range from 50 to 550 and the resolution was 8500 (width at half the maximum peak height, FWHM) at m / z 501, 9706. The high purity PFTBA (perfluorotri-n-butylamine) for mass spectrometry was used for daily mass axis calibration. The metabolites were identified by searching the MS spectra in the NIST 1 1 database taking into account the Rl values.
Procesamientos de los datos y análisis estadísticos Data processing and statistical analysis
Para procesar todos los datos obtenidos por GC-TOF/MS en el modo de análisis completo se utilizó el Unknown Analysis software (versión 7.0, Agilent Technologies, Santa Clara, CA, EE.UU.). El tratamiento de archivos de datos brutos se inició por deconvolución de las entidades moleculares (MFs) potenciales con el algoritmo adecuado incluido en el software. Para este propósito, el algoritmo de deconvolución para el parámetro altura absoluta consideró todos los iones superiores a 1.500 cuentas. Además, se establecieron el error de precisión y el tamaño de la ventana en de 50 ppm y 150, respectivamente. Después de la extracción de las MFs, se crearon para cada muestra los archivos de datos en formato de intercambio de archivos de compuestos (.cef) y se exportaron al software Mass Profiler Professional (MPP) (versión 12.1 , Agilent Technologies, Santa Clara, CA, EE.UU.) para su posterior procesamiento. To process all the data obtained by GC-TOF / MS in the full analysis mode, the Unknown Analysis software (version 7.0, Agilent Technologies, Santa Clara, CA, USA) was used. The processing of raw data files was initiated by deconvolution of potential molecular entities (MFs) with the appropriate algorithm included in the software. For this purpose, the deconvolution algorithm for the absolute height parameter considered all ions greater than 1,500 counts. In addition, the precision error and window size were set at 50 ppm and 150, respectively. After the extraction of the MFs, the data files in compound file sharing format (.cef) were created for each sample and exported to the Mass Profiler Professional (MPP) software (version 12.1, Agilent Technologies, Santa Clara, CA, USA) for further processing.
En el siguiente paso, los datos fueron procesados por la alineación de las MFs potenciales de acuerdo con su tiempo de retención y el valor m/z utilizando una ventana de tolerancia de 0,3 min y un error en la precisión de 15 ppm. Las MFs a partir del análisis presentes en los blancos tratados como muestras se eliminaron del conjunto de datos de MFs definitivo para las muestras de EBC. El algoritmo de extracción confirmó la eficacia de esta etapa de filtrado. Esta corrección se aplicó a todos los tratamientos de las muestras analizadas. La reducción gradual del número MFs se basa en la frecuencia de ocurrencia mediante la comparación de repeticiones de un mismo grupo de personas. Se fijó un filtro por frecuencia de 100%, asegurando así la detección de cada MF en todas las repeticiones de cada grupo de muestras inyectadas (cáncer de pulmón, grupo con factor de riesgo y el control de los individuos sanos). En el último paso, los MFs resultantes se exportaron (archivo .cef) para un análisis recursivo. Con este propósito, se utilizó el software Quantitative Analysis (versión 7.0, Agilent Technologies, Santa Clara, CA, EE.UU.) para reintegrar a todos los compuestos potenciales que se encuentran en las muestras analizadas. La tabla resultante se exporta en formato de valores separados por comas (archivo .csv) y se vuelve a procesar con el paquete de software Mass Profiler Professional (MPP). Se aplicó un filtro para eliminar las muestras con una réplica dentro de la variabilidad por encima de 10% para asegurar la eficacia del análisis recursivo. Por último, el conjunto de datos se normalizó por transformación logarítmica de la relación entre el área del pico de cada entidad molecular y la suma total de las áreas de las MFs presentes en el 100% de las muestras (MSTUS). In the next step, the data was processed by aligning the potential MFs according to their retention time and the m / z value using a 0.3 min tolerance window and an accuracy error of 15 ppm. The MFs from the analysis present in the targets treated as samples were removed from the final MFs data set for the EBC samples. The extraction algorithm confirmed the effectiveness of this filtering stage. This correction was applied to all the treatments of the analyzed samples. The gradual reduction of the number of MFs is based on the frequency of occurrence by comparing repetitions of the same group of people. A 100% frequency filter was set, thus ensuring the detection of each MF in all repetitions of each group of injected samples (lung cancer, risk factor group and control of healthy individuals). In the last step, the resulting MFs were exported (.cef file) for recursive analysis. For this purpose, Quantitative Analysis software (version 7.0, Agilent Technologies, Santa Clara, CA, USA) was used to reintegrate all potential compounds found in the analyzed samples. The resulting table is exported in comma separated values format (.csv file) and reprocessed with the Mass Profiler Professional (MPP) software package. A filter was applied to remove the samples with a replication within the variability above 10% to ensure the effectiveness of the recursive analysis. Finally, the data set was normalized by logarithmic transformation of the relationship between the peak area of each molecular entity and the total sum of the areas of the MFs present in 100% of the samples (MSTUS).
A continuación, los datos resultantes establecidos de cada fracción EBC se sometieron a análisis supervisado y no supervisado mediante análisis de componentes principales (PCA) y análisis discriminante por mínimos cuadrados parciales (PLS-DA). Como método de validación se seleccionó la validación cruzada mediante el uso de un modelo de N veces. Con este modelo, las clases en los datos de entrada se dividen aleatoriamente en N partes iguales; N-1 partes se utilizan para el entrenamiento y la parte restante se utiliza para la prueba. El proceso se repitió N veces, con un subconjunto diferente que se utiliza para realizar pruebas en un proceso iterativo. Por lo tanto, cada fila se utiliza al menos una vez en la formación y una vez en la prueba, y se genera una matriz de confusión. El proceso completo se puede repetir tantas veces como se especifique por el número de repeticiones. La validación en esta investigación consistió en diez repeticiones y un número de veces de tres. Next, the resulting resulting data from each EBC fraction were subjected to supervised and unsupervised analysis using principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA). As a validation method cross-validation was selected through the use of a N-fold model. With this model, the classes in the input data are randomly divided into N equal parts; N-1 parts are used for training and the remaining part is used for the test. The process was repeated N times, with a different subset that is used to perform tests in an iterative process. Therefore, each row is used at least once in the training and once in the test, and a confusion matrix is generated. The entire process can be repeated as many times as specified by the number of repetitions. The validation in this investigation consisted of ten repetitions and a number of times of three.
Por último, se aplicó un análisis f-test pareado para comparar las dos fracciones de la EBC del mismo paciente, y se utilizó un f-test no pareado para comparar los grupos en estudio utilizando un test de corrección Bonferroni-Holm. Finally, a paired f-test was applied to compare the two fractions of the same patient's EBC, and an unpaired f-test was used to compare the groups under study using a Bonferroni-Holm correction test.
Identificación de las MFs potenciales detectadas por GC-TOF/MS Identification of potential MFs detected by GC-TOF / MS
La identificación se llevó a cabo en primer lugar mediante la búsqueda de espectros MS en la base de datos NIST1 1. Se consideraron como válidas sólo las identificaciones con un factor de coincidencia y un factor de coincidencia inversa mayor que 700. Los valores Rl incluidos en la base de datos NIST también se tuvieron en cuenta para apoyar las identificaciones. Se construyó un modelo de calibración Rl mediante la comparación de los valores de Rl de una mezcla estándar de alcanos (compuesto por alcano C10 y C40 entre con un número par de átomos de carbono) usando el método cromatográfico propuesto en esta investigación y los valores de Rl proporcionados por la base de datos NIST. La figura 1 suplementaria muestra la línea de calibración Rl obtenida por este enfoque. El requisito para aceptar las identificaciones del NIST fue que la diferencia entre el Rl teórico y el experimental, obtenida por extrapolación de la curva de calibración, debía estar dentro de ± 100 unidades. La base de datos NIST no contiene información de alta resolución MS conforme a lo proporciona el detector TOF. Por esta razón, se incluyó un tercer paso para validar la identificación de cada MF mediante el uso de espectrometría de masas de alta resolución. Por lo tanto, la fórmula molecular para el ion precursor tentativo ([M]+) y los iones productos más intensos obtenidos para cada MF debe encajar la identificación NIST fijando un valor de corte de precisión de masa de 10 ppm. La Tabla 1 contiene los compuestos identificados clasificados por familias químicas. The identification was first carried out by searching for MS spectra in the NIST1 database 1. Only identifications with a coincidence factor and an inverse coincidence factor greater than 700 were considered valid. Rl values included in The NIST database was also taken into account to support the identifications. An Rl calibration model was constructed by comparing the Rl values of a standard mixture of alkanes (composed of C10 and C40 alkane between an even number of carbon atoms) using the chromatographic method proposed in this investigation and the values of Rl provided by the NIST database. Figure 1 Supplementary shows the Rl calibration line obtained by this approach. The requirement to accept the NIST identifications was that the difference between the theoretical and experimental Rl, obtained by extrapolation of the calibration curve, must be within ± 100 units. The NIST database does not contain high resolution MS information as provided by the TOF detector. For this reason, a third step was included to validate the identification of each MF through the use of high resolution mass spectrometry. Therefore, the molecular formula for the tentative precursor ion ([M] + ) and the most intense product ions obtained for each MF must fit the NIST identification by setting a mass cut-off value of 10 ppm. Table 1 contains the identified compounds classified by chemical families.
Tabla 1. Compuestos en los extractos de EBC identificados por GC-TOF/MS Table 1. Compounds in EBC extracts identified by GC-TOF / MS
NOMBRE DEL TIEMPO DE NAME OF THE TIME OF
FORMULA CAS ID Fragmentos Familia COMPUEST RETENCIÓN FORMULA CAS ID Fragments Family COMPUEST RETENTION
O  OR
154.1361 - [C10H18O]+ 154.1361 - [C10H18O] +
Compuestos Compounds
Eucaliptol 5,995 CioHieO 470-82-6 139.1 1 19 - [C9H150]+ heteropolicíclicos alifáticos (oxanos) 93.0695 - [C7H9]+ Eucalyptol 5,995 CioHieO 470-82-6 139.1 1 19 - [C9H150] + aliphatic heteropolycyclics (oxanes) 93.0695 - [C7H9] +
1 17.0558 - [C8H7N]+ Compuestos heterocíclicos1 17.0558 - [C8H7N] + Heterocyclic compounds
Indol 9,904 C8H7N 120-72-9 90.0448 [C7H6]+ Indole 9,904 C 8 H 7 N 120-72-9 90.0448 [C7H6] +
aromáticos 74.0145 - [C6H2]+ (Índoles) aromatic 74.0145 - [C6H2] + (Índoles)
194.0425 - Compuestos 194.0425 - Compounds
Ácido [C1 1 H1403]+ aromáticos benzoico 4-[C1 1 H1403] acid + benzoic aromatic 4-
12,923 C11 H14O3 23676-09-7 149.0581 - [C9H902]+ homomonocíclicos etoxy-etil (benceno y ester 121 .0269 - [C7H502]+ derivados sustituidos)12,923 C11 H14O3 23676-09-7 149.0581 - [C9H902] + homomonocyclic ethoxy-ethyl (benzene and ester 121 .0269 - [C7H502] + substituted derivatives)
Ester 136.0514 - [C8H802]+ Compuestos aromáticos metílico del Ester 136.0514 - [C8H802] + Methyl aromatic compounds of
6,951 C8H8O2 93-58-3 105.0332 - [C7H50]+ homomonocíclicos ácido 6,951 C8H8O2 93-58-3 105.0332 - [C7H50] + homomonocyclic acid
(ácido benzoico y benzoico 77.0378 - [C6H5]+ (benzoic and benzoic acid 77.0378 - [C6H5] +
derivados) derivatives)
276.1712 -276.1712 -
Ácido 3,5-di- [C17H2403]+ Compuestos t-butil-4- 261 .1479 - aromáticos 3,5-di- [C17H2403] acid + t-Butyl-4- 261 .1479 - aromatic compounds
20, 155 C17H24O3 22014-01 -3  20, 155 C17H24O3 22014-01 -3
hidroxicinámi [C16H2103]+ homomonocíclicos hydroxycinnamic [C16H2103] + homomonocíclicos
(ácido cinámico y (cinnamic acid and
CO 177.0896 - derivados) [C1 1 H1302]+ CO 177.0896 - derivatives) [C1 1 H1302] +
290.1867 - Compuestos [C18H2603]+ aromáticos290.1867 - Compounds [C18H2603] + aromatic
Octinoxato 21 ,005 C18H26O3 5466-77-3 178.061 1 - homomonocíclicos Octinoxate 21, 005 C18H26O3 5466-77-3 178.061 1 - homomonocíclicos
[C10H10O3]+ (ácido cinámico y[C10H10O3] + (cinnamic acid and
161 .0578 - [C10H9O2]+ derivados)161 .0578 - [C10H9O2] + derivatives)
136.0514 - [C8H802]+ Compuestos p-Cresol 6,536 C7H80 106-44-5 136.0514 - [C8H802] + Compounds p-Cresol 6,536 C 7 H 8 0 106-44-5
105.0332 - [C7H50]+ aromáticos homomonociclicos 105.0332 - [C7H50] + aromatic homomonocylic
77.0378 - [C6H5]+ (fenoles y derivados-cresol)77.0378 - [C6H5] + (phenols and cresol derivatives)
108.0565 -[C7H80]+ Compuestos aromáticos108.0565 - [C7H80] + Aromatic compounds
Alcohol Alcohol
5,963 C7H80 100-51-6 91.0535 -[C7H7]+ homomonociclicos bencílico 5.963 C 7 H 8 0 100-51-6 91.0535 - [C7H7] + benzyl homomonocyclics
(alcoholes (alcohols
79.0533 - [C6H7]+ 79.0533 - [C6H7] +
primarios) primary)
201.1835- [C12H2502]+ 201.1835- [C12H2502] +
La u rato de Lípidos (ésteres de  The time of Lipids (esters of
14,97 C15H30O2 10233-13-3  14.97 C15H30O2 10233-13-3
isopropilo 157.1203 -[C9H1702]+ ácidos grasos) Isopropyl 157.1203 - [C9H1702] + fatty acids)
102.0656 -[C5H10O2]+ 102.0656 - [C5H10O2] +
270.2545 - 270.2545 -
Ester [C17H3402]+ Ester [C17H3402] +
metílico del  methyl
17,342 C17H34O2 112-39-0 227.1998- Lípidos (ésteres de ácido [C14H2702]+ ácidos grasos) palmítico 17,342 C17H34O2 112-39-0 227.1998- Lipids (esters of acid [C14H2702] + fatty acids) palmitic
143.1048 -[C8H1502]+ 143.1048 - [C8H1502] +
296.2702 - 296.2702 -
Ester [C19H3602]+ Esther [C19H3602] +
Lípidos (ésteres de metílico del 19,041 C19H36O2 112-62-9  Lipids (19,041 C19H36O2 methyl esters 112-62-9
264.2442 -[18C32HO]+ ácidos grasos) ácido oléico 264.2442 - [18C32HO] + fatty acids) oleic acid
81.0685 -[C6H9]+ 81.0685 - [C6H9] +
298.2862 - 298.2862 -
Ester [C19H3802]+ Ester [C19H3802] +
metílico del  methyl
19,28 C19H38O2 112-61-8 255.2315- Lípidos (ésteres de ácido [C16H3102]+ ácidos grasos) esteárico 19.28 C19H38O2 112-61-8 255.2315- Lipids (esters of acid [C16H3102] + fatty acids) stearic
87.0436 - [C4H702]+ 87.0436 - [C4H702] +
236.2122 -[C16H280]+ 236.2122 - [C16H280] +
Ácido Lípidos (ésteres de  Acid Lipids (esters of
17,452 C16H30O2 373-49-9 98.0710 -[C6H10O]+ 17,452 C16H30O2 373-49-9 98.0710 - [C6H10O] +
palmitoleico ácidos grasos) palmitoleic fatty acids)
69.0689 - [C5H9]+ 69.0689 - [C5H9] +
227.1997- [C14H2702]+ Lípidos (ácidos227.1997- [C14H2702] + Lipids (acids
Ácido Acid
17,697 C16H32O2 57-10-3 grasos y palmítico 129.0891 -[C7H1302]+ 17,697 C16H32O2 57-10-3 fatty and palmitic 129.0891 - [C7H1302] +
conjugados) 73.0279 - [C3H502]+ conjugates) 73.0279 - [C3H502] +
284.2706 - [C18H3602]+ Lípidos (ácidos284.2706 - [C18H3602] + Lipids (acids
Ácido Acid
19,584 C18H36O2 57-11-4 129.0908 -[C7H1302]+ grasos y esteárico 19,584 C18H36O2 57-11-4 129.0908 - [C7H1302] + fatty and stearic
conjugados) 73.0281 - [C3H502]+ conjugates) 73.0281 - [C3H502] +
297.2436 - [C18H3303]+ Lípidos (ácidos297.2436 - [C18H3303] + Lipids (acids
Glicidol Glycidol
22,476 C21H40O3 7460-84-6  22,476 C21H40O3 7460-84-6
estearato 98.0719 -[C6H10O]+ grasos y conjugados) 71.0848 -[C5H11]+ stearate 98.0719 - [C6H10O] + fatty and conjugated) 71.0848 - [C5H11] +
111.1157 -[C8H15]+ 111.1157 - [C8H15] +
Lípidos (alcoholes Lipids (alcohols
Undecanol 1,125,125 C11H24O 112-42-5 83.0844 -[C6H11]+ Undecanol 1,125,125 C11H24O 112-42-5 83.0844 - [C6H11] +
grasos) 69.0691 - [C5H9]+ fatty) 69.0691 - [C5H9] +
111.1160 -[C8H15]+ 111.1160 - [C8H15] +
1- one-
Lípidos (alcoholesLipids (alcohols
Hexadecanol 15,994 C17H36O 2490-48-4 97.1006 -[C7H13]+ Hexadecanol 15,994 C17H36O 2490-48-4 97.1006 - [C7H13] +
grasos) 2-metilo  fatty) 2-methyl
69.0691 - [C5H9]+ 69.0691 - [C5H9] +
281.2679- 281.2679-
Oleamida 21,328 C18H35NO 301-02-0 [C18H35NO]+ Lípidos (amidas grasas)Oleamide 21,328 C18H35NO 301-02-0 [C18H35NO] + Lipids (fatty amides)
126.0914 -[C7H12NO]+
Figure imgf000023_0001
93.0695 - [C7H9]+ monoterpenos)
126.0914 - [C7H12NO] +
Figure imgf000023_0001
93.0695 - [C7H9] + monoterpenes)
410.3907 -[C30H50]+ 410.3907 - [C30H50] +
Lipidos (prenol Lipids (prenol
Escualeno 24,835 C30H50 111-02-4 121.0994 -[C9H13]+ Squalane 24,835 C30H50 111-02-4 121.0994 - [C9H13] +
lipidos-triterpenos) 81.0686 -[C6H9]+ lipids-triterpenes) 81.0686 - [C6H9] +
368.3437 - [C27H44]+ 368.3437 - [C27H44] +
Lipidos (esteroides Lipids (steroids
Colestadieno 25,554 C27H44 747-90-0 247.2412 -[C18H31]+ y derivados de esteroides) 147.1141 -[C11H15]+ Cholestadiene 25,554 C27H44 747-90-0 247.2412 - [C18H31] + and steroid derivatives) 147.1141 - [C11H15] +
203.0913 -[C9H1505]+ Ácidos orgánicos y203.0913 - [C9H1505] + Organic acids and
C ¡trato de derivados (ácidos C ¡derivative treatment (acids
14,404 C12H20O7 77-93-0 157.0496 -[C7H904]+ 14.404 C12H20O7 77-93-0 157.0496 - [C7H904] +
trietilo carboxílicos y  triethyl carboxylic and
83.0486 - [C5H70]+ derivados)83.0486 - [C5H70] + derivatives)
136.1225 -[C10H16]+ 136.1225 - [C10H16] +
Espiro [2,4]  Spiro [2,4]
heptano-1 ,5- 121.0990 -[C9H3]+ Otros compuestos heptane-1, 5- 121.0990 - [C9H3] + Other compounds
5,953 C10H16 62238-24-8  5,953 C10H16 62238-24-8
dimetil-6- orgánicos metileno 79.0524 - [C6H7]+ dimethyl-6- organic methylene 79.0524 - [C6H7] +
59.0485 - [C3H70]+ 59.0485 - [C3H70] +
2-propanol  2-propanol
Otros compuestos 1- (2-butoxi- 9,21 C10H22O3 29911-28-2 86.0715 -[C5H10O]+ Other compounds 1- (2-butoxy- 9.21 C10H22O3 29911-28-2 86.0715 - [C5H10O] +
orgánicos 1-metil-etoxi)  organic 1-methyl-ethoxy)
103.0728 -[C5H1102]+ 103.0728 - [C5H1102] +
220.1822 -[C15H240]+ 220.1822 - [C15H240] +
2,4,6- 2,4,6-
Otros compuestos Triisopropilfe 12,685 C17H26O 08/07/1934 205.1584 -[C14H210]+ Other Triisopropyl compounds 12,685 C17H26O 07/08/1934 205.1584 - [C14H210] +
orgánicos nol  organic nol
77.0369 - [C6H5]+ 77.0369 - [C6H5] +
225.1826- 225.1826-
1,3- [C14H2502]+ 1,3- [C14H2502] +
Otros compuestos Heptadecyn- 15,11 C17H32O 56554-77-9 81.0681 -[C6H9]+ orgánicos 1-ol Other compounds Heptadecyn- 15.11 C17H32O 56554-77-9 81.0681 - [C6H9] + organic 1-ol
67.0529 - [C5H7]+ 67.0529 - [C5H7] +
236.1567 -[C18H20]+ 236.1567 - [C18H20] +
2,4-difenil-4- 2,4-diphenyl-4-
Otros compuestos metil-2 (E) 16,45 C18H20 22768-22-5 143.0809-[C11H11]+ Other compounds methyl-2 (E) 16.45 C18H20 22768-22-5 143.0809- [C11H11] +
orgánicos penteno  organic pentene
91.0513 -[C7H7]+ 91.0513 - [C7H7] +
7,9-Di-t-butil- 175.1104-[C12H15O]+ 7,9-Di-t-butyl- 175.1104- [C12H15O] +
oxaespiro  oxapiro
Otros compuestos (4,5) deca- 17,182 C17H26O2 82304-66-3 133.0638 -[C9H90]+ Other compounds (4,5) deca- 17,182 C17H26O2 82304-66-3 133.0638 - [C9H90] +
orgánicos 6,9-dieno- 2,8-diona 77.0369 - [C6H5]+ organic 6,9-diene- 2,8-dione 77.0369 - [C6H5] +
10,18- 242.2007 -[C18H26]+ 10,18-242.2007 - [C18H26] +
Bisnorabieta Otros compuestos Bisnorabieta Other compounds
17,999,014 C18H26 32624-67-2 227.1790 -[C17H23]+ 17,999,014 C18H26 32624-67-2 227.1790 - [C17H23] +
-8,11,13- orgánicos trieno 143.0864 -[C11H110]+ -8,11,13- organic triene 143.0864 - [C11H110] +
2,6-Di-t-butil- 324.2438 - [C23H320]+ 2,6-Di-t-butyl- 324.2438 - [C23H320] +
4-(2- Otros compuestos  4- (2- Other compounds
18,709 C23H32O 34624-81-2 309.2212 -[C22H290]+ fenilpropan- orgánicos 2-il) fenol 119.0836 -[C9H11]+ 18,709 C23H32O 34624-81-2 309.2212 - [C22H290] + phenylpropan- organic 2-yl) phenol 119.0836 - [C9H11] +
Fenol 2,2'- 330.1984 -[C24H260]+ Phenol 2,2'- 330.1984 - [C24H260] +
metilen-bis  methylene-bis
Otros compuestos Other compounds
[6- (1,1- 21,768 C23H32O2 119-47-1 315.1748 -[C23H230]+ [6- (1,1-21,768 C23H32O2 119-47-1 315.1748 - [C23H230] +
orgánicos dimetil) -4- metilo 237.1263 -[C17H170]+ organic dimethyl) -4- methyl 237.1263 - [C17H170] +
Fenol 2,4-bis 330.1984 -[C24H260]+ Otros compuestos Phenol 2,4-bis 330.1984 - [C24H260] + Other compounds
22,522 C24H26O 2772-45-4  22,522 C24H26O 2772-45-4
(1-metil-1- 315.1748 -[C23H230]+ orgánicos feniletil) - 237.1263 - [C17H170]+ (1-methyl-1- 315.1748 - [C23H230] + organic phenylethyl) - 237.1263 - [C17H170] +
2,4-Bis 386.2617 - [C28H340]+ 2,4-Bis 386.2617 - [C28H340] +
(dimetilbencil Otros compuestos  (dimethylbenzyl Other compounds
22,57 C28H34O 244080-16-8 371 .2370 - [C27H310]+ 22.57 C28H34O 244080-16-8 371 .2370 - [C27H310] +
) -6-t- orgánicos butilfenol 293.1897 - [C21 H250]+ ) -6-t- organic butylphenol 293.1897 - [C21 H250] +
1 17.0351 - [C9H9]+ 1 17.0351 - [C9H9] +
N- N-
Otros compuestos hexadecilind 23,928 C25H42 55334-29-7 130.0427 - [C10H10]+ Other compounds hexadecilind 23,928 C25H42 55334-29-7 130.0427 - [C10H10] +
orgánicos ano  organic anus
154.1345 - [C1 1 H22]+ 154.1345 - [C1 1 H22] +
Resultados Results
Comparación entre las muestras UA y DA Comparison between UA and DA samples
El dispositivo de muestreo contiene válvulas que permiten la separación según la vía de expiración, además del fraccionamiento del volumen exhalado de acuerdo con un umbral de volumen en las dos cavidades. Esta configuración hace la contaminación por saliva altamente improbable [28]. A pesar de que se supone el fraccionamiento de EBC para separar los componentes exógenos y endógenos, no hay estudios previos que hayan evaluado la composición de las dos fracciones de EBC. Todos los compuestos identificados estuvieron presentes en ambas muestras UA y DA, pero algunos de ellos mostraron diferencias entre las fracciones en cuanto a su concentración relativa. La Figura 1 muestra el diagrama de barras que compara la media de la concentración relativa para los 47 compuestos detectados en las muestras. Como se puede ver, la mayoría de los compuestos identificados se encontraron en DA en concentraciones más altas que en la UA. Un test-t pareado reveló que 18 de estos compuestos tenían concentraciones significativamente diferentes en las fracciones en las muestras recogidas en los dos compartimentos (valor de p <0,05), lo que significa que casi el 38% de los componentes de EBC identificados presentaron diferentes concentraciones en UA y DA (Figura 1). Nueve compuestos (entre ellos los ésteres de ácidos grasos y escualeno) estaban más concentrados en DA, mientras que otros como el esclareol, el limoneno, ácido benzoico o 1 1-eicosenamide estaban más concentrados en las muestras UA. Como las dos fracciones de EBC resultaron en composición cuantitativamente diferentes, se llevó a cabo un análisis estadístico multivariante de cada fracción independientemente. The sampling device contains valves that allow separation according to the expiration route, in addition to the fractionation of the exhaled volume according to a volume threshold in the two cavities. This configuration makes saliva contamination highly unlikely [28]. Although EBC fractionation is supposed to separate exogenous and endogenous components, there are no previous studies that have evaluated the composition of the two EBC fractions. All the compounds identified were present in both UA and DA samples, but some of them showed differences between the fractions in terms of their relative concentration. Figure 1 shows the bar chart comparing the average relative concentration for the 47 compounds detected in the samples. As can be seen, most of the identified compounds were found in DA at higher concentrations than in the UA. A paired t-test revealed that 18 of these compounds had significantly different concentrations in the fractions in the samples collected in the two compartments (p value <0.05), which means that almost 38% of the EBC components identified they presented different concentrations in UA and DA (Figure 1). Nine compounds (among them the esters of fatty acids and squalene) were more concentrated in DA, while others such as elrereol, limonene, benzoic acid or 1,1-eicosenamide were more concentrated in the UA samples. Since the two EBC fractions were quantitatively different in composition, a multivariate statistical analysis of each fraction was carried out independently.
Análisis multivariante de cada fracción de vía respiratoria Se aplicó un análisis no supervisado para encontrar diferencias en EBC recogidas en los tres grupos de muestras para las fracciones UA y DA. El análisis de componentes principales se llevó a cabo con el conjunto de datos que incluyó 44 de los 47 compuestos identificados. Se excluyeron tres compuestos ya que su origen sólo podría ser explicado por fuentes externas tales como cosméticos (esclareol y octinoxato) o las bolsas de plástico empleadas para la recogida de EBC (7,9-di-t-butil-1-oxaespiro (4,5) deca -6,9-dieno-2,8- diona). Debido a la alta variabilidad asociada a los individuos, los tres grupos estudiados (cáncer de pulmón, grupo con factor de riesgo y grupo de individuos sanos) aparecieron superpuestos en las tres dimensiones del gráfico PCA score para UA y DA (Fig. suplementaria 2). Por esta razón, el análisis no supervisado se dividió en tres estudios mediante la inclusión de sólo dos grupos: el cáncer de pulmón en comparación con grupo con factor de riesgo, el cáncer de pulmón en comparación con individuos sanos de control, y el grupo con factor de riesgo en comparación con individuos sanos de control. Las figuras suplementarias 3 y 4 ilustran los gráficos 3D de los scores para los tres casos utilizando la UA y DA, respectivamente. En todos los casos se observaron tendencias de discriminación entre los dos grupos. Ambas fracciones EBC mostraron una tendencia de separación similar; sin embargo, las fuentes de variabilidad intra-individuales e inter-individuales no permiten la completa separación de los grupos evaluados. En las diferentes pruebas de PCA, la combinación de PC1/PC2 /PC3 no explica la variabilidad por encima de 50% de la variabilidad total contenida en el estudio. Multivariate analysis of each airway fraction An unsupervised analysis was applied to find differences in EBC collected in the three groups of samples for the UA and DA fractions. Principal component analysis was carried out with the data set that included 44 of the 47 compounds identified. Three compounds were excluded since their origin could only be explained by external sources such as cosmetics (slaveol and octinoxate) or plastic bags used to collect EBC (7,9-di-t-butyl-1-oxapiro (4 , 5) deca -6,9-diene-2,8-dione). Due to the high variability associated with the individuals, the three groups studied (lung cancer, group with risk factor and group of healthy individuals) appeared superimposed on the three dimensions of the PCA score chart for UA and DA (Supplementary Fig. 2) . For this reason, the unsupervised analysis was divided into three studies by including only two groups: lung cancer compared to a risk factor group, lung cancer compared to healthy control individuals, and the group with risk factor compared to healthy control individuals. Supplementary figures 3 and 4 illustrate the 3D graphs of the scores for the three cases using the UA and DA, respectively. In all cases, discrimination trends were observed between the two groups. Both EBC fractions showed a similar separation trend; however, intra-individual and inter-individual sources of variability do not allow complete separation of the groups evaluated. In the different PCA tests, the combination of PC1 / PC2 / PC3 does not explain the variability above 50% of the total variability contained in the study.
Se aplicó el análisis supervisado para encontrar patrones de discriminación asociados al diagnóstico de cáncer de pulmón. Como en el estudio anterior, el análisis se dividió en tres estudios: cáncer de pulmón en comparación con grupo de factor de riesgo, el cáncer de pulmón en comparación con individuos sanos de control, y el grupo con factor de riesgo en comparación con los individuos de control. Las figuras 2 y 3 ilustran los scores en gráficos 3D de los tres estudios independientes para cada fracción de EBC. Como se puede ver, el porcentaje de variabilidad explicada no superó el 50%, pero en este caso las tendencias de discriminación se observaron claramente en todos los casos. El porcentaje de muestras correctamente clasificados para la validación y formación conjuntos del resultado PLS-DA para UA y DA se recoge en la Tabla 2. Los pacientes con cáncer de pulmón se clasifican con precisión en el modelo combinado con individuos sanos, especialmente en la fracción de la AU que reportó una capacidad de reconocimiento del 97,0% en el conjunto de entrenamiento y del 88,2% en la etapa de validación. La capacidad de reconocimiento disminuyó cuando el grupo con factor de riesgo se incluyó en el análisis de clasificación, lo que es bastante lógico ya que es el grupo intermedio. Así, en la UA la capacidad de reconocimiento para la separación de este grupo tanto de los pacientes con cáncer de pulmón como de individuos sanos fue similar: 76,5% para el conjunto de entrenamiento y 60,5% para el conjunto de validación. Estos valores se incrementaron cuando la fracción DA fue la muestra objetivo. La capacidad de reconocimiento también fue similar en la fracción DA, con 83 y 84% en el conjunto de entrenamiento utilizado para la separación del grupo con factor de riesgo de pacientes con cáncer de pulmón y de los individuos sanos, respectivamente, y el 73 y el 77,5% para los conjuntos de validación. Desde un punto de vista clínico, el modelo más interesante para ayudar en el diagnóstico de cáncer de pulmón es la comparación entre pacientes con cáncer de pulmón y el grupo con factor de riesgo. Atendiendo al parámetro con capacidad de reconocimiento, la fracción DA se caracterizó por una capacidad de clasificación más alta que la fracción UA. El modelo proporcionado por el análisis DA está bien equilibrado en términos de sensibilidad y especificidad, siendo estos parámetros 89,8 y 79,5%, respectivamente. Por esta razón, se seleccionó la fracción DA para otros estudios que se ocupan de identificación de compuestos importantes que contribuyen a explicar los patrones observados. Supervised analysis was applied to find patterns of discrimination associated with the diagnosis of lung cancer. As in the previous study, the analysis was divided into three studies: lung cancer compared to risk factor group, lung cancer compared to healthy control individuals, and the risk factor group compared to individuals. of control. Figures 2 and 3 illustrate the scores on 3D graphics of the three independent studies for each fraction of EBC. As can be seen, the percentage of variability explained did not exceed 50%, but in this case the discrimination trends were clearly observed in all cases. The percentage of correctly classified samples for the joint validation and formation of the PLS-DA result for UA and DA is shown in Table 2. Patients with lung cancer are accurately classified in the combined model with healthy individuals, especially in the fraction of the AU that reported a recognition capacity of 97.0% in the training set and 88.2% in the validation stage. The recognition capacity decreased when the risk factor group was included in the classification analysis, which is quite logical since it is the intermediate group. Thus, in the AU the recognition capacity for the separation of this group from both lung cancer patients and healthy individuals was similar: 76.5% for the training set and 60.5% for the validation set. These values increased when the DA fraction It was the objective sample. The recognition capacity was also similar in the DA fraction, with 83 and 84% in the training set used for the separation of the risk factor group of lung cancer patients and healthy individuals, respectively, and 73 and 77.5% for validation sets. From a clinical point of view, the most interesting model to help in the diagnosis of lung cancer is the comparison between patients with lung cancer and the risk factor group. According to the parameter with recognition capacity, the DA fraction was characterized by a higher classification capacity than the UA fraction. The model provided by the DA analysis is well balanced in terms of sensitivity and specificity, these parameters being 89.8 and 79.5%, respectively. For this reason, the DA fraction was selected for other studies that deal with the identification of important compounds that help explain the observed patterns.
Tabla 2. Frecuencias de muestreo clasificadas para la validación, formación y capacidad de reconocimiento para el desarrollo de los modelos PLS-DA proporcionados por las vías respiratorias superiores/centro (UA) y la vía aérea distal (DA) para la comparación de los tres grupos entre sí (controles — Control— , controles con factor de riesgo — RF— y pacientes con cáncer de pulmón— LC— ) Table 2. Sampling frequencies classified for validation, training and recognition capacity for the development of PLS-DA models provided by the upper respiratory tract / center (UA) and the distal airway (DA) for the comparison of the three groups with each other (controls - Control—, controls with risk factor - RF— and patients with lung cancer— LC—)
Vía respiratoria UA DA UA DA airway
RF vs Control Control CRF vs Control Control Modelos  RF vs Control Control CRF vs Control Control Models
LC vs LC vs RF LC vs LC vs RF LC vs LC vs RF LC vs LC vs RF
Modelo de entrenamiento Training model
Sensibilidad (%) 92,857 92,857 67,532 89,796 89,796 Sensitivity (%) 92,857 92,857 67,532 89,796 89,796
Especificidad (%) 67,532 97,057 97,059 79,542 94,000 90,000Specificity (%) 67,532 97,057 97,059 79,542 94,000 90,000
Capacidad de Capacity of
76,471 94,737 76,577 83,212 91 ,919 84,783 reconocimiento (%)  76,471 94,737 76,577 83,212 91, 919 84,783 recognition (%)
Modelo de validación  Validation model
Sensibilidad (%) 73,810 76, 190 55,844 83,673 77,551 75,000 Sensitivity (%) 73,810 76, 190 55.844 83.673 77.551 75,000
Especificidad (%) 53,810 88,235 73,529 67,045 82,000 82,000 Capacidad de Specificity (%) 53,810 88,235 73,529 67,045 82,000 82,000 Capacity
H . . . /o/ 60,504 71 ,579 61 ,261 72,993 79,798 77,536 reconocimiento (%) Identificación de compuestos significativos que contribuyen a explicar la variabilidad clínica H. . . / o / 60,504 71, 579 61, 261 72,993 79,798 77,536 recognition (%) Identification of significant compounds that contribute to explain clinical variability
Como se ha mencionado antes, los compuestos identificados en el EBC de los tres grupos estudiados y utilizados para construir los modelos de predicción se muestra en la Tabla 1. Se aplicó un t-test no pareado para identificar los compuestos más importantes que contribuyeron a explicar las diferencias observadas entre los tres grupos (tabla 3). Cuatro compuestos resultaron significativos en la comparación de los pacientes con cáncer de pulmón en comparación con el grupo de factor de riesgo y que forman por individuos sanos. Entre estos compuestos, es de destacar la presencia de dos monoacilgliceroles saturados (monopalmitina y monoestearina), y un triterpenoide acíclico (escualeno), que es el precursor de los esteróles, incluyendo el colesterol, y ácidos biliares [29]. La presencia de escualeno en el aliento exhalado se ha descrito ya ampliamente [30]. Este compuesto es estructuralmente similar al isopreno, que se considera uno de los compuestos más concentrados en la respiración humana [22]. De hecho, algunos autores han propuesto que poliisoprenos tales como escualeno se consideran fuentes potenciales de isopreno por peroxidación, uno de los mecanismos del estrés oxidativo [30]. Sin embargo, el isopreno no se detectó en EBC en esta investigación, lo que podría explicarse por su alta volatilidad. Las diferencias en la concentración relativa de los dos monoacilgliceroles y escualeno en los tres grupos estudiados pueden visualizarse en la Figura 4. La monopalmitina y monoestearina se caracterizaron por diferentes comportamientos: la monopalmitina estuvo más concentrada en el grupo de factor de riesgo que en los pacientes con cáncer de pulmón, que también presentó mayor concentración de este monoacilglicerol que los individuos sanos. Por otro lado, la monoestearina presentó el perfil opuesto: como el grupo de factor de riesgo dio una concentración relativa más baja que los pacientes con cáncer de pulmón. El escualeno dio un perfil de concentración similar al de la monopalmitina. El cuarto compuesto (hexadecilindano, un derivado del indano) no se ha relacionado con alguna fuente endógena y, por lo tanto, podría atribuirse a un origen exógeno. Sin embargo, Phillips et al. [31] también han detectado derivados de indano en la respiración, e incluso seleccionaron uno de ellos como biomarcador de cáncer de pulmón [32]. As mentioned before, the compounds identified in the EBC of the three groups studied and used to construct the prediction models are shown in Table 1. An unpaired t-test was applied to identify the most important compounds that contributed to explain the differences observed between the three groups (table 3). Four compounds were significant in the comparison of patients with lung cancer compared to the risk factor group and that they formed by healthy individuals. Among these compounds, it is worth noting the presence of two saturated monoacrylglycerols (monopalmitin and monostearin), and an acyclic triterpenoid (squalene), which is the precursor of sterols, including cholesterol, and bile acids [29]. The presence of squalene in exhaled breath has been widely described [30]. This compound is structurally similar to isoprene, which is considered one of the most concentrated compounds in human respiration [22]. In fact, some authors have proposed that polyisoprenes such as squalene are considered potential sources of peroxidation isoprene, one of the mechanisms of oxidative stress [30]. However, isoprene was not detected in EBC in this investigation, which could be explained by its high volatility. The differences in the relative concentration of the two monoacrylic glycerols and squalene in the three groups studied can be seen in Figure 4. Monopalmitin and monostearin were characterized by different behaviors: monopalmitin was more concentrated in the risk factor group than in the patients with lung cancer, which also had a higher concentration of this monoacrylic glycerol than healthy individuals. On the other hand, the monostearin presented the opposite profile: as the risk factor group gave a lower relative concentration than patients with lung cancer. Squalane gave a concentration profile similar to that of monopalmitin. The fourth compound (hexadecyldane, a derivative of indane) has not been related to any endogenous source and, therefore, could be attributed to an exogenous origin. However, Phillips et al. [31] have also detected indane derivatives in respiration, and even selected one of them as a biomarker of lung cancer [32].
Tabla 3. Análisis de t-test no pareado usando un test de corrección múltiple de Bonferroni- Holm para evaluar la importancia de los metabolitos identificados en condensado de aire exhalado para discriminar entre los pacientes con cáncer de pulmón, los individuos con factores de riesgo y los individuos control. Table 3. Analysis of unpaired t-test using a Bonferroni- Holm multiple correction test to assess the importance of the metabolites identified in exhaled air condensate to discriminate between lung cancer patients, individuals with risk factors and Control individuals
CÁNCER DE PULMÓN VS CONTROL COMPUESTO P REGULACIÓN FC LUNG CANCER VS COMPOSITE CONTROL P REGULATION FC
p-Cresol 9.00E-04 BAJA Indol 3,51 E-04 BAJA -2,77727 p-Cresol 9.00E-04 LOW Indole 3.51 E-04 LOW -2,77727
Ácido benzoico 4-etoxy-etil ester 0,003489 BAJA -1 ,58336  Benzoic acid 4-ethoxy-ethyl ester 0.003489 LOW -1, 58336
Citrato de trietilo 0,009728 ALTA 2,233156  Triethyl Citrate 0.009728 HIGH 2,233156
Monopalmitin 0,015986 ALTA 2,205814  Monopalmitin 0,015986 HIGH 2,205814
11 -Eicosenamida 3.13E-05 ALTA 2,16227  11 -Eicosenamide 3.13E-05 HIGH 2.16227
n- Hexadecilindano 0,002707 ALTA 1 ,952551  n- Hexadecylindane 0.002707 HIGH 1, 952551
Monostearin 0,00391 1 ALTA 2,608156  Monostearin 0.00391 1 HIGH 2.608156
LUNG CANCER VS CONTROL WITH RISK FACTOR LUNG CANCER VS CONTROL WITH RISK FACTOR
COMPUESTO P REGULATION FC COMPOUND P REGULATION FC
Hedione 0,041098 ALTA 1 ,234381  Hedione 0,041098 HIGH 1, 234381
13-Heptadecin-1 -ol 0,002017 ALTA 1 ,4398  13-Heptadecin-1 -ol 0.002017 HIGH 1, 4398
Monopalmitina 0,003899 ALTA 2,630078  Monopalmitin 0.003899 HIGH 2,630078
n- Hexadecilindano 4,81 E-04 ALTA 1 ,815379  n- Hexadecylindane 4.81 E-04 HIGH 1, 815379
Monostearina 1.07E-04 ALTA 3,018592  Monostearin 1.07E-04 HIGH 3,018592
Escualeno 2.12E-04 ALTA 2,431075  Squalene 2.12E-04 HIGH 2.431075
CONTROL VS CONTROL WITH RISK FACTOR CONTROL VS CONTROL WITH RISK FACTOR
COMPOUND P REGULATION FC COMPOUND P REGULATION FC
p-C resol 0,009083 BAJA -2,27088  p-C resol 0.009083 LOW -2.27088
Indol 0,004347 BAJA -2,0566  Indole 0.004347 LOW -2.0566
Undecanol 0,043269 BAJA -1 ,41217  Undecanol 0,043269 LOW -1, 41217
Ácido benzoico 4-etoxy-etil éster 0,004672 BAJA -1 ,35418  Benzoic acid 4-ethoxy-ethyl ester 0.004672 LOW -1, 35418
Citrato de trietilo 0,027726 ALTA 1 ,854397  Triethyl Citrate 0.027726 HIGH 1, 854397
Hediona 0,01682 ALTA 1 ,223202  Hediona 0,01682 HIGH 1, 223202
Monostearin 1.36E-07 ALTA 5,801463  Monostearin 1.36E-07 HIGH 5.801463
c11 -Eicosenamida 8.68E-05 ALTA 1 ,799589  c11 -Eicosenamide 8.68E-05 HIGH 1, 799589
n- Hexadecilindano 3.75E-12 ALTA 3,544619  n- Hexadecylindane 3.75E-12 HIGH 3,544619
Monostearin 1.74E-12 ALTA 7,87296  Monostearin 1.74E-12 HIGH 7.87296
13-Docosenamida 5.19E-04 ALTA 1 ,485012  13-Docosenamide 5.19E-04 HIGH 1, 485012
Tomando el grupo de individuos sanos como referencia, seis compuestos resultaron significativos en la comparación frente a los pacientes con cáncer de pulmón y el grupo con factor de riesgo. Entre ellos el citrato de trietilo, que se ha encontrado en plásticos y en filtros de cigarrillos, detectado en una concentración más alta en pacientes con cáncer de pulmón y en los individuos con factor de riesgo que en individuos sanos, [33]; por lo tanto, su presencia en el aliento exhalado podría vincularse sólo a fuentes exógenas. Un compuesto fenólico (p-cresol) y un derivado del fenol (éster del ácido 4-etoxietilo benzoico) también fueron encontrados a diferentes concentraciones en los tres grupos. El p-cresol se detectó a una concentración más baja en los pacientes con cáncer de pulmón que en los individuos con factor de riesgo, que también reportaron niveles más bajos que los individuos sanos. El derivado del éster de ácido benzoico se encontró en concentraciones más bajas en el grupo de cáncer de pulmón y los individuos con factor de riesgo que en el grupo sano. Philipps et al. han identificado este compuesto en la respiración humana como un marcador potencial candidato para discriminar a los pacientes de cáncer de pulmón [32]. Taking the group of healthy individuals as a reference, six compounds were significant in comparison with patients with lung cancer and the group with risk factor. Among them, triethyl citrate, which has been found in plastics and cigarette filters, detected at a higher concentration in patients with lung cancer and in individuals with risk factors than in healthy individuals, [33]; therefore, its presence in exhaled breath could be linked only to exogenous sources. A phenolic compound (p-cresol) and a phenol derivative (4-ethoxy ethyl benzoic acid ester) were also found at different concentrations in all three groups. P-cresol was detected at a lower concentration in patients with lung cancer than in individuals with risk factors, who also reported lower levels than healthy individuals. The benzoic acid ester derivative was found in lower concentrations in the lung cancer group and individuals with a risk factor than in the healthy group. Philipps et to the. They have identified this compound in human respiration as a potential candidate marker to discriminate lung cancer patients [32].
Otro compuesto interesante fue el indol, que está implicado en el metabolismo del triptófano, particularmente en bacterias [34]. Además, se ha encontrado indol en el humo del cigarrillo y, en este contexto, podría estar asociado con el consumo de tabaco [35]. El perfil de concentración relativa de este compuesto se caracteriza por una concentración más alta en el grupo con factor de riesgo seguido de pacientes con cáncer de pulmón y, a continuación, a un nivel inferior en individuos sanos. Por último, otros compuestos que contribuyen a diferenciar individuos sanos fueron eicosenamida y erucamida, presente a niveles inferiores en este grupo en comparación con los individuos del grupo factor de riesgo y de cáncer de pulmón. Estas amidas grasas no se habían descrito de forma endógena, pero algún análogo tal como oleamida, que también se halló en EBC, está estructuralmente relacionado con el cannabinoide endógeno anandamida, implicado en muchas funciones biológicas. Las amidas grasas también se utilizan como aditivos de plástico y, por esta razón, una fuente de contaminación también podría explicar la presencia de eicosenamida y erucamida en el EBC. Another interesting compound was indole, which is involved in tryptophan metabolism, particularly in bacteria [34]. In addition, indole has been found in cigarette smoke and, in this context, could be associated with tobacco use [35]. The relative concentration profile of this compound is characterized by a higher concentration in the risk factor group followed by patients with lung cancer and then at a lower level in healthy individuals. Finally, other compounds that contribute to differentiate healthy individuals were eicosenamide and erucamide, present at lower levels in this group compared to individuals in the risk factor and lung cancer group. These fatty amides had not been described endogenously, but some analogue such as oleamide, which was also found in EBC, is structurally related to the endogenous cannabinoid anandamide, implicated in many biological functions. Fatty amides are also used as plastic additives and, for this reason, a source of contamination could also explain the presence of eicosenamide and erucamide in the EBC.
Otros tres compuestos que fueron significativas en la comparación del grupo de factor de riesgo y los otros dos grupos fueron dos alcoholes grasos (13-heptadecyn-1-ol y undecanol) y un derivado del ácido jasmónico (hediona). Respecto al 13 heptadecyn-1-ol, no hay información anterior que lo describa en el aliento o sobre su implicación biológica en los procesos humanos. El otro ácido graso (undecanol), junto con otros 200 compuestos, se han detectado previamente en heces por Garner et al., quienes estudiaron el potencial del undecanol para el diagnóstico de enfermedades gastrointestinales [36]. El último (hediona), que ha sido detectada previamente en la saliva [37], podría ser un producto de la oxidación de ácido linoleico. Three other compounds that were significant in the comparison of the risk factor group and the other two groups were two fatty alcohols (13-heptadecyn-1-ol and undecanol) and a derivative of jasmonic acid (hedione). Regarding 13 heptadecyn-1-ol, there is no previous information that describes it in the breath or about its biological implication in human processes. The other fatty acid (undecanol), along with 200 other compounds, have been previously detected in feces by Garner et al., Who studied the potential of undecanol for the diagnosis of gastrointestinal diseases [36]. The latter (hedione), which has been previously detected in saliva [37], could be a product of the oxidation of linoleic acid.
En resumen, y como se ha expuesto anteriormente, el EBC no ha sido ampliamente explotado en el campo clínico a pesar de las ventajas asociadas a su muestreo. Un método de análisis metabolómico de EBC basado en perfiles GC-TOF/MS en modo de alta resolución ha sido desarrollado usando la extracción líquido-líquido para la preparación de la muestra. Los compuestos identificados se han utilizado para discriminar entre tres grupos diferentes: los individuos diagnosticados con cáncer de pulmón, los individuos con factor de riesgo (incluyendo fumadores y pacientes con EPOC) y el control formado por individuos sanos. Entre estos compuestos cabe mencionar la presencia de derivados del monoacilglicerol de dos de los cuatro ácidos grasos saturados principales y el escualeno, que podría ser considerado como un producto intermedio en la vía para la formación in vivo por la peroxidación de isopreno en aliento humano [39], y también involucrado en la síntesis de colesterol [40]. Estos resultados apoyan el potencial de EBC como biofluido para discriminar entre los pacientes con cáncer de pulmón y el grupo con factor de riesgo, lo que podría ayudar en el diagnóstico de esta enfermedad en la búsqueda de un método de cribado para reducir el uso de una prueba de confirmación para el caso de respuesta positiva de los primeros. In summary, and as stated above, EBC has not been widely exploited in the clinical field despite the advantages associated with its sampling. A method of metabolomic analysis of EBC based on GC-TOF / MS profiles in high resolution mode has been developed using liquid-liquid extraction for sample preparation. The identified compounds have been used to discriminate between three different groups: individuals diagnosed with lung cancer, individuals with risk factor (including smokers and patients with COPD) and the control formed by healthy individuals. These compounds include the presence of monoacrylic glycerol derivatives of two of the four main saturated fatty acids and squalene, It could be considered as an intermediate product in the pathway for in vivo formation by the peroxidation of isoprene in human breath [39], and also involved in cholesterol synthesis [40]. These results support the potential of EBC as a biofluid to discriminate between lung cancer patients and the risk factor group, which could help in the diagnosis of this disease in the search for a screening method to reduce the use of a Confirmation test for the case of positive response of the former.
Los resultados obtenidos se podrían resumir en la siguiente tabla: The results obtained could be summarized in the following table:
Tabla 4. Resumen de los marcadores útiles en el diagnóstico, clasificación y seguimiento del cáncer de pulmón. Table 4. Summary of markers useful in the diagnosis, classification and monitoring of lung cancer.
PACIENTES CON CANCER DE PULMON VS. SANOS*PATIENTS WITH CANCER OF PULMON VS. HEALTHY *
METABOLITO THRESHOLDS THRESHOLDS METABOLITE
p-Cresol <0.0143707 p-Cresol <0.0143707
Alcohol cumílico >0.0172175 Cumyl alcohol> 0.0172175
Eicosenamida >0.00450892 Eicosenamide> 0.00450892
Hexadecilindano >0.0268941 Hexadecylindane> 0.0268941
PACIENTES CON CANCER DE PL LMON VS. FACTOR DE RIESGO* PATIENTS WITH CANCER OF PL LMON VS. RISK FACTOR*
METABOLITO THRESHOLDS THRESHOLDS METABOLITE
2,4-Bis-dimetilbencil-6-t-butilfenol >0.0773647  2,4-Bis-dimethylbenzyl-6-t-butylphenol> 0.0773647
Monostearina <0.0666031 Monostearin <0.0666031
Spiro-2,4-heptane-1 ,5-6-methylene >210.452 Spiro-2,4-heptane-1, 5-6-methylene> 210,452
13-Heptadecyn-1-ol <0.00438287  13-Heptadecyn-1-ol <0.00438287
Estearato de metilo >0.00245645  Methyl Stearate> 0.00245645
PACIENTES FACTOR D E RIESGO VS. SANOS**  RISK FACTOR PATIENTS VS. HEALTHY **
METABOLITO THRESHOLDS  THRESHOLDS METABOLITE
Glycerol-1-palmitato >0.0818449  Glycerol-1-palmitate> 0.0818449
Alcohol bencílico >0.109225  Benzyl Alcohol> 0.109225
Monostearina >0.053136 2,4-Diphenyl-4-metil-2-E-pentano <0.00557449 Monostearin> 0.053136 2,4-Diphenyl-4-methyl-2-E-pentane <0.00557449
p-Cresol <0.00680814 p-Cresol <0.00680814
*(positivo (cáncer) cuando al menos 3 metabolitos cumplen la condición) * (positive (cancer) when at least 3 metabolites meet the condition)
(positivo (riesgo) cuando al menos 2 metabolitos cumplen la condición) (positive (risk) when at least 2 metabolites meet the condition)
Los valores proporcionados en esta tabla están expresados como el tanto por uno respecto a todos los metabolitos detectados en la muestra (44 metabolitos). Es decir, el área de cada uno de los compuestos se dividió por la suma del área de los 44 metabolitos, obteniendo así la contribución de cada compuesto al total de metabolitos detectados. Sobre estos valores finales se han obtenido los paneles, de forma que los resultados puedan compararse con los obtenidos usando otra instrumentación. The values provided in this table are expressed as both by one with respect to all the metabolites detected in the sample (44 metabolites). That is, the area of each of the compounds was divided by the sum of the area of the 44 metabolites, thus obtaining the contribution of each compound to the total metabolites detected. On these final values the panels have been obtained, so that the results can be compared with those obtained using other instrumentation.
En cuanto al funcionamiento de los paneles en sí, están configurados de forma que, aunque estén compuestos por 4-5 metabolitos, sólo es necesario que 2 o 3 de ellos cumplan el punto de corte establecido para que el panel se considere positivo. Por ejemplo, en el primer panel, un individuo cuyo EBC presente niveles, expresados en tanto por uno, de p-cresol menores de 0.0143707, de alcohol cumílico mayores de 0.172175 y de eicosenamida mayores de 0.00450892, se clasificará como paciente con cáncer, sin importar los niveles de dehexadecilindano que presente. As for the operation of the panels themselves, they are configured so that, although they are composed of 4-5 metabolites, it is only necessary that 2 or 3 of them meet the established cut-off point for the panel to be considered positive. For example, in the first panel, an individual whose EBC has levels, expressed in both by one, of p-cresol less than 0.0143707, of cumyl alcohol greater than 0.172175 and of eicosenamide greater than 0.00450892, will be classified as a cancer patient, without import the levels of dehexadecyldane that you present.
BIBLIOGRAFÍA BIBLIOGRAPHY
[I] A. Jemal, F. Bray, M.M. Center, J. Ferlay, E. Ward, D. Forman, Global cáncer statistics, CA. Cáncer J. Clin. 61 (2011) 69-90. [I] A. Jemal, F. Bray, M.M. Center, J. Ferlay, E. Ward, D. Forman, Global cancer statistics, CA. Cancer J. Clin. 61 (2011) 69-90.
[2] P. Burney, A. Jithoo, B. Kato, C. Janson, D. Mannino, E. Nizankowska-Mogilnicka, et al., Chronic obstructive pulmonary disease mortality and prevalence: the associations with smoking and poverty: a bold analysis, Thorax. 69 (2014) 465-473. [2] P. Burney, A. Jithoo, B. Kato, C. Janson, D. Mannino, E. Nizankowska-Mogilnicka, et al., Chronic obstructive pulmonary disease mortality and prevalence: the associations with smoking and poverty: a bold analysis, Thorax. 69 (2014) 465-473.
[3] A. Jemal, M.M. Center, C. DeSantis, E.M. Ward, Global patterns of cáncer incidence and mortality rates and trends, Cáncer Epidemiol. Biomarkers Prev. 19 (2010) 1893-1907. [3] A. Jemal, M.M. Center, C. DeSantis, E.M. Ward, Global patterns of cancer incidence and mortality rates and trends, Epidemiol Cancer. Biomarkers Prev. 19 (2010) 1893-1907.
[4] P.M. Boiselle, Computed tomography screening for lung cáncer, JAMA. 309 (2013) 1 163— 1 170. [4] P.M. Boiselle, Computed tomography screening for lung cancer, JAMA. 309 (2013) 1 163—1 170.
[5] O.M. Mets, M. Schmidt, C.F. Buckens, M.J. Gondrie, I. Isgum, M. Oudkerk, et al., Diagnosis of chronic obstructive pulmonary disease in lung cáncer screening computed tomography scans: independent contribution of emphysema, air trapping and bronchial wall thickening, Respir. Res. 14 (2013) 59. [6] R.D. Beger, A review of applications of metabolomics in cáncer., Metabolites. 3 (2013) 552-74. [5] O.M. Mets, M. Schmidt, C.F. Buckens, M.J. Gondrie, I. Isgum, M. Oudkerk, et al., Diagnosis of chronic obstructive pulmonary disease in lung cancer screening computed tomography scans: independent contribution of emphysema, air trapping and bronchial wall thickening, Respir. Res. 14 (2013) 59. [6] R.D. Beger, A review of applications of metabolomics in cancer., Metabolites. 3 (2013) 552-74.
[7] M. Calderón-Santiago, F. Priego-Capote, B. Jurado-Gámez, M.D. Luque de Castro, Optimization study for metabolomics analysis of human sweat by liquid chromatography- tandem mass spectrometry in high resolution mode, J. Chromatogr. A. 1333 (2014) 70-78. [8] M. Calderón-Santiago, F. Priego-Capote, N. Turck, X. Robín, B. Jurado-Gámez, J.C. Sánchez, et al., Human sweat metabolomics for lung cáncer screening., Anal. Bioanal. Chem. (2015). [7] M. Calderón-Santiago, F. Priego-Capote, B. Jurado-Gámez, M.D. Luque de Castro, Optimization study for metabolomics analysis of human sweat by liquid chromatography- tandem mass spectrometry in high resolution mode, J. Chromatogr. A. 1333 (2014) 70-78. [8] M. Calderón-Santiago, F. Priego-Capote, N. Turck, X. Robín, B. Jurado-Gámez, J.C. Sánchez, et al., Human sweat metabolomics for lung cancer screening., Anal. Bioanal Chem. (2015).
[9] C.Y. Liu, C.H. Wang, T.C. Chen, H.C. Lin, C.T. Yu, H. P. Kuo, Increased level of exhaled nitric oxide and up-regulation of inducible nitric oxide synthase in patients with primary lung cáncer., Br. J. Cáncer. 78 (1998) 534-41. [9] C.Y. Liu, C.H. Wang, T.C. Chen, H.C. Lin, C.T. Yu, H. P. Kuo, Increased level of exhaled nitric oxide and up-regulation of inducible nitric oxide synthase in patients with primary lung cancer., Br. J. Cancer. 78 (1998) 534-41.
[10] I. Horváth, Z. Lázár, N. Gyulai, M. Kollai, G. Losonczy, Exhaled biomarkers in lung cáncer, Eur. Respir. J. 34 (2009) 261-275. [10] I. Horváth, Z. Lázár, N. Gyulai, M. Kollai, G. Losonczy, Exhaled biomarkers in lung cancer, Eur. Respir. J. 34 (2009) 261-275.
[I I] G.E. Carpagnano, O. Resta, M.P. Foschino-Barbaro, E. Gramiccioni, F. Carpagnano, lnterleukin-6 is increased in breath condénsate of patients with non-small cell lung cáncer., Int. J. Biol. Markers. 17 141-5. [12] D.L. Bayley, H. Abusriwil, A. Ahmad, R.A. Stockley, Validation of assays for inflammatory mediators in exhaled breath condénsate., Eur. Respir. J. 31 (2008) 943-8. [II] GE Carpagnano, O. Resta, MP Foschino-Barbaro, E. Gramiccioni, F. Carpagnano, lnterleukin-6 is increased in breath condense of patients with non-small cell lung cancer., Int. J. Biol. Markers. 17 141-5. [12] DL Bayley, H. Abusriwil, A. Ahmad, RA Stockley, Validation of assays for inflammatory mediators in exhaled breath condense., Eur. Respir. J. 31 (2008) 943-8.
[13] E. Dalaveris, T. Kerenidi, A. Katsabeki-Katsafli, T. Kiropoulos, K. Tanou, K.I. Gourgoulianis, et al., VEGF, TNF-alpha and 8-isoprostane levéis in exhaled breath condénsate and serum of patients with lung cáncer, Lung Cáncer. 64 (2009) 219-225. [13] E. Dalaveris, T. Kerenidi, A. Katsabeki-Katsafli, T. Kiropoulos, K. Tanou, K.I. Gourgoulianis, et al., VEGF, TNF-alpha and 8-isoprostane levéis in exhaled breath condense and serum of patients with lung cancer, Lung Cancer. 64 (2009) 219-225.
[14] K. Kostikas, G. Papatheodorou, K. Psathakis, P. Panagou, S. Loukides, Oxidative stress in expired breath condénsate of patients with COPD., Chest. 124 (2003) 1373-80. [14] K. Kostikas, G. Papatheodorou, K. Psathakis, P. Panagou, S. Loukides, Oxidative stress in expired breath condense of patients with COPD., Chest. 124 (2003) 1373-80.
[15] C. Gessner, S. Hammerschmidt, H. Kuhn, H.-J. Seyfarth, U. Sack, L. Engelmann, et al., Exhaled breath condénsate acidification in acute lung injury., Respir. Med. 97 (2003) 1188— 94. [15] C. Gessner, S. Hammerschmidt, H. Kuhn, H.-J. Seyfarth, U. Sack, L. Engelmann, et al., Exhaled breath condense acidification in acute lung injury., Respir. Med. 97 (2003) 1188-94.
[16] B. Antus, I. Barta, Exhaled breath condénsate pH in patients with lung cáncer., Lung Cáncer. 75 (2012) 178-80. [16] B. Antus, I. Barta, Exhaled breath condense pH in patients with lung cancer., Lung Cancer. 75 (2012) 178-80.
[17] M. Phillips, K. Gleeson, J.M. Hughes, J. Greenberg, R.N. Cataneo, L. Baker, et al., Volatile organic compounds in breath as markers of lung cáncer: a cross-sectional study., Lancet. 353 (1999) 1930-3. [17] M. Phillips, K. Gleeson, J.M. Hughes, J. Greenberg, R.N. Cataneo, L. Baker, et al., Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study., Lancet. 353 (1999) 1930-3.
[18] M. Phillips, R.N. Cataneo, A.R.C. Cummin, A.J. Gagliardi, K. Gleeson, J. Greenberg, et al., Detection of lung cáncer with volatile markers in the breath, Chest. 123 (2003) 2115— 2123. [18] M. Phillips, R.N. Cataneo, A.R.C. Cummin, A.J. Gagliardi, K. Gleeson, J. Greenberg, et al., Detection of lung cancer with volatile markers in the breath, Chest. 123 (2003) 2115-223.
[19] M. Phillips, N. Altorki, J.H.M. Austin, R.B. Cameron, R.N. Cataneo, J. Greenberg, et al., Prediction of lung cáncer using volatile biomarkers in breath, Cáncer Biomark. 3 (2007) 95- 109. [19] M. Phillips, N. Altorki, J.H.M. Austin, R.B. Cameron, R.N. Cataneo, J. Greenberg, et al., Prediction of lung cancer using volatile biomarkers in breath, Cancer Biomark. 3 (2007) 95-109.
[20] Y. Wang, Y. Hu, D. Wang, K. Yu, L. Wang, Y. Zou, et al., The analysis of volatile organic compounds biomarkers for lung cáncer in exhaled breath, tissues and cell lines., Cáncer Biomark. 11 (2012) 129-37. [21] G. Hedlin, J. Konradsen, A. Bush, An update on paediatric asthma, Eur. Respir. Rev. 21 (2012) 175-185. [20] Y. Wang, Y. Hu, D. Wang, K. Yu, L. Wang, Y. Zou, et al., The analysis of volatile organic compounds biomarkers for lung cancer in exhaled breath, tissues and cell lines. , Biomark Cancer. 11 (2012) 129-37. [21] G. Hedlin, J. Konradsen, A. Bush, An update on paediatric asthma, Eur. Respir. Rev. 21 (2012) 175-185.
[22] G. Hillas, S. Loukides, K. Kostikas, P. Bakakos, Biomarkers obtained by non-invasive methods in patients with COPD: where do we stand, what do we expect?, Curr. Med. Chem. 16 (2009) 2824-2838. [23] P. Kubáñ, F. Foret, Exhaled breath condénsate: determination of non-volatile compounds and their potential for clinical diagnosis and monitoring. A review, Anal. Chim. Acta. 805 (2013) 1-18. [22] G. Hillas, S. Loukides, K. Kostikas, P. Bakakos, Biomarkers obtained by non-invasive methods in patients with COPD: where do we stand, what do we expect ?, Curr. Med. Chem. 16 (2009) 2824-2838. [23] P. Kubáñ, F. Foret, Exhaled breath condense: determination of non-volatile compounds and their potential for clinical diagnosis and monitoring. A review, Anal. Chim. Minutes 805 (2013) 1-18.
[24] C. Costa, C. Bucea, M. Bergallo, P. Solidoro, G. Rolla, R. Cavallo, Unsuitability of exhaled breath condénsate for the detection of herpesviruses DNA in the respiratory tract, J. Virol. Methods. 173 (2011) 384-386. [24] C. Costa, C. Bucea, M. Bergallo, P. Solidoro, G. Rolla, R. Cavallo, Unsuitability of exhaled breath condense for the detection of herpesviruses DNA in the respiratory tract, J. Virol. Methods 173 (2011) 384-386.
[25] S. Dragonieri, P. Brinkman, E. Mouw, A.H. Zwinderman, P. Carratú, O. Resta, et al., An electronic nose discriminates exhaled breath of patients with untreated pulmonary sarcoidosis from controls, Respir. Med. 107 (2013) 1073-1078. [26]J. Hunt, Exhaled breath condénsate: An evolving tool for noninvasive evaluation of lung disease, J. Allergy Clin. Immunol. 110 (2002) 28-34. [25] S. Dragonieri, P. Brinkman, E. Mouw, A.H. Zwinderman, P. Carratú, O. Resta, et al., An electronic nose discriminates exhaled breath of patients with untreated pulmonary sarcoidosis from controls, Respir. Med. 107 (2013) 1073-1078. [26] J. Hunt, Exhaled breath condense: An evolving tool for noninvasive evaluation of lung disease, J. Allergy Clin. Immunol 110 (2002) 28-34.
[27] A. Mazzatenta, C. Di Giulio, M. Pokorski, Pathologies currently identified by exhaled biomarkers, Respir. Physiol. Neurobiol. 187 (2013) 128-134. [27] A. Mazzatenta, C. Di Giulio, M. Pokorski, Pathologies currently identified by exhaled biomarkers, Respir. Physiol Neurobiol 187 (2013) 128-134.
[28] F. Hoffmeyer, M. Raulf-Heimsoth, V. Harth, J. Bünger, T. Brüning, Comparative analysis of selected exhaled breath biomarkers obtained with two different temperature-controlled devices, BMC Pulm. Med. 9 (2009) 48. [28] F. Hoffmeyer, M. Raulf-Heimsoth, V. Harth, J. Bünger, T. Brüning, Comparative analysis of selected exhaled breath biomarkers obtained with two different temperature-controlled devices, BMC Pulm. Med. 9 (2009) 48.
[29] G. Salvioli, R. Lugli, J.M. Pradelli, Relationships between squalene and cholesterol in bile: Effect of ursodeoxycholic acid administration in patients with radiolucent gallstones, Metabolism. 33 (1984) 641-645. [30] M. Phillips, J. Greenberg, Method for the collection and analysis of volatile compounds in the breath, J. Chromatogr. B Biomed. Sci. Appl. 564 (1991) 242-249. [29] G. Salvioli, R. Lugli, J.M. Pradelli, Relationships between squalene and cholesterol in bile: Effect of ursodeoxycholic acid administration in patients with radiolucent gallstones, Metabolism. 33 (1984) 641-645. [30] M. Phillips, J. Greenberg, Method for the collection and analysis of volatile compounds in the breath, J. Chromatogr. B Biomed. Sci. Appl. 564 (1991) 242-249.
[31] M. Phillips, Variation in volatile organic compounds in the breath of normal humans, J. Chromatogr. B. 729 (1999) 75-88. [31] M. Phillips, Variation in volatile organic compounds in the breath of normal humans, J. Chromatogr. B. 729 (1999) 75-88.
[32] M. Phillips, N. Altorki, J.H.M. Austin, R.B. Cameron, R.N. Cataneo, R. Kloss, et al., Detection of lung cáncer using weighted digital analysis of breath biomarkers., Clin. Chim. Acta. 393 (2008) 76-84. [32] M. Phillips, N. Altorki, J.H.M. Austin, R.B. Cameron, R.N. Cataneo, R. Kloss, et al., Detection of lung cancer using weighted digital analysis of breath biomarkers., Clin. Chim. Minutes 393 (2008) 76-84.
[33] Smoke filters, (1968). [33] Smoke filters, (1968).
[34] A. Nowak, Z. Libudzisz, Influence of phenol, p-cresol and índole on growth and survival of intestinal lactic acid bacteria., Anaerobe. 12 (2006) 80-4. [35] M.E. Snook, R.F. Arrendale, H.C. Higman, O.T. Chortyk, Isolation of índoles and carbazoles from cigarette smoke condénsate, Anal. Chem. 50 (1978) 88-90. [34] A. Nowak, Z. Libudzisz, Influence of phenol, p-cresol and nature on growth and survival of intestinal lactic acid bacteria., Anaerobe. 12 (2006) 80-4. [35] ME Snook, RF Arrendale, HC Higman, OT Chortyk, Isolation of índoles and carbazoles from cigarette smoke condense, Anal. Chem. 50 (1978) 88-90.
[36] CE. Garner, S. Smith, B. de Lacy Costello, P. White, R. Spencer, C.S.J. Probert, et al., Volatile organic compounds from feces and their potential for diagnosis of gastrointestinal disease., FASEB J. 21 (2007) 1675-88. [36] CE. Garner, S. Smith, B. de Lacy Costello, P. White, R. Spencer, C.S.J. Probert, et al., Volatile organic compounds from feces and their potential for diagnosis of gastrointestinal disease., FASEB J. 21 (2007) 1675-88.
[37] B. de Lacy Costello, A. Amann, H. Al-Kateb, C. Flynn, W. Filipiak, T. Khalid, et al., A review of the volátiles from the healthy human body., J. Breath Res. 8 (2014) 014001. [37] B. de Lacy Costello, A. Amann, H. Al-Kateb, C. Flynn, W. Filipiak, T. Khalid, et al., A review of the volatiles from the healthy human body., J. Breath Res. 8 (2014) 014001.
[38] J.J. Kabara, D.M. Swieczkowski, A.J. Conley, J.P. Truant, Fatty acids and derivatives as antimicrobial agents, Antimicrob. Agents Chemother. 2 (1972) 23-28. [39] R.A. Stein, J.F. Mead, Small hydrocarbons formed by the peroxidation of squalene, Chem. Phys. Lipids. 46 (1988) 1 17-120. [38] J.J. Kabara, D.M. Swieczkowski, A.J. Conley, J.P. Truant, Fatty acids and derivatives as antimicrobial agents, Antimicrob. Chemother Agents 2 (1972) 23-28. [39] R.A. Stein, J.F. Mead, Small hydrocarbons formed by the peroxidation of squalene, Chem. Phys. Lipids. 46 (1988) 1 17-120.
[40] R.B. Woodward, K. Bloch, The cyclization of squalene in cholesterol sinthesis, J. Am. Chem. Soc. 75 (1953) 2023-2024. [40] R.B. Woodward, K. Bloch, The cyclization of squalene in cholesterol sinthesis, J. Am. Chem. Soc. 75 (1953) 2023-2024.

Claims

REIVINDICACIONES
1. - Uso de los metabolitos p-cresol, el alcohol cumílico, la eicosenamida, el hexadecilindano, el 2,4-bis-dimetilbencil-6-t-butilfenol, la monostearina, el espiro-2,4-heptano-1 ,5-6-metileno, el 13-heptadecin-1-ol, el estearato de metilo, el glicerol-1-palmitato, el alcohol bencílico y el 2,4-difenil-4-metil-2-E-pentano para el diagnóstico, clasificación y seguimiento del cáncer. 1. - Use of the metabolites p-cresol, cumyl alcohol, eicosenamide, hexadecyldane, 2,4-bis-dimethylbenzyl-6-t-butylphenol, monostetin, spiro-2,4-heptane-1, 5-6-methylene, 13-heptadecin-1-ol, methyl stearate, glycerol-1-palmitate, benzyl alcohol and 2,4-diphenyl-4-methyl-2-E-pentane for diagnosis , classification and monitoring of cancer.
2. - El uso de los metabolitos según la reivindicación anterior, donde el cáncer es cáncer de pulmón. 2. - The use of metabolites according to the preceding claim, wherein the cancer is lung cancer.
3. - Un método de obtención de datos útiles para el diagnóstico, clasificación y seguimiento de un individuo o sujeto que potencialmente sufra cáncer que comprende: a) cuantificar los metabolitos p-cresol, el alcohol cumílico, la eicosenamida y el hexadecilindano en una muestra biológica aislada de dicho individuo. 3. - A method of obtaining useful data for the diagnosis, classification and monitoring of an individual or subject that potentially suffers from cancer that comprises: a) quantifying the metabolites p-cresol, cumyl alcohol, eicosenamide and hexadecylindane in a sample biological isolated from said individual.
4. - El método según la reivindicación anterior, que además comprende: b) comparar las cantidades obtenidas en el paso (a) con una cantidad de referencia, donde la cantidad de referencia para cada metabolito son los niveles medios de dichos metabolitos en individuos sanos. 4. - The method according to the preceding claim, further comprising: b) comparing the amounts obtained in step (a) with a reference amount, where the reference amount for each metabolite is the average levels of said metabolites in healthy individuals .
5. - El método según cualquiera de las reivindicaciones 3-4, donde el cáncer es cáncer de pulmón. 5. - The method according to any of claims 3-4, wherein the cancer is lung cancer.
6. - El método según cualquiera de las reivindicaciones 3-5, donde la muestra biológica aislada del paso (a) es aire exhalado. 6. - The method according to any of claims 3-5, wherein the biological sample isolated from step (a) is exhaled air.
7- El método según cualquiera de las reivindicaciones 3-6, donde la muestra biológica aislada del paso a) es condensado de aire exhalado. 7- The method according to any of claims 3-6, wherein the biological sample isolated from step a) is condensed from exhaled air.
8.- El método según cualquiera de las reivindicaciones 3-7, donde la cuantificación de los metabolitos del paso (a) se realiza por análisis mediante GC-TOF/MS, preferiblemente con ionización por impacto electrónico (IE). 8. The method according to any of claims 3-7, wherein the quantification of the metabolites of step (a) is performed by analysis by GC-TOF / MS, preferably with electronic impact ionization (IE).
9.- Un método de diagnóstico, clasificación y seguimiento del cáncer, que comprende los pasos (a)-(b) según cualquiera de las reivindicaciones 3-8, que además comprende: c) incluir al individuo del paso a) en el grupo de individuos que presentan cáncer, cuando se detectan niveles de al menos 3 metabolitos, preferiblemente de los 4 metabolitos del paso (a), en cantidades significativamente distintas a la cantidad de referencia. 9. A method of diagnosis, classification and monitoring of cancer, comprising steps (a) - (b) according to any of claims 3-8, which further comprises: c) including the individual from step a) in the group of individuals presenting with cancer, when levels of at least 3 metabolites are detected, preferably of the 4 metabolites of step (a), in amounts significantly different from the reference amount.
10. - El método según la reivindicación anterior, donde el cáncer es cáncer de pulmón. 10. - The method according to the preceding claim, wherein the cancer is lung cancer.
1 1. - Un método de obtención de datos útiles para el diagnóstico, clasificación y seguimiento de un individuo o sujeto que potencialmente sufra cáncer que comprende: a) cuantificar los metabolitos 2,4-bis-dimetilbencil-6-t-butilfenol, la monostearina, el espiro-2,4-heptano-1 ,5-6-metileno, el 13-heptadecin-1-ol y el estearato de metilo en una muestra biológica aislada de dicho individuo. 1 1. - A method of obtaining useful data for the diagnosis, classification and monitoring of an individual or subject potentially suffering from cancer that comprises: a) quantifying the metabolites 2,4-bis-dimethylbenzyl-6-t-butylphenol, monosterate, spiro-2,4-heptane-1, 5-6-methylene, 13-heptadecin-1-ol and methyl stearate in a biological sample isolated from said individual.
12. - El método según la reivindicación anterior, que además comprende: b) comparar las cantidades obtenidas en el paso (a) con una cantidad de referencia, donde la cantidad de referencia para cada metabolito son los niveles medios de dichos metabolitos en individuos que presentan al menos un factor de riesgo de padecer cáncer, preferiblemente tabaquismo o con EPOC. 12. - The method according to the preceding claim, further comprising: b) comparing the amounts obtained in step (a) with a reference amount, where the reference amount for each metabolite is the average levels of said metabolites in individuals who They have at least one risk factor for cancer, preferably smoking or with COPD.
13. - El método según cualquiera de las reivindicaciones 11-12, donde el cáncer es cáncer de pulmón. 13. - The method according to any of claims 11-12, wherein the cancer is lung cancer.
14. - El método según cualquiera de las reivindicaciones 11-13, donde la muestra biológica aislada del paso (a) es aire exhalado condensado. 14. - The method according to any of claims 11-13, wherein the biological sample isolated from step (a) is condensed exhaled air.
15- El método según cualquiera de las reivindicaciones 11-14, donde la muestra biológica aislada del paso a) es condesado de aire exhalado. 15. The method according to any of claims 11-14, wherein the biological sample isolated from step a) is condensed with exhaled air.
16. - El método según cualquiera de las reivindicaciones 1 1-15, donde la cuantificación de los metabolitos del paso (a) se realiza por análisis mediante GC-TOF/MS, preferiblemente con ionización por impacto electrónico (IE). 16. - The method according to any of claims 1 1-15, wherein the quantification of the metabolites of step (a) is performed by analysis by GC-TOF / MS, preferably with electronic impact ionization (IE).
17. - Un método de diagnóstico, clasificación y seguimiento del cáncer, que comprende los pasos (a)-(b) según cualquiera de las reivindicaciones 1 1-16, que además comprende: c) incluir al individuo del paso a) en el grupo de individuos que presentan cáncer, cuando se detectan niveles de al menos 3 metabolitos, preferiblemente de 4 metabolitos, y más preferiblemente de 5 metabolitos del paso (a), en cantidades significativamente distintas cantidad de referencia. 17. - A method of diagnosis, classification and monitoring of cancer, comprising steps (a) - (b) according to any of claims 1 1-16, further comprising: c) including the individual from step a) in the group of individuals presenting with cancer, when levels of at least 3 metabolites are detected, preferably of 4 metabolites, and more preferably of 5 metabolites of step (a), in significantly different amounts of reference amount.
18. - El método según la reivindicación anterior, donde el cáncer es cáncer de pulmón. 18. - The method according to the preceding claim, wherein the cancer is lung cancer.
19. - Un método de obtención de datos útiles para el diagnóstico, clasificación y seguimiento de un individuo o sujeto que potencialmente sufra cáncer que comprende: a) cuantificar los metabolitos glicerol-1-palmitato, el alcohol bencílico, la monostearina, el 2,4-difenil-4-metil-2-E-pentano y el p-cresol en una muestra biológica aislada de dicho individuo. 19. - A method of obtaining useful data for the diagnosis, classification and monitoring of an individual or subject that potentially suffers from cancer that includes: a) quantify the glycerol-1-palmitate metabolites, benzyl alcohol, monostetin, 2,4-diphenyl-4-methyl-2-E-pentane and p-cresol in a biological sample isolated from said individual.
20. - El método según la reivindicación anterior, que además comprende: b) comparar las cantidades obtenidas en el paso (a) con una cantidad de referencia, donde la cantidad de referencia para cada metabolito son los niveles medios de dichos metabolitos en individuos sanos. 20. - The method according to the preceding claim, further comprising: b) comparing the amounts obtained in step (a) with a reference amount, where the reference amount for each metabolite is the average levels of said metabolites in healthy individuals .
21. - El método según cualquiera de las reivindicaciones 19-20, donde el cáncer es cáncer de pulmón. 21. - The method according to any of claims 19-20, wherein the cancer is lung cancer.
22.- El método según cualquiera de las reivindicaciones 19-21 , donde la muestra biológica aislada del paso (a) es aire exhalado. 22. The method according to any of claims 19-21, wherein the biological sample isolated from step (a) is exhaled air.
23- El método según cualquiera de las reivindicaciones 19-22, donde la muestra biológica aislada del paso a) es condensado de aire exhalado. 23- The method according to any of claims 19-22, wherein the biological sample isolated from step a) is condensed from exhaled air.
24. - El método según cualquiera de las reivindicaciones 19-23, donde la cuantificación de los metabolitos del paso (a) se realiza por análisis mediante GC-TOF/MS, preferiblemente con ionización por impacto electrónico (IE). 24. - The method according to any of claims 19-23, wherein the quantification of the metabolites of step (a) is performed by analysis by GC-TOF / MS, preferably with electronic impact ionization (IE).
25. - Un método de diagnóstico, clasificación y seguimiento del cáncer, que comprende los pasos (a)-(b) según cualquiera de las reivindicaciones 19-23, que además comprende: c) incluir al individuo del paso a) en el grupo de individuos de alto riesgo de padecer cáncer, cuando se detectan niveles de al menos 2 metabolitos, preferiblemente de 3 metabolitos, más preferiblemente de 4 metabolitos, y aún más preferiblemente de 5 metabolitos del paso (a), en cantidades significativamente distintas cantidad de referencia. 25. - A method of diagnosis, classification and monitoring of cancer, comprising steps (a) - (b) according to any of claims 19-23, further comprising: c) including the individual from step a) in the group of individuals at high risk for cancer, when levels of at least 2 metabolites are detected, preferably 3 metabolites, more preferably 4 metabolites, and even more preferably 5 metabolites in step (a), in significantly different amounts of reference amount .
26. - El método según la reivindicación anterior, donde el cáncer es cáncer de pulmón. 26. - The method according to the preceding claim, wherein the cancer is lung cancer.
27. - Un kit o dispositivo que comprende los elementos necesarios para cuantificar los metabolitos p-cresol, el alcohol cumílico , la eicosenamida, el hexadecilindano, el 2,4-bis- dimetilbenzil-6-t-butilfenol, la monostearina, el espiro-2,4-heptano-1 ,5-6-metileno, el 13- heptadecin-1-ol, el estearato de metilo, el glicerol-1-palmitato, el alcohol bencílico y/o el 2,4- difenil-4-metil-2-E-pentano, según se describe en cualquiera de las reivindicaciones 3-27. 27. - A kit or device comprising the elements necessary to quantify p-cresol metabolites, cumyl alcohol, eicosenamide, hexadecyldane, 2,4-bis-dimethylbenzyl-6-t-butylphenol, monostetin, spiro -2,4-heptane-1, 5-6-methylene, 13-heptadecin-1-ol, methyl stearate, glycerol-1-palmitate, benzyl alcohol and / or 2,4-diphenyl-4 -methyl-2-E-pentane, as described in any of claims 3-27.
28. - Uso del kit o dispositivo según la reivindicación anterior, para el diagnóstico, clasificación y seguimiento del cáncer. 28. - Use of the kit or device according to the preceding claim, for the diagnosis, classification and monitoring of cancer.
29.- El uso del kit o dispositivo según la reivindicación anterior, donde el cáncer es cáncer de pulmón. 29.- The use of the kit or device according to the preceding claim, wherein the cancer is lung cancer.
PCT/ES2016/070640 2015-09-11 2016-09-12 Biomarkers in exhaled air for the diagnosis, classification and monitoring of lung cancer WO2017042418A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201531301A ES2608675B1 (en) 2015-09-11 2015-09-11 Biomarkers in exhaled air for the diagnosis, classification and monitoring of lung cancer
ESP201531301 2015-09-11

Publications (1)

Publication Number Publication Date
WO2017042418A1 true WO2017042418A1 (en) 2017-03-16

Family

ID=58239879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2016/070640 WO2017042418A1 (en) 2015-09-11 2016-09-12 Biomarkers in exhaled air for the diagnosis, classification and monitoring of lung cancer

Country Status (2)

Country Link
ES (1) ES2608675B1 (en)
WO (1) WO2017042418A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6221026B1 (en) * 1999-01-12 2001-04-24 Michael Phillips Breath test for the detection of various diseases

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6221026B1 (en) * 1999-01-12 2001-04-24 Michael Phillips Breath test for the detection of various diseases

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DENT, A. G. ET AL.: "Exhaled breath analysis for lung cancer''.", JOURNAL OF THORACIC DISEASE, vol. 5, no. suppl. 5, 2013, pages 540 - 550, XP055372930 *
DI LENA, M. ET AL.: "Volatile organic compounds as new biomarkers for colorectal cancer: a review''.", COLORECTAL DISEASE, vol. 18, no. 7, 2016, pages 654 - 663, XP055372927 *
HANAI, Y. ET AL.: "Analysis of volatile organic compounds released from human lung cancer cells and from the urine of tumor-bearing mice''.", CANCER CELL INTERNATIONAL, vol. 12, no. 7, 2012, pages 1 - 13, XP021118487 *
PERALBO-MOLINA, A. ET AL.: "Identification of metabolomics panels for potential lung cancer screening by analysis of exhaled breath condensate''.", JOURNAL OF BREATH RESEARCH, vol. 10, 2016, pages 1 - 12, XP055372924 *
PHILLIPS, M. ET AL.: "Prediction of breast cancer using volatile biomarkers in the breath''.", BREAST CANCER RESEARCH AND TREATMENT, vol. 99, no. 1, 2006, pages 19 - 21, XP019392328 *
SUZUKI, M. ET AL.: "Metabolome analysis for discovering biomarkers of gastroenterological cancer''.", JOURNAL OF CHROMATOGRAPHY B, vol. 966, 2014, pages 59 - 69, XP055372929 *

Also Published As

Publication number Publication date
ES2608675B1 (en) 2018-01-24
ES2608675A1 (en) 2017-04-12

Similar Documents

Publication Publication Date Title
Davis et al. Exhaled breath testing–a tool for the clinician and researcher
Wang et al. The analysis of volatile organic compounds biomarkers for lung cancer in exhaled breath, tissues and cell lines
Peralbo-Molina et al. Metabolomics analysis of exhaled breath condensate for discrimination between lung cancer patients and risk factor individuals
Pesesse et al. Multimodal chemometric approach for the analysis of human exhaled breath in lung cancer patients by TD-GC× GC-TOFMS
Kischkel et al. Breath biomarkers for lung cancer detection and assessment of smoking related effects—confounding variables, influence of normalization and statistical algorithms
Peralbo-Molina et al. Identification of metabolomics panels for potential lung cancer screening by analysis of exhaled breath condensate
Pabst et al. Monitoring of oxidative and metabolic stress during cardiac surgery by means of breath biomarkers: an observational study
Bos et al. Alterations in exhaled breath metabolite-mixtures in two rat models of lipopolysaccharide-induced lung injury
CN105738626B (en) A kind of combination of new serum protein moteblites and its it is used as the purposes of diagnosing cancer of liver mark
WO2010031788A1 (en) Method for the diagnosis of chronic obstructive pulmonary disease by detecting volatile organic compounds in exhaled air
Heo et al. Serum heavy metals and lung function in a chronic obstructive pulmonary disease cohort
Liu et al. Tetramethylpyrazine showed therapeutic effects on sepsis-induced acute lung injury in rats by inhibiting endoplasmic reticulum stress protein kinase RNA-like endoplasmic reticulum kinase (PERK) signaling-induced apoptosis of pulmonary microvascular endothelial cells
JP2011232164A (en) Liver disease marker, method and device for measuring the same, and method for verifying medicine
Xu et al. Identification of bile biomarkers of biliary tract cancer through a liquid chromatography/mass spectrometry-based metabolomic method
Plas et al. The systemic impact of a surgical procedure in older oncological patients
Manandhar et al. Rapid analysis of sulfur mustard oxide in plasma using gas chromatography-chemical ionization-mass spectrometry for diagnosis of sulfur mustard exposure
Sølberg et al. The proteome of hand eczema assessed by tape stripping
Romero et al. Ion mobility spectrometry: the diagnostic tool of third millennium medicine
Du et al. Endocannabinoid signalling/cannabinoid receptor 2 is involved in icariin-mediated protective effects against bleomycin-induced pulmonary fibrosis
Westhoff et al. Exogenous factors of influence on exhaled breath analysis by ion-mobility spectrometry (MCC/IMS)
WO2017042418A1 (en) Biomarkers in exhaled air for the diagnosis, classification and monitoring of lung cancer
CN113167787A (en) Method for detecting cancer and/or tuberculosis
Mikagi et al. Isotope-dilution LC-MS/MS analysis of the elastin crosslinkers desmosine and isodesmosine in acute cerebral stroke patients
Barta et al. Analysis of cytokine pattern in exhaled breath condensate of patients with squamous cell lung carcinoma
Bikov et al. Exhaled breath condensate pH in lung cancer, the impact of clinical factors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16843723

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16843723

Country of ref document: EP

Kind code of ref document: A1