WO2017041545A1 - 门禁监控系统 - Google Patents

门禁监控系统 Download PDF

Info

Publication number
WO2017041545A1
WO2017041545A1 PCT/CN2016/084469 CN2016084469W WO2017041545A1 WO 2017041545 A1 WO2017041545 A1 WO 2017041545A1 CN 2016084469 W CN2016084469 W CN 2016084469W WO 2017041545 A1 WO2017041545 A1 WO 2017041545A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
link
monitoring system
access control
control monitoring
Prior art date
Application number
PCT/CN2016/084469
Other languages
English (en)
French (fr)
Inventor
康竞然
肖志勇
祁彪
李三星
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2017041545A1 publication Critical patent/WO2017041545A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/071Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission

Definitions

  • the invention relates to the technical field of optical communication, in particular to an outdoor optical cable transfer box access control monitoring system.
  • the technical problem to be solved by the present invention is to provide an access control monitoring system capable of effectively monitoring the status of each door without affecting the link service quality.
  • the invention provides an access control monitoring system for monitoring the opening and closing state of a plurality of boxes, the access control monitoring system comprising a plurality of optical fiber sensors and an optical link detecting system, wherein the plurality of optical fiber sensors are respectively disposed at the Each of the fiber optic sensors includes an optical fiber, a reflection module, and a transmission structure, and the reflection module is connected in series to the optical link detection system through the optical fiber.
  • the transmission structure and the reflection module are elastically connected, and the box door is closed to force the transmission structure to move and push the reflection module to change the reflectivity of the reflection module, and the box door is opened. Returning the transmission structure to a position and reducing a reflectivity of the reflective module, the optical link detection system being The reflectance is sensed to monitor the opening and closing of the box door.
  • the reflection module includes a fixing frame, a first fixing sleeve, a first ferrule, a second fixing sleeve, a second ferrule, a non-rigid medium and a pair of elastic members, wherein the One end of a ferrule is inserted into and fixed in the first fixing sleeve and abuts the optical fiber, an end surface of the other end of the first ferrule is a first coating surface, and one end of the second ferrule is inserted and Fixed in the second fixing sleeve and docked with the optical fiber, the end surface of the other end of the second ferrule is also a second coating surface, and the first coating surface is opposite to the second coating surface.
  • the first fixing sleeve and the second fixing sleeve are respectively connected to the fixing frame by the elastic member, the fixing frame is fixed to the box body, and the non-rigid medium is connected to the first fixing sleeve and Between the second fixing sleeves and covering the first ferrule and the second ferrule, the transmission structure pushes the non-rigid medium when the force is applied, so that the non-rigid medium pushes the first a fixing sleeve and the second fixing sleeve move, and the first coating surface and the Generating a second air gap between the coated surface.
  • the first ferrule and the second ferrule are glass or ceramic media, the first coating surface and the second coating Facing the glass or ceramic medium in a low reflection state, it forms a highly reflective state to the air medium.
  • the optical link detection system includes a head end detecting device and a host, where the head end detecting device is used to locate the multiple boxes
  • the link is optically scanned to obtain an insertion loss and/or a return loss value of each of the boxes, and the head end detecting device transmits the insertion loss and/or return loss value to the host through the host Data analysis to monitor the opening and closing state of the box door of the box.
  • the optical link detection system further includes a remote tool, the remote tool is communicatively coupled to the host, to provide an operator to initiate the The optical link detection system and the link where the box to be detected is selected.
  • the remote tool is a handheld device or a portable device.
  • the head end detecting device is an external optical time domain reflectometer, or an embedded optical time domain reflectometer, or a portable optical time domain reflectometer.
  • the head end The detecting device communicates with the link in the box through the optical switch unit and the wavelength division multiplexer.
  • an eighth possible implementation manner after the head end detecting device optically scans the plurality of boxes, a link scan curve is generated for each of the boxes.
  • the host analyzes the reflection peaks corresponding to the plurality of boxes according to the link scan curve, and identifies the plurality of boxes by using the reflection peaks.
  • the host analyzes the scan curve to implement The fault diagnosis of the link where the plurality of boxes are located, when the scan curve is decreased, determining a loss fault occurring at the corresponding position.
  • the access control monitoring system provided by the present invention provides a fiber optic sensor at the door of the box, and the door structure is closed by the door so that the transmission structure is forced to move and pushes the reflection module to change the reflectivity of the reflection module. Opening the door to return the transmission structure and reducing the reflectivity of the reflection module, the optical link detection system sensing the reflectivity of the reflection module to monitor the opening of the door close.
  • the invention uses a reflective sensor, which has two advantages for the system. On the one hand, the system monitors the reflectivity to monitor.
  • the detection device (such as OTDR) monitors the reflection event much more accurately than The accuracy of the attenuation event is monitored, so there is no misjudgment caused by interference from other events in the link, and the access control function is more accurately identified.
  • the distance accuracy of the general OTDR attenuation event can only reach 10m, and the pulse width increases. It may take 100m. If the attenuation occurs within 100m, it may lead to misjudgment as the door is open, and the general reflection event distance accuracy can be within 1m, basically no misjudgment will occur.
  • the system has no change in insertion loss.
  • the OTDR dynamic range is 20 dB
  • the attenuation type is generally 2-3 dB
  • the link loss is calculated by 10 dB.
  • FIG. 1 is a general architectural diagram of an access control monitoring system according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of the connection of an optical fiber sensor of an access control monitoring system according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of an optical fiber sensor of an access control monitoring system according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a reflection module of an optical fiber sensor of an access control monitoring system according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing the comparison between the construction tool input curve and the reference curve information in an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a curve applied to link diagnosis in an embodiment of the present invention.
  • the present invention provides an access control monitoring system for monitoring the opening and closing state of the box 10 of a plurality of boxes 10.
  • the box 10 is an optical junction box 10.
  • the plurality of bins 10 form a link.
  • six optical junction boxes 10 are included, and each of the three optical junction boxes 10 is connected in series to form one link.
  • the access control monitoring system includes a plurality of fiber optic sensors (not shown in FIG. 1) and an optical link detection system 20.
  • the optical link detection system 20 is disposed between two links, and optical link detection is performed.
  • the system 20 is connected to all of the cases 10, and in the present embodiment, is connected by an optical fiber.
  • the plurality of optical fiber sensors 30 are respectively disposed at positions near the door edge of the box 10 of the plurality of boxes 10, and each of the boxes 10 is provided with a fiber sensor 30, and a fiber sensor. 30 is in communication with the detection fiber 22 in the optical link detection system 20 via an optical fiber.
  • each of the fiber optic sensors 30 includes an optical fiber 32, a reflective module 34, and a transmission structure 36.
  • the reflective module 34 is connected in series through the optical fiber 32 in the optical link detection system 20, specifically
  • the optical fiber 32 is disposed at opposite ends of the reflection module 34 as an input end
  • the optical fiber 32 may be an end or a pigtail, and is connected to the corresponding detecting fiber 22 (or service fiber) by welding or end-to-end.
  • the transmission structure 36 and the reflection module 34 are elastically connected. In one embodiment, the two are elastically connected by a spring 38.
  • the door 10 is closed such that the transmission structure 36 is forced to move and pushes the reflection module 34 to change the reflectivity of the reflection module 34, and the door 10 is opened to return the transmission structure 36. And the reflectivity of the reflection module 34 is restored, and the optical link detection system 20 senses the reflectivity of the reflection module 34 to monitor the opening and closing of the door of the box 10.
  • the reflection module 34 includes a fixing frame (not shown), a first fixing sleeve 341, a first ferrule 342, a second fixing sleeve 343, a second ferrule 344, a non-rigid medium 345, and a pair. Elastic member 346.
  • the holder structure is not shown in Fig. 4.
  • the holder is for fixed connection with the body of the case 10, and may be a structure of a hollow case or a structure of a stand.
  • One end of the first ferrule 342 is inserted into and fixed to the first fixing sleeve 341 and abuts the optical fiber 347.
  • the end surface of the other end of the first ferrule 342 is a first coating surface 3421.
  • the end surface of the other end of the second ferrule 344 is also a second coating surface 3441.
  • the first fixing sleeve 341 and the second fixing sleeve 343 are respectively connected to the fixing frame by the elastic member 346, and the first coating surface 3421 and the second portion are under the elastic force of the elastic member 346.
  • the coating surfaces 3441 are opposite to each other, and the fixing brackets are fixed to the casing 10 body.
  • the non-rigid medium 345 is connected between the first fixing sleeve 341 and the second fixing sleeve 343 and covers the first ferrule 342 and the second ferrule 344, the non-rigid medium 345
  • the non-rigid medium 345 For an extensible elastic article, when the intermediate position of the non-rigid medium 345 is stressed, the non-rigid medium 345 will extend toward both sides thereof, and when the external force is canceled, the non-rigid medium 345 will be reset.
  • the transmission structure 36 pushes the non-rigid medium 345 when the force is applied, and the two ends of the non-rigid medium 345 extend outward, so that the non-rigid medium 345 pushes the
  • the first fixing sleeve 341 and the second fixing sleeve 343 are moved, and an air gap is generated between the first coating surface 3421 and the second coating surface 3441.
  • the transmission structure 36 is returned, and the non-rigid medium 345 is restored to the original shape, so that the first fixing sleeve 341 and the second fixing sleeve 343 are returned, so that the first coating surface 3421 and the second coating The faces 3441 are in contact with each other.
  • the first ferrule 342 and the second ferrule 344 are glass or ceramic media, and the first coating surface 3421 and the second plating surface 3441 are glass or ceramic.
  • the medium is in a low reflection state and forms a highly reflective state to the air medium.
  • the first ferrule 342 and the second ferrule 344 are in abutting state, and the reflection module 34 is in a low reflection state, and does not affect the transmission service.
  • the door 10 is opened, air is present between the first coating surface 3421 and the second coating surface 3441, and the reflectance of the reflection module 34 is increased to be in a highly reflective state.
  • the reflective module 34 and the transmission structure 36 may be of a separate structure or a unitary structure. During the movement of the transmission structure 36, the insertion loss of the fiber sensor 30 in the service band (1300 nm - 1610 nm) is not affected. The process by which the reflective module 34 produces different reflectivities changes the return loss of the fiber optic sensor 30.
  • the specific description is as follows:
  • the access control monitoring system provided by the present invention is in the test band (such as 1610 nm to 1675 nm, and may also be other bands), and the entire optical fiber sensor 30 has a specific return loss, for example, at 1610 nm to 1650 nm, the transmission structure 36 is away from the reflection module.
  • the device has a return loss value of -40 dB in the 34 state.
  • the fiber sensor 30 When the transmission structure 36 contacts and pushes the reflection module 34, the fiber sensor 30 has a return loss value of approximately -26 dB).
  • the transmission structure 36 can generate different strokes when the door 10 is opened and closed, and the transmission structure 36 generates corresponding pressure to the reflection module 34, so that the optical fiber sensor 30 exhibits different return loss changes, and the optical link
  • the detecting system 20 scans the optical fiber sensor 30 to form a scanning curve, and can analyze the change of the reflected light intensity of the optical fiber sensor 30 according to the scanning curve, and thereby calculate the amount of change in the return loss of the optical fiber sensor 30, and complete the state monitoring of the optical fiber sensor 30.
  • the optical link detection system 20 includes a head end detection device and a host.
  • the head end detecting device is generally rotated in a central computer room, and the head end detecting device is communicably connected to the optical fiber sensor 30, and the head end detecting device is configured to optically scan the link where the plurality of boxes 10 are located to obtain each The insertion loss and/or return loss value of the fiber optic sensor 30 in the tank 10, the head end detecting device transmitting the insertion loss and/or return loss value to the host.
  • Data analysis is performed by the host to monitor the opening and closing state of the box 10 of the box 10.
  • a corresponding link detection system software is installed in the host. The software is used to drive the corresponding head end device to scan the link where the sensor is located, and on the other hand to analyze the scan curve and provide link diagnosis function, and provide remote tools. Access interface.
  • the optical link detection system 20 further includes a remote tool, and the remote tool is connected to the host A letter connection is provided for the operator to activate the optical link detection system 20 and select the link in which the box 10 to be detected is located.
  • the remote tool is used for related personnel to operate at the remote end.
  • the remote tool can communicate with the optical link detection system 20 through a network such as 2G, 3G or wifi, for the relevant personnel to operate at the remote end, and can use the remote tool to guide the optical chain.
  • the road detection system 20 software identifies the deployed fiber optic sensor 30, and is also used by the operator to remotely control the optical link detection system 20 to diagnose the link that successfully deploys the fiber sensor 30, and the system will not normally close the box. Ten messages and fault information existing on the link are sent to the remote tool interface.
  • the remote tool is a handheld device or a portable device.
  • the head end detecting device is an external optical time domain reflectometer (OTDR), or an embedded optical time domain reflectometer, or a portable optical time domain reflectometer.
  • the head end detecting device is in communication with a link in the case 10 through an optical switch unit (OSU) and a wavelength division multiplexer (WDM).
  • OSU optical switch unit
  • WDM wavelength division multiplexer
  • the head end detecting device optically scans the plurality of boxes 10, a link scan curve is generated for each of the boxes 10, and the host analyzes the plurality of boxes according to the link scan curve.
  • the corresponding reflection peaks of 10 are used to identify the plurality of boxes 10 by the reflection peaks.
  • the specific identification process is as follows: the operator can start the construction by selecting the corresponding link through the remote tool, the optical link detection system 20 responds to the corresponding instruction and starts the head end detection device to perform scanning, and the optical link detection system 20 analyzes according to the link scan curve. Corresponding reflection peaks are obtained, and the reflection peaks and the calibration of the corresponding box 10 information are completed.
  • the corresponding calibration process can be carried out according to the construction requirements, and can support 10 door identifications one by one, or batch identification after the sensor is deployed.
  • One by one can be carried out during the construction process, or can be marked after the completion of the construction.
  • the former can compare the scan curve before and after the construction, and the latter can be analyzed by comparing the scan curve of the open and close links of the 10 door.
  • the sensor corresponds to the reflection peak, thereby completing the calibration of the box 10 door.
  • the two curves in FIG. 5 are respectively a construction curve and a reference curve, and the calibration of the box 10 is performed by comparing the two curves.
  • the calibration can be passed during the sensor construction process or after the sensor is constructed.
  • the system needs to perform link scan curve analysis first, and feedback the reflection peak information in the link to the operator.
  • the construction personnel confirms according to the network parameters, so that the reflection peak in the curve and the optical junction box 10 establish a corresponding relationship. Complete the logo.
  • the host analyzes the scan curve to implement fault diagnosis of the link where the plurality of boxes 10 are located.
  • the scan curve is lowered, the loss of the corresponding position is judged.
  • the optical connection box 10B can determine that the sensor has a loss fault on the subsequent link.
  • the diagnosis result is displayed on the interface and fed back to the operation.
  • the entire diagnostic mode can support timed inspections, or you can specify a link or a device to monitor as needed.
  • the access control monitoring system provided by the present invention provides a fiber optic sensor 30 at the door of the box 10, and the door structure 10 is closed by the door 10 to force the transmission structure 36 to move and push the reflection module 34 to change the reflection module.
  • the reflectivity of 34, the door 10 door is opened to return the transmission structure 36, and the reflectivity of the reflection module 34 is restored, and the optical link detection system 20 performs the reflectivity of the reflection module 34.
  • the invention uses a reflective sensor, which has two advantages for the system. On the one hand, the system monitors the reflectivity to monitor.
  • the detection device (such as OTDR) monitors the reflection event much more accurately than The accuracy of the attenuation event is monitored, so there is no misjudgment caused by interference from other events in the link, and the access control function is more accurately identified.
  • the distance accuracy of the general OTDR attenuation event can only reach 10m, and the pulse width increases. It may take 100m. If the attenuation occurs within 100m, it may lead to misjudgment as the door is open, and the general reflection event distance accuracy can be within 1m, basically no misjudgment will occur.
  • the system has no change in insertion loss.
  • the dynamic range of the monitoring device can be saved, so that the system can detect more than 10 boxes at the same time.
  • the general OTDR dynamic range is 20dB
  • the attenuation type is generally 2-3dB
  • the link loss is calculated by 10dB.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Burglar Alarm Systems (AREA)

Abstract

本发明公开了门禁监控系统,包括多个光纤传感器和光链路检测系统,光纤传感器分别设置在箱的箱体的靠近所述箱门边缘位置处。光纤传感器包括光纤、反射模块和传动结构,所述反射模块通过所述光纤串联在所述光链路检测系统中,所述传动结构和所述反射模块弹性连接。所述箱门关闭使得所述传动结构受力移动并推顶所述反射模块,以改变所述反射模块的反射率,所述箱门打开使得所述传动结构回位,并使得所述反射模块的反射率还原,所述光链路检测系统对所述反射模块的反射率进行感测,以监控所述箱门的开闭。本发明之门禁监控系统能够有效监控各箱门状态,且不会影响链路的业务质量。

Description

门禁监控系统 技术领域
本发明涉及光通信技术领域,特别涉及室外光缆交接箱门禁监控系统。
背景技术
光交箱门未正常关闭一直是光纤质量的潜在隐患,存在大量破坏现象、施工人员不按规范操作、暴力施工及不锁门现象严重。目前的电子门禁等在供电困难的无源场景很难使用,整体改造成本非常高,较难适用于ODN场景。而利用光纤的无源传感器的方案中均采用衰减型的光纤传感器,该传感器利用箱门开闭时对传感光纤造成不同弯曲半径从而形式不同插损值,一方面插损定位精确难以保证,链路中的故障也会导致插损变化,另一方面对业务也造成影响,同时容易受动态范围限制,该方法在实际使用中存在较大局限性。
综合来看,目前尚缺乏一种有效可远程监控各箱门状态,且不影响链路业务质量的系统。
发明内容
本发明所要解决的技术问题在于提供一种能够有效可远程监控各箱门状态,且不影响链路业务质量的门禁监控系统。
为了实现上述目的,本发明实施方式提供如下技术方案:
本发明提供一种门禁监控系统,用于对多个箱的箱门开闭状态进行监控,所述门禁监控系统包括多个光纤传感器和光链路检测系统,所述多个光纤传感器分别设置在所述多个箱的箱体的靠近所述箱门边缘位置处,每个所述光纤传感器均包括光纤、反射模块和传动结构,所述反射模块通过所述光纤串联在所述光链路检测系统中,所述传动结构和所述反射模块弹性连接,所述箱门关闭使得所述传动结构受力移动并推顶所述反射模块,以改变所述反射模块的反射率,所述箱门打开使得所述传动结构回位,并使得所述反射模块的反射率还原,所述光链路检测系统对所述反射模块的 反射率进行感测,以监控所述箱门的开闭。
在第一种可能的实施方式中,所述反射模块包括固定架、第一固定套、第一插芯、第二固定套、第二插芯、非刚性介质及一对弹性件,所述第一插芯的一端插入且固定于所述第一固定套内并与所述光纤对接,所述第一插芯的另一端的端面为第一镀膜面,所述第二插芯的一端插入且固定于所述第二固定套内并与所述光纤对接,所述第二插芯的另一端的端面亦为第二镀膜面,所述第一镀膜面与所述第二镀膜面相对接,所述第一固定套和所述第二固定套分别通过所述弹性件与所述固定架连接,所述固定架固定于所述箱体,所述非刚性介质连接于所述第一固定套和所述第二固定套之间且包覆所述第一插芯和所述第二插芯,所述传动结构受力时推顶所述非刚性介质,使得所述非刚性介质推动所述第一固定套和所述第二固定套移动,并使得所述第一镀膜面和所述第二镀膜面之间产生空气间隙。
结合第一种可能的实施方式,在第二种可能的实施方式中,所述第一插芯和所述第二插芯为玻璃或陶瓷介质,所述第一镀膜面和所述第二镀膜面对玻璃或陶瓷介质呈低反射状态,对空气介质形成高反射状态。
结合第一种可能的实施方式,在第三种可能的实施方式中,所述光链路检测系统包括头端检测设备和主机,所述头端检测设备用于对所述多个箱所在的链路进行光学扫描,以获取各个所述箱的插损和/或回损值,所述头端检测设备将所述插损和/或回损值传输给所述主机,通过所述主机进行数据分析,以监控所述箱之箱门的开闭状态。
结合第三种可能的实施方式,在第四种可能的实施方式中,所述光链路检测系统还包括远程工具,所述远程工具与所述主机通信连接,用于提供操作人员启动所述光链路检测系统及选择待检测的所述箱所在的链路。
结合第四种可能的实施方式,在第五种可能的实施方式中,所述远程工具为手持设备或便携机。
结合第四种可能的实施方式,在第六种可能的实施方式中,所述头端检测设备为外置式光时域反射仪、或嵌入式光时域反射仪、或便携式光时域反射仪。
结合第六种可能的实施方式,在第七种可能的实施方式中,所述头端 检测设备通过光开关单元和波分复用器与所述箱中的链路连通。
结合第四种可能的实施方式,在第八种可能的实施方式中,所述头端检测设备对所述多个箱进行光学扫描后,针对每个所述箱均产生一个链路扫描曲线,所述主机根据所述链路扫描曲线分析出所述多个箱所对应的反射峰,通过所述反射峰实现对所述多个箱的标识。
结合第八种可能的实施方式,在第九种可能的实施方式中,所述头端检测设备对所述多个箱进行光学扫描后,所述主机对所述扫描曲线进行分析,以实现对所述多个箱所在的链路的故障诊断,当所述扫描曲线下降时,判断对应的位置发生的损耗故障。
本发明提供的门禁监控系统,通过在箱门处设置光纤传感器,通过所述箱门关闭使得所述传动结构受力移动并推顶所述反射模块,以改变所述反射模块的反射率,所述箱门打开使得所述传动结构回位,并使得所述反射模块的反射率还原,所述光链路检测系统对所述反射模块的反射率进行感测,以监控所述箱门的开闭。本发明使用反射型传感器,对系统而言有两个好处,一方面系统监控时是对反射率来进行监控,一般而言,检测设备(例如OTDR)对反射事件监控的精度要远高于对衰减事件的监控精度,因此不会存在因链路中其他事件干扰导致的误判,具有更准确识别门禁功能,举例而言:一般OTDR衰减事件的距离精度只能达到10m,脉宽增加的情况可能要100m,如果100m以内发生衰减故障可能导致误判为门开了,而一般反射事件距离精度可以在1m以内,基本不会出现误判。另一方面反射模块在工作的过程中,系统插损无变化,除了不影响链路正常业务外,也能节省监控设备的动态范围,使系统能同时检测更多的箱门,举例而言:一般OTDR动态范围20dB,衰减型的一般2-3dB,链路损耗按10dB计算,当链路中超过3个箱时,就超出系统监控范围了,而采用本发明提供的反射型传感器,则无此限制。
附图说明
为了更清楚地说明本发明的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的 一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以如这些附图获得其他的附图。
图1是本发明一种实施方式提供的门禁监控系统的总架构图。
图2是本发明一种实施方式提供的门禁监控系统之光纤传感器的连接示意图。
图3是本发明一种实施方式提供的门禁监控系统之光纤传感器的结构示意图。
图4是本发明一种实施方式提供的门禁监控系统之光纤传感器之反射模块的结构示意图。
图5是本发明一种实施方式中,施工工具录入曲线与基准曲线信息对比示意图。
图6是本发明一种实施方式中链路诊断所应用的曲线示意图。
具体实施方式
下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述。
请参阅图1,本发明提供一种门禁监控系统,用于对多个箱10的箱10门开闭状态进行监控。本发明一种实施方式中,所述的箱10是光交箱10。多个箱10组成链路,图1所示的实施方式中,包括六个光交箱10,每三个光交箱10串联形成一个链路。所述门禁监控系统包括多个光纤传感器(图1中未图示)和光链路检测系统20,如图1所示,光链路检测系统20设置在两个链路之间,光链路检测系统20与所有的箱10连接,本实施方式中,通过光纤连接。
请参阅图2,所述多个光纤传感器30分别设置在所述多个箱10的箱10体的靠近所述箱10门边缘位置处,每个箱10体均配置一个光纤传感器30,光纤传感器30通过光纤与光链路检测系统20中的检测光纤22连通。
请参阅图3,每个所述光纤传感器30均包括光纤32、反射模块34和传动结构36,所述反射模块34通过所述光纤32串联在所述光链路检测系统20中,具体而言,光纤32设置在反射模块34相对的两端,作为输入端 和输出端,所述光纤32可以为成端也可以是尾纤,通过熔接或成端跑接的方式接续至对应的检测光纤22(或业务光纤)间。
所述传动结构36和所述反射模块34弹性连接,一种实施方式中,二者之间通过弹簧38进行弹性连接。所述箱10门关闭使得所述传动结构36受力移动并推顶所述反射模块34,以改变所述反射模块34的反射率,所述箱10门打开使得所述传动结构36回位,并使得所述反射模块34的反射率还原,所述光链路检测系统20对所述反射模块34的反射率进行感测,以监控所述箱10门的开闭。
请参阅图4,所述反射模块34包括固定架(未图示)、第一固定套341、第一插芯342、第二固定套343、第二插芯344、非刚性介质345及一对弹性件346。图4中未示出固定架结构,固定架用于与箱10体固定连接,可以是中空的壳体的结构或者支架的结构。所述第一插芯342的一端插入且固定于所述第一固定套341内并与所述光纤347对接,所述第一插芯342的另一端的端面为第一镀膜面3421。所述第二插芯344的一端插入且固定于所述第二固定套343内并与所述光纤347对接,所述第二插芯344的另一端的端面亦为第二镀膜面3441。所述第一固定套341和所述第二固定套343分别通过所述弹性件346与所述固定架连接,在弹性件346的弹力作用下,所述第一镀膜面3421与所述第二镀膜面3441相对接,所述固定架固定于所述箱10体。所述非刚性介质345连接于所述第一固定套341和所述第二固定套343之间且包覆所述第一插芯342和所述第二插芯344,所述非刚性介质345为可伸展的弹性物件,当所述非刚性介质345的中间位置受力时,非刚性介质345会朝向其两侧延展,且外力取消时,非刚性介质345会复位。本实施方式中,箱10门关闭时,所述传动结构36受力时推顶所述非刚性介质345,非刚性介质345的两端向外伸展,从而,使得所述非刚性介质345推动所述第一固定套341和所述第二固定套343移动,并使得所述第一镀膜面3421和所述第二镀膜面3441之间产生空气间隙。箱10门呈打开状态时,传动结构36回位,非刚性介质345亦恢复原形,这样第一固定套341和第二固定套343回位,从而使得第一镀膜面3421和所述第二镀膜面3441彼此接触。
本发明一种可能的实施方式中,所述第一插芯342和所述第二插芯344为玻璃或陶瓷介质,所述第一镀膜面3421和所述第二镀膜面3441对玻璃或陶瓷介质呈低反射状态,对空气介质形成高反射状态。箱10门关闭时,第一插芯342和第二插芯344呈对接的状态,反射模块34呈低反射状态,不影响传输业务。箱10门打开时,第一镀膜面3421和第二镀膜面3441之间有空气,反射模块34的反射率增加,呈高反射状态。
反射模块34和传动结构36可以采用分离式结构也可以采用一体式结构。传动结构36移动的过程中,光纤传感器30在业务波段(1300nm-1610nm)的插损不受影响。反射模块34产生不同反射率的过程会改变光纤传感器30的回损。具体描述如下:本发明提供的门禁监控系统在测试波段(如1610nm~1675nm,也可以是其他波段),整个光纤传感器30具有特定的回损,例如:在1610nm~1650nm,传动结构36远离反射模块34状态下器件回损值为-40dB,当传动结构36接触且推顶反射模块34时,光纤传感器30回损值接近-26dB)。光纤传感器30安装后,箱10门打开和关闭时能使传动结构36产生不同的行程,传动结构36对反射模块34产生对应的压力,从而使光纤传感器30呈现不同的回损变化,光链路检测系统20对光纤传感器30进行扫描,形成扫描曲线,且能够根据扫描曲线分析出光纤传感器30反射光强度变化,并以此推算出光纤传感器30回损变化量,完成对光纤传感器30状态监控。
具体而言,所述光链路检测系统20包括头端检测设备和主机。头端检测设备通常旋转于中心机房内,所述头端检测设备与光纤传感器30通信连接,所述头端检测设备用于对所述多个箱10所在的链路进行光学扫描,以获取各个所述箱10内的光纤传感器30的插损和/或回损值,所述头端检测设备将所述插损和/或回损值传输给所述主机。通过所述主机进行数据分析,以监控所述箱10之箱10门的开闭状态。主机内安装有对应的链路检测系统软件,该软件一方面用于驱动对应头端设备对传感器所在链路进行扫描,另一方面用于分析扫描曲线并提供链路诊断功能,同时提供远程工具访问接口。
所述光链路检测系统20还包括远程工具,所述远程工具与所述主机通 信连接,用于提供操作人员启动所述光链路检测系统20及选择待检测的所述箱10所在的链路。远程工具用于相关人员在远端进行操作,远程工具可通过2G、3G等网络或者wifi与光链路检测系统20进行通信,用于相关人员在远端进行操作,能利用远程工具指导光链路检测系统20软件对布放的光纤传感器30进行标识,同时也用于操作人员远程控制光链路检测系统20,对成功布放光纤传感器30的链路进行诊断,系统将未正常关闭的箱10门信息以及链路存在的故障信息发送至远程工具界面。
一种实施方式中,所述远程工具为手持设备或便携机。
所述头端检测设备为外置式光时域反射仪(OTDR)、或嵌入式光时域反射仪、或便携式光时域反射仪。一种实施方式中,所述头端检测设备通过光开关单元(OSU)和波分复用器(WDM)与所述箱10中的链路连通。
所述头端检测设备对所述多个箱10进行光学扫描后,针对每个所述箱10均产生一个链路扫描曲线,所述主机根据所述链路扫描曲线分析出所述多个箱10所对应的反射峰,通过所述反射峰实现对所述多个箱10的标识。具体标识的过程为:操作人员可通过远程工具选择对应链路启动施工,光链路检测系统20响应对应指令并启动头端检测设备,进行扫描,光链路检测系统20根据链路扫描曲线分析出对应的反射峰,完成反射峰和对应箱10门信息的标定。对应标定流程可根据施工需求来进行,可支持逐个箱10门标识,也可进行待传感器布放完成后进行批量标识。其中逐个标识可在施工过程中进行,也可在施工完成后再进行标识,前者可通过对比施工前后链路扫描曲线,后者可通过比对箱10门开闭链路扫描曲线以此分析出传感器对应反射峰,从而完成箱10门的标定。请参阅图5,图5中的两条曲线分别为施工曲线和基准曲线,通过对这两条曲线的对比,进行箱10门的标定。标定时可在传感器施工过程中通过,也可在传感器施工完毕后进行。而批量标识方式则需要系统先进行链路扫描曲线分析,将链路中反射峰信息反馈至操作人员,由施工人员根据网络参数进行确认,使曲线中反射峰与光交箱10建立对应关系,完成标识。
所述头端检测设备对所述多个箱10进行光学扫描后,所述主机对所述扫描曲线进行分析,以实现对所述多个箱10所在的链路的故障诊断,当所 述扫描曲线下降时,判断对应的位置发生的损耗故障。例如,请参阅图6,当光纤传感器30对应反射峰下降,损耗不发生变化时,可以判断对应光交箱10箱10门未正常关闭,如图6中光交箱10A所示,当图中曲线下降时可判断对应位置发生损耗故障,如图中光交箱10B处可以判断传感器后续链路发生了损耗故障,光链路检测系统20软件诊断完成后将诊断结果显示于界面并反馈至运维人员远程工具上。整个诊断方式可支持定时巡检,也可按需求指定某个链路或者某个器件进行监控。
本发明提供的门禁监控系统,通过在箱10门处设置光纤传感器30,通过所述箱10门关闭使得所述传动结构36受力移动并推顶所述反射模块34,以改变所述反射模块34的反射率,所述箱10门打开使得所述传动结构36回位,并使得所述反射模块34的反射率还原,所述光链路检测系统20对所述反射模块34的反射率进行感测,以监控所述箱10门的开闭。本发明使用反射型传感器,对系统而言有两个好处,一方面系统监控时是对反射率来进行监控,一般而言,检测设备(例如OTDR)对反射事件监控的精度要远高于对衰减事件的监控精度,因此不会存在因链路中其他事件干扰导致的误判,具有更准确识别门禁功能,举例而言:一般OTDR衰减事件的距离精度只能达到10m,脉宽增加的情况可能要100m,如果100m以内发生衰减故障可能导致误判为门开了,而一般反射事件距离精度可以在1m以内,基本不会出现误判。另一方面反射模块34在工作的过程中,系统插损无变化,除了不影响链路正常业务外,也能节省监控设备的动态范围,使系统能同时检测更多的箱10门,举例而言:一般OTDR动态范围20dB,衰减型的一般2-3dB,链路损耗按10dB计算,当链路中超过3个箱10时,就超出系统监控范围了,而采用本发明提供的反射型传感器,则无此限制。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (10)

  1. 一种门禁监控系统,用于对多个箱的箱门开闭状态进行监控,其特征在于,所述门禁监控系统包括多个光纤传感器和光链路检测系统,所述多个光纤传感器分别设置在所述多个箱的箱体的靠近所述箱门边缘位置处,每个所述光纤传感器均包括光纤、反射模块和传动结构,所述反射模块通过所述光纤串联在所述光链路检测系统中,所述传动结构和所述反射模块弹性连接,所述箱门关闭使得所述传动结构受力移动并推顶所述反射模块,以改变所述反射模块的反射率,所述箱门打开使得所述传动结构回位,并使得所述反射模块的反射率还原,所述光链路检测系统对所述反射模块的反射率进行感测,以监控所述箱门的开闭。
  2. 如权利要求1所述的门禁监控系统,其特征在于,所述反射模块包括固定架、第一固定套、第一插芯、第二固定套、第二插芯、非刚性介质及一对弹性件,所述第一插芯的一端插入且固定于所述第一固定套内并与所述光纤对接,所述第一插芯的另一端的端面为第一镀膜面,所述第二插芯的一端插入且固定于所述第二固定套内并与所述光纤对接,所述第二插芯的另一端的端面亦为第二镀膜面,所述第一镀膜面与所述第二镀膜面相对接,所述第一固定套和所述第二固定套分别通过所述弹性件与所述固定架连接,所述固定架固定于所述箱体,所述非刚性介质连接于所述第一固定套和所述第二固定套之间且包覆所述第一插芯和所述第二插芯,所述传动结构受力时推顶所述非刚性介质,使得所述非刚性介质推动所述第一固定套和所述第二固定套移动,并使得所述第一镀膜面和所述第二镀膜面之间产生空气间隙。
  3. 如权利要求2所述的门禁监控系统,其特征在于,所述第一插芯和所述第二插芯为玻璃或陶瓷介质,所述第一镀膜面和所述第二镀膜面对玻璃或陶瓷介质呈低反射状态,对空气介质形成高反射状态。
  4. 如权利要求2所述的门禁监控系统,其特征在于,所述光链路检测系统包括头端检测设备和主机,所述头端检测设备用于对所述多个箱所在的链路进行光学扫描,以获取各个所述箱的插损和/或回损值,所述头端检测设备将所述插损和/或回损值传输给所述主机,通过所述主机进行数据分 析,以监控所述箱之箱门的开闭状态。
  5. 如权利要求4所述的门禁监控系统,其特征在于,所述光链路检测系统还包括远程工具,所述远程工具与所述主机通信连接,用于提供操作人员启动所述光链路检测系统及选择待检测的所述箱所在的链路。
  6. 如权利要求5所述的门禁监控系统,其特征在于,所述远程工具为手持设备或便携机。
  7. 如权利要求4所述的门禁监控系统,其特征在于,所述头端检测设备为外置式光时域反射仪、或嵌入式光时域反射仪、或便携式光时域反射仪。
  8. 如权利要求7所述的门禁监控系统,其特征在于,所述头端检测设备通过光开关单元和波分复用器与所述箱中的链路连通。
  9. 如权利要求4所述的门禁监控系统,其特征在于,所述头端检测设备对所述多个箱进行光学扫描后,针对每个所述箱均产生一个链路扫描曲线,所述主机根据所述链路扫描曲线分析出所述多个箱所对应的反射峰,通过所述反射峰实现对所述多个箱的标识。
  10. 如权利要求9所述的门禁监控系统,其特征在于,所述头端检测设备对所述多个箱进行光学扫描后,所述主机对所述扫描曲线进行分析,以实现对所述多个箱所在的链路的故障诊断,当所述扫描曲线下降时,判断对应的位置发生的损耗故障。
PCT/CN2016/084469 2015-09-10 2016-06-02 门禁监控系统 WO2017041545A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510574556.6A CN106533545B (zh) 2015-09-10 2015-09-10 门禁监控系统
CN201510574556.6 2015-09-10

Publications (1)

Publication Number Publication Date
WO2017041545A1 true WO2017041545A1 (zh) 2017-03-16

Family

ID=58239205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/084469 WO2017041545A1 (zh) 2015-09-10 2016-06-02 门禁监控系统

Country Status (2)

Country Link
CN (1) CN106533545B (zh)
WO (1) WO2017041545A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108154589A (zh) * 2018-01-11 2018-06-12 张中兴 门禁安防装置
CN109150299A (zh) * 2017-06-28 2019-01-04 上海欣诺通信技术有限公司 串联结构的光交箱监控系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109186646B (zh) * 2018-09-25 2021-01-05 中铁第四勘察设计院集团有限公司 一种防护门状态监测方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003042636A2 (en) * 2001-11-14 2003-05-22 Fiber Optic Systems Technology, Inc. Fiber optic sensor
CN103257424A (zh) * 2013-05-28 2013-08-21 上海亨通宏普通信技术有限公司 光缆交接箱监测装置及其监测系统
CN104236597A (zh) * 2013-06-06 2014-12-24 泰科电子(上海)有限公司 光传感器、光传感器组件和监测装置
CN204215230U (zh) * 2014-06-27 2015-03-18 上海智龙通信科技有限公司 光缆交接箱监控系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102819886B (zh) * 2012-08-30 2014-12-03 南京华脉科技股份有限公司 一种室外光缆交接箱门禁监控系统
CN203164472U (zh) * 2013-02-25 2013-08-28 潮州三环(集团)股份有限公司 一种可光反射的光纤活动连接器组件
CN103456117B (zh) * 2013-08-30 2016-02-24 常州市开拓科联通信设备有限公司 光交箱箱门开闭的检测设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003042636A2 (en) * 2001-11-14 2003-05-22 Fiber Optic Systems Technology, Inc. Fiber optic sensor
CN103257424A (zh) * 2013-05-28 2013-08-21 上海亨通宏普通信技术有限公司 光缆交接箱监测装置及其监测系统
CN104236597A (zh) * 2013-06-06 2014-12-24 泰科电子(上海)有限公司 光传感器、光传感器组件和监测装置
CN204215230U (zh) * 2014-06-27 2015-03-18 上海智龙通信科技有限公司 光缆交接箱监控系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109150299A (zh) * 2017-06-28 2019-01-04 上海欣诺通信技术有限公司 串联结构的光交箱监控系统
CN108154589A (zh) * 2018-01-11 2018-06-12 张中兴 门禁安防装置

Also Published As

Publication number Publication date
CN106533545B (zh) 2019-02-05
CN106533545A (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
US10432302B1 (en) Bidirectional optical fiber auto-notifier test system
EP3101826B1 (en) System and method for certification of physical parameters of communication links
US9423316B2 (en) Optical reflectometer with loss and/or reflectance profile view
WO2017041545A1 (zh) 门禁监控系统
US20070103670A1 (en) Fault detection in optical fibers
AU2014267379B2 (en) Optical sensor, optical sensor assembly and monitoring device
Laferriere et al. Reference guide to fiber optic testing
US20080291431A1 (en) Apparatus for monitoring optical obstructions in an optical split network and method thereof
US7574082B2 (en) Optical power monitoring with robotically moved macro-bending
CN102208941B (zh) 光纤故障检测系统、方法、光开关和无源光网络系统
KR20140093515A (ko) 광 링크 장애 감시장치 및 그 방법
CN104769860A (zh) 包括传感器的纤维网络
US20230344720A1 (en) High-resolution optical backscatter method to discover physical topology of complex, interconnected fiber optic network and automatically monitor and troubleshoot its performance
CN105530046A (zh) 实现光功率和分支衰减故障自动测试的方法和系统
CN115371972B (zh) 光路功能检测方法、装置、设备及存储介质
US7415206B1 (en) Arrangement for characterizing and reducing multi-path interference (MPI) and/or optical return loss (ORL) in optical transmission links having multiple discrete reflection sources
EP2404144B1 (en) Fiber cable distortion detection system and method
CN109660294B (zh) 一种光纤智能匹配系统、方法及装置
JP4728412B2 (ja) Otdr測定器、光通信線路監視システム、及び光通信線路監視方法
CN106558176A (zh) 一种无源设备箱门禁监测系统
WO2021260913A1 (ja) 終端判定装置及び終端判定方法
Amaku et al. Optic Fiber as a Reliable Medium for Metropolitan Area Networking (MAN) Connectivity
Chen et al. Distributed transverse stress measurement of an optical fiber using polarimetric OFDR
CN101598614A (zh) 具有抗干扰能力的压力检测系统及检测方法
JP2006090787A (ja) 光ファイバ特性測定方法及び光ファイバ特性測定システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16843483

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16843483

Country of ref document: EP

Kind code of ref document: A1