WO2017041395A1 - 一种网络频谱共享方法和系统 - Google Patents

一种网络频谱共享方法和系统 Download PDF

Info

Publication number
WO2017041395A1
WO2017041395A1 PCT/CN2015/099267 CN2015099267W WO2017041395A1 WO 2017041395 A1 WO2017041395 A1 WO 2017041395A1 CN 2015099267 W CN2015099267 W CN 2015099267W WO 2017041395 A1 WO2017041395 A1 WO 2017041395A1
Authority
WO
WIPO (PCT)
Prior art keywords
network
spectrum
small cell
operator
service
Prior art date
Application number
PCT/CN2015/099267
Other languages
English (en)
French (fr)
Inventor
于巧玲
王江
朱元萍
Original Assignee
上海无线通信研究中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海无线通信研究中心 filed Critical 上海无线通信研究中心
Publication of WO2017041395A1 publication Critical patent/WO2017041395A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks

Definitions

  • the present invention relates to a network spectrum sharing method, and more particularly to a method for sharing a spectrum across operators based on inter-operator measurement, and also relates to a system using the network spectrum sharing method, and belongs to the field of wireless communication technologies.
  • heterogeneous networking provides great spatial flexibility for network deployment.
  • Macro cells can provide wide area coverage, and small cells can enhance indoor coverage and provide high-speed access.
  • the transmission power of the small cell base station is much lower, and usually in the indoor deployment scenario, the wireless signal has a large wall wear loss when passing through the building. Therefore, under certain geographical isolation conditions, cross-operator spectrum sharing in the hybrid networking mode does not cause strong interference, which makes it possible for small operators of different operators to share spectrum resources.
  • co-primary spectrum sharing allows multiple operators to access the same spectrum resource with the same priority.
  • Multiple carriers are used here.
  • the frequency bands that can be accessed are called shared spectrum pools.
  • the shared spectrum pools can be composed of a number of licensed frequency bands, or an unlicensed IMT band, or an unlicensed band. Since the small cells deployed by different operators are not planned or semi-planned as the small cells in the carrier, if the operators do not cooperate and access the same spectrum without any constraints, it is highly probable that Generate strong inter-operator interference (IOI) As a result, the network does not work properly. Therefore, it is very important to design the spectrum sharing rules among operators.
  • IOI Inter-operator interference
  • the operators sharing the spectrum resources need to pre-set the rules for spectrum sharing, and manage and coordinate the interference between operators through the interaction of information between operators to achieve the largest spectrum utilization. Purpose.
  • sensitive information such as neighbor relationships, service status, etc.
  • the existing research on the spectrum sharing scenario of the different operators is mainly focused on the primary-secondary spectrum sharing (PSSS) mode.
  • PSSS primary-secondary spectrum sharing
  • the primary user is the licensed spectrum license.
  • the user has a higher spectrum usage right than the secondary user, and the secondary user can only access the spectrum in an opportunistic manner without causing interference to the primary user. That is to say, once the primary user has a demand for the spectrum, the secondary user needs to immediately withdraw the spectrum to the primary user.
  • the spectrum sharing algorithms and mechanisms in this scenario are not applicable to the same priority spectrum sharing scenario.
  • the primary technical problem solved by the present invention is to provide a cross-operator network spectrum sharing method based on inter-operator measurement.
  • Another technical problem to be solved by the present invention is to provide a system using the above network spectrum sharing method.
  • a network spectrum sharing method for sharing a spectrum between a first network and a second network includes the following steps:
  • the service in the first network requires a small cell to initiate a resource request
  • the first network initiates a spectrum sharing request to the second network, and provides a detection feature sequence of a small cell serving a service request.
  • the second network measures the sequence of detection features, and is selected in the second network and The second network measured spectrum set whose second interference strength is not higher than the second network threshold is sent to the first network,
  • the service request small cell selects an access spectrum from the measured spectrum set of the second network.
  • the first network selects a first network measured spectrum set in the second network that has a first interference strength that is not higher than a preset first network threshold.
  • the first network sends the first network measured spectrum set to the second network.
  • the second network obtains an intersection between the measured spectrum set of the first network and the measured spectrum set of the second network, and obtains an available spectrum that can be used by the service request small cell, and sends the available spectrum to the second spectrum. Said the first network.
  • the first network initiates a spectrum sharing request to the second network, provides a detection feature sequence of the small cell of the service requirement, and notifies the service request small cell to broadcast the detection feature sequence.
  • the small cell or the user of the second network in the vicinity of the service demand small cell measures the detection feature sequence broadcast by the small cell of the service requirement, and obtains a measurement result of the detection feature sequence.
  • the second network generates the second network measured spectrum set based on the detection feature sequence measurement result.
  • the first network sends three-dimensional signal positioning information to the second network, and the second network selects a small cell in the second network that needs to be monitored based on the three-dimensional signal positioning information.
  • the second network sends a measurement indication message to the small cell or user that needs to be monitored, and the measurement indication message includes the detection feature sequence broadcast by the service request small cell.
  • the second network sorts component carriers in the measured spectrum set of the second network based on the second interference strength.
  • the service request small cell broadcasts the detection feature sequence on a spectrum sharing channel
  • the spectrum sharing channel is used by the small cell to broadcast the detection feature sequence, and is used for data transmission when the detection feature sequence is not broadcast.
  • a system using the above network spectrum sharing method for the first network and the second The spectrum is shared between networks, including base stations and spectrum controllers.
  • the base station includes:
  • An interference spectrum module configured to measure a first interference strength on a component carrier used by the second network, determine whether the first interference strength is higher than a preset first network threshold, or The second interference strength on the component carrier used by the first network determines whether the second interference strength is higher than a preset second network threshold.
  • the base station further includes:
  • a measuring module configured to measure signal strengths of the adjacent three macro base stations of the first network and the second network, to obtain three-dimensional signal positioning information.
  • the spectrum controller comprises:
  • a spectrum determining module configured to receive, in the spectrum set that the first interference strength of the first network from the first network is not higher than a preset first network threshold, to select that the second interference strength is not higher than the second network The spectrum of the threshold.
  • the present invention can be applied to the inter-operator spectrum sharing scenario with the same priority, and the layered cross-operator spectrum sharing can appropriately extend the sharing period, thereby reducing the signaling overhead and making the spectrum use more. Dynamic and flexible, effectively improving spectrum utilization.
  • the invention can be used in combination with the network-level cross-operator spectrum sharing based on the spectrum sharing area statistical information when the network service density is high, or can be used separately when the network service density is low.
  • Figure 1 is a schematic diagram showing the difference in service density and spectrum requirements of different operators at different hotspots
  • FIG. 2 is a schematic diagram of partitioning of a shared spectrum pool based on statistical information
  • Figure 3 is a schematic diagram of burst spectrum requirements
  • Figure 5 is a schematic diagram of reverse interference in one-way measurement
  • Figure 6 is a schematic diagram of measurement at the source operator side
  • FIG. 8 is a schematic diagram of selecting a small cell for monitoring based on an information matching method of a macro base station paging assisted location
  • FIG. 9 is a schematic diagram of measurement of a target operator side
  • Figure 10 is a schematic diagram of the available spectrum calculation
  • FIG. 11 is a schematic flow chart of a method for sharing spectrum of a network
  • FIG. 12 is a schematic flowchart diagram of a method for sharing a spectrum of the network.
  • a spectrum sharing area An area where multiple operators share spectrum resources in the same geographical area and multiple operators participate in spectrum sharing is called a spectrum sharing area.
  • an easier way to achieve this is to dynamically adjust the spectrum in the shared spectrum pool through the statistical information of the entire spectrum sharing area, and allocate the shared spectrum as needed. For example, multiple operators separately collect statistics on interferences and services in the spectrum sharing area, obtain spectrum requirements in the statistical sense of the carrier in the spectrum sharing area, and then exchange spectrum demand information with other operators. , finally determine the spectrum resources that each operator can use. Since the spectrum allocation result is obtained by the interaction between the operators and the statistical information of the entire shared area, the statistical information of the shared area is a macro level information, and the granularity is large. This scheme is suitable for comparison between operators. Long-term spectrum sharing (such as making adjustments once a day).
  • the present invention uses two operators (operator A and carrier B) to perform cross-operator and priority spectrum sharing as an example.
  • the following embodiments are described by using carrier A (first network, source carrier) and carrier B (second network, target carrier) as an example, but the present invention can also be applied to different networks of the same carrier, that is, The first network and the second network may be networks of the same carrier.
  • Figure 1 shows the spectrum sharing area of Carrier A and Carrier B. This area is covered by 6 hotspots, each of which represents a company. Among them, hotspot #1 is the group customer of operator A, and hotspot #2 is the group customer of operator B. In this scenario, it is easy to see that different operators have different service densities and spectrum requirements at different hotspots. Hotspot #1 requires more resources than Hotspot #2. In this embodiment, for the sake of simplicity, the situation of different companies belonging to different floors is temporarily not considered. Moreover, it will be understood by those skilled in the art that the situation of different companies belonging to different floors can be handled similarly.
  • the information of the entire spectrum sharing area is counted in a period of time, and the statistical spectrum requirement information (which may be the maximum value and average value of the spectrum requirement) is obtained, and then the shared spectrum pool is obtained.
  • the resources are divided (refer to the network-level cross-operator spectrum sharing module in the upper part of FIG. 11), and the shared spectrum pool division result as shown in FIG. 1 can be obtained.
  • operators allocate spectrum from two different directions. For example, operator A is allocated from low frequency to high frequency, and operator B is allocated from high frequency to low frequency.
  • the spectrum allocation result indicates the shared spectrum pool division result obtained according to the statistical information of the spectrum sharing area; the actual service requirement refers to the spectrum requirement of a certain hot spot area, and the hotspot #1 is taken as an example for description.
  • the actual service demand may not be greater than the allocated spectrum resources under normal circumstances; the sudden service demand indicates that the spectrum demand is exploding when there is a burst service in the hotspot. At this time, the demand for the spectrum may exceed the allocation of the carrier. Spectrum resources.
  • Hotspot #1 when the company represented by Hotspot #1 is going to hold a large conference, there may be a large number of foreign guests present, which makes the spectrum demand of the hot spot surge. At this time, the spectrum requirement of the operator A at the hotspot #1 is likely to exceed the spectrum resources allocated by the operator A in the period, and some small cells of the operator cannot work normally. However, Carrier B's spectrum in Hotspot #1 is still idle (as shown in the right part of Figure 3). Similarly, Carrier B may have the same situation at Hotspot #2.
  • these small cells lacking spectrum resources for example, the small cell of the operator A at the hotspot #1
  • small-starved cells are referred to as small-starved cells, and may also be referred to as small cells for service demand.
  • the present invention can be applied to a small cell or a cell, and the present invention is collectively referred to as a "small cell for service demand". It will be understood by those skilled in the art that the present invention is also applicable to a cell, and thus the "service demand small cell" in the present invention includes a cell.
  • the present invention performs cell-level cross-operator spectrum sharing on the basis of network-level cross-operator spectrum sharing.
  • the method is also applicable to directly perform cell-level cross-operator spectrum sharing without network-level cross-operator spectrum sharing.
  • the operator to which the service needs a small cell belongs is the source operator (for example, the operator A shown in FIG. 3), and the operator sharing the spectrum with the service is called the target operator (for example, the operator B shown in FIG. 3) ).
  • the shared spectrum pool is a set of component carriers (CC). As shown in Figure 4, the oblique shadows on both sides are the dedicated frequency bands of Carrier A and Carrier B, and the middle part is the shared spectrum pool of Carrier A and Carrier B. To simplify the description, the spectrum is continuously allocated. The application can also be allocated according to the non-continuous allocation mode.
  • the shared spectrum pool is allocated to the operator A and the operator B as needed through the spectrum sharing at the high-level network level.
  • a plurality of spectrum resources are reserved in the shared spectrum pool as a spectrum shared channel between the different operators for the measurement and information exchange between operators.
  • the spectrum sharing channel between different operators may be located at a fixed location or may be selected according to the current environment, but the spectrum sharing channel must be negotiated by multiple operators.
  • the spectrum shared channel When the spectrum shared channel is idle, it can be used for data transmission.
  • the service-required small cell triggers the cell-level inter-operator spectrum sharing process
  • the service-demanding small cell broadcasts the cell detection feature sequence on the spectrum-sharing channel, and the cell detection feature sequence is configured and maintained by each operator, and Other operators are pre-negotiated and known.
  • the target operator measures the feature sequence to determine the own operator small cell adjacent to the service demand small cell.
  • the cell-level spectrum sharing is triggered by the event that the service needs a small cell.
  • the trigger event is a small cell with a service requirement.
  • the physical meaning is that the operator cannot allocate spectrum to a certain or some small cells due to lack of spectrum.
  • the spectrum sharing is to ensure that the small cell can get better service quality.
  • the cell-level inter-operator spectrum sharing can be used independently of the network-level cross-operator spectrum sharing.
  • the applicable scenario is mainly when the small cell deployment density is relatively low.
  • a network service density parameter may be set, which may be a composite function of the number of small cells, the number of users, services, etc., and given a network density threshold. When the small cell density exceeds the small cell density threshold, the network needs to be Level spectrum sharing is used in combination.
  • the small cell density is lower than the small cell density threshold, only cell-level cross-operator spectrum sharing can be performed, that is, if there is no burst service, the small cell triggers small.
  • the district level spectrum sharing only a high-level network-level small cell spectrum sharing is required to achieve reasonable spectrum usage among multiple operators.
  • SeNB B2 is a home base station of operator B and operates at CC2
  • SeNB B1 is a pico cell of operator B and operates at CC1
  • SeNB A is a micro cell of operator A.
  • SeNB A is a small cell with a small demand for service
  • the intuitive idea is that the small cell needs to measure the frequency band that may be used by the surrounding small cell. Since SeNB A is within the coverage of SeNB B1 , only CC1 can be measured. Carrier used. Then, SeNB A judges that CC2 is an idle carrier and considers that it can be accessed, but once the base station accesses CC2, it will cause interference to SeNB B2 . To avoid the problem of reverse interference caused by such one-way measurements, we propose the following two-way measurement mechanism.
  • the small cell SeNB A of the operator A is a starved small cell and triggers cell-level cross-operator spectrum sharing. Then, the hungry small cell first performs scanning measurement on the component carrier allocated to the operator B in the shared spectrum pool to determine the occupancy condition of the neighboring small cell to the component carrier belonging to the operator B, and the interference intensity on the measured component carrier is greater than When a certain threshold is used, it is considered that the component carrier cannot be used by the small cell for service demand, otherwise it will cause large interference to the small cell of the service demand.
  • SeNB A can measure that the interference strength on CC1, CC4, CC5, and CC7 exceeds a preset threshold, and the measurement result of SeNB A may be as shown in FIG. 7, and these carriers are respectively SeNB B1 , SeNB B3, and The SeNB B4 is occupied, and the interference strength on other carriers is lower than the preset threshold. It is worth noting that the small cells in the service demand only know which carriers have higher interference strength, and it is not clear the specific small cells using these carriers.
  • the SeNB A transmits the measured interference component carrier set ⁇ CC1, CC4, CC5, CC7 ⁇ to the spectrum manager to which it belongs in the form of a measurement report.
  • the service demand small cell broadcasts a feature sequence on the spectrum shared channel and sends the target carrier to the spectrum manager of the target operator.
  • a target operator spectrum sharing request message which includes an identifier of an operator, a spectrum requirement of a small cell serving a service demand, a set I 1 of low-interference/non-interference-free component carriers, a feature sequence of a service demand small cell broadcast, and a service requirement The location information and other content of the small cell.
  • the approximate location of the small cell for the service requirement can be determined by the building name or the floor information, thereby greatly reducing the range of measurement performed by the operator and reducing the signaling overhead of the target operator.
  • the information matching method based on the macro base station paging is introduced to select the monitoring feature sequence. Small cells, where it is assumed that each operator's small base station needs to support signal strength measurements to the target operator macro base station.
  • SeNB A signature sequence may be emitted SeNB B1, SeNB B2 and SeNB B3 can receive, which means SeNB A and SeNB B1 , SeNB B2 , and SeNB B3 cannot use the same spectrum, otherwise there will be a large interference.
  • the component carriers occupied by the small cells capable of receiving the feature sequence are as shown in FIG. 7. These component carriers cannot be used by the small cell for service, and the carrier component of the interference component measured at the target carrier is ⁇ CC1, CC3, CC4. , CC5 ⁇ .
  • the spectrum used by the small cell generates a large interference to the target operator, and the set of CCs that are not interfered by the target operator is sorted according to the interference strength, and the sorted interference-free CC set is obtained.
  • the set of component carriers with bidirectional or unidirectional interference can be obtained by performing a union operation on the set of interference component carriers measured by the source operator and the target operator.
  • ⁇ CC1, CC4, CC5, CC7 ⁇ ⁇ CC1, CC3, CC4, CC5 ⁇ ⁇ CC1, CC3, CC4, CC5, CC7 ⁇ .
  • it is removed from the component carrier of the operator B, and the component carrier that the service demand small cell can use is obtained. That is, ⁇ CC1, CC2, CC3, CC4, CC5, CC6, CC7, CC8 ⁇ - ⁇ CC1, CC3, CC4, CC5, CC7 ⁇ ⁇ CC2, CC6, CC8 ⁇ .
  • the result of the two-way measurement may be an empty set.
  • the spectrum requirement is large, and the target operator has no redundant resources for the service to use the small cell.
  • the sharing will end with failure.
  • the source operator needs to find other ways to provide spectrum resources for the small cells of the service demand or to enable its users to access other cells. For example, when the target operator informs the source operator that the resources are insufficient, the source operator allocates some resources to the service demand small cell within the carrier network, and solves the requirement for the small cell required by the service by re-issuing the request with the target operator. The rest of the resources.
  • the spectrum sharing method provided by the present invention includes the following steps:
  • Step 1 The service request small cell in the carrier A (first network) initiates a resource request.
  • the operator A selects the first network measured spectrum set in the second network, where the first interference strength is not higher than the preset first network threshold, and the operator A (first network) transmits a first network measured spectrum set to operator B (second network).
  • Step 2 The operator A (the first network) initiates a spectrum sharing request to the operator B (the second network), and provides a detection feature sequence of the small cell of the service demand.
  • the first network and the second network belong to different operators and the cell/small cell location identifier cannot be shared between the operators, in the second step, the first network needs to send the location identifier of the service demand small cell to the second network. For example, three-dimensional signal positioning information.
  • the transmission service requirement is small.
  • the location identifier of the cell, but the second network locates the service demand small cell or its location according to the shared information.
  • the operator A (the first network) initiates a spectrum sharing request to the operator B (the second network) to provide a detection feature sequence of the small cell of the service requirement, and also sends the carrier identifier and the spectrum to the second network.
  • Demand the first network measured spectrum set.
  • the operator A indicates that the service requires the small cell to broadcast the detection feature sequence on the shared channel.
  • Step 3 Carrier B (second network) measures the detected feature sequence, and selects a second network measured spectrum set in the operator B (second network) and the second interference strength is not higher than the second network threshold. , sent to carrier A (first network).
  • the operator B obtains an intersection between the measured spectrum set of the first network and the measured spectrum set of the second network, and obtains an available spectrum that can be used by the small cell of the service requirement, and sends the available spectrum to the operator A (the first a network).
  • Step 4 The service needs the small cell (the service demand small cell) to select the accessed spectrum from the measured spectrum set of the second network.
  • Layered spectrum sharing can be performed between the second networks.
  • Layered spectrum sharing includes large-scale long-period spectrum sharing according to statistical information of the spectrum sharing area, and small-scale short-period or real-time spectrum sharing according to the cell burst service.
  • the signal strengths of the three macro base stations of the source operator and the target operator are measured, and a set of three-dimensional signal strength combinations are obtained, for example, (S1, S2, S3), for convenience of expression.
  • the following will be referred to as "three-dimensional signal positioning information" and reported to its spectrum controller. This information can be considered to be relatively stable and does not require repeated measurements.
  • the source operator When the source operator has a small cell for service demand, and the source operator sends a "target carrier spectrum sharing request" message to the target operator, the message is added with the three-dimensional signal location information (replace the "building name") and the macro base station. ID.
  • the macro base station ID is added to avoid the positioning of the three-dimensional signal as a combination of other base stations.
  • the spectrum controller of the target operator matches the three-dimensional signal positioning information of the source operator measured by the small cell in the carrier according to the three-dimensional signal positioning information, and selects a small cell whose matching degree is greater than a certain threshold. For example, assuming a three-dimensional SeNB A1 measured positioning signal (S1 ', S2', S3 ') and (S1, S2, S3) matching degree higher than a certain threshold, then the SeNB A1 will be selected to listen.
  • the spectrum controller of the target operator instructs the selected small cell to measure the feature sequence of the small cell of the service demand.
  • the target operator After receiving the target operator spectrum sharing request message, the target operator instructs the small cell in the building to measure the spectrum shared channel. If the feature sequence can be detected, the small cell is in the coverage of the service demand small cell.
  • the small cell that measures the feature sequence sends a measurement report to the spectrum controller, and the spectrum controller aggregates the spectrum used by the small cell that measures the feature sequence to determine which component carriers have interference and removes it from the spectrum pool. The remaining component carriers without interference can be used by small cells for service demand.
  • Operator A and Carrier B perform high-level spectrum sharing based on spectrum sharing area network statistics.
  • the small cells of the operator A and the operator B measure the interference status, the neighbor relationship, and the like, respectively.
  • the shared spectrum pool is divided by the negotiation between the carrier A and the carrier B to determine the location of the spectrum sharing line.
  • Operator A and Carrier B perform low-level spectrum sharing.
  • Each small base station measures the signal strength of the adjacent three macro base stations of the carrier and the target operator, and obtains "three-dimensional signal positioning information" respectively, and reports it to the spectrum controller of the respective operator.
  • the small cell sends a spectrum request message to the spectrum controller of its own network.
  • the spectrum controller of the operator A allocates spectrum resources to the small cells of the service demand.
  • the small cell determines whether the spectrum allocated by the spectrum controller is available. If available, the communication process within the operator is performed; otherwise, the small cell is a small cell requiring traffic and performs the next step.
  • the small cell measures the spectrum used by the target carrier (operator B) in the shared spectrum pool, that is, detects the first interference strength on the component carrier allocated to the operator B in the shared spectrum pool. If the first interference strength measured on a component carrier is higher than a preset first network threshold (first interference threshold), the service demand small cell cannot access the component carrier; otherwise, the service needs a small cell.
  • the component carrier can be accessed.
  • the first network threshold (first interference threshold) can be set by the operator and is defined as the interference strength that the operator can bear.
  • These component carriers form a first network measured spectrum set I 1 . It should be noted that the component carrier included in the spectrum set I 1 of the first network may not have one or only one carrier, which is determined by the measurement result.
  • the service requires the small cell to measure the spectrum usage of the target operator, send a measurement report to the spectrum manager to which the small cell of the service requirement belongs to the source operator, where the measurement report includes the small cell ID and service of the small cell of the service requirement.
  • a spectrum demand a set of low-interference/non-interference-free component carriers I 1 is required .
  • Fig. 12 it is judged by the spectrum controller whether the set I 1 is an empty set, and in the case of an empty set, the sharing is terminated.
  • the base station may not send the measurement report. In other words, it may be judged by the service demand small cell, and the empty set is not sent, and the sharing is terminated.
  • the spectrum manager of the source operator analyzes the set of low-interference/non-interference-free component carriers. If the set is an empty set, there is no available component carrier for the service demand small cell. The spectrum sharing process at the lower layer cell level is terminated; otherwise, the next step is performed.
  • the spectrum manager of the source operator sends a broadcast indication message to the service demand small cell, and the message includes a cell detection feature sequence.
  • the probe signature sequence is assigned and maintained by the spectrum manager, is isolated in certain areas, and is known to multiple operators.
  • the source operator's spectrum manager sends a target operator spectrum sharing request message to the target operator's spectrum manager.
  • the message includes the identifier of the operator, the spectrum requirement of the small cell of the service requirement, the set I 1 of the low-interference/non-interference-free component carrier measured by the source operator, the cell detection feature sequence broadcast by the service demand small cell, and the small service requirement.
  • the source operator's spectrum controller needs to send a "target carrier spectrum sharing request" message to the target operator's spectrum controller.
  • the message includes the following:
  • Spectrum requirements used to identify the spectrum requirements for small cell requests for service requirements.
  • the set of available spectrum measured by the source operator the measurement result of the source operator's spectrum usage by the target operator.
  • Cell detection feature sequence used by the target operator to measure the small cell of the service demand.
  • Service demand Small cell location information This information can help the target operator to narrow down the measurement range.
  • the location information is, for example, the name of the building to which the service needs a small cell belongs.
  • the service demand small cell broadcasts the cell detection feature sequence assigned by its associated spectrum manager.
  • the target operator spectrum sharing channel is used for the service demand small cell broadcast cell detection feature sequence, so as to achieve the target operator's measurement of the source operator's service demand small cell.
  • the target operator spectrum shared channel can be temporarily configured when needed, or can be determined in advance by negotiation between operators, and the channel can be used for number when there is no cell-level inter-operator spectrum sharing requirement. According to transmission.
  • the spectrum controller of the target operator matches the three-dimensional signal positioning information measured by the small cell in the carrier (within the target operator) according to the three-dimensional signal positioning information, and selects a small cell whose matching degree is greater than a certain threshold.
  • the spectrum manager of the target operator selectively sends a measurement indication message to the small cell or the user in the vicinity of the small cell of the service demand according to the location information of the small cell of the service requirement, and the measurement indication message includes the cell detection feature sequence broadcast by the small cell of the service requirement. And so on.
  • the small cell or user of the target operator in the vicinity of the service demand small cell measures the feature sequence broadcast by the small cell of the service demand according to the measurement indication.
  • the small cell of the target operator capable of receiving the feature sequence sends a measurement report to the associated spectrum manager.
  • the measurement report includes a small cell ID, signal strength, and the like.
  • the spectrum manager of the target operator summarizes the received measurement reports, first determines which small cells can receive the feature sequence, and the received signal energy (second interference strength) is higher than a preset threshold, and the occupied by these small cells Component carriers cannot be used by small cells for service demand.
  • the spectrum of the component carrier used by the small cell capable of receiving the feature sequence is removed from the set, and the remaining component carriers constitute the second network measured spectrum set I 2 , which is a small cell of the service demand small cell to the target operator.
  • the spectrum manager of the target operator sorts the component carriers in the measured spectrum set of the second network according to the second interference strength, wherein the second interference strength of the interference-free component carrier is recorded as 0, and is ranked first in the set ( Priority is given to the small cell for service demand), and the interference-free component carriers can be arbitrarily ordered. This step preferentially ensures that the spectrum occupied by the small cell occupied by the service requires minimal interference to the target operator.
  • the spectrum manager of the target operator performs an intersection operation between the result measured by the source operator and the result measured by the target operator to obtain a bidirectional low-interference/non-interference component carrier set, that is, a set of component carriers available for the service demand small cell. .
  • the spectrum manager of the target operator sends a target operator spectrum sharing response message to the spectrum manager of the source operator, where the message includes a component load that the service request small cell can use.
  • Wave, service demand The content of the interference intensity indicator of the small cell of the target operator when the small cell accesses these spectrums.
  • the target operator's spectrum controller sends a "target carrier spectrum share response" message to the source operator's spectrum controller.
  • the message includes the following:
  • Sorted available spectrum sequence numbers used to indicate the spectrum resources that the service needs to be used by small cells and their priorities.
  • the small cell selects the spectrum that can be used and accesses the corresponding spectrum.
  • a small cell reports its spectrum selection message to its spectrum controller to inform it of the spectrum it is accessing.
  • the spectrum controller of the source operator sends a spectrum selection notification message to the spectrum controller of the target operator to complete the low-level spectrum sharing.
  • the cell-level cross-operator spectrum sharing method provided by the present invention is complementary to the network-level cross-operator spectrum sharing, and the spectrum resources can be more flexibly and dynamically shared. Through two-way measurement and certain information interaction, the problem of network-level spectrum sharing based on spectrum sharing area statistical information is large, and the problem of service distribution and spectrum resources cannot be matched well.
  • the measurement of the target carrier by the small cell is limited to whether the component carriers are used or not, and it is not necessary to know which small cells are allocated to these component carriers, and therefore does not involve measurement of sensitive information. It is very important to achieve cross-operator spectrum sharing.
  • the present invention can be applied to the inter-operator spectrum sharing scenario of the same priority, layered for inter-operator spectrum sharing, and can appropriately extend the sharing period, thereby reducing signaling overhead, and at the same time making spectrum usage more dynamic and flexible, and effectively improving the spectrum. Utilization rate.
  • the invention can be used in combination with the network-level cross-operator spectrum sharing based on the spectrum sharing area statistical information when the network service density is high, or can be used separately when the network service density is low.
  • the present invention also provides a system using the above network spectrum sharing method, comprising a base station and a spectrum controller in a first network, and a base station and a spectrum controller in the second network. among them,
  • the base station in the first network includes a first interference spectrum module, configured to measure a first interference strength on a component carrier used by the second network, and determine whether the first interference strength is higher than a preset first network threshold.
  • the base station in the second network includes a second interference spectrum module, configured to measure a second interference strength on the component carrier used by the first network, and determine whether the second interference strength is higher than a preset second network threshold. value.
  • the base station in the first network and the base station in the second network each include a measurement module, configured to measure signal strengths of the adjacent three macro base stations of the first network and the second network, to obtain three-dimensional signal positioning information.
  • a second network controller comprises a spectral spectrum determining means for receiving therefrom a first set of interference intensity from a first network is not higher than a preset threshold value spectrum in a first network I 1, Selection The interference intensity is not higher than the spectrum of the second network threshold, and an intersection is obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种网络频谱共享方法,用于在第一网络和第二网络之间共享频谱。该方法包括以下步骤:第一网络内的业务需求小小区发起资源请求,第一网络向第二网络发起频谱共享请求,提供业务需求小小区的探测特征序列,第二网络测量探测特征序列,选出在第二网络内且第二干扰强度不高于第二网络门限值的第二网络测得频谱集合,发送给第一网络,业务需求小小区从第二网络测得频谱集合中选择接入的频谱。本发明还公开了一种使用上述网络频谱共享方法的系统。利用本发明,可以使频谱使用更加动态、灵活,有效提升频谱利用率。

Description

一种网络频谱共享方法和系统 技术领域
本发明涉及一种网络频谱共享方法,尤其涉及一种基于运营商间测量的跨运营商网络频谱共享方法,同时也涉及使用该网络频谱共享方法的系统,属于无线通信技术领域。
背景技术
在传统的频谱划分和分配方式中,通常每个运营商都是某一段专用授权频谱的牌照持有者,即使在某一特定的区域没有本运营商的业务,频谱也不会给其他运营商使用,从而导致了频谱资源在一定程度上的浪费。随着无线通信技术的飞速发展和通信业务的爆炸式增长,对频谱的需求量也越来越大,而传统的频谱分配方式一方面不够灵活,另一方面也会导致频谱效率底下。因此,目前很多研究集中在寻找更高效的频谱使用方案以及拓展现有的可用频谱资源,如LTE使用未授权频段或高频段等。研究表明,跨运营商频谱共享是一种具有较好前景的提高频谱使用效率的解决方案之一。
众所周知,异构组网给网络部署提供了极大的空间灵活性,宏小区可以提供广域覆盖,小小区可以增强室内覆盖和提供高速接入。与宏基站相比,小小区基站的发射功率要低的多,并且通常在室内部署场景下,无线信号在穿过建筑物时会有较大的穿墙损耗。因此,满足一定的地理位置隔离条件下,在混合组网方式中进行跨运营商频谱共享不会造成很强的干扰,使得不同运营商的小小区共享频谱资源的实现可能性很大。
作为一种新型的频谱接入模式,同优先级频谱共享(co-primary spectrum sharing,简称为CoPSS)允许多个运营商以相同的优先级接入同一段频谱资源,在此将多个运营商均可接入的频段称为共享频谱池,共享频谱池可以是多个运营商各自拿出一部分授权频段共同组成的,或者是尚未发牌的IMT频段,也可以是免授权频段。由于不同运营商部署的小小区不像运营商内小小区的部署可以经过一定的规划或半规划,如果运营商之间不进行协作,不受任何约束地接入同一段频谱,极有可能会产生较强的跨运营商干扰(inter-operator interference,简称为IOI) 而导致网络无法正常工作,因此,设计运营商间的频谱共享规则非常重要。为了避免运营商间的干扰,共享频谱资源的运营商双方需要预先设定频谱共享的规则,通过运营商之间信息的交互,对运营商间的干扰进行管理和协调,以达到频谱利用率最大化的目的。另外,由于不同运营商之间是竞争关系,不能进行敏感信息(如邻居关系、业务状况等)的交互,使得运营商之间可以交互的信息极为有限,这也是跨运营商频谱共享的难点之一。
现有的对异运营商频谱共享场景下的研究主要集中在主用户-次用户频谱共享(primary-secondary spectrum sharing,简称为PSSS)模式,这种共享模式下,主用户是授权频谱的牌照持有者,具有相对次用户较高的频谱使用权,次用户只能在不对主用户产生干扰的情况下机会式地接入该段频谱。也就是说,一旦主用户对该段频谱有需求,次用户需立刻退出将频谱让给主用户。但是这种场景下的频谱共享算法和机制并不适用于同优先级频谱共享场景。
目前针对同优先级的异运营商频谱共享场景的相关研究尚且较少。现有的方法一般都是基于较高层次的机制,一般是基于网络统计信息下的结论。这种情况下往往是较大颗粒和较长周期的共享,不能很好地适配较小粒度实时业务的调整。比如,如果在特殊情况下某个小小区或某个小区域出现突发的业务量时,可能会无法进行及时的处理。
发明内容
本发明所解决的首要技术问题在于提供一种基于运营商间测量的跨运营商网络频谱共享方法。
本发明所解决的另一技术问题在于提供一种使用上述网络频谱共享方法的系统。
为实现上述的发明目的,本发明采用下述的技术方案:
一种网络频谱共享方法,用于在第一网络和第二网络之间共享频谱,包括以下步骤:
所述第一网络内的业务需求小小区发起资源请求,
所述第一网络向所述第二网络发起频谱共享请求,提供业务需求小小区的探测特征序列,
所述第二网络测量所述探测特征序列,选出在所述第二网络内且 第二干扰强度不高于第二网络门限值的第二网络测得频谱集合,发送给所述第一网络,
所述业务需求小小区从所述第二网络测得频谱集合中选择接入的频谱。
其中较优地,所述第一网络选出在所述第二网络内的,第一干扰强度不高于预设的第一网络门限值的第一网络测得频谱集合。
所述第一网络向所述第二网络发送所述第一网络测得频谱集合。
其中较优地,所述第二网络对所述第一网络测得频谱集合与所述第二网络测得频谱集合求交集,得到所述业务需求小小区可以使用的可用频谱,并发送给所述第一网络。
其中较优地,所述第一网络向所述第二网络发起频谱共享请求,提供业务需求小小区的探测特征序列,并通知所述业务需求小小区广播所述探测特征序列。
其中较优地,在所述业务需求小小区附近的所述第二网络的小小区或用户,对所述业务需求小小区广播的所述探测特征序列进行测量,得到探测特征序列测量结果,
所述第二网络基于所述探测特征序列测量结果,产生所述第二网络测得频谱集合。
其中较优地,所述第一网络向所述第二网络发送三维信号定位信息,所述第二网络基于所述三维信号定位信息选择需要监听的所述第二网络内的小小区。
其中较优地,所述第二网络对所述需要监听的小小区或用户发送测量指示消息,所述测量指示消息包括所述业务需求小小区广播的所述探测特征序列。
其中较优地,所述第二网络基于所述第二干扰强度,对所述第二网络测得频谱集合中的分量载波进行排序。
其中较优地,所述业务需求小小区在频谱共享信道上广播所述探测特征序列,
所述频谱共享信道用于所述业务需求小小区广播所述探测特征序列;在没有所述探测特征序列广播时,用于数据传输。
一种使用上述网络频谱共享方法的系统,用于在第一网络和第二 网络之间共享频谱,包括基站和频谱控制器。
其中较优地,所述基站包括:
干扰频谱模块,用于测量所述第二网络使用的分量载波上的第一干扰强度,判断所述第一干扰强度是否高于预设的第一网络门限值;或者,用于测量所述第一网络使用的分量载波上的第二干扰强度,判断所述第二干扰强度是否高于预设的第二网络门限值。
其中较优地,所述基站进一步包括:
测量模块,用于测量所述第一网络和所述第二网络的临近的三个宏基站的信号强度,得到三维信号定位信息。
其中较优地,所述频谱控制器包括:
频谱判断模块,用于从其接收到的来自所述第一网络的第一干扰强度不高于预设的第一网络门限值的频谱集合中,选择第二干扰强度不高于第二网络门限值的频谱。
与现有技术相比较,本发明可应用于同优先级的跨运营商频谱共享场景,分层进行跨运营商频谱共享,可以适当延长共享周期,从而降低信令开销,同时可以使频谱使用更加动态、灵活,有效提升频谱利用率。
本发明可以在网络业务密度较高时与基于频谱共享区域统计信息的网络级跨运营商频谱共享结合使用,也可以在网络业务密度较低时单独使用。
附图说明
图1为不同运营商在不同热点的业务密度和频谱需求的差异的示意图;
图2为基于统计信息的共享频谱池划分示意图;
图3为突发频谱需求示意图;
图4为网络级频谱共享结果示意图;
图5为单向测量的反向干扰示意图;
图6为源运营商端的测量示意图;
图7为分量载波上测量到的干扰强度分布图;
图8为基于宏基站铺助定位的信息匹配方法选择监听小小区示意图;
图9为目标运营商端的测量示意图;
图10为可用频谱计算示意图;
图11为本网络频谱共享方法的概略流程示意图;
图12为本网络频谱共享方法的详细流程示意图。
具体实施方式
下面结合附图和具体实施例对本发明的技术内容做进一步的详细说明。
多个运营商在同一地理范围内共享频谱资源,将多个运营商参与频谱共享的区域称为频谱共享区域。为避免频谱共享导致大量的运营商间的信息交互,一种较为容易实现的方法是通过整个频谱共享区域的统计信息,对共享频谱池中的频谱进行动态调整,按需对共享频谱进行分配。比如,多个运营商分别对频谱共享区域中本运营商内的干扰、业务等状况进行统计,得到本运营商在频谱共享区域内统计意义上的频谱需求,然后与其他运营商交互频谱需求信息,最终确定各个运营商可以使用的频谱资源。由于频谱分配结果是通过运营商之间交互整个共享区域的统计信息后得到的,共享区域的统计信息是一个宏观层次上的信息,颗粒度较大,这种方案适合在运营商之间做较长周期的频谱共享(比如每天进行一次调整)。
然而,在实际应用中,往往会存在一些各运营商的签约用户、业务分布不均匀的现象,出现局部业务波动较大的情况。比如某工业园区内有若干家公司,其中一些公司为员工定制了某一运营商的集团客户业务,那么该公司在部署小小区时会考虑以相应运营商的小小区为主,并且不同公司可能会定制不同运营商的集团客户业务。
具体地,为方便起见,本发明以两个运营商(运营商A和运营商B)进行跨运营商同优先级频谱共享为例进行表述。以下实施例是以运营商A(第一网络,源运营商)和运营商B(第二网络,目标运营商)为例进行说明,但是本发明也可以适用于同一运营商的不同网络,即,第一网络和第二网络可以是同一运营商的网络。
图1表示运营商A和运营商B的频谱共享区域,该区域覆盖有6个热点,每个热点表示一个公司。其中热点#1内是运营商A的集团客户,热点#2内是运营商B的集团客户。在这种场景下,很容易看出不同运营商在不同热点的业务密度和频谱需求会有所差异,热点#1所需资源多于热点#2。本实施例中为简化说明暂时不考虑不同楼层所属不同公司的情 况,但是本领域普通技术人员可以理解,不同楼层所属不同公司的情况可以类似处理。
结合图2和图11,一段周期时间内,对整个频谱共享区域的信息进行统计,得到统计意义上的频谱需求信息(可以是频谱需求的最大值、平均值等信息),然后对共享频谱池中的资源进行划分(参考图11上部中的网络级跨运营商频谱共享模块),可以得到如图1所示的共享频谱池划分结果。不失一般性地,我们考虑运营商从两个不同的方向对频谱进行分配,比如运营商A按照从低频向高频的方向分配,运营商B按照从高频到低频的方向分配。
然而,在一个频谱共享周期内,可能会出现某些小小区的业务量突发增大或者某些小小区被激活等情况,此时在网络级频谱共享下得到的频谱资源池分配结果可能无法给这些小小区配置频谱资源。
如图3所示,频谱分配结果表示根据频谱共享区域的统计信息得到的共享频谱池划分结果;实际业务需求是指某一热点区域的频谱需求,这里以热点#1为例进行说明,热点的实际业务需求在正常情况下可能会不大于分配的频谱资源;突发业务需求表示热点出现突发业务时,对频谱需求量激增的情况,这时候对频谱的需求可能会超出本运营商分配的频谱资源。
例如,当热点#1所表示的公司要举办大型会议,可能会有大量外来嘉宾到场,使得该热点的频谱需求激增。此时,运营商A在热点#1的频谱需求极有可能会超过该周期内运营商A分配的频谱资源,导致本运营商部分小小区无法正常工作。但是,运营商B在热点#1的频谱却依然有空闲(如图3中右部所示)。同样,运营商B在热点#2也可能会出现同样的状况。在此称这些缺乏频谱资源的小小区(例如运营商A在热点#1的小小区)为饥饿小小区,也可称为业务需求小小区。本发明可用于小小区,也可以适用于小区,本发明统称为“业务需求小小区”。本领域普通技术人员可以理解,本发明也可适用于小区,因此本发明中的“业务需求小小区”包括小区。
由于基于网络统计信息的频谱共享无法考虑每一个特殊热点或特殊小小区的频谱需求情况,可能会导致频谱资源分配不合理,也就是说依靠统计信息得到的频谱共享结果不能最好地匹配频谱和业务需求。
为解决业务需求小小区的问题,本发明在网络级跨运营商频谱共享的基础上,进行小区级的跨运营商频谱共享。该方法同样适用于在没有网络级跨运营商频谱共享的情况下直接进行小区级的跨运营商频谱共享。在以下叙述中称业务需求小小区所属的运营商为源运营商(例如图3所示运营商A),而与之共享频谱的运营商称为目标运营商(例如图3所示运营商B)。
不失一般性地,假设共享频谱池是一组分量载波(component carrier,简称为CC)。如图4所示,两侧斜阴影部分分别是运营商A和运营商B的专用频段,中间部分是运营商A和运营商B的共享频谱池,为简化描述,频谱是连续分配的,实际应用中也可以按照非连续分配的方式来分配,通过高层网络级的频谱共享,共享频谱池按需分配给运营商A和运营商B使用。通过多个运营商的协商,在共享频谱池中预留一部分频谱资源作为异运营商之间的频谱共享信道,用于运营商之间的测量和信息交互等。异运营商之间的频谱共享信道可以位于固定的位置,也可以根据当前环境进行选择,但频谱共享信道必须是由多个运营商协商确定的。当频谱共享信道空闲时,可以用于数据传输。当业务需求小小区触发了小区级跨运营商频谱共享过程时,业务需求小小区会在频谱共享信道上广播小区探测特征序列,小区探测特征序列是由各运营商进行配置并维护的,并且对其他运营商是预先协商并已知的。目标运营商对特征序列进行测量,可以确定与业务需求小小区相邻的本运营商小小区。
小区级的频谱共享是由业务需求小小区通过事件触发的,触发事件是出现业务需求小小区,物理意义上是指由于频谱缺乏导致本运营商不能给某个或某些小小区分配频谱,小区级的频谱共享是为了保证业务需求小小区可以得到较好的服务质量。小区级跨运营商频谱共享可以在独立于网络级跨运营商频谱共享的情况下使用,适用场景主要是小小区部署密度相对较低的情况。对此,可以设置一个网络业务密度参数,该参数可以是小小区数量、用户数量、业务等的复合函数,并给定一个网络密度门限,当小小区密度超过小小区密度门限时,需要与网络级频谱共享进行结合使用,当小小区密度低于小小区密度门限时,只需进行小区级跨运营商频谱共享即可,也就是说假如没有突发业务的小小区触发小 区级的频谱共享,那么只需要进行高层的网络级小小区频谱共享即可实现多运营商间的合理的频谱使用。
由于小小区的发射功率会因小小区类型不同而有所差异,如微小区、微微小区和家庭基站,并且不同类型的小小区覆盖范围大小不一。假如只有业务需求小小区对可用频谱进行测量,虽然业务需求小小区可以保证不受到其他运营商的干扰,但是极有可能会对其他运营商造成干扰。如图5所示,SeNBB2是运营商B的一个家庭基站且工作在CC2,SeNBB1是运营商B的一个微微小区且工作在CC1,SeNBA是运营商A的一个微小区。假设SeNBA是一个业务需求小小区,那么直观的想法是业务需求小小区需要对周围小小区可能使用的频段进行测量,由于SeNBA处于SeNBB1的覆盖范围内,只能测量到CC1是已经被使用的载波。那么SeNBA会判断CC2是空闲载波,认为可以接入,但是该基站一旦接入CC2,便会对SeNBB2产生干扰。为避免这种单向测量导致的反向干扰问题,我们提出了以下的双向测量机制。
如图6所示,假设运营商A的小小区SeNBA是一个饥饿小小区,并触发了小区级的跨运营商频谱共享。那么饥饿小小区首先对共享频谱池中分配给运营商B的分量载波进行扫描测量,以确定属于运营商B的邻居小小区对分量载波的占用状况,当测量到的分量载波上的干扰强度大于一定门限时,认为该分量载波不能被业务需求小小区使用,否则会对业务需求小小区产生较大的干扰。
在图6中,假设SeNBA可以测量到CC1、CC4、CC5和CC7上的干扰强度超过预设的门限,SeNBA的测量结果可能如图7所示,这些载波分别被SeNBB1、SeNBB3和SeNBB4所占用,而其他载波上的干扰强度则低于预设的门限。值得注意的是,业务需求小小区只是知道哪些载波上干扰强度较高,而并不清楚使用这些载波的具体小小区。SeNBA将测量到的干扰分量载波集合{CC1,CC4,CC5,CC7}以测量报告的形式发送给其所属的频谱管理器。
源运营商端对目标运营商端的测量完成之后,一旦确定目标运营商端有可用的分量载波,业务需求小小区便在频谱共享信道上广播一个特征序列,并给目标运营商的频谱管理器发送一个目标运营商频谱共享请求消息,该消息中包括运营商的标识、业务需求小小区的频谱需求、低 干扰/无干扰的分量载波的集合I1、业务需求小小区广播的特征序列、业务需求小小区所属的位置信息等内容。
通过楼宇名称或者楼层信息等可以确定业务需求小小区的大概位置,从而大大缩小跨运营商进行测量的范围,降低目标运营商的信令开销。如图8所示,为了更加精确地确定业务需求小小区的位置,考虑到跨运营商不能具备过于精准的敏感信息,在此引入基于宏基站铺助定位的信息匹配方法来选择需要监听特征序列的小小区,其中假设每个运营商的小基站需要支持对目标运营商宏基站的信号强度测量。
在图9中,只有SeNBB1、SeNBB2和SeNBB3在SeNBA的覆盖范围之内,也就是说SeNBA发出的特征序列可能只有SeNBB1、SeNBB2和SeNBB3能够收到,这也意味着SeNBA和SeNBB1、SeNBB2、SeNBB3不能使用相同的频谱,否则会有较大的干扰。能够接收到特征序列的小小区所占用的分量载波如图7所示,这些分量载波不能被业务需求小小区使用,那么在目标运营商端测量到的干扰分量载波集合是{CC1,CC3,CC4,CC5}。为了避免业务需求小小区使用的频谱给目标运营商产生较大的干扰,将目标运营商端测量到的没有干扰的CC的集合按照干扰强度进行排序,得到排序后的无干扰的CC集合。
如图10所示,将源运营商和目标运营商测量到的有干扰的分量载波集合进行并集运算,即可得双向或单向干扰的分量载波集合{CC1,CC4,CC5,CC7}∪{CC1,CC3,CC4,CC5}={CC1,CC3,CC4,CC5,CC7}。再将其从运营商B的分量载波中移除,得到的便是业务需求小小区可以使用的分量载波。即{CC1,CC2,CC3,CC4,CC5,CC6,CC7,CC8}-{CC1,CC3,CC4,CC5,CC7}={CC2,CC6,CC8}。
当然,某些场景下可能会出现双向测量后的结果是空集的情况,此时,意味着频谱需求较大,目标运营商没有多余的资源供业务需求小小区使用,这时跨运营商频谱共享将以失败结束,源运营商需要寻找其他途径为业务需求小小区提供频谱资源或者使其用户接入其他小区。例如,目标运营商通知源运营商资源不足时,源运营商在本运营商网络内部分配部分资源给业务需求小小区使用,并且通过再次与目标运营商发出请求,解决业务需求小小区所需的其余资源。
如图11所示,为实现根据小区突发业务进行小尺度短周期或实时 的频谱共享,本发明所提供的网络频谱共享方法包括以下步骤:
步骤一:运营商A(第一网络)内的业务需求小小区发起资源请求。
也可以是,运营商A(第一网络)选出在所述第二网络内的,第一干扰强度不高于预设的第一网络门限值的第一网络测得频谱集合,运营商A(第一网络)向运营商B(第二网络)发送第一网络测得频谱集合。
步骤二:运营商A(第一网络)向运营商B(第二网络)发起频谱共享请求,提供业务需求小小区的探测特征序列
如果第一网络和第二网络分属不同运营商且运营商之间无法共享小区/小小区位置标识,则在步骤二中,第一网络还需要向第二网络发送业务需求小小区的位置标识,例如三维信号定位信息。
如果第一网络和第二网络同属于一个运营商的情况下,或者两网络虽然分属不同运营商但是运营商之间可以共享小区/小小区位置标识的情况下,则不需要发送业务需求小小区的位置标识,而是由第二网络根据共享信息定位出业务需求小小区或其位置。
此外,优选的方式,运营商A(第一网络)向运营商B(第二网络)发起频谱共享请求,提供业务需求小小区的探测特征序列,同时还向第二网络发送运营商标识、频谱需求、第一网络测得频谱集合。
运营商A指示业务需求小小区在共享信道广播探测特征序列。
步骤三:运营商B(第二网络)测量探测特征序列,选出在运营商B(第二网络)内且第二干扰强度不高于第二网络门限值的第二网络测得频谱集合,发送给运营商A(第一网络)。
也可以是,运营商B(第二网络)对第一网络测得频谱集合与第二网络测得频谱集合求交集,得到业务需求小小区可以使用的可用频谱,并发送给运营商A(第一网络)。
步骤四:业务需求小小区(业务需求小小区)从第二网络测得频谱集合中选择接入的频谱。
其中,本发明的源运营商(运营商A、第一网络)和目标运营商 第二网络之间可以进行分层的频谱共享。分层的频谱共享包括根据频谱共享区域的统计信息进行大尺度长周期的频谱共享,以及根据小区突发业务进行小尺度短周期或实时的频谱共享。
如图12所示,本网络频谱共享方法的具体步骤如下:
1)小基站部署初期,对源运营商和目标运营商的临近的三个宏基站的信号强度进行测量,分别得到一组三维信号强度组合,例如(S1,S2,S3),为方便表述,下述将称为“三维信号定位信息”,并上报给其频谱控制器。可认为该信息较为稳定,无需进行反复测量。
2)当源运营商出现业务需求小小区,源运营商给目标运营商发送“目标运营商频谱共享请求”消息时,该消息中加入该三维信号定位信息(替换“楼宇名称”)以及宏基站ID。加入宏基站ID是为了避免定位的三维信号是其他基站的组合。
3)目标运营商的频谱控制器根据该三维信号定位信息与本运营商内小小区测量到的源运营商的三维信号定位信息进行匹配,并选择匹配度大于一定门限的小小区。例如,假设SeNBA1测量到的三维定位信号(S1‘,S2’,S3‘)与(S1,S2,S3)的匹配度高于一定门限,那么SeNBA1将会被选择出来去进行监听。
4)目标运营商的频谱控制器指示选择出来的小小区对业务需求小小区的特征序列进行测量。
目标运营商收到目标运营商频谱共享请求消息后,指示该楼宇内的小小区对频谱共享信道进行测量,如果可以检测到特征序列,说明该小小区处于业务需求小小区的覆盖范围内。测量到特征序列的小小区发送测量报告给频谱控制器,频谱控制器再将测量到特征序列的小小区所使用的频谱进行汇总,判断哪些分量载波上有干扰,并将其从频谱池中去除,剩下没有干扰的分量载波,可供业务需求小小区使用。
参考图12,下面介绍本网络频谱共享方法的具体实施步骤。
1.运营商A和运营商B执行基于频谱共享区域网络统计信息的高层频谱共享。
1.1运营商A和运营商B的小小区分别对干扰状况、邻居关系等进行测量。
1.2运营商A和运营商B的小小区给所属的频谱控制器发送测量报 告。
1.3运营商A和运营商B的频谱控制器交互测量统计信息。
1.4通过运营商A和运营商B之间的协商,对共享频谱池进行划分,确定频谱共享线的位置。
1.5各运营商的频谱控制器分别给所辖的小小区分配频谱资源。
2.运营商A和运营商B执行低层频谱共享。
2.1每一个小基站对本运营商和目标运营商的临近的三个宏基站的信号强度进行测量,分别得到“三维信号定位信息”,并上报给各自运营商的频谱控制器。
2.2运营商A发现有一个新开机的小小区或业务量激增的小小区,简称业务需求小小区。
2.3业务需求小小区向其所属网络的频谱控制器发送频谱请求消息。
2.4运营商A的频谱控制器给业务需求小小区分配频谱资源。
2.5业务需求小小区判断频谱控制器分配的频谱是否可用。如果可用,执行运营商内的通信流程;否则,该小小区是一个业务需求小小区并执行下一步骤。
2.6业务需求小小区对共享频谱池中目标运营商(运营商B)使用的频谱情况进行测量,即检测共享频谱池中分配给运营商B的分量载波上的第一干扰强度。如果在某个分量载波上测量到的第一干扰强度高于预设的第一网络门限值(第一干扰门限),则业务需求小小区不能接入该分量载波;否则,业务需求小小区可以接入该分量载波。第一网络门限值(第一干扰门限)可以由运营商自行设定,定义为该运营商可以承受的干扰强度。这些分量载波构成第一网络测得频谱集合I1。需要说明的是,第一网络测得频谱集合I1中包含的分量载波,可能没有,也可能仅有一个载波,这是由测量结果判断得到的。
业务需求小小区完成对目标运营商的频谱使用情况测量后,给源运营商中业务需求小小区所属的频谱管理器发送一个测量报告,该测量报告中包含业务需求小小区的小小区ID、业务需求小小区的频谱需求、低干扰/无干扰的分量载波的集合I1
图12中是由频谱控制器来判断集合I1是否为空集,在空集的情况下 终止共享。但是本领域普通技术人员可以理解,如果集合I1为空集的情况,基站也可以不发此测量报告,换言之,可以由业务需求小小区判断,空集的情况就不发了,终止共享。
2.7源运营商(运营商A)的频谱管理器对低干扰/无干扰的分量载波的集合进行分析,如果该集合为空集,则不存在可用的分量载波供业务需求小小区使用,此时终止低层小区级的频谱共享过程;否则,执行下一步骤。
2.8源运营商的频谱管理器给业务需求小小区发送一条广播指示消息,该消息中包含一个小区探测特征序列。探测特征序列是由频谱管理器分配和维护的,在一定区域是隔离的,并且对多个运营商都是已知的。
2.9在执行步骤2.8的同时,源运营商的频谱管理器给目标运营商的频谱管理器发送一个目标运营商频谱共享请求消息。该消息中包含运营商的标识、业务需求小小区的频谱需求、源运营商端测量的低干扰/无干扰的分量载波的集合I1、业务需求小小区广播的小区探测特征序列、业务需求小小区的三维信号定位信息等内容。
源运营商的频谱控制器需要给目标运营商的频谱控制器发送一条“目标运营商频谱共享请求”消息。该消息包括如下内容:
·运营商标识:用于标识运营商。
·频谱需求:用于标识业务需求小小区请求的频谱需求。
·源运营商端测量的可用频谱集合:源运营商对目标运营商的频谱使用情况的测量结果。
·小区探测特征序列:用于目标运营商对业务需求小小区的测量。
·业务需求小小区的位置信息:该信息可以帮助目标运营商缩小测量范围,位置信息例如是业务需求小小区所属的楼宇名称等。
2.10在目标运营商频谱共享信道上,业务需求小小区广播由其所属频谱管理器分配的小区探测特征序列。
目标运营商频谱共享信道用于业务需求小小区广播小区探测特征序列,以实现目标运营商对源运营商的业务需求小小区的测量。目标运营商频谱共享信道可以在需要时临时配置,也可以预先通过运营商间的协商确定,并且在没有小区级跨运营商频谱共享需求时,该信道可用于数 据传输。
2.11目标运营商的频谱控制器根据该三维信号定位信息与本运营商内(目标运营商内)小小区测量到的三维信号定位信息进行匹配,并选择匹配度大于一定门限的小小区。
2.12目标运营商的频谱管理器按照业务需求小小区的位置信息,选择性地给业务需求小小区附近的小小区或用户发送测量指示消息,测量指示消息包括业务需求小小区广播的小区探测特征序列等内容。
2.13在业务需求小小区附近的目标运营商的小小区或用户按照测量指示对业务需求小小区广播的特征序列进行测量。
2.14能够接收到特征序列的目标运营商的小小区给所属的频谱管理器发送测量报告。测量报告包括小小区ID、信号强度等。
2.15目标运营商的频谱管理器对接收到的测量报告进行汇总,首先确定哪些小小区可以接收到特征序列,并且接收信号能量(第二干扰强度)高于预设的门限,这些小小区占用的分量载波不能给业务需求小小区使用。将能够收到特征序列的小小区使用的分量载波的频谱从集合中去除,剩下的这些分量载波构成第二网络测得频谱集合I2,是业务需求小小区对目标运营商的小小区低干扰/无干扰的分量载波的集合。需要说明的是,第二网络测得频谱集合I2中包含的分量载波,可能没有,也可能仅有一个载波,这是由测量结果判断得到的。
2.16目标运营商的频谱管理器根据第二干扰强度对第二网络测得频谱集合中的分量载波进行排序,其中无干扰分量载波的第二干扰强度记为0,并在集合中排序在前(优先给业务需求小小区使用),无干扰分量载波之间可任意排序。该步骤优先保证业务需求小小区占用的频谱对目标运营商的干扰最小化。
2.17目标运营商的频谱管理器对源运营商测量的结果和目标运营商测量的结果作交集运算,得到双向低干扰/无干扰的分量载波集合,即为业务需求小小区可用的分量载波的集合。
2.18若得到的集合为空集,终止低层小小区级的跨运营商频谱共享过程;否则,执行下一步骤。
2.19目标运营商的频谱管理器给源运营商的频谱管理器发送目标运营商频谱共享应答消息,该消息包括业务需求小小区可以使用的分量载 波、业务需求小小区接入这些频谱时对目标运营商小小区的干扰强度指示灯内容。
目标运营商的频谱控制器给源运营商的频谱控制器发送一条“目标运营商频谱共享应答”消息。该消息包括如下内容:
·运营商标识:用于标识运营商。
·排序的可用频谱序号:用于指示业务需求小小区可使用的频谱资源及其优先级。
2.20源运营商的频谱管理器转发目标运营商频谱共享应答消息。
2.21业务需求小小区选择可以使用的频谱并接入相应的频谱。
2.22业务需求小小区给其频谱控制器上报频谱选择消息,通知其接入的频谱。
2.23源运营商的频谱控制器给目标运营商的频谱控制器发送频谱选择通知消息,完成低层的频谱共享。
本发明所提供的小区级跨运营商频谱共享方法是对基于网络级跨运营商频谱共享的补充,可以实现频谱资源更加灵活、动态地共享。通过双向的测量和一定的信息交互,弥补了基于频谱共享区域统计信息的网络级频谱共享方式颗粒度较大、不能较好地匹配业务分布和频谱资源的问题。
业务需求小小区对目标运营商的测量仅限于分量载波有没有被使用,而不需也不会知道这些分量载波是分配给哪些小小区使用的,因此并不涉及敏感信息的测量,这一点对实现跨运营商频谱共享是非常重要的。
本发明可应用于同优先级的跨运营商频谱共享场景,分层进行跨运营商频谱共享,可以适当延长共享周期,从而降低信令开销,同时可以使频谱使用更加动态、灵活,有效提升频谱利用率。
本发明可以在网络业务密度较高时与基于频谱共享区域统计信息的网络级跨运营商频谱共享结合使用,也可以在网络业务密度较低时单独使用。
另一方面,本发明还提供了一种使用上述网络频谱共享方法的系统,包括第一网络中的基站和频谱控制器,以及第二网络中的基站和频谱控制器。其中,
第一网络中的基站包括第一干扰频谱模块,用于测量第二网络使用的分量载波上的第一干扰强度,并判断第一干扰强度是否高于预设的第一网络门限值。
第二网络中的基站包括第二干扰频谱模块,用于测量所述第一网络使用的分量载波上的第二干扰强度,判断所述第二干扰强度是否高于预设的第二网络门限值。
第一网络中的基站和第二网络中的基站均包括测量模块,用于测量第一网络和第二网络的临近的三个宏基站的信号强度,得到三维信号定位信息。
第二网络中的频谱控制器包括频谱判断模块,用于从其接收到的来自第一网络的第一干扰强度不高于预设的第一网络门限值的频谱集合I1中,选择第二干扰强度不高于第二网络门限值的频谱,得到交集。
上面对本发明所提供的网络频谱共享方法和系统进行了详细的说明。对本领域的一般技术人员而言,在不背离本发明实质精神的前提下对它所做的任何显而易见的改动,都将构成对本发明专利权的侵犯,将承担相应的法律责任。

Claims (16)

  1. 一种网络频谱共享方法,用于在第一网络和第二网络之间共享频谱,其特征在于包括以下步骤:
    所述第一网络内的业务需求小小区发起资源请求,
    所述第一网络向所述第二网络发起频谱共享请求,提供业务需求小小区的探测特征序列,
    所述第二网络测量所述探测特征序列,选出在所述第二网络内且第二干扰强度不高于第二网络门限值的第二网络测得频谱集合,发送给所述第一网络,
    所述业务需求小小区从所述第二网络测得频谱集合中选择接入的频谱。
  2. 如权利要求1所述的网络频谱共享方法,其特征在于:
    所述第一网络选出在所述第二网络内的,第一干扰强度不高于预设的第一网络门限值的第一网络测得频谱集合;
    所述第一网络向所述第二网络发送所述第一网络测得频谱集合。
  3. 如权利要求2所述的网络频谱共享方法,其特征在于:
    所述第二网络对所述第一网络测得频谱集合与所述第二网络测得频谱集合求交集,得到所述业务需求小小区可以使用的可用频谱,并发送给所述第一网络。
  4. 如权利要求1所述的网络频谱共享方法,其特征在于:
    所述第一网络向所述第二网络发起频谱共享请求,提供业务需求小小区的探测特征序列,并通知所述业务需求小小区广播所述探测特征序列。
  5. 如权利要求4所述的网络频谱共享方法,其特征在于:
    在所述业务需求小小区附近的所述第二网络的小小区或用户,对所述业务需求小小区广播的所述探测特征序列进行测量,得到探测特征序列测量结果,
    所述第二网络基于所述探测特征序列测量结果,产生所述第二网络测得频谱集合。
  6. 如权利要求5所述的网络频谱共享方法,其特征在于:
    所述第一网络向所述第二网络发送三维信号定位信息,所述第二网络基于所述三维信号定位信息选择需要监听的所述第二网络内的小小区。
  7. 如权利要求6所述的网络频谱共享方法,其特征在于:
    所述第二网络对所述需要监听的小小区或用户发送测量指示消息,所述测量指示消息包括所述业务需求小小区广播的所述探测特征序列。
  8. 如权利要求5所述的网络频谱共享方法,其特征在于:
    所述第二网络基于所述第二干扰强度,对所述第二网络测得频谱集合中的分量载波进行排序。
  9. 如权利要求5所述的网络频谱共享方法,其特征在于:
    所述业务需求小小区在频谱共享信道上广播所述探测特征序列,
    所述频谱共享信道用于所述业务需求小小区广播所述探测特征序列;在没有所述探测特征序列广播时,用于数据传输。
  10. 一种网络频谱共享方法,用于实现第一网络和第二网络之间频谱共享区域的频谱共享,其特征在于:
    所述第一网络和所述第二网络之间,根据所述频谱共享区域的统计信息进行频谱共享,并且根据在所述频谱共享区域内的业务需求小小区的业务需求进行频谱共享。
  11. 如权利要求10所述的网络频谱共享方法,其特征在于:
    根据所述业务需求小小区的业务需求进行频谱共享时,分配给所述业务需求小小区的频谱,其第一干扰强度不高于预设的第一网络门限值且其第二干扰强度不高于第二网络门限值。
  12. 如权利要求11所述的网络频谱共享方法,其特征在于:
    所述分配给所述业务需求小小区的频谱,在下述两个频谱集合的交集内:
    所述第一网络选出的,在所述第二网络内且第一干扰强度不高于预设的第一网络门限值的第一网络测得频谱集合;以及
    由所述第二网络选出的,在所述第二网络内且第二干扰强度不高于第二网络门限值的第二网络测得频谱集合。
  13. 一种使用权利要求1或10所述网络频谱共享方法的系统,用于在第一网络和第二网络之间共享频谱,其特征在于包括基站和频谱 控制器。
  14. 如权利要求13所述的系统,其特征在于所述基站包括:
    干扰频谱模块,用于测量所述第二网络使用的分量载波上的第一干扰强度,判断所述第一干扰强度是否高于预设的第一网络门限值;或者,用于测量所述第一网络使用的分量载波上的第二干扰强度,判断所述第二干扰强度是否高于预设的第二网络门限值。
  15. 如权利要求13所述的系统,其特征在于所述基站进一步包括:
    测量模块,用于测量所述第一网络和所述第二网络的临近的三个宏基站的信号强度,得到三维信号定位信息。
  16. 如权利要求13所述的系统,其特征在于所述频谱控制器包括:
    频谱判断模块,用于从其接收到的来自所述第一网络的第一干扰强度不高于预设的第一网络门限值的频谱集合中,选择第二干扰强度不高于第二网络门限值的频谱。
PCT/CN2015/099267 2015-09-08 2015-12-28 一种网络频谱共享方法和系统 WO2017041395A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510567963.4 2015-09-08
CN201510567963.4A CN106507368B (zh) 2015-09-08 2015-09-08 一种网络频谱共享方法和系统

Publications (1)

Publication Number Publication Date
WO2017041395A1 true WO2017041395A1 (zh) 2017-03-16

Family

ID=58239080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/099267 WO2017041395A1 (zh) 2015-09-08 2015-12-28 一种网络频谱共享方法和系统

Country Status (2)

Country Link
CN (1) CN106507368B (zh)
WO (1) WO2017041395A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021185194A1 (zh) * 2020-03-20 2021-09-23 索尼集团公司 用于无线通信的电子设备和方法、计算机可读存储介质
CN114710219A (zh) * 2022-03-21 2022-07-05 深圳市佳贤通信设备有限公司 适用于新型数字室分系统的基带单元内干扰协调方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113055895B (zh) * 2019-12-27 2023-01-31 成都鼎桥通信技术有限公司 频谱资源的共享方法及设备
CN111093206A (zh) * 2020-01-22 2020-05-01 张家港市集成电路产业发展有限公司 一种基于运营商间测量的跨运营商频谱共享系统及方法
CN113873638B (zh) * 2021-10-27 2024-02-06 中国电信股份有限公司 共享基站定位方法、装置、存储介质及电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090191889A1 (en) * 2008-01-28 2009-07-30 Fujitsu Limited Communications systems
CN103763708A (zh) * 2014-01-23 2014-04-30 上海无线通信研究中心 一种网络频谱共享方法
CN103891334A (zh) * 2011-09-08 2014-06-25 意大利电信股份公司 运营商间频谱共享控制、运营商间干扰协调方法,以及无线通信系统中的无线电资源调度

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080186842A1 (en) * 2007-01-31 2008-08-07 Ntt Docomo. Inc. Detect-and-multiplex technique for spectrum sharing
CN101867967A (zh) * 2009-04-20 2010-10-20 中兴通讯股份有限公司 载波聚合的实现方法和装置
CN102412919B (zh) * 2010-09-21 2016-08-31 中兴通讯股份有限公司 多个移动网络运营商共享广播电视空白频谱的方法及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090191889A1 (en) * 2008-01-28 2009-07-30 Fujitsu Limited Communications systems
CN103891334A (zh) * 2011-09-08 2014-06-25 意大利电信股份公司 运营商间频谱共享控制、运营商间干扰协调方法,以及无线通信系统中的无线电资源调度
CN103763708A (zh) * 2014-01-23 2014-04-30 上海无线通信研究中心 一种网络频谱共享方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021185194A1 (zh) * 2020-03-20 2021-09-23 索尼集团公司 用于无线通信的电子设备和方法、计算机可读存储介质
CN114710219A (zh) * 2022-03-21 2022-07-05 深圳市佳贤通信设备有限公司 适用于新型数字室分系统的基带单元内干扰协调方法
CN114710219B (zh) * 2022-03-21 2024-01-12 深圳市佳贤通信科技股份有限公司 适用于新型数字室分系统的基带单元内干扰协调方法

Also Published As

Publication number Publication date
CN106507368A (zh) 2017-03-15
CN106507368B (zh) 2019-11-05

Similar Documents

Publication Publication Date Title
US10390233B2 (en) Frequency band sharing amongst cells
US11968650B2 (en) Methods and apparatus for opportunistic radio resource allocation in multi-carrier communication systems
US10051661B2 (en) Method and apparatus for communicating using unlicensed bands in mobile communication system
WO2017041395A1 (zh) 一种网络频谱共享方法和系统
US8432823B2 (en) Wireless communications method and apparatus
US10212605B2 (en) Sharing operating frequency amongst wireless networks
TW201924389A (zh) 用於無線通訊網路中側邊鏈路通訊之資源分配技術
JP5588326B2 (ja) ホーム基地局の無線リソース割当方法およびホーム基地局
US8812008B2 (en) Methods and apparatus for assigning resources to schedule peer-to-peer communications in WWAN
KR20150083808A (ko) 이동통신 시스템에서 단말 대 단말 통신을 위한 무선 자원 할당 방법 및 장치
JP2010288282A (ja) 無線セルラーネットワークにおける干渉抑制方法およびその装置
US20170318592A1 (en) D2D Interference Coordination Methods and Apparatuses, Base Station and User Equipment
EP3216258B1 (en) Cellular network access method and apparatus
WO2011116646A1 (zh) 一种无线资源调度方法和设备
Oh et al. Joint radio resource management of channel-assignment and user-association for load balancing in dense WLAN environment
US20240244661A1 (en) Method and apparatus for communication
WO2016054931A1 (zh) 设备到设备干扰协调方法、装置及基站、用户设备
WO2016197829A1 (zh) 使用非授权载波的方法和装置
WO2014082444A1 (zh) 一种集群通信中组资源调度方法和系统
CN106559794B (zh) 一种网络间频谱共享控制方法及频谱控制器
WO2017036321A1 (zh) 一种设备间系统的小区资源分配方法及装置
CN106211023A (zh) 一种实现邻近直接发现的方法、基站和终端
CN111093206A (zh) 一种基于运营商间测量的跨运营商频谱共享系统及方法
KR20110051082A (ko) 이종의 무선 네트워크 환경에서 제어 정보를 송신하는 방법 및 장치
CN114980129A (zh) 跨运营商的频谱共享方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15903498

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15903498

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/09/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15903498

Country of ref document: EP

Kind code of ref document: A1