WO2017041206A1 - Optical amplifier - Google Patents

Optical amplifier Download PDF

Info

Publication number
WO2017041206A1
WO2017041206A1 PCT/CN2015/089040 CN2015089040W WO2017041206A1 WO 2017041206 A1 WO2017041206 A1 WO 2017041206A1 CN 2015089040 W CN2015089040 W CN 2015089040W WO 2017041206 A1 WO2017041206 A1 WO 2017041206A1
Authority
WO
WIPO (PCT)
Prior art keywords
input
integrated component
output
fiber
photo detector
Prior art date
Application number
PCT/CN2015/089040
Other languages
French (fr)
Inventor
Fengqing ZHOU
Tian Zhu
Haifeng LV
Yu Hu
Original Assignee
Oplink Communications, Llc
Zhuhai FTZ Oplink Communications, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oplink Communications, Llc, Zhuhai FTZ Oplink Communications, Inc. filed Critical Oplink Communications, Llc
Priority to JP2018530950A priority Critical patent/JP2018530929A/en
Priority to EP15903313.3A priority patent/EP3347766A4/en
Priority to PCT/CN2015/089040 priority patent/WO2017041206A1/en
Priority to US15/758,154 priority patent/US10855044B2/en
Priority to CN201580084412.0A priority patent/CN108700791A/en
Publication of WO2017041206A1 publication Critical patent/WO2017041206A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • H01S3/094011Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre with bidirectional pumping, i.e. with injection of the pump light from both two ends of the fibre
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2746Optical coupling means with polarisation selective and adjusting means comprising non-reciprocal devices, e.g. isolators, FRM, circulators, quasi-isolators
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colourĀ 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colourĀ  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/093Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colourĀ  based on magneto-optical elements, e.g. exhibiting Faraday effect used as non-reciprocal devices, e.g. optical isolators, circulators
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0064Anti-reflection devices, e.g. optical isolaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06704Housings; Packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/10023Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by functional association of additional optical elements, e.g. filters, gratings, reflectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06712Polarising fibre; Polariser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/1001Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by controlling the optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1301Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers
    • H01S3/13013Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers by controlling the optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1608Solid materials characterised by an active (lasing) ion rare earth erbium

Definitions

  • This specification relates to optical communications.
  • Optical fiber amplifiers are commonly used in communication systems. Types of optical fiber amplifiers include Rare Earth Doped Fiber Amplifiers, for example, Erbium Doped Fiber Amplifiers ( ā€œEDFAsā€ ) .
  • EDFAs Erbium Doped Fiber Amplifiers
  • the optical fiber amplifiers are usually pumped by one or more light emitter diode (LEDs) or laser pump sources.
  • LEDs light emitter diode
  • An erbium doped fiber is a form of a single-mode fiber, having a core that is heavily doped with erbium.
  • Conventional EDFAā€™s include a pump laser that provides a pump light to the EDF to provide amplification of an input optical signal. For example, when pump light at 980 nm or 1480 nm is injected into an EDF, the erbium atoms absorb the pump light, which pushes the erbium atoms into excited states. When stimulated by light beams, for example an input optical signal having one or more wavelengths, e.
  • the excited atoms return to a ground or lower state by stimulated emission.
  • the stimulated emission has the same wavelength as that of the stimulating light. Therefore, the optical signal is amplified as it is propagating through the EDF.
  • This specification describes technologies relating to optical amplifiers.
  • one innovative aspect of the subject matter described in this specification can be embodied in optical amplifiers that include an input port for receiving an input optical signal; a wavelength division multiplexer having a first input coupled to the input port, a second input coupled to a pump source, and an output coupled to an amplification fiber; and an integrated component configured to provide output monitoring and isolation, wherein the integrated component is configured to: separate a first portion of a light signal received from the amplification fiber, direct the first portion to a photo detector, and direct a second portion of the input light from the amplification fiber to an output port, and wherein the integrated component is configured to attenuate light signals received from the output port.
  • Other embodiments of this aspect include corresponding methods, apparatus, and systems.
  • the optical amplifier further includes a controller configured to receive an electrical signal from the photo detector and to control an output power of the pump source based at least in part on the received electrical signal.
  • the integrated component attenuates light received from the output port by 10 dB or higher.
  • the optical amplifier further includes an isolator and a tap positioned between the input port and the wavelength division multiplexer.
  • the optical amplifier includes a second photo detector coupled to the tap configured to monitor the input optical signal.
  • the optical amplifier includes a second integrated component positioned between the input port and the wavelength division multiplexer, the second integrated component configured to provide input monitoring and isolation wherein the integrated component is configured to: separate a first portion of the input optical signal received from the first port, direct the first portion to a photo detector and, direct a second portion of the input optical signal to an output coupled to the wavelength division multiplexer, and wherein the second integrated component is configured to attenuate light signals received from the wavelength division multiplexer.
  • the wavelength division multiplexer is combined with an isolator forming a third integrated component.
  • one innovative aspect of the subject matter described in this specification can be embodied in optical amplifiers that include an input port for receiving an input optical signal; a first integrated component comprising an isolator and a wavelength division multiplexer, wherein the integrated component has a first input coupled to the input port for receiving the input optical signal, a second input coupled to a pump source, and an output coupled to an amplification fiber; and a second integrated component configured to provide output monitoring and isolation, wherein the second integrated component is configured to: separate a first portion of input light from the amplification fiber, direct the first portion to a photo detector, and direct a second portion of the input light from the amplification fiber to an output port, and wherein the second integrated component is configured to attenuate light signals received from the output port.
  • Other embodiments of this aspect include corresponding methods, apparatus, and systems.
  • the optical amplifier further includes a controller configured to receive an electrical signal from the photo detector and to control an output power of the pump source based at least in part on the received electrical signal.
  • the first integrated component attenuates light received from the amplifier fiber by 10 dB or higher; and the second integrated component attenuates light received from the output port by 10 dB or higher.
  • optical amplifiers that include an input port for receiving an input optical signal; a first integrated component configured to provide input monitoring and isolation, wherein the first integrated component is configured to: separate a first portion of the input optical signal, direct the first portion to a first photo detector, and to direct a second portion of the input optical signal to a wavelength division multiplexer, and wherein the first integrated component is configured to attenuate light signals received from the wavelength division multiplexer; the wavelength division multiplexer having a first input coupled to an output of the first integrated component, a second input coupled to a pump source, and an output coupled to an amplification fiber; and a second integrated component configured to provide output monitoring and isolation, wherein the second integrated component is configured to: separate a first portion of input light from the amplification fiber, direct the first portion to a second photo detector, and to direct a second portion of the input light from the amplification fiber to an output port, and wherein the second integrated component is configured to attenuate
  • the optical amplifier further includes a controller configured to receive a first electrical signal from the first photo detector and a second electrical signal received from the second photo detector and to control an output power of the pump source based at least in part on the received first and second electrical signals.
  • one innovative aspect of the subject matter described in this specification can be embodied in integrated components that include an input optical fiber and an output optical fiber; a birefringent crystal having a fist surface facing an end of the input optical fiber and the output optical fiber and a second surface facing a wave plate, wherein the wave plate covers a portion of the birefringent crystal; a lens optically positioned between the wave plate and a polarization rotator; and a prism positioned between the polarization rotator and a photodetector.
  • Other embodiments of this aspect include corresponding methods, apparatus, and systems.
  • the polarization rotator is a Faraday rotator.
  • the input optical fiber and the output optical fiber are held in a common package.
  • An input optical signal received at the input optical fiber is routed to the prism, wherein the prism passes a portion of the input optical signal to the photo detector and reflects a portion of the input optical signal toward the output optical fiber.
  • An input optical signal received at the output optical fiber passes through elements of the integrated component such that the optical signal does not pass through the input optical fiber.
  • an integrated component that provides isolation and tapping of a portion of an optical signal reduces the size and number of components for an EDFA.
  • the integrated component can be swapped as a unit from the EDFA making replacement easy.
  • the integrated component can be incorporated such that the EDFA is XFP MSA compliant (e.g., 10 GB small form factor pluggable) and compatible with an XFP form factor without significant redesign.
  • FIG. 1 is diagram of an example prior art erbium doped fiber amplifier.
  • FIG. 2 is a diagram of an example EDFA including integrated components.
  • FIG. 3 is a diagram of an example integrated component.
  • FIG. 4 is a diagram showing relative placement of tube, birefringent crystal, and half wave plate of the integrated component of FIG. 3
  • FIG. 5 is a diagram of the prism of the integrated component of FIG. 3.
  • FIG. 6 is a side view of the integrated component of FIG. 3 on an x-z plane.
  • FIG. 7 is a top view of the integrated component of FIG. 3 on a x-y plane.
  • FIG. 8 is a side view of the integrated component of FIG. 3 on the x-z plane showing polarization states.
  • FIG. 9 is a side view of the integrated component of FIG. 3 on the x-z plane showing polarization states.
  • FIG. 10 is a side view of the integrated component of FIG. 3 showing a path from an input fiber to a photo detector.
  • FIG. 11 is a side view of the integrated component of FIG. 3 showing a path from the output fiber to the photo detector.
  • FIG. 12 is a diagram of an example one stage EDFA including an output monitor.
  • FIG. 1 is diagram of an example prior art erbium doped fiber amplifier (EDFA) 100.
  • the EDFA 100 includes a first tap 102 coupled to an input optical port configured to receive an input optical signal having one or more wavelengths.
  • the input optical port can be coupled to an optical fiber that couples the EDFA 100 to one or more optical components or fibers.
  • the first tap 102 separates a small portion of the input optical signal and outputs this tapped portion to a first photo detector 104.
  • the first photo detector 104 can be a photodiode and measures an input power of the input optical signal.
  • the remaining portion of the input optical signal is output from the first tap 102 to a first isolator 106 coupled to the first tap 102.
  • the first isolator 106 is configured to provide transmission of light signals in one direction. Thus, the first isolator 106 can block or greatly reduce optical signals passing back toward the input optical fiber.
  • the output of the first isolator 106 is coupled to an input of a wavelength division multiplexer (WDM) 108, whose second input is provided by a pump source 110.
  • WDM wavelength division multiplexer
  • the pump source 110 can be a pump laser, a light emitting diode, or other light source.
  • the pump source 110 receives a control signal from an electrical controller (not shown) for varying an output power of the light emitted by the pump source 110.
  • the control signal can be a signal for increasing or decreasing the pump light directed toward the WDM 108.
  • the WDM 108 is configured as a combiner that operates to combine the input optical signal and the injected pumping signal provided from the pumping source 110 and provides a combined output optical signal to an amplifier fiber 112.
  • the WDM 108 combines an input signal having a particular wavelength, e.g., 1550 nm, with an injected pumping signal having a different wavelength, e.g., 980 nm.
  • the amplifier fiber 112 can be an EDF.
  • the amplified optical signal output from the amplifier fiber 112 is provided as an input to a second isolator 114.
  • the second isolator can be configured to prevent optical signals from passing back toward the amplifier fiber 112.
  • the output of the second isolator 114 is coupled to an input of a second tap 116.
  • the second tap 116 taps off a small portion of the amplified optical signal and outputs the tapped portion to a second photo detector 118.
  • the second photo detector 118 can be a photodiode and used to measure an output power of the amplified optical signal.
  • the remaining portion of the amplified optical signal is output from the second tap 116 to an output optical fiber.
  • the first and second photo detectors 104 and 118 convert the incident light signals to electrical signals.
  • the electrical signals can be used by the controller to measure the input optical signal power and the amplified output optical signal power.
  • the controller can use the measured input optical signal power and amplified output optical signal power to control performance of the pump source 110.
  • FIG. 2 is a diagram of an example EDFA 200.
  • the EDFA 200 includes an input port for receiving an input optical signal, e.g., from an input optical fiber.
  • the input port is coupled to a first integrated component 202.
  • the first integrated component 202 is configured to provide isolation and signal monitoring functions of an isolator, tap, and photo detector, e.g., first isolator 106, first tap 102, and first photo detector 104 of the EDFA shown in FIG. 1.
  • the optical signal output from the first integrated component 202 is coupled to an input of a WDM 204, whose second input is provided by a pump source 206.
  • the pump source 206 can be a pump laser, a light emitting diode, or other light source.
  • the pump source 206 receives a control signal from an electrical controller (not shown) for varying the output power of the pump source 206.
  • the control signal can be a signal for increasing or decreasing the pump light directed toward the WDM 204.
  • the WDM 204 is configured as a combiner that operates to combine the input optical signal and the injected pumping signal provided from the pumping source 206 and provides an output optical signal to an amplifier fiber 208.
  • the amplified optical signal output from the amplifier fiber 208 is provided as an input to a second integrated component 210.
  • the second integrated component 210 is configured to provide isolation and signal monitoring functions of an isolator, tap, and photo detector, e.g., second isolator 114, second tap 116, and second photo detector 118 of the EDFA shown in FIG. 1.
  • the first integrated component 202 and the second integrated component 210 can each be provided in an integrated package for assembly in an EDFA housing.
  • FIG. 3 is a diagram of an example integrated component 300.
  • the integrated component 300 includes an input optical fiber 302 and an optical output fiber 304.
  • the input optical fiber 302 and the output optical fiber 304 can be packaged together, for example, in a tube 306.
  • the tube 306 can be a glass tube or other suitable material.
  • the optical fibers are held in a fiber ferrule or other suitable structure.
  • the integrated component 300 also includes a birefringent crystal 308 positioned between the tube 306 and a half wave plate 310.
  • the half wave plate 310 can be positioned to be along the light path of the input optical fiber 302, but not the light path of the output optical fiber 304.
  • the birefringent crystal 308 is configured, for example, to separate incident light having random polarization directions into two orthogonally polarized light beams.
  • a wave plate such as the half wave plate 310 rotates a polarization of incident light beams by a specified number of degrees in a particular direction depending on the composition of the wave plate.
  • FIG. 4 is a diagram showing relative placement of tube 306, birefringent crystal 308, and half wave plate 310 of the integrated component 300 of FIG. 3.
  • the birefringent crystal 308 is positioned at an end face of the tube 306 such that the birefringent crystal 308 covers both the input and output optical fibers 302, 304 and therefore is in the optical path of light entering or exiting the input optical fiber 302 and the output optical fiber 304.
  • the half wave plate 310 is positioned on top of a portion of the birefringent crystal 308 such that the half wave plate 310 is only in an optical path of light directed to or from the input optical fiber 302 and is not in the optical path of light directed toward the output optical fiber 304.
  • the integrated component 300 also includes a lens 312 positioned between the half wave plate 308 and a Faraday rotator 314.
  • the Faraday rotator 314 is an optical component that rotates a polarization of light passing through the Faraday rotator 314 by a specific amount in response to an applied magnetic field.
  • the lens 312 can be used, for example, to focus one or more light beams toward particular optical components, e.g., to focus light on the Faraday rotator 314.
  • the integrated component 300 also includes a prism 316 positioned along an optical path between the Faraday rotator 314 and a photo detector 318.
  • the prism 316 is described in greater detail with respect to FIG. 5.
  • FIG. 5 is a diagram of the prism 316 of the integrated component of FIG. 3.
  • the prism 316 includes a first end surface 502 facing an end surface of the Faraday rotator 314.
  • the first end surface 502 of the prism 316 has a partial reflective coating that reflects a percentage X of the input optical signal while allowing 1-X percent to pass through the prism 316. In some implementations, the value of X is greater than 90 percent.
  • the prism 316 also includes a second end surface 504 facing the photo detector 318.
  • the second end surface 504 is configured to have a high reflection for wavelengths corresponding to a pump source and low or no reflection for wavelengths of the optical signal. Thus it allows the optical signals reach the photo detector, but prevents the pump signals reach the photo detector. Additionally, in some implementations, the first end surface 502 and the second end surface 504 are not parallel to each other.
  • a different optical component can be used, for example, an elliptic cylinder with a thin film coating.
  • the thin film coating reflects a portion of incident light and passes a second portion of incident light to the photo detector 318. In some implementations, the coating reflects most of the incident light e.g., greater than 90 percent.
  • the photo detector 318 converts received light signals into electrical signals.
  • the signals can be sent, e.g., to a controller of an amplifier, to calculate a power measurement for the optical signal.
  • the integrated component 300 can be positioned to monitor an input optical signal power to an EDFA.
  • the integrated component can be position to monitor an amplified optical signal output by an amplification fiber of the EDFA.
  • FIG. 6 is a side view 600 of the integrated component 300 of FIG. 3 on an x-z plane.
  • FIG. 7 is a top view 700 of the integrated component 300 of FIG. 3 on an x-y plane.
  • the integrated component 300 includes tube 306 holding an input optical fiber and an output optical fiber, birefringent crystal 308, half wave plate 310, lens 312, faraday rotator 314, prism 316, and photo detector 318.
  • the birefringent crystal 308 and half wave plate 310 are not parallel to the end face of the tube or to the z-axis.
  • the half wave plate 310 is shown as positioned such that light from the input optical fiber passes through the half wave plate 310 but light directed toward the output optical fiber does not pass through the wave plate 310.
  • FIG. 8 is a side view 800 of the integrated component 300 of FIG. 3 on the x-z plane showing polarization states.
  • the polarization states are shown for light beams passing from the input optical fiber 302 to the output optical fiber 304.
  • a light beam e.g., an optical signal having one or more wavelength, enters the integrated component 300 through the input optical fiber 302.
  • the light beam can be randomly polarized. After the light beam exits the input optical fiber 302, the light beam passes through the birefringent crystal 308.
  • the birefringent crystal 308 separates the optical beam into a first light beam having a first polarization direction and a second light beam having a second polarization direction where the respective polarization directions are orthogonal, as illustrated by box 802 showing the polarization state and location for the two beams relative to a cross-section of the integrated component 300 following the birefringent crystal 308. As shown in box 802, the light beams have been separated in the upper path along the y-axis.
  • the first and second light beams are located in the upper portion of a cross section of the integrated device and therefore pass through the half wave plate 310 after exiting the birefringent crystal 308.
  • the half wave plate 310 rotates the polarization of each light beam by 45 degrees clockwise as illustrated by box 804.
  • the first and second light beams pass through the lens 312 without any change in polarization as the first and second light beams are directed toward Faraday rotator 314.
  • the Faraday rotator rotates the polarization direction of both the first light beam and the second light beam counter-clockwise by 22.5 degrees as illustrated by box 806.
  • the first and second light beams exiting from the Faraday rotator 314 are directed toward the prism 316.
  • the prism 316 has a film coating that passes a first portion of the light beams while allowing second portion to reflect.
  • the first portion passes through the prism 316 with the same polarization directions and is focused on the photo detector 318.
  • the passed portion can be a small portion of the light beams incident on the prism 316.
  • the light detected by the photo detector 318 can be used, e.g., by a controller of an EDFA, to measure overall optical signal power.
  • the second portion of the light beams are reflected from the prism 316 relative to the y-axis and have the same polarization directions but a relative location mirrored to the lower path of the cross section.
  • the reflected light beams pass back through the Faraday rotator 314 where the polarization directions are further rotated by 22.5 degrees counter-clockwise as illustrated by box 808 showing both polarization directions and locations for the reflected light beams.
  • the reflected light beams pass through the lens 312 without a change in polarization direction and are then incident on the birefringent crystal 308 where, because of the respective locations and polarization directions, the two reflected light beams are merged into one beam exiting the birefringent crystal 308.
  • the merged light beam then enters the output optical fiber 304 and exits the integrated component 300.
  • FIG. 9 is a side view 900 of the integrated component 300 of FIG. 3 on the x-z plane showing polarization states.
  • the polarization states are shown for light beams passing from the output optical fiber 304 toward the input optical fiber 302, i.e., traveling in a reverse direction.
  • the light beam input to the output optical fiber 304 is blocked or greatly attenuated, e.g., by 10 dB or greater, to limit light exiting the input optical fiber 302.
  • a light beam e.g., having optical signals at one or more wavelength, enters the integrated component 300 through output optical fiber 304.
  • the light beam can be randomly polarized. After the light beam exits the output optical fiber 304, the light beam passes through the birefringent crystal 308.
  • the birefringent crystal 308 separates the optical beam into a first light beam having a first polarization direction and a second light beam having a second polarization direction where the respective polarization directions are orthogonal, as illustrated by box 902 showing the polarization state and location for the two beams relative to a cross-section of the integrated component 300 following the birefringent crystal 308. As shown in box 902, the light beams have been separated in the lower path along the y-axis.
  • the first and second light beams are located in the lower portion of a cross section of the integrated device and therefore do not pass through the half wave plate 310 after exiting the birefringent crystal 308.
  • the light beams pass through the lens 312 without change in polarization direction and then pass through the Faraday rotator 316.
  • the Faraday rotator 316 Upon passing through the Faraday rotator 316 the polarization directions are rotated 22.5 degrees counter-clockwise as illustrated by box 904.
  • the light beams exiting the Faraday rotator 314 are then incident on the prism 316.
  • a first portion of the light beams is passed through the prism 316 while a second portion is reflected.
  • the first portion is directed by the prism 316 to exit at an angle that does not provide input to the photo detector 318 or provides a very small amount to be detected by the photo detector 318.
  • the reflected light beams of the second portion are reflected to the upper path of the cross-section of the integrated component 300. Passing back through the Faraday rotator 314, the polarization directions are rotated by a further 22.5 degrees counter-clockwise resulting in positive and negative 45 degree polarization directions, respectively as illustrated by box 906.
  • the reflected light beams exiting the Faraday rotator 314 pass through the lens 312 without changing polarization direction or relative location in the cross-section and exit the lens 312 toward the half wave plate 310. After passing through the half wave plate 310, the polarization direction of each reflected light beam is rotated by 45 degrees counter-clockwise such that the two light beams again have vertical and horizontal polarization directions, respectively, as shown by box 908.
  • the reflected light beams enter the birefringent crystal 308. Because of the relative position and the polarization directions, the light beams are not combined by the birefringent crystal 308. Instead, they are further separated such that the exit paths are not incident on the end point of the input optical fiber 302. Thus, the light beams are not passed from the output optical fiber 304 to the input optical fiber 306.
  • FIG. 10 is a side view 1000 of the integrated component 300 of FIG. 3 showing a path from the input fiber 302 to the photo detector 318.
  • Light entering the input optical fiber 302 is able to pass through the birefringent crystal 308, the half wave plate 310, the lens 312, and the Faraday rotator 314.
  • a portion passes through the prism 316 depending on a specified transmission rate of the prism 316 while the remaining portion is reflected (not shown) .
  • the portion that passes through the prism 316 is directed to the photo detector 318.
  • the photo detector 318 converts incident light to electrical current, which can be used e. g., by an EDFA to determine a power of the light beam entering the integrated component 300.
  • FIG. 11 is a side view 1100 of the integrated component 300 of FIG. 3 showing a path from the output fiber 304 to the photo detector 318.
  • Light entering the output optical fiber 304 is able to pass through the birefringent crystal 308, the lens 312, and Faraday rotator 314.
  • a portion passes through the prism 316 depending on a specified transmission rate of the prism 316 while the remaining portion is reflected (not shown) .
  • the portion passing through the prism 316 is now routed such that very little of the light is able to reach the photo detector 318.
  • the electrical current generated by the portion of the light incident on the photo detector 118 originating from the input optical port 302 is 10 times higher than the electrical current generated by the portion of the light incident on the photo detector 118 originating from the output optical port 304. This provides uni-direction of the photo detector response.
  • FIG. 12 is a diagram of an example one stage EDFA 1200 including an output monitor.
  • EDFA 1200 include an input optical fiber 1202 providing an input optical signal to an integrated WDM and isolator 1204.
  • a pump source 1206 provides a pump light to the integrated WDM and isolator 1204 such that the WDM combines the input optical signal and the pump light and outputs the combined optical signal to an amplifier fiber 1208.
  • the amplifier fiber 1208, e.g., and EDF outputs an amplified optical signal to an integrated component 1210 providing isolator, tap, and photo detector functions.
  • the integrated component 1210 is similar to the integrated component 300 described above.
  • the integrated component provides output monitoring of the amplified optical signal prior to the amplified output optical signal exiting the EDFA 1200 from an output optical fiber 1212.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Lasers (AREA)

Abstract

An optical amplifier includes an input port for receiving an input optical signal; a wavelength division multiplexer (204) having a first input coupled to the input port, a second input coupled to a pump source (206), and an output coupled to an amplification fiber (208); and an integrated component (210) configured to provide output monitoring and isolation, wherein the integrated component (210) is configured to separate a first portion of a light signal received from the amplification fiber (208), direct the first portion to a photo detector, direct a second portion of the input light from the amplification fiber (208) to an output port, and attenuate light signals received from the output port.

Description

OPTICALĀ AMPLIFIER TechnicalĀ Field
ThisĀ specificationĀ relatesĀ toĀ opticalĀ communications.
Background
OpticalĀ fiberĀ amplifiersĀ areĀ commonlyĀ usedĀ inĀ communicationĀ systems.Ā TypesĀ ofĀ opticalĀ fiberĀ amplifiersĀ includeĀ RareĀ EarthĀ DopedĀ FiberĀ Amplifiers,Ā forĀ example,Ā ErbiumĀ DopedĀ FiberĀ AmplifiersĀ (Ā ā€œEDFAsā€Ā )Ā .Ā TheĀ opticalĀ fiberĀ amplifiersĀ areĀ usuallyĀ pumpedĀ byĀ oneĀ orĀ moreĀ lightĀ emitterĀ diodeĀ (LEDs)Ā orĀ laserĀ pumpĀ sources.
AnĀ erbiumĀ dopedĀ fiberĀ (EDF)Ā isĀ aĀ formĀ ofĀ aĀ single-modeĀ fiber,Ā havingĀ aĀ coreĀ thatĀ isĀ heavilyĀ dopedĀ withĀ erbium.Ā ConventionalĀ EDFAā€™sĀ includeĀ aĀ pumpĀ laserĀ thatĀ providesĀ aĀ pumpĀ lightĀ toĀ theĀ EDFĀ toĀ provideĀ amplificationĀ ofĀ anĀ inputĀ opticalĀ signal.Ā ForĀ example,Ā whenĀ pumpĀ lightĀ atĀ 980Ā nmĀ orĀ 1480Ā nmĀ isĀ injectedĀ intoĀ anĀ EDF,Ā theĀ erbiumĀ atomsĀ absorbĀ theĀ pumpĀ light,Ā whichĀ pushesĀ theĀ erbiumĀ atomsĀ intoĀ excitedĀ states.Ā WhenĀ stimulatedĀ byĀ lightĀ beams,Ā forĀ exampleĀ anĀ inputĀ opticalĀ signalĀ havingĀ oneĀ orĀ moreĀ wavelengths,Ā e.Ā g.,Ā inĀ aĀ C-bandĀ (1528Ā 1570Ā nm)Ā orĀ anĀ LĀ bandĀ (1570-1620Ā nm)Ā ,Ā theĀ excitedĀ atomsĀ returnĀ toĀ aĀ groundĀ orĀ lowerĀ stateĀ byĀ stimulatedĀ emission.Ā TheĀ stimulatedĀ emissionĀ hasĀ theĀ sameĀ wavelengthĀ asĀ thatĀ ofĀ theĀ stimulatingĀ light.Ā Therefore,Ā theĀ opticalĀ signalĀ isĀ amplifiedĀ asĀ itĀ isĀ propagatingĀ throughĀ theĀ EDF.
Summary
ThisĀ specificationĀ describesĀ technologiesĀ relatingĀ toĀ opticalĀ amplifiers.
InĀ general,Ā oneĀ innovativeĀ aspectĀ ofĀ theĀ subjectĀ matterĀ describedĀ inĀ thisĀ specificationĀ canĀ beĀ embodiedĀ inĀ opticalĀ amplifiersĀ thatĀ includeĀ anĀ inputĀ portĀ forĀ receivingĀ anĀ inputĀ opticalĀ signalļ¼›Ā aĀ wavelengthĀ divisionĀ multiplexerĀ havingĀ aĀ firstĀ inputĀ coupledĀ toĀ theĀ inputĀ port,Ā aĀ secondĀ inputĀ coupledĀ toĀ aĀ pumpĀ source,Ā andĀ anĀ outputĀ coupledĀ toĀ anĀ amplificationĀ fiberļ¼›Ā andĀ anĀ integratedĀ componentĀ configuredĀ toĀ provideĀ outputĀ monitoringĀ andĀ isolation,Ā whereinĀ theĀ integratedĀ componentĀ isĀ configuredĀ to:Ā separateĀ aĀ firstĀ portionĀ ofĀ aĀ lightĀ signalĀ receivedĀ fromĀ theĀ amplificationĀ fiber,Ā directĀ theĀ firstĀ portionĀ toĀ aĀ photoĀ detector,Ā andĀ directĀ aĀ secondĀ portionĀ ofĀ theĀ inputĀ lightĀ fromĀ theĀ amplificationĀ fiberĀ toĀ anĀ outputĀ port,Ā andĀ whereinĀ theĀ integratedĀ componentĀ isĀ configuredĀ toĀ attenuateĀ lightĀ signalsĀ receivedĀ fromĀ theĀ outputĀ port.Ā OtherĀ embodimentsĀ ofĀ thisĀ aspectĀ includeĀ correspondingĀ methods,Ā apparatus,Ā andĀ systems.
TheĀ foregoingĀ andĀ otherĀ embodimentsĀ canĀ eachĀ optionallyĀ includeĀ oneĀ orĀ moreĀ ofĀ theĀ followingĀ features,Ā aloneĀ orĀ inĀ combination.Ā TheĀ opticalĀ amplifierĀ furtherĀ includesĀ aĀ controllerĀ configuredĀ toĀ receiveĀ anĀ electricalĀ signalĀ fromĀ theĀ photoĀ detectorĀ andĀ toĀ controlĀ  anĀ outputĀ powerĀ ofĀ theĀ pumpĀ sourceĀ basedĀ atĀ leastĀ inĀ partĀ onĀ theĀ receivedĀ electricalĀ signal.Ā TheĀ integratedĀ componentĀ attenuatesĀ lightĀ receivedĀ fromĀ theĀ outputĀ portĀ byĀ 10Ā dBĀ orĀ higher.Ā TheĀ opticalĀ amplifierĀ furtherĀ includesĀ anĀ isolatorĀ andĀ aĀ tapĀ positionedĀ betweenĀ theĀ inputĀ portĀ andĀ theĀ wavelengthĀ divisionĀ multiplexer.Ā TheĀ opticalĀ amplifierĀ includesĀ aĀ secondĀ photoĀ detectorĀ coupledĀ toĀ theĀ tapĀ configuredĀ toĀ monitorĀ theĀ inputĀ opticalĀ signal.Ā TheĀ opticalĀ amplifierĀ includesĀ aĀ secondĀ integratedĀ componentĀ positionedĀ betweenĀ theĀ inputĀ portĀ andĀ theĀ wavelengthĀ divisionĀ multiplexer,Ā theĀ secondĀ integratedĀ componentĀ configuredĀ toĀ provideĀ inputĀ monitoringĀ andĀ isolationĀ whereinĀ theĀ integratedĀ componentĀ isĀ configuredĀ to:Ā separateĀ aĀ firstĀ portionĀ ofĀ theĀ inputĀ opticalĀ signalĀ receivedĀ fromĀ theĀ firstĀ port,Ā directĀ theĀ firstĀ portionĀ toĀ aĀ photoĀ detectorĀ and,Ā directĀ aĀ secondĀ portionĀ ofĀ theĀ inputĀ opticalĀ signalĀ toĀ anĀ outputĀ coupledĀ toĀ theĀ wavelengthĀ divisionĀ multiplexer,Ā andĀ whereinĀ theĀ secondĀ integratedĀ componentĀ isĀ configuredĀ toĀ attenuateĀ lightĀ signalsĀ receivedĀ fromĀ theĀ wavelengthĀ divisionĀ multiplexer.Ā TheĀ wavelengthĀ divisionĀ multiplexerĀ isĀ combinedĀ withĀ anĀ isolatorĀ formingĀ aĀ thirdĀ integratedĀ component.
InĀ general,Ā oneĀ innovativeĀ aspectĀ ofĀ theĀ subjectĀ matterĀ describedĀ inĀ thisĀ specificationĀ canĀ beĀ embodiedĀ inĀ opticalĀ amplifiersĀ thatĀ includeĀ anĀ inputĀ portĀ forĀ receivingĀ anĀ inputĀ opticalĀ signalļ¼›Ā aĀ firstĀ integratedĀ componentĀ comprisingĀ anĀ isolatorĀ andĀ aĀ wavelengthĀ divisionĀ multiplexer,Ā whereinĀ theĀ integratedĀ componentĀ hasĀ aĀ firstĀ inputĀ coupledĀ toĀ theĀ inputĀ portĀ forĀ receivingĀ theĀ inputĀ opticalĀ signal,Ā aĀ secondĀ inputĀ coupledĀ toĀ aĀ pumpĀ source,Ā andĀ anĀ outputĀ coupledĀ toĀ anĀ amplificationĀ fiberļ¼›Ā andĀ aĀ secondĀ integratedĀ componentĀ configuredĀ toĀ provideĀ outputĀ monitoringĀ andĀ isolation,Ā whereinĀ theĀ secondĀ integratedĀ componentĀ isĀ configuredĀ to:Ā separateĀ aĀ firstĀ portionĀ ofĀ inputĀ lightĀ fromĀ theĀ amplificationĀ fiber,Ā directĀ theĀ firstĀ portionĀ toĀ aĀ photoĀ detector,Ā andĀ directĀ aĀ secondĀ portionĀ ofĀ theĀ inputĀ lightĀ fromĀ theĀ amplificationĀ fiberĀ toĀ anĀ outputĀ port,Ā andĀ whereinĀ theĀ secondĀ integratedĀ componentĀ isĀ configuredĀ toĀ attenuateĀ lightĀ signalsĀ receivedĀ fromĀ theĀ outputĀ port.Ā OtherĀ embodimentsĀ ofĀ thisĀ aspectĀ includeĀ correspondingĀ methods,Ā apparatus,Ā andĀ systems.
TheĀ foregoingĀ andĀ otherĀ embodimentsĀ canĀ eachĀ optionallyĀ includeĀ oneĀ orĀ moreĀ ofĀ theĀ followingĀ features,Ā aloneĀ orĀ inĀ combination.Ā TheĀ opticalĀ amplifierĀ furtherĀ includesĀ aĀ controllerĀ configuredĀ toĀ receiveĀ anĀ electricalĀ signalĀ fromĀ theĀ photoĀ detectorĀ andĀ toĀ controlĀ anĀ outputĀ powerĀ ofĀ theĀ pumpĀ sourceĀ basedĀ atĀ leastĀ inĀ partĀ onĀ theĀ receivedĀ electricalĀ signal.Ā TheĀ firstĀ integratedĀ componentĀ attenuatesĀ lightĀ receivedĀ fromĀ theĀ amplifierĀ fiberĀ byĀ 10Ā dBĀ orĀ higherļ¼›Ā andĀ theĀ secondĀ integratedĀ componentĀ attenuatesĀ lightĀ receivedĀ fromĀ theĀ outputĀ portĀ byĀ 10Ā dBĀ orĀ higher.
InĀ general,Ā oneĀ innovativeĀ aspectĀ ofĀ theĀ subjectĀ matterĀ describedĀ inĀ thisĀ specificationĀ canĀ beĀ embodiedĀ inĀ opticalĀ amplifiersĀ thatĀ includeĀ anĀ inputĀ portĀ forĀ receivingĀ anĀ inputĀ opticalĀ signalļ¼›Ā aĀ firstĀ integratedĀ componentĀ configuredĀ toĀ provideĀ inputĀ monitoringĀ andĀ isolation,Ā whereinĀ theĀ firstĀ integratedĀ componentĀ isĀ configuredĀ to:Ā separateĀ aĀ firstĀ portionĀ ofĀ theĀ inputĀ opticalĀ signal,Ā directĀ theĀ firstĀ portionĀ toĀ aĀ firstĀ photoĀ detector,Ā andĀ toĀ directĀ aĀ  secondĀ portionĀ ofĀ theĀ inputĀ opticalĀ signalĀ toĀ aĀ wavelengthĀ divisionĀ multiplexer,Ā andĀ whereinĀ theĀ firstĀ integratedĀ componentĀ isĀ configuredĀ toĀ attenuateĀ lightĀ signalsĀ receivedĀ fromĀ theĀ wavelengthĀ divisionĀ multiplexerļ¼›Ā theĀ wavelengthĀ divisionĀ multiplexerĀ havingĀ aĀ firstĀ inputĀ coupledĀ toĀ anĀ outputĀ ofĀ theĀ firstĀ integratedĀ component,Ā aĀ secondĀ inputĀ coupledĀ toĀ aĀ pumpĀ source,Ā andĀ anĀ outputĀ coupledĀ toĀ anĀ amplificationĀ fiberļ¼›Ā andĀ aĀ secondĀ integratedĀ componentĀ configuredĀ toĀ provideĀ outputĀ monitoringĀ andĀ isolation,Ā whereinĀ theĀ secondĀ integratedĀ componentĀ isĀ configuredĀ to:Ā separateĀ aĀ firstĀ portionĀ ofĀ inputĀ lightĀ fromĀ theĀ amplificationĀ fiber,Ā directĀ theĀ firstĀ portionĀ toĀ aĀ secondĀ photoĀ detector,Ā andĀ toĀ directĀ aĀ secondĀ portionĀ ofĀ theĀ inputĀ lightĀ fromĀ theĀ amplificationĀ fiberĀ toĀ anĀ outputĀ port,Ā andĀ whereinĀ theĀ secondĀ integratedĀ componentĀ isĀ configuredĀ toĀ attenuateĀ lightĀ signalsĀ receivedĀ fromĀ theĀ outputĀ port.Ā OtherĀ embodimentsĀ ofĀ thisĀ aspectĀ includeĀ correspondingĀ methods,Ā apparatus,Ā andĀ systems.
TheĀ foregoingĀ andĀ otherĀ embodimentsĀ canĀ eachĀ optionallyĀ includeĀ oneĀ orĀ moreĀ ofĀ theĀ followingĀ features,Ā aloneĀ orĀ inĀ combination.Ā TheĀ opticalĀ amplifierĀ furtherĀ includesĀ aĀ controllerĀ configuredĀ toĀ receiveĀ aĀ firstĀ electricalĀ signalĀ fromĀ theĀ firstĀ photoĀ detectorĀ andĀ aĀ secondĀ electricalĀ signalĀ receivedĀ fromĀ theĀ secondĀ photoĀ detectorĀ andĀ toĀ controlĀ anĀ outputĀ powerĀ ofĀ theĀ pumpĀ sourceĀ basedĀ atĀ leastĀ inĀ partĀ onĀ theĀ receivedĀ firstĀ andĀ secondĀ electricalĀ signals.
InĀ general,Ā oneĀ innovativeĀ aspectĀ ofĀ theĀ subjectĀ matterĀ describedĀ inĀ thisĀ specificationĀ canĀ beĀ embodiedĀ inĀ integratedĀ componentsĀ thatĀ includeĀ anĀ inputĀ opticalĀ fiberĀ andĀ anĀ outputĀ opticalĀ fiberļ¼›Ā aĀ birefringentĀ crystalĀ havingĀ aĀ fistĀ surfaceĀ facingĀ anĀ endĀ ofĀ theĀ inputĀ opticalĀ fiberĀ andĀ theĀ outputĀ opticalĀ fiberĀ andĀ aĀ secondĀ surfaceĀ facingĀ aĀ waveĀ plate,Ā whereinĀ theĀ waveĀ plateĀ coversĀ aĀ portionĀ ofĀ theĀ birefringentĀ crystalļ¼›Ā aĀ lensĀ opticallyĀ positionedĀ betweenĀ theĀ waveĀ plateĀ andĀ aĀ polarizationĀ rotatorļ¼›Ā andĀ aĀ prismĀ positionedĀ betweenĀ theĀ polarizationĀ rotatorĀ andĀ aĀ photodetector.Ā OtherĀ embodimentsĀ ofĀ thisĀ aspectĀ includeĀ correspondingĀ methods,Ā apparatus,Ā andĀ systems.
TheĀ foregoingĀ andĀ otherĀ embodimentsĀ canĀ eachĀ optionallyĀ includeĀ oneĀ orĀ moreĀ ofĀ theĀ followingĀ features,Ā aloneĀ orĀ inĀ combination.Ā TheĀ polarizationĀ rotatorĀ isĀ aĀ FaradayĀ rotator.Ā TheĀ inputĀ opticalĀ fiberĀ andĀ theĀ outputĀ opticalĀ fiberĀ areĀ heldĀ inĀ aĀ commonĀ package.Ā AnĀ inputĀ opticalĀ signalĀ receivedĀ atĀ theĀ inputĀ opticalĀ fiberĀ isĀ routedĀ toĀ theĀ prism,Ā whereinĀ theĀ prismĀ passesĀ aĀ portionĀ ofĀ theĀ inputĀ opticalĀ signalĀ toĀ theĀ photoĀ detectorĀ andĀ reflectsĀ aĀ portionĀ ofĀ theĀ inputĀ opticalĀ signalĀ towardĀ theĀ outputĀ opticalĀ fiber.Ā AnĀ inputĀ opticalĀ signalĀ receivedĀ atĀ theĀ outputĀ opticalĀ fiberĀ passesĀ throughĀ elementsĀ ofĀ theĀ integratedĀ componentĀ suchĀ thatĀ theĀ opticalĀ signalĀ doesĀ notĀ passĀ throughĀ theĀ inputĀ opticalĀ fiber.
ParticularĀ embodimentsĀ ofĀ theĀ subjectĀ matterĀ describedĀ inĀ thisĀ specificationĀ canĀ beĀ implementedĀ soĀ asĀ toĀ realizeĀ oneĀ orĀ moreĀ ofĀ theĀ followingĀ advantages.Ā UsingĀ anĀ integratedĀ componentĀ thatĀ providesĀ isolationĀ andĀ tappingĀ ofĀ aĀ portionĀ ofĀ anĀ opticalĀ signalĀ reducesĀ theĀ sizeĀ andĀ numberĀ ofĀ componentsĀ forĀ anĀ EDFA.Ā TheĀ integratedĀ componentĀ canĀ beĀ swappedĀ  asĀ aĀ unitĀ fromĀ theĀ EDFAĀ makingĀ replacementĀ easy.Ā Additionally,Ā theĀ integratedĀ componentĀ canĀ beĀ incorporatedĀ suchĀ thatĀ theĀ EDFAĀ isĀ XFPĀ MSAĀ compliantĀ (e.g.,Ā 10Ā GBĀ smallĀ formĀ factorĀ pluggable)Ā andĀ compatibleĀ withĀ anĀ XFPĀ formĀ factorĀ withoutĀ significantĀ redesign.
TheĀ detailsĀ ofĀ oneĀ orĀ moreĀ embodimentsĀ ofĀ theĀ subjectĀ matterĀ describedĀ inĀ thisĀ specificationĀ areĀ setĀ forthĀ inĀ theĀ accompanyingĀ drawingsĀ andĀ theĀ descriptionĀ below.Ā OtherĀ features,Ā aspects,Ā andĀ advantagesĀ ofĀ theĀ subjectĀ matterĀ willĀ becomeĀ apparentĀ fromĀ theĀ description,Ā theĀ drawings,Ā andĀ theĀ claims.
BriefĀ DescriptionĀ ofĀ theĀ Drawings
FIG.Ā 1Ā isĀ diagramĀ ofĀ anĀ exampleĀ priorĀ artĀ erbiumĀ dopedĀ fiberĀ amplifier.
FIG.Ā 2Ā isĀ aĀ diagramĀ ofĀ anĀ exampleĀ EDFAĀ includingĀ integratedĀ components.
FIG.Ā 3Ā isĀ aĀ diagramĀ ofĀ anĀ exampleĀ integratedĀ component.
FIG.Ā 4Ā isĀ aĀ diagramĀ showingĀ relativeĀ placementĀ ofĀ tube,Ā birefringentĀ crystal,Ā andĀ halfĀ waveĀ plateĀ ofĀ theĀ integratedĀ componentĀ ofĀ FIG.Ā 3
FIG.Ā 5Ā isĀ aĀ diagramĀ ofĀ theĀ prismĀ ofĀ theĀ integratedĀ componentĀ ofĀ FIG.Ā 3.
FIG.Ā 6Ā isĀ aĀ sideĀ viewĀ ofĀ theĀ integratedĀ componentĀ ofĀ FIG.Ā 3Ā onĀ anĀ x-zĀ plane.
FIG.Ā 7Ā isĀ aĀ topĀ viewĀ ofĀ theĀ integratedĀ componentĀ ofĀ FIG.Ā 3Ā onĀ aĀ x-yĀ plane.
FIG.Ā 8Ā isĀ aĀ sideĀ viewĀ ofĀ theĀ integratedĀ componentĀ ofĀ FIG.Ā 3Ā onĀ theĀ x-zĀ planeĀ showingĀ polarizationĀ states.
FIG.Ā 9Ā isĀ aĀ sideĀ viewĀ ofĀ theĀ integratedĀ componentĀ ofĀ FIG.Ā 3Ā onĀ theĀ x-zĀ planeĀ showingĀ polarizationĀ states.
FIG.Ā 10Ā isĀ aĀ sideĀ viewĀ ofĀ theĀ integratedĀ componentĀ ofĀ FIG.Ā 3Ā showingĀ aĀ pathĀ fromĀ anĀ inputĀ fiberĀ toĀ aĀ photoĀ detector.
FIG.Ā 11Ā isĀ aĀ sideĀ viewĀ ofĀ theĀ integratedĀ componentĀ ofĀ FIG.Ā 3Ā showingĀ aĀ pathĀ fromĀ theĀ outputĀ fiberĀ toĀ theĀ photoĀ detector.
FIG.Ā 12Ā isĀ aĀ diagramĀ ofĀ anĀ exampleĀ oneĀ stageĀ EDFAĀ includingĀ anĀ outputĀ monitor.
LikeĀ referenceĀ numbersĀ andĀ designationsĀ inĀ theĀ variousĀ drawingsĀ indicateĀ likeĀ elements.
DetailedĀ Description
FIG.Ā 1Ā isĀ diagramĀ ofĀ anĀ exampleĀ priorĀ artĀ erbiumĀ dopedĀ fiberĀ amplifierĀ (EDFA)Ā 100.Ā TheĀ EDFAĀ 100Ā includesĀ aĀ firstĀ tapĀ 102Ā coupledĀ toĀ anĀ inputĀ opticalĀ portĀ configuredĀ toĀ receiveĀ anĀ inputĀ opticalĀ signalĀ havingĀ oneĀ orĀ moreĀ wavelengths.Ā TheĀ inputĀ opticalĀ portĀ canĀ beĀ coupledĀ toĀ anĀ opticalĀ fiberĀ thatĀ couplesĀ theĀ EDFAĀ 100Ā toĀ oneĀ orĀ moreĀ opticalĀ componentsĀ orĀ fibers.Ā TheĀ firstĀ tapĀ 102Ā separatesĀ aĀ smallĀ portionĀ ofĀ theĀ inputĀ opticalĀ signalĀ andĀ outputsĀ thisĀ tappedĀ portionĀ toĀ aĀ firstĀ photoĀ detectorĀ 104.Ā TheĀ firstĀ photoĀ detectorĀ 104Ā canĀ beĀ aĀ photodiodeĀ andĀ measuresĀ anĀ inputĀ powerĀ ofĀ theĀ inputĀ opticalĀ signal.Ā TheĀ remainingĀ portionĀ ofĀ theĀ inputĀ opticalĀ signalĀ isĀ outputĀ fromĀ theĀ firstĀ tapĀ 102Ā toĀ aĀ firstĀ  isolatorĀ 106Ā coupledĀ toĀ theĀ firstĀ tapĀ 102.
TheĀ firstĀ isolatorĀ 106Ā isĀ configuredĀ toĀ provideĀ transmissionĀ ofĀ lightĀ signalsĀ inĀ oneĀ direction.Ā Thus,Ā theĀ firstĀ isolatorĀ 106Ā canĀ blockĀ orĀ greatlyĀ reduceĀ opticalĀ signalsĀ passingĀ backĀ towardĀ theĀ inputĀ opticalĀ fiber.Ā TheĀ outputĀ ofĀ theĀ firstĀ isolatorĀ 106Ā isĀ coupledĀ toĀ anĀ inputĀ ofĀ aĀ wavelengthĀ divisionĀ multiplexerĀ (WDM)Ā 108,Ā whoseĀ secondĀ inputĀ isĀ providedĀ byĀ aĀ pumpĀ sourceĀ 110.
TheĀ pumpĀ sourceĀ 110Ā canĀ beĀ aĀ pumpĀ laser,Ā aĀ lightĀ emittingĀ diode,Ā orĀ otherĀ lightĀ source.Ā InĀ someĀ implementations,Ā theĀ pumpĀ sourceĀ 110Ā receivesĀ aĀ controlĀ signalĀ fromĀ anĀ electricalĀ controllerĀ (notĀ shown)Ā forĀ varyingĀ anĀ outputĀ powerĀ ofĀ theĀ lightĀ emittedĀ byĀ theĀ pumpĀ sourceĀ 110.Ā ForĀ example,Ā theĀ controlĀ signalĀ canĀ beĀ aĀ signalĀ forĀ increasingĀ orĀ decreasingĀ theĀ pumpĀ lightĀ directedĀ towardĀ theĀ WDMĀ 108.
TheĀ WDMĀ 108Ā isĀ configuredĀ asĀ aĀ combinerĀ thatĀ operatesĀ toĀ combineĀ theĀ inputĀ opticalĀ signalĀ andĀ theĀ injectedĀ pumpingĀ signalĀ providedĀ fromĀ theĀ pumpingĀ sourceĀ 110Ā andĀ providesĀ aĀ combinedĀ outputĀ opticalĀ signalĀ toĀ anĀ amplifierĀ fiberĀ 112.Ā InĀ someĀ implementations,Ā theĀ WDMĀ 108Ā combinesĀ anĀ inputĀ signalĀ havingĀ aĀ particularĀ wavelength,Ā e.g.,Ā 1550Ā nm,Ā withĀ anĀ injectedĀ pumpingĀ signalĀ havingĀ aĀ differentĀ wavelength,Ā e.g.,Ā 980Ā nm.Ā TheĀ amplifierĀ fiberĀ 112Ā canĀ beĀ anĀ EDF.
TheĀ amplifiedĀ opticalĀ signalĀ outputĀ fromĀ theĀ amplifierĀ fiberĀ 112Ā isĀ providedĀ asĀ anĀ inputĀ toĀ aĀ secondĀ isolatorĀ 114.Ā TheĀ secondĀ isolatorĀ canĀ beĀ configuredĀ toĀ preventĀ opticalĀ signalsĀ fromĀ passingĀ backĀ towardĀ theĀ amplifierĀ fiberĀ 112.Ā TheĀ outputĀ ofĀ theĀ secondĀ isolatorĀ 114Ā isĀ coupledĀ toĀ anĀ inputĀ ofĀ aĀ secondĀ tapĀ 116.Ā TheĀ secondĀ tapĀ 116Ā tapsĀ offĀ aĀ smallĀ portionĀ ofĀ theĀ amplifiedĀ opticalĀ signalĀ andĀ outputsĀ theĀ tappedĀ portionĀ toĀ aĀ secondĀ photoĀ detectorĀ 118.Ā TheĀ secondĀ photoĀ detectorĀ 118Ā canĀ beĀ aĀ photodiodeĀ andĀ usedĀ toĀ measureĀ anĀ outputĀ powerĀ ofĀ theĀ amplifiedĀ opticalĀ signal.Ā TheĀ remainingĀ portionĀ ofĀ theĀ amplifiedĀ opticalĀ signalĀ isĀ outputĀ fromĀ theĀ secondĀ tapĀ 116Ā toĀ anĀ outputĀ opticalĀ fiber.
TheĀ firstĀ andĀ secondĀ photoĀ detectorsĀ 104Ā andĀ 118Ā convertĀ theĀ incidentĀ lightĀ signalsĀ toĀ electricalĀ signals.Ā TheĀ electricalĀ signalsĀ canĀ beĀ usedĀ byĀ theĀ controllerĀ toĀ measureĀ theĀ inputĀ opticalĀ signalĀ powerĀ andĀ theĀ amplifiedĀ outputĀ opticalĀ signalĀ power.Ā TheĀ controllerĀ canĀ useĀ theĀ measuredĀ inputĀ opticalĀ signalĀ powerĀ andĀ amplifiedĀ outputĀ opticalĀ signalĀ powerĀ toĀ controlĀ performanceĀ ofĀ theĀ pumpĀ sourceĀ 110.
FIG.Ā 2Ā isĀ aĀ diagramĀ ofĀ anĀ exampleĀ EDFAĀ 200.Ā TheĀ EDFAĀ 200Ā includesĀ anĀ inputĀ portĀ forĀ receivingĀ anĀ inputĀ opticalĀ signal,Ā e.g.,Ā fromĀ anĀ inputĀ opticalĀ fiber.Ā TheĀ inputĀ portĀ isĀ coupledĀ toĀ aĀ firstĀ integratedĀ componentĀ 202.Ā TheĀ firstĀ integratedĀ componentĀ 202Ā isĀ configuredĀ toĀ provideĀ isolationĀ andĀ signalĀ monitoringĀ functionsĀ ofĀ anĀ isolator,Ā tap,Ā andĀ photoĀ detector,Ā e.g.,Ā firstĀ isolatorĀ 106,Ā firstĀ tapĀ 102,Ā andĀ firstĀ photoĀ detectorĀ 104Ā ofĀ theĀ EDFAĀ shownĀ inĀ FIG.Ā 1.
TheĀ opticalĀ signalĀ outputĀ fromĀ theĀ firstĀ integratedĀ componentĀ 202Ā isĀ coupledĀ toĀ anĀ inputĀ ofĀ aĀ WDMĀ 204,Ā whoseĀ secondĀ inputĀ isĀ providedĀ byĀ aĀ pumpĀ sourceĀ 206.
TheĀ pumpĀ sourceĀ 206Ā canĀ beĀ aĀ pumpĀ laser,Ā aĀ lightĀ emittingĀ diode,Ā orĀ otherĀ lightĀ source.Ā InĀ someĀ implementations,Ā theĀ pumpĀ sourceĀ 206Ā receivesĀ aĀ controlĀ signalĀ fromĀ anĀ electricalĀ controllerĀ (notĀ shown)Ā forĀ varyingĀ theĀ outputĀ powerĀ ofĀ theĀ pumpĀ sourceĀ 206.Ā ForĀ example,Ā theĀ controlĀ signalĀ canĀ beĀ aĀ signalĀ forĀ increasingĀ orĀ decreasingĀ theĀ pumpĀ lightĀ directedĀ towardĀ theĀ WDMĀ 204.
TheĀ WDMĀ 204Ā isĀ configuredĀ asĀ aĀ combinerĀ thatĀ operatesĀ toĀ combineĀ theĀ inputĀ opticalĀ signalĀ andĀ theĀ injectedĀ pumpingĀ signalĀ providedĀ fromĀ theĀ pumpingĀ sourceĀ 206Ā andĀ providesĀ anĀ outputĀ opticalĀ signalĀ toĀ anĀ amplifierĀ fiberĀ 208.Ā TheĀ amplifiedĀ opticalĀ signalĀ outputĀ fromĀ theĀ amplifierĀ fiberĀ 208Ā isĀ providedĀ asĀ anĀ inputĀ toĀ aĀ secondĀ integratedĀ componentĀ 210.Ā SimilarĀ toĀ theĀ firstĀ integratedĀ componentĀ 202,Ā theĀ secondĀ integratedĀ componentĀ 210Ā isĀ configuredĀ toĀ provideĀ isolationĀ andĀ signalĀ monitoringĀ functionsĀ ofĀ anĀ isolator,Ā tap,Ā andĀ photoĀ detector,Ā e.g.,Ā secondĀ isolatorĀ 114,Ā secondĀ tapĀ 116,Ā andĀ secondĀ photoĀ detectorĀ 118Ā ofĀ theĀ EDFAĀ shownĀ inĀ FIG.Ā 1.Ā TheĀ firstĀ integratedĀ componentĀ 202Ā andĀ theĀ secondĀ integratedĀ componentĀ 210Ā canĀ eachĀ beĀ providedĀ inĀ anĀ integratedĀ packageĀ forĀ assemblyĀ inĀ anĀ EDFAĀ housing.
FIG.Ā 3Ā isĀ aĀ diagramĀ ofĀ anĀ exampleĀ integratedĀ componentĀ 300.Ā TheĀ integratedĀ componentĀ 300Ā includesĀ anĀ inputĀ opticalĀ fiberĀ 302Ā andĀ anĀ opticalĀ outputĀ fiberĀ 304.Ā TheĀ inputĀ opticalĀ fiberĀ 302Ā andĀ theĀ outputĀ opticalĀ fiberĀ 304Ā canĀ beĀ packagedĀ together,Ā forĀ example,Ā inĀ aĀ tubeĀ 306.Ā TheĀ tubeĀ 306Ā canĀ beĀ aĀ glassĀ tubeĀ orĀ otherĀ suitableĀ material.Ā InĀ someĀ implementations,Ā theĀ opticalĀ fibersĀ areĀ heldĀ inĀ aĀ fiberĀ ferruleĀ orĀ otherĀ suitableĀ structure.
TheĀ integratedĀ componentĀ 300Ā alsoĀ includesĀ aĀ birefringentĀ crystalĀ 308Ā positionedĀ betweenĀ theĀ tubeĀ 306Ā andĀ aĀ halfĀ waveĀ plateĀ 310.Ā TheĀ halfĀ waveĀ plateĀ 310Ā canĀ beĀ positionedĀ toĀ beĀ alongĀ theĀ lightĀ pathĀ ofĀ theĀ inputĀ opticalĀ fiberĀ 302,Ā butĀ notĀ theĀ lightĀ pathĀ ofĀ theĀ outputĀ opticalĀ fiberĀ 304.Ā TheĀ birefringentĀ crystalĀ 308Ā isĀ configured,Ā forĀ example,Ā toĀ separateĀ incidentĀ lightĀ havingĀ randomĀ polarizationĀ directionsĀ intoĀ twoĀ orthogonallyĀ polarizedĀ lightĀ beams.Ā AĀ waveĀ plateĀ suchĀ asĀ theĀ halfĀ waveĀ plateĀ 310Ā rotatesĀ aĀ polarizationĀ ofĀ incidentĀ lightĀ beamsĀ byĀ aĀ specifiedĀ numberĀ ofĀ degreesĀ inĀ aĀ particularĀ directionĀ dependingĀ onĀ theĀ compositionĀ ofĀ theĀ waveĀ plate.
FIG.Ā 4Ā isĀ aĀ diagramĀ showingĀ relativeĀ placementĀ ofĀ tubeĀ 306,Ā birefringentĀ crystalĀ 308,Ā andĀ halfĀ waveĀ plateĀ 310Ā ofĀ theĀ integratedĀ componentĀ 300Ā ofĀ FIG.Ā 3.Ā InĀ particular,Ā theĀ birefringentĀ crystalĀ 308Ā isĀ positionedĀ atĀ anĀ endĀ faceĀ ofĀ theĀ tubeĀ 306Ā suchĀ thatĀ theĀ birefringentĀ crystalĀ 308Ā coversĀ bothĀ theĀ inputĀ andĀ outputĀ  opticalĀ fibers Ā 302,Ā 304Ā andĀ thereforeĀ isĀ inĀ theĀ opticalĀ pathĀ ofĀ lightĀ enteringĀ orĀ exitingĀ theĀ inputĀ opticalĀ fiberĀ 302Ā andĀ theĀ outputĀ opticalĀ fiberĀ 304.Ā However,Ā theĀ halfĀ waveĀ plateĀ 310Ā isĀ positionedĀ onĀ topĀ ofĀ aĀ portionĀ ofĀ theĀ birefringentĀ crystalĀ 308Ā suchĀ thatĀ theĀ halfĀ waveĀ plateĀ 310Ā isĀ onlyĀ inĀ anĀ opticalĀ pathĀ ofĀ lightĀ directedĀ toĀ orĀ fromĀ theĀ inputĀ opticalĀ fiberĀ 302Ā andĀ isĀ notĀ inĀ theĀ opticalĀ pathĀ ofĀ lightĀ directedĀ towardĀ theĀ outputĀ opticalĀ fiberĀ 304.
ReturningĀ toĀ FIG.Ā 3,Ā theĀ integratedĀ componentĀ 300Ā alsoĀ includesĀ aĀ lensĀ 312Ā positionedĀ  betweenĀ theĀ halfĀ waveĀ plateĀ 308Ā andĀ aĀ FaradayĀ rotatorĀ 314.Ā TheĀ FaradayĀ rotatorĀ 314Ā isĀ anĀ opticalĀ componentĀ thatĀ rotatesĀ aĀ polarizationĀ ofĀ lightĀ passingĀ throughĀ theĀ FaradayĀ rotatorĀ 314Ā byĀ aĀ specificĀ amountĀ inĀ responseĀ toĀ anĀ appliedĀ magneticĀ field.Ā TheĀ lensĀ 312Ā canĀ beĀ used,Ā forĀ example,Ā toĀ focusĀ oneĀ orĀ moreĀ lightĀ beamsĀ towardĀ particularĀ opticalĀ components,Ā e.g.,Ā toĀ focusĀ lightĀ onĀ theĀ FaradayĀ rotatorĀ 314.
TheĀ integratedĀ componentĀ 300Ā alsoĀ includesĀ aĀ prismĀ 316Ā positionedĀ alongĀ anĀ opticalĀ pathĀ betweenĀ theĀ FaradayĀ rotatorĀ 314Ā andĀ aĀ photoĀ detectorĀ 318.Ā TheĀ prismĀ 316Ā isĀ describedĀ inĀ greaterĀ detailĀ withĀ respectĀ toĀ FIG.Ā 5.
FIG.Ā 5Ā isĀ aĀ diagramĀ ofĀ theĀ prismĀ 316Ā ofĀ theĀ integratedĀ componentĀ ofĀ FIG.Ā 3.Ā TheĀ prismĀ 316Ā includesĀ aĀ firstĀ endĀ surfaceĀ 502Ā facingĀ anĀ endĀ surfaceĀ ofĀ theĀ FaradayĀ rotatorĀ 314.Ā TheĀ firstĀ endĀ surfaceĀ 502Ā ofĀ theĀ prismĀ 316Ā hasĀ aĀ partialĀ reflectiveĀ coatingĀ thatĀ reflectsĀ aĀ percentageĀ XĀ ofĀ theĀ inputĀ opticalĀ signalĀ whileĀ allowingĀ 1-XĀ percentĀ toĀ passĀ throughĀ theĀ prismĀ 316.Ā InĀ someĀ implementations,Ā theĀ valueĀ ofĀ XĀ isĀ greaterĀ thanĀ 90Ā percent.
TheĀ prismĀ 316Ā alsoĀ includesĀ aĀ secondĀ endĀ surfaceĀ 504Ā facingĀ theĀ photoĀ detectorĀ 318.Ā TheĀ secondĀ endĀ surfaceĀ 504Ā isĀ configuredĀ toĀ haveĀ aĀ highĀ reflectionĀ forĀ wavelengthsĀ correspondingĀ toĀ aĀ pumpĀ sourceĀ andĀ lowĀ orĀ noĀ reflectionĀ forĀ wavelengthsĀ ofĀ theĀ opticalĀ signal.Ā ThusĀ itĀ allowsĀ theĀ opticalĀ signalsĀ reachĀ theĀ photoĀ detector,Ā butĀ preventsĀ theĀ pumpĀ signalsĀ reachĀ theĀ photoĀ detector.Ā Additionally,Ā inĀ someĀ implementations,Ā theĀ firstĀ endĀ surfaceĀ 502Ā andĀ theĀ secondĀ endĀ surfaceĀ 504Ā areĀ notĀ parallelĀ toĀ eachĀ other.Ā InĀ someĀ implementations,Ā insteadĀ ofĀ theĀ prismĀ 316,Ā aĀ differentĀ opticalĀ componentĀ canĀ beĀ used,Ā forĀ example,Ā anĀ ellipticĀ cylinderĀ withĀ aĀ thinĀ filmĀ coating.Ā TheĀ thinĀ filmĀ coatingĀ reflectsĀ aĀ portionĀ ofĀ incidentĀ lightĀ andĀ passesĀ aĀ secondĀ portionĀ ofĀ incidentĀ lightĀ toĀ theĀ photoĀ detectorĀ 318.Ā InĀ someĀ implementations,Ā theĀ coatingĀ reflectsĀ mostĀ ofĀ theĀ incidentĀ lightĀ e.g.,Ā greaterĀ thanĀ 90Ā percent.
ReturningĀ toĀ FIG.Ā 3,Ā theĀ photoĀ detectorĀ 318Ā convertsĀ receivedĀ lightĀ signalsĀ intoĀ electricalĀ signals.Ā TheĀ signalsĀ canĀ beĀ sent,Ā e.g.,Ā toĀ aĀ controllerĀ ofĀ anĀ amplifier,Ā toĀ calculateĀ aĀ powerĀ measurementĀ forĀ theĀ opticalĀ signal.Ā ForĀ example,Ā theĀ integratedĀ componentĀ 300Ā canĀ beĀ positionedĀ toĀ monitorĀ anĀ inputĀ opticalĀ signalĀ powerĀ toĀ anĀ EDFA.Ā InĀ anotherĀ example,Ā theĀ integratedĀ componentĀ canĀ beĀ positionĀ toĀ monitorĀ anĀ amplifiedĀ opticalĀ signalĀ outputĀ byĀ anĀ amplificationĀ fiberĀ ofĀ theĀ EDFA.
FIG.Ā 6Ā isĀ aĀ sideĀ viewĀ 600Ā ofĀ theĀ integratedĀ componentĀ 300Ā ofĀ FIG.Ā 3Ā onĀ anĀ x-zĀ plane.Ā FIG.Ā 7Ā isĀ aĀ topĀ viewĀ 700Ā ofĀ theĀ integratedĀ componentĀ 300Ā ofĀ FIG.Ā 3Ā onĀ anĀ x-yĀ plane.Ā AsĀ shownĀ inĀ FIGS.Ā 6Ā andĀ 7,Ā theĀ integratedĀ componentĀ 300Ā includesĀ tubeĀ 306Ā holdingĀ anĀ inputĀ opticalĀ fiberĀ andĀ anĀ outputĀ opticalĀ fiber,Ā birefringentĀ crystalĀ 308,Ā halfĀ waveĀ plateĀ 310,Ā lensĀ 312,Ā faradayĀ rotatorĀ 314,Ā prismĀ 316,Ā andĀ photoĀ detectorĀ 318.Ā AsĀ shownĀ inĀ theĀ sideĀ viewĀ 600,Ā theĀ birefringentĀ crystalĀ 308Ā andĀ halfĀ waveĀ plateĀ 310Ā areĀ notĀ parallelĀ toĀ theĀ endĀ faceĀ ofĀ theĀ tubeĀ orĀ toĀ theĀ z-axis.Ā Additionally,Ā theĀ halfĀ waveĀ plateĀ 310Ā isĀ shownĀ asĀ positionedĀ suchĀ thatĀ lightĀ fromĀ theĀ inputĀ opticalĀ fiberĀ passesĀ throughĀ theĀ halfĀ waveĀ plateĀ 310Ā butĀ lightĀ directedĀ  towardĀ theĀ outputĀ opticalĀ fiberĀ doesĀ notĀ passĀ throughĀ theĀ waveĀ plateĀ 310.
FIG.Ā 8Ā isĀ aĀ sideĀ viewĀ 800Ā ofĀ theĀ integratedĀ componentĀ 300Ā ofĀ FIG.Ā 3Ā onĀ theĀ x-zĀ planeĀ showingĀ polarizationĀ states.Ā InĀ particular,Ā theĀ polarizationĀ statesĀ areĀ shownĀ forĀ lightĀ beamsĀ passingĀ fromĀ theĀ inputĀ opticalĀ fiberĀ 302Ā toĀ theĀ outputĀ opticalĀ fiberĀ 304.
AĀ lightĀ beam,Ā e.g.,Ā anĀ opticalĀ signalĀ havingĀ oneĀ orĀ moreĀ wavelength,Ā entersĀ theĀ integratedĀ componentĀ 300Ā throughĀ theĀ inputĀ opticalĀ fiberĀ 302.Ā TheĀ lightĀ beamĀ canĀ beĀ randomlyĀ polarized.Ā AfterĀ theĀ lightĀ beamĀ exitsĀ theĀ inputĀ opticalĀ fiberĀ 302,Ā theĀ lightĀ beamĀ passesĀ throughĀ theĀ birefringentĀ crystalĀ 308.
TheĀ birefringentĀ crystalĀ 308Ā separatesĀ theĀ opticalĀ beamĀ intoĀ aĀ firstĀ lightĀ beamĀ havingĀ aĀ firstĀ polarizationĀ directionĀ andĀ aĀ secondĀ lightĀ beamĀ havingĀ aĀ secondĀ polarizationĀ directionĀ whereĀ theĀ respectiveĀ polarizationĀ directionsĀ areĀ orthogonal,Ā asĀ illustratedĀ byĀ boxĀ 802Ā showingĀ theĀ polarizationĀ stateĀ andĀ locationĀ forĀ theĀ twoĀ beamsĀ relativeĀ toĀ aĀ cross-sectionĀ ofĀ theĀ integratedĀ componentĀ 300Ā followingĀ theĀ birefringentĀ crystalĀ 308.Ā AsĀ shownĀ inĀ boxĀ 802,Ā theĀ lightĀ beamsĀ haveĀ beenĀ separatedĀ inĀ theĀ upperĀ pathĀ alongĀ theĀ y-axis.
TheĀ firstĀ andĀ secondĀ lightĀ beamsĀ areĀ locatedĀ inĀ theĀ upperĀ portionĀ ofĀ aĀ crossĀ sectionĀ ofĀ theĀ integratedĀ deviceĀ andĀ thereforeĀ passĀ throughĀ theĀ halfĀ waveĀ plateĀ 310Ā afterĀ exitingĀ theĀ birefringentĀ crystalĀ 308.Ā TheĀ halfĀ waveĀ plateĀ 310Ā rotatesĀ theĀ polarizationĀ ofĀ eachĀ lightĀ beamĀ byĀ 45Ā degreesĀ clockwiseĀ asĀ illustratedĀ byĀ boxĀ 804.Ā TheĀ firstĀ andĀ secondĀ lightĀ beamsĀ passĀ throughĀ theĀ lensĀ 312Ā withoutĀ anyĀ changeĀ inĀ polarizationĀ asĀ theĀ firstĀ andĀ secondĀ lightĀ beamsĀ areĀ directedĀ towardĀ FaradayĀ rotatorĀ 314.Ā TheĀ FaradayĀ rotatorĀ rotatesĀ theĀ polarizationĀ directionĀ ofĀ bothĀ theĀ firstĀ lightĀ beamĀ andĀ theĀ secondĀ lightĀ beamĀ counter-clockwiseĀ byĀ 22.5Ā degreesĀ asĀ illustratedĀ byĀ boxĀ 806.
TheĀ firstĀ andĀ secondĀ lightĀ beamsĀ exitingĀ fromĀ theĀ FaradayĀ rotatorĀ 314Ā areĀ directedĀ towardĀ theĀ prismĀ 316.Ā TheĀ prismĀ 316Ā hasĀ aĀ filmĀ coatingĀ thatĀ passesĀ aĀ firstĀ portionĀ ofĀ theĀ lightĀ beamsĀ whileĀ allowingĀ secondĀ portionĀ toĀ reflect.Ā TheĀ firstĀ portionĀ passesĀ throughĀ theĀ prismĀ 316Ā withĀ theĀ sameĀ polarizationĀ directionsĀ andĀ isĀ focusedĀ onĀ theĀ photoĀ detectorĀ 318.Ā ForĀ example,Ā theĀ passedĀ portionĀ canĀ beĀ aĀ smallĀ portionĀ ofĀ theĀ lightĀ beamsĀ incidentĀ onĀ theĀ prismĀ 316.Ā TheĀ lightĀ detectedĀ byĀ theĀ photoĀ detectorĀ 318Ā canĀ beĀ used,Ā e.g.,Ā byĀ aĀ controllerĀ ofĀ anĀ EDFA,Ā toĀ measureĀ overallĀ opticalĀ signalĀ power.
TheĀ secondĀ portionĀ ofĀ theĀ lightĀ beamsĀ areĀ reflectedĀ fromĀ theĀ prismĀ 316Ā relativeĀ toĀ theĀ y-axisĀ andĀ haveĀ theĀ sameĀ polarizationĀ directionsĀ butĀ aĀ relativeĀ locationĀ mirroredĀ toĀ theĀ lowerĀ pathĀ ofĀ theĀ crossĀ section.Ā TheĀ reflectedĀ lightĀ beamsĀ passĀ backĀ throughĀ theĀ FaradayĀ rotatorĀ 314Ā whereĀ theĀ polarizationĀ directionsĀ areĀ furtherĀ rotatedĀ byĀ 22.5Ā degreesĀ counter-clockwiseĀ asĀ illustratedĀ byĀ boxĀ 808Ā showingĀ bothĀ polarizationĀ directionsĀ andĀ locationsĀ forĀ theĀ reflectedĀ lightĀ beams.
TheĀ reflectedĀ lightĀ beamsĀ passĀ throughĀ theĀ lensĀ 312Ā withoutĀ aĀ changeĀ inĀ polarizationĀ directionĀ andĀ areĀ thenĀ incidentĀ onĀ theĀ birefringentĀ crystalĀ 308Ā where,Ā becauseĀ ofĀ theĀ respectiveĀ locationsĀ andĀ polarizationĀ directions,Ā theĀ twoĀ reflectedĀ lightĀ beamsĀ areĀ mergedĀ  intoĀ oneĀ beamĀ exitingĀ theĀ birefringentĀ crystalĀ 308.Ā TheĀ mergedĀ lightĀ beamĀ thenĀ entersĀ theĀ outputĀ opticalĀ fiberĀ 304Ā andĀ exitsĀ theĀ integratedĀ componentĀ 300.
FIG.Ā 9Ā isĀ aĀ sideĀ viewĀ 900Ā ofĀ theĀ integratedĀ componentĀ 300Ā ofĀ FIG.Ā 3Ā onĀ theĀ x-zĀ planeĀ showingĀ polarizationĀ states.Ā InĀ particular,Ā theĀ polarizationĀ statesĀ areĀ shownĀ forĀ lightĀ beamsĀ passingĀ fromĀ theĀ outputĀ opticalĀ fiberĀ 304Ā towardĀ theĀ inputĀ opticalĀ fiberĀ 302,Ā i.e.,Ā travelingĀ inĀ aĀ reverseĀ direction.Ā However,Ā asĀ illustratedĀ below,Ā theĀ lightĀ beamĀ inputĀ toĀ theĀ outputĀ opticalĀ fiberĀ 304Ā isĀ blockedĀ orĀ greatlyĀ attenuated,Ā e.g.,Ā byĀ 10Ā dBĀ orĀ greater,Ā toĀ limitĀ lightĀ exitingĀ theĀ inputĀ opticalĀ fiberĀ 302.
AĀ lightĀ beam,Ā e.g.,Ā havingĀ opticalĀ signalsĀ atĀ oneĀ orĀ moreĀ wavelength,Ā entersĀ theĀ integratedĀ componentĀ 300Ā throughĀ outputĀ opticalĀ fiberĀ 304.Ā TheĀ lightĀ beamĀ canĀ beĀ randomlyĀ polarized.Ā AfterĀ theĀ lightĀ beamĀ exitsĀ theĀ outputĀ opticalĀ fiberĀ 304,Ā theĀ lightĀ beamĀ passesĀ throughĀ theĀ birefringentĀ crystalĀ 308.
TheĀ birefringentĀ crystalĀ 308Ā separatesĀ theĀ opticalĀ beamĀ intoĀ aĀ firstĀ lightĀ beamĀ havingĀ aĀ firstĀ polarizationĀ directionĀ andĀ aĀ secondĀ lightĀ beamĀ havingĀ aĀ secondĀ polarizationĀ directionĀ whereĀ theĀ respectiveĀ polarizationĀ directionsĀ areĀ orthogonal,Ā asĀ illustratedĀ byĀ boxĀ 902Ā showingĀ theĀ polarizationĀ stateĀ andĀ locationĀ forĀ theĀ twoĀ beamsĀ relativeĀ toĀ aĀ cross-sectionĀ ofĀ theĀ integratedĀ componentĀ 300Ā followingĀ theĀ birefringentĀ crystalĀ 308.Ā AsĀ shownĀ inĀ boxĀ 902,Ā theĀ lightĀ beamsĀ haveĀ beenĀ separatedĀ inĀ theĀ lowerĀ pathĀ alongĀ theĀ y-axis.
TheĀ firstĀ andĀ secondĀ lightĀ beamsĀ areĀ locatedĀ inĀ theĀ lowerĀ portionĀ ofĀ aĀ crossĀ sectionĀ ofĀ theĀ integratedĀ deviceĀ andĀ thereforeĀ doĀ notĀ passĀ throughĀ theĀ halfĀ waveĀ plateĀ 310Ā afterĀ exitingĀ theĀ birefringentĀ crystalĀ 308.Ā TheĀ lightĀ beamsĀ passĀ throughĀ theĀ lensĀ 312Ā withoutĀ changeĀ inĀ polarizationĀ directionĀ andĀ thenĀ passĀ throughĀ theĀ FaradayĀ rotatorĀ 316.Ā UponĀ passingĀ throughĀ theĀ FaradayĀ rotatorĀ 316Ā theĀ polarizationĀ directionsĀ areĀ rotatedĀ 22.5Ā degreesĀ counter-clockwiseĀ asĀ illustratedĀ byĀ boxĀ 904.
TheĀ lightĀ beamsĀ exitingĀ theĀ FaradayĀ rotatorĀ 314Ā areĀ thenĀ incidentĀ onĀ theĀ prismĀ 316.Ā AĀ firstĀ portionĀ ofĀ theĀ lightĀ beamsĀ isĀ passedĀ throughĀ theĀ prismĀ 316Ā whileĀ aĀ secondĀ portionĀ isĀ reflected.Ā However,Ā dueĀ toĀ theĀ outputĀ fiberĀ 304Ā positionĀ relativeĀ toĀ theĀ lensĀ opticĀ axisĀ andĀ theĀ prismĀ 316Ā wedgeĀ angleĀ direction,Ā theĀ firstĀ portionĀ isĀ directedĀ byĀ theĀ prismĀ 316Ā toĀ exitĀ atĀ anĀ angleĀ thatĀ doesĀ notĀ provideĀ inputĀ toĀ theĀ photoĀ detectorĀ 318Ā orĀ providesĀ aĀ veryĀ smallĀ amountĀ toĀ beĀ detectedĀ byĀ theĀ photoĀ detectorĀ 318.
TheĀ reflectedĀ lightĀ beamsĀ ofĀ theĀ secondĀ portionĀ areĀ reflectedĀ toĀ theĀ upperĀ pathĀ ofĀ theĀ cross-sectionĀ ofĀ theĀ integratedĀ componentĀ 300.Ā PassingĀ backĀ throughĀ theĀ FaradayĀ rotatorĀ 314,Ā theĀ polarizationĀ directionsĀ areĀ rotatedĀ byĀ aĀ furtherĀ 22.5Ā degreesĀ counter-clockwiseĀ resultingĀ inĀ positiveĀ andĀ negativeĀ 45Ā degreeĀ polarizationĀ directions,Ā respectivelyĀ asĀ illustratedĀ byĀ boxĀ 906.Ā TheĀ reflectedĀ lightĀ beamsĀ exitingĀ theĀ FaradayĀ rotatorĀ 314Ā passĀ throughĀ theĀ lensĀ 312Ā withoutĀ changingĀ polarizationĀ directionĀ orĀ relativeĀ locationĀ inĀ theĀ cross-sectionĀ andĀ exitĀ theĀ lensĀ 312Ā towardĀ theĀ halfĀ waveĀ plateĀ 310.Ā AfterĀ passingĀ throughĀ theĀ halfĀ waveĀ plateĀ 310,Ā theĀ polarizationĀ directionĀ ofĀ eachĀ reflectedĀ lightĀ beamĀ isĀ rotatedĀ byĀ  45Ā degreesĀ counter-clockwiseĀ suchĀ thatĀ theĀ twoĀ lightĀ beamsĀ againĀ haveĀ verticalĀ andĀ horizontalĀ polarizationĀ directions,Ā respectively,Ā asĀ shownĀ byĀ boxĀ 908.
TheĀ reflectedĀ lightĀ beamsĀ enterĀ theĀ birefringentĀ crystalĀ 308.Ā BecauseĀ ofĀ theĀ relativeĀ positionĀ andĀ theĀ polarizationĀ directions,Ā theĀ lightĀ beamsĀ areĀ notĀ combinedĀ byĀ theĀ birefringentĀ crystalĀ 308.Ā Instead,Ā theyĀ areĀ furtherĀ separatedĀ suchĀ thatĀ theĀ exitĀ pathsĀ areĀ notĀ incidentĀ onĀ theĀ endĀ pointĀ ofĀ theĀ inputĀ opticalĀ fiberĀ 302.Ā Thus,Ā theĀ lightĀ beamsĀ areĀ notĀ passedĀ fromĀ theĀ outputĀ opticalĀ fiberĀ 304Ā toĀ theĀ inputĀ opticalĀ fiberĀ 306.
FIG.Ā 10Ā isĀ aĀ sideĀ viewĀ 1000Ā ofĀ theĀ integratedĀ componentĀ 300Ā ofĀ FIG.Ā 3Ā showingĀ aĀ pathĀ fromĀ theĀ inputĀ fiberĀ 302Ā toĀ theĀ photoĀ detectorĀ 318.Ā LightĀ enteringĀ theĀ inputĀ opticalĀ fiberĀ 302Ā isĀ ableĀ toĀ passĀ throughĀ theĀ birefringentĀ crystalĀ 308,Ā theĀ halfĀ waveĀ plateĀ 310,Ā theĀ lensĀ 312,Ā andĀ theĀ FaradayĀ rotatorĀ 314.Ā AĀ portionĀ passesĀ throughĀ theĀ prismĀ 316Ā dependingĀ onĀ aĀ specifiedĀ transmissionĀ rateĀ ofĀ theĀ prismĀ 316Ā whileĀ theĀ remainingĀ portionĀ isĀ reflectedĀ (notĀ shown)Ā .Ā TheĀ portionĀ thatĀ passesĀ throughĀ theĀ prismĀ 316Ā isĀ directedĀ toĀ theĀ photoĀ detectorĀ 318.Ā TheĀ photoĀ detectorĀ 318Ā convertsĀ incidentĀ lightĀ toĀ electricalĀ current,Ā whichĀ canĀ beĀ usedĀ e.Ā g.,Ā byĀ anĀ EDFAĀ toĀ determineĀ aĀ powerĀ ofĀ theĀ lightĀ beamĀ enteringĀ theĀ integratedĀ componentĀ 300.
FIG.Ā 11Ā isĀ aĀ sideĀ viewĀ 1100Ā ofĀ theĀ integratedĀ componentĀ 300Ā ofĀ FIG.Ā 3Ā showingĀ aĀ pathĀ fromĀ theĀ outputĀ fiberĀ 304Ā toĀ theĀ photoĀ detectorĀ 318.Ā LightĀ enteringĀ theĀ outputĀ opticalĀ fiberĀ 304Ā isĀ ableĀ toĀ passĀ throughĀ theĀ birefringentĀ crystalĀ 308,Ā theĀ lensĀ 312,Ā andĀ FaradayĀ rotatorĀ 314.Ā AĀ portionĀ passesĀ throughĀ theĀ prismĀ 316Ā dependingĀ onĀ aĀ specifiedĀ transmissionĀ rateĀ ofĀ theĀ prismĀ 316Ā whileĀ theĀ remainingĀ portionĀ isĀ reflectedĀ (notĀ shown)Ā .Ā However,Ā theĀ portionĀ passingĀ throughĀ theĀ prismĀ 316Ā isĀ nowĀ routedĀ suchĀ thatĀ veryĀ littleĀ ofĀ theĀ lightĀ isĀ ableĀ toĀ reachĀ theĀ photoĀ detectorĀ 318.Ā ForĀ example,Ā inĀ someĀ implementations,Ā theĀ electricalĀ currentĀ generatedĀ byĀ theĀ portionĀ ofĀ theĀ lightĀ incidentĀ onĀ theĀ photoĀ detectorĀ 118Ā originatingĀ fromĀ theĀ inputĀ opticalĀ portĀ 302Ā isĀ 10Ā timesĀ higherĀ thanĀ theĀ electricalĀ currentĀ generatedĀ byĀ theĀ portionĀ ofĀ theĀ lightĀ incidentĀ onĀ theĀ photoĀ detectorĀ 118Ā originatingĀ fromĀ theĀ outputĀ opticalĀ portĀ 304.Ā ThisĀ providesĀ uni-directionĀ ofĀ theĀ photoĀ detectorĀ response.
FIG.Ā 12Ā isĀ aĀ diagramĀ ofĀ anĀ exampleĀ oneĀ stageĀ EDFAĀ 1200Ā includingĀ anĀ outputĀ monitor.Ā EDFAĀ 1200Ā includeĀ anĀ inputĀ opticalĀ fiberĀ 1202Ā providingĀ anĀ inputĀ opticalĀ signalĀ toĀ anĀ integratedĀ WDMĀ andĀ isolatorĀ 1204.Ā AĀ pumpĀ sourceĀ 1206Ā providesĀ aĀ pumpĀ lightĀ toĀ theĀ integratedĀ WDMĀ andĀ isolatorĀ 1204Ā suchĀ thatĀ theĀ WDMĀ combinesĀ theĀ inputĀ opticalĀ signalĀ andĀ theĀ pumpĀ lightĀ andĀ outputsĀ theĀ combinedĀ opticalĀ signalĀ toĀ anĀ amplifierĀ fiberĀ 1208.Ā TheĀ amplifierĀ fiberĀ 1208,Ā e.g.,Ā andĀ EDF,Ā outputsĀ anĀ amplifiedĀ opticalĀ signalĀ toĀ anĀ integratedĀ componentĀ 1210Ā providingĀ isolator,Ā tap,Ā andĀ photoĀ detectorĀ functions.Ā TheĀ integratedĀ componentĀ 1210Ā isĀ similarĀ toĀ theĀ integratedĀ componentĀ 300Ā describedĀ above.Ā TheĀ integratedĀ componentĀ providesĀ outputĀ monitoringĀ ofĀ theĀ amplifiedĀ opticalĀ signalĀ priorĀ toĀ theĀ amplifiedĀ outputĀ opticalĀ signalĀ exitingĀ theĀ EDFAĀ 1200Ā fromĀ anĀ outputĀ opticalĀ fiberĀ 1212.
WhileĀ thisĀ specificationĀ containsĀ manyĀ specificĀ implementationĀ details,Ā theseĀ shouldĀ notĀ beĀ construedĀ asĀ limitationsĀ onĀ theĀ scopeĀ ofĀ anyĀ inventionsĀ orĀ ofĀ whatĀ mayĀ beĀ claimed,Ā butĀ ratherĀ asĀ descriptionsĀ ofĀ featuresĀ specificĀ toĀ particularĀ embodimentsĀ ofĀ particularĀ inventions.Ā CertainĀ featuresĀ thatĀ areĀ describedĀ inĀ thisĀ specificationĀ inĀ theĀ contextĀ ofĀ separateĀ embodimentsĀ canĀ alsoĀ beĀ implementedĀ inĀ combinationĀ inĀ aĀ singleĀ embodiment.Ā Conversely,Ā variousĀ featuresĀ thatĀ areĀ describedĀ inĀ theĀ contextĀ ofĀ aĀ singleĀ embodimentĀ canĀ alsoĀ beĀ implementedĀ inĀ multipleĀ embodimentsĀ separatelyĀ orĀ inĀ anyĀ suitableĀ subcombination.Ā Moreover,Ā althoughĀ featuresĀ mayĀ beĀ describedĀ aboveĀ asĀ actingĀ inĀ certainĀ combinationsĀ andĀ evenĀ initiallyĀ claimedĀ asĀ such,Ā oneĀ orĀ moreĀ featuresĀ fromĀ aĀ claimedĀ combinationĀ canĀ inĀ someĀ casesĀ beĀ excisedĀ fromĀ theĀ combination,Ā andĀ theĀ claimedĀ combinationĀ mayĀ beĀ directedĀ toĀ aĀ subcombinationĀ orĀ variationĀ ofĀ aĀ subcombination.
Similarly,Ā whileĀ operationsĀ areĀ depictedĀ inĀ theĀ drawingsĀ inĀ aĀ particularĀ order,Ā thisĀ shouldĀ notĀ beĀ understoodĀ asĀ requiringĀ thatĀ suchĀ operationsĀ beĀ performedĀ inĀ theĀ particularĀ orderĀ shownĀ orĀ inĀ sequentialĀ order,Ā orĀ thatĀ allĀ illustratedĀ operationsĀ beĀ performed,Ā toĀ achieveĀ desirableĀ results.Ā InĀ certainĀ circumstances,Ā multitaskingĀ andĀ parallelĀ processingĀ mayĀ beĀ advantageous.Ā Moreover,Ā theĀ separationĀ ofĀ variousĀ systemĀ componentsĀ inĀ theĀ embodimentsĀ describedĀ aboveĀ shouldĀ notĀ beĀ understoodĀ asĀ requiringĀ suchĀ separationĀ inĀ allĀ embodiments,Ā andĀ itĀ shouldĀ beĀ understoodĀ thatĀ theĀ describedĀ programĀ componentsĀ andĀ systemsĀ canĀ generallyĀ beĀ integratedĀ togetherĀ inĀ aĀ singleĀ softwareĀ productĀ orĀ packagedĀ intoĀ multipleĀ softwareĀ products.
Thus,Ā particularĀ embodimentsĀ ofĀ theĀ subjectĀ matterĀ haveĀ beenĀ described.Ā OtherĀ embodimentsĀ areĀ withinĀ theĀ scopeĀ ofĀ theĀ followingĀ claims.Ā InĀ someĀ cases,Ā theĀ actionsĀ recitedĀ inĀ theĀ claimsĀ canĀ beĀ performedĀ inĀ aĀ differentĀ orderĀ andĀ stillĀ achieveĀ desirableĀ results.Ā InĀ addition,Ā theĀ processesĀ depictedĀ inĀ theĀ accompanyingĀ figuresĀ doĀ notĀ necessarilyĀ requireĀ theĀ particularĀ orderĀ shown,Ā orĀ sequentialĀ order,Ā toĀ achieveĀ desirableĀ results.Ā InĀ certainĀ implementations,Ā multitaskingĀ andĀ parallelĀ processingĀ mayĀ beĀ advantageous.

Claims (17)

  1. AnĀ opticalĀ amplifierĀ comprising:
    anĀ inputĀ portĀ forĀ receivingĀ anĀ inputĀ opticalĀ signalļ¼›
    aĀ wavelengthĀ divisionĀ multiplexerĀ havingĀ aĀ firstĀ inputĀ coupledĀ toĀ theĀ inputĀ port,Ā aĀ secondĀ inputĀ coupledĀ toĀ aĀ pumpĀ source,Ā andĀ anĀ outputĀ coupledĀ toĀ anĀ amplificationĀ fiberļ¼›Ā and
    anĀ integratedĀ componentĀ configuredĀ toĀ provideĀ outputĀ monitoringĀ andĀ isolation,Ā whereinĀ theĀ integratedĀ componentĀ isĀ configuredĀ to:Ā separateĀ aĀ firstĀ portionĀ ofĀ aĀ lightĀ signalĀ receivedĀ fromĀ theĀ amplificationĀ fiber,Ā directĀ theĀ firstĀ portionĀ toĀ aĀ photoĀ detector,Ā andĀ directĀ aĀ secondĀ portionĀ ofĀ theĀ inputĀ lightĀ fromĀ theĀ amplificationĀ fiberĀ toĀ anĀ outputĀ port,Ā andĀ whereinĀ theĀ integratedĀ componentĀ isĀ configuredĀ toĀ attenuateĀ lightĀ signalsĀ receivedĀ fromĀ theĀ outputĀ port.
  2. TheĀ opticalĀ amplifierĀ ofĀ claimĀ 1,Ā furtherĀ comprising:
    aĀ controllerĀ configuredĀ toĀ receiveĀ anĀ electricalĀ signalĀ fromĀ theĀ photoĀ detectorĀ andĀ toĀ controlĀ anĀ outputĀ powerĀ ofĀ theĀ pumpĀ sourceĀ basedĀ atĀ leastĀ inĀ partĀ onĀ theĀ receivedĀ electricalĀ signal.
  3. TheĀ opticalĀ amplifierĀ ofĀ claimĀ 1,Ā whereinĀ theĀ integratedĀ componentĀ attenuatesĀ lightĀ receivedĀ fromĀ theĀ outputĀ portĀ byĀ 10Ā dBĀ orĀ higher.
  4. TheĀ opticalĀ amplifierĀ ofĀ claimĀ 1,Ā comprising:
    anĀ isolatorĀ andĀ aĀ tapĀ positionedĀ betweenĀ theĀ inputĀ portĀ andĀ theĀ wavelengthĀ divisionĀ multiplexer.
  5. TheĀ opticalĀ amplifierĀ ofĀ claimĀ 4,Ā comprisingĀ aĀ secondĀ photoĀ detectorĀ coupledĀ toĀ theĀ tapĀ configuredĀ toĀ monitorĀ theĀ inputĀ opticalĀ signal.
  6. TheĀ opticalĀ amplifierĀ ofĀ claimĀ 1,Ā comprising:
    aĀ secondĀ integratedĀ componentĀ positionedĀ betweenĀ theĀ inputĀ portĀ andĀ theĀ wavelengthĀ divisionĀ multiplexer,Ā theĀ secondĀ integratedĀ componentĀ configuredĀ toĀ provideĀ inputĀ monitoringĀ andĀ isolationĀ whereinĀ theĀ integratedĀ componentĀ isĀ configuredĀ to:Ā separateĀ aĀ firstĀ portionĀ ofĀ theĀ inputĀ opticalĀ signalĀ receivedĀ fromĀ theĀ firstĀ port,Ā directĀ theĀ firstĀ portionĀ toĀ aĀ photoĀ detectorĀ and,Ā directĀ aĀ secondĀ portionĀ ofĀ theĀ inputĀ opticalĀ signalĀ toĀ anĀ outputĀ coupledĀ toĀ theĀ wavelengthĀ divisionĀ multiplexer,Ā andĀ whereinĀ theĀ secondĀ integratedĀ componentĀ isĀ configuredĀ toĀ attenuateĀ lightĀ signalsĀ receivedĀ fromĀ theĀ wavelengthĀ divisionĀ multiplexer.
  7. TheĀ opticalĀ amplifierĀ ofĀ claimĀ 1,Ā whereinĀ theĀ wavelengthĀ divisionĀ multiplexerĀ isĀ combinedĀ withĀ anĀ isolatorĀ formingĀ aĀ thirdĀ integratedĀ component.
  8. AnĀ opticalĀ amplifierĀ comprising:
    anĀ inputĀ portĀ forĀ receivingĀ anĀ inputĀ opticalĀ signalļ¼›
    aĀ firstĀ integratedĀ componentĀ comprisingĀ anĀ isolatorĀ andĀ aĀ wavelengthĀ divisionĀ  multiplexer,Ā whereinĀ theĀ integratedĀ componentĀ hasĀ aĀ firstĀ inputĀ coupledĀ toĀ theĀ inputĀ portĀ forĀ receivingĀ theĀ inputĀ opticalĀ signal,Ā aĀ secondĀ inputĀ coupledĀ toĀ aĀ pumpĀ source,Ā andĀ anĀ outputĀ coupledĀ toĀ anĀ amplificationĀ fiberļ¼›Ā and
    aĀ secondĀ integratedĀ componentĀ configuredĀ toĀ provideĀ outputĀ monitoringĀ andĀ isolation,Ā whereinĀ theĀ secondĀ integratedĀ componentĀ isĀ configuredĀ to:Ā separateĀ aĀ firstĀ portionĀ ofĀ inputĀ lightĀ fromĀ theĀ amplificationĀ fiber,Ā directĀ theĀ firstĀ portionĀ toĀ aĀ photoĀ detector,Ā andĀ directĀ aĀ secondĀ portionĀ ofĀ theĀ inputĀ lightĀ fromĀ theĀ amplificationĀ fiberĀ toĀ anĀ outputĀ port,Ā andĀ whereinĀ theĀ secondĀ integratedĀ componentĀ isĀ configuredĀ toĀ attenuateĀ lightĀ signalsĀ receivedĀ fromĀ theĀ outputĀ port.
  9. TheĀ opticalĀ amplifierĀ ofĀ claimĀ 8,Ā furtherĀ comprising:
    aĀ controllerĀ configuredĀ toĀ receiveĀ anĀ electricalĀ signalĀ fromĀ theĀ photoĀ detectorĀ andĀ toĀ controlĀ anĀ outputĀ powerĀ ofĀ theĀ pumpĀ sourceĀ basedĀ atĀ leastĀ inĀ partĀ onĀ theĀ receivedĀ electricalĀ signal.
  10. TheĀ opticalĀ amplifierĀ ofĀ claimĀ 8,Ā wherein:
    theĀ firstĀ integratedĀ componentĀ attenuatesĀ lightĀ receivedĀ fromĀ theĀ amplifierĀ fiberĀ byĀ 10Ā dBĀ orĀ higherļ¼›Ā and
    theĀ secondĀ integratedĀ componentĀ attenuatesĀ lightĀ receivedĀ fromĀ theĀ outputĀ portĀ byĀ 10Ā dBĀ orĀ higher.
  11. AnĀ opticalĀ amplifierĀ comprising:
    anĀ inputĀ portĀ forĀ receivingĀ anĀ inputĀ opticalĀ signalļ¼›
    aĀ firstĀ integratedĀ componentĀ configuredĀ toĀ provideĀ inputĀ monitoringĀ andĀ isolation,Ā whereinĀ theĀ firstĀ integratedĀ componentĀ isĀ configuredĀ to:Ā separateĀ aĀ firstĀ portionĀ ofĀ theĀ inputĀ opticalĀ signal,Ā directĀ theĀ firstĀ portionĀ toĀ aĀ firstĀ photoĀ detector,Ā andĀ toĀ directĀ aĀ secondĀ portionĀ ofĀ theĀ inputĀ opticalĀ signalĀ toĀ aĀ wavelengthĀ divisionĀ multiplexer,Ā andĀ whereinĀ theĀ firstĀ integratedĀ componentĀ isĀ configuredĀ toĀ attenuateĀ lightĀ signalsĀ receivedĀ fromĀ theĀ wavelengthĀ divisionĀ multiplexerļ¼›
    theĀ wavelengthĀ divisionĀ multiplexerĀ havingĀ aĀ firstĀ inputĀ coupledĀ toĀ anĀ outputĀ ofĀ theĀ firstĀ integratedĀ component,Ā aĀ secondĀ inputĀ coupledĀ toĀ aĀ pumpĀ source,Ā andĀ anĀ outputĀ coupledĀ toĀ anĀ amplificationĀ fiberļ¼›Ā and
    aĀ secondĀ integratedĀ componentĀ configuredĀ toĀ provideĀ outputĀ monitoringĀ andĀ isolation,Ā whereinĀ theĀ secondĀ integratedĀ componentĀ isĀ configuredĀ to:Ā separateĀ aĀ firstĀ portionĀ ofĀ inputĀ lightĀ fromĀ theĀ amplificationĀ fiber,Ā directĀ theĀ firstĀ portionĀ toĀ aĀ secondĀ photoĀ detector,Ā andĀ toĀ directĀ aĀ secondĀ portionĀ ofĀ theĀ inputĀ lightĀ fromĀ theĀ amplificationĀ fiberĀ toĀ anĀ outputĀ port,Ā andĀ whereinĀ theĀ secondĀ integratedĀ componentĀ isĀ configuredĀ toĀ attenuateĀ lightĀ signalsĀ receivedĀ fromĀ theĀ outputĀ port.
  12. TheĀ opticalĀ amplifierĀ ofĀ claimĀ 11,Ā furtherĀ comprising:
    aĀ controllerĀ configuredĀ toĀ receiveĀ aĀ firstĀ electricalĀ signalĀ fromĀ theĀ firstĀ photoĀ detectorĀ andĀ aĀ secondĀ electricalĀ signalĀ receivedĀ fromĀ theĀ secondĀ photoĀ detectorĀ andĀ toĀ controlĀ anĀ  outputĀ powerĀ ofĀ theĀ pumpĀ sourceĀ basedĀ atĀ leastĀ inĀ partĀ onĀ theĀ receivedĀ firstĀ andĀ secondĀ electricalĀ signals.
  13. AnĀ integratedĀ componentĀ comprising:
    anĀ inputĀ opticalĀ fiberĀ andĀ anĀ outputĀ opticalĀ fiberļ¼›
    aĀ birefringentĀ crystalĀ havingĀ aĀ fistĀ surfaceĀ facingĀ anĀ endĀ ofĀ theĀ inputĀ opticalĀ fiberĀ andĀ theĀ outputĀ opticalĀ fiberĀ andĀ aĀ secondĀ surfaceĀ facingĀ aĀ waveĀ plate,Ā whereinĀ theĀ waveĀ plateĀ coversĀ aĀ portionĀ ofĀ theĀ birefringentĀ crystalļ¼›
    aĀ lensĀ opticallyĀ positionedĀ betweenĀ theĀ waveĀ plateĀ andĀ aĀ polarizationĀ rotatorļ¼›Ā and
    aĀ prismĀ positionedĀ betweenĀ theĀ polarizationĀ rotatorĀ andĀ aĀ photodetector.
  14. TheĀ integratedĀ componentĀ ofĀ claimĀ 13,Ā whereinĀ theĀ polarizationĀ rotatorĀ isĀ aĀ FaradayĀ rotator.
  15. TheĀ integratedĀ componentĀ ofĀ claimĀ 13,Ā whereinĀ theĀ inputĀ opticalĀ fiberĀ andĀ theĀ outputĀ opticalĀ fiberĀ areĀ heldĀ inĀ aĀ commonĀ package.
  16. TheĀ integratedĀ componentĀ ofĀ claimĀ 13,Ā whereinĀ anĀ inputĀ opticalĀ signalĀ receivedĀ atĀ theĀ inputĀ opticalĀ fiberĀ isĀ routedĀ toĀ theĀ prism,Ā whereinĀ theĀ prismĀ passesĀ aĀ portionĀ ofĀ theĀ inputĀ opticalĀ signalĀ toĀ theĀ photoĀ detectorĀ andĀ reflectsĀ aĀ portionĀ ofĀ theĀ inputĀ opticalĀ signalĀ towardĀ theĀ outputĀ opticalĀ fiber.
  17. TheĀ integratedĀ componentĀ ofĀ claimĀ 13,Ā whereinĀ anĀ inputĀ opticalĀ signalĀ receivedĀ atĀ theĀ outputĀ opticalĀ fiberĀ passesĀ throughĀ elementsĀ ofĀ theĀ integratedĀ componentĀ suchĀ thatĀ theĀ opticalĀ signalĀ doesĀ notĀ passĀ throughĀ theĀ inputĀ opticalĀ fiber.
PCT/CN2015/089040 2015-09-07 2015-09-07 Optical amplifier WO2017041206A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018530950A JP2018530929A (en) 2015-09-07 2015-09-07 Optical amplifier
EP15903313.3A EP3347766A4 (en) 2015-09-07 2015-09-07 Optical amplifier
PCT/CN2015/089040 WO2017041206A1 (en) 2015-09-07 2015-09-07 Optical amplifier
US15/758,154 US10855044B2 (en) 2015-09-07 2015-09-07 Optical amplifier
CN201580084412.0A CN108700791A (en) 2015-09-07 2015-09-07 Image intensifer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/089040 WO2017041206A1 (en) 2015-09-07 2015-09-07 Optical amplifier

Publications (1)

Publication Number Publication Date
WO2017041206A1 true WO2017041206A1 (en) 2017-03-16

Family

ID=58240459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089040 WO2017041206A1 (en) 2015-09-07 2015-09-07 Optical amplifier

Country Status (5)

Country Link
US (1) US10855044B2 (en)
EP (1) EP3347766A4 (en)
JP (1) JP2018530929A (en)
CN (1) CN108700791A (en)
WO (1) WO2017041206A1 (en)

Cited By (1)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
US10855044B2 (en) 2015-09-07 2020-12-01 Molex, Llc Optical amplifier

Families Citing this family (3)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021223148A1 (en) * 2020-05-07 2021-11-11 Lumentum Operations Llc Optical isolator core in between fiber and collimator lens
CN111799642A (en) * 2020-07-24 2020-10-20 ę— é””åø‚å¾·ē§‘ē«‹å…‰ē”µå­ęŠ€ęœÆęœ‰é™å…¬åø Optical fiber amplifier compatible with SFP + packaging
CN114859472B (en) * 2022-05-25 2022-12-06 ē ęµ·å…‰ē„±ē§‘ęŠ€ęœ‰é™å…¬åø Multifunctional integrated optical device

Citations (8)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
CN2563591Y (en) * 2002-03-20 2003-07-30 华äø­ē§‘ęŠ€å¤§å­¦ Optical path mixing device
CN1839521A (en) * 2003-06-20 2006-09-27 å„„ę™®ęž—å…‹é€šč®Æč‚”ä»½ęœ‰é™å…¬åø Optical fiber amplifier with error correction
US7130121B2 (en) * 2002-05-03 2006-10-31 Lightwaves 2020, Inc. Erbium-doped fiber amplifier and integrated module components
CN101211087A (en) * 2006-12-31 2008-07-02 华äøŗꊀęœÆęœ‰é™å…¬åø Optical fibre amplifier and manufacture method and fiber communication system
CN203414622U (en) * 2013-08-29 2014-01-29 č®Æč¾¾åŗ·é€šč®Æč®¾å¤‡(ęƒ å·ž)ęœ‰é™å…¬åø Backward mixing device of erbium doped fiber amplifier
CN103941342A (en) * 2014-04-29 2014-07-23 ę·±åœ³åø‚č¶Šęµ·å…‰é€šäæ”ē§‘ęŠ€ęœ‰é™å…¬åø Structure of polarization-maintaining optical hybrid device
CN204575906U (en) * 2015-05-04 2015-08-19 ę·±åœ³åø‚鹏大光ē”µęŠ€ęœÆęœ‰é™å…¬åø The backward optoelectric hybrid device of Erbium-Doped Fiber Amplifier (EDFA)
CN204575907U (en) * 2015-05-04 2015-08-19 ę·±åœ³åø‚鹏大光ē”µęŠ€ęœÆęœ‰é™å…¬åø A kind of forward direction optoelectric hybrid device of Erbium-Doped Fiber Amplifier (EDFA)

Family Cites Families (14)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0764021A (en) * 1993-08-23 1995-03-10 Matsushita Electric Ind Co Ltd Optical coupler and optical fiber amplifier
US5493440A (en) 1993-10-19 1996-02-20 Matsushita Electric Industrial Co., Ltd. Optical isolator and optical fiber amplifier
JPH08234046A (en) 1995-02-24 1996-09-13 Kyocera Corp Optical parts
JPH08262374A (en) 1995-03-20 1996-10-11 Matsushita Electric Ind Co Ltd Optical isolator
JP3512264B2 (en) * 1995-05-08 2004-03-29 åƌ士通ę Ŗ式会ē¤¾ Optical amplifier
KR100207603B1 (en) * 1997-01-28 1999-07-15 ģœ¤ģ¢…ģš© An optical isolator module and an optical amplifier using the same
SE522586C2 (en) * 1998-04-01 2004-02-24 Ericsson Telefon Ab L M Optical fiber amplifier with gain equalizing filter
US6480331B1 (en) * 1999-11-10 2002-11-12 Avanex Corporation Reflection-type polarization-independent optical isolator, optical isolator/amplifier/monitor, and optical system
US20020154403A1 (en) * 2001-04-23 2002-10-24 Trotter, Donald M. Photonic crystal optical isolator
JP2006228790A (en) 2005-02-15 2006-08-31 Nec Tokin Corp Optical isolator and optical fiber amplifier using it
JP2008003211A (en) 2006-06-21 2008-01-10 Osaki Electric Co Ltd In-line type hybrid optical device
US7440163B1 (en) * 2006-11-22 2008-10-21 Alliance Fiber Optic Products, Inc. Compact passive module for erbium and other fiber amplifiers
JP5205602B2 (en) 2009-09-24 2013-06-05 ę Ŗ式会ē¤¾ć‚Øć‚¹ćƒ»ć‚Ø惠惻ć‚Øćƒ ćƒ—ćƒ¬ć‚·ć‚øćƒ§ćƒ³ Inline optical isolator
JP2018530929A (en) 2015-09-07 2018-10-18 ć‚Ŗ惗ćƒŖćƒ³ć‚Æ ć‚³ćƒŸćƒ„ćƒ‹ć‚±ćƒ¼ć‚·ćƒ§ćƒ³ć‚ŗ ćƒ¦ćƒ¼ć‚Øć‚¹ ćƒ‡ć‚£ćƒ“ć‚øćƒ§ćƒ³ ć‚Ø惫ć‚Øćƒ«ć‚·ćƒ¼ Optical amplifier

Patent Citations (8)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
CN2563591Y (en) * 2002-03-20 2003-07-30 华äø­ē§‘ęŠ€å¤§å­¦ Optical path mixing device
US7130121B2 (en) * 2002-05-03 2006-10-31 Lightwaves 2020, Inc. Erbium-doped fiber amplifier and integrated module components
CN1839521A (en) * 2003-06-20 2006-09-27 å„„ę™®ęž—å…‹é€šč®Æč‚”ä»½ęœ‰é™å…¬åø Optical fiber amplifier with error correction
CN101211087A (en) * 2006-12-31 2008-07-02 华äøŗꊀęœÆęœ‰é™å…¬åø Optical fibre amplifier and manufacture method and fiber communication system
CN203414622U (en) * 2013-08-29 2014-01-29 č®Æč¾¾åŗ·é€šč®Æč®¾å¤‡(ęƒ å·ž)ęœ‰é™å…¬åø Backward mixing device of erbium doped fiber amplifier
CN103941342A (en) * 2014-04-29 2014-07-23 ę·±åœ³åø‚č¶Šęµ·å…‰é€šäæ”ē§‘ęŠ€ęœ‰é™å…¬åø Structure of polarization-maintaining optical hybrid device
CN204575906U (en) * 2015-05-04 2015-08-19 ę·±åœ³åø‚鹏大光ē”µęŠ€ęœÆęœ‰é™å…¬åø The backward optoelectric hybrid device of Erbium-Doped Fiber Amplifier (EDFA)
CN204575907U (en) * 2015-05-04 2015-08-19 ę·±åœ³åø‚鹏大光ē”µęŠ€ęœÆęœ‰é™å…¬åø A kind of forward direction optoelectric hybrid device of Erbium-Doped Fiber Amplifier (EDFA)

Non-Patent Citations (1)

* Cited by examiner, ā€  Cited by third party
Title
See also references of EP3347766A4 *

Cited By (1)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
US10855044B2 (en) 2015-09-07 2020-12-01 Molex, Llc Optical amplifier

Also Published As

Publication number Publication date
EP3347766A4 (en) 2019-04-03
EP3347766A1 (en) 2018-07-18
JP2018530929A (en) 2018-10-18
US10855044B2 (en) 2020-12-01
CN108700791A (en) 2018-10-23
US20180254599A1 (en) 2018-09-06

Similar Documents

Publication Publication Date Title
JP6102943B2 (en) Optical device
US6295393B1 (en) Polarized light synthesizing apparatus, a polarized light splitting apparatus and a pump light outputting apparatus
US10855044B2 (en) Optical amplifier
CN109716599B (en) Fiber coupled laser source pump with wavelength division multiplexer, isolator, tap filter and photodetector
JP3778641B2 (en) Optical amplifier
KR20120066048A (en) Assembly for monitoring power of randomly polarized light
CA2394004A1 (en) Integrated isolator fused coupler method and apparatus
US6330117B1 (en) Optical isolator module and optical amplifier using the same
US7440163B1 (en) Compact passive module for erbium and other fiber amplifiers
CN109390839B (en) Optical module and erbium-doped fiber amplifier
CN110429459A (en) A kind of fiber amplifier
TWI463815B (en) Feedback light tuning device and an optical communication system and method using the same
US7876496B2 (en) Free-space optical module for optical amplification
US11489311B2 (en) Optical amplifier
JP3435287B2 (en) Optical components
KR20130009134A (en) Optical package and erbium-doped fiber amplifier using the same
KR101302161B1 (en) Erbium-doped fiber amplifier
JPH06164021A (en) Method of monitoring optical amplifier
KR100255650B1 (en) Optical amplifier
CN117109551A (en) Polarization-maintaining ASE light source for high-precision fiber-optic gyroscope
JPH06260711A (en) Integrated optical fiber amplifier
CN114696188A (en) Optical signal amplifying device and related optical communication equipment
JPH07218755A (en) Optical circuit device
JPH07335956A (en) Light amplifier and photodetector
JP2002198594A (en) Wide-band ase light source

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15903313

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018530950

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15758154

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015903313

Country of ref document: EP