WO2017039254A1 - 오픈 셀 케이슨 구조물 및 시공 방법 - Google Patents

오픈 셀 케이슨 구조물 및 시공 방법 Download PDF

Info

Publication number
WO2017039254A1
WO2017039254A1 PCT/KR2016/009567 KR2016009567W WO2017039254A1 WO 2017039254 A1 WO2017039254 A1 WO 2017039254A1 KR 2016009567 W KR2016009567 W KR 2016009567W WO 2017039254 A1 WO2017039254 A1 WO 2017039254A1
Authority
WO
WIPO (PCT)
Prior art keywords
caisson
cell
intercell
caissons
filled
Prior art date
Application number
PCT/KR2016/009567
Other languages
English (en)
French (fr)
Inventor
박우선
원덕희
서지혜
이요섭
이오진
Original Assignee
한국해양과학기술원
(유)이도건설
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150121583A external-priority patent/KR101613886B1/ko
Priority claimed from KR1020160044855A external-priority patent/KR101727510B1/ko
Application filed by 한국해양과학기술원, (유)이도건설 filed Critical 한국해양과학기술원
Priority to CN201680050292.7A priority Critical patent/CN108138456A/zh
Publication of WO2017039254A1 publication Critical patent/WO2017039254A1/ko
Priority to PH12018500439A priority patent/PH12018500439A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • E02B3/06Moles; Piers; Quays; Quay walls; Groynes; Breakwaters ; Wave dissipating walls; Quay equipment
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/16Sealings or joints
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D23/00Caissons; Construction or placing of caissons
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D23/00Caissons; Construction or placing of caissons
    • E02D23/02Caissons able to be floated on water and to be lowered into water in situ
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D25/00Joining caissons, sinkers, or other units to each other under water

Definitions

  • the present invention relates to a caisson structure and a construction method, and more specifically, by introducing a new concept of an open cell and an intercell to a caisson, as compared to the conventional individual caisson structure, while reducing the number of walls to reduce the manufacturing cost to the construction method There is almost no difference, and it relates to a flexible caisson structure and its construction method which can interlock neighboring caissons into flexible sandstones, and each caisson can respond individually to uneven settlement of the ground.
  • caisson is a structure that is essential to the construction of the port. For example, it is applied to important facilities of ports such as gravity barriers and breakwaters.
  • caissons In the case of breakwaters, caissons must withstand the horizontal forces of the waves at their own weight. By the way, blue is not always constant, and the horizontal force of blue is concentrated frequently in one caisson. However, assuming that the horizontal force is concentrated, the caisson is designed to increase the weight of caisson, which leads to an increase in cost and deterioration of constructability. For example, the greater the load on the caisson, the higher the manufacturing cost, and the greater the scale of heavy equipment, such as cranes that can handle it.
  • an interlocking section in which reinforcing bars are interwoven between two neighboring caissons is made, and this space is isolated from seawater, and concrete is poured to construct a caisson construction method in which the two neighboring caissons are integrally joined at the point where they meet each other. There is a bar.
  • this construction method is not only difficult to construct itself, but after construction, the caissons are completely integrated by the concrete placed in the space where the two caissons face, so that the caissons on the ground where the unequal sedimentation occurs when the ground unequal sediment occurs It is not possible to sink naturally, and there is a high possibility that the stress caused by the failure of the caisson of such a very high load is concentrated in a specific area and the caisson is destroyed.
  • the external force due to the waves continues to work for more than 30 to 50 years after the caisson is constructed, and during this period, If the interlocking part between neighboring caissons is not flexible and the interlocking part is deformed like a rigid body after a while, one caisson with the concentrated horizontal force is pushed backwards to transfer the load to both interlocked caissons. As the load is concentrated at one point of the interlocking site acting as a rigid body, there is a high possibility that the caisson will be broken.
  • the caisson is not susceptible to blue waves because the caisson does not exert its design load until the filling material is filled inside the caisson. If an unexpected wave occurs before the filling of the caisson is completed, the caisson will be pushed by the waves and fall. Therefore, a method of preventing caisson from being destroyed during construction is required.
  • the mound installed in the lower part of the interlocking caisson structures disclosed in the prior art only functions to support the caisson structure from the bottom and provide friction resistance, but such mound can also be interlocked if it can continuously contribute to the caisson interlocking structure. The effect could be even greater.
  • the present invention has been made to solve the problems described above, it is possible to omit the walls of both ends of the caisson to reduce the number of walls and to make the wall thinner to reduce the overall construction cost, while the construction is good, the two neighboring
  • the interlocking of the neighboring caissons can be flexibly interlocked, effectively resisting the blue waves and preventing damage to the interlocking sites in spite of the ground unevenness.
  • the interlocking area remains flexible during the decades after construction, and the interlocking of the neighboring caissons before completing the filling of the caissons not only after construction but also during the construction process allows the harbor structures to be used during construction. Open cell can ensure high stability It aims to provide a Basin structures and construction methods.
  • an object of the present invention is to provide an open cell caisson structure and construction method that can further enhance the interlocking effect by contributing to the mound installed on the sea bottom to the interlocking structure between caissons.
  • the present invention is a caisson structure mounted on the mound formed on the seabed by a foundation stone, the caisson used in the structure: is opened upwards and the side is defined by the wall (11) A closed cell 12 and formed on the side of the caisson, the outer side is provided with an open cell 13 of the open shape, the plurality of caisson 10 so that the open cell 13 facing each other
  • the mound is filled in the intercell 22 space formed by two open cells 13 facing each other, and the filling material 30 is filled in each cell 12. It provides a caisson structure, characterized in that the dead stone inside the intercell 22 to interlock two neighboring caissons.
  • a shear key 18 may be formed for dispersing shear force due to the difference in load between caissons when the open cell is flexibly filled in the open cell area.
  • the closed cell 12 may be disposed at least in front of the front and rear of the front of the open cell 13.
  • Upper concrete may be installed on the caisson.
  • a rear-filled seat may be installed at the rear of the caisson.
  • the open cell 13 may have an inner side, a front side, and a rear side, and the upper, lower, and outer sides may be open.
  • the lower part of the open cell 13 may be partially or fully open.
  • the dead stone inside the intercell 22 can be continuously maintained in a flexible state.
  • the dead stone filled in the space of the intercell 22 may be a standard corresponding to the dead stone of the mound.
  • the dead stone filled in the intercell 22 space may be connected to the mound through an open lower portion of the intercell 22.
  • a method for constructing the caisson structure the step of laying a foundation stone on the upper surface of the seabed to form a mound; Leveling the mound top surface; Forming an intercell 22 by arranging a plurality of caissons 10 in a lateral direction so that the open cells 13 face each other; And filling the filling material in the cell 12 of the caisson 10 is placed, the intercell 22 is filled with a stone of the standard corresponding to the basic stone, the interior of the intercell 22 is a mound foundation stone It provides a caisson construction method comprising the step of: to be kept in a flexible state connected with.
  • the filling of the filling material and the dead stone in the cell 12 and the intercell 22 may include: a first step of partially filling the filling material in the cell 12; A second step of filling all of the dead stones in the intercell 22 after the first step; And a third step of filling all of the filling material in the cell 12 after the second step.
  • the method may further include installing a back filling seat.
  • the caisson construction method according to the present invention as compared to the case of applying a general caisson can reduce one thick side wall for each caisson, it is possible to greatly reduce the material cost, as well as the construction is very compared to the existing interlocking method Simple and easy to maintain.
  • the interlocking portion is filled with a flexible seating material of the filling type does not cause stress concentration, the structural safety is higher than that of the existing interlocking caisson, is generated by a seat that is permanently flexible between adjacent caissons Due to the interlocking effect, the effect of dispersing the maximum load acting on the port structure is permanently maintained, which can permanently increase the stability of the structure's activity and conduction. It is greatly affected by the reduction, which can reduce the ground reinforcement cost.
  • the interlocking portion is filled with a flexible sandstone type filling material, even when the ground is unevenly settled, the caisson mounted on the settled ground can be moved independently and flexibly with respect to the neighboring caissons. The risk of destruction of the caisson structure and interlocking parts due to uneven settlement of
  • the maximum horizontal force of the blue by interlocking can be smoothed to increase the resistance to the horizontal force.
  • the present invention does not need to work underwater for interlocking or to mobilize additional equipment, the construction is easier and more economical.
  • the interlocking structure of the caisson is flexible and integrally formed with the mound, thereby further increasing the interlocking effect of the caisson.
  • the caisson structure can be dismantled without any difference from the caisson structure which is not interlocked when disassembling the caisson.
  • FIG. 1 is a perspective view of a conventional caisson
  • FIG. 2 is a perspective view of a caisson as an embodiment according to the present invention.
  • FIG. 3 is an orthogonal view of the caisson of FIG. 2;
  • 4 to 8 is a view showing in sequence the method for constructing a port structure using a caisson according to the present invention
  • FIG. 9 is a view showing the form of the configuration for interlocking the caisson structure according to the present invention.
  • 10 to 12 are views sequentially showing another method of constructing a port structure using a caisson according to the present invention.
  • FIG. 13 is a view showing another embodiment of the caisson according to the present invention.
  • Figure 14 is a perspective view showing a process in which the serpentine spill prevention cap is installed in the caisson according to the present invention
  • FIG. 15 is a plan view of a caisson installed with a dead stone leak prevention cap of FIG. 14;
  • FIG. 16 is a plan view illustrating a state in which the caissons of FIG. 15 are disposed;
  • FIG. 17 is an enlarged view of a portion A of FIG. 16 and illustrates a state in which front and rear members facing each other are spaced apart from each other in a state in which caissons are disposed;
  • FIG. 18 is a view showing a state in which the dead stone spill prevention caps facing each other by filling the mortar in the buffer space of FIG.
  • FIG. 19 is an enlarged view of a portion A of FIG. 16 and illustrates a state in which front and rear members facing each other are in close contact with each other when caissons are disposed.
  • FIG. 1 is a perspective view of a conventional caisson
  • FIG. 2 is a perspective view of a caisson as an embodiment according to the present invention
  • Figure 3 is a perspective view of the caisson of FIG.
  • the conventional caisson 90 illustrated in FIG. 1 forms a cell 92 of 4 * 3 in width and length, and for this purpose, sidewalls extending in the left and right directions on the drawing are spaced apart from each other in front and back, and In the drawing, the sidewalls extending in the front-rear direction are arranged to be spaced apart from each other five side by side.
  • These conventional caissons 90 are aligned to the left and right, and then placed, and then the filling block is installed in the cell 92, the upper block is installed.
  • the caisson according to the present invention is provided with a cell 12 of the width * length 3 * 3, the width * length 1/2 * 3 Open cells 22 are provided at both ends thereof, and the same number and volume of cells as the conventional caisson 90 are provided, while the side walls extending in the left and right directions on the drawing are spaced apart from each other in front and rear four side by side. And, the side wall extending in the front-rear direction on the drawing is a form in which four side by side spaced apart. That is, the number of side walls is reduced by one compared with the conventional caisson.
  • the length of the front and rear members when the length of the front and rear members is about 0.5 to 3 m, the length of the two front and rear members facing each other corresponds to twice the length of the front and rear members, so that one cell is completely covered by the two front and rear members. It is possible to form an intercell.
  • the front and rear members when the front and rear members are configured in the form of a cell (see FIG. 13), the length of the cell corresponding to the front and rear members may be set to about 6 m or less corresponding to the length of the closed cell 12.
  • the intercell has the meaning of one intact cell and functions as a cell. Therefore, the intercell forms a joint on the faces facing each other between caissons, and blocks this portion to prevent water from flowing through the caisson gaps. It is clearly distinguished from the structure.
  • the intercell functions as a cell for preventing the weight of the caisson and the rolling, and does not function to suppress the rapid flow of water into the gap between the caissons. Rather, the intercell does not block the flow of water because the interior of the stone is filled as described later.
  • the wall 11 at both ends of the conventional caisson 90 as shown in Figure 1 is formed relatively thicker than the wall formed in the middle. Because the wall formed in the middle is filled with both cells 92 based on the wall, the load applied to both sides of the wall is the same, but the walls at both ends of the caisson are filled with the filler material on one side and on the other side. Because is in contact with sea water, the load on both sides of the wall is different. Therefore, looking at the conventional caisson it can be seen that the wall 11 of both ends is formed relatively thicker than the wall formed in the middle.
  • the walls 11 at both ends of the caisson 10 may not be thicker than the walls formed in the middle.
  • the both end walls of the caisson are also filled with the filling material in the cell 12 on one side and the filling material in the intercell 22 on the other side, so that the load applied to both sides of the wall is substantially reduced. It is worth noting that they become the same. Therefore, according to the features of the present invention, not only the side wall is reduced by one more than the conventional technology, but also the thickness of the side walls formed on both sides can be made relatively thinner than the conventional, thereby saving material as a whole. The cost of making caissons can be significantly reduced.
  • the unit structure caisson 10 is a form in which the cell 12 is formed in the hollow portion as shown. Each cell 12 is defined by its walls 11 in volume. The bottom of the caisson is blocked so that the filling material does not flow down when the filling material in the cell 12.
  • Both front and rear ends of the caisson are formed with front and rear members 14 protruding in both directions.
  • the front and rear member 14 is a form in which the walls 11 defining the front and rear of the caisson are further extended to both sides, respectively. In this way, the space between the front and rear members defined by the front and rear members 14 on both sides of the caisson are open to each other, i.e., open shape, and in the description of the present invention, the open cell 13 This is called.
  • the open cell 13 of the caisson is open like the other cells 12 in the open form. This is a natural structure to fill the filling material in the form of a dead stone in the space of the inter-cell 22 to be described later generated by the open cell (13).
  • the open cell 13 of the caisson of the present invention is also open bottom.
  • the lower part of the open cell 13 is not only completely open, but also partially open depending on various factors such as securing the strength of the caisson.
  • the closed cell 12 of the caisson 10 is filled with a filler, and the lower part of the closed cell 12 is blocked, so that the filler filled with the closed cell serves as the weight of the caisson.
  • the open cell 13 of the present invention has an open bottom. According to the caisson structure, since the part of the intercell 22 formed by the open cell 13 is formed by removing the member part constituting the bottom surface of the caisson, the reinforcement and the concrete material can be saved as much as the corresponding part. .
  • the caisson 10 is installed on the mound installed on the sea bottom, and as described above, when the lower part of the open cell 13 is opened, the inner space of the open cell 13 is in communication with the mound.
  • a plurality of shear keys 18 protruding outwardly to the side of the caisson are further formed between the front and rear surface members 14 respectively formed at the front and rear ends of both sides of the caisson.
  • the shear key 18 may protrude outward by the same length as the front and rear member 14, or may protrude from the wall at a rate smaller than the protruding length of the front and rear member 14 as shown.
  • the shear key 18 may have a shape protruding from the wall 11 in a trapezoidal shape as shown.
  • the filling material in the shape of a sandstone is the front-rear member 14. Since all of the load is completely transmitted to the front and rear members 14, there is a risk of high load.
  • the shear key 18 may have a frictional force with respect to the side surface of the wall due to the serpentine-shaped filler, so that the load is applied to the side and the shear key of the wall 11.
  • the shear key 18 distributes and supports the load when the sandstone filled in the intercell 22 part by the external force is intensively applied to any one of the caissons.
  • the shear key 18 is a configuration having no meaning in the case of a rigid body, rather than a flexible dead stone, which is filled in the intercell 22. Because, as described above, since the rigid body concentrates the load at one point of the wall of the caisson during the interlocking process, even if the shear key 18 is formed, the phenomenon that the load is concentrated at any one point is changed. Because there is no.
  • the front and rear members 14 described above can be seen in a form in which the front and rear walls of the caisson 10 further extended to both sides, the shear key 18 described above is the caisson
  • the wall 11 extending in the lateral direction to form the cell 12 of 10 can be seen to extend further to both sides.
  • the caisson manufacturing method of the present invention is not so different from the conventional caisson manufacturing method. That is, the caisson of the present invention is not different from the conventional caisson in the manufacturing process as well as the construction method to be described later. Rather, it can be said that the cost of materials is less as compared to the conventional caisson in that one side wall formed in the front and rear directions and the bottom portion of the open cell are reduced.
  • the haunch 15 is formed to reinforce the front and rear members. Since the front and rear members 14 are similar to the cantilever mechanically, the haunches 15 are formed at the inner edges of the wall 11 and the front and rear members 14 where stress is expected to concentrate. Forming the haunch 15 here has a special meaning when compared to the prior art. For example, when two caisson sections facing each other are integrally formed into a concrete block as in the prior art (Japanese Patent Laid-Open Publication No.
  • the interlocking portion is integrally formed with the caisson. Therefore, there is no reason to use the haunch (15) as the present invention, but when the filling material in the form of a flexible sandstone form as in the present invention in the open cell (strictly inter-cell to be described later) portion to keep the filler in a flexible state, When two neighboring caissons receive different magnitudes of force in the front and rear directions, and the two caissons try to move relative to each other in the front and rear directions, the filling material in the shape of the sandstone distributes the load on the inner surface of the front and rear members 14, In order to prevent breakage of the front and rear member 14 having the cantilever shape, the haunch 15 has a great meaning in engineering.
  • the front and rear members 14 and the shear keys 18 described above share the reinforcing bar arranged in the horizontally extending form with the caisson wall 11 or in the vertical direction in that the caisson wall is extended. Reinforcing bar reinforcement disposed in an extended form can be shared with the upper block 40 to be described later. Therefore, the front and rear face member 14 and the shear key 18 are integrally formed with the caisson wall in the horizontal direction, and integrally formed with the upper block 40 in the vertical direction, so that the strength thereof can be sufficiently ensured.
  • reinforcing portions 19 may be formed at lower ends of the front and rear sides of the caisson.
  • the reinforcement may be formed to protrude transversely to the lower end of the front wall and the rear wall, such as ribs.
  • FIGS. 4 to 8 are views showing a method for constructing a harbor structure using a caisson according to the present invention in order
  • Figure 9 is a view showing the form of the configuration for interlocking the caisson structure according to the present invention.
  • the caisson yard will be selected to the nearest land that can be accessed by the caisson mounting work, and the land work will be carried out.
  • the land works consist of floor stop work, rebar assembly, formwork assembly, and concrete placement, followed by caisson production on the yard.
  • the movement of the caisson may be applied to the method of forming a claw in the caisson and fastening it to the hook of the marine crane, and the like, in addition to the various known methods can be applied.
  • the specification of the foundation stone laid to install the mound can be based on the standard specification, which is currently 0.015 ⁇ 0.03 m 3 / EA in the domestic standard.
  • the caisson is supported and towed to the sea site.
  • the neighboring caisson is neighbored to mount the caisson again on its side, and at this time, the caisson and the caisson are attached to the caisson to prevent damage from contact with each other, so that the neighboring caisson 1 It prevents damage when the car is in contact and removes tires when precision is mounted.
  • the intercells 22 are formed by two open cells 13 facing each other of two neighboring caissons. That is, the space partitioned by the front and rear members 14 of the two neighboring caissons and the sides of the caissons functions as a 'cell'. Intercell 22 means that two neighboring caissons must function to function as a cell. Since the intercell 22 is also defined by its front and rear members, its volume can be filled therein. Considering that the gap error between two caissons is 10 cm to 20 cm according to the current standard specification, the gap between front and rear members of two neighboring caissons may also have a gap error of 10 cm to 20 cm.
  • the filling material 30 is filled in the closed cell 12 inside the caisson, and the filling material is also filled in the intercell 22 as well.
  • the filling material 30 to be filled in the closed cell 12 may use natural sand or slag generated from steel smelting, etc., and a sand stone including bottom ash generated from a thermal power plant.
  • the slag generated in steel smelting or the like is not preferable as a filling material to be filled in the intercell 22. Because slag reacts with water and expands, neighboring slags harden and solidify together, eventually deforming as a rigid body.
  • the filling material to be filled in the intercell 22 it is preferable to use a filling material that maintains a permanently flexible state, such as natural sandstone.
  • the filling material to be filled in the intercell 22 is sufficient to be a filling material in the form of a stone that can maintain a flexible state continuously over time without breaking well.
  • the filling material filling the intercell 22 portion may be an interlocking sandstone 32 that maintains a permanently flexible state.
  • the interlocking seat is larger than 10 cm ⁇ 20 cm, which is the distance between the front and rear members of the two caissons, and is prevented from leaking out through the gap in the intercell 22, but when the interlocking action occurs because it is not too large.
  • the load is sufficiently distributed.
  • the filling material (30) in the shape of the sandstone to be filled in the intercell 22 does not have a diameter larger than the gap between the two front and rear members 14, if the tighter interference between the filled seats are made It is also worth noting that much of the spill can be prevented.
  • the dead stones filled in the intercell 22 must resist the displacement of two neighboring caissons in different directions in the front and rear directions, it is preferable that the dead stones interfering closely with each other unlike the dead stones filled in the normal cell 12.
  • a compaction process may be performed on the filling material 30 in the form of a serpentine filled in the intercell 22.
  • the diameters of all the sandstones filled in the intercell 22 are larger than the gap between two neighboring front and rear members 14. It would be desirable to construct.
  • This interlocking structure when a large external force is applied to a particular caisson, and the load is applied to the interlocking site, the load is not concentrated by the sandstones and acts as a definite distribution load. The possibility of breakage can be greatly reduced.
  • the interlocking seat 32 filled in the intercell 22 is in direct contact with the mound.
  • the size of the sandstone laid in the mound is larger than the gap between the front and rear members of the intercell 22, and as will be described later, the load may be sufficiently distributed when the interlocking action occurs.
  • the size of the interlocking sandstone filled in the intercell 22 is 0.015 ⁇ 0.03 m 3 / EA, it can be confirmed that the standard stones act as an apparent distribution load while being intertwined well without being damaged.
  • the specification over 0.03 m 3 / EA is not larger than 10 cm to 20 cm, which is the tolerance for the gap between caissons.
  • the filling material has a specification of 0.05 m 3 / EA or more, the interlocking stone breakage starts to occur due to the concentrated load between the stones, which may cause the outflow of the filling material.
  • the interlocking sandstone is less than 0.001 m 3 / EA, the outflow is caused when the load is given rather than intertwined with each other.
  • the specifications of the mound and the interlocking stone correspond to each other (for example, the specification of the interlocking stone to ensure that the interlocking action is properly performed with 0.015 to 0.03 m 3 / EA, which is the standard for the basic stone described above) 0.01 to 0.05 m 3 / EA correspond to each other), as shown in FIG.
  • the back filling material 50 is installed on the rear of the caisson, and the upper block 40 is installed as shown in FIG. 8 to complete the construction of the port structure. That is, after filling the filling material 30 in the stationary caisson 10 can be installed on the upper end of the caisson, it can be filled with the back filling material 50 in the sand according to the construction purpose of the caisson.
  • FIGS. 10 to 12 are views showing in sequence another method for constructing a port structure using a caisson according to the present invention. It takes considerable time to arrange a plurality of caissons side by side with offshore structures and to fill all of the filler material therein. Since the caisson weight is not as large as originally designed before the stuffing material is filled in the inside of the caisson, if the unexpected blue intensively acts on any one caisson, the caisson will be pushed over.
  • the interlocking may be performed between neighboring caissons immediately by filling 25 to 50% of the cell 12, which is the caisson internal space, with a certain amount of self-weight.
  • the cell 12 which is the caisson internal space
  • the interlocking may be performed between neighboring caissons immediately by filling 25 to 50% of the cell 12, which is the caisson internal space, with a certain amount of self-weight.
  • about 30% of the interior space of the caisson is filled with a filling material, and then interlocking work between neighboring caissons is performed.
  • this interlocking operation is not special, and is completed by filling the filling material in the form of a sandstone as shown in FIG. 11 in the intercell 22 formed by two neighboring caissons.
  • Conventional interlocking work is difficult or time-consuming, such as performing underwater or moving large interlocking members to the offshore site, or sealing the pouring space and pouring concrete after draining the seawater. This caused the increase of the cost.
  • the interlocking method of the present invention can be executed immediately with the same operation as filling the filling material in the cell 12 without carrying heavy loads or submerging in water, thereby saving both cost and time.
  • the present invention has the advantage that the time of construction can be selected regardless of the weather conditions.
  • a work of filling the filling material in the individual caisson 12 may be performed as shown in FIG. 12.
  • the caisson of the present invention is not necessarily to be constructed in this order.
  • the filling material 30 in the form of a serpentine may be filled in the intercell 22.
  • FIG. 13 is a view showing another embodiment of a caisson according to the present invention.
  • the caisson shown in FIG. 13 and the caisson of FIG. 2 in addition to installing a simple front and rear member in front and rear of a position where the open cell is disposed to define the open cell 13 (see FIG. 2), it can be seen that the cell 12 can be further formed at the position. This not only increases the weight of the caisson itself, but also defines the front and rear of the open cell as well as forming one or more cells, without the need for special thickening of the front and rear members or forming the haunch 15.
  • Figure 14 is a perspective view showing a process of installing a sand stone leak prevention cap in the caisson according to the present invention
  • Figure 15 is a plan view of the caisson installed a seat stone leak prevention cap of FIG.
  • the interlocking sandstone 32 is positioned so that the front and rear members 14 of two adjacent caissons 10 are adjacent to each other. Is unlikely to leak between Therefore, the separate configuration for preventing the outflow of the interlocking dead stone 32 is not required as described above.
  • prevention cap a sandstone leakage preventing cap
  • the prevention cap 70 is a cap covering the front and rear surfaces of the front and rear members 14 and the front and rear surfaces of the front and rear members. ) And abutting portion 71 facing each other, and side contact portions 72 extending from both ends of the butting portion 71 toward the longitudinal direction of the front and rear members, and closely contacting the front and rear sides of the front and rear members, respectively. .
  • the prevention cap 70 may be made of a material capable of alleviating impact and sufficient elastic deformation, such as rubber. However, if the material of the prevention cap is tough, high shock absorption and good elasticity, it can be made of various other materials.
  • the butt portion 71 of the prevention cap 70 has an arc-shaped cross section having a slight curvature, a buffer space S may be naturally provided between the butt portion 71 and the front end surface of the front and rear member.
  • the two side contact portion 72 is formed in the form of closer to each other toward the tip portion from the butt portion, by fitting the two side contact portion 72 to the side of the front and rear member, the two side contact portion 72 by elasticity Is in close contact with the side of the front and rear member.
  • the shape of the butt portion 71 is not limited to the structure described above, and may be implemented in various other forms as long as a buffer space may exist between the butt portion and the front and rear members corresponding to the shape of the front and rear members.
  • the abutting part 71 and the side contact part 72 may be manufactured in the shape of “c”, but the inner surface of the abutting part 71 may exist even between the inner surface of the abutting part 71 and the front and rear member ends.
  • the butt portion 71 may have a slight distance from the front end of the front and rear member 14. It can also be applied only to the extent possible.
  • FIG. 16 is a plan view illustrating a state in which the caissons of FIG. 15 are disposed
  • FIG. 17 is an enlarged view of a portion A of FIG. 16, in which the front and rear members facing each other in the state of caissons are spaced apart from each other.
  • 18 is a view showing a state in which the dead stone spill prevention caps facing each other by filling the mortar in the buffer space of FIG. 17 is in close contact
  • FIG. 19 is an enlarged view of the portion A of FIG. It is a figure which shows the state in which the member closely adhered to each other.
  • the caissons 10 are positioned in the state where the prevention cap 70 is covered. Since the front and rear members 14 between the neighboring caissons facing each other are covered with the prevention cap 70, the prevention cap 70 absorbs the shock even when they collide with each other during the positioning process.
  • the prevention cap 70 is to prevent the breakage of the caissons, more specifically, the front and rear members that may occur due to the contact between the caissons in the mounting process of the caissons, and to serve as a function of eliminating the gaps between them after stationary stops. Can be.
  • the prevention cap structure and the construction method using the same it is possible to prevent the damage of the front and rear member 14 which may be caused by contact or collision between caissons during the stationary work of caissons.
  • mortar or the like may be injected into the buffer space S to eliminate the gap between the two front and rear face members 14 to prevent the interlocking sandstone from flowing out.
  • the front and rear members 14 are protected by a pair of prevention caps 70, so that even if the caisson is slightly displaced in position due to uneven settlement or the like, damage between the two front and rear members 14 without a gap is provided. This can be prevented from occurring.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Revetment (AREA)

Abstract

본 발명은 케이슨에 오픈 셀과 인터셀의 개념을 새로이 도입함으로써, 종래의 개별식 케이슨 구조물에 비해 벽체의 개수를 줄여 제작비를 절감하면서도 시공방법에 거의 차이가 없고, 이웃하는 케이슨을 플렉시블한 사석으로 인터록킹 하면서도 지반의 부등침하에 각 케이슨이 개별적으로 대응할 수 있는 유연함을 가진 케이슨 구조물과 그 시공 방법에 관한 것이다.

Description

오픈 셀 케이슨 구조물 및 시공 방법
본 발명은 케이슨 구조물 및 시공 방법에 관한 것으로, 보다 상세하게는 케이슨에 오픈 셀과 인터셀의 개념을 새로이 도입함으로써, 종래의 개별식 케이슨 구조물에 비해 벽체의 개수를 줄여 제작비를 절감하면서도 시공방법에 거의 차이가 없고, 이웃하는 케이슨을 플렉시블한 사석으로 인터록킹 하면서도 지반의 부등침하에 각 케이슨이 개별적으로 대응할 수 있는 유연함을 가진 케이슨 구조물과 그 시공 방법에 관한 것이다.
일반적으로, 케이슨은 항만 건설시 필수적으로 사용되는 구조체이다. 예를 들면 중력식 안벽, 방파제 등 항만의 중요 시설에 적용되고 있다.
최근 지구온난화에 의해서 해수면이 상승되고, 이로 인해 설계파보다 파고가 높은 이상 파랑의 내습이 예상되고 있어 이러한 변화에 적절히 대응하지 않으면 대형사고로 이어질 가능성이 점차 높아가고 있다. 방파제의 경우는 설계파고 증가에 따라 대형화되고 있으나 50년 설계파 또는 그 이상의 파가 언제 내습하지 몰라 대안 마련에 부심하고 있는 것이 현실이며, 육측의 중력식 안벽의 경우는 선박의 대형화에 따른 추가적인 안정성 확보에 고민하고 있다.
따라서, 기후변화에 따른 설계파 증가, 선박 대형화 등 항만 물류 조건 변화에 능동적으로 대처할 수 있는 방안 마련이 절실히 요구되고 있다.
방파제의 경우, 케이슨은 자중으로 파랑의 수평력을 견뎌야 한다. 그런데 파랑은 항상 일정한 것이 아니며, 어느 하나의 케이슨에 파랑의 수평력이 집중되는 경우가 빈번하다. 하지만 이렇게 수평력이 집중되는 것을 상정하여 케이슨을 설계한다면 케이슨의 자중을 크게 할 수밖에 없고, 이는 비용의 증가와 시공성의 악화로 이어진다. 가령 케이슨에 작용하는 하중이 커질수록 제작비 증가는 물론이거니와, 이를 핸들링할 수 있는 크레인 등의 중장비 규모도 더욱 커지게 되는 것이다.
이에 종래에는 이웃하는 케이슨들을 인터록킹하여 케이슨에 작용하는 파랑의 수평력을 평활화함으로써 케이슨에 작용하는 최대 하중을 낮출 수 있는 방안이 제시되고 있다. 가령 이웃하는 두 케이슨 사이에 기성의 콘크리트 블록을 끼우는 방식이 이에 해당한다.
하지만 두 케이슨 사이에 끼워야 할 콘크리트 블록을 운반하고 양중하여 끼우는 것은 매우 번거로운 작업일 수밖에 없다. 또한 콘크리트 블록은 하나의 강체(rigid body)로서 작용하기 때문에, 실제 파랑의 수평력이 집중된 하나의 케이슨이 후방으로 밀리면서 인터록킹된 양측 케이슨의 지지를 받더라도, 강체인 콘크리트 블록의 어느 일지점에 하중이 집중되면서 케이슨이 인터록킹을 지지하지 못하고 파손될 우려가 매우 높다. 아울러 콘크리트 블록이 강체인 만큼, 이것이 끼워질 공간을 마련하기 위해 이웃하는 두 케이슨을 정확히 정렬하지 않으면 안되는 점에서, 시공 난이도가 높다.
이 외에도 이웃하는 두 케이슨 사이에 철근이 엮어진 인터록킹 구간을 만들고, 이러한 공간을 해수와 격리한 후 콘크리트를 타설하여 이웃하는 두 케이슨이 서로 만나는 지점에서 일체로 결합되는 구조의 케이슨 시공 방법이 개시된 바 있다. 하지만 이러한 시공 방법은 시공 자체가 어려울 뿐만 아니라, 시공 후에는 두 케이슨이 마주하는 공간에 타설된 콘크리트에 의해 케이슨들이 완전히 일체화되었기 때문에, 지반의 부등침하가 일어날 때 부등침하가 일어난 지반 위에 있는 케이슨이 자연스럽게 같이 침하하지 못하게 되고, 이러한 초고하중의 케이슨이 침하하지 못함으로 인해 발생하는 응력이 특정 부위에 집중되어 케이슨이 파괴되는 현상이 발생할 우려가 매우 높다.
또한 지반의 부등침하가 모두 진행된 후라 하더라도, 앞서 설명한 바와 같이 파도에 따른 외력은 케이슨이 시공된 후 케이슨이 시공된 상태로 존재하는 30 내지 50년이 넘는 기간 동안 지속적으로 작용하는데, 이 기간 동안 내내 이웃하는 케이슨 간의 인터록킹 부위가 플렉시블하지 않고, 어느 순간 이후 인터록킹 부위가 강체처럼 변형된다면, 파랑의 수평력이 집중된 하나의 케이슨이 후방으로 밀리면서 인터록킹된 양측 케이슨에 하중을 전달하게 되고, 이때 강체로서 작용하는 인터록킹 부위의 어느 일지점에 하중이 집중되면서 케이슨이 파손될 우려가 높다.
한편, 케이슨을 해저에 정거치한 후 케이슨 내부에 채움재가 다 채워지기 전에는 케이슨이 설계 하중을 발휘하지 못하여 파랑에 취약하다. 이러한 케이슨에 채움재를 채우는 작업이 완료되기 전에 예상치 못한 파랑이 발생하면 케이슨이 파도에 밀려 전도되는 일이 발생한다. 따라서 이처럼 시공 중 케이슨이 파괴되지 않도록 하는 방안이 요구된다.
아울러, 종래에 개시된 인터록킹 케이슨 구조물들의 하부에 설치되는 마운드는 오로지 케이슨 구조물을 밑에서 받쳐주고 마찰저항을 제공하는 기능만 할 뿐이었으나, 이러한 마운드 역시 케이슨의 인터록킹 구조에 지속적으로 기여할 수 있다면 인터록킹 효과는 더욱 커질 수 있을 것이다.
본 발명은 상기한 바와 같은 문제점을 해결하기 위해 안출된 것으로, 케이슨의 양측 단부의 벽체를 생략하여 벽체 개수를 줄이고 벽체를 더 얇게 구성할 수 있어 전체적인 시공비용을 절감하면서도 시공성이 좋고, 이웃하는 두 케이슨의 마주하는 오픈 셀에 의해 형성되는 인터 셀에 사석 형태의 채움재를 채워 이웃하는 케이슨을 플렉시블하게 인터록킹함으로써 파랑에 효율적으로 저항하고 지반의 부등침하에도 불구하고 인터록킹 부위의 파손을 방지할 수 있고, 시공 후 수십 년의 기간 동안에도 인터록킹 부위가 지속적으로 플렉시블하게 유지되며, 아울러 시공 후에 뿐만 아니라 시공 과정에서도 케이슨의 속채움을 완료하기 전에 이웃하는 케이슨을 서로 인터록킹함으로써 시공 과정에서도 항만구조물의 안정성을 높게 확보할 수 있는 오픈 셀 케이슨 구조물 및 시공 방법을 제공하는 것을 목적으로 한다.
또한 본 발명은 케이슨 간의 인터록킹 구조에 해저면에 설치된 마운드도 기여하도록 함으로써 인터록킹 효과를 더욱 제고할 수 있는 오픈 셀 케이슨 구조물 및 시공 방법을 제공하는 것을 목적으로 한다.
상술한 과제를 해결하기 위해 본 발명은, 기초사석에 의해 해저에 형성된 마운드 상부에 거치되는 케이슨 구조물로서, 상기 구조물에 사용되는 케이슨은: 상방으로는 개방되고 측면은 벽체(11)에 의해 규정되는 폐쇄형 셀(12)과, 상기 케이슨의 측면에 형성되되, 바깥쪽 측방은 개방된 형태의 오픈 셀(13)을 구비하되, 상기 오픈 셀(13)이 서로 마주하도록 복수 개의 상기 케이슨(10)이 상기 마운드 상부에 일렬로 설치되고, 각각의 셀(12)에 채움재(30)가 채워지며, 개방부가 서로 마주하는 두 오픈 셀(13)에 의해 형성되는 인터셀(22) 공간에 사석이 채워져서, 상기 인터셀(22) 내부의 사석이 이웃하는 두 케이슨을 인터록킹 하도록 한 것을 특징으로 하는 케이슨 구조물을 제공한다.
상기 오픈 셀(13)을 규정하는 안쪽 측면에는, 오픈 셀 영역에 사석이 플렉시블하게 채워졌을 때 케이슨 간 하중 차이에 의한 전단력 분산을 위한 전단키(18)가 형성될 수 있다.
적어도 상기 오픈 셀(13)의 전면의 전방과 후면의 후방에 폐쇄형 셀(12)이 배치될 수 있다.
상기 케이슨 상부에 상치콘크리트가 설치될 수 있다.
상기 케이슨의 후방에 뒷채움사석이 포설될 수 있다.
상기 오픈 셀(13)은, 안쪽 측면과 전면과 후면은 막히고 상부와 하부와 바깥쪽 측방은 개방된 형태일 수 있다.
상기 오픈 셀(13)의 하부는 일부 또는 전부 개방된 형태일 수 있다.
상기 인터셀(22) 내부의 사석은 지속적으로 플렉시블한 상태를 유지할 수 있다.
상기 인터셀(22) 공간에 채워지는 사석은 상기 마운드의 사석과 대응하는 규격일 수 있다.
상기 인터셀(22) 공간에 채워지는 사석은 인터셀(22)의 개방된 하부를 통해 상기 마운드와 연결될 수 있다.
또한 상술한 과제를 해결하기 위해 본 발명은, 상기 케이슨 구조물을 시공하는 방법으로서, 해저면 상면에 기초사석을 포설하여 마운드를 형성하는 단계; 마운드 상면을 평평하게 고르기하는 단계; 고르기한 마운드 상면에, 상기 오픈 셀(13)이 서로 마주하도록 복수 개의 케이슨(10)을 측방으로 배열하며 정거치하여 인터셀(22)을 형성하는 단계; 및 정거치된 상기 케이슨(10)의 셀(12)에 채움재를 채우고, 상기 인터셀(22)에는 상기 기초사석과 대응하는 규격의 사석을 채워 인터셀(22) 내부의 사석이 마운드의 기초사석과 연결된 상태로 플렉시블하게 유지되도록 하는 단계;를 포함하는 케이슨 시공 방법을 제공한다.
상기 상기 셀(12)과 인터셀(22)에 채움재와 사석을 채우는 단계는, 상기 셀(12)에 부분적으로 채움재를 채우는 제1단계; 제1단계 후 상기 인터셀(22)에 사석을 모두 채우는 제2단계; 및 제2단계 후 상기 셀(12)에 채움재를 모두 채우는 제3단계;를 포함할 수 있다.
상기 셀(12)과 인터셀(22)을 채움재로 채운 후 상치블록을 설치하는 단계;를 더 포함할 수 있다.
상기 셀(12)과 인터셀(22)을 채움재로 채운 후 뒷채움사석을 포설하는 단계를 더 포함할 수 있다.
본 발명에 따른 케이슨 시공방법에 의하면, 일반 케이슨을 적용한 경우에 비하여 각 케이슨 별로 두께가 두꺼운 측벽 하나를 줄일 수 있어 자재비용을 크게 절약하는 것이 가능함은 물론, 기존의 인터록킹 방법에 비해 시공이 매우 단순하고, 유지관리도 용이하다.
또한 본 발명에 의하면, 인터록킹부가 플렉시블한 사석 형태의 채움재로 채워져 있어 응력집중이 발생하지 않아 구조적 안전성이 기존 인터록킹 케이슨에 비하여 높고, 인접 케이슨 간에 영구적으로 플렉시블한 상태를 유지하는 사석에 의해 발생하는 인터록킹 효과에 의해 항만 구조물에 작용하는 최대하중이 분산되는 효과가 영구적으로 지속되어 구조물의 활동 및 전도에 대한 안정성을 영구적으로 높일 수 있으며, 구조물에의 작용하중에 의한 지반반력도 분산효과의 영향을 받아 상당부분 감소하게 되어 지반보강비를 절감할 수 있다.
또한 본 발명에 의하면, 인터록킹부가 플렉시블한 사석 형태의 채움재로 채워져 있기 때문에, 지반이 부등 침하하는 경우에도 침하된 지반 상에 거치되어 있는 케이슨이 이웃하는 케이슨에 대해 플렉시블하고 독립적으로 움직일 수 있어 지반의 부등침하에 의한 케이슨 구조 및 인터록킹부 파괴의 위험성을 사전에 차단할 수 있다.
또한 본 발명에 의하면, 케이슨의 시공 과정의 취약 시기에도 인터록킹에 의한 파랑의 최대 수평력을 평활화하여 수평력에 대한 저항력을 높일 수 있다.
또한 본 발명의 시공 방법에 따른 케이슨의 중량 감소는 경제성과 시공 용이성에 직결된다.
또한 본 발명은 인터록킹을 위해 수중 작업을 하거나 별도의 장비를 더 동원할 필요가 없어 시공이 더욱 용이하고 경제적이다.
또한 본 발명에 따르면, 외해 방파제 안정성을 제고할 수 있어 케이슨 파괴에 의한 유지보수 관련 예산을 대폭 절감할 수 있고, 기후 변화에 대응할 수 있는 새로운 개념의 항만구조물을 설계하고 활용할 수 있다.
또한 본 발명에 의하면, 케이슨의 인터록킹 구조가 플렉시블하면서도 마운드와 일체적으로 형성되어 케이슨의 인터록킹 효과를 더욱 크게 높일 수 있다.
아울러 본 발명에 의하면, 인터록킹이 지속적으로 플렉시블한 상태를 유지하고 있기 때문에, 케이슨을 해체할 때 인터록킹이 되지 않은 케이슨 구조물과 별다른 차이 없이 케이슨 구조물 해체가 가능하다는 강점이 있다.
상술한 효과와 더불어 본 발명의 구체적인 효과는 이하 발명을 실시하기 위한 구체적인 사항을 설명하면서 함께 기술한다.
도 1은 종래의 케이슨의 사시도,
도 2는 본 발명에 따른 일실시예로서 케이슨의 사시도,
도 3은 도 2의 케이슨의 정투상도,
도 4 내지 도 8는 본 발명에 따른 케이슨을 사용하여 항만 구조물을 시공하는 방법을 순서대로 나타낸 도면,
도 9는 본 발명에 따른 케이슨 구조물을 인터록킹하는 구성의 형태를 나타낸 도면,
도 10 내지 도 12는 본 발명에 따른 케이슨을 사용하여 항만 구조물을 시공하는 다른 방법을 순서대로 나타낸 도면,
도 13은 본 발명에 따른 케이슨의 다른 일실시예를 나타낸 도면,
도 14는 본 발명에 따른 케이슨에 사석 유출 방지캡이 설치되는 과정을 나타낸 사시도,
도 15는 도 14의 사석 유출 방지캡이 설치된 케이슨의 평면도,
도 16은 도 15의 케이슨들을 정거치한 상태를 나타낸 평면도,
도 17은 도 16의 A 부분의 확대도로서 케이슨들을 정거치한 상태에서 마주하는 전후면부재가 서로 이격된 상태를 나타낸 도면,
도 18은 도 17의 완충공간에 모르타르를 채워 서로 마주하는 사석 유출 방지캡이 밀착된 상태를 나타낸 도면, 그리고
도 19는 도 16의 A 부분의 확대도로서 케이슨들을 정거치한 상태에서 마주하는 전후면부재가 서로 밀착된 상태를 나타낸 도면이다.
이하, 본 발명의 바람직한 실시예를 첨부한 도면을 참조로 하여 상세히 설명한다.
본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예는 본 발명의 개시가 완전하도록 하며 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위하여 제공되는 것이다.
[본 발명에 따르는 케이슨의 일실시예]
도 1은 종래의 케이슨의 사시도, 도 2는 본 발명에 따른 일실시예로서 케이슨의 사시도, 도 3은 도 2의 케이슨의 정투상도이다.
도 1에 도시된 종래의 케이슨(90)은 가로*세로 4*3의 셀(92)을 형성하고 있고, 이를 위해 도면 상 좌우 방향으로 연장되는 형태의 측벽이 전후로 4개 나란히 이격 배치되고, 그리고 도면 상 전후 방향으로 연장되는 형태의 측벽이 좌우로 5개 나란히 이격 배치된 형태이다. 이러한 종래의 케이슨(90)들은 좌우로 정렬되며 정거치되고, 이어서 셀(92)에 채움재가 채워진 후 상치블록이 설치된다.
반면 도 2에 도시된 본 발명의 단위구조물인 케이슨(10)의 구조를 살펴보면, 본 발명에 따른 케이슨은 가로*세로 3*3의 셀(12)을 구비하고, 가로*세로 1/2 * 3의 오픈 셀(22)을 양단에 구비하고 있어, 전체적으로 종래의 케이슨(90)과 동일한 개수와 부피만큼의 셀을 구비하면서도, 도면 상 좌우 방향으로 연장되는 형태의 측벽이 전후로 4개 나란히 이격 배치되고, 그리고 도면 상 전후 방향으로 연장되는 형태의 측벽이 좌우로 4개 나란히 이격 배치된 형태이다. 즉, 측벽의 개수가 종래의 케이슨에 비해 1개 줄어든 형태이다. 후술하겠지만, 전후면부재의 길이를 O.5 ~ 3 m 정도로 하면, 두 전후면부재가 서로 마주한 길이는 전후면부재의 길이의 두 배에 해당하게 되어 두 전후면부재에 의해 온전히 하나의 셀을 이루는 인터셀을 형성할 수 있다. 또한 전후면부재를 셀의 형태로 구성(도 13 참조)할 경우에는 전후면부재에 대응하는 셀의 길이가 폐쇄형 셀(12)의 길이 정도에 해당하는 6m 정도 이하로 설정할 수 있다. 인터셀은 그 자체로 하나의 온전한 셀의 의미를 가지고 셀의 기능을 한다는 점에서, 기존에 케이슨 간의 서로 마주하는 면에 줄눈을 형성하고, 이 부분을 폐색하여 케이슨 간의 틈으로 물이 흐르는 것을 억제하던 구조와는 명백히 구분된다. 즉 인터셀은 케이슨의 자중과 밀림 방지를 위한 셀의 기능을 하는 것이지, 케이슨 간의 틈으로 물이 빠르게 흐르는 것을 억제하는 기능을 하는 것이 아니다. 오히려 인터셀은, 후술할 바와 같이 내부에 사석이 채워지기 때문에, 물의 흐름을 차단하지 않는다.
도 1과 같은 종래의 케이슨(90)의 양측단의 벽체(11)는 중간에 형성된 벽체보다 상대적으로 두껍게 형성된다. 왜냐하면 중간에 형성된 벽체는 해당 벽체를 기준으로 양쪽 셀(92)에 모두 채움재가 채워지므로 벽체의 양면에 가해지는 하중이 같지만, 케이슨의 양측단의 벽체는 한쪽으로는 채움재가 채워지는 반면 다른 한쪽으로는 바닷물과 접하고 있기 때문에 벽체의 양면에 가해지는 하중이 다르게 되기 때문이다. 따라서 종래의 케이슨을 살펴보면 양측단의 벽체(11)는 중간에 형성된 벽체보다 상대적으로 두껍게 형성됨을 알 수 있다.
하지만 본 발명에 의하면, 케이슨(10)의 양측단의 벽체(11)를 두껍게 중간에 형성된 벽체보다 두껍게 하지 않아도 무방하다. 즉 본 발명에 의하면, 케이슨의 양측단 벽체도, 한쪽으로는 셀(12)에 채움재가 채워지고 다른 한쪽으로는 인터셀(22)에 채움재가 채워지기 때문에 벽체의 양면에 가해지는 하중이 실질적으로 동일하게 된다는 점에 주목할 필요가 있다. 따라서 이러한 본 발명의 특징에 의하면, 종래기술과 대비하여 단순히 측벽이 하나 더 줄어드는 것뿐만 아니라, 양측에 형성된 측벽의 두께도 종래보다 상대적으로 얇게 할 수 있게 되고, 이에 따라 전체적으로 재료를 절약할 수 있어 케이슨 제작 비용을 상당히 줄일 수 있다.
물론 시공 자체도 종래의 인터록킹 구조보다 훨씬 간단하므로 인터록킹 구조를 구현하면서도 시공 비용 역시 크게 줄일 수 있다는 것 역시 자명하다. 게다가 케이슨 자체의 중량을 줄일 수 있다면 설치 장비비, 지반보강비 등의 절감이 가능하여 시공비용이 전반적으로 절감된다.
본 발명에 따른 케이슨의 일실시예의 구조를 보다 상세히 설명하면, 단위구조물인 케이슨(10)은 도시된 바와 같이 중공부에 셀(12)이 형성된 형태이다. 각 셀(12)은 벽체(11)들에 의해 그 체적이 규정된다. 케이슨의 바닥은 막혀 있어서 셀(12)에 채움재를 채웠을 때 채움재가 밑으로 유출되지 않는 구조이다.
이러한 케이슨의 전면 양단과 후면 양단에는 양측 방향으로 돌출된 형태의 전후면부재(14)가 각각 형성되어 있다. 전후면부재(14)는 케이슨의 전면과 후면을 규정하는 벽체(11)가 양측으로 각각 더 연장된 형태이다. 이렇게 케이슨의 양측면에서 전후면부재(14)에 의해 규정되는 전후면부재 사이의 공간은 각각 바깥쪽 측방을 향해 트여 있는, 즉 오픈되어 있는 형상이며, 본 발명을 설명함에 있어서 이를 오픈 셀(13)이라 한다.
다음으로 케이슨의 오픈 셀(13)은 다른 셀(12)과 마찬가지로 상부가 개방된 형태이다. 이는 오픈 셀(13)에 의해 생성되는 후술할 인터셀(22) 공간에 사석 형태의 채움재를 채우기 위해 당연한 구조이다.
또한 본 발명의 케이슨의 오픈 셀(13)은 하부 역시 개방된 형태이다. 오픈 셀(13)의 하부는 전부 개방되는 것뿐만 아니라, 케이슨의 강도 확보 등 여러 요인에 따라 일부 개방되는 구조 역시 적용될 수 있다. 케이슨(10)의 폐쇄형 셀(12)에는 채움재가 채워지고, 폐쇄형 셀(12)의 하부는 막혀 있어서, 폐쇄형 셀에 채워진 채움재는 케이슨의 자중으로서의 역할을 하게 된다. 이에 대비하여 본 발명의 오픈 셀(13)은 하부가 개방된 형태이다. 이러한 케이슨 구조에 따르면 오픈 셀(13)에 의해 형성되는 인터셀(22) 부분에 대해서는 케이슨의 바닥면을 구성하는 부재 부분이 삭제된 형태이기 때문에 해당 부재 부분만큼 철근과 콘크리트 자재를 절약할 수 있다. 후술하겠지만 케이슨(10)은 해저면에 설치된 마운드 상에 설치되는데, 상술한 바와 같이 오픈 셀(13)의 하부가 개방된 형태가 되면 오픈 셀(13)의 내부 공간은 마운드와 연통하게 된다.
케이슨의 양측면의 전후단에 각각 형성된 전후면부재(14) 사이에는 케이슨의 측방으로 외향 돌출된 복수 개의 전단키(18)가 더 형성되어 있다. 전단키(18)는 전후면부재(14)와 동일한 길이만큼 외측으로 돌출되거나, 도시된 바와 같이 전후면부재(14)의 돌출 길이보다 작은 비율로 벽체로부터 돌출 형성될 수 있다. 또한 전단키(18)는 도시된 바와 같이 사다리꼴 형태로 벽체(11)로부터 돌출된 형태일 수 있다. 파도 등에 의해 외부에서 가해지는 하중에 의해 이웃하는 두 케이슨이 전후방향으로 서로 상대적으로 이동하려 할 때, 벽체(11)의 측면에 전단키(18)가 없다면 사석 형태의 채움재가 전후면부재(14)에 온전히 하중을 모두 전달하게 되므로 전후면부재(14)에 높은 하중이 걸릴 우려가 있다. 그러나 본 발명의 실시예와 같이 전단키(18)가 형성된 경우에는 전단키(18)로 인해 사석 형태의 채움재가 벽체의 측면에 대해 마찰력을 가질 수 있기 때문에, 하중이 벽체(11)의 측면과 전단키(18)와 전후면부재(14)에 골고루 분산되므로, 전후면부재(14)에 가해지는 하중을 상당히 분산시키는 것이 가능하다. 특히 전단키(18)의 돌출 길이가 전후면부재(14)의 돌출 길이보다 작은 비율로 돌출 형성된 경우 하중이 전단키(18)와 전후면부재(14)에 골고루 분산시키기에 충분하다.
이처럼 전단키(18)는, 어느 일 케이슨에 집중적으로 외력이 가해져서 인터셀(22) 부분에 채워지는 사석이 인터록킹 작용을 할 때 하중을 분산 지지해준다. 여기서 주목할 점은, 전단키(18)는 인터셀(22)에 채워지는 것이 플렉시블한 사석이 아닌, 강체 형태인 경우에는 별 의미가 없는 구성이라는 것이다. 왜냐하면, 앞서 설명한 바와 같이, 인터록킹 과정에서 강체는 케이슨의 벽체의 어느 일지점에 하중을 집중시키기 때문에, 전단키(18)가 형성되어 있다 하더라도 이에 관계 없이 어느 일지점에 하중이 집중되는 현상은 변함이 없기 때문이다.
한편, 이러한 전단키(18)를 다른 관점에서 살펴보면, 상술한 전후면부재(14)는 케이슨(10)의 전후면 벽체가 양측으로 더 연장된 형태로 볼 수 있고, 상술한 전단키(18)는 케이슨(10)의 셀(12)을 형성하기 위해 좌우방향으로 연장된 벽체(11)가 양측으로 더 연장된 형태로 볼 수 있다. 이는 다시 말하자면, 종래의 케이슨 제작 방법과 대비하여 본 발명의 케이슨 제작 방법에 그다지 차이가 나지 않는다는 것을 의미한다. 즉 본 발명의 케이슨은 후술할 시공 방법뿐만 아니라 제조 과정에서도 종래의 케이슨과 별다른 차이가 없다. 오히려 종래의 케이슨과 비교하여 전후방향으로 형성된 측벽 하나와 오픈 셀의 바닥 부분이 줄어든 점에서 자재비가 더 적게 들어간다고 할 수 있다.
전후면부재(14)에 작용하는 전후방향의 하중에 의해 전후면부재(14)가 파손되는 것을 방지하기 위해 케이슨의 좌우측 단부의 벽체(11)와 전후면부재(14)의 내측 모서리부에는 도시된 바와 같이 전후면부재를 보강하는 헌치(15)가 형성된다. 전후면부재(14)는 역학적으로 캔틸레버와 유사하다고 할 수 있으므로, 응력이 집중될 것으로 예상되는 벽체(11)와 전후면부재(14)의 내측 모서리부에 헌치(15)를 형성하였다. 여기에 헌치(15)를 형성한 것은 종래기술과 대비할 때 특별한 의미가 있다. 가령 종래의 기술(일본 등록특허공보 제2847694호, 일본 공개특허공보 제2006-28981호)과 같이 서로 마주하는 두 케이슨 부분을 일체로 철근 콘크리트 블록화 하는 경우에는 인터록킹 부분이 케이슨과 일체로 불록화되므로 본 발명과 같은 헌치(15)를 사용할 아무런 이유가 없으나, 본 발명과 같이 플렉시블한 사석 형태의 채움재를 오픈 셀(엄밀하게는 후술할 인터셀) 부분에 채워 채움재가 플렉시블한 상태로 유지할 때에는, 이웃하는 두 케이슨이 전후방향으로 서로 다른 크기의 힘을 받아 두 케이슨이 전후방향으로 서로 상대적으로 이동하려 할 때 사석 형태의 채움재가 전후면부재(14)의 내면에 분포하중을 가하게 되므로, 정역학적으로 캔틸레버 형태를 가진 전후면부재(14)의 파손을 방지하기 위해서는 헌치(15)가 공학적으로 큰 의미를 가진다.
상술한 전후면부재(14)와 전단키(18)는, 케이슨의 벽체가 연장된 형태라는 점에서, 수평 방향으로 연장된 형태로 배치되는 철근 배근을 케이슨 벽체(11)와 공유하거나, 수직방향으로 연장된 형태로 배치되는 철근 배근을 후술할 상치블록(40)과 공유할 수 있다. 따라서 전후면부재(14)와 전단키(18)는 수평방향으로는 케이슨 벽체와 일체로 형성되고, 수직방향으로는 상치블록(40)과 일체로 형성되어 그 강도를 충분히 보장받을 수 있다.
한편 케이슨의 전면과 후면의 하단부에는 보강부(19)가 형성될 수 있다. 보강부는 리브와 같이 전면 벽체와 후면 벽체의 하단부에 가로방향으로 돌출 형성된 형태일 수 있다.
[본 발명에 따른 케이슨 구조물의 시공 방법]
다음으로 본 발명에 따른 케이슨의 시공 방법을 간단히 살펴본다.
도 4 내지 도 8는 본 발명에 따른 케이슨을 사용하여 항만 구조물을 시공하는 방법을 순서대로 나타낸 도면, 그리고 도 9는 본 발명에 따른 케이슨 구조물을 인터록킹하는 구성의 형태를 나타낸 도면이다.
먼저 케이슨 거치 작업 해상 현장에 접근 가능한 가까운 육상에 케이슨 야드를 선정하고, 육상 공사를 실시한다. 육상 공사는 바닥정지 작업, 철근 조립, 거푸집 조립, 콘크리트 타설의 순으로 이루어지며, 야드 상에서 케이슨을 제작 완성한다.
다음으로 케이슨을 해상으로 이동시키고 가거치한다. 케이슨의 이동은, 가령 케이슨에 들고리를 형성하고 이를 해상크레인의 후크에 체결하여 이동시키는 방식 등이 적용될 수 있으며, 이 외에도 통상적으로 알려진 다양한 방법이 적용될 수 있다.
그리고 해상의 작업 현장에 기초사석을 투하, 포설하여 도 4에 도시된 바와 같이 마운드를 형성하고 그 상면을 평평하게 고르기 한다. 마운드를 설치하기 위해 포설하는 기초사석의 규격은 표준 시방서에 근거할 수 있으며, 이러한 규격은 현재 국내 기준 0.015 ~ 0.03 m3/EA이다.
이렇게 기초 고르기가 완성된 후에는 가거치된 케이슨을 부양하여 해상 현장까지 예인한다.
다음으로, 해상 현장에 예인된 케이슨의 내부에 주수하며 케이슨(10)을 침강시켜 도 5에 도시된 바와 같이 마운드 상에 정거치한다. 이 때 주수 침강속도는 분당 10cm 내외를 유지하도록 할 수 있다. 해저의 마운드 면에 50cm 내외까지 케이슨(10)이 근접 침강되면, 케이슨에 대한 주수를 중단하고 최종적으로 케이슨이 설치될 위치를 확인 수정하며, 다시 신속하게 케이슨에 주수하여 기초고르기 바닥에 케이슨을 안착시킨다. 케이슨 구조물은 중량물이고, 작업 현장의 일기, 조류, 기초고르기면의 상태 등에 영향을 받아 케이슨의 거치작업이 단 한번에 끝나기는 쉽지 않지만, 일반적으로 3~4회 정도의 반복을 통해 정거치를 완료할 수 있다.
이어서 이미 정거치된 케이슨에 이웃하여 그 측면에 다시 케이슨을 거치하는 작업을 실시하며, 이 때 케이슨과 케이슨이 서로 접촉하여 파손되는 것을 방지하기 위해 케이슨에 타이어휀다 등을 설치하여 이웃하는 케이슨의 1차 접촉시 파손을 방지하고, 정밀거치시 타이어휀다를 제거한다.
이렇게 케이슨(10)들을 측방으로 정렬하며 정거치하게 되면, 도 5에 도시된 바와 같이 이웃하는 두 케이슨의 서로 마주하는 두 오픈 셀(13)에 의해 인터셀(22)이 형성된다. 즉 이웃하는 두 케이슨의 전후면부재(14)와 케이슨의 측면에 의해 구획된 공간이 '셀'로서 기능을 하게 된다. 인터셀(22)이라 함은 이웃하는 두 케이슨이 정렬되어야 비로소 셀의 기능을 한다는 의미이다. 인터셀(22) 역시 전후면부재에 의해 그 체적이 규정되므로, 내부에 사석이 채워질 수 있다. 현재 표준 시방서 기준 상 두 케이슨 사이의 간격 오차가 10 cm ~ 20 cm 임을 감안하면, 서로 이웃하는 두 케이슨의 전후면부재 사이의 간격 역시 10 cm ~ 20 cm의 간격 오차를 가지도록 할 수 있다.
다음으로, 도 6에 도시된 바와 같이, 케이슨 내부의 폐쇄형 셀(12)에 채움재(30)를 채우고, 마찬가지로 인터셀(22)에도 채움재를 채운다. 채움재는 해수보다 비중이 크면 클수록 바람직하다. 폐쇄형 셀(12)에 채워지는 채움재(30)로는 자연 사석을 사용하거나 철강 제련 등에서 발생하는 슬래그, 화력발전소에서 발생하는 바텀애쉬 등을 포함하는 사석을 사용할 수 있다. 반면 인터셀(22)에 채워지는 채움재로는 철강 제련 등에서 발생하는 슬래그는 바람직하지 않다. 왜냐하면 슬래그는 물과 반응하여 팽창하면서 이웃하는 슬래그끼리 함께 경화되어 고화됨으로써, 결국 하나의 강체처럼 변성하기 때문이다. 따라서 인터셀(22)에 채워지는 채움재로는 영구적으로 플렉시블한 상태를 유지하는 채움재, 가령 자연 사석을 사용하는 것이 바람직하다. 이 외에도 인터셀(22)에 채워지는 채움재는, 잘 부서지지 않으면서 시간이 지나도 지속적으로 플렉시블한 상태를 유지할 수 있는 사석 형태의 채움재이면 족하다. 이처럼 인터셀(22) 부분에 채우는 채움재는 영구적으로 상호 플렉시블한 상태를 유지하는 인터록킹 사석(32)일 수 있다. 인터록킹 사석은 두 케이슨의 전후면부재 사이의 간격인 10 cm ~ 20 cm 보다는 커서 인터셀(22)에서 간극을 통해 외부로 유출되는 것이 방지되면서도, 너무 큰 규격은 아니어서 인터록킹 작용이 일어날 때 하중이 충분히 분산될 수 있을 정도인 것이 바람직하다. 한편 인터셀(22)에 채워지는 사석 형태의 채움재(30) 모두 그 직경이 두 전후면부재(14) 사이의 간극보다 크도록 하지 않더라도, 채워진 사석들 상호간에 긴결한 간섭이 이루어지도록 하면 사석의 유출을 상당 부분 방지할 수 있다는 점 역시 참고할 만하다.
인터셀(22)에 채워진 사석은, 이웃하는 두 케이슨이 서로 다른 방향으로 전후방향으로 변위하는 것에 저항해야 하므로, 통상의 셀(12)에 채워진 사석과 달리 서로 긴밀하게 간섭되어 있는 것이 바람직하다. 이를 위해 인터셀(22)에 채워지는 사석 형태의 채움재(30)에 대해 다짐 공정을 실시할 수 있다. 이처럼 인터셀(22)에 채워진 사석 형태의 채움재(30)을 다짐으로써 사석들이 서로 긴밀하게 간섭되고, 이로 인해 모든 사석들의 직경이 전후면부재 사이의 간극보다 크지 않더라도 사석의 유출을 상당 부분 방지할 수 있다. 하지만 채움이나 다짐 과정에서 사석이 깨질 가능성 등을 감안하면, 보다 안정적인 인터록킹을 위해, 인터셀(22)에 채워지는 모든 사석들의 직경이 이웃하는 두 전후면부재(14) 사이의 간극보다 크도록 구성하는 것이 바람직할 것이다.
이러한 인터록킹 구조는, 특정 케이슨에 더 큰 외력이 가해져 인터록킹 부위에 하중이 가해질 때, 사석들에 의해 하중이 집중되지 않고 확실한 분포하중으로 작용하므로, 하중이 특정 부위에 집중되지 아니하여 케이슨의 파손 가능성을 크게 낮출 수 있다.
그런데 본 발명에서는 앞서 설명한 바와 같이 인터셀(22)의 하부가 전부 혹은 일부 개방된 형태이기 때문에, 인터셀(22)에 채워지는 인터록킹 사석(32)은 마운드와 직접 접하게 된다. 한편, 앞서 이미 언급하였던 바와 같이 마운드에 포설되는 사석의 규격이 인터셀(22)의 전후면부재 사이의 간극보다 더 큰 규격이고, 후술하겠지만, 인터록킹 작용이 일어날 때 하중이 충분히 분산될 수 있을 정도의 규격에 해당하는 점을 감안하면, 인터록킹 사석(32)의 규격 역시 이러한 마운드 사석과 대응되도록 하면, 인터록킹 사석(32)이 마운드를 통해 외부로 유출되는 것을 방지하면서도, 외력이 주어질 때 인터록킹 사석(32)과 마운드 사석 사이의 마찰계수를 최대화할 수 있다(마찰계수 0.8 정도). 이는 마운드의 사석 역시 인터록킹을 위한 저항력에 기여하는 결과를 가진다.
실험 결과, 인터셀(22)에 채워지는 인터록킹 사석의 규격이 0.015 ~ 0.03 m3/EA인 경우 규격석들이 파손되지 않으면서 서로 잘 얽혀있는 채로 명백한 분포 하중으로 작용함을 확인할 수 있었다. 게다가 공교롭게도 0.03 m3/EA 이상의 규격은 케이슨 사이의 간격에 대한 허용오차인 10cm ~ 20cm 보다 큰 규격이므로 외부로 유출되지 아니한다. 한편 채움재가 0.05 m3/EA 이상의 규격을 가지면 사석 간 집중하중으로 인해 인터록킹 사석이 깨지는 현상이 일어나기 시작하고, 이는 채움재의 외부 유출을 유발할 수 있다. 인터록킹 사석이 0.001 m3/EA 미만이 되면 사석간에 오히려 서로 잘 얽히지 않고 하중이 주어질 때 외부 유출이 유발된다. 그런데 앞서 설명한 바와 같이 마운드의 사석과 인터록킹 사석의 규격을 서로 대응하도록 하면(가령 앞서 설명한 기초사석의 규격인 0.015 ~ 0.03 m3/EA와 인터록킹 작용이 적절히 일어나도록 하는 인터록킹 사석의 규격인 0.01 ~ 0.05 m3/EA는 서로 대응한다 ), 도 9에 도시된 바와 같이 인터록킹 사석(32)이 마운드에 포설된 사석 사이의 간극을 통해 유출되지 않도록 하면서도 마운드와 인터록킹 사석 사이의 마찰계수를 가장 높일 수 있는 방안이 된다. 즉 인터록킹 사석(32) 부분이 플렉시블한 상태를 유지하면서 인터록킹 사석(32)과 마운드(60)가 모두 인터록킹을 위한 외력에 대한 저항력을 제공할 수 있게 된다.
이어서 도 7에 도시된 바와 같이 뒷채움재(50)를 케이슨의 후면에 포설하고, 도 8에 도시된 바와 같이 상치블록(40)을 설치하면 항만 구조물의 시공이 완료된다. 즉 정거치된 케이슨(10)에 채움재(30)를 채운 후에는 케이슨의 상단에 상치블록을 설치할 수 있고, 케이슨의 시공 목적에 따라 사석으로 뒷채움재(50)를 채울 수 있다.
한편, 인터셀(22)에 채워진 사석이 외부로 유출되는 것을 방지하기 위해, 덧댐부재(24)를 활용하는 방안도 고려할 만하다. 다만, 앞서 설명한 바와 같이 인터록킹 사석의 규격이 마운드의 사석의 규격과 대응하도록 하면 사석이 두 케이슨 사이의 갭으로 유출되는 현상을 방지할 수 있으므로 덧댐부재를 굳이 중복적으로 사용할 필요가 없다.
또한 사석을 돌망태(gabion)나 지오텍스타일과 같이 플렉시블한 망에 넣은 상태로 인터셀(22) 공간에 채워 넣어 채움재가 외부로 유출되지 않도록 하고 시공의 편리성을 얻는 방안도 고려할 수도 있겠으나, 인터록킹 사석의 규격이 마운드의 사석의 규격과 대응하도록 하면 사석이 두 케이슨 사이의 갭으로 유출되는 현상을 방지할 수 있으므로 굳이 돌망태나 지오텍스타일을 사용할 필요성은 적고, 오히려 인터록킹용 사석을 돌망태나 지오텍스타일로 감싸는 순간 돌망태나 지오텍스타일이 인터셀에 채워지는 사석과 마운드의 사석 간의 긴밀한 연결 관계를 차단한다는 점에서 돌망태나 지오텍스타일을 사용하는 방식은 지양(止揚)하는 것이 바람직하다.
도 10 내지 도 12는 본 발명에 따른 케이슨을 사용하여 항만 구조물을 시공하는 다른 방법을 순서대로 나타낸 도면이다. 해상구조물로 복수 개의 케이슨을 측면으로 나란히 배열하고 그 내부에 채움재를 모두 채우는 데에는 상당한 시일이 소요된다. 이처럼 케이슨 내부에 속채움재가 채워지기 전에는 케이슨의 자중이 당초 설계한 것만큼 크지 않으므로, 예상치 못한 파랑이 어떤 하나의 케이슨에 집중적으로 작용하게 되면 케이슨이 밀려 전도되는 현상이 발생하게 된다.
따라서 본 발명에서는 먼저 도 10에 도시된 바와 같이 케이슨 내부 공간인 셀(12)의 25~50% 정도를 채워 자중을 어느 정도 확보한 상태에서 즉시 이웃하는 케이슨 간에 인터록킹이 이루어지도록 할 수 있다. 바람직하게는 케이슨 내부 공간의 30% 정도를 채움재로 채운 후 이웃하는 케이슨 간의 인터록킹 작업을 실시한다.
그런데 이러한 인터록킹 작업은 별다른 것이 아니라, 이웃하는 두 케이슨에 의해 형성된 인터셀(22)에 도 11에 도시된 바와 같이 사석 형태의 채움재를 채우는 것으로 완료된다. 종래의 인터록킹 작업은 수중에서 실시하거나 또는 거대한 인터록킹 부재를 해상 현장으로 이동시켜야 하거나, 타설 공간을 밀봉하고 해수를 배출해 낸 후 콘크리트 타설을 해야 하는 등 작업이 곤란하거나 작업에 소요되는 시간이 많고, 그만큼 비용의 상승을 가져오는 원인이 되었다. 하지만 본 발명의 인터록킹 방식은 중 하중물을 운반하거나 작업자가 수중에 잠수할 필요 없이 셀(12)에 채움재를 채우는 작업과 동일한 작업만으로 즉시 실행할 수 있어 비용과 시간이 모두 절약된다.
이렇게 인터록킹 작업이 완료되면, 어느 하나의 케이슨에 파랑이 집중되더라도 그에 대한 저항력이 커지기 때문에 불측의 기상 조건에도 불구하고 케이슨 거치 작업에 큰 영향을 받지 않게 된다. 따라서 본 발명에 의하면 기상 조건에 크게 구애 받지 않고도 시공의 시기를 선택할 수 있다는 장점을 갖는다.
인터셀(22)을 채워 인터록킹이 이루어진 후에는, 도 12에 도시된 바와 같이 개별 케이슨 내부(12)에 채움재를 마저 채우는 작업을 실시하면 된다.
상술한 시공 방법의 실시예에서는 케이슨에 채움재를 채우는 도중에 인터록킹을 실시하는 방식을 설명하였으나, 본 발명의 케이슨이 반드시 이러한 순서대로 시공되어야 하는 것은 아니다. 가령 개별 케이슨(10)의 셀(12)에 채움재를 모두 채운 후 인터셀(22)에 사석 형태의 채움재(30)를 채워도 무방하다.
[케이슨의 다른 실시예]
도 13은 본 발명에 따른 케이슨의 다른 일실시예를 나타낸 도면이다.
도 13에 도시된 케이슨과 도 2의 케이슨을 살펴보면, 오픈 셀(13)을 규정하기 위해 오픈 셀이 배치된 위치의 전방과 후방에 단순한 전후면부재를 설치하는 것(도 2 참조)뿐만 아니라 그 위치에도 셀(12)을 더 형성할 수 있음을 알 수 있다. 이는 케이슨 자체의 자중을 늘릴 수 있을 뿐만 아니라 전후면부재를 특별히 두껍게 하거나 헌치(15)를 구성할 필요 없이, 하나 이상의 셀을 더 형성함과 더불어 오픈 셀의 전면과 후면을 규정할 수 있다는 것이다.
[케이슨의 전후면부재 파손 방지 및 인터록킹 사석 유출 방지 구조]
도 14는 본 발명에 따른 케이슨에 사석 유출 방지캡이 설치되는 과정을 나타낸 사시도이고, 도 15는 도 14의 사석 유출 방지캡이 설치된 케이슨의 평면도이다. 본 발명에 의하면, 인터록킹 사석(32)의 규격이 통상적인 케이슨 간의 허용 간격보다 더 크기 때문에, 인터록킹 사석(32)이 정거치되어 이웃하는 마주하는 두 케이슨(10)의 전후면부재(14) 사이로 유출될 가능성은 거의 없다. 따라서 인터록킹 사석(32)의 유출을 방지하기 위한 별도의 구성이 필요하지 아니함은 앞서 설명한 바와 같다.
다만 본 발명에서는, 케이슨의 정거치시 케이슨과 케이슨이 서로 접촉하여 파손하는 것을 방지하기 위해, 종래에 케이슨에 타이어휀다 등을 설치하던 작업을 대신하여, 전후면부재(14)의 단부에 충격 방지 및 사석 유출 방지캡(70; 이하 '방지캡'이라 약칭함)을 씌워, 케이슨의 정거치 작업 중에는 케이슨 간의 접촉이나 충돌에 의한 전후면부재(14)의 파손을 방지하고, 케이슨의 정거치 후에는 두 전후면부재(14) 사이의 간격을 없앨 수 있으며, 부등 침하 등이 발생하여 케이슨이 정위치에서 다소 변위하더라도, 간격이 없는 두 전후면부재(14) 간에 파손이 발생하는 것을 방지할 수 있는 방법을 제공하고자 한다.
방지캡(70)은 도 14와 도 15에 도시된 바와 같이 전후면부재(14)의 선단면과, 전후면을 감싸는 형태의 캡으로서, 전후면부재(14)의 선단면과 완충공간(S)을 두고 마주하는 맞댐부(71)와, 상기 맞댐부(71)의 양단에서 전후면부재의 길이방향 쪽으로 연장되어, 전후면부재의 전후 측면에 각각 밀착되는 측면밀착부(72)를 포함한다.
본 발명의 실시예에서 방지캡(70)은 충격을 완화할 수 있고 충분한 탄성 변형이 가능한 재질, 가령 고무 재질일 수 있다. 다만 방지캡의 재질은 질기고 충격 흡수율이 높으며 탄성이 좋은 재질이면 이 외에도 다양한 다른 재질로도 제작 가능하다.
방지캡(70)의 맞댐부(71)는 약간의 곡률을 가지는 호형 단면을 가지므로, 맞댐부(71)와 전후면부재의 선단면 사이에는 완충공간(S)이 자연스레 마련될 수 있다. 또한 두 측면밀착부(72)는 상기 맞댐부로부터 선단부로 갈수록 서로 가까워지는 형태로 이루어져 있어서, 두 측면밀착부(72)를 전후면부재의 측면에 끼우면, 탄성에 의해 두 측면밀착부(72)가 전후면부재의 측면에 밀착하게 된다.
다만, 맞댐부(71)의 형상이 위에 설명한 구조에 한정되는 것은 아니며, 전후면부재의 선단부 형태에 대응하여 맞댐부와 전후면부재 간에 완충공간이 존재할 수 있는 정도라면 다양한 다른 형태로도 구현 가능하다. 가령 "ㄷ"자 형태로 맞댐부(71)와 측면밀착부(72)를 제작하되, 맞댐부(71)의 내면과 전후면부재 선단부 사이에 약간의 공간이라도 존재하도록 맞댐부(71)의 내면과 전후면부재 선단부의 형상을 형성하거나, 방지캡(70)을 전후면부재(14)의 선단부에 끼울 때, 맞댐부(71)가 전후면부재(14)의 선단부와 약간의 거리를 가질 수 있는 정도까지만 끼우는 방식도 적용할 수 있다.
이하, 이러한 방지캡(70)을 씌운 케이슨의 거치 시공 과정에 대해 설명한다.
도 16은 도 15의 케이슨들을 정거치한 상태를 나타낸 평면도, 도 17은 도 16의 A 부분의 확대도로서 케이슨들을 정거치한 상태에서 마주하는 전후면부재가 서로 이격된 상태를 나타낸 도면, 도 18은 도 17의 완충공간에 모르타르를 채워 서로 마주하는 사석 유출 방지캡이 밀착된 상태를 나타낸 도면, 그리고 도 19는 도 16의 A 부분의 확대도로서 케이슨들을 정거치한 상태에서 마주하는 전후면부재가 서로 밀착된 상태를 나타낸 도면이다.
먼저, 도 16 내지 도 18을 참조하면, 먼저 도 16에 도시된 바와 같이 방지캡(70)이 씌워진 상태에서 케이슨(10)들을 정거치한다. 서로 마주하는 이웃하는 케이슨 간의 전후면부재(14)에는 방지캡(70)이 씌워져 있기 때문에, 정거치 과정에서 이들이 서로 부딪히더라도 방지캡(70)이 충격을 흡수하게 된다.
정거치 후, 도 17에 도시된 바와 같이 전후면부재(14)의 선단면 사이에 약간의 거리가 존재할 경우, 완충공간(S)에 모르타르를 주입한다. 어느 정도의 압력을 가하며 모르타르를 주입하면 완충공간(S)에 모르타르가 채워지면서 부피가 팽창하게 되고, 이에 따라 방지캡(70)이 전후면부재(14)로부터 약간 빠져 나오는 방향으로 이동하게 된다.
양쪽 방지캡(70)의 완충공간(S)에 모르타르를 주입하고 나면, 도 18에 도시된 바와 같이 두 방지캡(70)의 맞댐부(71)가 서로 밀착하게 된다. 이처럼 방지캡(70)은 케이슨의 거치 과정에서 케이슨 간의 접촉으로 인해 발생할 수 있는 케이슨, 보다 구체적으로는 전후면부재의 파손을 방지하고, 정거치 후에는 이들 사이의 간격을 없애주는 기능을 함께 할 수 있다.
도 18에는 양쪽 완충공간(S) 모두에 모르타르가 채워진 상태가 도시되어 있으나, 두 전후면부재 간의 간격이 그리 크지 않아 한쪽 완충공간(S)에만 모르타르를 채워도 마주하는 두 방지캡(70)의 맞댐부(71)가 밀착할 수 있는 정도라면 어느 한 쪽에만 모르타르를 채우는 것도 가능하다. 아울러 양쪽 완충공간(S)에 주입되는 모르타르의 양에 차이가 있어도 무방하다.
한편, 앞서 설명한 케이슨의 정거치 과정에서 케이슨이 정교하게 밀착되어 정거치된 경우에는, 도 19에 도시된 바와 같이 두 방지캡(70)의 맞댐부(71)가 변형하며 완충공간(S)을 메워 주고, 이미 서로 밀착한 상태로 될 수도 있다. 이러한 경우에는 완충공간(S)에 모르타르를 주입할 필요 없이 관련 시공이 완료된다.
이러한 방지캡 구조와 이를 활용한 시공 방법에 의하면, 케이슨의 정거치 작업 중 케이슨 간의 접촉이나 충돌에 의해 발생할 수 있는 전후면부재(14)의 파손을 방지할 수 있다. 또한, 케이슨의 정거치 후에는, 완충공간(S)에 모르타르 등을 주입하여 두 전후면부재(14) 사이의 간격을 없애서 인터록킹 사석이 유출하는 것을 방지할 수 있다. 아울러 시공 후에도 전후면부재(14)는 한 쌍의 방지캡(70)에 의해 보호되므로, 부등 침하 등이 발생하여 케이슨이 정위치에서 다소 변위하더라도, 간격이 없는 두 전후면부재(14) 간에 파손이 발생하는 것을 방지할 수 있다.
이상과 같이 본 발명에 대해서 예시한 도면을 참조로 하여 설명하였으나, 본 명세서에 개시된 실시예와 도면에 의해 본 발명이 한정되는 것은 아니며, 본 발명의 기술사상의 범위 내에서 통상의 기술자에 의해 다양한 변형이 이루어질 수 있음은 자명하다. 아울러 앞서 본 발명의 실시예를 설명하면서 본 발명의 구성에 따른 작용 효과를 명시적으로 기재하여 설명하지 않았을지라도, 해당 구성에 의해 예측 가능한 효과 또한 인정되어야 함은 당연하다.

Claims (16)

  1. 기초사석에 의해 해저에 형성된 마운드 상부에 거치되는 케이슨 구조물로서,
    상기 구조물에 사용되는 케이슨은:
    상방으로는 개방되고 측면은 벽체(11)에 의해 규정되는 폐쇄형 셀(12)과,
    상기 케이슨의 측면에 형성되되, 안쪽 측면과 전면과 후면은 막히고 상부와 하부와 바깥쪽 측방은 개방된 형태의 오픈 셀(13)을 구비하되,
    상기 오픈 셀(13)이 서로 중첩되지 않고 마주하도록 복수 개의 상기 케이슨(10)이 상기 마운드 상부에 일렬로 설치되고,
    각각의 셀(12)에 채움재(30)가 채워지며,
    개방부가 서로 마주하는 두 오픈 셀(13)에 의해 형성되는 인터셀(22) 공간에 지속적으로 플렉시블한 상태를 유지하는 사석이 채워져서, 상기 인터셀(22) 내부의 사석이 이웃하는 두 케이슨을 인터록킹 하도록 하고,
    상기 인터셀(22) 공간에 채워지는 사석은 인터셀(22)의 개방된 하부를 통해 상기 마운드와 연결되는 것을 특징으로 하는 케이슨 구조물.
  2. 청구항 1에 있어서,
    상기 오픈 셀(13)을 규정하는 안쪽 측면에는, 오픈 셀 영역에 사석이 플렉시블하게 채워졌을 때 하중 분산과 마찰력 발생을 위한 전단키(18)가 형성된 것을 특징으로 하는 케이슨 구조물.
  3. 청구항 1에 있어서,
    적어도 상기 오픈 셀(13)의 전면의 전방과 후면의 후방에 폐쇄형 셀(12)이 배치되는 것을 특징으로 하는 케이슨 구조물.
  4. 청구항 1에 있어서,
    상기 케이슨 상부에 상치콘크리트가 설치되는 것을 특징으로 하는 케이슨 구조물.
  5. 청구항 1에 있어서,
    상기 케이슨의 후방에 뒷채움사석이 포설되는 것을 특징으로 하는 케이슨 구조물.
  6. 청구항 1에 있어서,
    상기 오픈 셀(13)의 하부는 일부 또는 전부 개방된 형태인 것을 특징으로 하는 케이슨 구조물.
  7. 청구항 1에 있어서,
    상기 인터셀(22) 공간에 채워지는 사석은 상기 마운드의 사석과 대응하는 규격인 것을 특징으로 하는 케이슨 구조물.
  8. 청구항 1에 있어서,
    상기 오픈 셀(13)의 전면과 후면에 전후면부재(14)가 마련되고,
    상기 전후면부재의 선단부에는 적어도 상기 전후면부재의 선단면과 전후 측면에 씌워지는 충격 방지 및 사석 유출 방지캡(70)이 씌워지는 것을 특징으로 하는 케이슨 구조물.
  9. 청구항 8에 있어서,
    상기 방지캡(70)은:
    상기 전후면부재의 선단면과 마주하는 맞댐부(71)와,
    상기 맞댐부(71)의 양단에서 전후면부재의 길이방향 쪽으로 연장되어, 전후면부재의 전후 측면에 각각 밀착되는 측면밀착부(72)를 포함하는 것을 특징으로 하는 케이슨 구조물.
  10. 청구항 9에 있어서,
    이웃하는 케이슨 사이에서, 서로 마주하는 상기 방지캡의 맞댐부가 서로 마주하여 접하는 것을 특징으로 하는 케이슨 구조물.
  11. 청구항 10에 있어서,
    상기 전후면부재의 선단면과 맞댐부(71) 사이에 마련된 완충공간(S)에 모르타르(M)가 주입된 것을 특징으로 하는 케이슨 구조물.
  12. 청구항 1 내지 청구항 11 중 어느 한 항의 케이슨 구조물을 시공하는 방법으로서,
    해저면 상면에 기초사석을 포설하여 마운드를 형성하는 단계;
    마운드 상면을 평평하게 고르기하는 단계;
    고르기한 마운드 상면에, 상기 오픈 셀(13)이 서로 마주하도록 복수 개의 케이슨(10)을 측방으로 배열하며 정거치하여 인터셀(22)을 형성하는 단계; 및
    정거치된 상기 케이슨(10)의 셀(12)에 채움재를 채우고, 상기 인터셀(22)에는 상기 기초사석과 대응하는 규격의 사석을 채워 인터셀(22) 내부의 사석이 마운드의 기초사석과 연결된 상태로 플렉시블하게 유지되도록 하는 단계;를 포함하는 케이슨 시공 방법.
  13. 청구항 12에 있어서,
    상기 인터셀(22)을 형성하는 단계는,
    오픈 셀(13)의 전후면부재(14)에 충격 방지 및 사석 유출 방지캡(70)을 씌운 후 복수 개의 케이슨(10)을 측방으로 배열하며 정거치하고,
    케이슨을 이웃하며 정거치한 후, 방지캡과 전후면부재 사이의 완충공간(S)에 모르타르(M)를 주입하여 이웃하는 케이슨 간의 방지캡이 서로 맞닿도록 하는 작업을 포함하는 케이슨 시공 방법.
  14. 청구항 12에 있어서,
    상기 상기 셀(12)과 인터셀(22)에 채움재와 사석을 채우는 단계는,
    상기 셀(12)에 부분적으로 채움재를 채우는 제1단계;
    제1단계 후 상기 인터셀(22)에 사석을 모두 채우는 제2단계; 및
    제2단계 후 상기 셀(12)에 채움재를 모두 채우는 제3단계;를 포함하는 인터록킹 구조물 시공 방법.
  15. 청구항 12에 있어서,
    상기 셀(12)과 인터셀(22)을 채움재로 채운 후 상치블록을 설치하는 단계;를 더 포함하는 것을 특징으로 하는 케이슨 시공 방법.
  16. 청구항 12에 있어서,
    상기 셀(12)과 인터셀(22)을 채움재로 채운 후 뒷채움사석을 포설하는 단계를 더 포함하는 것을 특징으로 하는 케이슨 시공 방법.
PCT/KR2016/009567 2015-08-28 2016-08-29 오픈 셀 케이슨 구조물 및 시공 방법 WO2017039254A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680050292.7A CN108138456A (zh) 2015-08-28 2016-08-29 开放式单元沉箱结构物及施工方法
PH12018500439A PH12018500439A1 (en) 2015-08-28 2018-02-28 Open-cell caisson structure and construction method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0121583 2015-08-28
KR1020150121583A KR101613886B1 (ko) 2015-08-28 2015-08-28 오픈 셀 케이슨, 그 구조물 및 시공 방법
KR10-2016-0044855 2016-04-12
KR1020160044855A KR101727510B1 (ko) 2016-04-12 2016-04-12 오픈 셀 케이슨 구조물 및 시공 방법

Publications (1)

Publication Number Publication Date
WO2017039254A1 true WO2017039254A1 (ko) 2017-03-09

Family

ID=58187931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/009567 WO2017039254A1 (ko) 2015-08-28 2016-08-29 오픈 셀 케이슨 구조물 및 시공 방법

Country Status (3)

Country Link
CN (1) CN108138456A (ko)
PH (1) PH12018500439A1 (ko)
WO (1) WO2017039254A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110258457A (zh) * 2019-06-26 2019-09-20 中国电建集团成都勘测设计研究院有限公司 峡谷区水电工程导流洞全洞段检修用挡水坝结构

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115198779B (zh) * 2022-07-14 2023-05-05 中交第四航务工程勘察设计院有限公司 重力式沉箱

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59130905A (ja) * 1983-01-18 1984-07-27 Penta Ocean Constr Co Ltd 防波堤の築造方法
KR19990083890A (ko) * 1999-08-26 1999-12-06 유성용 전단키를 갖춘 케이슨
JP2007092509A (ja) * 2005-08-30 2007-04-12 Toyo Constr Co Ltd 防波構造物
JP2013019132A (ja) * 2011-07-08 2013-01-31 Toyo Constr Co Ltd 防波堤
KR20140049535A (ko) * 2014-03-27 2014-04-25 삼성물산 주식회사 소파구조물의 케이슨 및 이를 이용한 안벽, 방파제, 호안

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59130905A (ja) * 1983-01-18 1984-07-27 Penta Ocean Constr Co Ltd 防波堤の築造方法
KR19990083890A (ko) * 1999-08-26 1999-12-06 유성용 전단키를 갖춘 케이슨
JP2007092509A (ja) * 2005-08-30 2007-04-12 Toyo Constr Co Ltd 防波構造物
JP2013019132A (ja) * 2011-07-08 2013-01-31 Toyo Constr Co Ltd 防波堤
KR20140049535A (ko) * 2014-03-27 2014-04-25 삼성물산 주식회사 소파구조물의 케이슨 및 이를 이용한 안벽, 방파제, 호안

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110258457A (zh) * 2019-06-26 2019-09-20 中国电建集团成都勘测设计研究院有限公司 峡谷区水电工程导流洞全洞段检修用挡水坝结构
CN110258457B (zh) * 2019-06-26 2024-02-13 中国电建集团成都勘测设计研究院有限公司 峡谷区水电工程导流洞全洞段检修用挡水坝结构

Also Published As

Publication number Publication date
PH12018500439A1 (en) 2018-08-29
CN108138456A (zh) 2018-06-08

Similar Documents

Publication Publication Date Title
KR101613886B1 (ko) 오픈 셀 케이슨, 그 구조물 및 시공 방법
KR101780982B1 (ko) 오픈 셀 케이슨 구조물 및 시공 방법
CN106677189B (zh) 一种斜桩墙支承式基坑支护结构及其施工方法
WO2017039254A1 (ko) 오픈 셀 케이슨 구조물 및 시공 방법
CN103469801A (zh) 基于预制地墙的基坑围护结构施工方法
KR101727510B1 (ko) 오픈 셀 케이슨 구조물 및 시공 방법
KR102152085B1 (ko) 오픈 셀 케이슨 구조물 및 시공 방법
CN109056804B (zh) 一种综合管廊基坑支护结构及其实现方法
JP2003253644A (ja) 護岸構造
KR20210087009A (ko) 마찰 증대 오픈 셀 케이슨
CN212506101U (zh) 一种消浪护坡结构
JP2004308328A (ja) 護岸構造
CN211815255U (zh) 一种岩质陡坡道路结构
KR102044966B1 (ko) 오픈 셀 케이슨 구조물 및 시공 방법
CN113737811A (zh) 一种狭小基坑内装配式支护结构及其施工方法
CN109338909B (zh) 一种整体式桥墩加固结构及其施工方法
CN112855207A (zh) 一种斜交式洞口隧道构造及施工方法
KR20190096324A (ko) 오픈 셀 케이슨 구조물 및 시공 방법
CN102409682B (zh) 连续拱形护坡桩预应力锚杆型钢内撑结构及其施工方法
CN214940194U (zh) 一种基于地下敞口式结构的支护结构
KR20210131295A (ko) 바닥 마찰 증대 케이슨
CN217923601U (zh) 一种桩间挡板施工结构
CN114319425B (zh) 一种新建桩板墙-既有悬臂挡土墙路堤帮宽及其施工工艺
CN219862751U (zh) 一种新型预应力混凝土基坑支护桩
CN221566878U (zh) 一种降低路面填高的防浪墙与压力式排水箱涵组合结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16842220

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12018500439

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 17/07/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16842220

Country of ref document: EP

Kind code of ref document: A1