WO2017039252A1 - Light emitting barrier film and method of forming same - Google Patents

Light emitting barrier film and method of forming same Download PDF

Info

Publication number
WO2017039252A1
WO2017039252A1 PCT/KR2016/009559 KR2016009559W WO2017039252A1 WO 2017039252 A1 WO2017039252 A1 WO 2017039252A1 KR 2016009559 W KR2016009559 W KR 2016009559W WO 2017039252 A1 WO2017039252 A1 WO 2017039252A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
barrier film
nanoporous
oxygen
pores
Prior art date
Application number
PCT/KR2016/009559
Other languages
French (fr)
Korean (ko)
Inventor
황재정
Original Assignee
주식회사 제이케이리서치
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 제이케이리서치 filed Critical 주식회사 제이케이리서치
Publication of WO2017039252A1 publication Critical patent/WO2017039252A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a light emitting barrier film having a transparent two-dimensional photonic crystal structure having excellent heat dissipation characteristics, extremely low transmittance of a gas containing oxygen and / or moisture, and high mechanical strength and flexibility, and a method of forming the same.
  • Barrier films are widely used in areas that require the blocking of moisture and oxygen in various fields from food packaging to electronic products. Among them, high barrier properties are required for applications in the display field due to the low stability of photoactive materials such as emitters.
  • OLEDs require an oxygen transmission rate (OTR) of 1.0 X 10 -6 cc / m 2 day bar or less, and a water vapor transmission rate (WVTR) of 1.0 X 10 -6 g / m 2 day or less.
  • OTR oxygen transmission rate
  • WVTR water vapor transmission rate
  • In the display device using a quantum dot (Quantum dot) is also different depending on the application target, but also very low (1.0 X 10 -6 ⁇ 1.0 X 10 -2 ) oxygen transmission rate and water vapor transmission rate is required.
  • the oxidation of photo / electric / electronic devices is known to be about 3 times faster than oxygen due to oxidation by water electrochemical reaction, so low water vapor transmission rate is essential.
  • the kinetic diameters of oxygen and water molecules are ⁇ 0.35nm and ⁇ 0.26nm, respectively, and are easily permeable to micro and macro defects of 1 nm or more generated during barrier layer deposition, and also low density polymers with large free volume due to weak attraction and crystallinity between the polymer chains.
  • the mobility between the polymer chains of oxygen and water molecules is considerable, and thus it is impossible to produce a barrier film having high barrier properties required only by the polymer barrier layer.
  • inorganic matters have very low solubility and diffusivity compared to polymers such as PET or acrylic, which shows a very good blocking effect. Even a single silica layer of several tens to hundreds of nm by vapor deposition shows a water vapor transmission rate of 10 ⁇ 3 to 10 ⁇ 6 g / m 2 ⁇ day.
  • the wet coating method is also applied, which can produce a high quality organic / inorganic layer barrier film if proper conditions are maintained because there is no shadow effect.
  • this method also requires very careful management of the substrate and the adhesion between the bleed-proof layer, the flattening layer having a flatness within several nm, and the inorganic material before raising the inorganic layer.
  • the wet coating After providing the anchor layer to increase the dense inorganic layer is the wet coating.
  • the inorganic layer alumina having a very low solubility and diffusion is most often used, but SiN or silica is also commonly used.
  • SiN or silica is also commonly used.
  • Quantum dots are easily applied to the display field because they can easily control band gap by quantum confinement effect and size, and can realize various colors as well as excellent luminescence characteristics. There are some problems to be solved.
  • Quantum dots are metastable materials with a large surface area and very high surface energy, and are very weak in optical, physical and chemical stability in the operating environment of quantum dot devices.
  • the quantum dots In addition to the aggregation due to inadequate dispersion, in order to lower the surface energy of the quantum dots, the growth of particles by Ostwald ripening occurs continuously, and melting or sintering at very low temperatures ( ⁇ 100 o C), even at room temperature This occurs and quantum dot aggregation occurs, and its progress is much faster at high temperatures. This phenomenon is more prominent in quantum dots in the smaller blue region.
  • the aggregation of the quantum dots shows a decrease in luminous efficiency and long wavelength shift of the luminous wavelength due to the increase of particle size, self absorption and quenching. Therefore, the quantum dots must be well protected on the surface and they must be evenly distributed apart from each other over a proper distance.
  • quantum dots cause thermal and photochemical reactions due to moisture, oxygen, heat, and continuous strong light, which greatly deteriorate their optical properties, and in particular, physical and optical properties of quantum dots with respect to surface reactions of quantum dots such as ligand substitution and defect generation. Is very sensitive, and large luminous efficiency decreases and color changes occur. Therefore, in order to preserve the operational stability of the quantum dot device, it is essential to completely block water and oxygen from the outside, suppression of heat generation, and heat radiation.
  • An object of the present invention is to provide a barrier film having a very low permeability of a gas containing oxygen and / or moisture to increase the stability of oxygen and / or moisture sensitive electronic materials.
  • Another object of the present invention is to provide a barrier film having a long life and high light efficiency by introducing a heat radiation structure on the barrier film.
  • Still another object of the present invention is to provide a barrier film having high economical efficiency at low cost by introducing an easy wet process.
  • Another object of the present invention is to provide a barrier film having a transparent two-dimensional photonic crystal structure to increase the light efficiency of the display device.
  • Another object of the present invention is to provide a transparent two-dimensional photonic crystal structure barrier film to eliminate the components for the optical path conversion in the display device.
  • Another object of the present invention is to increase the light efficiency of the display device by the selective transmission and reflection of light according to the wavelength by introducing an optical layer on the barrier film.
  • the nano-phosphor in the pores of the nanoporous metal oxide film preferably nanoporous alumina film having a two-dimensional photonic crystal structure anodized in an acid solution
  • the structure of the light emitting barrier film in which the pores were sealed after the introduction of H was provided.
  • the anodized alumina film is a hexagonal honeycomb structure in which pores are regularly arranged, and the pore diameter is 10 to 500 nm, preferably 15 to 300 nm, more preferably 30 to 120 nm, and the thickness of the anodized alumina barrier layer is 10 nm. It is -500 nm, Preferably it is 30-300 nm, More preferably, it is 50-100 nm, The thickness of the whole film is 1um-50um, Preferably it is 2-30um, More preferably, it is 10-20um.
  • the periphery of the anodized alumina film may be used as a support and a heat dissipation structure of the anodized alumina film, leaving a predetermined width of aluminum.
  • the polymer is a coating layer of acrylic, epoxy, urethane, silicone, amide, fluorine-based polymer and organic-inorganic hybrid having a high transparency Can be used.
  • a selective light transmission enhancement layer and a reflection layer may be formed on the outside of the barrier layer, and the region of the wavelength may be near infrared light (near IR) and far infrared light (IR) having a great influence on heat transfer as well as visible light. far IR).
  • near IR near infrared light
  • IR far infrared light
  • nano phosphors such as quantum dots may be uniformly applied.
  • the passivation film is a material having a large band gap, and may be metal oxides, nitrides, and sulfides.
  • the metal may be Si, Al, Ti, Zr, Hf, Nb, Mo, W, Ta, or the like.
  • the pores may be sealed by a sealing material.
  • the sealant may be any one or a mixture of transparent plate-shaped nano-inorganic material, metal oxide sol, organic polymer.
  • an adhesive having a barrier property can be applied to enable the direct attachment to the desired substrate.
  • the step of applying a mask for forming a pattern on one surface of aluminum foil Forming a nanoporous film by anodizing in an acid solution; Applying a nano phosphor inside the nanoporous film pores;
  • a method of forming a light emitting barrier film comprising sealing pores.
  • the light emitting barrier film having a transparent two-dimensional photonic crystal structure having heat dissipation characteristics and extremely low transmittance of a gas containing oxygen and moisture and having high mechanical strength and flexibility Films can be provided, which are directional to light transmission, ensuring excellent light properties and long life even in the harsh environments of high heat, high humidity and high density light irradiation.
  • 1 is a structural diagram of a barrier film
  • Figure 2 Structural drawing of porous alumina.
  • Nanoporous metal oxides through anodization of valve metals have many academic and industrial values.
  • Nanoporous anodized alumina the most widely used among them, is a technology that has been introduced for more than 100 years and is commonly used around the surface of aluminum chassis or aluminum tableware, and its manufacturing process is also common.
  • Nanoporous alumina exhibits excellent optical, chemical and physical properties due to its material and structural properties, and is a material well suited for the purpose of the present invention with easy processing and low cost.
  • Anodization of aluminum in the acid solution simultaneously coincides with the electrochemical oxidation of aluminum and the local electrochemical dissolution of the resulting alumina, thereby forming a nanoporous alumina film on the aluminum surface.
  • Its nanoporous structure (pore size, microspatial distance and barrier layer thickness) and film growth rate are precisely controlled by the type of electrolyte, temperature, voltage, and current density.
  • Alumina etching solution such as can be used to finely control the size of the pore and the thickness of the barrier layer and its production and control methods are well known. (See Figure 1)
  • the resulting nanoporous alumina is very transparent, and the light parallel to the pore channel is an excellent optical material having a high transmittance of 90% or more from visible light to near infrared region.
  • the transmittance of the light rapidly decreases. This is due to the anisotropy of the photonic density of state (DOS) due to the periodic change of the refractive index due to the periodic pore-arranged anodized alumina structure.
  • This nanoporous alumina is a 2D photonic crystal. Can be seen.
  • the directional selectivity of the transmitted light is also applied to the transmission of the emitted light, and this property is maintained even in the light emitting device.
  • Such light can increase the light efficiency of the device with proper use of direction selectivity, and there is no need for a separate optical component for changing an optical path such as a prism sheet or an optical waveguide.
  • alumina is known to be one of the best barrier materials due to its very good barrier properties, due to its very low solubility and diffusion into water and oxygen.
  • the main reason for the decrease in quantum dot light efficiency is due to the oxidation reaction of quantum dots by oxygen and water, which promotes the substitution reaction of ligands that protect the quantum dots while generating defects on the surface.
  • the surface state of the quantum dot has an absolute influence on the luminous efficiency and the wavelength of light emission. Therefore, preservation of the surface state of the quantum dot is very important.
  • the continuous irradiation of light produces hole-electron pairs of quantum dots, most of which recombine and are emitted as light, but some generate heat due to the disappearance of non-luminescent processes or relax to ground exciton and cause electron-phonon interactions
  • the phonon accumulated in the quantum dots thereby heats the quantum dots and at the same time narrows the band gap of the quantum dots, causing long wavelength shift of the emission color.
  • absorption and non-emissive extinction by surface defects are also converted to heat to heat the quantum dots. That is, unless the quantum efficiency is 100%, heat is accumulated in the quantum dots by the incident photons.
  • the heated quantum dots promote the loss of capping ligands and the formation of surface defects by rapid oxidation reactions by moisture and oxygen. In particular, loss of ligand causes melting and low temperature sintering of the quantum dots, causing growth and aggregation of the quantum dot particles.
  • Nanoporous alumina exhibits excellent barrier properties by making it difficult to transport gases due to the repetitive structure of nanopore as well as the properties of alumina material which has excellent gas barrier properties.
  • nanoporous alumina Another advantage of nanoporous alumina is its very large surface area due to the nanostructures. As a result, it is very easy to obtain a uniform, high concentration quantum dot film without aggregation, which has a very large surface area and maintains an appropriate distance between the quantum dots, thereby maintaining high quantum efficiency and long wavelength shift of emission color. In addition, this structure is also advantageous in heat dissipation, which can mitigate the growth and aggregation of quantum dots due to low temperature sintering.
  • the light emitting barrier film using the anodized alumina film having the above advantages is produced through the following process.
  • aluminum may be used as a support and a heat dissipation structure of the nanoporous anodized alumina film by leaving a predetermined width of aluminum at the periphery of the nanoporous alumina film during anodization.
  • Thin nanoporous alumina films of 10 ⁇ m or less are flexible but are prone to breakage as the film thickness increases. Therefore, when aluminum having high flexibility and high mechanical strength is used as a support, mechanical strength against external impact of the nanoporous alumina film can be greatly increased.
  • Another aspect is an improvement in heat dissipation of the nanoporous alumina film.
  • the thermal conductivity of aluminum (237W / mK) is about 10 times higher than that of alumina (20 ⁇ 30W / mK), which can effectively remove the heat in the barrier film generated during the operation of the light emitting device. It can greatly increase the service life.
  • a forced cooling means such as a thermoelectric cooler may be provided to lower the temperature of the entire barrier film by cooling the portion of the alumina through the cooling of the peripheral aluminum.
  • the width, line spacing, and pattern of the aluminum can be modified as appropriate depending on the application.
  • a thin line width aluminum having a high aperture ratio is suitable for an application requiring high light transmittance
  • a thick line width aluminum having a low aperture ratio is suitable for an application requiring high mechanical strength and heat dissipation.
  • High optical transmittance is important for applications such as displays, and it is desirable to increase the aperture ratio and to have light reflecting means on the light source side to recover light reflected by the aluminum pattern.
  • the shape of the pattern is appropriate in the form of a mesh or honeycomb in consideration of mechanical strength and heat dissipation efficiency, but various shapes may be modified as necessary.
  • a ladder pattern is suitable.
  • the width between aluminum lines should not be too wide.
  • the fabrication is performed by forming a desired pattern on one side of the aluminum foil by means such as screen printing or inkjet, and then selectively anodizing the unmasked portion to replace the ink-protected aluminum 12 around the nanoporous alumina film 11. Leave it as it is.
  • Nanoporous alumina film can be obtained by electrochemical oxidation after the aluminum foil masked in the acid solution to the anode.
  • the anodized alumina film is a hexagonal honeycomb structure in which pores are regularly arranged, and the diameter of the pores 21 is 10 to 500 nm, preferably 15 to 300 nm, more preferably 30 to 120 nm, and the anodized alumina barrier layer ( The thickness of 22) is 10 nm to 500 nm, preferably 30 to 300 nm, more preferably 50 to 100 nm, and the thickness of the entire film 23 is 1 um to 50 um, preferably 2 to 30 um, more preferably 10 to 20 um. to be.
  • the acid solution may be used an organic acid, such as sulfuric acid, oxalic acid, phosphoric acid and hydrofluoric acid.
  • the size and spacing of the pores can be obtained by appropriately adjusting the applied voltage and current density and the temperature of the solution, which can be more precisely controlled by an etching process later.
  • electrolytic polishing may be included to increase the flatness of the aluminum surface before anodizing, or nanoporous oxide films having irregular pores generated after the first anodization. Can be subjected to secondary anodization after etching with 5% phosphoric acid solution.
  • a polymer coating layer having excellent elasticity and mechanical strength may be provided outside the barrier layer of the anodized alumina film, and the polymer may be acrylic, epoxy, urethane, silicone, amide, or fluorine-based polymer having high transparency.
  • coating layers such as organic-inorganic hybrids can be used.
  • the refractive index of the alumina is 1.78
  • IR near infrared light
  • far infrared light far infrared light
  • IR far infrared light
  • the light emitting barrier film has the highest transmittance in a region near 450 nm and reflects toward the light guide plate in the remaining visible light region to maximize light efficiency.
  • Two layers of anti-reflective coating, consisting of a high and low refractive layers, can give the function of a dichroic filter.
  • the high refractive layer if a material such as ITO, ATO, FTO, AZO is used as the high refractive layer, it can be used as a reflective layer of near infrared (near IR) and far infrared (far IR) as well as function of the high refractive layer.
  • near IR near infrared
  • far IR far infrared
  • the nano phosphor 24 such as a quantum dot may be uniformly applied inside the pores of the anodized alumina film. This can be achieved by a simple dip coating, and if necessary, ultrasonic waves are applied at the time of dipping to obtain a more uniform quantum dot coating film. For more effective application, we need to balance the polarity of the solvent and the surface tension when considering the wettability of nanoporous alumina. To this end, solvents require relatively high polarity and low surface tension.
  • a passivation film may be formed inside the pores of the anodized alumina film to suppress energy transfer between the alumina surface and the quantum dots.
  • anodized in an organic acid solution such as oxalic acid
  • singly ionized oxygen vacancy (F center) is generated in nanoporous alumina under the influence of oxalate anion, and the alumina itself shows a blue emission band.
  • FRET Forster resonance energy transfer
  • a passivation film may be introduced on the surface of the alumina to suppress energy transfer.
  • the passivation film is a transparent material having a large band gap, and may be a metal oxide, nitride, or sulfide, and the metal may be Si, Al, Ti, Zr, Hf, Nb, Mo, W, Ta, or the like.
  • a thin film of a material having the same or higher affinity as the ligand of the quantum dot surface may be formed inside the pores of the anodized alumina film to impart a bonding force between the quantum dots and the pore surface so that the quantum dots may be stably and uniformly positioned in the pores.
  • quantum dots are capped with various ligands on the surface to improve stability, and their types are various. Trioctylphosphine (TOPO), Hexadecylamine (HDA), Dodecylamine (DDA), 3-mercaptopropyl triethoxysilane (MPS), N , N -dimethyl-2- mercaptoethyl ammonium chloride (DMAC), etc.
  • Affinity with the membrane surface is very large.
  • the introduction of these on the surface of alumina increases the affinity between the quantum dots and the pore surface to form a more uniform and stable film of quantum dots, and can greatly suppress the substitution reaction of the quantum dot surface ligands. It is preferable to use an excess of ligand in order to suppress the quantum dot performance by the desorption and substitution reaction of the ligand surrounding the quantum dot.
  • the emission wavelength change due to FRET can be suppressed.
  • the pores may be sealed by a sealing material.
  • a light emitting barrier film that can withstand harsh environments of high temperature and high humidity can be completed.
  • the sealant may be any one or a mixture of transparent plate-shaped nano-inorganic material, metal oxide sol, organic polymer.
  • the barrier layer is formed with a metal oxide sol or an organic polymer mixed with a plate-shaped nano-inorganic material, a lamellar layer is formed as shown in the following figure.
  • the plate-shaped nano-inorganic particles preferably have a high aspect ratio (thickness; 1 nm and a width of 2 ⁇ m or more) having excellent gas barrier properties and light transmittance, and are typically represented by Momoryonite and hectorite.
  • the sealing material layer may be omitted.
  • the surface of the light guide plate is heated to near Tg, and then pressed to a nanoporous light emitting barrier film to remove moisture in the pores and at the same time, bonding and sealing can be performed by infiltration of a polymer.
  • an adhesive having a barrier property can be applied to enable a direct attachment to the desired substrate.
  • the refractive index thereof is adjusted according to the characteristics of the substrate to be applied, thereby minimizing the reflection between interfaces to increase the light efficiency.
  • the refractive index of PMMA which is commonly used as a light guide plate, is 1.49
  • the refractive index of nanoporous alumina is 1.78 to 1.55 depending on porosity
  • the refractive index of the sealing material is about 1.51 to 1.61.
  • a light emitting barrier in which pores are sealed after introduction of nano phosphors into the pores of a nanoporous metal oxide film having a two-dimensional photonic crystal structure, preferably a nanoporous alumina film, by anodizing in an acid solution.
  • the structure of the film is provided.
  • the anodized alumina film is a hexagonal honeycomb structure in which pores are regularly arranged, and the pore diameter is 10 to 500 nm, preferably 15 to 300 nm, more preferably 30 to 120 nm, and the thickness of the anodized alumina barrier layer is 10 nm. It is -500 nm, Preferably it is 30-300 nm, More preferably, it is 50-100 nm, The thickness of the whole film is 1um-50um, Preferably it is 2-30um, More preferably, it is 10-20um.
  • the periphery of the anodized alumina film may be used as a support and a heat dissipation structure of the anodized alumina film, leaving a predetermined width of aluminum.
  • the polymer is a coating layer of acrylic, epoxy, urethane, silicone, amide, fluorine-based polymer and organic-inorganic hybrid having a high transparency Can be used.
  • a selective light transmission enhancement layer and a reflection layer may be formed on the outside of the barrier layer, and the region of the wavelength may be near infrared light (near IR) and far infrared light (IR) having a great influence on heat transfer as well as visible light. far IR).
  • near IR near infrared light
  • IR far infrared light
  • nano phosphors such as quantum dots may be uniformly applied.
  • the passivation film is a material having a large band gap, and may be metal oxides, nitrides, and sulfides.
  • the metal may be Si, Al, Ti, Zr, Hf, Nb, Mo, W, Ta, or the like.
  • the pores may be sealed by a sealing material.
  • the sealant may be any one or a mixture of transparent plate-shaped nano-inorganic material, metal oxide sol, organic polymer.
  • an adhesive having a barrier property can be applied to enable the direct attachment to the desired substrate.
  • the step of applying a mask for forming a pattern on one surface of aluminum foil Forming a nanoporous film by anodizing in an acid solution; Applying a nano phosphor inside the nanoporous film pores;
  • a method of forming a light emitting barrier film comprising sealing pores.
  • the present invention can be industrially used for a method of forming a light emitting barrier film.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)

Abstract

The present invention relates to a transparent 2D photonic crystal-structured light emitting barrier film having excellent heat dissipating properties, extremely low permeability of gases including oxygen and moisture, and high mechanical strength and pliability, and to a method of forming the light emitting barrier film. According to the present invention, a high-efficiency light emitting barrier film may be provided which has light transfer directionality, and shows excellent optical properties and a long lifespan even in extreme environments of high heat, high humidity, and high density light irradiation.

Description

발광 배리어 필름 및 이의 형성방법Light emitting barrier film and forming method thereof
본 발명은 우수한 방열특성과 산소 및/또는 수분을 포함하는 기체의 투과율이 극히 낮으며 높은 기계적 강도 및 유연성을 갖는 투명한 2차원 광결정(photonic crystal) 구조의 발광 배리어 필름과 이의 형성방법에 관한 것이다.The present invention relates to a light emitting barrier film having a transparent two-dimensional photonic crystal structure having excellent heat dissipation characteristics, extremely low transmittance of a gas containing oxygen and / or moisture, and high mechanical strength and flexibility, and a method of forming the same.
배리어 필름은 식품의 포장부터 전자제품 등에 이르는 다양한 분야에 걸쳐 수분과 산소의 차단이 필요한 분야에 두루 쓰이고 있다. 그들 중 디스플레이 분야의 응용에는 높은 배리어 특성이 요구되는바 이는 발광체등 광 활성 물질의 낮은 안정성에 기인 한다. 예로서 OLED는 1.0 X 10-6 cc/m2·day·bar 이하의 산소 투과율(OTR)과 아울러 1.0 X 10-6 g/m2·day 이하의 투습률 (WVTR)이 요구되며 최근 들어 주목을 받고 있는 양자점(Quantum dot)을 이용한 디스플레이 장치에서도 적용대상에 다라 차이는 있으나 역시 매우 낮은(1.0 X 10-6 ~ 1.0 X 10-2 ) 산소투과율 및 투습률이 요구된다. 특히 광/전기/전자 소자의 산화는 물의 전기화학적 반응에 의한 산화로 인하여 산소보다 약 3배 이상 더 빠른 것으로 알려져 있어 낮은 투습률이 필수적이다.Barrier films are widely used in areas that require the blocking of moisture and oxygen in various fields from food packaging to electronic products. Among them, high barrier properties are required for applications in the display field due to the low stability of photoactive materials such as emitters. As an example, OLEDs require an oxygen transmission rate (OTR) of 1.0 X 10 -6 cc / m 2 day bar or less, and a water vapor transmission rate (WVTR) of 1.0 X 10 -6 g / m 2 day or less. In the display device using a quantum dot (Quantum dot) is also different depending on the application target, but also very low (1.0 X 10 -6 ~ 1.0 X 10 -2 ) oxygen transmission rate and water vapor transmission rate is required. In particular, the oxidation of photo / electric / electronic devices is known to be about 3 times faster than oxygen due to oxidation by water electrochemical reaction, so low water vapor transmission rate is essential.
산소와 물 분자의 kinetic diameter는 각각 ~0.35nm 및 ~0.26nm로서 배리어층 증착 도중에 생성되는 1nm 이상의 micro 및 macro defect에 쉽게 투과되며 나아가 고분자 사슬간의 약한 인력 및 결정성으로 인한 free volume이 큰 저밀도 고분자에서도 이들 산소와 물 분자 들의 고분자 사슬간의 이동도는 상당하여 고분자 배리어 층만으로는 요구되는 높은 차단성을 갖는 배리어 필름의 제작이 불가능하다.     The kinetic diameters of oxygen and water molecules are ~ 0.35nm and ~ 0.26nm, respectively, and are easily permeable to micro and macro defects of 1 nm or more generated during barrier layer deposition, and also low density polymers with large free volume due to weak attraction and crystallinity between the polymer chains. In this case, the mobility between the polymer chains of oxygen and water molecules is considerable, and thus it is impossible to produce a barrier film having high barrier properties required only by the polymer barrier layer.
반면에 무기물은 용해도와 확산도가 PET나 아크릴과 같은 고분자에 비해 크게 낮아 매우 좋은 차단효과를 나타낸다. 기상 증착법에 의한 수십~수백 nm의 실리카 단일막 만으로도 10-3~10-6g/m2·day의 투습률을 나타낸다. 그러나 현실적으로 균열과 결함이 없는 무기 산화물 코팅층을 얻기가 쉽지 않을 뿐만 아니라 양산 장비의 구축과 생산성의 문제로 경제성이 크게 떨어진다. On the other hand, inorganic matters have very low solubility and diffusivity compared to polymers such as PET or acrylic, which shows a very good blocking effect. Even a single silica layer of several tens to hundreds of nm by vapor deposition shows a water vapor transmission rate of 10 −3 to 10 −6 g / m 2 · day. However, in reality, it is not easy to obtain an inorganic oxide coating layer free of cracks and defects, and economic efficiency is greatly reduced due to the construction and production problems of mass production equipment.
이와 같은 기상 증착법외에 습식코팅 방법도 적용되고 있는바 이는 shadow effect가 없어 적절한 조건만 유지된다면 고품위의 유기/무기층 배리어 필름을 제작할 수가 있다. 비록 shadow effect는 없어 기재의 디펙트를 완화시켜줄 수 있다고는 하나 이 방법 역시 기재를 매우 세심하게 관리해야 하며 무기물 층을 올리기 이전에 bleed 방지층, 수 nm 이내의 평탄도를 갖는 평탄화층 및 무기물와의 접합력을 높이는 anchor층을 구비한 후 밀도가 높은 무기물 층을 습식코팅으로 하고 있다. 무기물 층으로는 용해도와 확산도가 매우 낮은 알루미나가 가장 많이 사용되나 SiN나 실리카도 흔히 사용된다. 그러나 이 역시 기상 증착법에 의해 제작된 배리리어 필름과 같이 낮은 경제성으로 인하여 이의 사용이 제한적이어 경제성을 갖춘 고성능의 배리어 필름이 절실하다.     In addition to the vapor deposition method, the wet coating method is also applied, which can produce a high quality organic / inorganic layer barrier film if proper conditions are maintained because there is no shadow effect. Although there is no shadow effect to mitigate the defects of the substrate, this method also requires very careful management of the substrate and the adhesion between the bleed-proof layer, the flattening layer having a flatness within several nm, and the inorganic material before raising the inorganic layer. After providing the anchor layer to increase the dense inorganic layer is the wet coating. As the inorganic layer, alumina having a very low solubility and diffusion is most often used, but SiN or silica is also commonly used. However, because of the low economical efficiency, such as a barrier film produced by vapor deposition, its use is limited, and thus a high-performance barrier film with economical economy is urgently needed.
양자점(Quantum dot)은 양자 가둠 효과(quantum confinement effect)와 크기에 의한 밴드갭의 조절이 용이해 우수한 발광 특성과 아울러 다양한 색을 구현할 수 있어 디스플레이 분야에 적용되기 시작하였으나 양자점의 장점을 충분히 활용하기 위하여서는 몇 가지 해결되어야할 문제점들이 있다.      Quantum dots are easily applied to the display field because they can easily control band gap by quantum confinement effect and size, and can realize various colors as well as excellent luminescence characteristics. There are some problems to be solved.
양자점은 체적 대비 큰 표면적을 갖고 있으며 표면에너지도 매우 높은 준안정(metastable) 재료로서 양자점 소자의 작동 환경에서 광학적, 물리적, 화학적 안정성이 매우 취약하다.      Quantum dots are metastable materials with a large surface area and very high surface energy, and are very weak in optical, physical and chemical stability in the operating environment of quantum dot devices.
양자점은 미비한 분산에 의한 뭉침 이외에도 자체의 표면에너지를 낮추기 위하여 Ostwald ripening에 의한 입자의 성장은 계속적으로 일어나며 매우 낮은 온도(~100oC), 심지어는 상온에서도 용융(fusion) 혹은 소결현상(sintering)이 일어나 양자점 뭉침(aggregation) 현상이 발생하며 고온에서는 이의 진행이 훨씬 빨라진다. 이러한 현상은 크기가 작은 청색 영역의 양자점 에서 더욱 두드러지게 나타난다. 양자점의 뭉침은 발광효율의 저하와 발광파장의 장파장 이동을 나타내는바 이는 입자 크기의 증가, 자체흡수(self absorption) 및 quenching에 기인된다. 따라서 양자점들은 표면이 잘 보호되어야 하며 이들은 적정거리 이상으로 서로 떨어져 균일하게 분산되어 있어야 한다.In addition to the aggregation due to inadequate dispersion, in order to lower the surface energy of the quantum dots, the growth of particles by Ostwald ripening occurs continuously, and melting or sintering at very low temperatures (~ 100 o C), even at room temperature This occurs and quantum dot aggregation occurs, and its progress is much faster at high temperatures. This phenomenon is more prominent in quantum dots in the smaller blue region. The aggregation of the quantum dots shows a decrease in luminous efficiency and long wavelength shift of the luminous wavelength due to the increase of particle size, self absorption and quenching. Therefore, the quantum dots must be well protected on the surface and they must be evenly distributed apart from each other over a proper distance.
또한, 양자점은 수분, 산소, 열 및 지속적인 강한 빛에 의하여 열 및 광화학 반응을 일으켜 이의 광 특성이 크게 저하되며 특히 리간드의 치환 및 결함 생성등과 같은 양자점의 표면 반응에 대하여 양자점의 물리적, 광학적 특성은 매우 민감하게 변화되며 큰 발광효율의 감소 및 색변화가 일어나게 된다. 따라서 양자점 소자의 작동 안정성을 보존하기 위하여서는 외부로 부터의 수분, 산소의 완벽한 차단 및 열의 생성 억제와 방열이 필수적이다.      In addition, quantum dots cause thermal and photochemical reactions due to moisture, oxygen, heat, and continuous strong light, which greatly deteriorate their optical properties, and in particular, physical and optical properties of quantum dots with respect to surface reactions of quantum dots such as ligand substitution and defect generation. Is very sensitive, and large luminous efficiency decreases and color changes occur. Therefore, in order to preserve the operational stability of the quantum dot device, it is essential to completely block water and oxygen from the outside, suppression of heat generation, and heat radiation.
상기의 문제점들을 해결하기 위한 To solve the above problems
본 발명은 산소 및/또는 수분을 포함하는 기체의 투과율이 극히 낮은 배리어 필름을 제공하여 산소 및/또는 수분에 민감한 전자소재의 안정성을 높이는데 그 목적이 있다.      An object of the present invention is to provide a barrier film having a very low permeability of a gas containing oxygen and / or moisture to increase the stability of oxygen and / or moisture sensitive electronic materials.
본 발명의 또 다른 목적은 발광 필름을 고온, 고습 및 강한 빛의 조사가 장기간에 걸쳐 일어나는 가혹 조건에서의 장기간 동안 안정적인 성능을 유지하게 하는데 그 목적이 있다.     It is another object of the present invention to maintain a stable performance of a light emitting film for a long time in the harsh conditions in which high temperature, high humidity, and strong light irradiation occur for a long time.
본 발명의 또 다른 목적은 배리어 필름상에 방열 구조체를 도입하여 장수명의 높은 광효율을 갖는 배리어 필름을 제공하는데 그 목적이 있다.     Another object of the present invention is to provide a barrier film having a long life and high light efficiency by introducing a heat radiation structure on the barrier film.
본 발명의 또 다른 목적은 손쉬운 습식공정의 도입으로 값이 저렴한 높 은 경제성을 갖춘 배리어 필름을 제공하는데 그 목적이 있다.      Still another object of the present invention is to provide a barrier film having high economical efficiency at low cost by introducing an easy wet process.
본 발명의 또 다른 목적은 높은 기계적 강도 및 유연성을 갖는 배리어 필름을 제공하여 낮은 불량률과 조립 공정의 편의성을 부여하고, 또한 높은 배리어 특성을 장기간 유지하게 하는데 그 목적이 있다.      It is another object of the present invention to provide a barrier film having high mechanical strength and flexibility to provide low defect rate and ease of assembly process, and to maintain high barrier properties for a long time.
본 발명의 또 다른 목적은 투명한 2차원 광결정(photonic crystal) 구조의 배리어 필름을 제공하여 디스플레이 소자의 광효율을 높이는데 그 목적이 있다.     Another object of the present invention is to provide a barrier film having a transparent two-dimensional photonic crystal structure to increase the light efficiency of the display device.
본 발명의 또 다른 목적은 투명한 2차원 광결정(photonic crystal) 구조의 배리어 필름을 제공하여 디스플레이 소자내의 광 경로 변환을 위한 부품을 없애는데 그 목적이 있다.     Another object of the present invention is to provide a transparent two-dimensional photonic crystal structure barrier film to eliminate the components for the optical path conversion in the display device.
본 발명의 또 다른 목적은 배리어 필름상에 광학층을 도입하여 파장에 따른 빛의 선택적인 투과 및 반사로 디스플레이 소자의 광효율을 높이는데 그 목적이 있다.      Another object of the present invention is to increase the light efficiency of the display device by the selective transmission and reflection of light according to the wavelength by introducing an optical layer on the barrier film.
본 발명의 또 다른 목적들은 이하의 실시예에 대한 설명을 통해 쉽게 이해될 수 있을 것이다.     Still other objects of the present invention will be readily understood through the following description of the embodiments.
상기한 바와 같은 목적을 달성하기 위해, 본 발명의 일측면에 따르면, 산용액내에서 양극 산화되어 2차원 광결정 구조를 갖는 나노다공성의 금속산화물 필름, 바람직하게는 나노다공성 알루미나 필름의 세공에 나노 형광체가 도입된 뒤 세공이 밀봉된 발광 배리어 필름의 구조가 제공된다.In order to achieve the object as described above, according to one aspect of the present invention, the nano-phosphor in the pores of the nanoporous metal oxide film, preferably nanoporous alumina film having a two-dimensional photonic crystal structure anodized in an acid solution The structure of the light emitting barrier film in which the pores were sealed after the introduction of H was provided.
상기 양극 산화된 알루미나 필름은 세공이 규칙적으로 배열된 육각형의 벌집 구조로서 세공의 직경은 10~ 500nm, 바람직하게는 15-300nm, 더욱 바람직하게는 30~120nm이며 양극산화 알루미나 배리어 층의 두께는 10nm~500nm, 바람직하게는 30~300nm, 더욱 바람직하게는 50~100nm로 전체 필름의 두께가 1um~50um, 바람직하게는 2~30um, 더욱 바람직하게는 10~20um이다.     The anodized alumina film is a hexagonal honeycomb structure in which pores are regularly arranged, and the pore diameter is 10 to 500 nm, preferably 15 to 300 nm, more preferably 30 to 120 nm, and the thickness of the anodized alumina barrier layer is 10 nm. It is -500 nm, Preferably it is 30-300 nm, More preferably, it is 50-100 nm, The thickness of the whole film is 1um-50um, Preferably it is 2-30um, More preferably, it is 10-20um.
상기 양극산화 알루미나 필름의 주변부는 일정한 폭의 알루미늄을 남겨두어 상기 양극산화 알루미나 필름의 지지체 및 방열 구조체로 사용할 수 있다.     The periphery of the anodized alumina film may be used as a support and a heat dissipation structure of the anodized alumina film, leaving a predetermined width of aluminum.
상기 양극산화 알루미나 필름의 배리어 층 외부에는 신축성 및 기계적 강도가 좋은 고분자 코팅층을 구비할 수 있으며 상기 고분자는 높은 투명도를 갖는 아크릴, 에폭시, 우레탄, 실리콘, 아마이드, 불소계 고분자 및 유무기 하이브리드 등의 코팅층이 사용될 수 있다.     Outside the barrier layer of the anodized alumina film may be provided with a polymer coating layer having good stretch and mechanical strength, the polymer is a coating layer of acrylic, epoxy, urethane, silicone, amide, fluorine-based polymer and organic-inorganic hybrid having a high transparency Can be used.
상기 양극산화 알루미나 필름의 배리어 층 외부에는 파장에 따른 선택적인 빛의 투과 향상층 및 반사층을 형성할 수 있으며 파장의 영역은 가시광선뿐만 아니라 열전달에 큰 영향을 미치는 근적외석(near IR) 및 원적외선(far IR)의 영역을 포함할 수 있다.     Outside of the barrier layer of the anodized alumina film, a selective light transmission enhancement layer and a reflection layer may be formed on the outside of the barrier layer, and the region of the wavelength may be near infrared light (near IR) and far infrared light (IR) having a great influence on heat transfer as well as visible light. far IR).
상기 양극산화 알루미나 필름의 세공 내부에는 양자점과 같은 나노 형광체가 균일하게 도포될 수 있다.      In the pores of the anodized alumina film, nano phosphors such as quantum dots may be uniformly applied.
상기 양극산화 알루미나 필름의 세공 내부에 투명한 passivation 막을 형성하여 알루미나 표면과 나노형광체 사이의 에너지 전달을 억제할 수 있다.     By forming a transparent passivation film inside the pores of the anodized alumina film, it is possible to inhibit energy transfer between the surface of the alumina and the nanophosphor.
* 상기 passivation 막은 밴드갭이 큰 물질로 금속산화물, 질화물 및 황화물일수 있으며 금속은 Si, Al, Ti, Zr, Hf, Nb, Mo, W, Ta등이 쓰일 수 있다.* The passivation film is a material having a large band gap, and may be metal oxides, nitrides, and sulfides. The metal may be Si, Al, Ti, Zr, Hf, Nb, Mo, W, Ta, or the like.
상기 양극산화 알루미나 필름의 세공 내부에 양자점 표면의 리간드와 같거나 친화력이 높은 물질의 박막을 형성, 양자점에 결합력을 부여하여 세공 내에 안정적으로 균일하게 위치하게 하며 양자점표면의 리간드치환반응을 억제할 수 있다.      Form a thin film of a material having the same or higher affinity as the ligand on the surface of the quantum dot in the pores of the anodized alumina film, thereby providing a binding force to the quantum dots to be stably and uniformly positioned in the pores and inhibit the ligand substitution reaction on the surface of the quantum dot have.
상기 양극산화 알루미나 필름의 세공 내부에 나노형광체가 도입된 이후 세공이 밀봉재에 의하여 밀봉될 수 있다.     After the nanophosphor is introduced into the pores of the anodized alumina film, the pores may be sealed by a sealing material.
상기 밀봉재는 투명한 판상의 나노 무기물, 금속산화물 졸, 유기고분자 중 어느 하나 또는 이들의 혼합물일 수 있다.     The sealant may be any one or a mixture of transparent plate-shaped nano-inorganic material, metal oxide sol, organic polymer.
상기 배리어 필름의 일측 면에, 바람직하게는 밀봉측 면에, 배리어 특성을 갖는 점착제를 도포하여 원하는 기재에 직접 부착 작업이 가능하도록 할 수 있다.      On one side of the barrier film, preferably on the sealing side, an adhesive having a barrier property can be applied to enable the direct attachment to the desired substrate.
본 발명의 다른 측면에 따르면 알루미늄 호일 일면에 패턴 형성을 위한 마스크를 도포 하는 단계; 산용액에서 양극산화로 나노 다공성 필름을 형성하는 단계; 나노 다공성 필름 세공 내부에 나노 형광체를 도포하는 단계; 세공을 밀봉하는 단계를 포함하는 발광 배리어 필름의 형성방법이 제공된다.     According to another aspect of the invention, the step of applying a mask for forming a pattern on one surface of aluminum foil; Forming a nanoporous film by anodizing in an acid solution; Applying a nano phosphor inside the nanoporous film pores; Provided is a method of forming a light emitting barrier film comprising sealing pores.
본 발명에 따른 발광 배리어 필름의 구조 및 형성방법에 의하면 방열 특성과 아울러 산소 및 수분을 포함하는 기체의 투과율이 극히 낮으며 높은 기계적 강도 및 유연성을 갖는 투명한 2차원 광결정(photonic crystal) 구조의 발광 배리어 필름을 제공할 수 있으며 이로서 빛 전달의 방향성을 갖으며 고열, 고습 및 고밀도 광 조사의 가혹 환경에서도 우수한 광 특성과 긴 수명이 보장된다.According to the structure and the formation method of the light emitting barrier film according to the present invention, the light emitting barrier having a transparent two-dimensional photonic crystal structure having heat dissipation characteristics and extremely low transmittance of a gas containing oxygen and moisture and having high mechanical strength and flexibility Films can be provided, which are directional to light transmission, ensuring excellent light properties and long life even in the harsh environments of high heat, high humidity and high density light irradiation.
도 1. 배리어 필름의 구조도1 is a structural diagram of a barrier film
도 2. 다공성 알루미나의 구조도면.Figure 2. Structural drawing of porous alumina.
본 발명은 다양한 변경을 가할 수 있고, 여러 가지 실시례를 가질 수 있는 바, 특정 실시례들을 도면에 예시하고, 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니고, 본 발명의 기술 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 식으로 이해되어야 하고, 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시례에 한정되는 것은 아니다. As the inventive concept allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the written description. However, this is not intended to limit the present invention to the specific embodiments, it should be understood that it includes all changes, equivalents, and substitutes included in the spirit and scope of the present invention, and may be modified in various other forms. However, the scope of the present invention is not limited to the following example.
이하, 첨부된 도면을 참조하여 본 발명에 따른 실시례를 상세히 설명하며, 도면 부호에 관계없이 동일하거나 대응하는 구성요소에 대해서는 동일한 참조 번호를 부여하고, 이에 대해 중복되는 설명을 생략하기로 한다.      Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings, and like reference numerals denote the same or corresponding elements regardless of reference numerals, and redundant description thereof will be omitted.
밸브금속의 양극산화를 통한 나노다공성 금속산화물은 많은 학술적, 산업적 가치를 갖는다. 그중에서 가장 널리 사용되는 나노다공성 양극산화 알루미나는 도입 된지 100년이 넘는 기술로 알루미늄 섀시나 알루미늄 식기의 표면처리에 쓰이는 등 우리 주변에서 흔히 볼 수 있으며 이의 제조공정 또한 일반화 되어있는 기술이다. 나노다공성 알루미나는 재질과 구조상의 특성으로 인한 우수한 광학적, 화학적, 물리적 특성을 나타내며 또한 손쉬운 가공성과 저렴한 가격으로 본 발명이 달성하고자 하는 목적에 매우 적합한 물질이다.     Nanoporous metal oxides through anodization of valve metals have many academic and industrial values. Nanoporous anodized alumina, the most widely used among them, is a technology that has been introduced for more than 100 years and is commonly used around the surface of aluminum chassis or aluminum tableware, and its manufacturing process is also common. Nanoporous alumina exhibits excellent optical, chemical and physical properties due to its material and structural properties, and is a material well suited for the purpose of the present invention with easy processing and low cost.
산 용액에서의 알루미늄의 양극산화는 알루미늄의 전기화학적 산화와 이로 인해 생성된 알루미나의 국소적인 전기화학적 용해과정이 동시에 일어나는 것으로 이로서 알루미늄 표면에 나노 다공구조의 알루미나 필름을 형성한다. 이의 나노 다공구조( 세공의 크기, 세공간 거리 및 배리어 층의 두께 등) 및 필름의 성장 속도는 전해액의 종류, 온도, 전압, 전류밀도에 의해 정밀하게 조절되며 나아가 제작된 나노다공성 알루미나 필름은 인산과 같은 알루미나 에칭 용액을 사용하여 세공의 크기 및 배리어 층의 두께를 정교하게 조절 할 수 있으며 이의 제작 및 조절 방법들은 널리 알려져 있다. (도 1 참조)     Anodization of aluminum in the acid solution simultaneously coincides with the electrochemical oxidation of aluminum and the local electrochemical dissolution of the resulting alumina, thereby forming a nanoporous alumina film on the aluminum surface. Its nanoporous structure (pore size, microspatial distance and barrier layer thickness) and film growth rate are precisely controlled by the type of electrolyte, temperature, voltage, and current density. Alumina etching solution such as can be used to finely control the size of the pore and the thickness of the barrier layer and its production and control methods are well known. (See Figure 1)
이들의 특성을 살펴보면 생성된 나노다공성 알루미나는 매우 투명하여 세공 채널과 평행한 광은 가시광 부터 근적외선 영역에 이르기 까지 90% 이상의 높은 투과율을 나타내는 우수한 광학재질이다. 이에 더하여 입사광이 채널의 평행방향에서 벗어나게 되면 빛의 투과도는 급격히 감소하는 특성을 나타낸다. 이는 주기적인 세공이 배열된 양극산화 알루미나 구조에서 기인된 상이한 굴절률의 주기적인 변화에 따른 photonic density of state(DOS)의 이방성(anisotropy)에 따른 것으로 이 나노다공 알루미나는 이차원 광학결정(2D photonic crystal)으로 볼 수 있다.      Looking at these properties, the resulting nanoporous alumina is very transparent, and the light parallel to the pore channel is an excellent optical material having a high transmittance of 90% or more from visible light to near infrared region. In addition, when the incident light deviates from the parallel direction of the channel, the transmittance of the light rapidly decreases. This is due to the anisotropy of the photonic density of state (DOS) due to the periodic change of the refractive index due to the periodic pore-arranged anodized alumina structure. This nanoporous alumina is a 2D photonic crystal. Can be seen.
이러한 투과광의 방향선택성은 발광 빛의 전달에도 적용되며 발광소자내에서도 이 특성은 유지된다. 이러한 빛은 방향선택성은 이의 적절한 사용으로 소자의 광효율을 크게 증대 시킬 수 있으며 프리즘 시트나 광도파로와 같은 광로의 변경을 위한 별도의 광학부품이 불필요하게 된다.     The directional selectivity of the transmitted light is also applied to the transmission of the emitted light, and this property is maintained even in the light emitting device. Such light can increase the light efficiency of the device with proper use of direction selectivity, and there is no need for a separate optical component for changing an optical path such as a prism sheet or an optical waveguide.
무엇보다 중요한 것은 알루미나의 매우 우수한 배리어 특성으로서 수분 및 산소에 대한 알루미나의 매우 낮은 용해도와 확산도에 따라 알루미나는 가장 좋은 배리어 물질중의 하나로 알려져 있다.      Most importantly, alumina is known to be one of the best barrier materials due to its very good barrier properties, due to its very low solubility and diffusion into water and oxygen.
양자점 광효율 저하의 주된 원인이 산소와 수분에 의한 양자점의 산화 반응에 의한 것으로 이는 표면에 위치하며 양자점을 보호하는 리간드의 치환반응을 촉진하는 한편 표면의 결함의 생성을 촉진한다. 양자점의 표면 상태는 발광효율 및 발광파장 이동에 절대적인 영향을 끼치는바 양자점 표면상태의 보존이 매우 중요하다.     The main reason for the decrease in quantum dot light efficiency is due to the oxidation reaction of quantum dots by oxygen and water, which promotes the substitution reaction of ligands that protect the quantum dots while generating defects on the surface. The surface state of the quantum dot has an absolute influence on the luminous efficiency and the wavelength of light emission. Therefore, preservation of the surface state of the quantum dot is very important.
산소 및 수분 이외에도 열과 강한 빛의 지속적인 조사도 양자점의 성능저하에 큰 영향을 미치나 이 역시 궁극적으로는 수분과 산소에 의한 산화 반응에 기인된다. 잘 알려진 바와 같이 온도 상승에 따른 반응의 속도는 지수적으로 증가하며 고온에서의 양자점 표면 산화반응속도 역시 지수적으로 증가된다. 소자 작동시 발생하는 열 자체의 에너지는 분자내 화학 결합력에 크게 미치지 못하는 것으로 분자내의 결합을 끊거나 새로운 결합의 생성에 기여하지는 못하며 다만 반응물간의 반응속도를 높여줄 뿐이다. 따라서 산소나 수분과 같은 반응물이 없다면 이정도의 열에 의한 화학반응은 일어나지 않는다.     In addition to oxygen and moisture, continuous irradiation of heat and strong light also greatly affects the performance of quantum dots, but this is ultimately due to the oxidation reaction caused by moisture and oxygen. As is well known, the rate of reaction increases with temperature rise exponentially, and the rate of surface oxidation reaction at high temperatures also increases exponentially. The energy of the heat itself generated during operation of the device is not much lower than the chemical bond in the molecule, and does not break the bond in the molecule or contribute to the formation of a new bond, but only increases the reaction rate between the reactants. Therefore, if there is no reactant such as oxygen or moisture, this kind of heat chemical reaction does not occur.
빛의 지속적인 조사는 양자점의 홀-전자쌍을 생성하며 이들은 대부분은 재결합하며 빛으로 방출되나 일부는 비발광 과정의 소멸로 열을 발생하거나 ground exciton 상태로 이완되며 전자-포논의 상호작용을 야기하여 포논을 형성하며 이로서 양자점에 축적된 포논은 양자점을 가열하는 동시에 양자점의 밴드갭을 좁혀 발광색 의 장파장 이동을 야기한다. 또한 표면 결함에 의한 흡수 및 비발광 소멸 과정 역시 열로 변환되어 양자점을 가열하게 된다. 즉 양자효율이 100%가 아닌 이상 입사된 광자에 의해 양자점에 열이 축적된다. 가열된 양자점은 수분, 산소에 의한 빠른 산화반응에 의하여 capping 리간드의 소실 및 표면 결함생성이 촉진된다. 특히 리간드의 소실은 양자점의 용융 및 저온소결을 야기하여 양자점 입자의 성장 및 응집을 유발한다.     The continuous irradiation of light produces hole-electron pairs of quantum dots, most of which recombine and are emitted as light, but some generate heat due to the disappearance of non-luminescent processes or relax to ground exciton and cause electron-phonon interactions The phonon accumulated in the quantum dots thereby heats the quantum dots and at the same time narrows the band gap of the quantum dots, causing long wavelength shift of the emission color. In addition, absorption and non-emissive extinction by surface defects are also converted to heat to heat the quantum dots. That is, unless the quantum efficiency is 100%, heat is accumulated in the quantum dots by the incident photons. The heated quantum dots promote the loss of capping ligands and the formation of surface defects by rapid oxidation reactions by moisture and oxygen. In particular, loss of ligand causes melting and low temperature sintering of the quantum dots, causing growth and aggregation of the quantum dot particles.
이에 더하여 매우 중요한 사실은 ground exciton 상태를 포함한 모든 들뜬상태의 중간체들은 화학적으로 매우 불안정하여 주변의 산소나 수분과 매우 쉽게 결합하며 빠른 산화반응을 일으킨다.     In addition, a very important fact is that all excited intermediates, including ground exciton, are chemically very unstable and bond very easily with the surrounding oxygen or water, causing rapid oxidation.
따라서 수분 및 산소의 차단능력은 양자점 안정성의 가장 중요한 핵심 요소이다. 나노다공성 알루미나는 기체의 차단특성이 매우 우수한 알루미나 재질의 특성과 아울러 나노세공의 반복적인 구조로 기체의 이동을 어렵게 하여 매우 훌륭한 배리어 특성을 나타낸다.     Therefore, the ability to block moisture and oxygen is the most important key factor in quantum dot stability. Nanoporous alumina exhibits excellent barrier properties by making it difficult to transport gases due to the repetitive structure of nanopore as well as the properties of alumina material which has excellent gas barrier properties.
나노다공성 알루미나의 또 다른 장점은 나노구조에 기인한 매우 넓은 표면적이다. 이로서 표면적이 매우 넓어 양자점간 적정한 거리를 유지하는, 응집 없는 균일한 고농도의 양자점 필름을 얻기가 매우 용이하여 높은 양자효율의 유지와 발광색의 장파장 이동을 회피할 수 있다. 또한 이 구조는 방열에도 유리하여 저온 소결에 의한 양자점의 성장 및 응집현상도 완화시킬 수 있다.     Another advantage of nanoporous alumina is its very large surface area due to the nanostructures. As a result, it is very easy to obtain a uniform, high concentration quantum dot film without aggregation, which has a very large surface area and maintains an appropriate distance between the quantum dots, thereby maintaining high quantum efficiency and long wavelength shift of emission color. In addition, this structure is also advantageous in heat dissipation, which can mitigate the growth and aggregation of quantum dots due to low temperature sintering.
상기와 같은 장점을 갖는 양극산화 알루미나 필름을 이용한 발광 배리어 필름은 다음의 공정을 거쳐 제작된다.     The light emitting barrier film using the anodized alumina film having the above advantages is produced through the following process.
1. 패턴의 형성1. Formation of patterns
배리어 필름을 제작함에 있어 양극산화 시 나노다공성 알루미나 필름의 주변부에 일정한 폭의 알루미늄을 남겨두어 나노다공성 양극산화 알루미나 필름의 지지체 및 방열구조체로 사용할 수 있다. 10um 이하의 얇은 나노다공성 알루미나 필름은 유연성을 가지나 필름의 두께가 두꺼워짐에 따라 깨어지기 쉽다. 따라서 주변부에 유연성과 기계적 강도가 높은 알루미늄을 지지체로 사용할 경우 나노다공성 알루미나 필름의 외부 충격에 대한 기계적 강도를 크게 높일 수 있다.     In preparing the barrier film, aluminum may be used as a support and a heat dissipation structure of the nanoporous anodized alumina film by leaving a predetermined width of aluminum at the periphery of the nanoporous alumina film during anodization. Thin nanoporous alumina films of 10 μm or less are flexible but are prone to breakage as the film thickness increases. Therefore, when aluminum having high flexibility and high mechanical strength is used as a support, mechanical strength against external impact of the nanoporous alumina film can be greatly increased.
또 다른 측면으로는 나노다공성 알루미나 필름의 방열성의 향상이다. 알루미늄의 열전도도(237W/mK)는 알루미나의 열전도도(20~30W/mK)에 비해 10배정도 높아 발광소자의 작동 중에 발생하는 배리어 필름 내의 열을 효과적으로 제거할 수 있어 세공내의 양자점 형광체의 효율 및 수명을 크게 증가시킬 수 있다. 보다 효과적인 냉각을 위하여 열전 냉각기 (Thermoelectric cooler)와 같은 강제 냉각수단을 구비하여 주변부 알루미늄의 냉각을 통한 알루미나의 부분까지의 냉각으로 배리어 필름 전체의 온도를 낮출 수가 있다.     Another aspect is an improvement in heat dissipation of the nanoporous alumina film. The thermal conductivity of aluminum (237W / mK) is about 10 times higher than that of alumina (20 ~ 30W / mK), which can effectively remove the heat in the barrier film generated during the operation of the light emitting device. It can greatly increase the service life. For more effective cooling, a forced cooling means such as a thermoelectric cooler may be provided to lower the temperature of the entire barrier film by cooling the portion of the alumina through the cooling of the peripheral aluminum.
알루미늄의 폭과 선 간격, 그리고 패턴의 형태는 응용 대상에 따라 적절히 변형할 수 있다. 높은 광 투과율이 요구되는 응용대상에는 높은 개구율을 갖는 얇은 선폭의 알루미늄이 적당하며 높은 기계적 강도 및 방열이 요구되는 응용대상에는 낮은 개구율을 갖는 굵은 선폭의 알루미늄이 적당하다. 디스플레이와 같은 광학분야의 응용에는 높은 광투과율이 중요하여 개구율을 높임과 동시에 광원 측에 반사수단을 구비하여 알루미늄 패턴에 의해 반사된 빛을 회수하는 것이 바람직하다.     The width, line spacing, and pattern of the aluminum can be modified as appropriate depending on the application. A thin line width aluminum having a high aperture ratio is suitable for an application requiring high light transmittance, and a thick line width aluminum having a low aperture ratio is suitable for an application requiring high mechanical strength and heat dissipation. High optical transmittance is important for applications such as displays, and it is desirable to increase the aperture ratio and to have light reflecting means on the light source side to recover light reflected by the aluminum pattern.
패턴의 형태는 기계적 강도와 방열의 효율성을 고려할 때 메쉬 형태나 벌집구조가 적절하나 필요에 따라서 다양한 형태의 변형도 가능하다. 일례로 발광 배리어 필름을 도광판 측면에 띠 형태로 적용할 경우에는 사다리 형태의 패턴이 적합하다. 이때 알루미나의 낮은 열전도율을 고려하여 알루미늄 선간의 폭이 지나치게 넓지 않게 하여야 한다.      The shape of the pattern is appropriate in the form of a mesh or honeycomb in consideration of mechanical strength and heat dissipation efficiency, but various shapes may be modified as necessary. For example, when the light emitting barrier film is applied to the light guide plate side by side in the form of a band, a ladder pattern is suitable. At this time, considering the low thermal conductivity of alumina, the width between aluminum lines should not be too wide.
이의 제작은 알루미늄 포일 일 측면에 원하는 패턴을 스크린 프린트나 잉크젯과 같은 수단으로 형성한 후에 마스킹 되지 않은 부분을 선택적으로 양극산화 시켜 나노다공성 알루미나 필름(11) 주변부에 잉크로 보호된 알루미늄(12)을 그대로 남겨놓는다.      The fabrication is performed by forming a desired pattern on one side of the aluminum foil by means such as screen printing or inkjet, and then selectively anodizing the unmasked portion to replace the ink-protected aluminum 12 around the nanoporous alumina film 11. Leave it as it is.
2. 나노다공성 알루미나 필름의 형성2. Formation of Nanoporous Alumina Film
나노다공성 알루미나 필름은 산 용액에 마스킹 된 알루미늄 포일을 양극에 걸어준 후 전기화학적 산화를 시켜 얻을 수 있다. 상기 양극 산화된 알루미나 필름은 세공이 규칙적으로 배열된 육각형의 벌집 구조로서 세공(21)의 직경은 10~ 500nm, 바람직하게는 15-300nm, 더욱 바람직하게는 30~120nm이며 양극산화 알루미나 배리어 층(22)의 두께는 10nm~500nm, 바람직하게는 30~300nm, 더욱 바람직하게는 50~100nm로 전체 필름(23)의 두께가 1um~50um, 바람직하게는 2~30um, 더욱 바람직하게는 10~20um이다. 이때 산 용액은 황산, 옥살산등의 유기산, 인산 그리고 불산 등이 사용될 수 있다.      Nanoporous alumina film can be obtained by electrochemical oxidation after the aluminum foil masked in the acid solution to the anode. The anodized alumina film is a hexagonal honeycomb structure in which pores are regularly arranged, and the diameter of the pores 21 is 10 to 500 nm, preferably 15 to 300 nm, more preferably 30 to 120 nm, and the anodized alumina barrier layer ( The thickness of 22) is 10 nm to 500 nm, preferably 30 to 300 nm, more preferably 50 to 100 nm, and the thickness of the entire film 23 is 1 um to 50 um, preferably 2 to 30 um, more preferably 10 to 20 um. to be. At this time, the acid solution may be used an organic acid, such as sulfuric acid, oxalic acid, phosphoric acid and hydrofluoric acid.
세공의 크기 및 간격은 인가된 전압 및 전류밀도 그리고 용액의 온도를 적절히 조절함으로서 얻어질 수 있으며 이 세공은 추후 에칭공정에 의하여 더욱 정교히 조절될 수 있다. 더욱 더 규칙적으로 배열된 세공을 얻기 위하여서 양극산화를 하기 이전에 알루미늄 표면의 평탄도를 높이기 위한 전해연마 과정을 포함할 수 있으며, 혹은 1차 양극 산화 후 생성된 비 규칙적인 세공을 갖는 나노다공성 산화막을 5% 인산 용액으로 에칭 해낸 후에 2차 양극산화를 시행할 수 있다.      The size and spacing of the pores can be obtained by appropriately adjusting the applied voltage and current density and the temperature of the solution, which can be more precisely controlled by an etching process later. In order to obtain more and more regularly arranged pores, electrolytic polishing may be included to increase the flatness of the aluminum surface before anodizing, or nanoporous oxide films having irregular pores generated after the first anodization. Can be subjected to secondary anodization after etching with 5% phosphoric acid solution.
더 높은 기계적 강도를 얻기 위하여서는 상기 양극산화 알루미나 필름의 배리어 층 외부에는 신축성 및 기계적 강도가 좋은 고분자 코팅층을 구비할 수 있으며 상기 고분자는 높은 투명도를 갖는 아크릴, 에폭시, 우레탄, 실리콘, 아마이드, 불소계 고분자 및 유무기 하이브리드 등의 코팅 층이 사용될 수 있다. 알루미나의 굴절율이 1.78임을 고려할 때 상기 고분자 층의 굴절율이 1.4 이하가 되면 반사방지 효과를 얻는 것을 수 있어 광 투과도가 증가하게 된다. 이러한 재료로는 불소계 고분자인 Cytop(n=1.34), PTEE나 PFA(n=1.35)등이 있다.     In order to obtain higher mechanical strength, a polymer coating layer having excellent elasticity and mechanical strength may be provided outside the barrier layer of the anodized alumina film, and the polymer may be acrylic, epoxy, urethane, silicone, amide, or fluorine-based polymer having high transparency. And coating layers such as organic-inorganic hybrids can be used. Considering that the refractive index of the alumina is 1.78, when the refractive index of the polymer layer is 1.4 or less, it is possible to obtain an antireflection effect, thereby increasing light transmittance. Such materials include Cytop (n = 1.34), PTEE and PFA (n = 1.35), which are fluorine-based polymers.
상기 양극산화 알루미나 필름의 배리어 층 외부에는 파장에 따른 선택적인 빛의 투과 향상 및 반사층을 형성할 수 있으며 파장의 영역은 가시광선뿐만 아니라 열전달에 큰 영향을 미치는 근적외석(near IR) 및 원적외선(far IR)의 영역을 포함할 수 있다. 일례로 450 nm의 청색 LED로 양자점을 자극시켜 백색광을 얻어 도광판 방향으로 보낼 경우 발광 배리어 필름은 450 nm 부근의 영역에서 투과도가 최고점이 되며 나머지 가시광 영역에서는 도광판 쪽으로 반사시켜 광효율을 극대화 할 수 있다. 고굴절 층과 저굴절 층으로 이루어진 2층의 반사방지 코팅으로 dichroic 필터의 기능을 부여 할 수 있다. 이때 고굴절 층으로 ITO, ATO, FTO, AZO등의 물질을 사용하면 고굴절 층의 기능과 아울러 근적외선(near IR) 및 원적외선(far IR)의 반사 층으로 이용할 수 있다.     Outside of the barrier layer of the anodized alumina film, selective transmission of light and reflection layer can be formed according to the wavelength, and the region of the wavelength is near infrared light (near IR) and far infrared light (far) which have a great influence on heat transfer as well as visible light. IR) may be included. For example, when stimulating a quantum dot with a 450 nm blue LED to obtain white light and sending it toward the light guide plate, the light emitting barrier film has the highest transmittance in a region near 450 nm and reflects toward the light guide plate in the remaining visible light region to maximize light efficiency. Two layers of anti-reflective coating, consisting of a high and low refractive layers, can give the function of a dichroic filter. At this time, if a material such as ITO, ATO, FTO, AZO is used as the high refractive layer, it can be used as a reflective layer of near infrared (near IR) and far infrared (far IR) as well as function of the high refractive layer.
3. 나노형광체의 세공 도입3. Pore introduction of nanophosphor
상기 양극산화 알루미나 필름의 세공 내부에는 양자점과 같은 나노 형광체(24)가 균일하게 도포될 수 있다. 이는 단순한 딥 코팅에 의하여 달성될 수 있으며 필요에 따라 딥핑시에 초음파를 가해주면 더욱 균일한 양자점 도포막을 얻을 수 있다. 더욱 효과적인 도포를 위하여 나노다공 알루미나의 웨팅성을 고려할 때 용매의 극성과 표면장력의 균형이 필요하다. 이를 위하여서 용매는 비교적 높은 극성과 낮은 표면장력이 요구된다.     The nano phosphor 24 such as a quantum dot may be uniformly applied inside the pores of the anodized alumina film. This can be achieved by a simple dip coating, and if necessary, ultrasonic waves are applied at the time of dipping to obtain a more uniform quantum dot coating film. For more effective application, we need to balance the polarity of the solvent and the surface tension when considering the wettability of nanoporous alumina. To this end, solvents require relatively high polarity and low surface tension.
상기 양극산화 알루미나 필름의 세공 내부에 passivation 막을 형성하여 알루미나 표면과 양자점 사이의 에너지 전달을 억제할 수 있다. 옥살산과 같은 유기산 용액에서 양극산화를 하였을 경우에는 oxalate 음이온의 영향으로 나노다공성 알루미나에는 singly ionized oxygen vacancy (F center)가 생성되어 알루미나 자체가 푸른색 emission band를 나타낸다. 여기에 형광체가 도입되면 Forster resonance energy transfer(FRET)의 영향으로 발광파장의 이동과 아울러 큰 폭으로 형광체 발광 세기가 증가한다. 높은 양자효율이 요구되는 응용분야에서는 장점이 될 수 있으나 발광파장의 이동이 허용되지 않는 디스플레이 분야의 응용에는 큰 제약점이 될 수 있다. 이런 경우에는 알루미나 표면에 passivation 막을 도입하여 에너지 전달을 억제하여 줄 수 있다. 상기 passivation 막은 밴드갭이 큰 투명한 물질로 금속산화물, 질화물 및 황화물일수 있으며 금속은 Si, Al, Ti, Zr, Hf, Nb, Mo, W, Ta등이 쓰일 수 있다.     A passivation film may be formed inside the pores of the anodized alumina film to suppress energy transfer between the alumina surface and the quantum dots. When anodized in an organic acid solution such as oxalic acid, singly ionized oxygen vacancy (F center) is generated in nanoporous alumina under the influence of oxalate anion, and the alumina itself shows a blue emission band. When the phosphor is introduced, the phosphor emission intensity is greatly increased along with the shift of the emission wavelength under the influence of Forster resonance energy transfer (FRET). This may be an advantage in applications requiring high quantum efficiency, but may be a significant limitation in applications in display fields where the emission wavelength is not allowed. In this case, a passivation film may be introduced on the surface of the alumina to suppress energy transfer. The passivation film is a transparent material having a large band gap, and may be a metal oxide, nitride, or sulfide, and the metal may be Si, Al, Ti, Zr, Hf, Nb, Mo, W, Ta, or the like.
상기 양극산화 알루미나 필름의 세공 내부에 양자점 표면의 리간드와 같거나 친화력이 높은 물질의 박막을 형성, 양자점과 세공 표면 간에 결합력을 부여하여 양자점이 세공 내에 안정적으로 균일하게 위치하게 할 수 있다. 일반적으로 양자점은 안정성 향상을 위하여 표면에 다양한 리간드가 capping되어 있으며 이의 종류는 다양하다. Trioctylphosphine(TOPO), Hexadecylamine (HDA), Dodecylamine(DDA), 3-mercaptopropyl triethoxysilane(MPS), N,N-dimethyl-2- mercaptoethyl ammonium chloride(DMAC) 등이 대표적인 예로 이들 또한 알루미나 표면 및 상기 금속산화물 passivation 막 표면과의 친화력이 매우 크다. 이들을 알루미나 표면에 도입하면 양자점과 세공 표면간의 친화력이 증대되어 더욱 균일하고 안정적인 양자점의 막을 형성할 수 있을 것이며 양자점 표면 리간드의 치환반응을 크게 억제할 수 있다. 양자점 성능저하의 가장 큰 요인은 양자점을 감싸고 있는 리간드의 탈착 및 치환반응으로 이를 억제하기 위하여서 과량의 리간드를 사용하는 것이 바람직하다. A thin film of a material having the same or higher affinity as the ligand of the quantum dot surface may be formed inside the pores of the anodized alumina film to impart a bonding force between the quantum dots and the pore surface so that the quantum dots may be stably and uniformly positioned in the pores. In general, quantum dots are capped with various ligands on the surface to improve stability, and their types are various. Trioctylphosphine (TOPO), Hexadecylamine (HDA), Dodecylamine (DDA), 3-mercaptopropyl triethoxysilane (MPS), N , N -dimethyl-2- mercaptoethyl ammonium chloride (DMAC), etc. Affinity with the membrane surface is very large. The introduction of these on the surface of alumina increases the affinity between the quantum dots and the pore surface to form a more uniform and stable film of quantum dots, and can greatly suppress the substitution reaction of the quantum dot surface ligands. It is preferable to use an excess of ligand in order to suppress the quantum dot performance by the desorption and substitution reaction of the ligand surrounding the quantum dot.
이의 또 다른 효과로서 FRET에 의한 발광 파장 변화를 억제할 수 있다.     As another effect thereof, the emission wavelength change due to FRET can be suppressed.
4. 세공의 밀봉4. Sealing of pore
상기 양극산화 알루미나 필름의 세공 내부에 양자점이 도입된 이후 세공이 밀봉재에 의하여 밀봉될 수 있다. 이로서 고온 고습의 가혹한 환경에 견디는 발광 배리어 필름은 완성될 수 있다.      After the quantum dots are introduced into the pores of the anodized alumina film, the pores may be sealed by a sealing material. As a result, a light emitting barrier film that can withstand harsh environments of high temperature and high humidity can be completed.
상기 밀봉재는 투명한 판상의 나노 무기물, 금속산화물 졸, 유기고분자 중 어느 하나 또는 이들의 혼합물일 수 있다. 판상의 나노 무기물이 혼입된 금속산화물 졸이나 유기 고분자로 배리어층을 형성, 밀봉하여 주면 아래의 그림과 같은 라멜라층을 형성하게 되며 이로서 기체분자의 이동거리는 매우 길어지게 되며(tortuous path) 기체 침투성이 크게 억제된다. 상기 판상의 나노 무기물 입자는 기체 차단성과 광투과도가 우수한 종횡비가 큰 (두께; 1nm, 폭은 2um이상) 것이 바람직하며 모모리오나이트와 헥토라이트가 대표적이다.     The sealant may be any one or a mixture of transparent plate-shaped nano-inorganic material, metal oxide sol, organic polymer. When the barrier layer is formed with a metal oxide sol or an organic polymer mixed with a plate-shaped nano-inorganic material, a lamellar layer is formed as shown in the following figure. Thus, the distance of gas molecules becomes very long (tortuous path). It is greatly suppressed. The plate-shaped nano-inorganic particles preferably have a high aspect ratio (thickness; 1 nm and a width of 2 μm or more) having excellent gas barrier properties and light transmittance, and are typically represented by Momoryonite and hectorite.
배리어 필름의 부착 대상물이 접합이 용이한 대상물이면 상기 밀봉재 층이 생략될 수 있다. 예로서 PMMA 재질로 구성된 도광판의 경우 이의 표면을 Tg 가까이 가열한 후 나노다공성 발광 배리어 필름에 압착하여 세공내의 수분을 제거하는 동시에 고분자의 침투(infiltration)로 접합 및 밀봉이 가능하다.      If the object to be attached to the barrier film is an object to be easily bonded, the sealing material layer may be omitted. For example, in the case of a light guide plate made of PMMA material, the surface of the light guide plate is heated to near Tg, and then pressed to a nanoporous light emitting barrier film to remove moisture in the pores and at the same time, bonding and sealing can be performed by infiltration of a polymer.
상기 배리어 필름의 일 측면에, 바람직하게는 밀봉 측면에, 배리어 특성을 갖는 점착제를 도포하여 원하는 기재에 직접 부착 작업이 가능하도록 할 수 있다. 광 소자의 경우 이들의 굴절률은 적용하고자 하는 기재의 특성에 따라 조절하여 계면 간 반사를 최소화 하여 광효율을 높이는 것이 바람직하다. 일례로 도광판 재질로 흔히 사용되는 PMMA 재질의 굴절률은 1.49이며 나노 다공성알루미나의 굴절률은 기공성에 따라 1.78~1.55로 밀봉재의 굴절률은 1.51~1.61 정도가 바람직하다.      On one side of the barrier film, preferably on the sealing side, an adhesive having a barrier property can be applied to enable a direct attachment to the desired substrate. In the case of optical devices, the refractive index thereof is adjusted according to the characteristics of the substrate to be applied, thereby minimizing the reflection between interfaces to increase the light efficiency. For example, the refractive index of PMMA, which is commonly used as a light guide plate, is 1.49, and the refractive index of nanoporous alumina is 1.78 to 1.55 depending on porosity, and the refractive index of the sealing material is about 1.51 to 1.61.
이와 같이 첨부된 도면을 참조하여 본 발명을 설명하였으나, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 수정 및 변형이 이루어질 수 있음은 물론이다. 따라서 본 발명의 범위는 설명된 실시례에 한정되어서는 아니 되며, 후술하는 특허 청구범위 뿐만 아니라 이러한 특허 청구범위와 균등한 것들에 의해 정해져야 한다.As described above, the present invention has been described with reference to the accompanying drawings, but various modifications and changes can be made without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be limited to the described embodiments, but should be defined by the claims below and equivalents thereof.
본 발명의 일측면에 따르면, 산용액내에서 양극 산화되어 2차원 광결정 구조를 갖는 나노다공성의 금속산화물 필름, 바람직하게는 나노다공성 알루미나 필름의 세공에 나노 형광체가 도입된 뒤 세공이 밀봉된 발광 배리어 필름의 구조가 제공된다.According to an aspect of the present invention, a light emitting barrier in which pores are sealed after introduction of nano phosphors into the pores of a nanoporous metal oxide film having a two-dimensional photonic crystal structure, preferably a nanoporous alumina film, by anodizing in an acid solution. The structure of the film is provided.
상기 양극 산화된 알루미나 필름은 세공이 규칙적으로 배열된 육각형의 벌집 구조로서 세공의 직경은 10~ 500nm, 바람직하게는 15-300nm, 더욱 바람직하게는 30~120nm이며 양극산화 알루미나 배리어 층의 두께는 10nm~500nm, 바람직하게는 30~300nm, 더욱 바람직하게는 50~100nm로 전체 필름의 두께가 1um~50um, 바람직하게는 2~30um, 더욱 바람직하게는 10~20um이다.     The anodized alumina film is a hexagonal honeycomb structure in which pores are regularly arranged, and the pore diameter is 10 to 500 nm, preferably 15 to 300 nm, more preferably 30 to 120 nm, and the thickness of the anodized alumina barrier layer is 10 nm. It is -500 nm, Preferably it is 30-300 nm, More preferably, it is 50-100 nm, The thickness of the whole film is 1um-50um, Preferably it is 2-30um, More preferably, it is 10-20um.
상기 양극산화 알루미나 필름의 주변부는 일정한 폭의 알루미늄을 남겨두어 상기 양극산화 알루미나 필름의 지지체 및 방열 구조체로 사용할 수 있다.     The periphery of the anodized alumina film may be used as a support and a heat dissipation structure of the anodized alumina film, leaving a predetermined width of aluminum.
상기 양극산화 알루미나 필름의 배리어 층 외부에는 신축성 및 기계적 강도가 좋은 고분자 코팅층을 구비할 수 있으며 상기 고분자는 높은 투명도를 갖는 아크릴, 에폭시, 우레탄, 실리콘, 아마이드, 불소계 고분자 및 유무기 하이브리드 등의 코팅층이 사용될 수 있다.     Outside the barrier layer of the anodized alumina film may be provided with a polymer coating layer having good stretch and mechanical strength, the polymer is a coating layer of acrylic, epoxy, urethane, silicone, amide, fluorine-based polymer and organic-inorganic hybrid having a high transparency Can be used.
상기 양극산화 알루미나 필름의 배리어 층 외부에는 파장에 따른 선택적인 빛의 투과 향상층 및 반사층을 형성할 수 있으며 파장의 영역은 가시광선뿐만 아니라 열전달에 큰 영향을 미치는 근적외석(near IR) 및 원적외선(far IR)의 영역을 포함할 수 있다.     Outside of the barrier layer of the anodized alumina film, a selective light transmission enhancement layer and a reflection layer may be formed on the outside of the barrier layer, and the region of the wavelength may be near infrared light (near IR) and far infrared light (IR) having a great influence on heat transfer as well as visible light. far IR).
상기 양극산화 알루미나 필름의 세공 내부에는 양자점과 같은 나노 형광체가 균일하게 도포될 수 있다.      In the pores of the anodized alumina film, nano phosphors such as quantum dots may be uniformly applied.
상기 양극산화 알루미나 필름의 세공 내부에 투명한 passivation 막을 형성하여 알루미나 표면과 나노형광체 사이의 에너지 전달을 억제할 수 있다.     By forming a transparent passivation film inside the pores of the anodized alumina film, it is possible to inhibit energy transfer between the surface of the alumina and the nanophosphor.
* 상기 passivation 막은 밴드갭이 큰 물질로 금속산화물, 질화물 및 황화물일수 있으며 금속은 Si, Al, Ti, Zr, Hf, Nb, Mo, W, Ta등이 쓰일 수 있다.* The passivation film is a material having a large band gap, and may be metal oxides, nitrides, and sulfides. The metal may be Si, Al, Ti, Zr, Hf, Nb, Mo, W, Ta, or the like.
상기 양극산화 알루미나 필름의 세공 내부에 양자점 표면의 리간드와 같거나 친화력이 높은 물질의 박막을 형성, 양자점에 결합력을 부여하여 세공 내에 안정적으로 균일하게 위치하게 하며 양자점표면의 리간드치환반응을 억제할 수 있다.      Form a thin film of a material having the same or higher affinity as the ligand on the surface of the quantum dot in the pores of the anodized alumina film, thereby providing a binding force to the quantum dots to be stably and uniformly positioned in the pores and inhibit the ligand substitution reaction on the surface of the quantum dot have.
상기 양극산화 알루미나 필름의 세공 내부에 나노형광체가 도입된 이후 세공이 밀봉재에 의하여 밀봉될 수 있다.     After the nanophosphor is introduced into the pores of the anodized alumina film, the pores may be sealed by a sealing material.
상기 밀봉재는 투명한 판상의 나노 무기물, 금속산화물 졸, 유기고분자 중 어느 하나 또는 이들의 혼합물일 수 있다.     The sealant may be any one or a mixture of transparent plate-shaped nano-inorganic material, metal oxide sol, organic polymer.
상기 배리어 필름의 일측 면에, 바람직하게는 밀봉측 면에, 배리어 특성을 갖는 점착제를 도포하여 원하는 기재에 직접 부착 작업이 가능하도록 할 수 있다.      On one side of the barrier film, preferably on the sealing side, an adhesive having a barrier property can be applied to enable the direct attachment to the desired substrate.
본 발명의 다른 측면에 따르면 알루미늄 호일 일면에 패턴 형성을 위한 마스크를 도포 하는 단계; 산용액에서 양극산화로 나노 다공성 필름을 형성하는 단계; 나노 다공성 필름 세공 내부에 나노 형광체를 도포하는 단계; 세공을 밀봉하는 단계를 포함하는 발광 배리어 필름의 형성방법이 제공된다.     According to another aspect of the invention, the step of applying a mask for forming a pattern on one surface of aluminum foil; Forming a nanoporous film by anodizing in an acid solution; Applying a nano phosphor inside the nanoporous film pores; Provided is a method of forming a light emitting barrier film comprising sealing pores.
본 발명은 발광 배리어 필름의 형성방법에 산업상 이용 가능하다.INDUSTRIAL APPLICABILITY The present invention can be industrially used for a method of forming a light emitting barrier film.
11: 나노다공성 알루미나11: nanoporous alumina
12: 알루미늄12: aluminum
21: 세공 21: Handwork
22: 나노다공성 알루미나 배리어 두께22: nanoporous alumina barrier thickness
23: 나노다공성 알루미나 두께23: nanoporous alumina thickness
24: 나노형광체24: nanophosphor

Claims (15)

  1. 수분과 산소 중에서 어느 하나 또는 모두에 민감한 전자소재를 보호하는 나노다공성 필름을 포함하는 배리어 필름으로서, A barrier film comprising a nanoporous film protecting an electronic material sensitive to any or all of moisture and oxygen,
    수분과 산소 중에서 어느 하나 또는 모두에 대하여 저 투과성을 나타내는 기재에 다수의 나노크기 홀이 구비되는 나노다공성 필름을 포함하고,It includes a nanoporous film having a plurality of nano-sized holes in the base material exhibiting low permeability to any one or both of water and oxygen,
    상기 홀 내부에 수분과 산소 중에서 어느 하나 또는 모두에 민감한 전자소재 조성물이 배치되며,An electronic material composition sensitive to any one or both of moisture and oxygen is disposed in the hole,
    상기 홀이 밀봉재에 의하여 기밀하게 밀봉되는, 배리어 필름. The barrier film of which said hole is hermetically sealed by a sealing material.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 나노다공성 필름은,The nanoporous film,
    세공이 규칙적으로 배열되며, 상기 세공의 직경이 10~500nm, 바람직하게는 15-300nm, 더욱 바람직하게는 30~120nm이며, 상기 세공의 배리어 층 두께는 10nm~500nm, 바람직하게는 30~300nm, 더욱 바람직하게는 50~100nm로 전체 필름의 두께가 300nm~50um, 바람직하게는 2~30um, 더욱 바람직하게는 10~20um로 이루어지는, 배리어 필름.The pores are arranged regularly, the diameter of the pores is 10-500nm, preferably 15-300nm, more preferably 30-120nm, the barrier layer thickness of the pores is 10nm-500nm, preferably 30-300nm, More preferably, the thickness of the whole film is 50-100 nm, 300 nm-50 micrometers, Preferably it is 2-30 micrometers, More preferably, the barrier film consists of 10-20 micrometers.
  3. 청구항 1 또는 청구항 2에 있어서,The method according to claim 1 or 2,
    상기 나노다공성 필름은,The nanoporous film,
    Al, Ti, V, Zr, Hf, Nb, Ta 및 W 중에서 어느 하나를 포함하는 밸브금속의 양극산화로 형성되는 금속산화물인, 배리어 필름.A barrier film, which is a metal oxide formed by anodization of a valve metal comprising any one of Al, Ti, V, Zr, Hf, Nb, Ta, and W.
  4. 청구항 1 또는 청구항 2에 있어서,The method according to claim 1 or 2,
    상기 나노다공성 필름은, The nanoporous film,
    트랙 에치나 상 분리 현상을 이용하여 형성되는, 배리어 필름.A barrier film formed by using track etch or phase separation.
  5. 청구항 1 내지 청구항 4 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4,
    상기 나노다공성 필름 주변부에는,On the periphery of the nanoporous film,
    금속선을 두어 메쉬나 사다리 형태로 형성된 방열성이 개선된, 배리어 필름.Barrier film improved heat dissipation formed in the form of a mesh or ladder by placing a metal wire.
  6. 청구항 1 내지 청구항 4 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4,
    상기 나노다공성 필름은,The nanoporous film,
    표면이 Si, Al, Ti, Zr, Hf, Nb, Mo, W 및 Ta 중에서 어느 하나의 산화물이나 질화물 또는 황화물로 패시베이션(passivation)된, 배리어 필름. A barrier film, wherein the surface is passivated with an oxide, nitride or sulfide of any one of Si, Al, Ti, Zr, Hf, Nb, Mo, W and Ta.
  7. 청구항 1 내지 청구항 4 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4,
    상기 나노다공성 필름은,The nanoporous film,
    표면이 수분과 산소 중에서 어느 하나 또는 모두에 민감한 전자소재의 리간드로 처리된, 배리어 필름.A barrier film whose surface is treated with a ligand of an electronic material sensitive to either or both of moisture and oxygen.
  8. 청구항 1 내지 청구항 7 중 어느 한 항에 있어서,The method according to any one of claims 1 to 7,
    상기 수분과 산소 중에서 어느 하나 또는 모두에 민감한 전자소재는,Electronic material sensitive to any one or both of the moisture and oxygen,
    나노입자로서 안료 입자, 양자점 및 콜로이드성 입자 중에서 어느 하나 또는 이들의 조합 중에서 선택되는, 배리어 필름.A barrier film selected from any one or a combination of pigment particles, quantum dots and colloidal particles as nanoparticles.
  9. 청구항 1에 있어서, The method according to claim 1,
    상기 밀봉재는The sealing material
    투명한 판상의 나노 무기물, 금속산화물 졸 및 유기고분자 중에서 어느 하나 또는 이들의 혼합물인, 배리어 필름. A barrier film, which is any one or a mixture of transparent inorganic plate-like nano-inorganic, metal oxide sol and organic polymer.
  10. 청구항 9에 있어서,The method according to claim 9,
    상기 투명한 판상의 나노 무기물은,The transparent plate-shaped nano inorganic material,
    laponite, vermiculite, Montmorillonite, bentonite 및 hectorite 중에서 어느 하나 또는 이들의 혼합물인, 배리어 필름.A barrier film, which is any one or a mixture of laponite, vermiculite, Montmorillonite, bentonite, and hectorite.
  11. 청구항 1 내지 청구항 10 중 어느 한 항에 있어서,The method according to any one of claims 1 to 10,
    선택적 파장빛의 투과 향상 및 반사층을 구비한, 배리어 필름.A barrier film, comprising a selective wavelength enhancement transmission and a reflection layer.
  12. 청구항 1 내지 청구항 10 중 어느 한 항에 있어서,The method according to any one of claims 1 to 10,
    일 측면에 점착제가 도포된, 배리어 필름.Barrier film, the adhesive is applied to one side.
  13. 수분과 산소 중에서 어느 하나 또는 모두에 민감성인 전자 소재를 포함하며, 상기 전자 소재가 청구항 1 내지 청구항 10 중 어느 한 항에 따른 배리어 필름의 내부에 배열되어 있는, 전자 소자.An electronic device comprising an electronic material sensitive to either or both of moisture and oxygen, wherein the electronic material is arranged inside the barrier film according to claim 1.
  14. 청구항 11에 따른 배리어 필름이 액정 디스플레이(LCD), 유기 발광다이오드(OLED), 태양전지, 유기 박막 트랜지스터(OTFT), 유/무기 센서 및 미세전자기계시스템(MEMS) 중에서 어느 하나에 적용되는, 전자 소자.The barrier film according to claim 11 is applied to any one of a liquid crystal display (LCD), an organic light emitting diode (OLED), a solar cell, an organic thin film transistor (OTFT), an organic / inorganic sensor and a microelectromechanical system (MEMS). device.
  15. 청구항 1 내지 청구항 12 중 어느 한 항에 기재된 배리어 필름의 제조 방법으로서, ,As a manufacturing method of the barrier film in any one of Claims 1-12,
    금속 호일 일면에 패턴 형성을 위한 마스크를 도포하는 단계; Applying a mask for pattern formation to one surface of the metal foil;
    상기 마스크를 도포한 결과물을 산 용액에서 양극산화로 나노다공성 필름을 형성하는 단계; Forming a nanoporous film by anodizing the result of applying the mask to an acid solution;
    나노다공성 필름의 세공 내부에 수분과 산소 중에서 어느 하나 또는 모두에 민감한 전자 소재를 삽입하는 단계; 및Inserting an electronic material sensitive to either or both of moisture and oxygen into the pores of the nanoporous film; And
    상기 세공을 밀봉하는 단계;Sealing the pores;
    를 포함하는, 배리어 필름의 형성방법Forming a barrier film, including
PCT/KR2016/009559 2015-08-28 2016-08-26 Light emitting barrier film and method of forming same WO2017039252A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150121727A KR20170025379A (en) 2015-08-28 2015-08-28 Luminescent barrier film and method for forming thereof
KR10-2015-0121727 2015-08-28

Publications (1)

Publication Number Publication Date
WO2017039252A1 true WO2017039252A1 (en) 2017-03-09

Family

ID=58187942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/009559 WO2017039252A1 (en) 2015-08-28 2016-08-26 Light emitting barrier film and method of forming same

Country Status (2)

Country Link
KR (1) KR20170025379A (en)
WO (1) WO2017039252A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108666436A (en) * 2017-03-31 2018-10-16 上海和辉光电有限公司 Organic luminescent device and its manufacturing method
CN109320753A (en) * 2018-11-21 2019-02-12 衡山县佳诚新材料有限公司 A kind of quantum dot film of water resistant oxygen

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102085912B1 (en) * 2018-12-06 2020-03-06 주식회사 아이에스티이 Nano porous structure for display package and method of manufacturing the structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100289265B1 (en) * 1997-04-07 2001-06-01 가네꼬 히사시 Solid-state imaging device with a film of low hydrogen permeability and a method of manufacturing the same
KR20080036013A (en) * 2005-07-29 2008-04-24 사에스 게터스 에스.페.아. Getter systems comprising an active phase inserted in a porous material distributed in a low permeability means
WO2013062486A1 (en) * 2011-10-24 2013-05-02 Tera-Barrier Films Pte Ltd Encapsulation barrier stack
US20140217013A1 (en) * 2011-09-09 2014-08-07 Asahi Kasei Fibers Corporation Polyketone porous film
KR20150092203A (en) * 2012-12-04 2015-08-12 인텔리전트 에너지 리미티드 Computing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100289265B1 (en) * 1997-04-07 2001-06-01 가네꼬 히사시 Solid-state imaging device with a film of low hydrogen permeability and a method of manufacturing the same
KR20080036013A (en) * 2005-07-29 2008-04-24 사에스 게터스 에스.페.아. Getter systems comprising an active phase inserted in a porous material distributed in a low permeability means
US20140217013A1 (en) * 2011-09-09 2014-08-07 Asahi Kasei Fibers Corporation Polyketone porous film
WO2013062486A1 (en) * 2011-10-24 2013-05-02 Tera-Barrier Films Pte Ltd Encapsulation barrier stack
KR20150092203A (en) * 2012-12-04 2015-08-12 인텔리전트 에너지 리미티드 Computing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108666436A (en) * 2017-03-31 2018-10-16 上海和辉光电有限公司 Organic luminescent device and its manufacturing method
CN109320753A (en) * 2018-11-21 2019-02-12 衡山县佳诚新材料有限公司 A kind of quantum dot film of water resistant oxygen

Also Published As

Publication number Publication date
KR20170025379A (en) 2017-03-08

Similar Documents

Publication Publication Date Title
CN105609535B (en) Display base plate, display device and preparation method thereof
WO2017071455A1 (en) Optical filter and manufacturing method therefor, display substrate, and display apparatus
US10243174B2 (en) OLED packaging structure and manufacturing method thereof and display device
JP6919915B2 (en) Perovskite / Polymer Composite Luminescent Material, Manufacturing Methods and Applications
WO2017039252A1 (en) Light emitting barrier film and method of forming same
JP5710597B2 (en) Optical material, optical component and method
US11201305B2 (en) Display panel and method of manufacturing the same
KR101751685B1 (en) Solid state lighting with function of barrier and method for manufacturing the same
WO2013058476A1 (en) Transparent light-emitting sheet and method of manufacturing same
JP2007149680A (en) Photoelectric conversion element and its manufacturing method
CN113540324B (en) Manufacturing method of RGB-LED device emitting three-primary-color polarized light
JP2010532409A5 (en)
KR20160054735A (en) Wavelength conversion substance, manufacturing method of the same and light-emitting device comprising the same
Cao et al. The synthesis of a perovskite CsPbBr 3 quantum dot superlattice in borosilicate glass
US10649278B2 (en) Sustrate comprising quantum rod film and method for manufacturing the same, display panel
WO2016124324A1 (en) Electronic element and display
Han et al. Enhanced outcoupling in down-conversion white organic light-emitting diodes using imprinted microlens array films with breath figure patterns
CN108417698A (en) Quantum dot packaging body and preparation method thereof, light-emitting device and display device
Kong et al. Ultrastable, highly luminescent quantum dot composites based on advanced surface manipulation strategy for flexible lighting-emitting
EP3940445A1 (en) Film, illumination device, projector color wheel and method of manufacturing a film
CN112863377A (en) Manufacturing method of quantum dot color filter and display panel
Li et al. Mass Transfer Printing of Metal‐Halide Perovskite Films and Nanostructures
Jung et al. 3D quantum dot-lens fabricated by stereolithographic printing with in-situ UV curing for lighting and displays
Son et al. Polarity effects of ZnO on charge recombination at CsPbBr3 nanoparticles/ZnO interfaces
CN108461610B (en) Quantum dot LED and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16842218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/08/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16842218

Country of ref document: EP

Kind code of ref document: A1