WO2017039123A1 - Method for analysing n-glycans in complex biological fluids - Google Patents

Method for analysing n-glycans in complex biological fluids Download PDF

Info

Publication number
WO2017039123A1
WO2017039123A1 PCT/KR2016/005645 KR2016005645W WO2017039123A1 WO 2017039123 A1 WO2017039123 A1 WO 2017039123A1 KR 2016005645 W KR2016005645 W KR 2016005645W WO 2017039123 A1 WO2017039123 A1 WO 2017039123A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
protein
glycan
glycans
mass spectrum
Prior art date
Application number
PCT/KR2016/005645
Other languages
French (fr)
Korean (ko)
Inventor
장미
송성희
박형순
김양선
조응준
Original Assignee
주식회사 아스타
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아스타 filed Critical 주식회사 아스타
Publication of WO2017039123A1 publication Critical patent/WO2017039123A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q

Definitions

  • Embodiments relate to methods for analyzing n-glycans in biological complex fluids, and to techniques for reproducibly separating and purifying only pure N-glycans with high efficiency from various biological complex fluids including serum. It is about.
  • One aspect of the present invention is to provide an optimized process for efficiently separating and concentrating N-glycans bound to glycoproteins present in serum, one of the most complex samples of biological fluids. The purpose.
  • an aspect of the present invention protein denaturation necessary for the isolation and concentration of N-glycans, separation of N-glycans from sugar proteins, protein precipitation and removal, and N- by Solid Phase Extraction (SPE) It is aimed at optimizing the glycan purification process to have high throughput.
  • SPE Solid Phase Extraction
  • an object of the present invention is to introduce a monitoring method that can determine the optimization of each of the above-described process using a label glycan.
  • one aspect of the present invention is intended to introduce a method for shortening the time required for the N-glycan separation and concentration process.
  • a method for analyzing an N-glycan in a biological complex fluid includes a first labeled glycan having a different mass from the N-glycan in a sample including the N-glycan Adding a protein to make; After the step of adding the protein, denaturing the protein in the sample; Separating the glycan from the sample from the protein using an enzyme after the protein is denatured; Eluting glycan from the sample from which the protein is separated; Obtaining a mass spectrum of eluted glycans; And determining the efficiency or function of the enzyme based on the amount of the first labeled glycan in the mass spectrum.
  • the protein comprising the first label glycan is horse radish peroxidase.
  • a method for analyzing N-glycans in a biological complex fluid includes a second labeled glycan having a different mass from the N-glycans in the sample from which the protein has been removed prior to eluting the glycan It further comprises the step of adding.
  • the method for analyzing N-glycans in the biological complex fluid further includes determining an elution efficiency based on the amount of the second labeled glycan in the mass spectrum.
  • the second labeled glycan is Malto-hexose.
  • denaturing the protein in the sample comprises mixing the sample with a buffer solution comprising dithiothreitol and ammonium bicarbonate (NH 4 CO 3 ). .
  • the pH of the buffer solution is 7.5 to 9. Also in one embodiment, the concentration of dithiothreitol in the buffer solution is 1mM to 2mM.
  • the step of denaturing the protein in the sample further comprises the step of reacting the sample mixed with the buffer solution in a bioshaker at 65 °C temperature.
  • the enzyme is peptide N-glycosidase F (peptide N-glycosidase F), and the step of separating the glycan in the sample from the protein, peptide N- at a concentration of 500 units (unit) in the sample Injecting glycosidase F.
  • the step of separating the glycan in the sample from the protein, the sample mixed with the enzyme further comprises the step of irradiating the microwave for 8 minutes at 400W intensity.
  • eluting glycan from the sample comprises mixing the sample with a 20% concentration of acetonitrile solution.
  • the method for analyzing N-glycans in a biological complex fluid further comprises drying the sample at a temperature of 70 ° C. after eluting glycan from the sample and before obtaining the mass spectrum.
  • FIG. 1 is a schematic diagram showing a pretreatment process of a sample for N-glycan analysis according to an embodiment.
  • FIG. 2 is a flowchart of an N-glycan analysis method according to an embodiment.
  • Figure 3 shows the mass spectrum according to the pH of the ammonium bicarbonate (NH 4 CO 3 ) buffer solution in the course of protein denaturation.
  • Figure 5 shows the mass spectrum according to the concentration of acetonitrile solution in the glycan elution process.
  • 6A shows the mass spectrum obtained using a tube type cartridge.
  • FIG. 1 is a schematic diagram illustrating a pretreatment process of a sample for n-glycan analysis according to an embodiment
  • FIG. 2 is a flowchart of an N-glycan analysis method according to an embodiment.
  • a well plate capable of simultaneously processing a large amount of sample aliquots in a batch mode including a plurality of reaction regions (or wells) ) May be performed using
  • a process for analyzing N-glycans by injecting a sample aliquot into a 96 well plate including 96 wells and processing the same by an automated device will be described.
  • the injection may mean directly injecting a sample into each well, or when the sample is contained in another container such as a tube, it may mean that the container containing the sample is mounted in each well.
  • the 96 well plates described herein are merely exemplary, and the type of the well plates is not limited thereto.
  • the protein comprising the first labeled glycan is Horse radish peroxidase (HRP), a glycoprotein that is not present in an animal biological fluid.
  • HRP horse radish peroxidase
  • HRP solution prepared at a concentration of 30 mg / mL using water may be dispensed into each well.
  • HRP is a plant-derived protein with a sugar called xylose, and has a structure and mass different from that of animal-derived glycans. Glycans isolated by digesting HRP with enzymes have a different mass than N-glycans isolated from animal serum, which may serve as markers for determining the efficiency and / or action of the enzymes.
  • the type of protein containing the first labeled glycan is not limited to HRP.
  • the sample may be mixed with dithiothreitol to denature the protein (S2).
  • Dithiothreitol can be added to the sample by mixing in ammonium bicarbonate (NH 4 CO 3 ) buffer solution.
  • NH 4 CO 3 ammonium bicarbonate
  • a mixture of ammonium bicarbonate buffer solution prepared at a concentration of 200 mM with dithiothritol at a concentration of 1 to 50 mM can be dispensed into each well of a 96 well plate by using water.
  • protein denaturation may be performed by mounting a 96 well plate on a bioshaker, followed by centrifugation and mixing, and rotating at 1500 rpm for 5 minutes at a temperature of 65 ° C.
  • the specific operating conditions of the shake incubator are not limited to those described above. After denaturation, the sample can be left to cool for about 5 minutes at room temperature.
  • the pH of the ammonium bicarbonate buffer solution in the course of protein denaturation may be adjusted in the range of 7.5 to 9, preferably to 7.5.
  • adjustment of the pH can be achieved by injecting about 10% hydrochloric acid (HCl) into the buffer solution.
  • Figure 3 shows the mass spectrum according to the pH of the ammonium bicarbonate buffer solution in the process of protein denaturation
  • Table 1 below is the pattern of N-glycan main peak (peak) by the pH of the buffer solution in the mass spectrum of Figure 3 Shows the similarity (correlation) of.
  • the peak of FIG. 3 is ionized and extracted by matrix assisted laser desorption / ionization time of flight mass spectrometry (MALDI-TOF MS) of N-glycans extracted through pretreatment. It is obtained by analyzing, and this process is mentioned later in detail.
  • MALDI-TOF MS matrix assisted laser desorption / ionization time of flight mass spectrometry
  • the similarity of the main peak pattern was increased in the pH of the buffer solution of 7.5 to 9, in particular, the main peak pattern obtained in pH 7.5 and pH 9 conditions compared to the peak pattern obtained in pH 8 conditions Similarly, the pH8 condition is measured as the pH condition of the buffer solution most desirable for maintaining the peak pattern. As a result of measuring the pH change according to the storage condition of the buffer solution, the pH was increased according to the temperature and duration. It can be seen that.
  • the concentration of dithiothreitol in the course of protein denaturation may be adjusted to 1mM to 2mM, preferably 1mM.
  • Figure 4 shows the mass spectrum according to the concentration of dithiothreitol in the process of protein denaturation, Table 2 below shows the intensity of the main peak in the mass spectrum of FIG.
  • n in the tables of the present specification means the number of samples to obtain data.
  • the intensity of the N-glycan main peak is large, especially when the concentration of dithiothreitol is 1mM, the highest peak is obtained.
  • the peak intensity is also affected by the concentration of acetonitrile (ACN) solution used for the elution, which will be described later in detail.
  • the glycan may be separated from the protein by mixing a sample in which the protein is denatured with an enzyme (S3).
  • a peptide N-glycosidase F (PNGase F) enzyme may be injected into a sample to cut glycans by enzymatic mixing, and the ammonium bicarbonate solution described above may be used as a buffer.
  • 2 uL of PNGase F enzyme solution at a concentration of 250 to 1000 units and 2 uL of ammonium bicarbonate buffer at 200 mM and pH 7.5 were mixed and stored at 4 until used, and then stored in each well of a 96 well plate.
  • the mixed solution may be added by 4 uL and reacted by centrifugation and mixing.
  • Table 5 shows the main peak intensities of the mass spectrum according to the concentration of PNGase F during the enzymatic reaction. As shown in the table, the highest intensity peak was obtained when the concentration of PNGase F was 500 units.
  • the enzymatic reaction is carried out while irradiating microwaves to the 96 well plate.
  • Table 6 shows the main peaks of the mass spectrum according to temperature and microwave intensity and irradiation time in the enzyme reaction. As shown in Table 6, in order to obtain the optimum efficiency, the microwave can be irradiated for 8 minutes at an intensity of 400W at a temperature of 37 °C.
  • Table 7 compares the case where the enzyme reaction was performed overnight in a water tank as compared with the case where the microwave of 400W intensity was irradiated for 8 minutes according to the present embodiment.
  • the enzyme reaction using ethanol to precipitate the protein and the precipitated protein can be removed from the sample (S4).
  • 450 uL of ethanol may be added to each well of the 96 well plate in which the enzyme reaction is completed.
  • centrifugation may be performed for 50 minutes at 4 ° C and 3,700 rpm. If the protein is precipitated by ethanol and centrifugation to separate the sample into two layers, only 400 uL of supernatant in each well can be taken and transferred to another 96 well plate. As a result, the protein in the lower layer solution is removed from the sample.
  • the protein-depleted sample may be dried for about an hour in a concentrator under a nitrogen stream and the dried 96 well plate may be stored at minus 20 ° C. for subsequent processing.
  • the second labeled glycan is added to the sample from which the protein is removed (S5).
  • the second labeled glycan like the first labeled glycan, has a different mass from the N-glycans in the sample and is added to the sample for the purpose of measuring the efficiency of the Solid Phase Extraction (SPE) process described below.
  • SPE Solid Phase Extraction
  • the second labeled glycan added to the sample before SPE can be analyzed with the serum derived glycan after SPE to determine the change in SPE efficiency by tracking the change in the relative amount of serum glycans.
  • the second labeled glycan may be Malto-hexose.
  • maltohexose prepared at a concentration of 100 ug / mL with water may be dispensed 5 uL into each well of a 96 well plate.
  • the kind of the second label glycan is not limited to maltohexose.
  • the glycan may be eluted from the sample by the SPE process (S6).
  • SPE process conditioning can be achieved by mounting a 96 well type cartridge in a vacuum manifold, and then sequentially flowing the following solutions into a 96 well type cartridge.
  • the sample contained in the 96 well plate is loaded into the 96 well type cartridge.
  • 500 uL of deionized water may be added to the sample, followed by agitation and centrifugation for 10 seconds.
  • 1 mL of deionized water may be flushed three times to a 96-well cartridge that has been loaded for washing.
  • an ACN solution for glycan elution can be injected into the sample.
  • the eluted sample can then be completely dried, then deionized and added to the dried sample again to add 15 uL to redissolve and transfer to the plate for analysis.
  • the concentration of ACN solution for elution is 20%.
  • a 20% concentration of ACN solution may be injected into the sample twice, 1 mL.
  • Figure 5 shows the mass spectrum according to the concentration of the ACN solution in the glycan elution process
  • Figure 5 (a) shows the mass spectrum of the glycan eluted using a 10% concentration of ACN solution
  • 5 (b) shows the mass spectrum of the glycan eluted using the 20% concentration of ACN solution.
  • the relative amount of glycan in the mass spectrum varies with the concentration of the ACN solution used for the elution, as shown by the red circle, and the amount of glycan actually present in the sample when a 20% concentration of ACN solution is used. It appeared to reflect more accurately.
  • Table 8 shows the number and intensity of M + Na (M: any atom) peaks appearing in the mass spectrum according to the concentration and composition of the ACN solution used for elution, and a large number when using a 20% concentration of ACN solution. It can be seen that the peak intensity is also large while detecting the peak of.
  • the drying of the sample after the SPE process is at a temperature of 70 ° C.
  • Table 9 shows the characteristics of the peaks of the mass spectrum according to the drying temperature of the sample. When the sample is dried at a temperature of 70 ° C., the relative standard deviation of the peaks is small, indicating that the analysis is reproducible and the drying time is short. Can be.
  • the properties of the column used in the SPE procedure can be adjusted to optimize for the analysis of N-glycans.
  • Table 10 below shows the relative standard deviation and intensity of the N-glycan peaks according to the column characteristics used.
  • the glycan eluted by mass spectrometry can be analyzed (S7).
  • the enzyme activity and elution efficiency in the N-glycan analysis method according to the present embodiment can be evaluated based on the amounts of the first and second labeled glycans analyzed (S8). Since the first and second labeled glycans have a different mass than the N-glycans contained in human or animal serum, the first and second labeled glycans can be easily specified in the mass spectrum. Enzyme action efficiency can be evaluated in the N-glycan analysis method according to the present example based on the peak of the first labeled glycan in the mass spectrum.
  • the efficiency of the SPE process in the N-glycan analysis method according to the present embodiment can be evaluated based on the peak of the second labeled glycan in the mass spectrum. This efficiency evaluation is used as information for optimizing the conditions such as reactants, temperature and time involved in each process.
  • Analysis of serum-derived N-glycans and first and second labeled glycans is by obtaining a mass spectrum of the sample by MALDI-TOF MS.
  • the glycan eluted from the sample is mixed with a predetermined matrix material.
  • the matrix material is a material that easily absorbs energy from the laser and ionizes, and the MALDI-TOF MS is configured to indirectly ionize the sample by an ion transfer process using a matrix.
  • the matrix material may be an organic compound having a structure that is easily excited by a laser, or may be an aromatic organic compound.
  • a mixture of two or more substances may be used as the matrix material in order to dissolve the organic compound well and to dissolve the sample well.
  • mass spectroscopy and relative intensities of the fragments with mass (m / z) relative to the specific charge amount can be obtained as mass spectra by moving the ionized sample pieces by the electric field using the matrix material.
  • the method of obtaining mass spectra of eluted glycans in embodiments of the present invention is not limited to MALDI-TOF MS, such as Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometry or Other different mass spectrometry methods not described herein may be used to derive the mass spectrum.
  • FT-ICR Fourier Transform Ion Cyclotron Resonance
  • the elution process is different from the conventional glycan elution process using the tube type cartridge in that the 96 well type cartridge is used.
  • FIG. 6A shows a mass spectrum obtained using a tube type cartridge
  • FIG. 6B shows a mass spectrum obtained using a 96 well type cartridge according to this embodiment. As shown, no difference in mass spectral peak pattern due to the type of cartridge was observed.
  • Table 11 shows the relative standard deviations of the mass spectra of FIGS. 6A and 6B for verification of the assay, showing a reproducibility of less than 10% in both a tube type cartridge and a 96 well type cartridge. It is confirmed that a slightly better result can be obtained numerically using a 96 well type cartridge.
  • N-glycan analysis method has been described with reference to the flowchart shown in the drawings.
  • the method is shown and described in a series of blocks for the sake of simplicity, the invention is not limited to the order of the blocks, and some blocks may occur in different order or simultaneously with other blocks than those shown and described herein.
  • Various other branches, flow paths, and blocks may be implemented in order to achieve the same or similar results.
  • not all illustrated blocks may be required for the implementation of the methods described herein.
  • Embodiments relate to methods for analyzing n-glycans in biological complex fluids, and to techniques for reproducibly separating and purifying only pure N-glycans with high efficiency from various biological complex fluids including serum. It is about.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

A method for analysing N-glycans in complex biological fluids may comprise the steps of: adding protein to a sample including N-glycans, the protein including first marker glycans that have a different mass from the N-glycans; denaturing the protein in the sample after the step of adding the protein; separating glycans in the sample from the protein using an enzyme after the protein has denaturised; eluting glycans from the sample in which the protein is separated; obtaining a mass spectrum of the eluted glycans; and determining the efficiency or reaction of the enzyme based on the amount of first marker glycans in the mass spectrum. Using the method, pure N-glycans can be separated and refined from various complex biological fluids including serum, and data reliability can be improved by maximising efficiency and reproducibility in a short time using a well plate.

Description

생물학적 복합 유체 내의 N-글라이칸을 분석하는 방법How to Analyze N-Glycans in Biological Complex Fluids
실시예들은 생물학적 복합 유체 내의 N-글라이칸(n-glycan)을 분석하는 방법에 관한 것으로, 혈청을 포함하는 다양한 생물학적 복합 유체로부터 순수한 N-글라이칸만을 높은 효율로 재현성 있게 분리 및 정제하는 기술에 대한 것이다.Embodiments relate to methods for analyzing n-glycans in biological complex fluids, and to techniques for reproducibly separating and purifying only pure N-glycans with high efficiency from various biological complex fluids including serum. It is about.
[국가지원연구개발에 대한 설명][Description of National Support R & D]
본 연구는 (주)아스타의 주관 하에 산업통상자원부 한국산업기술평가관리원(신산업기술개발사업, 난소암 조기진단을 위한 혈액당마커 진단키트 개발, 과제고유번호: 10045075)의 지원에 의하여 이루어진 것이다.This study was made with the support of the Ministry of Trade, Industry and Energy, Korea Institute of Industrial Technology Evaluation and Development (New Industrial Technology Development Project, Development of Blood Glucose Marker Diagnostic Kit for Early Diagnosis of Ovarian Cancer, Task No. 10045075) under the supervision of Asa Co., Ltd.
분석기기 중 특히 질량분석기(mass spectrometry)의 개발로, 여러 질병의 진단을 위해 질량분석기를 접목하여 진단을 하고자 하는 연구가 활발히 진행되고 있다. 이중 매트릭스 보조 레이저 탈착/이온화 비행시간 분석형 질량 분석법(Matrix Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry; MALDI-TOF MS)은 고분자 물질에 대해 시료의 분해 없이 기화 및 이온화가 가능한 방법으로서, 일반적으로 질량이 크고 열에 불안정한 생체 고분자나 합성 고분자에 매우 이상적으로 적용할 수 있는 방법으로 알려져 있다. In particular, with the development of mass spectrometry (mass spectrometry) of the analyzer, the research to make a diagnosis by incorporating a mass spectrometer for the diagnosis of various diseases are being actively conducted. Dual Matrix Assisted Laser Desorption / Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS) is a method that allows vaporization and ionization of polymer materials without decomposition of the sample. It is known as a method that can be ideally applied to a biomass or a synthetic polymer that is large in mass and heat-stable.
이러한 MALDI-TOF MS의 장점을 이용하여 시료 혈청 내에 존재하는 소량의 N-글라이칸(n-glycan)을 분석하기 위해서는, 시료에 대한 다양한 처리 과정을 거쳐 순수한 N-글라이칸만을 얻어야 한다. 그러나 그 과정의 복잡성으로 인해 현재까지 N-글라이칸을 정량적으로 측정하거나 반복적인 재현성을 구현하는 데에는 많은 어려움이 있다. In order to analyze the small amount of N-glycan present in the sample serum by using the advantages of the MALDI-TOF MS, only pure N-glycan must be obtained through various processing procedures on the sample. However, due to the complexity of the process, there have been many difficulties to quantitatively measure N-glycans or to implement repetitive reproducibility.
본 발명의 일 측면은, 생물학적 유체 중 가장 복잡성이 높은 시료 중 하나인 혈청 내에 존재하는 당 단백질에 결합되어 있는 N-글라이칸(n-glycan)을 효율적으로 분리 농축하는 최적화된 공정을 제공하는 것을 목적으로 한다.One aspect of the present invention is to provide an optimized process for efficiently separating and concentrating N-glycans bound to glycoproteins present in serum, one of the most complex samples of biological fluids. The purpose.
또한 본 발명의 일 측면은, N-글라이칸의 분리 농축을 위하여 필요한 단백질 변성, 당 단백질로부터 N-글라이칸의 분리, 단백질 침전 및 제거, 및 고체상 추출(Solid Phase Extraction; SPE)에 의한 N-글라이칸의 정제 과정을 높은 스루풋(throughput)을 갖도록 최적화하는 것을 목적으로 한다.In addition, an aspect of the present invention, protein denaturation necessary for the isolation and concentration of N-glycans, separation of N-glycans from sugar proteins, protein precipitation and removal, and N- by Solid Phase Extraction (SPE) It is aimed at optimizing the glycan purification process to have high throughput.
또한 본 발명의 일 측면은, 표지 글라이칸을 이용하여 전술한 각 공정의 최적화를 판단할 수 있는 모니터링 방법을 도입하는 것을 목적으로 한다.In addition, an aspect of the present invention, an object of the present invention is to introduce a monitoring method that can determine the optimization of each of the above-described process using a label glycan.
나아가 본 발명의 일 측면은, N-글라이칸 분리 농축 공정에 소요되는 시간을 단축하기 위한 방법을 도입하는 것을 목적으로 한다.Furthermore, one aspect of the present invention is intended to introduce a method for shortening the time required for the N-glycan separation and concentration process.
일 실시예에 따른, 생물학적 복합 유체 내의 N-글라이칸(n-glycan) 분석 방법은, N-글라이칸을 포함하는 시료에, 상기 N-글라이칸과 상이한 질량을 가진 제1 표지 글라이칸을 포함하는 단백질을 첨가하는 단계; 상기 단백질을 첨가하는 단계 후에, 상기 시료 내의 단백질을 변성시키는 단계; 단백질이 변성된 후 효소를 이용하여 상기 시료 내의 글라이칸을 단백질로부터 분리하는 단계; 상기 단백질이 분리된 상기 시료로부터 글라이칸을 용출하는 단계; 용출된 글라이칸의 질량 스펙트럼을 획득하는 단계; 및 상기 질량 스펙트럼에서 상기 제1 표지 글라이칸의 양에 기초하여 상기 효소의 효율 또는 작용 여부를 결정하는 단계를 포함한다.According to one embodiment, a method for analyzing an N-glycan in a biological complex fluid includes a first labeled glycan having a different mass from the N-glycan in a sample including the N-glycan Adding a protein to make; After the step of adding the protein, denaturing the protein in the sample; Separating the glycan from the sample from the protein using an enzyme after the protein is denatured; Eluting glycan from the sample from which the protein is separated; Obtaining a mass spectrum of eluted glycans; And determining the efficiency or function of the enzyme based on the amount of the first labeled glycan in the mass spectrum.
일 실시예에서, 상기 제1 표지 글라이칸을 포함하는 단백질은 호스래디시 퍼록시데이즈(Horse radish peroxidase)이다.In one embodiment, the protein comprising the first label glycan is horse radish peroxidase.
일 실시예에 따른, 생물학적 복합 유체 내의 N-글라이칸 분석 방법은, 상기 글라이칸을 용출하는 단계 전에, 상기 단백질이 제거된 상기 시료에 상기 N-글라이칸과 상이한 질량을 가진 제2 표지 글라이칸을 첨가하는 단계를 더 포함한다. 또한, 상기 생물학적 복합 유체 내의 N-글라이칸 분석 방법은, 상기 질량 스펙트럼에서 상기 제2 표지 글라이칸의 양에 기초하여 용출 효율을 결정하는 단계를 더 포함한다. According to one embodiment, a method for analyzing N-glycans in a biological complex fluid includes a second labeled glycan having a different mass from the N-glycans in the sample from which the protein has been removed prior to eluting the glycan It further comprises the step of adding. In addition, the method for analyzing N-glycans in the biological complex fluid further includes determining an elution efficiency based on the amount of the second labeled glycan in the mass spectrum.
일 실시예에서, 상기 제2 표지 글라이칸은 말토헥소스(Malto-hexose)이다.In one embodiment, the second labeled glycan is Malto-hexose.
일 실시예에서, 상기 시료 내의 단백질을 변성시키는 단계는, 상기 시료를 디티오트레이톨(dithiothreitol) 및 이탄산 암모늄(Ammonium bicarbonate; NH4CO3)을 포함하는 버퍼 용액과 혼합하는 단계를 포함한다.In one embodiment, denaturing the protein in the sample comprises mixing the sample with a buffer solution comprising dithiothreitol and ammonium bicarbonate (NH 4 CO 3 ). .
일 실시예에서, 상기 버퍼 용액의 pH는 7.5 내지 9이다. 또한 일 실시예에서, 상기 버퍼 용액에서 디티오트레이톨의 농도는 1mM 내지 2mM이다. In one embodiment, the pH of the buffer solution is 7.5 to 9. Also in one embodiment, the concentration of dithiothreitol in the buffer solution is 1mM to 2mM.
일 실시예에서, 상기 시료 내의 단백질을 변성시키는 단계는, 상기 버퍼 용액과 혼합된 시료를 65 ℃ 온도의 진탕배양기(bioshaker)에서 반응시키는 단계를 더 포함한다.In one embodiment, the step of denaturing the protein in the sample further comprises the step of reacting the sample mixed with the buffer solution in a bioshaker at 65 ℃ temperature.
일 실시예에서, 상기 효소는 펩타이드 N-글리코시다제 F(peptide N-glycosidase F)이며, 상기 시료 내의 글라이칸을 단백질로부터 분리하는 단계는, 상기 시료에 500 유닛(unit) 농도의 펩타이드 N-글리코시다제 F를 주입하는 단계를 포함한다.In one embodiment, the enzyme is peptide N-glycosidase F (peptide N-glycosidase F), and the step of separating the glycan in the sample from the protein, peptide N- at a concentration of 500 units (unit) in the sample Injecting glycosidase F.
일 실시예에서, 상기 시료 내의 글라이칸을 단백질로부터 분리하는 단계는, 상기 효소와 혼합된 시료에 400W 세기로 8분간 마이크로파를 조사하는 단계를 더 포함한다.In one embodiment, the step of separating the glycan in the sample from the protein, the sample mixed with the enzyme further comprises the step of irradiating the microwave for 8 minutes at 400W intensity.
일 실시예에서, 상기 시료로부터 글라이칸을 용출하는 단계는, 상기 시료를 20% 농도의 아세토니트릴(acetonitrile) 용액과 혼합하는 단계를 포함한다.In one embodiment, eluting glycan from the sample comprises mixing the sample with a 20% concentration of acetonitrile solution.
일 실시예에 따른, 생물학적 복합 유체 내의 N-글라이칸 분석 방법은, 상기 시료로부터 글라이칸을 용출하는 단계 후 상기 질량 스펙트럼을 획득하는 단계 전에, 상기 시료를 70 ℃의 온도에서 건조시키는 단계를 더 포함한다.According to one embodiment, the method for analyzing N-glycans in a biological complex fluid further comprises drying the sample at a temperature of 70 ° C. after eluting glycan from the sample and before obtaining the mass spectrum. Include.
본 발명의 일 측면에 따른 생물학적 복합 유체 내의 N-글라이칸 분석 방법에 의하면, 혈청을 포함하는 다양한 생물학적 복합 유체로부터 순수한 N-글라이칸(n-glycan)만을 분리 및 정제할 수 있으며, 웰 플레이트(well plate)를 이용하여 단시간에 효율성과 재현성을 극대화하여 데이터의 신뢰도를 향상시킬 수 있다. 상기 방법은 암 진단과 같이 진단을 위한 방법 등에 광범위하게 활용될 수 있다.According to the method for analyzing N-glycans in a biological complex fluid according to an aspect of the present invention, only pure N-glycan can be separated and purified from various biological complex fluids including serum, and the well plate ( Well plates can be used to improve data reliability by maximizing efficiency and reproducibility in a short time. The method may be widely used for methods for diagnosis, such as cancer diagnosis.
도 1은 일 실시예에 따른 N-글라이칸(n-glycan) 분석을 위한 시료의 전처리 과정을 나타내는 모식도이다. 1 is a schematic diagram showing a pretreatment process of a sample for N-glycan analysis according to an embodiment.
도 2는 일 실시예에 따른 N-글라이칸 분석 방법의 순서도이다. 2 is a flowchart of an N-glycan analysis method according to an embodiment.
도 3은 단백질 변성 과정에서 이탄산 암모늄(Ammonium bicarbonate; NH4CO3) 버퍼 용액의 pH에 따른 질량 스펙트럼을 나타낸다.Figure 3 shows the mass spectrum according to the pH of the ammonium bicarbonate (NH 4 CO 3 ) buffer solution in the course of protein denaturation.
도 4는 단백질 변성 과정에서 디티오트레이톨(dithiothreitol)의 농도에 따른 질량 스펙트럼을 나타낸다.Figure 4 shows the mass spectrum according to the concentration of dithiothreitol in the course of protein denaturation.
도 5는 글라이칸 용출(elution) 과정에서 아세토니트릴(acetonitrile) 용액의 농도에 따른 질량 스펙트럼을 나타낸다.Figure 5 shows the mass spectrum according to the concentration of acetonitrile solution in the glycan elution process.
도 6a는 튜브 타입 카트리지(cartridge)를 이용하여 얻어진 질량 스펙트럼을 나타낸다.6A shows the mass spectrum obtained using a tube type cartridge.
도 6b는 일 실시예에 따라 96 웰 타입 카트리지를 이용하여 얻어진 질량 스펙트럼을 나타낸다.6B shows a mass spectrum obtained using a 96 well type cartridge, according to one embodiment.
이하에서, 도면을 참조하여 본 발명의 실시예들에 대하여 상세히 살펴본다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 일 실시예에 따른 N-글라이칸(n-glycan) 분석을 위한 시료의 전처리 과정을 나타내는 모식도이며, 도 2는 일 실시예에 따른 N-글라이칸 분석 방법의 순서도이다. 1 is a schematic diagram illustrating a pretreatment process of a sample for n-glycan analysis according to an embodiment, and FIG. 2 is a flowchart of an N-glycan analysis method according to an embodiment.
도 1 및 도 2를 참조하여, 본 실시예에 따른 N-글라이칸 분석 방법에 대하여 설명한다. 상기 N-글라이칸 분석 방법은 다양한 생물학적 복합 유체인 시료로부터 상기 시료 내의 순수한 N-글라이칸만을 높은 효율로 재현성 있게 분리 및 정제하기 위한 것이다. 시료는 사람 또는 동물의 혈액이거나, 또는 혈액으로부터 분리된 혈청일 수 있다. 예를 들면, 채혈된 혈액을 응고를 위해 일정 시간 동안 저온에 놓아 두었다가, 원심분리를 통하여 혈액에서 혈청만을 분리할 수 있다. 구체적으로는, 혈액을 얼음 위에서 1시간 동안 놓아두어 혈괴(clot)가 형성되도록 한 후, 약 4의 온도에서 약 10분간 약 3500g의 가속도로 원심분리하여 혈청을 분리할 수 있다. 분리된 혈청의 보관이 필요할 경우에는, 혈청을 멸균 극저온 튜브에 옮겨 담은 후 영하 약 80의 온도에 보관할 수도 있다.With reference to FIG. 1 and FIG. 2, the N-glycan analysis method which concerns on a present Example is demonstrated. The N-glycan analysis method is for reproducibly separating and purifying only pure N-glycans in the sample with high efficiency from samples which are various biological complex fluids. The sample may be blood of human or animal, or serum separated from blood. For example, the collected blood can be left at low temperature for coagulation and then only centrifuged to separate serum from the blood. Specifically, the blood can be left on ice for 1 hour to allow clot formation, and then centrifuged at an acceleration of about 3500 g at a temperature of about 4 minutes to separate serum. If storage of the separated serum is necessary, the serum may be transferred to a sterile cryogenic tube and stored at a temperature of about 80 degrees below zero.
본 실시예에 따른 N-글라이칸 분석 방법은 복수의 반응 영역(또는, 웰(well))을 포함하여 많은 양의 시료 분액을 배치 모드(batch mode)로 동시에 처리할 수 있는 웰 플레이트(well plate)를 이용하여 수행될 수 있다. 본 명세서에서는, 96 개의 웰을 포함하는 96 웰 플레이트에 시료 분액을 주입하고 이를 자동화 기기에 의해 처리함으로써 N-글라이칸을 분석하는 과정에 대하여 설명한다. 이때 주입이란 시료를 각 웰에 직접 주입하는 것을 의미할 수도 있으며, 또는 시료가 튜브 등 다른 용기 내에 수용되어 있을 경우 시료가 수용된 용기를 각 웰에 장착하는 것을 의미할 수도 있다. 한편, 본 명세서에 기재된 96 웰 플레이트는 단지 예시적인 것으로서, 웰 플레이트의 유형은 이에 한정되는 것은 아니다. In the N-glycan analysis method according to the present embodiment, a well plate capable of simultaneously processing a large amount of sample aliquots in a batch mode including a plurality of reaction regions (or wells) ) May be performed using In the present specification, a process for analyzing N-glycans by injecting a sample aliquot into a 96 well plate including 96 wells and processing the same by an automated device will be described. In this case, the injection may mean directly injecting a sample into each well, or when the sample is contained in another container such as a tube, it may mean that the container containing the sample is mounted in each well. Meanwhile, the 96 well plates described herein are merely exemplary, and the type of the well plates is not limited thereto.
구체적인 전처리 과정으로서, 먼저 시료에 제1 표지 글라이칸을 포함하는 단백질을 첨가할 수 있다(S1). 제1 표지 글라이칸을 포함하는 단백질은 후술하는 효소에 의한 글라이칸 분리 과정에서 분리 효율을 확인하기 위하여 첨가되는 것으로서, 상기 단백질은 시료 내의 단백질과 동일한 효소에 의하여 처리될 수 있는 것이면서 시료 내의 N-글라이칸과 상이한 질량의 글라이칸(즉, 제1 표지 글라이칸)을 포함한다. As a specific pretreatment process, first, a protein including the first labeled glycan may be added to the sample (S1). The protein containing the first labeled glycan is added to confirm the separation efficiency in the glycan separation process by the enzyme described below, wherein the protein can be processed by the same enzyme as the protein in the sample and N in the sample. -A glycan of a different mass than the glycan (ie, the first labeled glycan).
일 실시예에서, 제1 표지 글라이칸을 포함하는 단백질은 동물 생체 시료(mammalian biological fluid)에는 존재하지 않는 당 단백질인 호스래디시 퍼록시데이즈(Horse radish peroxidase; HRP)이다. 예를 들면, 시료를 96 웰 플레이트의 각 웰에 50uL씩 분주한 후, 물을 이용하여 30mg/mL 농도로 준비된 HRP 용액을 각 웰에 5uL씩 분주할 수 있다. HRP는 식물유래의 단백질로서 싸일로즈(xylose)라는 당을 가지고 있어, 동물 유래의 글라이칸과는 다른 구조 및 질량을 갖는다. HRP를 효소를 이용하여 분해하여 분리되는 글라이칸은 동물 혈청에서 분리된 N-글라이칸과는 상이한 질량을 가지고 있으므로 이는 효소의 효율 및/또는 작용 여부를 판단하기 위한 표지자의 역할을 할 수 있다. 그러나, 제1 표지 글라이칸을 포함하는 단백질의 종류는 HRP에 한정되는 것은 아니다. In one embodiment, the protein comprising the first labeled glycan is Horse radish peroxidase (HRP), a glycoprotein that is not present in an animal biological fluid. For example, after dispensing 50 uL of the sample into each well of a 96 well plate, 5 uL of HRP solution prepared at a concentration of 30 mg / mL using water may be dispensed into each well. HRP is a plant-derived protein with a sugar called xylose, and has a structure and mass different from that of animal-derived glycans. Glycans isolated by digesting HRP with enzymes have a different mass than N-glycans isolated from animal serum, which may serve as markers for determining the efficiency and / or action of the enzymes. However, the type of protein containing the first labeled glycan is not limited to HRP.
다음으로, 시료를 디티오트레이톨(dithiothreitol)과 혼합하여 단백질을 변성시킬 수 있다(S2). 디티오트레이톨은 이탄산 암모늄(Ammonium bicarbonate; NH4CO3) 버퍼 용액에 혼합되어 시료에 첨가될 수 있다. 예를 들면, 물을 이용하여 200mM의 농도로 준비된 이탄산 암모늄 버퍼 용액과 1 내지 50mM 농도의 디티오트레이톨을 혼합한 용액을 96 웰 플레이트의 각 웰에 50uL씩 분주할 수 있다. 다음으로, 96 웰 플레이트를 진탕배양기(bioshaker)에 장착하여 원심 분리 및 혼합 과정을 거친 후 65℃의 온도에서 5분간 1500 rpm으로 회전시키면서 단백질 변성을 수행할 수 있다. 그러나, 진탕배양기의 구체적인 동작 조건은 전술한 것에 한정되는 것은 아니다. 변성 후 시료는 실온에서 약 5분간 온도를 식히기 위하여 방치할 수 있다.Next, the sample may be mixed with dithiothreitol to denature the protein (S2). Dithiothreitol can be added to the sample by mixing in ammonium bicarbonate (NH 4 CO 3 ) buffer solution. For example, a mixture of ammonium bicarbonate buffer solution prepared at a concentration of 200 mM with dithiothritol at a concentration of 1 to 50 mM can be dispensed into each well of a 96 well plate by using water. Next, protein denaturation may be performed by mounting a 96 well plate on a bioshaker, followed by centrifugation and mixing, and rotating at 1500 rpm for 5 minutes at a temperature of 65 ° C. However, the specific operating conditions of the shake incubator are not limited to those described above. After denaturation, the sample can be left to cool for about 5 minutes at room temperature.
일 실시예에서, 단백질 변성 과정에서 이탄산 암모늄 버퍼 용액의 pH는 7.5 내지 9의 범위에서 조절될 수 있으며, 바람직하게는 7.5로 조절될 수 있다. 예를 들면, pH의 조절은 버퍼 용액 내에 약 10% 농도의 염산(HCl)을 주입함으로써 이루어질 수 있다. In one embodiment, the pH of the ammonium bicarbonate buffer solution in the course of protein denaturation may be adjusted in the range of 7.5 to 9, preferably to 7.5. For example, adjustment of the pH can be achieved by injecting about 10% hydrochloric acid (HCl) into the buffer solution.
도 3은 단백질 변성 과정에 있어서 이탄산 암모늄 버퍼 용액의 pH에 따른 질량 스펙트럼을 나타낸 것이며, 하기 표 1은 도 3의 질량 스펙트럼에서 버퍼 용액의 pH 별로 N-글라이칸 주요 피크(peak)의 패턴 사이의 유사도(correlation)를 나타낸 것이다. 도 3의 피크는 전처리 과정을 통하여 추출된 N-글라이칸을 매트릭스 보조 레이저 탈착/이온화 비행시간 분석형 질량 분석법(Matrix Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry; MALDI-TOF MS)에 의하여 이온화 및 분석하여 얻어진 것이며, 이 과정에 대해서는 상세히 후술한다. Figure 3 shows the mass spectrum according to the pH of the ammonium bicarbonate buffer solution in the process of protein denaturation, Table 1 below is the pattern of N-glycan main peak (peak) by the pH of the buffer solution in the mass spectrum of Figure 3 Shows the similarity (correlation) of. The peak of FIG. 3 is ionized and extracted by matrix assisted laser desorption / ionization time of flight mass spectrometry (MALDI-TOF MS) of N-glycans extracted through pretreatment. It is obtained by analyzing, and this process is mentioned later in detail.
pH 6 pH 6 pH 7pH 7 pH 7.5pH 7.5 pH 8 pH 8 pH 9 pH 9
pH 6 pH 6 0.9650.965 0.8220.822 0.8070.807 0.7430.743
pH 7pH 7 0.9650.965 0.9360.936 0.9310.931 0.8910.891
pH 7.5pH 7.5 0.8220.822 0.9360.936 0.9940.994 0.9830.983
pH 8 pH 8 0.8070.807 0.9310.931 0.9940.994 0.9930.993
pH 9 pH 9 0.7430.743 0.8910.891 0.9830.983 0.9930.993
상기 표 1을 참조하면, 버퍼 용액의 pH가 7.5 내지 9인 조건에서 주요 피크 패턴의 유사도가 증가하였으며, 특히 pH 8 조건에서 얻어진 피크 패턴과 비교할 때 pH 7.5 조건과 pH 9 조건에서 얻어진 주요 피크 패턴이 유사하여, pH8 조건이 피크 패턴 유지에 가장 바람직한 버퍼 용액의 pH 조건으로 측정된다. 버퍼 용액의 보관 상태에 따른 pH 변화를 측정한 결과, 온도와 기간에 따라 pH가 상승하였으므로, 상기의 결과들로부터 혈액 시료 처리 과정에서 이탄산 암모늄 버퍼 용액의 pH를 7.5로 할 경우 최적화된 결과가 얻어짐을 알 수 있었다. Referring to Table 1, the similarity of the main peak pattern was increased in the pH of the buffer solution of 7.5 to 9, in particular, the main peak pattern obtained in pH 7.5 and pH 9 conditions compared to the peak pattern obtained in pH 8 conditions Similarly, the pH8 condition is measured as the pH condition of the buffer solution most desirable for maintaining the peak pattern. As a result of measuring the pH change according to the storage condition of the buffer solution, the pH was increased according to the temperature and duration. It can be seen that.
또한 일 실시예에서, 단백질 변성 과정에서 디티오트레이톨의 농도는 1mM 내지 2mM, 바람직하게는 1mM로 조절될 수 있다. 도 4는 단백질 변성 과정에 있어서 디티오트레이톨의 농도에 따른 질량 스펙트럼을 나타낸 것이며, 하기 표 2는 도 4의 질량 스펙트럼에서 주요 피크의 세기를 나타낸 것이다. 또한, 본 명세서의 표들에서 n은 데이터를 얻기 위한 시료의 개수를 의미한다. Also in one embodiment, the concentration of dithiothreitol in the course of protein denaturation may be adjusted to 1mM to 2mM, preferably 1mM. Figure 4 shows the mass spectrum according to the concentration of dithiothreitol in the process of protein denaturation, Table 2 below shows the intensity of the main peak in the mass spectrum of FIG. In addition, n in the tables of the present specification means the number of samples to obtain data.
디티오트레이톨 농도Dithiothreitol Concentration 0.5mM0.5mM 1mM1 mM 2mM2mM 10mM10 mM
피크 세기(n=4)Peak intensity (n = 4) 10% ACN사용 용출10% ACN use elution 1.8×104 1.8 × 10 4 6.6×104 6.6 × 10 4 6.6×104 6.6 × 10 4 5.4×104 5.4 × 10 4
20% ACN사용 용출Elution with 20% ACN 1.2×104 1.2 × 10 4 7.2×104 7.2 × 10 4 6.7×104 6.7 × 10 4 5.9×104 5.9 × 10 4
상기 표 2를 참조하면, 디티오트레이톨의 농도가 1mM 내지 2mM인 경우 N-글라이칸 주요 피크의 세기가 크게 나타났으며, 특히 디티오트레이톨 농도가 1mM일 때 가장 세기가 큰 피크를 얻을 수 있었다. 표 2에 도시된 것과 같이 피크 세기는 용출에 사용된 아세토니트릴(acetonitrile; ACN) 용액의 농도에 의해서도 영향을 받는데, 이는 상세히 후술한다.Referring to Table 2, when the concentration of dithiothreitol is 1mM to 2mM, the intensity of the N-glycan main peak is large, especially when the concentration of dithiothreitol is 1mM, the highest peak is obtained. Could. As shown in Table 2, the peak intensity is also affected by the concentration of acetonitrile (ACN) solution used for the elution, which will be described later in detail.
일 실시예에서는, 진탕배양기의 온도 및 동작 시간을 적절히 제어하면서 진탕배양기를 이용하여 단백질 변성을 수행한다. 종래에는 고온의 수조(water bath) 내에서 단백질 변성을 수행하였으나, 수조 내의 고온 및 저온 교차로 인하여 시료가 수용된 튜브가 팽창 및 수축되며, 이 과정에서 튜브의 마개가 개방되어 이물질이 유입되는 등 오염이 발생하는 문제점이 있었다. 또한, 수조를 이용한 방법에서는 온도의 제어가 어렵고, 80℃ 이상의 고온에서는 튜브 마개가 개방될 가능성이 높고 단백질의 응집(aggregation) 현상이 심하며, 실험자의 수작업으로 인한 변수가 있어 정확성과 효율을 높이기가 어렵다. 수조를 대체하여 진탕배양기를 사용하는 본 실시예에서, 진탕배양기의 온도는 65℃로 유지되며, 진탕배양기 내에서 단백질 변성을 수행하는 시간은 5분으로 조절된다. In one embodiment, protein denaturation is performed using a shaker while appropriately controlling the temperature and operating time of the shaker. In the past, protein denaturation was performed in a high temperature water bath, but due to the high temperature and low temperature crossing in the water bath, the tube containing the sample expands and contracts, and in this process, the tube stoppers are opened and foreign substances are introduced. There was a problem that occurred. In addition, it is difficult to control the temperature in the water tank method, and the tube plug is likely to be opened at a high temperature of 80 ° C. or higher, the aggregation of proteins is severe, and there are variables caused by the experimenter's manual work to improve accuracy and efficiency. It is difficult. In this embodiment using a shake incubator in place of the bath, the temperature of the shake incubator is maintained at 65 ° C., and the time for performing protein denaturation in the shake incubator is adjusted to 5 minutes.
하기 표 3은, 종래와 같이 95℃의 수조에서 단백질 변성을 수행하여 얻어진 피크 패턴과 비교할 때, 진탕배양기의 동작 온도 및 시간에 따른 피크 패턴의 유사도를 나타낸다.Table 3 below shows the similarity of the peak pattern according to the operating temperature and time of the shaker as compared with the peak pattern obtained by performing protein denaturation in a 95 ° C water tank as in the prior art.
시간/온도Time / temperature 6565 7575 8585
5min5min 0.9920.992 0.9750.975 0.9250.925
10min10min 0.9890.989 0.9500.950 0.9100.910
20min20min 0.9870.987 0.9390.939 0.8520.852
도시되는 것과 같이, 65℃의 온도에서 5분간 진탕배양기를 이용하여 단백질 변성을 수행한 경우, 종래의 수조를 이용한 방법과 가상 유사한 피크 패턴을 얻을 수 있었다. As shown, when protein denaturation was performed using a shake incubator at a temperature of 65 ° C. for 5 minutes, a peak pattern virtually similar to a method using a conventional water tank was obtained.
하기 표 4는, 종래와 같이 95℃의 수조에서 단백질 변성을 수행한 경우와 본 실시예에 따라 진탕배양기를 이용하여 65℃에서 5분간 단백질 변성을 수행한 경우를 비교한 것이다. Table 4 below compares the case where protein denaturation was performed in a 95 ° C. water tank as in the prior art and when the protein denaturation was performed at 65 ° C. for 5 minutes using a shake incubator according to the present embodiment.
종래(수조)Conventionally (water tank) 본 실시예Example
온도 (n=3)Temperature (n = 3) 95/20.5 ℃ 95 / 20.5 ℃ 65 ℃65 ℃
시간time 3분3 minutes 5분5 minutes
주요 피크 세기Main peak intensity 4.5×104 4.5 × 10 4 4.8×104 4.8 × 10 4
상대표준편차(RSD)Relative standard deviation (RSD) 2.82.8 1.64 1.64
표 4에 기재된 것과 같이, 본 실시예를 이용함으로써 종래에 비해 피크 세기는 증가하였고 피크들의 상대표준편차(Relative Standard Deviation; RSD)는 감소하여, 분석의 재현성 및 효율이 향상된 것을 알 수 있다.As shown in Table 4, it can be seen that by using the present example, the peak intensity was increased and the relative standard deviation (RSD) of the peaks was reduced as compared with the prior art, thereby improving the reproducibility and efficiency of the analysis.
다시 도 1 및 도 2를 참조하면, 단백질이 변성된 시료를 효소와 혼합함으로써 글라이칸을 단백질로부터 분리시킬 수 있다(S3). 일 실시예에서는, 시료에 펩타이드 N-글리코시다제 F(peptide N-glycosidase F; PNGase F) 효소를 주입하여 효소 혼합에 의해 글라이칸을 잘라낼 수 있으며, 버퍼로는 전술한 이탄산 암모늄 용액이 사용될 수 있다. 예를 들면, 250 내지 1000 유닛(unit) 농도의 PNGase F 효소 용액 2uL와 200mM 농도, pH 7.5의 이탄산 암모늄 버퍼 2uL를 혼합하여 사용하기 전까지 4에서 보관하였다가, 96 웰 플레이트의 각 웰에 상기 혼합된 용액을 4 uL씩 첨가한 후 원심 분리와 혼합 과정에 의해 반응시킬 수 있다. Referring back to FIGS. 1 and 2, the glycan may be separated from the protein by mixing a sample in which the protein is denatured with an enzyme (S3). In one embodiment, a peptide N-glycosidase F (PNGase F) enzyme may be injected into a sample to cut glycans by enzymatic mixing, and the ammonium bicarbonate solution described above may be used as a buffer. Can be. For example, 2 uL of PNGase F enzyme solution at a concentration of 250 to 1000 units and 2 uL of ammonium bicarbonate buffer at 200 mM and pH 7.5 were mixed and stored at 4 until used, and then stored in each well of a 96 well plate. The mixed solution may be added by 4 uL and reacted by centrifugation and mixing.
하기 표 5는, 효소 반응 과정에서 PNGase F의 농도에 따른 질량 스펙트럼의 주요 피크 세기를 나타낸다. 표에 기재된 것과 같이, PNGase F의 농도가 500 유닛일 경우 가장 세기가 큰 피크를 얻을 수 있었다.Table 5 below shows the main peak intensities of the mass spectrum according to the concentration of PNGase F during the enzymatic reaction. As shown in the table, the highest intensity peak was obtained when the concentration of PNGase F was 500 units.
PNGase F 농도PNGase F concentration 1000unit (n=4)1000unit (n = 4) 500unit (n=4)500unit (n = 4) 250unit (n=4)250unit (n = 4)
주요 피크 세기Main peak intensity 7.5×104 7.5 × 10 4 7.8×104 7.8 × 10 4 7.6×104 7.6 × 10 4
일 실시예에서는, 96 웰 플레이트에 마이크로파(microwave)를 조사하면서 효소 반응을 수행한다. 하기 표 6은 효소 반응시 온도와 마이크로파의 세기 및 조사 시간에 따른 질량 스펙트럼의 주요 피크를 나타낸다. 표 6의 결과와 같이, 최적의 효율을 얻기 위해서는, 마이크로파는 37℃의 온도에서 400W의 세기로 8분간 조사될 수 있다.In one embodiment, the enzymatic reaction is carried out while irradiating microwaves to the 96 well plate. Table 6 below shows the main peaks of the mass spectrum according to temperature and microwave intensity and irradiation time in the enzyme reaction. As shown in Table 6, in order to obtain the optimum efficiency, the microwave can be irradiated for 8 minutes at an intensity of 400W at a temperature of 37 ℃.
마이크로파 세기및 온도Microwave intensity and temperature 350W, 37350 W, 37 400W, 37400 W, 37
마이크로파 조사 시간 Microwave irradiation time 9분9 minutes 10분10 minutes 8분8 minutes 9분9 minutes 10분10 minutes
주요 피크 세기(n=8)Major peak intensity (n = 8) 3.7×104 3.7 × 10 4 3.6×104 3.6 × 10 4 4.1×104 4.1 × 10 4 3.6×104 3.6 × 10 4 3.7×104 3.7 × 10 4
하기 표 7은 종래와 같이 수조에서 밤새 효소 반응을 수행한 경우와 본 실시예에 따라 400W 세기의 마이크로파를 8분간 조사한 경우를 비교한 것이다. Table 7 below compares the case where the enzyme reaction was performed overnight in a water tank as compared with the case where the microwave of 400W intensity was irradiated for 8 minutes according to the present embodiment.
종래(수조)Conventionally (water tank) 본 실시예Example
온도Temperature 3737 37℃37 ℃
세기/시간Century / time 밤새(16시간)Overnight (16 hours) 400W / 8분400 W / 8 minutes
주요 피크 세기(n=8)Major peak intensity (n = 8) 6.9×104 6.9 × 10 4 7.4×104 7.4 × 10 4
표 7에 기재된 것과 같이, 본 실시예를 이용함으로써 종래에 비해 비약적으로 단시간 동안 효소 반응을 수행하면서도 더 큰 세기의 피크를 얻을 수 있다. As shown in Table 7, by using this example, it is possible to obtain a higher intensity peak while performing the enzymatic reaction for a short time significantly compared to the conventional.
다시 도 1 및 도 2를 참조하면, 효소 반응 후 에탄올을 이용하여 단백질을 침전시키고 침전된 단백질을 시료로부터 제거할 수 있다(S4). 구체적으로는, 효소 반응이 완료된 96 웰 플레이트의 각 웰에 에탄올 450 uL를 첨가할 수 있다. 에탄올 첨가가 완료된 96 웰 플레이트를 약 1 내지 2초간 수회(예컨대, 3회) 반복하여 와동(vortex)시킨 후, 4℃ 및 3,700 rpm의 조건에서 50분동안 원심 분리를 수행할 수 있다. 에탄올 및 원심 분리에 의하여 단백질이 침전되어 시료가 두 층으로 분리되면, 각 웰에서 상층액만을 시료로서 400 uL씩 취해 또 다른 96 웰 플레이트에 옮겨 담을 수 있다. 그 결과 하층액의 단백질은 시료로부터 제거된다. 일 실시예에서, 단백질이 제거된 시료는 질소 기류하의 농축기에서 약 한 시간 동안 건조될 수도 있으며, 건조가 완료된 96 웰 플레이트는 후속 과정을 위하여 영하 20℃에서 보관될 수도 있다. Referring back to Figures 1 and 2, after the enzyme reaction using ethanol to precipitate the protein and the precipitated protein can be removed from the sample (S4). Specifically, 450 uL of ethanol may be added to each well of the 96 well plate in which the enzyme reaction is completed. After vortexing was repeated several times (for example, three times) for about 1 to 2 seconds after completion of ethanol addition, centrifugation may be performed for 50 minutes at 4 ° C and 3,700 rpm. If the protein is precipitated by ethanol and centrifugation to separate the sample into two layers, only 400 uL of supernatant in each well can be taken and transferred to another 96 well plate. As a result, the protein in the lower layer solution is removed from the sample. In one embodiment, the protein-depleted sample may be dried for about an hour in a concentrator under a nitrogen stream and the dried 96 well plate may be stored at minus 20 ° C. for subsequent processing.
일 실시예에서는, 단백질이 제거된 시료에 제2 표지 글라이칸을 첨가한다(S5). 제2 표지 글라이칸은 제1 표지 글라이칸과 마찬가지로 시료 내의 N-글라이칸과 상이한 질량을 가지며, 후술하는 고체상 추출(Solid Phase Extraction; SPE) 과정의 효율을 측정하기 위한 목적으로 시료에 첨가된다. SPE 전에 시료에 첨가한 제2 표지 글라이칸을 SPE 후에 혈청 유래 글라이칸과 함께 분석하여 혈청 글라이칸들의 상대적인 양의 변화를 추적함으로써 SPE 효율의 변화를 판단할 수 있다. 일 실시예에서, 제2 표지 글라이칸은 말토헥소스(Malto-hexose)일 수 있다. 예를 들어, 물을 이용하여 100 ug/mL의 농도로 준비된 말토헥소스가 96 웰 플레이트의 각 웰에 5 uL씩 분주될 수 있다. 그러나, 제2 표지 글라이칸의 종류는 말토헥소스에 한정되는 것은 아니다. In one embodiment, the second labeled glycan is added to the sample from which the protein is removed (S5). The second labeled glycan, like the first labeled glycan, has a different mass from the N-glycans in the sample and is added to the sample for the purpose of measuring the efficiency of the Solid Phase Extraction (SPE) process described below. The second labeled glycan added to the sample before SPE can be analyzed with the serum derived glycan after SPE to determine the change in SPE efficiency by tracking the change in the relative amount of serum glycans. In one embodiment, the second labeled glycan may be Malto-hexose. For example, maltohexose prepared at a concentration of 100 ug / mL with water may be dispensed 5 uL into each well of a 96 well plate. However, the kind of the second label glycan is not limited to maltohexose.
다음으로, 시료로부터 SPE 과정에 의하여 글라이칸 용출(elute)할 수 있다(S6). SPE 과정을 위하여, 진공 매니폴드(vacuum manifold)에 96 웰 타입 카트리지(cartridge)를 장착하고, 96 웰 타입 카트리지에 다음의 용액들을 순차적으로 흘려보냄으로써 컨디셔닝(conditioning)할 수 있다. Next, the glycan may be eluted from the sample by the SPE process (S6). For the SPE process, conditioning can be achieved by mounting a 96 well type cartridge in a vacuum manifold, and then sequentially flowing the following solutions into a 96 well type cartridge.
가. 탈이온수(Deionized Water) 1 mL씩 3회end. 3 times with 1 mL of deionized water
나. 0.1% 삼불화 초산(Trifluoacetic acid; TFA)이 포함된 80% 농도의 아세토니트릴(acetonitrile; ACN) 용액 1 mL씩 3회I. 3x 1 mL of acetonitrile (ACN) solution at 80% concentration with 0.1% Trifluoacetic acid (TFA)
다. 탈이온수 1 mL씩 3회All. 3 times with 1 mL of deionized water
이후, 96 웰 플레이트에 수용된 시료를 상기 96 웰 타입 카드리지에 로딩(loading) 한다. 로딩 전에, 시료에 탈이온수 500 uL를 첨가하여 교반한 후 10초간 원심 분리하는 과정을 더 거칠 수도 있다. 또한, 세척을 위하여 로딩이 완료된 96 웰 타입 카트리지에 탈이온수를 1 mL씩 3회 흘려보낼 수도 있다. Thereafter, the sample contained in the 96 well plate is loaded into the 96 well type cartridge. Prior to loading, 500 uL of deionized water may be added to the sample, followed by agitation and centrifugation for 10 seconds. In addition, 1 mL of deionized water may be flushed three times to a 96-well cartridge that has been loaded for washing.
다음으로, 진공 매니폴드를 이용하여, 글라이칸 용출을 위한 ACN 용액을 시료에 주입할 수 있다. 이후 용출된 시료를 완전히 건조시킨 후, 건조된 시료에 다시 탈이온후 15 uL를 첨가하여 재용해하고 분석을 위한 플레이트로 옮길 수 있다. 일 실시예에서, 용출을 위한 ACN 용액의 농도는 20%이다. 예를 들어, 20% 농도의 ACN 용액이 1 mL씩 2회 시료에 주입될 수 있다. Next, using a vacuum manifold, an ACN solution for glycan elution can be injected into the sample. The eluted sample can then be completely dried, then deionized and added to the dried sample again to add 15 uL to redissolve and transfer to the plate for analysis. In one embodiment, the concentration of ACN solution for elution is 20%. For example, a 20% concentration of ACN solution may be injected into the sample twice, 1 mL.
도 5는 글라이칸 용출(elution) 과정에서 ACN 용액의 농도에 따른 질량 스펙트럼을 나타낸 것으로, 도 5의 (a)는 10% 농도의 ACN 용액을 이용하여 용출된 글라이칸의 질량 스펙트럼을 나타내며, 도 5의 (b)는 20% 농도의 ACN 용액을 이용하여 용출된 글라이칸의 질량 스펙트럼을 나타낸다. 붉은 색 원으로 도시되는 것과 같이 용출에 사용된 ACN 용액의 농도에 따라 질량 스펙트럼에서 글라이칸의 상대적인 양에 변화가 있으며, 20% 농도의 ACN 용액을 사용할 경우가 시료 내에 실제로 존재하는 글라이칸의 양을 보다 정확하게 반영하는 것으로 나타났다. Figure 5 shows the mass spectrum according to the concentration of the ACN solution in the glycan elution process, Figure 5 (a) shows the mass spectrum of the glycan eluted using a 10% concentration of ACN solution, 5 (b) shows the mass spectrum of the glycan eluted using the 20% concentration of ACN solution. The relative amount of glycan in the mass spectrum varies with the concentration of the ACN solution used for the elution, as shown by the red circle, and the amount of glycan actually present in the sample when a 20% concentration of ACN solution is used. It appeared to reflect more accurately.
하기 표 8은 용출에 사용된 ACN 용액의 농도 및 구성에 따라 질량 스펙트럼에서 나타나는 M+Na(M: 임의의 원자) 피크의 수 및 세기를 나타내는 것으로, 20% 농도의 ACN 용액을 사용할 경우 많은 수의 피크를 검출하면서도 피크 세기도 큰 것을 확인할 수 있다.Table 8 below shows the number and intensity of M + Na (M: any atom) peaks appearing in the mass spectrum according to the concentration and composition of the ACN solution used for elution, and a large number when using a 20% concentration of ACN solution. It can be seen that the peak intensity is also large while detecting the peak of.
용출에 사용된 용액Solution used for elution 10% CAN10% CAN 10% ACN후 20% ACN20% ACN after 10% ACN 10%ACN:20ACN=1:110% ACN: 20ACN = 1: 1 15%ACN15% ACN 20%ACN20% ACN
M+Na 피크 수M + Na peak number 5050 00 40 내지 5040 to 50 45 내지 5045 to 50 45 내지 5045 to 50
피크 세기Peak intensity 5.9×104 5.9 × 10 4 8.4×104 8.4 × 10 4 5.0×104 5.0 × 10 4 6.1×104 6.1 × 10 4 6.5×104 6.5 × 10 4
일 실시예에서, SPE 과정 후 시료의 건조는 70 ℃의 온도에서 이루어진다. 하기 표 9는 시료의 건조 온도에 따른 질량 스펙트럼의 피크들의 특성을 나타낸 것으로서, 시료를 70 ℃의 온도에서 건조하는 경우 피크들의 상대표준편차가 작아 분석의 재현성이 높으며 건조 시간도 적게 소요되는 것을 알 수 있다.In one embodiment, the drying of the sample after the SPE process is at a temperature of 70 ° C. Table 9 shows the characteristics of the peaks of the mass spectrum according to the drying temperature of the sample. When the sample is dried at a temperature of 70 ° C., the relative standard deviation of the peaks is small, indicating that the analysis is reproducible and the drying time is short. Can be.
건조 온도Drying temperature 37℃37 ℃ 60℃60 ℃ 70℃70 ℃
상대표준편차(RSD, %)(n=4)Relative standard deviation (RSD,%) (n = 4) 13.513.5 8.08.0 7.07.0
상대표준편차(RSD, %)(n=9)Relative standard deviation (RSD,%) (n = 9) 4.54.5 2.42.4 2.92.9
상대표준편차 평균Relative standard deviation mean 9.009.00 5.205.20 4.954.95
건조 시간Drying time 5시간5 hours 3.5 시간3.5 hours 3시간3 hours
또한 일 실시예에서, SPE 과정에 사용되는 컬럼(column)의 특성은 N-글라이칸의 분석에 최적화되도록 조절할 수 있다. 하기 표 10은 사용된 컬럼 특성에 따른 N-글라이칸 피크들의 상대 표준 편차 및 세기를 나타낸 것이다. Also in one embodiment, the properties of the column used in the SPE procedure can be adjusted to optimize for the analysis of N-glycans. Table 10 below shows the relative standard deviation and intensity of the N-glycan peaks according to the column characteristics used.
베드(bed) 질량(mg)/ 부피(ml)Bed Mass (mg) / Volume (ml) 흑연화 탄소(입자 크기 38-125μm) 150mg/4mlGraphitized Carbon (Particle Size 38-125μm) 150mg / 4ml 초순수(Ultra-pure) 흑연화 탄소 250mg/6mlUltra-pure Graphitized Carbon 250mg / 6ml 100% 다공성 탄소 흑연(porous graphitic carbon; PGC) (입자 크기 30-40μm, 포어 크기 250Å) 50mg/1ml100% porous graphitic carbon (PGC) (particle size 30-40μm, pore size 250mm) 50mg / 1ml 100% 다공성 탄소 흑연(porous graphitic carbon; PGC) (입자 크기 30-40μm, 포어 크기 250Å) 100mg/1ml100% porous graphitic carbon (PGC) (particle size 30-40μm, pore size 250mm) 100mg / 1ml
상대표준편차(RSD, %)(n=4)Relative standard deviation (RSD,%) (n = 4) 4.24.2 4.324.32 1.811.81 2.652.65
피크 세기Peak intensity 3.0×104 3.0 × 10 4 1.0×104 1.0 × 10 4 6.3×104 6.3 × 10 4 5.5×104 5.5 × 10 4
다음으로, 질량 분석법에 의하여 용출된 글라이칸을 분석할 수 있다(S7). 이때, 분석된 제1 및 제2 표지 글라이칸의 양에 기초하여 본 실시예에 따른 N-글라이칸 분석 방법에 있어서 효소 작용 및 용출 효율을 평가할 수 있다(S8). 제1 및 제2 표지 글라이칸은 사람 또는 동물 혈청에 포함된 N-글라이칸과는 상이한 질량을 가지므로 질량 스펙트럼에서 제1 및 제2 표지 글라이칸을 용이하게 특정할 수 있다. 질량 스펙트럼에서 제1 표지 글라이칸의 피크에 기초하여 본 실시예에 따른 N-글라이칸 분석 방법에 있어서 효소 작용 효율을 평가할 수 있다. 또한, 질량 스펙트럼에서 제2 표지 글라이칸의 피크에 기초하여 본 실시예에 따른 N-글라이칸 분석 방법에 있어서 SPE 과정의 효율을 평가할 수 있다. 이러한 효율 평가는 각 과정에 수반되는 반응 물질이나 온도, 시간 등의 조건을 최적화하기 위한 정보로서 활용된다.Next, the glycan eluted by mass spectrometry can be analyzed (S7). At this time, the enzyme activity and elution efficiency in the N-glycan analysis method according to the present embodiment can be evaluated based on the amounts of the first and second labeled glycans analyzed (S8). Since the first and second labeled glycans have a different mass than the N-glycans contained in human or animal serum, the first and second labeled glycans can be easily specified in the mass spectrum. Enzyme action efficiency can be evaluated in the N-glycan analysis method according to the present example based on the peak of the first labeled glycan in the mass spectrum. In addition, the efficiency of the SPE process in the N-glycan analysis method according to the present embodiment can be evaluated based on the peak of the second labeled glycan in the mass spectrum. This efficiency evaluation is used as information for optimizing the conditions such as reactants, temperature and time involved in each process.
혈청 유래 N-글라이칸 및 제1, 제2 표지 글라이칸의 분석은 MALDI-TOF MS에 의하여 시료의 질량 스펙트럼을 얻는 것에 의하여 이루어진다. 구체적으로는, 먼저 시료로부터 용출된 글라이칸을 소정의 매트릭스(matrix) 물질과 혼합한다. 매트릭스 물질은 레이저로부터 에너지를 흡수하여 쉽게 이온화되는 물질로서, MALDI-TOF MS는 매트릭스를 이용한 이온 전달 과정에 의하여 시료를 간접적으로 이온화하도록 구성된다. 예컨대, 매트릭스 물질은 레이저에 의하여 쉽게 여기(excitation)되는 구조를 갖는 유기 화합물일 수 있으며, 방향계 유기 화합물일 수도 있다. 또한, 유기 화합물을 잘 용해시키면서 시료도 잘 용해시킬 수 있도록 하기 위하여 매트릭스 물질로 둘 이상의 물질의 혼합물을 이용할 수도 있다. Analysis of serum-derived N-glycans and first and second labeled glycans is by obtaining a mass spectrum of the sample by MALDI-TOF MS. Specifically, first, the glycan eluted from the sample is mixed with a predetermined matrix material. The matrix material is a material that easily absorbs energy from the laser and ionizes, and the MALDI-TOF MS is configured to indirectly ionize the sample by an ion transfer process using a matrix. For example, the matrix material may be an organic compound having a structure that is easily excited by a laser, or may be an aromatic organic compound. In addition, a mixture of two or more substances may be used as the matrix material in order to dissolve the organic compound well and to dissolve the sample well.
다음으로, 매트릭스 물질을 이용하여 이온화된 시료 조각들을 전기장에 의하여 이동시키면서, 각 조각의 이동 시간을 통하여 특정 전하량 대비 질량(m/z)을 가진 조각들의 분자량 분포 및 상대적 세기들을 질량 스펙트럼으로 얻을 수 있다. 그러나, 본 발명의 실시예들에서 용출된 글라이칸들의 질량 스펙트럼을 얻는 방법은 MALDI-TOF MS에 한정되는 것은 아니며, 예컨대 푸리에 변환 이온 싸이클로트론 공명(Fourier Transform Ion Cyclotron Resonance; FT-ICR) 질량 분석법 또는 본 명세서에 기재되지 않은 다른 상이한 질량 분석법을 이용하여 질량 스펙트럼을 도출할 수도 있다. Next, mass spectroscopy and relative intensities of the fragments with mass (m / z) relative to the specific charge amount can be obtained as mass spectra by moving the ionized sample pieces by the electric field using the matrix material. have. However, the method of obtaining mass spectra of eluted glycans in embodiments of the present invention is not limited to MALDI-TOF MS, such as Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometry or Other different mass spectrometry methods not described herein may be used to derive the mass spectrum.
한편, 본 발명의 일 실시예에서 용출 과정은 96 웰 타입 카트리지를 이용하는 점에서 튜브 타입 카트리지를 이용하는 종래의 글라이칸 용출 과정과 차별화된다. 도 6a는 튜브 타입 카트리지를 이용하여 얻어진 질량 스펙트럼을 나타내며, 도 6b는 본 실시예에 따라 96 웰 타입 카트리지를 이용하여 얻어진 질량 스펙트럼을 나타낸다. 도시되는 것과 같이 카트리지의 유형으로 인한 질량 스펙트럼 피크 패턴의 차이는 관찰되지 않았다. Meanwhile, in one embodiment of the present invention, the elution process is different from the conventional glycan elution process using the tube type cartridge in that the 96 well type cartridge is used. FIG. 6A shows a mass spectrum obtained using a tube type cartridge, and FIG. 6B shows a mass spectrum obtained using a 96 well type cartridge according to this embodiment. As shown, no difference in mass spectral peak pattern due to the type of cartridge was observed.
하기 표 11은 분석법에 대한 검증을 위하여 도 6a 및 6b의 질량 스펙트럼들의 상대표준편차를 산출한 것을 나타낸 것으로서, 튜브 타입 카트리지를 이용하는 경우와 96 웰 타입 카트리지를 이용하는 경우 모두 10% 미만의 재현성을 나타냈으며, 96 웰 타입 카트리지를 이용하는 경우가 수치적으로 조금 더 우수한 결과를 얻을 수 있음이 확인된다. Table 11 below shows the relative standard deviations of the mass spectra of FIGS. 6A and 6B for verification of the assay, showing a reproducibility of less than 10% in both a tube type cartridge and a 96 well type cartridge. It is confirmed that a slightly better result can be obtained numerically using a 96 well type cartridge.
상대 표준 편차(%)Relative standard deviation (%)
튜브 타입 카트리지 이용Tube type cartridge 96 웰 타입 카트리지 이용Use of 96-well cartridges
제1일차Day 1 9.81(n=48)9.81 (n = 48) 5.39(n=39)5.39 (n = 39)
제2일차Day two 8.30(n=48)8.30 (n = 48) 5.41(n=39)5.41 (n = 39)
각 일차 평균Each primary mean 9.069.06 5.405.40
본 명세서에서, 실시예들에 따른 N-글라이칸 분석 방법은 도면에 제시된 순서도를 참조로 하여 설명되었다. 간단히 설명하기 위하여 상기 방법은 일련의 블록들로 도시되고 설명되었으나, 본 발명은 상기 블록들의 순서에 한정되지 않고, 몇몇 블록들은 다른 블록들과 본 명세서에서 도시되고 기술된 것과 상이한 순서로 또는 동시에 일어날 수도 있으며, 동일한 또는 유사한 결과를 달성하는 다양한 다른 분기, 흐름 경로, 및 블록의 순서들이 구현될 수 있다. 또한, 본 명세서에서 기술되는 방법의 구현을 위하여 도시된 모든 블록들이 요구되지 않을 수도 있다.In the present specification, the N-glycan analysis method according to the embodiments has been described with reference to the flowchart shown in the drawings. Although the method is shown and described in a series of blocks for the sake of simplicity, the invention is not limited to the order of the blocks, and some blocks may occur in different order or simultaneously with other blocks than those shown and described herein. Various other branches, flow paths, and blocks may be implemented in order to achieve the same or similar results. In addition, not all illustrated blocks may be required for the implementation of the methods described herein.
또한, 이상에서 살펴본 본 발명은 도면에 도시된 실시예들을 참고로 하여 설명하였으나 이는 예시적인 것에 불과하며 당해 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 실시예의 변형이 가능하다는 점을 이해할 것이다. 그러나, 이와 같은 변형은 본 발명의 기술적 보호범위 내에 있다고 보아야 한다. 따라서, 본 발명의 진정한 기술적 보호범위는 첨부된 특허청구범위의 기술적 사상에 의해서 정해져야 할 것이다.In addition, the present invention described above has been described with reference to the embodiments shown in the drawings, but this is only exemplary and those skilled in the art will understand that various modifications and variations are possible from this. will be. However, such modifications should be considered to be within the technical protection scope of the present invention. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.
실시예들은 생물학적 복합 유체 내의 N-글라이칸(n-glycan)을 분석하는 방법에 관한 것으로, 혈청을 포함하는 다양한 생물학적 복합 유체로부터 순수한 N-글라이칸만을 높은 효율로 재현성 있게 분리 및 정제하는 기술에 대한 것이다.Embodiments relate to methods for analyzing n-glycans in biological complex fluids, and to techniques for reproducibly separating and purifying only pure N-glycans with high efficiency from various biological complex fluids including serum. It is about.

Claims (12)

  1. N-글라이칸을 포함하는 시료에, 상기 N-글라이칸과 상이한 질량을 가진 제1 표지 글라이칸을 포함하는 단백질을 첨가하는 단계;Adding to the sample comprising N-glycans a protein comprising a first labeled glycan having a different mass than the N-glycans;
    상기 단백질을 첨가하는 단계 후에, 상기 시료 내의 단백질을 변성시키는 단계; After the step of adding the protein, denaturing the protein in the sample;
    단백질이 변성된 후 효소를 이용하여 상기 시료 내의 글라이칸을 단백질로부터 분리하는 단계;Separating the glycan from the sample from the protein using an enzyme after the protein is denatured;
    상기 단백질이 분리된 상기 시료로부터 글라이칸을 용출하는 단계; Eluting glycan from the sample from which the protein is separated;
    용출된 글라이칸의 질량 스펙트럼을 획득하는 단계; 및Obtaining a mass spectrum of eluted glycans; And
    상기 질량 스펙트럼에서 상기 제1 표지 글라이칸의 양에 기초하여 상기 효소의 효율 또는 작용 여부를 결정하는 단계를 포함하는, 생물학적 복합 유체 내의 N-글라이칸을 분석하는 방법.Determining the efficiency or function of the enzyme based on the amount of the first labeled glycan in the mass spectrum.
  2. 제 1항에 있어서,The method of claim 1,
    상기 제1 표지 글라이칸을 포함하는 단백질은 호스래디시 퍼록시데이즈인, 생물학적 복합 유체 내의 N-글라이칸을 분석하는 방법.Wherein the protein comprising the first labeled glycan is horseradish peroxidase, the method of analyzing N-glycans in a biological complex fluid.
  3. 제 1항에 있어서,The method of claim 1,
    상기 글라이칸을 용출하는 단계 전에, 상기 단백질이 제거된 상기 시료에 상기 N-글라이칸과 상이한 질량을 가진 제2 표지 글라이칸을 첨가하는 단계를 더 포함하며,Before eluting the glycan, adding a second labeled glycan having a different mass from the N-glycan to the sample from which the protein has been removed;
    상기 질량 스펙트럼에서 상기 제2 표지 글라이칸의 양에 기초하여 용출 효율을 결정하는 단계를 더 포함하는, 생물학적 복합 유체 내의 N-글라이칸을 분석하는 방법.Determining the elution efficiency based on the amount of the second labeled glycan in the mass spectrum.
  4. 제 3항에 있어서,The method of claim 3, wherein
    상기 제2 표지 글라이칸은 말토헥소스인, 생물학적 복합 유체 내의 N-글라이칸을 분석하는 방법.Wherein said second labeled glycan is maltohexose.
  5. 제 1항에 있어서,The method of claim 1,
    상기 시료 내의 단백질을 변성시키는 단계는, 상기 시료를 디티오트레이톨 및 이탄산 암모늄을 포함하는 버퍼 용액과 혼합하는 단계를 포함하는, 생물학적 복합 유체 내의 N-글라이칸을 분석하는 방법.Denaturing the protein in the sample comprises mixing the sample with a buffer solution comprising dithiothreitol and ammonium bicarbonate.
  6. 제 5항에 있어서,The method of claim 5,
    상기 버퍼 용액의 pH는 7.5 내지 9인, 생물학적 복합 유체 내의 N-글라이칸을 분석하는 방법.PH of the buffer solution is 7.5 to 9, method for analyzing N-glycans in a biological complex fluid.
  7. 제 5항에 있어서,The method of claim 5,
    상기 버퍼 용액에서 디티오트레이톨의 농도는 1mM 내지 2mM인, 생물학적 복합 유체 내의 N-글라이칸을 분석하는 방법.The concentration of dithiothreitol in the buffer solution is 1mM to 2mM, method for analyzing N-glycans in a biological complex fluid.
  8. 제 5항에 있어서,The method of claim 5,
    상기 시료 내의 단백질을 변성시키는 단계는, 상기 버퍼 용액과 혼합된 시료를 65 ℃ 온도의 진탕배양기에서 반응시키는 단계를 더 포함하는, 생물학적 복합 유체 내의 N-글라이칸을 분석하는 방법.Denaturing the protein in the sample further comprises reacting the sample mixed with the buffer solution in a shaker at 65 ° C. temperature.
  9. 제 1항에 있어서,The method of claim 1,
    상기 효소는 펩타이드 N-글리코시다제 F이며, The enzyme is peptide N-glycosidase F,
    상기 시료 내의 글라이칸을 단백질로부터 분리하는 단계는, 상기 시료에 500 유닛(unit) 농도의 펩타이드 N-글리코시다제 F를 주입하는 단계를 포함하는, 생물학적 복합 유체 내의 N-글라이칸을 분석하는 방법.Separating glycan in the sample from the protein comprises injecting 500 units of peptide N-glycosidase F into the sample. .
  10. 제 9항에 있어서,The method of claim 9,
    상기 시료 내의 글라이칸을 단백질로부터 분리하는 단계는, 상기 효소와 혼합된 시료에 400W 세기로 8분간 마이크로파를 조사하는 단계를 더 포함하는, 생물학적 복합 유체 내의 N-글라이칸을 분석하는 방법.Separating the glycan from the protein from the protein further comprises irradiating the sample mixed with the enzyme with microwave for 8 minutes at 400 W intensity, analyzing the N-glycans in the biological complex fluid.
  11. 제 1항에 있어서,The method of claim 1,
    상기 시료로부터 글라이칸을 용출하는 단계는, 상기 시료를 20% 농도의 아세토니트릴 용액과 혼합하는 단계를 포함하는, 생물학적 복합 유체 내의 N-글라이칸을 분석하는 방법.Eluting glycan from the sample comprises mixing the sample with a 20% concentration of acetonitrile solution.
  12. 제 1항에 있어서,The method of claim 1,
    상기 시료로부터 글라이칸을 용출하는 단계 후 상기 질량 스펙트럼을 획득하는 단계 전에, 상기 시료를 70 ℃의 온도에서 건조시키는 단계를 더 포함하는, 생물학적 복합 유체 내의 N-글라이칸을 분석하는 방법.And drying the sample at a temperature of 70 ° C. after eluting glycan from the sample, before obtaining the mass spectrum.
PCT/KR2016/005645 2015-09-03 2016-05-27 Method for analysing n-glycans in complex biological fluids WO2017039123A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0124900 2015-09-03
KR1020150124900A KR101648926B1 (en) 2015-09-03 2015-09-03 Method for analyzing n-glycans in complex biological fluids

Publications (1)

Publication Number Publication Date
WO2017039123A1 true WO2017039123A1 (en) 2017-03-09

Family

ID=56874588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/005645 WO2017039123A1 (en) 2015-09-03 2016-05-27 Method for analysing n-glycans in complex biological fluids

Country Status (2)

Country Link
KR (1) KR101648926B1 (en)
WO (1) WO2017039123A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004504621A (en) * 2000-07-19 2004-02-12 バイオトロン・リミテッド Methods for identifying marker traits of cancer in cancer diagnosis and uses for diagnosis
KR100475642B1 (en) * 2001-12-29 2005-03-10 한국생명공학연구원 A method for the diagnosis of cancers by measuring the changes of glycosylation of proteins related to tumorigenesis and metastasis and kit for diagnosis of cancers using the same
JP5047790B2 (en) * 2004-06-22 2012-10-10 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Oligosaccharide profiling method for detecting cancer
KR20130066481A (en) * 2012-05-03 2013-06-20 주식회사 아스타 Method for analyzing cancer-specific glycan and use of it for diagnosing cancer
KR20140120651A (en) * 2013-04-04 2014-10-14 충남대학교산학협력단 Human serum glycome map

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01237481A (en) * 1988-02-09 1989-09-21 Furuno Electric Co Ltd Display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004504621A (en) * 2000-07-19 2004-02-12 バイオトロン・リミテッド Methods for identifying marker traits of cancer in cancer diagnosis and uses for diagnosis
KR100475642B1 (en) * 2001-12-29 2005-03-10 한국생명공학연구원 A method for the diagnosis of cancers by measuring the changes of glycosylation of proteins related to tumorigenesis and metastasis and kit for diagnosis of cancers using the same
JP5047790B2 (en) * 2004-06-22 2012-10-10 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Oligosaccharide profiling method for detecting cancer
KR20130066481A (en) * 2012-05-03 2013-06-20 주식회사 아스타 Method for analyzing cancer-specific glycan and use of it for diagnosing cancer
KR20140120651A (en) * 2013-04-04 2014-10-14 충남대학교산학협력단 Human serum glycome map

Also Published As

Publication number Publication date
KR101648926B1 (en) 2016-08-18

Similar Documents

Publication Publication Date Title
Mann et al. Proteomic analysis of post-translational modifications
US20110301063A1 (en) Multiplexing derivatized anayltes using mass spectroscopy
US20020068366A1 (en) Proteomic analysis by parallel mass spectrometry
CN104797939B (en) The apparatus and method of microbiological analysis
US11428696B2 (en) Mass spectrometry analysis of mutant polypeptides in biological samples
CN106908513B (en) It is a kind of for 96 hole high throughput solid-phase extraction devices of mass spectral analysis and its application
CN110333364B (en) Full-automatic biological evaluation and chemical analysis all-in-one machine and method
CN113138249B (en) Micro-sample metabolome, proteome and phosphoproteome multi-group chemical analysis method based on micropore array chip
AU2008323933A1 (en) Mass spectrometry assay for eIF4E and eIF4E regulon activity
CN112834631A (en) Single-cell single-tube sample preparation and single-cell proteomics analysis method
WO2021007794A1 (en) Full-automatic biological evaluation and chemical analysis integrated machine and method
Lin et al. Sensitive mass spectrometric analysis of carbonyl metabolites in human urine and fecal samples using chemoselective modification
WO2018030709A1 (en) Method for pretreatment of sample using superabsorbent polymer and device therefor
WO2017039123A1 (en) Method for analysing n-glycans in complex biological fluids
Paulson et al. Proteomics and peptidomics in neuroscience. Experience of capabilities and limitations in a neurochemical laboratory
CN110873766A (en) Mass spectrometry method for screening protein with structure and interaction change caused by drug
JP7051871B2 (en) Methods for Identifying Reagents During Processes in Analytical Systems
WO2013042917A2 (en) Enzyme treatment apparatus for proteins using a hollow fiber membrane, and on-line proteomics method using same
KR101711953B1 (en) Rapid, high-throughput automated glycan sample preparation system
KR101544591B1 (en) Development of high-throughput quantitative glycomics platform using mass spectrometry and chromatography system
CA3216357A1 (en) Methods and systems for improved quality assurance for high-throughput analysis
Sitnikov Development of Methods for Global and Targeted Metabolomics Analysis of Biological Fluids
CN114924082A (en) Mass spectrum identification method for high-throughput enriched protein and/or peptide fragment group
CN115290776A (en) Application of resistance protein of trypanosomiasis of tumor cattle
CN115825271A (en) Noninvasive detection method for predicting new protein marker and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16842089

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16842089

Country of ref document: EP

Kind code of ref document: A1