WO2017038889A1 - Gas analysis system and gas analysis method - Google Patents

Gas analysis system and gas analysis method Download PDF

Info

Publication number
WO2017038889A1
WO2017038889A1 PCT/JP2016/075554 JP2016075554W WO2017038889A1 WO 2017038889 A1 WO2017038889 A1 WO 2017038889A1 JP 2016075554 W JP2016075554 W JP 2016075554W WO 2017038889 A1 WO2017038889 A1 WO 2017038889A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
sensor
type
output value
gas type
Prior art date
Application number
PCT/JP2016/075554
Other languages
French (fr)
Japanese (ja)
Inventor
吉崎公也
西井誠
Original Assignee
新コスモス電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新コスモス電機株式会社 filed Critical 新コスモス電機株式会社
Priority to KR1020187007036A priority Critical patent/KR102534577B1/en
Publication of WO2017038889A1 publication Critical patent/WO2017038889A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/64Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using wave or particle radiation to ionise a gas, e.g. in an ionisation chamber
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means

Definitions

  • the present invention relates to a gas analysis system and a gas analysis method for specifying a gas type of a determination target gas using a plurality of types of gas sensors.
  • a gas analysis system and a gas analysis method that can reduce the number of gas sensors required to specify the gas type of the determination target gas and can specify the gas type with high accuracy are desired.
  • a gas analysis system includes: A detection unit comprising a plurality of types of gas sensors; An input unit to which an output value of each gas sensor for the determination target gas is input; A storage unit storing a correspondence relationship between a gas type to be determined and a tendency of an output value of each gas sensor with respect to the gas type for each gas type; A determination unit that specifies a gas type of the determination target gas based on the stored correspondence relationship and the tendency of the input output values.
  • the inventor has a one-to-one correspondence between the magnitude relationship pattern between each gas type to be determined and the output value, and the tendency of the output value from each gas sensor, such as which gas sensor has what output. I found out. Therefore, according to this configuration, the correspondence found by the inventor is adopted, the correspondence between the gas type to be determined and the tendency of the output value from each gas sensor is obtained for each gas type, and the individual output.
  • the gas types included in the determination target gas can be specified by combining individual output values and referring to the corresponding relationship obtained in advance. Thereby, even if there is an output of a predetermined value or more from a plurality of gas sensors, the gas type can be specified with high accuracy.
  • the gas sensor provided in the detection unit can be obtained by obtaining the correspondence between the gas type and the tendency of the output value from each gas sensor.
  • Gas types other than the detection target gas can be specified. Thereby, it is possible to specify a gas type more than the type of gas sensor provided in the detection unit, and it is possible to reduce the number of necessary gas sensors compared to using the same number of gas sensors as the type of gas to be determined. .
  • the correspondence includes, for each gas type to be determined, a correspondence between the gas type and a pattern of magnitude relationship with respect to a predetermined threshold value of the output value of each gas sensor for the gas type,
  • the determination unit performs a threshold determination as to whether or not the output value exceeds the threshold, and based on the correspondence and the result of the threshold determination for each output value, the gas type of the determination target gas Is preferably specified.
  • the determination is made based on a simple tendency of whether each output value exceeds the threshold value. It can be performed.
  • the correspondence includes a combination of the gas sensors determined for a gas type to be determined, and a ratio of the output values between the gas sensors in the combination for the gas type
  • the determination unit preferably specifies the gas type of the determination target gas based on the correspondence relationship and the ratio between the output values in the combination.
  • the threshold determination described above is performed. Even if the gas concentration is lower than the concentration necessary for the determination of the means used, the gas type of the determination target gas can be specified as long as the ratio of the output values in the combination of specific gas sensors can be determined. Thereby, the gas species can be specified with higher accuracy.
  • the storage unit for each gas type to be determined, the type of the main gas sensor used as a reference when calculating the concentration, the output value of the main gas sensor, and the concentration of the gas type
  • the concentration calculation information including the correlation is stored, and the determination unit uses the output value of the main gas sensor based on the concentration calculation information when the gas type of the determination target gas is specified. It is preferable to calculate the concentration of the gas species.
  • the main gas sensor used as a reference for calculating the concentration is determined in advance and not only the gas type is specified, but also the concentration can be calculated with high accuracy, more effective gas analysis can be performed.
  • the storage unit includes the type of sub gas sensor determined for each gas type to be determined and the correlation between the output value of the sub gas sensor and the concentration of the gas type, and the determination
  • the concentration of the gas species is calculated using the output value of the sub gas sensor based on the concentration calculation information. It is.
  • the output of a gas sensor changes in proportion to the concentration of the target gas, but the output value has a detection limit value called full scale, and there is a problem that it is not possible to measure a concentration exceeding this detection limit value. is there. Therefore, according to this configuration, a gas sensor or the like whose output changes in response to the concentration of the target gas as the main gas sensor is set as a sub gas sensor, and when the main gas sensor exceeds the detection limit value, Since the concentration of the gas species is calculated based on the output value of the gas sensor, it is possible to effectively suppress the occurrence of the above problem.
  • the detection unit includes at least one photoionization sensor, and the correspondence relationship includes a gas type that can be detected by the photoionization sensor and a predetermined output value of the gas sensor other than the photoionization sensor.
  • the determination unit determines the gas type of the determination target gas based on the correspondence and the tendency of the output value of the predetermined gas sensor when the photoionization sensor outputs. It is preferable to specify.
  • a photoionization sensor is a sensor that reacts to many gases, mainly organic solvents. Even if it is possible to narrow down roughly the gas type from its output value, the gas type is highly accurate from its output value. It cannot be judged. On the other hand, even if the gas sensor does not use a gas type that can be detected by the photoionization sensor as a detection target gas, the inventor considers the gas from the tendency of the output value from each gas sensor in the same manner as described above. We found that species can be identified.
  • a correspondence relationship between a gas type that can be detected by the photoionization sensor and a tendency of the output value of the predetermined gas sensor other than the photoionization sensor is obtained, and based on this correspondence relationship,
  • the gas type detected by the photoionization sensor can be specified.
  • the number of gas types that can be determined can be increased, and this has the advantage of reducing the number of gas sensors required to identify various gas types.
  • the storage unit stores a correlation between a concentration of a gas type to be determined and the output value of the photoionization sensor, and the determination unit has a gas type of the determination target gas. It is preferable to calculate the concentration of the gas species using the output value of the photoionization sensor based on the correlation.
  • the concentration of the specified gas type can be easily calculated from the output of the photoionization sensor.
  • the gas analysis method includes: Measuring the determination target gas using a plurality of types of gas sensors; and Identifying the gas type of the determination target gas based on the correspondence between the gas type to be determined and the tendency of the output value of each gas sensor with respect to the gas type and the tendency of the output value of each gas sensor; Is provided.
  • the gas analysis system 1 includes a detection unit 2 including a plurality of types of gas sensors, an input unit 4 to which an output value of each gas sensor for a determination target gas is input, a gas type to be determined and the gas Based on the storage unit 5 storing the correspondence relationship between the output value of each gas sensor with respect to the species for each gas species, the stored correspondence relationship, and the tendency of the input output values. And a determination unit 6 that specifies a gas type of the determination target gas. Thereby, the number of gas sensors required to specify the gas type of the determination target gas can be reduced, and the gas type can be specified with high accuracy.
  • the gas analysis system 1 according to the present embodiment will be described in detail.
  • FIG. 1 shows an example of a gas analysis system 1 according to the present embodiment.
  • the gas analysis system 1 includes a detector 2 and an analyzer 3.
  • the detector 2 is portable and is a sensor array provided with a plurality of types of gas sensors (not shown) to be described later.
  • the detector 2 includes a communication unit (not shown) that can transmit the output signal ⁇ from each gas sensor to the analyzer 3.
  • the analyzer 3 is a PC in this embodiment, and includes an input unit 4, a storage unit 5, and a determination unit 6, as shown in FIG.
  • An output signal ⁇ from the detector 3 is input to the input unit 4. That is, the output value of each gas sensor for the gas to be detected by the detector 2 is input.
  • the storage unit 5 stores a database that stores the relationship between the gas types for determination described later and the output value of each gas sensor, and the analysis that realizes an algorithm for the analysis unit 6 to specify the gas types. Program is stored.
  • the analysis unit 6 specifies the gas type of the determination target gas based on the output signal from the detector 2 using various relationships stored in the database according to the analysis program stored in the storage unit 5.
  • the gas analysis system 1 output values from a plurality of types of gas sensors provided in the detector 2 are input to the input unit 4 of the analyzer 3, and the gas types stored in the storage unit 5 and the output values of each gas sensor
  • the determination unit 6 identifies the gas type of the determination target gas from the input output values based on the above relationship.
  • the illustrated gas analysis system 1 is merely an example, and is not particularly limited as long as the gas type of the determination target gas can be specified by the same procedure.
  • the detector 2 may not be able to input an output signal to the analyzer 3 by wireless communication, but may input the output signal of the gas sensor to the analyzer 3 via some recording medium or by wired communication.
  • it may be a stationary type instead of a portable type.
  • the analyzer 3 is not limited to a PC, and is not particularly limited as long as it has at least functions equivalent to those of the input unit 4, the storage unit 5, and the analysis unit 6. Moreover, you may be comprised from the apparatus with which the detector 2 and the analyzer 3 were united.
  • the gas analysis system 1 uses the correspondence between the gas type to be determined and the tendency of the output value of each gas sensor with respect to the gas type to indicate the correspondence and the output value from each gas sensor.
  • the gas type of the determination target gas is specified based on the tendency.
  • the database storage unit 5 stores the correspondence relationship between the gas type to be determined and the tendency of the output value of each gas sensor with respect to the gas type for each gas type.
  • the gas type of the determination target gas is specified by referring to the correspondence relationship stored in the database and the tendency of each output value input to the input unit 4 (more specifically, below).
  • the analysis program is created so that the judgment is made according to the procedure shown).
  • the tendency of the output value of each gas sensor the tendency of the response of each gas sensor to the gas type, such as whether the output value is a positive value, a negative value, or almost zero, and the output value of which gas sensor.
  • Trend of threshold judgment of each output value when threshold judgment of whether it exceeds (or falls below) a predetermined threshold, which gas sensor has the highest sensitivity, and the output value of the gas sensor with the highest detection sensitivity The ratio of the output values of the other gas sensors, the tendency of the output of each gas sensor to change with time (how the response waveform rises, etc.) and the like can be mentioned.
  • the determination unit 6 can input the correspondence relationship and each input to the input unit 4.
  • the gas type of the determination target gas can be specified by referring to the tendency of the output value.
  • the type of gas sensor that shows a positive response (output value is positive), a gas sensor that shows a negative response (output value is negative), or a gas sensor that has poor sensitivity (the absolute value of the output value is less than a certain value) is determined. ing. That is, for each gas type, a combination of a gas sensor type showing a positive response, a gas sensor type showing a negative response, and a gas sensor type having low sensitivity is determined.
  • the gas type of the determination target gas measured by the detector 2 is It is possible to specify that the gas type is A. Therefore, in the gas analysis system 1 of the present embodiment, whether or not the determination unit 6 exceeds the positive threshold value and the negative threshold value (for example, 25% of full scale) determined in advance for each output value from the detector 2. Threshold judgment is performed.
  • a gas sensor whose output value exceeds a positive threshold is a gas sensor showing a positive response
  • a gas sensor whose output value is below a negative threshold is a gas sensor showing a negative response
  • a positive A gas sensor showing an output value between the threshold value and the negative threshold value is a gas sensor with poor sensitivity.
  • a pattern of magnitude relationship with respect to a predetermined threshold value of the gas type and the output value of each gas sensor for the gas type that is, a threshold determination result pattern.
  • the correspondence relationship between the type of gas sensor showing a positive response and the type of gas sensor showing a negative response and the type of gas sensor having low sensitivity is obtained, and this correspondence relationship is determined in the database (storage unit 5). It is stored as a correspondence relationship between the target gas type and the tendency of the output value of each gas sensor for the gas type.
  • the determination unit 6 performs threshold determination for each output value.
  • the threshold determination is performed based on the output value of each gas sensor when a certain time (30 seconds or 60 seconds) has passed since the output of any gas sensor exceeding the positive threshold. Thereafter, the gas type of the determination target gas is specified by referring to the stored correspondence relationship (threshold determination result pattern) and the threshold determination result for each output value. That is, the gas type whose threshold determination result matches the threshold determination result pattern is specified as the gas type of the determination target gas type.
  • the correspondence table (threshold determination result pattern) for the threshold value for each gas type in the ten gas sensors is as shown in Table 1 below.
  • Max in Table 1 exceeds a positive threshold (that is, when a positive response is shown)
  • Min is below a negative threshold (that is, when a negative response is shown)
  • Norm When showing an output value between a positive threshold and a negative threshold (ie, when the sensitivity is poor), blank means that the output value is irrelevant to specifying the gas type.
  • the column of algorithm determination is the gas type specified by the result of the threshold determination of each gas sensor showing the pattern shown there. When a plurality of gas types are described, it indicates that either one or both of them are included.
  • the threshold value determination result of the input output value indicates an output value that exceeds the positive threshold value for at least the PH 3 sensor, and at least the NH 3 sensor, the O 3 sensor, the HCl sensor, the HF sensor, the H 2 S sensor, and
  • the Cl 2 sensor indicates an output value between a positive threshold value and a negative threshold value (No. 3 in Table 1)
  • the determination unit 6 specifies the gas type of the determination target gas as PH 3. To do.
  • the determination unit 6 specifies the gas type of the determination target gas as H 2 S.
  • the result of threshold determination does not correspond to any pattern of Table 1, it determines with multiple types of gas being contained.
  • FIG. 3 shows the output of each gas sensor when the measurement target gas is measured using the detector 2 having the above ten types of gas sensors.
  • the result of the threshold determination at time T2 PH 3 sensor, E20C sensors, NO sensors, for E20 sensor is determined to exceed the positive threshold value (Max), positive threshold and negative for other sensors It is determined that the output value between the threshold is (Norm). Then, this determination result is checked against the correspondence table in Table 1 to determine whether there is a threshold determination result pattern that matches the determination result.
  • an output value exceeding a positive threshold is shown for at least the PH 3 sensor, and a positive threshold is shown for at least the NH 3 sensor, the O 3 sensor, the HCl sensor, the HF sensor, the H 2 S sensor, and the Cl 2 sensor. No. indicating an output value between the negative threshold value. 3 matches the threshold determination result pattern of 3, it is specified that the gas type of the determination target gas is PH3.
  • the correspondence table (threshold determination result pattern) for the threshold value for each gas type in the five gas sensors is as shown in Table 2 below. become.
  • E20C sensor detection target gas is an organic solvent excluding alcohol, mainly toluene, E20C in Table 1)
  • Max / Norm in Table 2 indicates that the output value exceeds the positive threshold value, or indicates an output value between the positive threshold value and the negative threshold value (that is, indicates an output value equal to or greater than the negative threshold value).
  • Min / Norm indicates that the output value is below the negative threshold value or indicates an output value between the positive threshold value and the negative threshold value (ie, an output value less than the positive threshold value). It means).
  • the threshold value determination result of the input output value indicates an output value that exceeds the positive threshold value for at least the PH 3 sensor, and the positive threshold value and the negative threshold value for the NH 3 sensor, the O 3 sensor, and the HCl sensor.
  • the determination unit 6 sets the gas type of the determination target gas as PH 3 . Identify.
  • an output value between the positive threshold value and the negative threshold value is shown for the NH 3 sensor, an output value less than the positive threshold value is shown for the O 3 sensor, and a positive value is shown for the PH 3 sensor, the HCl sensor, and the E20C sensor.
  • the determination unit 6 specifies the gas type of the determination target gas as H 2 S.
  • the standard of Max / Norm and Min / Norm may be added to the blank portion in Table 1 as in the case of using 5 gas sensors.
  • the means using the threshold judgment requires a gas concentration that can at least output an output exceeding the threshold for judging the gas type.
  • the means using the ratio between the output values uses the threshold judgment. Even if the gas concentration is lower than the concentration required for the determination of the means, the gas type of the determination target gas can be specified as long as the ratio of the output values can be determined.
  • the specific procedure of the gas type based on the ratio between the output values will be described.
  • FIGS. 4 and 5 are graphs showing the output of the Cl 2 sensor, H 2 S sensor and HF sensor for Cl 2 gas at each concentration, and according to FIGS. 4 and 5, the H 2 S sensor for the Cl 2 sensor.
  • the ratio of the output values of the HF sensor is almost the same when the Cl 2 gas concentration is 0.3 ppm and 0.5 ppm. Then, the inventors by the results of experiments, the ratio of the output value of the H 2 S sensor and HF sensor for Cl 2 sensor when the output value of Cl 2 sensor and 100%, H 2 for the output values of the Cl 2 sensor The output value of the S sensor was -50 to -30%, and the output value of the HF sensor was required to be 80 to 100%.
  • the gas type of the determination target gas is Cl 2 gas. That is, if the ratio of the output values between the gas sensors is known, the gas type of the determination target gas can be specified.
  • a specific combination of gas sensors is determined for a gas type to be determined based on the result of an experiment or the like (for example, a gas sensor having high sensitivity to the gas type). Combination), and the correspondence between the ratio of the output value between the gas sensors in the combination and the gas type. Then, in the database (storage unit 5), the specific combination of the gas sensors determined for the gas type to be determined and the ratio of the output values between the gas sensors in the combination for the gas type are determined as the determination target. This is stored as a correspondence relationship between the gas type to be used and the tendency of the output value of each gas sensor with respect to the gas type.
  • the determination unit 6 specifies the gas type of the determination target gas based on the stored correspondence relationship and the ratio of the output values in the combination. To do.
  • the determination unit 6 specifies the gas type based on the output value of each gas sensor when a certain time (30 seconds or 60 seconds) has passed since any output from any gas sensor. . Then, from the output value of each gas sensor after the lapse of a certain time, the ratio between the output values in the combination of gas sensors determined for the gas type is obtained for each gas type to be discriminated. It is sequentially judged whether the ratio matches the ratio between the output values corresponding to the stored gas type (contains within the range), and when there is a match, the gas type of the judgment target gas Is identified as the matching gas species.
  • the output of the Cl 2 sensor, H 2 S sensor and HF sensor is 100% of the output value of the Cl 2 sensor
  • the output value of the H 2 S sensor is ⁇ 50 to ⁇ 30%
  • the output of the HF sensor If the value falls within the range of 80 to 100%, it is specified that the gas type of the determination target gas is Cl 2 gas.
  • the correlation between the output value of the main gas sensor and the concentration of the gas type is also obtained, and the type of the main gas sensor for each gas type, its output value, and the gas type are stored in the database (storage unit 5).
  • the correlation with the density is stored as density calculation information.
  • the output of the gas sensor changes in proportion to the concentration of the target gas, but the output value has a detection limit value called full scale, and the concentration exceeding this detection limit value must be measured. There is a problem that can not be.
  • the detection limit value is easily reached by the high sensitivity. . Therefore, in the gas analysis system 1 according to this embodiment, in addition to the main gas sensor, a sub gas sensor is determined for each gas type to be determined.
  • the correlation between the output value of the sub gas sensor and the concentration of the gas type is also obtained, and the type of the sub gas sensor for each gas type, the output value, and the gas type are stored in the database (storage unit 5).
  • the correlation with the density is further stored as density calculation information.
  • the determination unit 6 calculates the concentration of the gas type using the output value of the sub gas sensor based on the concentration calculation information.
  • 6 to 8 are graphs showing the outputs of the PH 3 sensor (1.0 ppm FS) and the NO sensor (0.5 ppm FS) for the PH 3 gas at each concentration.
  • 1.0 ppmF. S. Means that the concentration of the PH 3 gas is 1.0 ppm when the PH 3 sensor outputs a full scale (100% FS). That is, the concentration of the PH 3 gas is obtained from the output value (% FS) of the PH 3 sensor according to the following equation.
  • PH 3 gas concentration (ppm) PH 3 sensor output / 100 ⁇ 1.0 (ppm) (Formula 1)
  • the PH 3 sensor is 150% F.S. S. Is the detection limit value, and if it exceeds this limit, the output reaches a peak, and the gas concentration cannot be calculated accurately.
  • the concentration of PH 3 gas is 0.3 ppm (FIG. 6) and 1.0 ppm (FIG. 7)
  • the output value does not reach the detection limit value, and the output value is PH 3 gas.
  • the PH 3 gas concentration is 2.0 ppm (FIG. 8)
  • the output value exceeds the detection limit value (150% FS) and reaches a peak.
  • the output value does not reflect the concentration of PH 3 gas.
  • FIG. 9 is a graph showing the relationship between the concentration of PH 3 gas and the output value of each sensor.
  • the output value of the NO sensor is proportional to the concentration of PH 3 gas to some extent. Recognize. Then, when an approximate straight line is drawn for the output value of the NO sensor, the slope becomes 21.21. Considering that the slope of the output value of the PH 3 sensor is about 100, when detecting PH 3 gas of the same concentration, the output value of the PH 3 sensor is 100/21.
  • PH 3 gas concentration (ppm) NO sensor output / 21.21 ⁇ 1.0 (ppm) (Formula 2)
  • the concentration of the PH 3 gas can be calculated from the output value of the NO sensor based on the above formula 2. Therefore, the main gas sensor in calculating the PH 3 gas concentration is a PH 3 sensor, the NO sensor is a sub gas sensor thereof, and the PH 3 gas concentration, the PH 3 sensor and the NO 3 of the above formulas 1 and 2 are used.
  • the determination unit 6 to the output value of PH 3 sensor reaches the detection limit value PH 3 the output of the sensor
  • the concentration of PH 3 gas is calculated from the value based on the above equation 1, and when the output value of the PH 3 sensor reaches the detection limit value, the gas concentration is calculated based on the above equation 2 from the output value of the NO sensor. become.
  • a photoionization sensor is a sensor that reacts to many gases, mainly organic solvents, and has an advantage that concentration analysis of various gas types can be performed with a single sensor.
  • concentration analysis of various gas types can be performed with a single sensor.
  • the gas type cannot be determined with high accuracy even if it is possible to narrow the gas type roughly from the output value.
  • the inventor concerned the gas type from the tendency of the output value from each gas sensor of these gas sensors in the same way as the above. It was found that it is possible to specify.
  • the use of a PID sensor makes it possible to narrow down the gas type that can be detected by the PID sensor when there is an output from the PID sensor. When there is no output, it is possible to narrow down that the gas type cannot be detected by at least the PID sensor). Then, by narrowing down the gas types, the number of gas types that must be distinguished is reduced, so that it is easy to obtain the correspondence between the tendency of output values from a plurality of gas sensors and the gas types. As a result, even for a gas sensor that does not use a gas type that can be detected by the PID sensor as a detection target gas, the gas type can be identified from the tendency of output values from the gas sensors of these gas sensors.
  • the detector 2 includes at least one PID sensor.
  • 10 ppmF. S. An isobutylene PID sensor is used.
  • a correspondence relationship between a gas type that can be detected by the PID sensor and a tendency of an output value of a predetermined gas sensor other than the PID sensor is obtained and stored in the database (storage unit 5).
  • the determination part 6 specifies the gas type of determination object gas based on this correspondence and the tendency of the output value in a predetermined gas sensor, when there exists an output of a PID sensor.
  • the database stores the correlation between the concentration of the gas type to be determined and the output value of the PID sensor.
  • the concentration of the gas species is calculated.
  • a coefficient is determined for each gas type, and the concentration of the gas type is calculated by multiplying the coefficient by the output value. Specifically, 10 ppmF. S.
  • the concentration of the gas species is obtained by the following equation.
  • the tendency of the output value of a predetermined gas sensor other than the PID sensor associated with the gas type that can be detected by the PID sensor includes the ratio of the output values of the E20 sensor and the E20C sensor with respect to the gas type.
  • 10 and 11 show the relationship between the concentration of the gas species that can be detected by the PID sensor and the output values of the E20 sensor and the E20C sensor.
  • FIGS. 10 and 11 there is a large difference in sensitivity between the E20 sensor and the E20C sensor depending on whether the target gas is alcohol or alcohol, and the ratio of the output values of the E20 sensor and the E20C sensor is different. .
  • an output as shown in FIG. 12 is obtained (the first half was measured with a toluene concentration of 1 ppm and the second half with a toluene concentration of 5 ppm).
  • output is obtained from the PID sensor, and output is also obtained from the E20 sensor and the E20C sensor.
  • the ratio of the output values of the E20 sensor and the E20C sensor is 30 to 40% when the E20C sensor is 100%.
  • an output as shown in FIG. 13 is obtained.
  • output is obtained from the PID sensor, and output is also obtained from the E20 sensor and the E20C sensor.
  • the ratio of the output values of the E20 sensor and the E20C sensor is 40 to 50% when the E20C sensor is 100%.
  • the ratio of the output values of the E20 sensor and the E20C sensor differs depending on the gas type. Using this, when the output value of the E20C sensor is 30% to 40% when the output value of the E20C sensor is 100%, the gas type is toluene, and the output value of the E20C sensor is 100%.
  • the output value of the E20 sensor at this time is 40 to 50%, it can be seen that the gas type is acetone.
  • the determination unit 6 can determine the gas type. Further, the determination unit 6 can calculate the concentration of the gas type from the PID sensor output value using the coefficient for the gas type stored in the database based on the above equation 3.
  • the gas type is specified based on threshold determination.
  • the specification of the gas type based on the ratio between the output values has been described as an example.
  • the embodiment of the present invention is not limited to this, and the gas type can be specified by utilizing the correspondence relationship between the gas type to be determined and the tendency of the output value of each gas sensor with respect to the gas type. Anything may be used.
  • the determination unit 6 outputs (or exceeds the positive threshold value) in any gas sensor (or An example has been described in which the determination is made based on the output value of each gas sensor when a certain time (30 seconds or 60 seconds) has passed since the output.
  • the embodiment of the present invention is not limited to this. For example, during the period from when any gas sensor has an output exceeding the positive threshold until a certain time thereafter, the same threshold judgment or ratio between the output values is obtained from the output of each gas sensor at that time. It may be possible to identify the gas type early by specifying the gas type based on the result and indicating the result as the predicted gas type. Further, even after the determination is made after the elapse of a certain time, the determination may be performed again at predetermined time intervals, and the result may be updated to improve the accuracy of specifying the gas type.
  • the ratio of the output values of the E20 sensor and the E20C sensor with respect to the gas type is used as the tendency of the output value of a predetermined gas sensor other than the PID sensor.
  • the embodiment of the present invention is not limited to this, and the tendency of the output value of a predetermined gas sensor other than the PID sensor is any as long as it is associated with a gas type that can be detected by the PID sensor. May be.
  • the present invention can be used to specify a gas type of a determination target gas using a plurality of types of gas sensors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

A gas analysis system is provided with a detection unit provided with a plurality of types of gas sensors, an input unit into which is inputted the values outputted by each of the gas sensors with regard to the gas to be assessed, a storage unit for storing the correlation between the types of gas to be assessed and the trends in the values outputted from each of the gas sensors in regard to the gas type, and an assessment unit for specifying the type of assessed gas on the basis of the stored correlations and the trends for the inputted output values.

Description

ガス分析システム、及び、ガス分析方法Gas analysis system and gas analysis method
 本発明は、複数種のガスセンサを用いて判定対象ガスのガス種を特定するためのガス分析システム、及び、ガス分析方法に関する。 The present invention relates to a gas analysis system and a gas analysis method for specifying a gas type of a determination target gas using a plurality of types of gas sensors.
 判定対象ガスに含まれるガス種を特定しようとする場合、その検知対象ガス種が異なる複数種のガスセンサを用いてその判定対象ガスの測定を行い、個々のガスセンサの出力を個別に判定して、所定値以上の出力のあったガスセンサの対象ガスを判定対象ガスに含まれるガス種として特定する方法が考えられる。 When trying to specify the gas type contained in the determination target gas, measure the determination target gas using a plurality of types of gas sensors with different detection target gas types, individually determine the output of each gas sensor, A method is conceivable in which the target gas of the gas sensor having an output of a predetermined value or more is specified as the gas type included in the determination target gas.
 この場合、特定したいガス種の数だけガスセンサを用いる必要があり、その分コストと設置スペースが必要となる。また、特定のガス種を検知対象ガスとするガスセンサであっても、他のガス種にもある程度の出力は生じるものであるため、ガス種によってはガスセンサの干渉性のため複数のガスセンサから所定値以上の出力を生じる場合もあり、確実にガス種を特定しがたい状況も存在する。 In this case, it is necessary to use as many gas sensors as the number of gas types to be specified, which requires cost and installation space. Even if a gas sensor uses a specific gas type as a detection target gas, a certain amount of output is generated in other gas types, so depending on the gas type, a predetermined value is obtained from a plurality of gas sensors due to the coherence of the gas sensor. In some cases, the above output may be generated, and it is difficult to reliably specify the gas type.
 判定対象ガスのガス種を特定するために要するガスセンサの数を削減可能で、且つ、確度高くガス種を特定できるガス分析システム及びガス分析方法が望まれる。 A gas analysis system and a gas analysis method that can reduce the number of gas sensors required to specify the gas type of the determination target gas and can specify the gas type with high accuracy are desired.
 本発明に係るガス分析システムは、
 複数種のガスセンサを備える検出部と、
 判定対象ガスに対する各前記ガスセンサの出力値が入力される入力部と、
 判定対象とするガス種と当該ガス種に対する各前記ガスセンサの出力値の傾向との対応関係をガス種ごとに記憶してある記憶部と、
 記憶してある前記対応関係と前記入力された各前記出力値の傾向とに基づいて前記判定対象ガスのガス種を特定する判定部と、を備える。
A gas analysis system according to the present invention includes:
A detection unit comprising a plurality of types of gas sensors;
An input unit to which an output value of each gas sensor for the determination target gas is input;
A storage unit storing a correspondence relationship between a gas type to be determined and a tendency of an output value of each gas sensor with respect to the gas type for each gas type;
A determination unit that specifies a gas type of the determination target gas based on the stored correspondence relationship and the tendency of the input output values.
 発明者は、判定しようとする各ガス種と出力値間の大小関係パターンやどのガスセンサにどの程度の出力があるかなどの各ガスセンサからの出力値の傾向とに1対1の対応関係があることを見出した。そこで、この構成によれば、発明者が見出した対応関係を採用し、判定対象とするガス種と各ガスセンサからの出力値の傾向との対応関係をガス種ごとに求めておき、個々の出力値を個別に判定するだけでなく、個々の出力値を組み合わせてその傾向を予め求めた対応関係と参照することにより判定対象ガスに含まれるガス種を特定できる。これにより、たとえ、複数のガスセンサから所定値以上の出力があったとしても、確度高くガス種を特定できる。 The inventor has a one-to-one correspondence between the magnitude relationship pattern between each gas type to be determined and the output value, and the tendency of the output value from each gas sensor, such as which gas sensor has what output. I found out. Therefore, according to this configuration, the correspondence found by the inventor is adopted, the correspondence between the gas type to be determined and the tendency of the output value from each gas sensor is obtained for each gas type, and the individual output In addition to determining values individually, the gas types included in the determination target gas can be specified by combining individual output values and referring to the corresponding relationship obtained in advance. Thereby, even if there is an output of a predetermined value or more from a plurality of gas sensors, the gas type can be specified with high accuracy.
 さらに、検出部に備えるガスセンサのいずれもその検知対象ガスとしていないガス種であっても、そのガス種と各ガスセンサからの出力値の傾向との対応関係を求めておけば、検出部に備えるガスセンサの検知対象ガス以外のガス種についてもガス種の特定が可能となる。これにより、検出部に備えるガスセンサの種類以上のガス種の特定が可能となり、判定しようとするガス種と同じ数だけガスセンサを用いるのに比べ、必要なガスセンサの数を削減することも可能となる。 Furthermore, even if any of the gas sensors provided in the detection unit is a gas type that is not the detection target gas, the gas sensor provided in the detection unit can be obtained by obtaining the correspondence between the gas type and the tendency of the output value from each gas sensor. Gas types other than the detection target gas can be specified. Thereby, it is possible to specify a gas type more than the type of gas sensor provided in the detection unit, and it is possible to reduce the number of necessary gas sensors compared to using the same number of gas sensors as the type of gas to be determined. .
 以下、本発明に係るガス分析システムの好適な態様について説明する。但し、以下に記載する好適な態様例によって、本発明の範囲が限定される訳ではない。 Hereinafter, preferred embodiments of the gas analysis system according to the present invention will be described. However, the scope of the present invention is not limited by the preferred embodiments described below.
 1つの態様として、前記対応関係は、判定対象とするガス種ごとの、当該ガス種と当該ガス種についての各前記ガスセンサの出力値の所定の閾値に対する大小関係のパターンとの対応関係を含み、前記判定部は、各前記出力値について前記閾値を超えているか否かの閾値判定を行い、前記対応関係と各前記出力値についての前記閾値判定の結果とに基づいて前記判定対象ガスのガス種を特定すると好適である。 As one aspect, the correspondence includes, for each gas type to be determined, a correspondence between the gas type and a pattern of magnitude relationship with respect to a predetermined threshold value of the output value of each gas sensor for the gas type, The determination unit performs a threshold determination as to whether or not the output value exceeds the threshold, and based on the correspondence and the result of the threshold determination for each output value, the gas type of the determination target gas Is preferably specified.
 この構成によれば、各出力値について細かく数値範囲等を設定するのではなく、各出力値が閾値を超えているか否かという単純な傾向に基づいて判定を行うから、容易にガス種の特定を行うことができる。 According to this configuration, instead of finely setting a numerical range or the like for each output value, the determination is made based on a simple tendency of whether each output value exceeds the threshold value. It can be performed.
 1つの態様として、前記対応関係は、判定対象とするガス種について定めた前記ガスセンサの組み合わせと、当該ガス種に対する前記組み合わせの中の各前記ガスセンサ間の前記出力値の比率と、を含み、前記判定部は、前記対応関係と前記組み合わせの中の前記出力値間の比率とに基づいて前記判定対象ガスのガス種を特定すると好適である。 As one aspect, the correspondence includes a combination of the gas sensors determined for a gas type to be determined, and a ratio of the output values between the gas sensors in the combination for the gas type, The determination unit preferably specifies the gas type of the determination target gas based on the correspondence relationship and the ratio between the output values in the combination.
 上記した閾値判定を用いた手段では、ガス種の判定のために、少なくとも閾値を超える程度の出力、言い換えれば、ある程度のガス濃度が必要となるところ、この構成によれば、上記した閾値判定を用いた手段の判定に必要な濃度を下回るガス濃度であっても、特定のガスセンサの組み合わせの中の前記出力値の比率さえ判別できれば、判定対象ガスのガス種を特定することができる。これにより、一層確度高くガス種を特定できる。 In the means using the threshold determination described above, an output that exceeds at least the threshold value, in other words, a certain gas concentration is required for determining the gas type. According to this configuration, the threshold determination described above is performed. Even if the gas concentration is lower than the concentration necessary for the determination of the means used, the gas type of the determination target gas can be specified as long as the ratio of the output values in the combination of specific gas sensors can be determined. Thereby, the gas species can be specified with higher accuracy.
 1つの態様として、前記記憶部には、判定対象とするガス種ごとに、濃度を算出するときの基準とする主のガスセンサの種類及びこの主のガスセンサの前記出力値と当該ガス種の濃度との相関関係を含む濃度算出情報を記憶してあり、前記判定部は、前記判定対象ガスのガス種を特定したときに、前記濃度算出情報に基づいて、前記主のガスセンサの前記出力値を用いて前記ガス種の濃度を算出すると好適である。 As one aspect, in the storage unit, for each gas type to be determined, the type of the main gas sensor used as a reference when calculating the concentration, the output value of the main gas sensor, and the concentration of the gas type The concentration calculation information including the correlation is stored, and the determination unit uses the output value of the main gas sensor based on the concentration calculation information when the gas type of the determination target gas is specified. It is preferable to calculate the concentration of the gas species.
 この構成によれば、予め濃度の算出の基準とする主のガスセンサを定めておき、ガス種の特定だけでなく、その濃度も精度よく算出できるから、より有効なガス分析を行うことができる。 According to this configuration, since the main gas sensor used as a reference for calculating the concentration is determined in advance and not only the gas type is specified, but also the concentration can be calculated with high accuracy, more effective gas analysis can be performed.
 1つの態様として、前記記憶部には、判定対象とするガス種ごとに定めたサブのガスセンサの種類及びそのサブのガスセンサの前記出力値と当該ガス種の濃度との相関関係を含み、前記判定部は、前記主のガスセンサの前記出力値が検出限界値に達していたときは、前記濃度算出情報に基づいて、前記サブのガスセンサの前記出力値を用いて前記ガス種の濃度を算出すると好適である。 As one aspect, the storage unit includes the type of sub gas sensor determined for each gas type to be determined and the correlation between the output value of the sub gas sensor and the concentration of the gas type, and the determination Preferably, when the output value of the main gas sensor has reached a detection limit value, the concentration of the gas species is calculated using the output value of the sub gas sensor based on the concentration calculation information. It is.
 ガスセンサは対象ガスの濃度に比例してその出力も変化するが、その出力値にはフルスケールと呼ばれる検出限界値があり、この検出限界値を超える以上の濃度を測定することはできないという問題がある。そこで、この構成によれば、主のガスセンサと同じく対象ガスの濃度に応答してその出力が変化するガスセンサ等をサブのガスセンサとしておき、主のガスセンサが検出限界値を超えたときは、サブのガスセンサの出力値に基づいてガス種の濃度を算出するから、上記問題が生じるのを効果的に抑制することができる。 The output of a gas sensor changes in proportion to the concentration of the target gas, but the output value has a detection limit value called full scale, and there is a problem that it is not possible to measure a concentration exceeding this detection limit value. is there. Therefore, according to this configuration, a gas sensor or the like whose output changes in response to the concentration of the target gas as the main gas sensor is set as a sub gas sensor, and when the main gas sensor exceeds the detection limit value, Since the concentration of the gas species is calculated based on the output value of the gas sensor, it is possible to effectively suppress the occurrence of the above problem.
 1つの態様として、前記検出部は、少なくとも一つの光イオン化センサを備え、前記対応関係は、前記光イオン化センサが検知可能なガス種と前記光イオン化センサ以外の所定の前記ガスセンサの前記出力値の傾向との関係を含み、前記判定部は、前記光イオン化センサの出力があったときに、前記対応関係と所定の前記ガスセンサにおける前記出力値の傾向とに基づいて前記判定対象ガスのガス種を特定すると好適である。 As one aspect, the detection unit includes at least one photoionization sensor, and the correspondence relationship includes a gas type that can be detected by the photoionization sensor and a predetermined output value of the gas sensor other than the photoionization sensor. The determination unit determines the gas type of the determination target gas based on the correspondence and the tendency of the output value of the predetermined gas sensor when the photoionization sensor outputs. It is preferable to specify.
 光イオン化センサ(PIDセンサ)は、有機溶剤を中心に多くのガスに反応するセンサであるが、その出力値からおおまかなガス種の絞り込みは可能であっても、その出力値から確度高くガス種の判定をすることはできない。これに対し、発明者は、光イオン化センサが検知可能なガス種を検知対象ガスとしないガスセンサであっても、上記と同様の要領でこれらのガスセンサの各ガスセンサからの出力値の傾向から当該ガス種の特定が可能であることを見出した。そこで、この構成によれば、光イオン化センサが検知可能なガス種と前記光イオン化センサ以外の所定の前記ガスセンサの前記出力値の傾向との対応関係を求めておき、この対応関係に基づいて、光イオン化センサが検知しているガス種を特定することができる。このように、光イオン化センサのみ、及び、光イオン化センサ以外のガスセンサのみでは特定できないガス種を、光イオン化センサと光イオン化センサ以外のガスセンサとを組み合わせることによって特定することが可能となる。これにより、判定可能なガス種を増やすことができ、また、これは様々なガス種の特定に必要なガスセンサの数の削減にもなるという利点がある。 A photoionization sensor (PID sensor) is a sensor that reacts to many gases, mainly organic solvents. Even if it is possible to narrow down roughly the gas type from its output value, the gas type is highly accurate from its output value. It cannot be judged. On the other hand, even if the gas sensor does not use a gas type that can be detected by the photoionization sensor as a detection target gas, the inventor considers the gas from the tendency of the output value from each gas sensor in the same manner as described above. We found that species can be identified. Therefore, according to this configuration, a correspondence relationship between a gas type that can be detected by the photoionization sensor and a tendency of the output value of the predetermined gas sensor other than the photoionization sensor is obtained, and based on this correspondence relationship, The gas type detected by the photoionization sensor can be specified. As described above, it is possible to specify a gas type that cannot be specified only by a photoionization sensor and only by a gas sensor other than the photoionization sensor, by combining the photoionization sensor and a gas sensor other than the photoionization sensor. As a result, the number of gas types that can be determined can be increased, and this has the advantage of reducing the number of gas sensors required to identify various gas types.
 1つの態様として、前記記憶部には、判定対象とするガス種の濃度と前記光イオン化センサの前記出力値との相関関係を記憶してあり、前記判定部は、前記判定対象ガスのガス種を特定したとき、前記相関関係に基づいて、前記光イオン化センサの出力値を用いて前記ガス種の濃度を算出すると好適である。 As one aspect, the storage unit stores a correlation between a concentration of a gas type to be determined and the output value of the photoionization sensor, and the determination unit has a gas type of the determination target gas. It is preferable to calculate the concentration of the gas species using the output value of the photoionization sensor based on the correlation.
 この構成によれば、特定したガス種の濃度を光イオン化センサの出力から容易に算出することができる。 According to this configuration, the concentration of the specified gas type can be easily calculated from the output of the photoionization sensor.
 本発明に係るガス分析方法は、
 複数種のガスセンサを用いて判定対象ガスの測定を行うステップと、
 判定対象とするガス種と当該ガス種に対する各前記ガスセンサの出力値の傾向との対応関係と各前記ガスセンサの前記出力値の傾向とに基づいて前記判定対象ガスのガス種を特定するステップと、を備える。
The gas analysis method according to the present invention includes:
Measuring the determination target gas using a plurality of types of gas sensors; and
Identifying the gas type of the determination target gas based on the correspondence between the gas type to be determined and the tendency of the output value of each gas sensor with respect to the gas type and the tendency of the output value of each gas sensor; Is provided.
ガス分析システムの概略構成図Schematic configuration diagram of gas analysis system 分析器のブロック図Analyzer block diagram PHガスに対する各ガスセンサからの出力の時間変化を示すグラフGraph showing the time change of the output from the gas sensor for PH 3 gas 0.3ppmのClガスに対するClセンサ、HSセンサ及びHFセンサの出力を示すグラフGraph showing output of Cl 2 sensor, H 2 S sensor and HF sensor with respect to 0.3 ppm of Cl 2 gas 0.5ppmのClガスに対するClセンサ、HSセンサ及びHFセンサの出力を示すグラフGraph showing output of Cl 2 sensor, H 2 S sensor and HF sensor with respect to 0.5 ppm of Cl 2 gas 0.3ppmのPHガスに対するPHセンサ及びNOセンサの出力を示すグラフGraph showing the output of the PH 3 sensor and NO sensor for PH 3 gas 0.3ppm 1.0ppmのPHガスに対するPHセンサ及びNOセンサの出力を示すグラフGraph showing the output of PH 3 sensor and NO sensor for 1.0 ppm PH 3 gas 2.0ppmのPHガスに対するPHセンサ及びNOセンサの出力を示すグラフGraph showing output of PH 3 sensor and NO sensor for 2.0 ppm PH 3 gas PHガスの濃度とPHセンサ及びNOセンサの出力との関係を示すグラフPH 3 a graph showing the relationship between the output of the gas concentration and PH 3 sensor and NO sensor 有機溶剤ガス種の濃度とE20センサの出力値との関係を示すグラフGraph showing the relationship between the concentration of organic solvent gas species and the output value of the E20 sensor 有機溶剤ガス種の濃度とE20Cセンサの出力値との関係を示すグラフGraph showing the relationship between the concentration of organic solvent gas species and the output value of the E20C sensor トルエンに対するPIDセンサ、E20センサ及びE20Cセンサの出力値との関係を示すグラフThe graph which shows the relationship with the output value of the PID sensor with respect to toluene, an E20 sensor, and an E20C sensor アセトンに対するPIDセンサ、E20センサ及びE20Cセンサの出力値との関係を示すグラフThe graph which shows the relationship with the output value of a PID sensor with respect to acetone, an E20 sensor, and an E20C sensor
 本発明に係るガス分析システム及び分析方法について、図面を参照して説明する。本実施形態に係るガス分析システム1は、複数種のガスセンサを備える検出部2と、判定対象ガスに対する各前記ガスセンサの出力値が入力される入力部4と、判定対象とするガス種と当該ガス種に対する各前記ガスセンサの出力値の傾向との対応関係をガス種ごとに記憶してある記憶部5と、記憶してある前記対応関係と前記入力された各前記出力値の傾向とに基づいて前記判定対象ガスのガス種を特定する判定部6と、を備える。これにより、判定対象ガスのガス種を特定するために要するガスセンサの数を削減可能で、且つ、確度高くガス種を特定できる。以下、本実施形態に係るガス分析システム1について、詳細に説明する。 The gas analysis system and analysis method according to the present invention will be described with reference to the drawings. The gas analysis system 1 according to the present embodiment includes a detection unit 2 including a plurality of types of gas sensors, an input unit 4 to which an output value of each gas sensor for a determination target gas is input, a gas type to be determined and the gas Based on the storage unit 5 storing the correspondence relationship between the output value of each gas sensor with respect to the species for each gas species, the stored correspondence relationship, and the tendency of the input output values. And a determination unit 6 that specifies a gas type of the determination target gas. Thereby, the number of gas sensors required to specify the gas type of the determination target gas can be reduced, and the gas type can be specified with high accuracy. Hereinafter, the gas analysis system 1 according to the present embodiment will be described in detail.
 図1は、本実施形態に係るガス分析システム1の一例を示す。ガス分析システム1は、検出器2と分析器3とを備えている。検出器2は可搬式であり、後述する複数種のガスセンサ(図示は省略する)を備えたセンサアレイである。また、検出器2は各ガスセンサからの出力信号σを分析器3に送信可能な通信部(図示しない)を有する。 FIG. 1 shows an example of a gas analysis system 1 according to the present embodiment. The gas analysis system 1 includes a detector 2 and an analyzer 3. The detector 2 is portable and is a sensor array provided with a plurality of types of gas sensors (not shown) to be described later. The detector 2 includes a communication unit (not shown) that can transmit the output signal σ from each gas sensor to the analyzer 3.
 分析器3は本実施形態ではPCとしてあり、図2に示すように、入力部4、記憶部5、及び判定部6とを備える。入力部4には、検出器3からの出力信号σが入力される。つまり、検出器2が判定対象とするガスに対する各ガスセンサの出力値が入力されることになる。そして、記憶部5には後述する判定を行うためのガス種と各ガスセンサの出力値との関係等を保存したデータベースや、分析部6がガス種の特定等を行うためのアルゴリズムを実現する分析用プログラムを格納してある。分析部6は、記憶部5に格納されている分析用プログラムに従って、データベースに保存された各種関係を利用して、検出器2からの出力信号に基づき判定対象ガスのガス種を特定する。 The analyzer 3 is a PC in this embodiment, and includes an input unit 4, a storage unit 5, and a determination unit 6, as shown in FIG. An output signal σ from the detector 3 is input to the input unit 4. That is, the output value of each gas sensor for the gas to be detected by the detector 2 is input. The storage unit 5 stores a database that stores the relationship between the gas types for determination described later and the output value of each gas sensor, and the analysis that realizes an algorithm for the analysis unit 6 to specify the gas types. Program is stored. The analysis unit 6 specifies the gas type of the determination target gas based on the output signal from the detector 2 using various relationships stored in the database according to the analysis program stored in the storage unit 5.
 つまり、ガス分析システム1では、検出器2の備える複数種のガスセンサからの出力値が分析器3の入力部4に入力され、記憶部5に保存してあるガス種と各ガスセンサの出力値との関係等に基づいて、入力された各出力値から判定部6が判定対象ガスのガス種を特定するものである。なお、図示したガス分析システム1はあくまでも例示であり、同様の手順で判定対象ガスのガス種を特定できるものであれば特に限定されない。例えば、検出器2は無線通信により出力信号を分析器3に入力可能でなくとも、何らかの記録媒体を介してや有線通信により分析器3にガスセンサの出力信号を入力するものであってもよく、また、可搬式でなくとも据置式のものであってもよい。また、分析器3もPCに限定されず、少なくとも入力部4、記憶部5、分析部6の有する機能と同等の機能を備えるものであれば特に限定されない。また、検出器2と分析器3とが一体となった装置から構成されていても良い。 That is, in the gas analysis system 1, output values from a plurality of types of gas sensors provided in the detector 2 are input to the input unit 4 of the analyzer 3, and the gas types stored in the storage unit 5 and the output values of each gas sensor The determination unit 6 identifies the gas type of the determination target gas from the input output values based on the above relationship. The illustrated gas analysis system 1 is merely an example, and is not particularly limited as long as the gas type of the determination target gas can be specified by the same procedure. For example, the detector 2 may not be able to input an output signal to the analyzer 3 by wireless communication, but may input the output signal of the gas sensor to the analyzer 3 via some recording medium or by wired communication. Moreover, it may be a stationary type instead of a portable type. The analyzer 3 is not limited to a PC, and is not particularly limited as long as it has at least functions equivalent to those of the input unit 4, the storage unit 5, and the analysis unit 6. Moreover, you may be comprised from the apparatus with which the detector 2 and the analyzer 3 were united.
 本実施形態に係るガス分析システム1は、判定対象とするガス種と当該ガス種に対する各ガスセンサの出力値の傾向との対応関係を利用して、この対応関係と各ガスセンサからの出力値の示す傾向とに基づいて判定対象ガスのガス種を特定することを特徴とする。そのために、データベース(記憶部5)には、判定対象とするガス種と当該ガス種に対する各ガスセンサの出力値の傾向との対応関係をガス種ごとに記憶してあり、また、判定部6はデータベースに記憶してある対応関係と入力部4に入力された各出力値の傾向とを参照することにより判定対象ガスのガス種を特定するように構成してある(より具体的には以下に示す手順で判定を行うように分析用プログラムを作成してある)。 The gas analysis system 1 according to the present embodiment uses the correspondence between the gas type to be determined and the tendency of the output value of each gas sensor with respect to the gas type to indicate the correspondence and the output value from each gas sensor. The gas type of the determination target gas is specified based on the tendency. For this purpose, the database (storage unit 5) stores the correspondence relationship between the gas type to be determined and the tendency of the output value of each gas sensor with respect to the gas type for each gas type. The gas type of the determination target gas is specified by referring to the correspondence relationship stored in the database and the tendency of each output value input to the input unit 4 (more specifically, below). The analysis program is created so that the judgment is made according to the procedure shown).
 ここで、各ガスセンサの出力値の傾向としては、出力値が正の値か負の値か、又はほぼ0であるかといった当該ガス種に対する各ガスセンサの応答の傾向や、どのガスセンサの出力値が予め定めた閾値を上回っているか(又は下回っているか)の閾値判定をしたときの各出力値の閾値判定の傾向、どのガスセンサが最も感度が高いかや、最も検出感度が高いガスセンサの出力値に対する他のガスセンサの出力値の比率、各ガスセンサの出力の時間変化の傾向(応答波形がどのように立ち上がるかなど)等が挙げられる。そして、これらの出力値の傾向を判定対象のガス種と1対1に対応付けたものを対応関係としてデータベースに記憶することにより、判定部6はこの対応関係と入力部4に入力された各出力値の傾向とを参照することによって判定対象ガスのガス種を特定することが可能となる。以下ではまず、判定対象とするガス種と当該ガス種に対する各ガスセンサの出力値の傾向との対応関係を利用したガス種の特定方法の一例として、各出力値の閾値判定の傾向に基づきガス種の特定を行う手順について説明する。 Here, as the tendency of the output value of each gas sensor, the tendency of the response of each gas sensor to the gas type, such as whether the output value is a positive value, a negative value, or almost zero, and the output value of which gas sensor. Trend of threshold judgment of each output value when threshold judgment of whether it exceeds (or falls below) a predetermined threshold, which gas sensor has the highest sensitivity, and the output value of the gas sensor with the highest detection sensitivity The ratio of the output values of the other gas sensors, the tendency of the output of each gas sensor to change with time (how the response waveform rises, etc.) and the like can be mentioned. Then, by storing one-to-one correspondence of the tendency of the output values with the gas type to be determined in the database as a correspondence relationship, the determination unit 6 can input the correspondence relationship and each input to the input unit 4. The gas type of the determination target gas can be specified by referring to the tendency of the output value. In the following, first, as an example of a gas type identification method using the correspondence relationship between the gas type to be determined and the tendency of the output value of each gas sensor with respect to the gas type, the gas type based on the tendency of threshold determination of each output value The procedure for specifying the will be described.
〈閾値判定に基づくガス種の特定〉
 あるガス種について、正の応答(出力値が正)を示すガスセンサ、負の応答(出力値が負)を示すガスセンサ、感度の乏しい(出力値の絶対値がある値以下)ガスセンサの種類は決まっている。つまり、ガス種ごとに、正の応答を示すガスセンサの種類と負の応答を示すガスセンサの種類と感度に乏しいガスセンサの種類との組み合わせは決まっている。そのため、あるガス種Aについて正の応答を示すとされているガスセンサの出力値のみがある一定の値を上回っており、あるガス種Aについて負の応答を示すとされているガスセンサの出力値のみがある一定の値を下回っており、当該ガス種Aについて感度がないとされている他のガスセンサについては出力値が0付近の場合、検出器2が測定している判定対象ガスのガス種はガス種Aであると特定することが可能である。そこで、本実施形態のガス分析システム1では、判定部6に検出器2からの各出力値について予め定めた正の閾値及び負の閾値(例えばフルスケールの25%)を超えているか否かの閾値判定を行わせる。閾値判定の結果に応じて、出力値が正の閾値を超えているガスセンサを正の応答を示すガスセンサとし、出力値が負の閾値を下回っているガスセンサを負の応答を示すガスセンサとし、正の閾値と負の閾値との間の出力値を示すガスセンサを感度に乏しいガスセンサとする。これにより、正の応答を示すガスセンサの種類と負の応答を示すガスセンサの種類と感度に乏しいガスセンサの種類との組み合わせを得ることができ、その組み合わせに対応するガス種を特定することとしている。
<Identification of gas type based on threshold judgment>
For a certain gas type, the type of gas sensor that shows a positive response (output value is positive), a gas sensor that shows a negative response (output value is negative), or a gas sensor that has poor sensitivity (the absolute value of the output value is less than a certain value) is determined. ing. That is, for each gas type, a combination of a gas sensor type showing a positive response, a gas sensor type showing a negative response, and a gas sensor type having low sensitivity is determined. Therefore, only the output value of the gas sensor that is supposed to show a positive response for a certain gas type A exceeds a certain value, and only the output value of the gas sensor that is said to show a negative response for a certain gas type A When the output value is near 0 for other gas sensors that are less than a certain value and are not sensitive to the gas type A, the gas type of the determination target gas measured by the detector 2 is It is possible to specify that the gas type is A. Therefore, in the gas analysis system 1 of the present embodiment, whether or not the determination unit 6 exceeds the positive threshold value and the negative threshold value (for example, 25% of full scale) determined in advance for each output value from the detector 2. Threshold judgment is performed. Depending on the result of the threshold determination, a gas sensor whose output value exceeds a positive threshold is a gas sensor showing a positive response, a gas sensor whose output value is below a negative threshold is a gas sensor showing a negative response, and a positive A gas sensor showing an output value between the threshold value and the negative threshold value is a gas sensor with poor sensitivity. Thereby, the combination of the kind of gas sensor which shows a positive response, the kind of gas sensor which shows a negative response, and the kind of gas sensor with poor sensitivity can be obtained, and the gas type corresponding to the combination is specified.
 具体的には、まず、判定対象とするガス種ごとの、当該ガス種と当該ガス種についての各前記ガスセンサの出力値の所定の閾値に対する大小関係のパターン(つまり、閾値判定結果のパターンであり、正の応答を示すガスセンサの種類と負の応答を示すガスセンサの種類と感度に乏しいガスセンサの種類との組み合わせ)との対応関係を求め、データベース(記憶部5)に、この対応関係を、判定対象とするガス種と当該ガス種に対する各ガスセンサの出力値の傾向との対応関係として記憶する。そして、検出器2から出力信号σの入力があったときは、判定部6は各出力値について閾値判定を行う。例えば、閾値判定は、何れかのガスセンサで正の閾値を超える出力があったときからその後一定時間(30秒や60秒)経過したときの各ガスセンサの出力値に基づいて行う。その後、記憶してある対応関係(閾値判定結果のパターン)と各出力値についての閾値判定の結果とを参照することにより判定対象ガスのガス種を特定する。つまり、閾値判定の結果とその閾値判定結果のパターンが一致するガス種を判定対象ガス種のガス種と特定する。 Specifically, for each gas type to be determined, a pattern of magnitude relationship with respect to a predetermined threshold value of the gas type and the output value of each gas sensor for the gas type (that is, a threshold determination result pattern). The correspondence relationship between the type of gas sensor showing a positive response and the type of gas sensor showing a negative response and the type of gas sensor having low sensitivity is obtained, and this correspondence relationship is determined in the database (storage unit 5). It is stored as a correspondence relationship between the target gas type and the tendency of the output value of each gas sensor for the gas type. When the output signal σ is input from the detector 2, the determination unit 6 performs threshold determination for each output value. For example, the threshold determination is performed based on the output value of each gas sensor when a certain time (30 seconds or 60 seconds) has passed since the output of any gas sensor exceeding the positive threshold. Thereafter, the gas type of the determination target gas is specified by referring to the stored correspondence relationship (threshold determination result pattern) and the threshold determination result for each output value. That is, the gas type whose threshold determination result matches the threshold determination result pattern is specified as the gas type of the determination target gas type.
 例えば、検出器2が、以下の10個のガスセンサを備えている場合、その10個のガスセンサにおけるガス種ごとの閾値に対する対応関係表(閾値判定結果パターン)は、次の表1のようになる。
〔ガスセンサの種類〕
・NHセンサ(検知対象ガスがNH、表1におけるNH
・Oセンサ(検知対象ガスがO、表1におけるO
・PHセンサ(検知対象ガスがPH、表1におけるPH
・HClセンサ(検知対象ガスがHCl、表1におけるHCl)
・E20Cセンサ(検知対象ガスがトルエンを主としたアルコール等を除く有機溶剤、表1におけるE20C)
・HFセンサ(検知対象ガスがHF、表1におけるHF)
・HSセンサ(検知対象ガスがHS、表1におけるHS)
・Clセンサ(検知対象ガスがCl、表1におけるCl
・NOセンサ(検知対象ガスがNO、表1におけるNO)
・E20センサ(検知対象ガスがエタノールを主とした有機溶剤、表1におけるE20)
For example, when the detector 2 includes the following ten gas sensors, the correspondence table (threshold determination result pattern) for the threshold value for each gas type in the ten gas sensors is as shown in Table 1 below. .
[Types of gas sensor]
· NH 3 sensor (detection target gas is NH 3, NH 3 in Table 1)
· O 3 sensor (detection target gas is O 3, O 3 in Table 1)
· PH 3 sensors (detection target gas is PH 3, PH 3 in Table 1)
-HCl sensor (detection target gas is HCl, HCl in Table 1)
E20C sensor (detection target gas is an organic solvent excluding alcohol, mainly toluene, E20C in Table 1)
HF sensor (detection target gas is HF, HF in Table 1)
· H 2 S sensor (detection target gas is H 2 S, H 2 S in Table 1)
· Cl 2 sensor (detection target gas is Cl 2, Cl 2 in Table 1)
・ NO sensor (detection target gas is NO, NO in Table 1)
E20 sensor (detection target gas is an organic solvent mainly composed of ethanol, E20 in Table 1)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 ここで、表1におけるMaxが正の閾値を超える場合(つまり、正の応答を示す場合)であり、Minが負の閾値を下回る場合(つまり、負の応答を示す場合)であり、Normが正の閾値と負の閾値との間の出力値を示す場合(つまり、感度に乏しい場合)、空白は出力値がどのような値であってもガス種の特定とは無関係であることを意味する。そして、アルゴリズム判定の欄は、各ガスセンサの閾値判定の結果がそこに示されているパターンを示すことにより特定されるガス種である。ガス種が複数記載されている場合は、そのいずれか一方、又は両方が含まれていることを示す。 Here, when Max in Table 1 exceeds a positive threshold (that is, when a positive response is shown), Min is below a negative threshold (that is, when a negative response is shown), and Norm is When showing an output value between a positive threshold and a negative threshold (ie, when the sensitivity is poor), blank means that the output value is irrelevant to specifying the gas type. To do. And the column of algorithm determination is the gas type specified by the result of the threshold determination of each gas sensor showing the pattern shown there. When a plurality of gas types are described, it indicates that either one or both of them are included.
 例えば、入力された出力値の閾値判定の結果が、少なくともPHセンサについては正の閾値を上回る出力値を示し、少なくともNHセンサ、Oセンサ、HClセンサ、HFセンサ、HSセンサ及びClセンサについては正の閾値と負の閾値との間の出力値を示すものであったとき(表1のNo.3)は、判定部6は判定対象ガスのガス種をPHと特定する。また、少なくともOセンサ及びClセンサについては負の閾値を上回る出力値を示し、少なくともPHセンサ、HSセンサ及びNOセンサについては正の閾値を上回る出力値を示し、少なくともNHセンサについては正の閾値と負の閾値との間の出力値を示すものであるとき(表1のNo.8)は、判定部6は判定対象ガスのガス種をHSと特定する。なお、閾値判定の結果が表1のいずれのパターンにも当てはまらなかった場合は、複数種のガス種が含まれていると判定する。 For example, the threshold value determination result of the input output value indicates an output value that exceeds the positive threshold value for at least the PH 3 sensor, and at least the NH 3 sensor, the O 3 sensor, the HCl sensor, the HF sensor, the H 2 S sensor, and When the Cl 2 sensor indicates an output value between a positive threshold value and a negative threshold value (No. 3 in Table 1), the determination unit 6 specifies the gas type of the determination target gas as PH 3. To do. Further, at least an O 3 sensor and a Cl 2 sensor show an output value exceeding a negative threshold, at least a PH 3 sensor, an H 2 S sensor and an NO sensor show an output value exceeding a positive threshold, and at least an NH 3 sensor When indicating an output value between a positive threshold value and a negative threshold value (No. 8 in Table 1), the determination unit 6 specifies the gas type of the determination target gas as H 2 S. In addition, when the result of threshold determination does not correspond to any pattern of Table 1, it determines with multiple types of gas being contained.
 具体的なガス種特定の手順を、上記10種のガスセンサを備える検出器2を用いてある判定対象ガスの測定を行ったときの各ガスセンサの出力を示す図3を例に説明する。まず、検出器2による測定を開始すると、その応答として、測定しているガス種に対し正の応答を示すガスセンサについて出力が生じる。そして、あるガスセンサ(図3ではNOセンサ)の出力値が正の閾値として設定した25%FS(フルスケールの25%の出力値)を超えると(図3におけるT1)、時間計測を開始し、その時点T1から60秒経過した時点T2における各ガスセンサの出力値に基づいて閾値判定を行う。そうすると、時点T2における閾値判定の結果は、PHセンサ、E20Cセンサ、NOセンサ、E20センサについては正の閾値を超えている(Max)と判定され、他のセンサについては正の閾値と負の閾値との間の出力値を示す(Norm)と判定される。そして、この判定結果を表1の対応関係表と照合して、判定結果と合致する閾値判定結果パターンがあるかを判定する。図3の場合、少なくともPHセンサについては正の閾値を上回る出力値を示し、少なくともNHセンサ、Oセンサ、HClセンサ、HFセンサ、HSセンサ及びClセンサについては正の閾値と負の閾値との間の出力値を示すものであるNo.3の閾値判定結果パターンに合致するため、判定対象ガスのガス種がPHであると特定される。 A specific procedure for specifying the gas type will be described with reference to FIG. 3 showing the output of each gas sensor when the measurement target gas is measured using the detector 2 having the above ten types of gas sensors. First, when measurement by the detector 2 is started, as a response, an output is generated for a gas sensor that shows a positive response to the gas type being measured. When the output value of a certain gas sensor (NO sensor in FIG. 3) exceeds 25% FS (25% output value of full scale) set as a positive threshold (T1 in FIG. 3), time measurement is started, The threshold is determined based on the output value of each gas sensor at time T2 when 60 seconds have elapsed from time T1. Then, the result of the threshold determination at time T2, PH 3 sensor, E20C sensors, NO sensors, for E20 sensor is determined to exceed the positive threshold value (Max), positive threshold and negative for other sensors It is determined that the output value between the threshold is (Norm). Then, this determination result is checked against the correspondence table in Table 1 to determine whether there is a threshold determination result pattern that matches the determination result. In the case of FIG. 3, an output value exceeding a positive threshold is shown for at least the PH 3 sensor, and a positive threshold is shown for at least the NH 3 sensor, the O 3 sensor, the HCl sensor, the HF sensor, the H 2 S sensor, and the Cl 2 sensor. No. indicating an output value between the negative threshold value. 3 matches the threshold determination result pattern of 3, it is specified that the gas type of the determination target gas is PH3.
 また、例えば、検出器2が、以下の5個のガスセンサを備えている場合、その5個のガスセンサにおけるガス種ごとの閾値に対する対応関係表(閾値判定結果パターン)は、次の表2のようになる。
〔ガスセンサの種類〕
・NHセンサ(検知対象ガスがNH、表1におけるNH
・Oセンサ(検知対象ガスがO、表1におけるO
・PHセンサ(検知対象ガスがPH、表1におけるPH
・HClセンサ(検知対象ガスがHCl、表1におけるHCl)
・E20Cセンサ(検知対象ガスがトルエンを主としたアルコール等を除く有機溶剤、表1におけるE20C)
For example, when the detector 2 includes the following five gas sensors, the correspondence table (threshold determination result pattern) for the threshold value for each gas type in the five gas sensors is as shown in Table 2 below. become.
[Types of gas sensor]
· NH 3 sensor (detection target gas is NH 3, NH 3 in Table 1)
· O 3 sensor (detection target gas is O 3, O 3 in Table 1)
· PH 3 sensors (detection target gas is PH 3, PH 3 in Table 1)
-HCl sensor (detection target gas is HCl, HCl in Table 1)
E20C sensor (detection target gas is an organic solvent excluding alcohol, mainly toluene, E20C in Table 1)
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 ここで、表2におけるMax/Normは出力値が正の閾値を超えるか、又は正の閾値と負の閾値との間の出力値を示す場合(つまり、負の閾値以上の出力値を示す場合)であることを意味し、Min/Normは出力値が負の閾値を下回るか、又は正の閾値と負の閾値との間の出力値を示す場合(つまり、正の閾値未満の出力値を示す場合)であることを意味する。 Here, Max / Norm in Table 2 indicates that the output value exceeds the positive threshold value, or indicates an output value between the positive threshold value and the negative threshold value (that is, indicates an output value equal to or greater than the negative threshold value). Min / Norm indicates that the output value is below the negative threshold value or indicates an output value between the positive threshold value and the negative threshold value (ie, an output value less than the positive threshold value). It means).
 例えば、入力された出力値の閾値判定の結果が、少なくともPHセンサについては正の閾値を上回る出力値を示し、NHセンサ、Oセンサ、HClセンサについては正の閾値と負の閾値との間の出力値を示し、E20Cセンサについて少なくとも負の閾値以上の出力値を示すものであったとき(表2のNo.4)は、判定部6は判定対象ガスのガス種をPHと特定する。また、NHセンサについては正の閾値と負の閾値との間の出力値を示し、Oセンサについては正の閾値未満の出力値を示し、PHセンサ、HClセンサ及びE20Cセンサについては正の閾値を上回る出力値を示すものであったとき(表2のNo.9)は、判定部6は判定対象ガスのガス種をHSと特定する。 For example, the threshold value determination result of the input output value indicates an output value that exceeds the positive threshold value for at least the PH 3 sensor, and the positive threshold value and the negative threshold value for the NH 3 sensor, the O 3 sensor, and the HCl sensor. When the output value of the E20C sensor is at least a negative threshold value or more (No. 4 in Table 2), the determination unit 6 sets the gas type of the determination target gas as PH 3 . Identify. In addition, an output value between the positive threshold value and the negative threshold value is shown for the NH 3 sensor, an output value less than the positive threshold value is shown for the O 3 sensor, and a positive value is shown for the PH 3 sensor, the HCl sensor, and the E20C sensor. When the output value exceeds the threshold value (No. 9 in Table 2), the determination unit 6 specifies the gas type of the determination target gas as H 2 S.
 なお、10個のガスセンサを用いる場合も5個のガスセンサを用いる場合と同様にMax/Norm、Min/Normとの基準を表1の空白部分等に追加するようにしてもよい。 In addition, when 10 gas sensors are used, the standard of Max / Norm and Min / Norm may be added to the blank portion in Table 1 as in the case of using 5 gas sensors.
 次に、各ガスセンサの出力値の傾向を利用したガス種の特定方法の他の一例として、各出力値間の比率を利用してガス種の特定を行う手順について説明する。閾値判定を用いた手段では、ガス種の判定のために、少なくとも閾値を超える程度の出力が得られるガス濃度が必要となるところ、各出力値間の比率を利用する手段では、閾値判定を用いた手段の判定に必要な濃度を下回るガス濃度であっても、出力値の比率さえ判別できれば、判定対象ガスのガス種を特定することができるという利点がある。以下、各出力値間の比率に基づくガス種の特定の手順について説明する。 Next, as another example of the gas type specifying method using the tendency of the output value of each gas sensor, a procedure for specifying the gas type using the ratio between the output values will be described. The means using the threshold judgment requires a gas concentration that can at least output an output exceeding the threshold for judging the gas type. The means using the ratio between the output values uses the threshold judgment. Even if the gas concentration is lower than the concentration required for the determination of the means, the gas type of the determination target gas can be specified as long as the ratio of the output values can be determined. Hereinafter, the specific procedure of the gas type based on the ratio between the output values will be described.
〈各出力値間の比率に基づくガス種の特定〉
 上記したように、あるガス種について、正の応答を示すガスセンサ、負の応答を示すガスセンサ、感度の乏しいガスセンサの種類は決まっているが、さらに、正の応答を示すガスセンサ及び負の応答を示すガスセンサの中では、当該ガス種の濃度にかかわらず、各ガスセンサ間の出力値の比率は決まっている。例えば、図4,5は、各濃度におけるClガスに対するClセンサ、HSセンサ及びHFセンサの出力を示すグラフであり、図4,5によれば、Clセンサに対するHSセンサ及びHFセンサの出力値の比率はClガスの濃度が0.3ppmと0.5ppmのときとでほぼ同じとなっている。そして、発明者による実験の結果、Clセンサに対するHSセンサ及びHFセンサの出力値の比率は、Clセンサの出力値を100%とすると、Clセンサの出力値に対してHSセンサの出力値は-50~-30%であり、HFセンサの出力値は80~100%になることが求められた。これを利用すれば、Clセンサ、HSセンサ及びHFセンサ間の出力値の比率がこの比率に収まるときには、判定対象ガスのガス種がClガスであることが特定できることとなる。つまり、各ガスセンサ間の出力値の比率がわかれば、判定対象ガスのガス種を特定することが可能となる。
<Identification of gas type based on the ratio between output values>
As described above, for a certain gas type, the types of gas sensors that exhibit a positive response, gas sensors that exhibit a negative response, and gas sensors that have a low sensitivity are determined, but further, a gas sensor that exhibits a positive response and a negative response. Among gas sensors, the ratio of output values between the gas sensors is determined regardless of the concentration of the gas type. For example, FIGS. 4 and 5 are graphs showing the output of the Cl 2 sensor, H 2 S sensor and HF sensor for Cl 2 gas at each concentration, and according to FIGS. 4 and 5, the H 2 S sensor for the Cl 2 sensor. The ratio of the output values of the HF sensor is almost the same when the Cl 2 gas concentration is 0.3 ppm and 0.5 ppm. Then, the inventors by the results of experiments, the ratio of the output value of the H 2 S sensor and HF sensor for Cl 2 sensor when the output value of Cl 2 sensor and 100%, H 2 for the output values of the Cl 2 sensor The output value of the S sensor was -50 to -30%, and the output value of the HF sensor was required to be 80 to 100%. By utilizing this, when the ratio of the output values among the Cl 2 sensor, H 2 S sensor, and HF sensor falls within this ratio, it can be specified that the gas type of the determination target gas is Cl 2 gas. That is, if the ratio of the output values between the gas sensors is known, the gas type of the determination target gas can be specified.
 そこで、本実施形態のガス分析システム1では、まず、実験の結果等に基づいて、判定対象とするガス種についてガスセンサの特定の組み合わせを定め(例えば、当該ガス種に対して感度の高いガスセンサの組み合わせなど)、その組み合わせの中の各ガスセンサ間の出力値の比率と当該ガス種との対応関係を求める。そして、データベース(記憶部5)に、これら判定対象とするガス種について定めたガスセンサの特定の組み合わせと、当該ガス種に対する当該組み合わせの中の各ガスセンサ間の出力値の比率とを、判定対象とするガス種と当該ガス種に対する各ガスセンサの出力値の傾向との対応関係として記憶する。つまり、判定対象のガス種ごとに、どの種類のガスセンサを用いてその出力値間の比率を求めるのかと、そのガス種に対応する出力値間の比率をデータベース(記憶部5)に記憶する。そして、検出器2から出力信号σの入力があったときは、判定部6は、記憶してある対応関係と当該組み合わせの中の出力値の比率とに基づいて判定対象ガスのガス種を特定する。 Therefore, in the gas analysis system 1 of the present embodiment, first, a specific combination of gas sensors is determined for a gas type to be determined based on the result of an experiment or the like (for example, a gas sensor having high sensitivity to the gas type). Combination), and the correspondence between the ratio of the output value between the gas sensors in the combination and the gas type. Then, in the database (storage unit 5), the specific combination of the gas sensors determined for the gas type to be determined and the ratio of the output values between the gas sensors in the combination for the gas type are determined as the determination target. This is stored as a correspondence relationship between the gas type to be used and the tendency of the output value of each gas sensor with respect to the gas type. That is, for each gas type to be determined, which type of gas sensor is used to determine the ratio between the output values and the ratio between the output values corresponding to the gas type are stored in the database (storage unit 5). When the output signal σ is input from the detector 2, the determination unit 6 specifies the gas type of the determination target gas based on the stored correspondence relationship and the ratio of the output values in the combination. To do.
 例えば、判定部6は、いずれかのガスセンサから何らかの出力があったときからその後一定時間(30秒や60秒)経過したときの各ガスセンサの出力値に基づいてガス種の特定を行うこととする。そして、その一定時間経過後の各ガスセンサの出力値から、判別対象のガス種ごとに、そのガス種について定めたガスセンサの組み合わせにおける出力値間の比率を求める。その比率が記憶してある当該ガス種に対応する出力値間の比率に合致するか(その範囲内に収まるか)を順次判定し、合致するものがあったときに、判定対象ガスのガス種がその合致するガス種であると特定する。例えば、Clセンサ、HSセンサ及びHFセンサの出力が、Clセンサの出力値を100%としたとき、HSセンサの出力値が-50~-30%で、HFセンサの出力値が80~100%の比率に収まるのであれば、判定対象ガスのガス種がClガスであることが特定される。 For example, the determination unit 6 specifies the gas type based on the output value of each gas sensor when a certain time (30 seconds or 60 seconds) has passed since any output from any gas sensor. . Then, from the output value of each gas sensor after the lapse of a certain time, the ratio between the output values in the combination of gas sensors determined for the gas type is obtained for each gas type to be discriminated. It is sequentially judged whether the ratio matches the ratio between the output values corresponding to the stored gas type (contains within the range), and when there is a match, the gas type of the judgment target gas Is identified as the matching gas species. For example, when the output of the Cl 2 sensor, H 2 S sensor and HF sensor is 100% of the output value of the Cl 2 sensor, the output value of the H 2 S sensor is −50 to −30%, and the output of the HF sensor If the value falls within the range of 80 to 100%, it is specified that the gas type of the determination target gas is Cl 2 gas.
〈特定したガス種の濃度の算出〉
 次に、上記いずれかの手段でガス種の特定をした後に、その特定したガス種の濃度を算出する手順について説明する。一般に、ガスセンサの出力値は検知対象のガスの濃度と相関するので、この相関関係を利用して、ガスセンサの出力値から濃度を求めることができる。そのため、本実施形態に係るガス分析システム1では、ガス種によっては複数のガスセンサからの出力があることを考慮して、判定対象とするガス種ごとにその濃度を算出するときの基準とする主のガスセンサを定めておく。例えば、主のガスセンサとするガスセンサとしては、当該ガス種に対する感度が高いガスセンサなどが挙げられる。さらに、この主のガスセンサの出力値と当該ガス種の濃度との相関関係も求めておき、データベース(記憶部5)に、ガス種ごとの主のガスセンサの種類とその出力値と当該ガス種の濃度との相関関係とを濃度算出情報として記憶する。これにより、判定部6は、判定対象ガスのガス種を特定したときに、この濃度算出情報に基づいて、主のガスセンサの出力値を用いてガス種の濃度を算出する。
<Calculation of concentration of specified gas species>
Next, a procedure for calculating the concentration of the specified gas type after specifying the gas type by any one of the above means will be described. In general, since the output value of the gas sensor correlates with the concentration of the gas to be detected, the concentration can be obtained from the output value of the gas sensor using this correlation. For this reason, in the gas analysis system 1 according to the present embodiment, taking into account that there are outputs from a plurality of gas sensors depending on the gas type, it is a main reference for calculating the concentration for each gas type to be determined. The gas sensor is defined. For example, as a gas sensor used as a main gas sensor, a gas sensor having high sensitivity to the gas type may be used. Further, the correlation between the output value of the main gas sensor and the concentration of the gas type is also obtained, and the type of the main gas sensor for each gas type, its output value, and the gas type are stored in the database (storage unit 5). The correlation with the density is stored as density calculation information. Thus, when the determination unit 6 specifies the gas type of the determination target gas, the determination unit 6 calculates the concentration of the gas type using the output value of the main gas sensor based on the concentration calculation information.
 ただし、この場合、ガスセンサは対象ガスの濃度に比例してその出力も変化するが、その出力値にはフルスケールと呼ばれる検出限界値があり、この検出限界値を超える以上の濃度を測定することはできないという問題がある。そして、精度よく濃度を算出するためには、その対象のガス種に対して感度の高いガスセンサを主のガスセンサに用いることが好ましいのであるが、感度が高い分だけ、検出限界値に達しやすくなる。そこで、本実施形態に係るガス分析システム1では主のガスセンサの他に、判定対象とするガス種ごとにサブのガスセンサを定めている。また、そのサブのガスセンサの出力値と当該ガス種の濃度との相関関係も求めておき、データベース(記憶部5)に、ガス種ごとのサブのガスセンサの種類とその出力値と当該ガス種の濃度との相関関係とをさらに濃度算出情報として記憶してある。これにより、判定部6は、主のガスセンサの出力値が検出限界値に達していたときは、この濃度算出情報に基づいて、サブのガスセンサの出力値を用いてガス種の濃度を算出する。 However, in this case, the output of the gas sensor changes in proportion to the concentration of the target gas, but the output value has a detection limit value called full scale, and the concentration exceeding this detection limit value must be measured. There is a problem that can not be. In order to calculate the concentration with high accuracy, it is preferable to use a gas sensor having high sensitivity for the target gas type as the main gas sensor. However, the detection limit value is easily reached by the high sensitivity. . Therefore, in the gas analysis system 1 according to this embodiment, in addition to the main gas sensor, a sub gas sensor is determined for each gas type to be determined. Further, the correlation between the output value of the sub gas sensor and the concentration of the gas type is also obtained, and the type of the sub gas sensor for each gas type, the output value, and the gas type are stored in the database (storage unit 5). The correlation with the density is further stored as density calculation information. Thus, when the output value of the main gas sensor has reached the detection limit value, the determination unit 6 calculates the concentration of the gas type using the output value of the sub gas sensor based on the concentration calculation information.
 例えば、PHガスの場合を例に、このサブのガスセンサによる濃度算出について説明する。図6~8は、各濃度におけるPHガスに対するPHセンサ(1.0ppmF.S.)及びNOセンサ(0.5ppmF.S.)の出力を示すグラフである。なお、1.0ppmF.S.とは、PHセンサがフルスケール(100%F.S.)の出力のときPHガスの濃度が1.0ppmであることを意味する。つまり、PHガスの濃度は、PHセンサの出力値(%F.S.)から、次の式のように求められる。 For example, taking the case of PH 3 gas as an example, concentration calculation by this sub gas sensor will be described. 6 to 8 are graphs showing the outputs of the PH 3 sensor (1.0 ppm FS) and the NO sensor (0.5 ppm FS) for the PH 3 gas at each concentration. In addition, 1.0 ppmF. S. Means that the concentration of the PH 3 gas is 1.0 ppm when the PH 3 sensor outputs a full scale (100% FS). That is, the concentration of the PH 3 gas is obtained from the output value (% FS) of the PH 3 sensor according to the following equation.
PHガス濃度(ppm)=PHセンサ出力/100×1.0(ppm)(式1) PH 3 gas concentration (ppm) = PH 3 sensor output / 100 × 1.0 (ppm) (Formula 1)
 なお、PHセンサは、150%F.S.が検出限界値であり、これを超えると出力が頭打ちになってしまい、そうすると、ガス濃度を正確に算出できなくなる。例えば、PHガスの濃度が0.3ppmのとき(図6)と1.0ppmのとき(図7)のときは、その出力値は検出限界値まで達しておらず、出力値がPHガスの濃度を反映したものとなっているが、PHガスの濃度が2.0ppmのとき(図8)は、その出力値が検出限界値(150%F.S.)を超え頭打ちになっており、出力値がPHガスの濃度を反映したものとなっていない。 The PH 3 sensor is 150% F.S. S. Is the detection limit value, and if it exceeds this limit, the output reaches a peak, and the gas concentration cannot be calculated accurately. For example, when the concentration of PH 3 gas is 0.3 ppm (FIG. 6) and 1.0 ppm (FIG. 7), the output value does not reach the detection limit value, and the output value is PH 3 gas. However, when the PH 3 gas concentration is 2.0 ppm (FIG. 8), the output value exceeds the detection limit value (150% FS) and reaches a peak. The output value does not reflect the concentration of PH 3 gas.
 一方、NOセンサの場合、PHセンサに比べPHガスに対する感度は低いが、その分、PHガスの濃度が2.0ppmのときも出力値は頭打ちとなっていない。そして、図9はPHガスの濃度と各センサの出力値の関係を示すグラフであるが、図9によれば、NOセンサの出力値がPHガスの濃度とある程度比例関係にあることがわかる。そして、NOセンサの出力値について近似直線を引くと、その傾きは21.21となる。PHセンサの出力値についての傾きがおよそ100であることを考えると、同じ濃度のPHガスを検知しているとき、PHセンサの出力値は、NOセンサの出力値の100/21.21倍の値となるといえる(PHセンサ出力=NOセンサ出力×(100/21.21))。そうすると、上記式1を用いれば、PHガスとNOセンサの出力値(%F.S.)との関係は、次の式のようになる。 On the other hand, in the case of the NO sensor, the sensitivity to the PH 3 gas is lower than that of the PH 3 sensor. However, the output value does not reach the peak even when the concentration of the PH 3 gas is 2.0 ppm. FIG. 9 is a graph showing the relationship between the concentration of PH 3 gas and the output value of each sensor. According to FIG. 9, the output value of the NO sensor is proportional to the concentration of PH 3 gas to some extent. Recognize. Then, when an approximate straight line is drawn for the output value of the NO sensor, the slope becomes 21.21. Considering that the slope of the output value of the PH 3 sensor is about 100, when detecting PH 3 gas of the same concentration, the output value of the PH 3 sensor is 100/21. It can be said that the value is 21 times (PH 3 sensor output = NO sensor output × (100 / 21.21)). Then, if the above equation 1 is used, the relationship between the PH 3 gas and the output value (% FS) of the NO sensor is as follows.
PHガス濃度(ppm)=NOセンサ出力/21.21×1.0(ppm)(式2) PH 3 gas concentration (ppm) = NO sensor output / 21.21 × 1.0 (ppm) (Formula 2)
 このように、PHセンサによる濃度算出よりも制度は劣るものであっても、上記式2に基づき、NOセンサの出力値からもPHガスの濃度を算出することが可能である。そこで、PHガスの濃度算出における主のガスセンサをPHセンサとすること、NOセンサをそのサブのガスセンサとすること、及び上記した式1,2のPHガスの濃度とPHセンサ及びNOセンサの出力値との関係を濃度算出情報としてデータベース(記憶部5)に記憶しておけば、判定部6により、PHセンサの出力値が検出限界値に達するまでは、PHセンサの出力値から上記式1に基づきPHガスの濃度が算出され、PHセンサの出力値が検出限界値に達したときは、NOセンサの出力値から上記式2に基づきガス濃度が算出されることになる。 Thus, even if the system is inferior to the concentration calculation by the PH 3 sensor, the concentration of the PH 3 gas can be calculated from the output value of the NO sensor based on the above formula 2. Therefore, the main gas sensor in calculating the PH 3 gas concentration is a PH 3 sensor, the NO sensor is a sub gas sensor thereof, and the PH 3 gas concentration, the PH 3 sensor and the NO 3 of the above formulas 1 and 2 are used. if the relationship between the output value of the sensor is stored in a database (storage unit 5) as the concentration calculation information, the determination unit 6, to the output value of PH 3 sensor reaches the detection limit value, PH 3 the output of the sensor The concentration of PH 3 gas is calculated from the value based on the above equation 1, and when the output value of the PH 3 sensor reaches the detection limit value, the gas concentration is calculated based on the above equation 2 from the output value of the NO sensor. become.
〈PIDセンサを利用したガス分析〉
 光イオン化センサ(PIDセンサ)は、有機溶剤を中心に多くのガスに反応するセンサであり、単一のセンサで様々なガス種の濃度分析が可能となる利点がある。しかし、その出力値からおおまかなガス種の絞り込みは可能であっても、確度高くガス種の判定をすることはできない問題がある。これに対し、発明者は、PIDセンサが検知可能なガス種を検知対象ガスとしないガスセンサであっても、上記と同様の要領でこれらのガスセンサの各ガスセンサからの出力値の傾向から当該ガス種の特定が可能であることを見出した。つまり、複数のガスセンサからの出力値の傾向とガス種との対応関係を求めるにしても、判定しようとするガス種を多くするとその判定基準が複雑になったり、他のガス種との区別がつきにくくなり、確度高く判定できない虞があるが、PIDセンサを用いることで、PIDセンサの出力があったときは、少なくともPIDセンサが検知できるガス種であることが絞り込める(反対に、PIDセンサの出力がないときは、少なくともPIDセンサが検知できないガス種であることが絞り込めることになる)。そして、ガス種を絞り込むことで、区別しなければならないガス種の数が減るから、複数のガスセンサからの出力値の傾向とガス種との対応関係を求めるのが容易となる。その結果、PIDセンサが検知可能なガス種を検知対象ガスとしないガスセンサであっても、これらのガスセンサの各ガスセンサからの出力値の傾向から当該ガス種の特定が可能となる。
<Gas analysis using PID sensor>
A photoionization sensor (PID sensor) is a sensor that reacts to many gases, mainly organic solvents, and has an advantage that concentration analysis of various gas types can be performed with a single sensor. However, there is a problem that the gas type cannot be determined with high accuracy even if it is possible to narrow the gas type roughly from the output value. On the other hand, even if it is a gas sensor which does not make the gas type which a PID sensor can detect be a detection object gas, the inventor concerned the gas type from the tendency of the output value from each gas sensor of these gas sensors in the same way as the above. It was found that it is possible to specify. In other words, even if the relationship between the tendency of the output values from a plurality of gas sensors and the gas type is obtained, if the number of gas types to be determined is increased, the determination criteria become complicated, or the distinction from other gas types may be difficult. Although there is a possibility that it is difficult to determine with high accuracy, the use of a PID sensor makes it possible to narrow down the gas type that can be detected by the PID sensor when there is an output from the PID sensor. When there is no output, it is possible to narrow down that the gas type cannot be detected by at least the PID sensor). Then, by narrowing down the gas types, the number of gas types that must be distinguished is reduced, so that it is easy to obtain the correspondence between the tendency of output values from a plurality of gas sensors and the gas types. As a result, even for a gas sensor that does not use a gas type that can be detected by the PID sensor as a detection target gas, the gas type can be identified from the tendency of output values from the gas sensors of these gas sensors.
 そこで、本実施形態に係るガス分析システム1では、検出器2が少なくとも一つのPIDセンサを備えたものとしてある。本実施形態では、10ppmF.S.イソブチレンのPIDセンサを用いる。また、PIDセンサが検知可能なガス種とPIDセンサ以外の所定のガスセンサの出力値の傾向との対応関係を求めておき、これをデータベース(記憶部5)に記憶してある。そして、判定部6は、PIDセンサの出力があったときに、この対応関係と所定のガスセンサにおける出力値の傾向とに基づいて判定対象ガスのガス種を特定する。さらに、データベースには、判定対象とするガス種の濃度とPIDセンサの出力値との相関関係を記憶してあり、判定部6は、判定対象ガスのガス種を特定したとき、この相関関係に基づいて、PIDセンサの出力値を用いてガス種の濃度を算出する。ガス種の濃度の算出は、ガス種ごとに係数が決まっており、その係数を出力値にかけることにより、そのガス種の濃度を算出する。具体的には、10ppmF.S.イソブチレンのPIDセンサを用いた場合、次のような式で、ガス種の濃度が求められる。 Therefore, in the gas analysis system 1 according to the present embodiment, the detector 2 includes at least one PID sensor. In this embodiment, 10 ppmF. S. An isobutylene PID sensor is used. Further, a correspondence relationship between a gas type that can be detected by the PID sensor and a tendency of an output value of a predetermined gas sensor other than the PID sensor is obtained and stored in the database (storage unit 5). And the determination part 6 specifies the gas type of determination object gas based on this correspondence and the tendency of the output value in a predetermined gas sensor, when there exists an output of a PID sensor. Further, the database stores the correlation between the concentration of the gas type to be determined and the output value of the PID sensor. When the determination unit 6 specifies the gas type of the determination target gas, Based on the output value of the PID sensor, the concentration of the gas species is calculated. In calculating the concentration of the gas type, a coefficient is determined for each gas type, and the concentration of the gas type is calculated by multiplying the coefficient by the output value. Specifically, 10 ppmF. S. When an isobutylene PID sensor is used, the concentration of the gas species is obtained by the following equation.
 ガス濃度(ppm)=係数×PIDセンサ出力値/100×10(ppm) (式3) Gas concentration (ppm) = coefficient x PID sensor output value / 100 x 10 (ppm) (Formula 3)
 例えば、PIDセンサが検知可能なガス種と対応付けるPIDセンサ以外の所定のガスセンサの出力値の傾向としては、そのガス種に対するE20センサとE20Cセンサとの出力値の比率が挙げられる。図10,11は、PIDセンサが検知可能なガス種の濃度とE20センサ及びE20Cセンサの出力値との関係を示す。図10,11から明らかなように、E20センサとE20Cセンサとでは、対象ガスがアルコールかアルコールでないかによってその感度に大きな違いがあり、E20センサとE20Cセンサとの出力値の比率は異なっている。 For example, the tendency of the output value of a predetermined gas sensor other than the PID sensor associated with the gas type that can be detected by the PID sensor includes the ratio of the output values of the E20 sensor and the E20C sensor with respect to the gas type. 10 and 11 show the relationship between the concentration of the gas species that can be detected by the PID sensor and the output values of the E20 sensor and the E20C sensor. As is clear from FIGS. 10 and 11, there is a large difference in sensitivity between the E20 sensor and the E20C sensor depending on whether the target gas is alcohol or alcohol, and the ratio of the output values of the E20 sensor and the E20C sensor is different. .
 一例として、トルエンを検出器2が測定しているとき、図12に示すような出力が得られる(前半はトルエンの濃度を1ppmとし、後半はトルエンの濃度を5ppmとして測定を行った)。このとき、PIDセンサから出力が得られ、また、E20センサとE20Cセンサとからも出力が得られている。そして、E20センサとE20Cセンサとの出力値の比率はE20Cセンサを100%とした際にE20センサは30~40%となっている。一方、アセトンを検出器2が測定しているとき、図13に示すような出力が得られる。図12と同様に、PIDセンサから出力が得られ、また、E20センサとE20Cセンサとからも出力が得られている。そして、E20センサとE20Cセンサとの出力値の比率はE20Cセンサを100%とした際にE20センサは40~50%となっている。このように、ガス種によりE20センサとE20Cセンサとの出力値の比率は異なっている。そして、これを利用すれば、E20Cセンサの出力値を100%とした際のE20センサの出力値が30~40%のときはそのガス種はトルエンであり、E20Cセンサの出力値を100%とした際のE20センサの出力値が40~50%のときはそのガス種はアセトンであることがわかる。そこで、上記対応関係として各ガス種に対するE20センサとE20Cセンサとの出力値の比率を予め求めてデータベース(記憶部5)に記憶しておけば、検出器2から検出されたE20センサとE20Cセンサとの出力値の比率に基づいて、判定部6によるガス種の判定が可能となる。そして、さらに、判定部6は、上記式3に基づいて、データベースに記憶してあるそのガス種についての係数を用いて、PIDセンサ出力値からそのガス種の濃度を算出できる。 As an example, when the detector 2 is measuring toluene, an output as shown in FIG. 12 is obtained (the first half was measured with a toluene concentration of 1 ppm and the second half with a toluene concentration of 5 ppm). At this time, output is obtained from the PID sensor, and output is also obtained from the E20 sensor and the E20C sensor. The ratio of the output values of the E20 sensor and the E20C sensor is 30 to 40% when the E20C sensor is 100%. On the other hand, when the detector 2 is measuring acetone, an output as shown in FIG. 13 is obtained. As in FIG. 12, output is obtained from the PID sensor, and output is also obtained from the E20 sensor and the E20C sensor. The ratio of the output values of the E20 sensor and the E20C sensor is 40 to 50% when the E20C sensor is 100%. Thus, the ratio of the output values of the E20 sensor and the E20C sensor differs depending on the gas type. Using this, when the output value of the E20C sensor is 30% to 40% when the output value of the E20C sensor is 100%, the gas type is toluene, and the output value of the E20C sensor is 100%. When the output value of the E20 sensor at this time is 40 to 50%, it can be seen that the gas type is acetone. Therefore, if the ratio of the output values of the E20 sensor and the E20C sensor for each gas type is obtained in advance as the correspondence relationship and stored in the database (storage unit 5), the E20 sensor and the E20C sensor detected from the detector 2 are stored. Based on the ratio of the output values, the determination unit 6 can determine the gas type. Further, the determination unit 6 can calculate the concentration of the gas type from the PID sensor output value using the coefficient for the gas type stored in the database based on the above equation 3.
〔その他の実施形態〕
 最後に、本発明に係るガス分析システム及びガス分析方法のその他の実施形態について説明する。なお、以下のそれぞれの実施形態で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することも可能である。
[Other Embodiments]
Finally, other embodiments of the gas analysis system and the gas analysis method according to the present invention will be described. Note that the configurations disclosed in the following embodiments can be applied in combination with the configurations disclosed in other embodiments as long as no contradiction arises.
(1)上述の実施形態では、判定対象とするガス種と当該ガス種に対する各ガスセンサの出力値の傾向との対応関係を利用したガス種の特定の手法として、閾値判定に基づくガス種の特定、各出力値間の比率に基づくガス種の特定を例に説明した。しかし、本発明の実施形態はこれに限定されず、判定対象とするガス種と当該ガス種に対する各ガスセンサの出力値の傾向との対応関係を利用してガス種の特定が可能なものであればどのようなものであってもよい。 (1) In the above-described embodiment, as a method for specifying a gas type using a correspondence relationship between a gas type to be determined and a tendency of an output value of each gas sensor with respect to the gas type, the gas type is specified based on threshold determination. The specification of the gas type based on the ratio between the output values has been described as an example. However, the embodiment of the present invention is not limited to this, and the gas type can be specified by utilizing the correspondence relationship between the gas type to be determined and the tendency of the output value of each gas sensor with respect to the gas type. Anything may be used.
(2)上述の実施形態では、閾値判定に基づくガス種の特定、各出力値間の比率に基づくガス種の特定において、判定部6は、何れかのガスセンサで正の閾値を超える出力(又は出力)があったときからその後一定時間(30秒や60秒)経過したときの各ガスセンサの出力値に基づいてその判定を行う構成を例に説明した。しかし、本発明の実施形態はこれに限定されない。例えば、何れかのガスセンサで正の閾値を超える出力があったときからその後一定時間に至るまでの間にも、その時点での各ガスセンサの出力から同様の閾値判定や各出力値間の比率に基づくガス種の特定を行い、その結果を予測ガス種として示すことで、ガス種の早期特定を可能にしても良い。また、一定時間経過後に判定を行った後も、所定時間間隔ごとに再度判定を行い、その結果を更新するようにすることでガス種特定の精度を上げるようにしても良い。 (2) In the above-described embodiment, in the specification of the gas type based on the threshold determination and the specification of the gas type based on the ratio between the output values, the determination unit 6 outputs (or exceeds the positive threshold value) in any gas sensor (or An example has been described in which the determination is made based on the output value of each gas sensor when a certain time (30 seconds or 60 seconds) has passed since the output. However, the embodiment of the present invention is not limited to this. For example, during the period from when any gas sensor has an output exceeding the positive threshold until a certain time thereafter, the same threshold judgment or ratio between the output values is obtained from the output of each gas sensor at that time. It may be possible to identify the gas type early by specifying the gas type based on the result and indicating the result as the predicted gas type. Further, even after the determination is made after the elapse of a certain time, the determination may be performed again at predetermined time intervals, and the result may be updated to improve the accuracy of specifying the gas type.
(3)上述の実施形態では、PIDセンサを利用したガス分析において、PIDセンサ以外の所定のガスセンサの出力値の傾向としては、そのガス種に対するE20センサとE20Cセンサとの出力値の比率を用いた例を説明した。しかし、本発明の実施形態はこれに限定されず、PIDセンサ以外の所定のガスセンサの出力値の傾向は、PIDセンサが検知可能なガス種と対応付けられるものであればどのようなものであってもよい。 (3) In the above-described embodiment, in the gas analysis using the PID sensor, the ratio of the output values of the E20 sensor and the E20C sensor with respect to the gas type is used as the tendency of the output value of a predetermined gas sensor other than the PID sensor. Explained the example. However, the embodiment of the present invention is not limited to this, and the tendency of the output value of a predetermined gas sensor other than the PID sensor is any as long as it is associated with a gas type that can be detected by the PID sensor. May be.
(4)その他の構成に関しても、本明細書において開示された実施形態は全ての点で例示であって、本発明の範囲はそれらによって限定されることはないと理解されるべきである。当業者であれば、本発明の趣旨を逸脱しない範囲で、適宜改変が可能であることを容易に理解できるであろう。従って、本発明の趣旨を逸脱しない範囲で改変された別の実施形態も、当然、本発明の範囲に含まれる。 (4) Regarding other configurations, it should be understood that the embodiments disclosed herein are illustrative in all respects and that the scope of the present invention is not limited thereby. Those skilled in the art will readily understand that modifications can be made as appropriate without departing from the spirit of the present invention. Accordingly, other embodiments modified without departing from the spirit of the present invention are naturally included in the scope of the present invention.
 本発明は、複数種のガスセンサを用いた判定対象ガスのガス種の特定に利用することができる。 The present invention can be used to specify a gas type of a determination target gas using a plurality of types of gas sensors.
1     ガス分析システム
2     検出器(検出部)
4     入力部
5     記憶部
6     判定部
1 Gas analysis system 2 Detector (detector)
4 Input unit 5 Storage unit 6 Determination unit

Claims (8)

  1.  複数種のガスセンサを備える検出部と、
     判定対象ガスに対する各前記ガスセンサの出力値が入力される入力部と、
     判定対象とするガス種と当該ガス種に対する各前記ガスセンサの出力値の傾向との対応関係をガス種ごとに記憶してある記憶部と、
     記憶してある前記対応関係と前記入力された各前記出力値の傾向とに基づいて前記判定対象ガスのガス種を特定する判定部と、を備えるガス分析システム。
    A detection unit comprising a plurality of types of gas sensors;
    An input unit to which an output value of each gas sensor for the determination target gas is input;
    A storage unit storing a correspondence relationship between a gas type to be determined and a tendency of an output value of each gas sensor with respect to the gas type for each gas type;
    A gas analysis system comprising: a determination unit that specifies a gas type of the determination target gas based on the stored correspondence relationship and the tendency of the input output values.
  2.  前記対応関係は、判定対象とするガス種ごとの、当該ガス種と当該ガス種についての各前記ガスセンサの出力値の所定の閾値に対する大小関係のパターンとの対応関係を含み、
     前記判定部は、各前記出力値について前記閾値を超えているか否かの閾値判定を行い、前記対応関係と各前記出力値についての前記閾値判定の結果とに基づいて前記判定対象ガスのガス種を特定する請求項1に記載のガス分析システム。
    The correspondence relationship includes, for each gas type to be determined, a correspondence relationship between the gas type and a pattern of magnitude relationship with respect to a predetermined threshold value of the output value of each gas sensor for the gas type,
    The determination unit performs a threshold determination as to whether or not the output value exceeds the threshold, and based on the correspondence and the result of the threshold determination for each output value, the gas type of the determination target gas The gas analysis system according to claim 1, wherein:
  3.  前記対応関係は、判定対象とするガス種について定めた前記ガスセンサの特定の組み合わせと、当該ガス種に対する前記組み合わせの中の各前記ガスセンサ間の前記出力値の比率と、を含み、
     前記判定部は、前記対応関係と前記組み合わせの中の前記出力値間の比率とに基づいて前記判定対象ガスのガス種を特定する請求項1又は2に記載のガス分析システム。
    The correspondence includes a specific combination of the gas sensors determined for a gas type to be determined, and a ratio of the output values between the gas sensors in the combination for the gas type,
    The gas analysis system according to claim 1 or 2, wherein the determination unit specifies a gas type of the determination target gas based on the correspondence relationship and a ratio between the output values in the combination.
  4.  前記記憶部には、判定対象とするガス種ごとに、濃度を算出するときの基準とする主のガスセンサの種類及びこの主のガスセンサの前記出力値と当該ガス種の濃度との相関関係を含む濃度算出情報を記憶してあり、
     前記判定部は、前記判定対象ガスのガス種を特定したときに、前記濃度算出情報に基づいて、前記主のガスセンサの前記出力値を用いて前記ガス種の濃度を算出する請求項1~3のいずれか一項に記載のガス分析システム。
    The storage unit includes, for each gas type to be determined, the type of the main gas sensor used as a reference when calculating the concentration, and the correlation between the output value of the main gas sensor and the concentration of the gas type. Concentration calculation information is stored,
    The determination unit calculates a concentration of the gas type using the output value of the main gas sensor based on the concentration calculation information when the gas type of the determination target gas is specified. The gas analysis system according to any one of the above.
  5.  前記濃度算出情報は、判定対象とするガス種ごとに定めたサブのガスセンサの種類及びそのサブのガスセンサの前記出力値と当該ガス種の濃度との相関関係を含み、
     前記判定部は、前記主のガスセンサの前記出力値が検出限界値に達していたときは、前記濃度算出情報に基づいて、前記サブのガスセンサの前記出力値を用いて前記ガス種の濃度を算出する請求項4に記載のガス分析システム。
    The concentration calculation information includes a correlation between the type of the sub gas sensor determined for each gas type to be determined and the output value of the sub gas sensor and the concentration of the gas type,
    When the output value of the main gas sensor has reached the detection limit value, the determination unit calculates the concentration of the gas type using the output value of the sub gas sensor based on the concentration calculation information. The gas analysis system according to claim 4.
  6.  前記検出部は、少なくとも一つの光イオン化センサを備え、
     前記対応関係は、前記光イオン化センサが検知可能なガス種と前記光イオン化センサ以外の所定の前記ガスセンサの前記出力値の傾向との関係を含み、
     前記判定部は、前記光イオン化センサの出力があったときに、前記対応関係と所定の前記ガスセンサにおける前記出力値の傾向とに基づいて前記判定対象ガスのガス種を特定する請求項1~5のいずれか一項に記載のガス分析システム。
    The detection unit includes at least one photoionization sensor,
    The correspondence relationship includes a relationship between a gas type detectable by the photoionization sensor and a tendency of the output value of a predetermined gas sensor other than the photoionization sensor,
    The determination unit specifies a gas type of the determination target gas based on the correspondence and a tendency of the output value of the predetermined gas sensor when the photoionization sensor outputs. The gas analysis system according to any one of the above.
  7.  前記記憶部には、判定対象とするガス種の濃度と前記光イオン化センサの前記出力値との相関関係を記憶してあり、
     前記判定部は、前記判定対象ガスのガス種を特定したとき、前記相関関係に基づいて、前記光イオン化センサの出力値を用いて前記ガス種の濃度を算出する請求項6に記載のガス分析システム。
    The storage unit stores a correlation between the concentration of a gas species to be determined and the output value of the photoionization sensor,
    The gas analysis according to claim 6, wherein the determination unit calculates the concentration of the gas type using an output value of the photoionization sensor based on the correlation when the gas type of the determination target gas is specified. system.
  8.  複数種のガスセンサを用いて判定対象ガスの測定を行うステップと、
     判定対象とするガス種と当該ガス種に対する各前記ガスセンサの出力値の傾向との対応関係と各前記ガスセンサの前記出力値の傾向とに基づいて前記判定対象ガスのガス種を特定するステップと、を備えるガス分析方法。
    Measuring the determination target gas using a plurality of types of gas sensors; and
    Identifying the gas type of the determination target gas based on the correspondence between the gas type to be determined and the tendency of the output value of each gas sensor with respect to the gas type and the tendency of the output value of each gas sensor; A gas analysis method comprising:
PCT/JP2016/075554 2015-08-31 2016-08-31 Gas analysis system and gas analysis method WO2017038889A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020187007036A KR102534577B1 (en) 2015-08-31 2016-08-31 Gas analysis system and gas analysis method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-171108 2015-08-31
JP2015171108A JP6731710B2 (en) 2015-08-31 2015-08-31 Gas analysis system and gas analysis method

Publications (1)

Publication Number Publication Date
WO2017038889A1 true WO2017038889A1 (en) 2017-03-09

Family

ID=58188857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075554 WO2017038889A1 (en) 2015-08-31 2016-08-31 Gas analysis system and gas analysis method

Country Status (3)

Country Link
JP (1) JP6731710B2 (en)
KR (1) KR102534577B1 (en)
WO (1) WO2017038889A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112782233A (en) * 2020-12-30 2021-05-11 江苏智闻智能传感科技有限公司 Gas identification method based on array gas sensor
CN113167488A (en) * 2018-12-17 2021-07-23 松下知识产权经营株式会社 Electrolytic water dispersing device and air blowing device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220066544A (en) * 2020-11-16 2022-05-24 강소영 Apparatus for monitoring target gas and method thereof
KR102456291B1 (en) * 2020-12-04 2022-10-20 한국과학기술원 Gas identification method of photoactivated gas sensor using variable photo-illumination

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185333A (en) * 2007-01-26 2008-08-14 Yazaki Corp Device for identifying gas
JP2009270983A (en) * 2008-05-09 2009-11-19 Nippon Parkerizing Co Ltd System for measuring volatile component concentration in aqueous solution of volatile component
JP2010506150A (en) * 2006-09-28 2010-02-25 スミスズ ディテクション インコーポレイティド Multi-detector gas identification system
WO2012165182A1 (en) * 2011-05-27 2012-12-06 株式会社 エヌ・ティ・ティ・ドコモ Living organism gas detection device and living organism gas detection method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4580405B2 (en) * 2007-03-30 2010-11-10 エフアイエス株式会社 Hydrogen gas sensor
JP5185700B2 (en) * 2008-06-09 2013-04-17 矢崎エナジーシステム株式会社 Gas leak alarm
KR101131958B1 (en) * 2009-10-22 2012-03-29 주식회사 과학기술분석센타 Method for measuring concentriation of gas and device for the same
KR101234724B1 (en) * 2010-03-02 2013-02-19 주식회사 과학기술분석센타 Method for measuring foul smell and system for the same
KR101510861B1 (en) * 2013-01-16 2015-04-10 강원대학교산학협력단 System and Method for complex malodor analysis
KR101521418B1 (en) * 2013-10-10 2015-05-21 한국과학기술원 Exhaled breath analyzing devices using multiple metal oxide semiconductor nano-fibers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010506150A (en) * 2006-09-28 2010-02-25 スミスズ ディテクション インコーポレイティド Multi-detector gas identification system
JP2008185333A (en) * 2007-01-26 2008-08-14 Yazaki Corp Device for identifying gas
JP2009270983A (en) * 2008-05-09 2009-11-19 Nippon Parkerizing Co Ltd System for measuring volatile component concentration in aqueous solution of volatile component
WO2012165182A1 (en) * 2011-05-27 2012-12-06 株式会社 エヌ・ティ・ティ・ドコモ Living organism gas detection device and living organism gas detection method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113167488A (en) * 2018-12-17 2021-07-23 松下知识产权经营株式会社 Electrolytic water dispersing device and air blowing device
CN112782233A (en) * 2020-12-30 2021-05-11 江苏智闻智能传感科技有限公司 Gas identification method based on array gas sensor

Also Published As

Publication number Publication date
KR102534577B1 (en) 2023-05-18
JP6731710B2 (en) 2020-07-29
KR20180048702A (en) 2018-05-10
JP2017049057A (en) 2017-03-09

Similar Documents

Publication Publication Date Title
WO2017038889A1 (en) Gas analysis system and gas analysis method
WO2020173099A1 (en) Formaldehyde electrochemical sensing detection apparatus, calibration method, calibration apparatus, detection method, and purifier
KR100570105B1 (en) Odor measuring apparatus
WO2017162107A1 (en) Discrimination method and test method for detection of metal classification and system thereof
GB2499842A (en) Temperature regulated multiple gas sensor
WO2020251931A8 (en) Gas sensor with separate contaminant detection element
US20150308920A1 (en) Adaptive baseline damage detection system and method
JP2021107829A5 (en)
US10690581B2 (en) Infrared thermographic porosity quantification in composite structures
KR20110063442A (en) Method for capturing measurement values and displaying measurement values
KR101896157B1 (en) Method for controlling sensor based on statistical process control
KR102502952B1 (en) Method and apparatus for sensing data based on stats analysis
KR102384742B1 (en) System and method for detecting anomality using sensor data
CN114730184A (en) Computer system and method for estimating changes in fugitive emissions
US10935565B2 (en) Detecting contamination of a pressure sensor based on cross-sensitivity to acceleration
JPWO2021130897A5 (en) Analysis device, analysis method and analysis program
JP2016017937A (en) Gas detection method and gas detector
US20220003732A1 (en) Information processing apparatus, sensor operation optimization method, and program
CN116448942A (en) Gas concentration detection method, electronic device, and computer-readable storage medium
US11549924B2 (en) Methane sensor automatic baseline calibration
JP3174186B2 (en) Gas identification device
JP6842336B2 (en) Gas type identification method and identification device and gas concentration measurement method
RU2017129116A (en) SYSTEM AND METHOD FOR MEASURING THE WAY LENGTH USING A POCKET ELECTRONIC DEVICE
US20140309946A1 (en) Data processing device for gas chromatograph, data processing method, and recording medium that stores data processing program
CN113655093B (en) Gas concentration detection method, device, equipment and medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187007036

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16841919

Country of ref document: EP

Kind code of ref document: A1