WO2017038646A1 - Aerogel composite, and heat-insulating material - Google Patents

Aerogel composite, and heat-insulating material Download PDF

Info

Publication number
WO2017038646A1
WO2017038646A1 PCT/JP2016/074868 JP2016074868W WO2017038646A1 WO 2017038646 A1 WO2017038646 A1 WO 2017038646A1 JP 2016074868 W JP2016074868 W JP 2016074868W WO 2017038646 A1 WO2017038646 A1 WO 2017038646A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
airgel
silica particles
airgel composite
mass
Prior art date
Application number
PCT/JP2016/074868
Other languages
French (fr)
Japanese (ja)
Inventor
知里 吉川
寛之 泉
智彦 小竹
正人 宮武
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2017537813A priority Critical patent/JP6288382B2/en
Publication of WO2017038646A1 publication Critical patent/WO2017038646A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/158Purification; Drying; Dehydrating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/16Preparation of silica xerogels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes

Definitions

  • the present disclosure relates to an airgel composite and a heat insulating material.
  • Silica airgel is known as a material having low thermal conductivity and heat insulation. Silica airgel is useful as a functional material having excellent functionality (such as heat insulation), unique optical characteristics, and unique electrical characteristics. Silica airgel is used, for example, as an electronic substrate material that utilizes the ultra-low dielectric constant characteristics of silica airgel, a heat-insulating material that utilizes the high thermal insulation property of silica airgel, and a light-reflecting material that utilizes the ultra-low refractive index of silica airgel. ing.
  • a supercritical drying method in which a gel-like compound (alcogel) obtained by hydrolyzing and polymerizing alkoxysilane is dried under supercritical conditions of a dispersion medium.
  • an alcogel and a dispersion medium solvent used for drying
  • the dispersion medium is applied to the supercritical fluid by applying a temperature and pressure above its critical point to form a supercritical fluid. It is a method of removing the solvent.
  • the supercritical drying method requires a high-pressure process, capital investment is required for a special apparatus that can withstand supercriticality, and much labor and time are required.
  • a technique for drying alcogel using a general-purpose method that does not require a high-pressure process has been proposed.
  • a method of improving the strength of the resulting alcogel by using a monoalkyltrialkoxysilane and a tetraalkoxysilane in combination at a specific ratio as a gel material and drying at normal pressure is known.
  • the gel tends to contract due to stress caused by the capillary force inside the alcogel.
  • the obtained airgel is poor in handling and large in size. Because it is difficult, there is a problem in productivity. For example, the agglomerated airgel obtained by the above process may be broken simply by trying to lift it by hand. This is presumably due to the fact that the density of the airgel is low and that the airgel has a pore structure in which fine particles of about 10 nm are weakly connected.
  • the present disclosure has been made in view of the above circumstances, and an object thereof is to provide an airgel composite excellent in heat insulation and flexibility.
  • the present disclosure also provides a thermal insulation comprising such an airgel composite.
  • the present disclosure provides an airgel composite containing an airgel component and hollow silica particles.
  • the airgel composite of the present disclosure is excellent in heat insulation and flexibility, unlike the airgel obtained by the prior art.
  • the airgel composite can have a three-dimensional network skeleton formed by an airgel component and hollow silica particles, and pores. Thereby, it becomes easy to improve heat insulation and a softness
  • the present disclosure also provides an airgel composite containing hollow silica particles as a component constituting a three-dimensional network skeleton.
  • Such an airgel composite is excellent in heat insulation and flexibility.
  • the present disclosure is also selected from the group consisting of hollow silica particles, a silicon compound having a hydrolyzable functional group or a condensable functional group, and a hydrolysis product of the silicon compound having the hydrolyzable functional group.
  • the airgel composite is a dried product of a wet gel that is a condensate of a sol containing at least one of the above. The airgel composite thus obtained is excellent in heat insulation and flexibility.
  • the above-described airgel composite also includes hollow silica particles, a silicon compound having a hydrolyzable functional group or a condensable functional group, and a hydrolysis product of the silicon compound having the hydrolyzable functional group. It may be a dried product of a wet gel that is a condensate of a sol containing at least one selected from the group consisting of:
  • the silicon compound may include a polysiloxane compound having a hydrolyzable functional group or a condensable functional group.
  • the average primary particle diameter of the hollow silica particles can be 1 nm to 100 ⁇ m. Thereby, it becomes easy to improve heat insulation and a softness
  • the hollow silica particles can have a spherical shape. Thereby, aggregation in a sol is easy to be suppressed, and further excellent heat insulation and flexibility can be achieved.
  • the hollow silica particles may be at least one selected from the group consisting of fused silica particles, fumed silica particles, and colloidal silica particles. Thereby, the further outstanding heat insulation and softness
  • the compression elastic modulus at 25 ° C. of the airgel composite according to the present disclosure can be 3 MPa or less.
  • the present disclosure further provides a heat insulating material including the airgel composite.
  • the heat insulating material according to the present disclosure exhibits excellent heat insulating properties and excellent flexibility that is difficult to achieve with conventional heat insulating materials because the airgel composite has excellent heat insulating properties and flexibility. Can do.
  • an airgel composite excellent in heat insulation and flexibility can be provided. That is, while exhibiting excellent heat insulation properties and excellent flexibility, it is possible to provide an airgel composite that can be handled and improved in size and can be increased in productivity. .
  • flexibility has the possibility of being utilized for various uses.
  • the present disclosure can also provide a heat insulating material including the above-described airgel composite and having excellent heat insulating properties and flexibility.
  • an important point according to the present disclosure is that it becomes easier to control heat insulation and flexibility than conventional aerogels. This was not possible with conventional aerogels that required sacrificing thermal insulation to obtain flexibility or sacrificing flexibility to obtain thermal insulation.
  • excellent in heat insulation and flexibility does not necessarily mean that both numerical values representing both characteristics are high. For example, “excellent flexibility while maintaining good heat insulation” , “Excellent thermal insulation while maintaining good flexibility” and the like.
  • a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value of a numerical range in a certain step may be replaced with the upper limit value or the lower limit value of a numerical range in another step.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • “A or B” only needs to include either A or B, and may include both.
  • the materials exemplified in the present specification can be used singly or in combination of two or more unless otherwise specified.
  • the content of each component in the composition means the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition. means.
  • the obtained low-density dried gel is referred to as an aerogel regardless of the drying method of the wet gel.
  • the airgel means “a gel composed of a microporous solid whose dispersed phase is a gas”, which is an aerogel in a broad sense, that is, “Gel compressed of a microporous solid in which the dispersed phase is a gas”. To do.
  • the inside of an airgel has a network-like fine structure, and has a cluster structure in which airgel particles of about 2 to 20 nm (particles constituting the airgel) are bonded. Between the skeletons formed by the clusters, there are fine pores less than 200 nm, and a three-dimensionally fine porous structure is formed.
  • the airgel in this embodiment is a silica airgel which has a silica as a main component.
  • the silica airgel include so-called organic-inorganic hybrid silica airgel into which an organic group (such as a methyl group) or an organic chain is introduced.
  • the airgel composite of the present embodiment has a cluster structure that is a feature of the above-mentioned airgel, even though hollow silica particles are complexed in the airgel, and has a three-dimensionally fine porous structure. is doing.
  • the airgel composite of this embodiment contains an airgel component and hollow silica particles.
  • the same concept is not necessarily meant, but the airgel composite of the present embodiment is expressed as containing hollow silica particles as a component constituting the three-dimensional network skeleton. It is also possible to do.
  • the airgel composite of this embodiment is excellent in heat insulation and flexibility as described later. In particular, since the flexibility is excellent, the handling property as an airgel composite is improved and the size can be increased, so that the productivity can be increased. In addition, such an airgel composite is obtained by making hollow silica particles exist in the airgel production environment.
  • the merit by making hollow silica particles exist is not only that the heat insulation property and flexibility of the composite itself can be improved, but also shortening the time of the wet gel generation step described later, or from the washing and solvent replacement step to the drying step. In some cases, simplification is possible. In addition, shortening of the time of this process and simplification of a process are not necessarily calculated
  • the airgel component means a silicone component constituting the airgel composite
  • the hollow silica particle means a silica particle having a hollow structure.
  • the silica particle having a hollow structure is a particle in which the outer shell of the particle has a pore structure containing silica, and the inside (inner side than the outer shell) is hollow.
  • the hollow structure is sometimes called a balloon structure, the particles are also called balloon silica.
  • the airgel component may be in an indeterminate form such as a film or may be in the form of particles (aerogel particles).
  • the airgel component since the airgel component is in various forms and exists between the hollow silica particles, it is presumed that flexibility is imparted to the skeleton of the composite.
  • examples of the composite form of the airgel component and the hollow silica particles include an aspect in which an amorphous airgel component is interposed between the hollow silica particles.
  • the airgel component serves as a binder.
  • the airgel composite can have a three-dimensional network skeleton composed of hollow silica particles and an airgel component (silicone component), and the specific mode (form) is not particularly limited.
  • the airgel component may be in the form of a clear particle as shown in FIG.
  • the mechanism by which such various aspects occur in the airgel composite of the present embodiment is not necessarily clear, but the present inventor speculates that the generation rate of the airgel component in the gelation process is involved.
  • the production rate of the airgel component tends to vary by varying the number of silanol groups in the hollow silica particles.
  • the production rate of the airgel component also tends to fluctuate by changing the pH of the system.
  • the aspect of the airgel composite (size, shape, etc. of the three-dimensional network skeleton) can be controlled by adjusting the size, shape, silanol group number, pH of the system, etc. of the hollow silica particles. Therefore, it is considered that the density, porosity, etc. of the airgel composite can be controlled, and the heat insulating property and flexibility of the airgel composite can be controlled.
  • the three-dimensional network skeleton of the airgel composite may be composed of only one kind of the various aspects described above, or may be composed of two or more kinds of aspects.
  • FIG. 1 the airgel composite of the present embodiment will be described using FIG. 1 as an example.
  • the present disclosure is not limited to the aspect of FIG.
  • the following description can be referred to as appropriate.
  • FIG. 1 is a diagram schematically illustrating a fine structure of an airgel composite according to an embodiment of the present disclosure.
  • the airgel composite 10 includes a three-dimensional network skeleton formed by three-dimensionally randomly connecting airgel particles 1 constituting an airgel component partially through hollow silica particles 2. And pores 3 surrounded by the skeleton.
  • the hollow silica particles 2 are interposed between the airgel particles 1 and function as a skeleton support that supports the three-dimensional network skeleton. Therefore, it is thought that by having such a structure, moderate strength is imparted to the airgel while maintaining the heat insulation and flexibility as the airgel.
  • the airgel composite may have a three-dimensional network skeleton formed by three-dimensionally connecting hollow silica particles via the airgel particles.
  • the hollow silica particles may be covered with airgel particles.
  • the said airgel particle (aerogel component) is comprised from a silicon compound, it is guessed that the affinity to a hollow silica particle is high. Therefore, in this embodiment, it is considered that the hollow silica particles were successfully introduced into the three-dimensional network skeleton of the airgel. In this respect, it is considered that the silanol groups of the hollow silica particles also contribute to the affinity between them.
  • the airgel particle 1 is considered to be in the form of secondary particles composed of a plurality of primary particles, and is generally spherical.
  • the airgel particle 1 may have an average particle size (that is, a secondary particle size) of 2 nm or more, may be 5 nm or more, and may be 10 nm or more.
  • the average particle diameter may be 50 ⁇ m or less, may be 2 ⁇ m or less, and may be 200 nm or less. That is, the average particle diameter can be 2 nm to 50 ⁇ m, and can be 5 nm to 2 ⁇ m, or 10 nm to 200 nm.
  • an airgel composite having excellent flexibility can be easily obtained.
  • the average particle diameter of the primary particles constituting the airgel particles 1 can be set to 0.1 nm to 5 ⁇ m and 0.5 nm to 200 nm from the viewpoint of easy formation of secondary particles having a low density porous structure. It may be 1 nm to 20 nm.
  • the form of the hollow silica particles used for producing the airgel composite is not particularly limited, and examples thereof include at least one selected from the group consisting of fused silica particles, fumed silica particles, and colloidal silica particles.
  • the hollow silica particles for example, the product name “Thruria” of JGC Catalysts & Chemicals Co., Ltd., the product name “Sirinax” of Nittetsu Mining Co., Ltd. and the like can be obtained commercially.
  • shirasu balloon made from shirasu for example, “Winlite”, product name of Axes Chemical Co., Ltd., SiO 2 content 75 to 77 mass%) can be used as the hollow silica particles.
  • the pH of the slurry in which the colloidal silica particles are dispersed in a solvent is preferably 8.0 or less. This facilitates control of the gelation reaction when producing the airgel composite.
  • the solvent in which colloidal silica particles are dispersed can be used without any particular limitation.
  • the solvent include water, alcohol, hexane, benzene, and toluene.
  • the lower limit of the refractive index of the hollow silica particles which is an index of the flexibility, that is, the ratio of the shell in the hollow silica particles, can be 1.20 or more from the viewpoint of toughness, and is 1.25 or more. It may be 1.30 or more.
  • the upper limit of the refractive index of the hollow silica particles can be 1.50 or less, may be 1.45 or less, and may be 1.40 or less. That is, the refractive index of the hollow silica particles can be 1.20 to 1.50, may be 1.25 to 1.45, and may be 1.30 to 1.40.
  • the shape of the hollow silica particles 2 is not particularly limited, and examples thereof include a spherical shape, an eyebrows type, and an association type.
  • the use of spherical particles as the hollow silica particles 2 makes it easy to suppress aggregation in the sol. Since it becomes easy to impart an appropriate strength to the airgel composite and it becomes easy to obtain an airgel composite having excellent shrinkage resistance during drying, the average primary particle diameter of the hollow silica particles can be 1 nm or more, and 5 nm. The above may be sufficient and 10 nm or more may be sufficient.
  • the average primary particle diameter of the hollow silica particles can be 100 ⁇ m or less, and is 70 ⁇ m or less. Or 50 ⁇ m or less. That is, the average primary particle diameter of the hollow silica particles 2 can be 1 nm to 100 ⁇ m, 5 nm to 70 ⁇ m, or 10 nm to 50 ⁇ m.
  • the surface structure of the hollow silica particles is not particularly limited, and hollow silica particles in which silanol groups present on the surface are not modified, or hollow silica particles in which some or all of the silanol groups are modified with a cation group, an anion group, a nonion group, or the like.
  • hollow silica particles in which some or all of the silanol groups are substituted with alkoxy groups, hydroxyalkyl groups, or the like can also be used.
  • the airgel particle 1 (aerogel component) and the hollow silica particle 2 are bonded in the form of hydrogen bonding and / or chemical bonding.
  • hydrogen bonds and / or chemical bonds are considered to be formed by the silanol groups and / or reactive groups other than the silanol groups of the airgel particles 1 (aerogel component) and the silanol groups of the hollow silica particles 2. Therefore, it is thought that moderate strength is easily imparted to the airgel when the bonding mode is chemical bonding.
  • the particles to be combined with the airgel component are not limited to hollow silica particles, and inorganic particles or organic particles having a silanol group on the particle surface can also be used.
  • the number of silanol groups per gram of the hollow silica particles 2 can be 10 ⁇ 10 18 pieces / g or more, may be 50 ⁇ 10 18 pieces / g or more, and is 100 ⁇ 10 18 pieces / g or more. May be.
  • the number of silanol groups can be 10000 ⁇ 10 18 pieces / g or less, 8000 ⁇ 10 18 pieces / g or less, or 7000 ⁇ 10 18 pieces / g or less. That is, the number of silanol groups can be 10 ⁇ 10 18 to 10000 ⁇ 10 18 pcs / g, 50 ⁇ 10 18 to 8000 ⁇ 10 18 pcs / g, or 100 ⁇ 10 18 to 7000.
  • X10 18 pieces / g may be sufficient.
  • the number of silanol groups per gram of the hollow silica particles 2 is 10 ⁇ 10 18 pieces / g or more, the hollow silica particles 2 can have better reactivity with the airgel particles 1 (aerogel component), and have a more appropriate strength. Since it is easy to give to a composite, it becomes easy to obtain the airgel composite which is excellent in shrink resistance.
  • the number of silanol groups is 10000 ⁇ 10 18 / g or less, it is easy to suppress abrupt gelation at the time of sol preparation, and a homogeneous airgel composite is easily obtained.
  • the average particle size of the particles is determined using an airgel composite using a scanning electron microscope (hereinafter abbreviated as “SEM”). It can be obtained by directly observing the cross section of the body.
  • SEM scanning electron microscope
  • the diameter here means the diameter when the cross section of the skeleton forming the three-dimensional network skeleton is regarded as a circle.
  • the diameter when the cross section is regarded as a circle is the diameter of the circle when the area of the cross section is replaced with a circle having the same area.
  • the average particle diameter the diameter of a circle is obtained for 100 particles, and the average is taken.
  • the average particle diameter can be measured from the raw material.
  • the biaxial average primary particle diameter is calculated as follows from the result of observing 20 arbitrary particles by SEM. That is, in the case of colloidal silica particles having a solid concentration of 5 to 40% by mass normally dispersed in water, for example, a chip with a 2 cm square wafer with a pattern wiring is immersed in the dispersion of colloidal silica particles for about 30 seconds. Thereafter, the chip is rinsed with pure water for about 30 seconds and dried by nitrogen blowing. Thereafter, the chip is placed on a sample stage for SEM observation, an acceleration voltage of 10 kV is applied, the hollow silica particles are observed at a magnification of 100,000, and an image is taken.
  • the average of the particle diameters of these particles is defined as the average particle diameter.
  • the selected silica particles have a shape as shown in FIG. 2, a rectangle (circumscribed rectangle L) that circumscribes the hollow silica particles 2 and has the longest side is guided.
  • the long side of the circumscribed rectangle L is X
  • the short side is Y
  • the biaxial average primary particle diameter is calculated as (X + Y) / 2, and is defined as the particle diameter of the particle.
  • the content of the airgel component contained in the airgel composite can be easily imparted with an appropriate strength to the airgel composite, it can be 4 parts by mass or more with respect to 100 parts by mass of the total amount of the airgel composite. It may be greater than or equal to parts by mass. Since the said content becomes easy to acquire better heat insulation, it can be 25 mass parts or less with respect to 100 mass parts of total amounts of an airgel composite, and may be 20 mass parts or less. That is, the content of the airgel component contained in the airgel composite can be 4 to 25 parts by mass with respect to 100 parts by mass of the total amount of the airgel composite, but may be 10 to 20 parts by mass.
  • the content of the hollow silica particles contained in the airgel composite can easily be imparted with a more appropriate strength to the airgel composite, and therefore can be 1 part by mass or more with respect to 100 parts by mass of the total amount of the airgel composite. It may be 3 parts by mass or more.
  • the content can be 25 parts by mass or less, or 15 parts by mass or less, because it is easy to suppress the solid heat conduction of the hollow silica particles. That is, the content of the hollow silica particles contained in the airgel composite can be 1 to 25 parts by mass with respect to 100 parts by mass of the total amount of the airgel composite, but may be 3 to 15 parts by mass.
  • the airgel composite may further contain other components such as carbon graphite, an aluminum compound, a magnesium compound, a silver compound, and a titanium compound for the purpose of suppressing heat radiation.
  • the content of other components is not particularly limited, but can be 1 to 5 parts by mass with respect to 100 parts by mass of the total amount of the airgel complex from the viewpoint of sufficiently securing the desired effect of the airgel complex.
  • the airgel composite of the present embodiment includes hollow silica particles, a silicon compound having a hydrolyzable functional group or a condensable functional group (in the molecule), and a silicon compound having the hydrolyzable functional group. It may be a dried product of a wet gel that is a condensate of a sol containing at least one selected from the group consisting of hydrolysis products. That is, the airgel composite of this embodiment includes hollow silica particles, a silicon compound having a hydrolyzable functional group or a condensable functional group (in the molecule), and silicon having the hydrolyzable functional group.
  • generated from the sol containing at least 1 type selected from the group which consists of a hydrolysis product of a compound can be obtained by drying.
  • the condensate may be obtained by a condensation reaction of a hydrolysis product obtained by hydrolysis of a silicon compound having a hydrolyzable functional group, and is not a functional group obtained by hydrolysis. It may be obtained by a condensation reaction of a silicon compound having a group.
  • the silicon compound may have at least one of a hydrolyzable functional group and a condensable functional group, and may have both a hydrolyzable functional group and a condensable functional group.
  • each airgel composite described later includes hollow silica particles, a silicon compound having a hydrolyzable functional group or a condensable functional group, and a silicon compound having the hydrolyzable functional group.
  • a wet gel dried product obtained by drying a wet gel generated from the sol), which is a condensate of a sol containing at least one selected from the group consisting of hydrolysis products, Also good.
  • the airgel composite of the present embodiment can contain polysiloxane having a main chain including a siloxane bond (Si—O—Si).
  • the airgel composite may have the following M unit, D unit, T unit or Q unit as a structural unit.
  • R represents an atom (hydrogen atom or the like) or an atomic group (alkyl group or the like) bonded to a silicon atom.
  • the M unit is a unit composed of a monovalent group in which a silicon atom is bonded to one oxygen atom.
  • the D unit is a unit composed of a divalent group in which a silicon atom is bonded to two oxygen atoms.
  • the T unit is a unit composed of a trivalent group in which a silicon atom is bonded to three oxygen atoms.
  • the Q unit is a unit composed of a tetravalent group in which a silicon atom is bonded to four oxygen atoms. Information on the content of these units can be obtained by Si-NMR.
  • Examples of the hydrolyzable functional group include an alkoxy group.
  • Examples of the condensable functional group include a hydroxyl group, a silanol group, a carboxyl group, and a phenolic hydroxyl group.
  • the hydroxyl group may be contained in a hydroxyl group-containing group such as a hydroxyalkyl group.
  • Each of the hydrolyzable functional group and the condensable functional group may be used alone or in admixture of two or more.
  • the silicon compound can include a silicon compound having an alkoxy group as a hydrolyzable functional group, and can also include a silicon compound having a hydroxyalkyl group as a condensable functional group.
  • the silicon compound can have at least one selected from the group consisting of an alkoxy group, a silanol group, a hydroxyalkyl group, and a polyether group from the viewpoint of improving the flexibility of the airgel composite.
  • the silicon compound can have at least one selected from the group consisting of an alkoxy group and a hydroxyalkyl group from the viewpoint of improving the compatibility of the sol.
  • the number of carbon atoms of each of the alkoxy group and the hydroxyalkyl group can be 1 to 6, and the flexibility of the airgel composite is improved. It may be 2 to 4 from the viewpoint of further improvement.
  • the alkoxy group include a methoxy group, an ethoxy group, and a propoxy group.
  • the hydroxyalkyl group include a hydroxymethyl group, a hydroxyethyl group, and a hydroxypropyl group.
  • the silicon compound having a hydrolyzable functional group or a condensable functional group a silicon compound (silicon compound) other than the polysiloxane compound described later can be used. That is, the airgel composite of this embodiment includes hollow silica particles, a silicon compound (excluding a polysiloxane compound) having a hydrolyzable functional group or a condensable functional group (inside the molecule), and the hydrolysis Wet gel dried product which is a condensate of sol containing at least one compound selected from the group consisting of hydrolysis products of silicon compounds having functional functional groups (hereinafter sometimes referred to as “silicon compound group”) It may be.
  • the number of silicon atoms in the molecule of the silicon compound can be 1 or 2.
  • the silicon compound having a hydrolyzable functional group is not particularly limited, and examples thereof include alkyl silicon alkoxides.
  • the number of hydrolyzable functional groups may be 3 or less, or 2 to 3.
  • the alkyl silicon alkoxide include monoalkyltrialkoxysilane, monoalkyldialkoxysilane, dialkyldialkoxysilane, monoalkylmonoalkoxysilane, dialkylmonoalkoxysilane and trialkylmonoalkoxysilane.
  • Examples of the alkyl silicon alkoxide include methyltrimethoxysilane, methyldimethoxysilane, dimethyldimethoxysilane, and ethyltrimethoxysilane.
  • the silicon compound having a condensable functional group is not particularly limited.
  • silane tetraol, methyl silane triol, dimethyl silane diol, phenyl silane triol, phenyl methyl silane diol, diphenyl silane diol, n-propyl silane triol examples include hexyl silane triol, octyl silane triol, decyl silane triol, and trifluoropropyl silane triol.
  • a silicon compound having a hydrolyzable functional group or a condensable functional group is a reactive group different from the hydrolyzable functional group and the condensable functional group (hydrolyzable functional group and condensable functional group). It may further have a functional group (not applicable).
  • the reactive group include an epoxy group, a mercapto group, a glycidoxy group, a vinyl group, an acryloyl group, a methacryloyl group, and an amino group.
  • the epoxy group may be contained in an epoxy group-containing group such as a glycidoxy group.
  • the number of hydrolyzable functional groups is 3 or less, and silicon compounds having reactive groups include vinyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3 -Methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, N-phenyl-3-aminopropyl Trimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, vinyltrimethoxysilane and the like can also be used.
  • vinylsilane triol 3-glycidoxypropylsilanetriol, 3-glycidoxypropylmethylsilanediol, 3-methacryloxypropylsilanetriol, 3-methacryloxypropylmethylsilanediol, 3-acryloxypropylsilanetriol, 3-mercaptopropylsilanetriol, 3-mercaptopropylmethylsilanediol, N-phenyl-3-aminopropylsilanetriol, N-2- (aminoethyl ) -3-Aminopropylmethylsilanediol and the like can also be used.
  • Bistrimethoxysilylmethane, bistrimethoxysilylethane, bistrimethoxysilylhexane, etc. can be used as the silicon compound having 3 or less hydrolyzable functional groups at the molecular terminals.
  • Each of the hydrolyzable functional group or the silicon compound having a condensable functional group (excluding the polysiloxane compound) and the hydrolyzate of the silicon compound having the hydrolyzable functional group either alone or 2 You may mix and use a kind or more.
  • the silicon compound can include a polysiloxane compound having a hydrolyzable functional group or a condensable functional group. That is, the sol containing the silicon compound can further contain at least one selected from the group consisting of a polysiloxane compound having a reactive group in the molecule and a hydrolysis product of the polysiloxane compound.
  • the airgel composite of the present embodiment includes hollow silica particles, a polysiloxane compound having a hydrolyzable functional group or a condensable functional group (in the molecule), and the polysiloxane having the hydrolyzable functional group.
  • a sol containing at least one compound selected from the group consisting of a hydrolysis product of a compound (polysiloxane compound in which the hydrolyzable functional group is hydrolyzed) hereinafter sometimes referred to as “polysiloxane compound group”. It may be a dried product of a wet gel which is a condensate.
  • the airgel composite of this embodiment has hollow silica particles, a polysiloxane compound having a hydrolyzable functional group or a condensable functional group (in the molecule), and the hydrolyzable functional group. It may be obtained by drying a wet gel produced from a sol containing at least one selected from the group consisting of hydrolysis products of polysiloxane compounds.
  • the functional group in the polysiloxane compound group is not particularly limited, but may be a group that reacts with the same functional group or reacts with another functional group.
  • Examples of the hydrolyzable functional group include an alkoxy group.
  • Examples of the condensable functional group include a hydroxyl group, a silanol group, a carboxyl group, and a phenolic hydroxyl group.
  • the hydroxyl group may be contained in a hydroxyl group-containing group such as a hydroxyalkyl group.
  • the polysiloxane compound having a hydrolyzable functional group or a condensable functional group is different from the above-mentioned reactive group (hydrolyzable functional group and condensable functional group).
  • These polysiloxane compounds having a functional group and a reactive group may be used alone or in combination of two or more.
  • examples of the group that improves the flexibility of the airgel composite include an alkoxy group, a silanol group, and a hydroxyalkyl group.
  • an alkoxy group and a hydroxyalkyl group Can further improve the compatibility of the sol.
  • the number of carbon atoms of the alkoxy group and hydroxyalkyl group can be 1 to 6, but the flexibility of the airgel composite is not limited. It may be 2 to 4 from the viewpoint of further improving.
  • Examples of the polysiloxane compound having a hydroxyalkyl group include compounds having a structure represented by the following general formula (A).
  • R 1a represents a hydroxyalkyl group
  • R 2a represents an alkylene group
  • R 3a and R 4a each independently represents an alkyl group or an aryl group
  • n represents an integer of 1 to 50.
  • examples of the aryl group include a phenyl group and a substituted phenyl group.
  • the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group.
  • two R 1a s may be the same or different, and similarly, two R 2a s may be the same or different.
  • two or more R 3a s may be the same or different, and similarly, two or more R 4a s may be the same or different.
  • examples of R 1a include a hydroxyalkyl group having 1 to 6 carbon atoms, and specific examples include a hydroxyethyl group and a hydroxypropyl group.
  • examples of R 2a include an alkylene group having 1 to 6 carbon atoms, and specific examples include an ethylene group and a propylene group.
  • R 3a and R 4a may each independently be an alkyl group having 1 to 6 carbon atoms or a phenyl group.
  • the alkyl group may be a methyl group.
  • n may be 2 to 30, and may be 5 to 20.
  • polysiloxane compound having the structure represented by the general formula (A) commercially available products can be used.
  • compounds such as X-22-160AS, KF-6001, KF-6002, KF-6003 and the like All of which are manufactured by Shin-Etsu Chemical Co., Ltd.
  • compounds such as XF42-B0970, Fluid OFOH 702-4% all manufactured by Momentive.
  • Examples of the polysiloxane compound having an alkoxy group include compounds having a structure represented by the following general formula (B).
  • R 1b represents an alkyl group, an alkoxy group or an aryl group
  • R 2b and R 3b each independently represent an alkoxy group
  • R 4b and R 5b each independently represent an alkyl group or an aryl group.
  • M represents an integer of 1 to 50.
  • examples of the aryl group include a phenyl group and a substituted phenyl group.
  • the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group.
  • two R 1b s may be the same or different
  • two R 2b s may be the same or different.
  • R 3b may be the same or different.
  • when m is an integer of 2 or more, two or more R 4b may be the same or different, and similarly, two or more R 5b may be the same. May be different.
  • examples of R 1b include an alkyl group having 1 to 6 carbon atoms and an alkoxy group having 1 to 6 carbon atoms. Specifically, a methyl group, a methoxy group, and an ethoxy group can be exemplified. Can be mentioned.
  • R 2b and R 3b may each independently be an alkoxy group having 1 to 6 carbon atoms.
  • alkoxy group examples include a methoxy group and an ethoxy group.
  • R 4b and R 5b may each independently be an alkyl group having 1 to 6 carbon atoms or a phenyl group.
  • alkyl group examples include a methyl group.
  • m can be 2 to 30, and may be 5 to 20.
  • the polysiloxane compound having the structure represented by the general formula (B) can be obtained by appropriately referring to the production methods reported in, for example, JP-A Nos. 2000-26609 and 2012-233110. Can do.
  • the polysiloxane compound having an alkoxy group may exist as a hydrolysis product in the sol.
  • the polysiloxane compound having an alkoxy group and the hydrolysis product are It may be mixed.
  • all of the alkoxy groups in the molecule may be hydrolyzed or partially hydrolyzed.
  • These polysiloxane compound groups may be used alone or in combination of two or more.
  • Content of silicon compounds contained in the sol (contents of silicon compounds having hydrolyzable functional groups or condensable functional groups (excluding polysiloxane compounds) contained in the sol because it becomes easier to obtain good reactivity.
  • the total content of hydrolysis products of the silicon compound having a hydrolyzable functional group can be 5 parts by mass or more with respect to 100 parts by mass of the total amount of the sol. It may be 12 parts by mass or more. Since it becomes easier to obtain good compatibility, the content of the silicon compound group can be 50 parts by mass or less with respect to 100 parts by mass of the total amount of the sol, and may be 30 parts by mass or less. It may be 25 parts by mass or less. That is, the content of the silicon compound group may be 5 to 50 parts by mass, may be 10 to 30 parts by mass, and 12 to 25 parts by mass with respect to 100 parts by mass of the sol. Also good.
  • the content of the polysiloxane compound group contained in the sol is 1 part by mass or more with respect to 100 parts by mass of the total amount of the sol. 3 parts by mass or more, 5 parts by mass or more, 7 parts by mass or more, or 10 parts by mass or more.
  • the content of the polysiloxane compound group can be 50 parts by mass or less with respect to 100 parts by mass of the total amount of the sol, and may be 30 parts by mass or less. 15 parts by mass or less. That is, the content of the polysiloxane compound group can be 1 to 50 parts by weight, or 3 to 50 parts by weight, or 5 to 50 parts by weight with respect to 100 parts by weight of the total sol. It may be 7 to 30 parts by mass, 10 to 30 parts by mass, or 10 to 15 parts by mass.
  • the total of the content of the silicon compound group and the content of the polysiloxane compound group can further easily obtain good reactivity, and therefore can be 5 parts by mass or more with respect to 100 parts by mass of the sol. It may be greater than or equal to 15 parts by weight. Since it becomes easier to obtain good compatibility, the sum of the contents can be 50 parts by mass or less, or 30 parts by mass or less, and 25 parts by mass with respect to 100 parts by mass of the sol. Or less. That is, the total content can be 5 to 50 parts by mass with respect to 100 parts by mass of the sol, 10 to 30 parts by mass, or 15 to 25 parts by mass. .
  • the ratio of the content of the silicon compound group to the content of the polysiloxane compound group may be 0.5: 1 to 4: 1. It may be ⁇ 2: 1, may be 2: 1 to 4: 1, and may be 3: 1 to 4: 1.
  • By setting the ratio of the content of these compounds to 0.5: 1 or more it becomes easier to obtain good compatibility.
  • By making the content ratio 4: 1 or less it becomes easier to further suppress the shrinkage of the gel.
  • the content of the hollow silica particles contained in the sol makes it easy to impart an appropriate strength to the airgel composite and makes it easy to obtain an airgel composite having excellent shrinkage resistance during drying. Therefore, the total amount of sol is 100 parts by mass. On the other hand, it can be 1 part by mass or more, may be 4 parts by mass or more, and may be 6 parts by mass or more. Since it becomes easy to suppress the solid heat conduction of the hollow silica particles and it becomes easy to obtain an airgel composite having excellent heat insulation, the content of the hollow silica particles can be 20 parts by mass or less, and 15 parts by mass or less. It may be 10 parts by mass or less. That is, the content of the hollow silica particles contained in the sol can be 1 to 20 parts by mass with respect to 100 parts by mass of the sol, but may be 4 to 15 parts by mass, A mass part may be sufficient.
  • Examples of the airgel component in the airgel composite of the present embodiment include the following modes. By adopting these aspects, it becomes easy to control the heat insulating property and flexibility of the airgel composite to a desired level. By employ
  • the airgel composite of the present embodiment can have a structure represented by the following general formula (1).
  • the airgel component which concerns on this embodiment can have a structure represented by the following general formula (1a) as a structure containing the structure represented by Formula (1).
  • the structures represented by the formulas (1) and (1a) can be introduced into the skeleton of the airgel component.
  • R 1 and R 2 each independently represent an alkyl group or an aryl group
  • R 3 and R 4 each independently represent an alkylene group.
  • examples of the aryl group include a phenyl group and a substituted phenyl group.
  • the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group.
  • p represents an integer of 1 to 50.
  • two or more R 1 s may be the same or different, and similarly, two or more R 2 s may be the same or different.
  • two R 3 s may be the same or different, and similarly, two R 4 s may be the same or different.
  • R 1 and R 2 may each independently be an alkyl group having 1 to 6 carbon atoms or a phenyl group. Examples of the alkyl group include a methyl group.
  • R 3 and R 4 may each independently be an alkylene group having 1 to 6 carbon atoms. Examples of the alkylene group include an ethylene group and a propylene group.
  • p can be 2 to 30, and can be 5 to 20.
  • the airgel composite of the present embodiment is an airgel composite having a ladder structure including a support portion and a bridge portion, and the airgel composite having a structure in which the bridge portion is represented by the following general formula (2). It may be.
  • a ladder structure as an airgel component
  • the polysiloxane compound having the structure represented by the general formula (B) By using the polysiloxane compound having the structure represented by the general formula (B), a ladder structure including a bridge portion having the structure represented by the general formula (2) is introduced into the skeleton of the airgel. be able to.
  • the “ladder structure” has two struts and bridges connecting the struts (having a so-called “ladder” form). It is.
  • the skeleton of the airgel composite may have a ladder structure, but the airgel composite may partially have a ladder structure.
  • R 5 and R 6 each independently represents an alkyl group or an aryl group, and b represents an integer of 1 to 50.
  • examples of the aryl group include a phenyl group and a substituted phenyl group.
  • examples of the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group.
  • b is an integer of 2 or more
  • two or more R 5 s may be the same or different, and similarly, two or more R 6 s are the same. Or different.
  • silsesquioxane is a polysiloxane having the above T unit as a structural unit, and has a composition formula: (RSiO 1.5 ) n .
  • Silsesquioxane can have various skeletal structures such as a cage type, a ladder type, and a random type.
  • the structure of the bridge portion is —O—, but in the airgel composite of this embodiment, the structure of the bridge portion is a structure (polysiloxane structure) represented by the general formula (2).
  • the airgel composite of this embodiment may further have a structure derived from silsesquioxane in addition to the structures represented by the general formulas (1) to (3).
  • R represents a hydroxy group, an alkyl group or an aryl group.
  • the ladder structure has the following general formula ( It may have a ladder structure represented by 3).
  • R 5 , R 6 , R 7 and R 8 each independently represents an alkyl group or an aryl group
  • a and c each independently represents an integer of 1 to 3000
  • b is 1 to 50 Indicates an integer.
  • examples of the aryl group include a phenyl group and a substituted phenyl group.
  • the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group.
  • b is an integer of 2 or more
  • two or more R 5 s may be the same or different
  • similarly, two or more R 6 s may be the same. May be different.
  • formula (3) when a is an integer of 2 or more, two or more R 7 s may be the same or different.
  • when c is an integer of 2 or more, 2 or more R 8 may be the same or different from each other.
  • R 5 , R 6 , R 7 and R 8 are: Each may be independently an alkyl group having 1 to 6 carbon atoms or a phenyl group. Examples of the alkyl group include a methyl group.
  • a and c can be independently 6 to 2000, and may be 10 to 1000.
  • b can be 2 to 30, and can be 5 to 20.
  • the airgel composite of the present embodiment can have a structure represented by the following general formula (4).
  • the airgel composite of the present embodiment contains silica particles and can have a structure represented by the following general formula (4).
  • R 9 represents an alkyl group.
  • alkyl group examples include alkyl groups having 1 to 6 carbon atoms, and specific examples include a methyl group.
  • the airgel composite of the present embodiment can have a structure represented by the following general formula (5).
  • the airgel composite of the present embodiment contains silica particles and can have a structure represented by the following general formula (5).
  • R 10 and R 11 each independently represent an alkyl group.
  • alkyl group examples include alkyl groups having 1 to 6 carbon atoms, and specific examples include a methyl group.
  • the airgel composite of this embodiment can have a structure represented by the following general formula (6).
  • the airgel composite of the present embodiment contains silica particles and can have a structure represented by the following general formula (6).
  • R 12 represents an alkylene group.
  • the alkylene group include an alkylene group having 1 to 10 carbon atoms, and specific examples include an ethylene group and a hexylene group.
  • the thermal conductivity at 25 ° C. under atmospheric pressure can be 0.03 W / m ⁇ K or less, or 0.025 W / m ⁇ K or less. It may be 02 W / m ⁇ K or less.
  • the thermal conductivity is 0.03 W / m ⁇ K or less, it is possible to obtain a heat insulating property higher than that of the polyurethane foam which is a high performance heat insulating material.
  • the lower limit value of the thermal conductivity is not particularly limited, but can be set to 0.01 W / m ⁇ K, for example.
  • Thermal conductivity can be measured by a steady method.
  • the thermal conductivity can be measured using, for example, a steady-state thermal conductivity measuring device “HFM436 Lambda” (manufactured by NETZSCH, product name, HFM436 Lambda is a registered trademark).
  • HFM436 Lambda manufactured by NETZSCH, product name, HFM436 Lambda is a registered trademark.
  • the outline of the measurement method of the thermal conductivity using the steady method thermal conductivity measuring device is as follows.
  • the airgel composite is processed into a size of 150 mm ⁇ 150 mm ⁇ 100 mm using a blade having a blade angle of about 20 to 25 degrees to obtain a measurement sample.
  • the recommended sample size in HFM436Lambda is 300 mm ⁇ 300 mm ⁇ 100 mm
  • the thermal conductivity when measured with the above sample size is the same value as the thermal conductivity when measured with the recommended sample size. Confirmed.
  • the measurement sample is shaped with a sandpaper of # 1500 or more as necessary. Then, before the thermal conductivity measurement, the measurement sample is dried at 100 ° C.
  • the measurement conditions are an atmospheric pressure and an average temperature of 25 ° C.
  • the measurement sample obtained as described above was sandwiched between the upper and lower heaters with a load of 0.3 MPa, the temperature difference ⁇ T was set to 20 ° C., and the guard sample was adjusted so as to obtain a one-dimensional heat flow.
  • the thermal resistance RS of a measurement sample is calculated
  • R S N ((T U ⁇ T L ) / Q) ⁇ R O
  • T U represents a measurement sample top surface temperature
  • T L represents the measurement sample lower surface temperature
  • R O represents the thermal contact resistance of the upper and lower interfaces
  • Q is shows the heat flux meter output.
  • N is a proportionality coefficient, and is obtained in advance using a calibration sample.
  • the compression elastic modulus at 25 ° C. can be 3 MPa or less, 2 MPa or less, 1 MPa or less, or 0.5 MPa or less. .
  • the compression elastic modulus is 3 MPa or less, it becomes easy to obtain an airgel composite having excellent handleability.
  • the lower limit value of the compression elastic modulus is not particularly limited, but may be 0.05 MPa, for example.
  • Compressive modulus can be measured using a small desktop testing machine “EZTest” (manufactured by Shimadzu Corporation, product name).
  • the outline of the measurement method such as compression modulus using a small tabletop testing machine is as follows.
  • the airgel composite is processed into a 7.0 mm square cube (die shape) to obtain a measurement sample.
  • the measurement sample is shaped with a sandpaper of # 1500 or more as necessary.
  • the measurement sample is dried at 100 ° C. for 30 minutes under atmospheric pressure using a constant temperature dryer “DVS402” (manufactured by Yamato Scientific Co., Ltd., product name).
  • the measurement sample is then transferred into a desiccator and cooled to 25 ° C. Thereby, a measurement sample for measuring the compression modulus is obtained.
  • a 500N load cell is used.
  • a stainless upper platen ( ⁇ 20 mm) and a lower platen plate ( ⁇ 118 mm) are used as a compression measurement jig.
  • a measurement sample is set between these jigs, compressed at a speed of 1 mm / min, and the displacement of the measurement sample size at 25 ° C. is measured. The measurement is terminated when a load exceeding 500 N is applied or when the measurement sample is destroyed.
  • the compressive strain ⁇ can be obtained from the following equation.
  • ⁇ d / d1
  • ⁇ d represents the displacement (mm) of the thickness of the measurement sample due to the load
  • d1 represents the thickness (mm) of the measurement sample before the load is applied.
  • the compressive stress ⁇ (MPa) can be obtained from the following equation.
  • F / A
  • F represents the compressive force (N)
  • A represents the cross-sectional area (mm 2 ) of the measurement sample before applying a load.
  • the compression elastic modulus E (MPa) can be obtained from the following equation in the compression force range of 0.1 to 0.2 N, for example.
  • E ( ⁇ 2 ⁇ 1 ) / ( ⁇ 2 ⁇ 1 )
  • ⁇ 1 indicates a compressive stress (MPa) measured at a compressive force of 0.1 N
  • ⁇ 2 indicates a compressive stress (MPa) measured at a compressive force of 0.2 N
  • ⁇ 1 indicates a compressive stress.
  • the compressive strain measured at ⁇ 1 is shown
  • ⁇ 2 shows the compressive strain measured at the compressive stress ⁇ 2 .
  • heat conductivity and compression elastic modulus can be suitably adjusted by changing the manufacturing conditions, raw materials, etc. of an airgel composite.
  • the manufacturing method of an airgel composite is demonstrated.
  • the manufacturing method of an airgel composite is not specifically limited, For example, it can manufacture with the following method.
  • the airgel composite of the present embodiment was obtained in the sol generation step, the wet gel generation step in which the sol obtained in the sol generation step was gelled and then aged to obtain a wet gel, and the wet gel generation step.
  • the wet gel can be produced by a production method mainly comprising a step of washing and (if necessary) replacing the solvent with a solvent and a drying step of drying the wet gel after washing and solvent substitution.
  • the “sol” is a state before the gelation reaction occurs, and in the present embodiment, the silicon compound (silicon compound group and / or polysiloxane compound group) and the hollow silica particles are in a solvent. Means dissolved or dispersed.
  • the “wet gel” means a gel solid in a wet state that contains a liquid medium but does not have fluidity.
  • generation process is a process of mixing the above-mentioned silicon compound and the solvent containing a hollow silica particle and / or a hollow silica particle, and making it hydrolyze and producing
  • an acid catalyst may be further added to the solvent in order to promote the hydrolysis reaction.
  • a surfactant, a thermohydrolyzable compound, or the like can be added to the solvent.
  • components such as carbon graphite, an aluminum compound, a magnesium compound, a silver compound, and a titanium compound may be added to the solvent for the purpose of suppressing heat radiation.
  • alcohols for example, water or a mixed solution of water and alcohols can be used.
  • alcohols include methanol, ethanol, n-propanol, 2-propanol, n-butanol, 2-butanol, and t-butanol.
  • alcohols having a low surface tension and a low boiling point in terms of reducing the interfacial tension with the gel wall include methanol, ethanol, 2-propanol and the like. You may use these individually or in mixture of 2 or more types.
  • the amount of alcohols can be 4 to 8 mol with respect to 1 mol of the total amount of silicon compounds (silicon compound group and polysiloxane compound group), but 4 to 6.5. It may be a mole or 4.5 to 6 mole.
  • the amount of alcohols 4 mol or more it becomes easier to obtain good compatibility, and by making the amount 8 mol or less, it becomes easier to suppress gel shrinkage.
  • the acid catalyst examples include hydrofluoric acid, hydrochloric acid, nitric acid, sulfuric acid, sulfurous acid, phosphoric acid, phosphorous acid, hypophosphorous acid, bromic acid, chloric acid, chlorous acid, hypochlorous acid, and other inorganic acids; acidic phosphoric acid Acidic phosphates such as aluminum, acidic magnesium phosphate and acidic zinc phosphate; organic carboxylic acids such as acetic acid, formic acid, propionic acid, oxalic acid, malonic acid, succinic acid, citric acid, malic acid, adipic acid and azelaic acid Etc. Among these, an organic carboxylic acid is mentioned as an acid catalyst which improves the water resistance of the airgel composite obtained more. Examples of the organic carboxylic acids include acetic acid, but may be formic acid, propionic acid, oxalic acid, malonic acid and the like. You may use these individually or in mixture of 2 or more types.
  • the addition amount of the acid catalyst can be 0.001 to 0.1 parts by mass with respect to 100 parts by mass of the total amount of the silicon compound.
  • a nonionic surfactant As the surfactant, a nonionic surfactant, an ionic surfactant, or the like can be used. You may use these individually or in mixture of 2 or more types.
  • a compound containing a hydrophilic part such as polyoxyethylene and a hydrophobic part mainly composed of an alkyl group or a compound containing a hydrophilic part such as polyoxypropylene can be used.
  • the compound containing a hydrophilic part such as polyoxyethylene and a hydrophobic part mainly composed of an alkyl group include polyoxyethylene nonyl phenyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene alkyl ether and the like.
  • the compound having a hydrophilic portion such as polyoxypropylene include polyoxypropylene alkyl ether, a block copolymer of polyoxyethylene and polyoxypropylene, and the like.
  • a cationic surfactant As the ionic surfactant, a cationic surfactant, an anionic surfactant, an amphoteric surfactant, or the like can be used.
  • the cationic surfactant include cetyltrimethylammonium bromide and cetyltrimethylammonium chloride.
  • the anionic surfactant include sodium dodecyl sulfonate.
  • amphoteric surfactants include amino acid surfactants, betaine surfactants, and amine oxide surfactants.
  • amino acid surfactants include acyl glutamic acid.
  • betaine surfactants include lauryldimethylaminoacetic acid betaine and stearyldimethylaminoacetic acid betaine.
  • the amine oxide surfactant include lauryl dimethylamine oxide.
  • surfactants have the effect of reducing the difference in chemical affinity between the solvent in the reaction system and the growing siloxane polymer and suppressing phase separation in the wet gel formation process described later. It is considered to be.
  • the amount of surfactant added depends on the type of surfactant or the type and amount of silicon compound (silicon compound group and polysiloxane compound group).
  • the total amount of silicon compound is 100 parts by mass.
  • the amount may be 1 to 100 parts by mass, and may be 5 to 60 parts by mass.
  • thermohydrolyzable compound is considered to generate a base catalyst by thermal hydrolysis to make the reaction solution basic and to promote the sol-gel reaction in the wet gel generation process described later. Accordingly, the thermohydrolyzable compound is not particularly limited as long as it can make the reaction solution basic after hydrolysis.
  • Urea formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N -Acid amides such as methylacetamide and N, N-dimethylacetamide; and cyclic nitrogen compounds such as hexamethylenetetramine.
  • urea is particularly easy to obtain the above-mentioned promoting effect.
  • the addition amount of the thermohydrolyzable compound is not particularly limited as long as it can sufficiently promote the sol-gel reaction in the wet gel generation step described later.
  • the amount added can be 1 to 200 parts by mass with respect to 100 parts by mass of the total amount of the silicon compound.
  • the added amount may be 2 to 150 parts by mass.
  • the hydrolysis in the sol production step depends on the type and amount of silicon compound, polysiloxane compound, hollow silica particles, acid catalyst, surfactant, etc. in the mixed solution, but for example, a temperature environment of 20 to 60 ° C.
  • the reaction may be performed for 10 minutes to 24 hours at a lower temperature, or for 5 minutes to 8 hours in a temperature environment of 50 to 60 ° C.
  • the temperature environment of the sol generation step may be adjusted to a temperature that suppresses hydrolysis of the thermohydrolyzable compound and suppresses gelation of the sol.
  • the temperature at this time may be any temperature as long as the hydrolysis of the thermally hydrolyzable compound can be suppressed.
  • the temperature environment of the sol production step can be 0 to 40 ° C., but may be 10 to 30 ° C.
  • the wet gel generation step is a step in which the sol obtained in the sol generation step is gelled and then aged to obtain a wet gel.
  • a base catalyst can be used to promote gelation.
  • Base catalysts include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, and cesium hydroxide; ammonium compounds such as ammonium hydroxide, ammonium fluoride, ammonium chloride, and ammonium bromide; sodium metaphosphate Basic sodium phosphates such as sodium pyrophosphate and sodium polyphosphate; allylamine, diallylamine, triallylamine, isopropylamine, diisopropylamine, ethylamine, diethylamine, triethylamine, 2-ethylhexylamine, 3-ethoxypropylamine, diisobutylamine, 3 -(Diethylamino) propylamine, di-2-ethylhexylamine, 3- (dibutylamino) propylamine, tetramethylethylenediamine, t-butylamine, sec Aliphatic amines such as butylamine, propylamine, 3- (
  • ammonium hydroxide (ammonia water) is excellent in that it has high volatility and does not easily remain in the airgel composite after drying, so that it is difficult to impair water resistance, and further, it is economical. You may use said base catalyst individually or in mixture of 2 or more types.
  • the dehydration condensation reaction and / or dealcoholization condensation reaction of the silicon compound (polysiloxane compound group and silicon compound group) and hollow silica particles in the sol can be promoted, and the sol can be further gelled. It can be done in a short time. Thereby, a wet gel with higher strength (rigidity) can be obtained.
  • aqueous ammonia has high volatility and hardly remains in the airgel composite
  • ammonia water as a base catalyst, an airgel composite with better water resistance can be obtained.
  • the addition amount of the base catalyst can be 0.5 to 5 parts by mass with respect to 100 parts by mass of the total amount of silicon compounds (polysiloxane compound group and silicon compound group), and may be 1 to 4 parts by mass. .
  • gelation can be performed in a shorter time.
  • the fall of water resistance can be suppressed more by making the addition amount of a base catalyst into 5 mass parts or less.
  • the gelation of the sol in the wet gel generation step may be performed in a sealed container so that the solvent and the base catalyst do not volatilize.
  • the gelation temperature can be 30 to 90 ° C, and may be 40 to 80 ° C. By setting the gelation temperature to 30 ° C. or higher, gelation can be performed in a shorter time, and a wet gel with higher strength (rigidity) can be obtained. Moreover, since it becomes easy to suppress volatilization of a solvent (especially alcohol) by making gelation temperature into 90 degrees C or less, it can gelatinize, suppressing volume shrinkage.
  • the aging in the wet gel generation step may be performed in a sealed container so that the solvent and the base catalyst do not volatilize.
  • the aging temperature can be, for example, 30 to 90 ° C., and may be 40 to 80 ° C.
  • the aging temperature can be, for example, 30 to 90 ° C. or higher, a wet gel with higher strength (rigidity) can be obtained, and by setting the aging temperature to 90 ° C. or lower, volatilization of the solvent (especially alcohols) can be easily suppressed. Therefore, it can be gelled while suppressing volume shrinkage.
  • gelation of the sol and subsequent aging may be performed in a series of operations.
  • the gelation time and the aging time differ depending on the gelation temperature and the aging temperature, in this embodiment, since the sol contains hollow silica particles, the gelation is particularly performed as compared with the conventional airgel manufacturing method. Time can be shortened. The reason is that the silanol groups and / or reactive groups other than the silanol groups of the silicon compound group and the polysiloxane compound group in the sol form hydrogen bonds and / or chemical bonds with the silanol groups of the hollow silica particles. I guess there is.
  • the gelation time can be, for example, 10 to 120 minutes, or 20 to 90 minutes.
  • the drying process can be simplified from the washing and solvent replacement process described later.
  • the total time of the gelation time and the aging time can be, for example, 4 to 480 hours, or 6 to 120 hours.
  • the gelation temperature and the aging temperature are increased within the above range, or the total time of the gelation time and the aging time is increased within the above range. May be. Further, in order to increase the density of the obtained airgel composite or to reduce the average pore diameter, the gelation temperature and the aging temperature are decreased within the above range, or the total time of the gelation time and the aging time is within the above range. It may be shortened within.
  • the washing and solvent replacement step is a step of washing the wet gel obtained by the wet gel generation step (washing step), and a step of replacing the washing liquid in the wet gel with a solvent suitable for the drying conditions (the drying step described later). It is a process which has (solvent substitution process).
  • the washing and solvent replacement step can be performed in a form in which only the solvent replacement step is performed without performing the step of washing the wet gel, but the impurities such as unreacted substances and by-products in the wet gel are reduced, and more From the viewpoint of enabling the production of a highly pure airgel composite, the wet gel may be washed.
  • the solvent replacement step is not necessarily essential as described later.
  • the wet gel obtained in the wet gel production step is washed.
  • cleaning can be repeatedly performed using water or an organic solvent, for example. At this time, washing efficiency can be improved by heating.
  • Organic solvents include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, acetone, methyl ethyl ketone, 1,2-dimethoxyethane, acetonitrile, hexane, toluene, diethyl ether, chloroform, ethyl acetate, tetrahydrofuran, methylene chloride , N, N-dimethylformamide, dimethyl sulfoxide, acetic acid, formic acid, and other various organic solvents can be used. You may use said organic solvent individually or in mixture of 2 or more types.
  • a low surface tension solvent can be used in order to suppress gel shrinkage due to drying.
  • low surface tension solvents generally have very low mutual solubility with water. Therefore, when using a low surface tension solvent in the solvent replacement step, examples of the organic solvent used in the washing step include hydrophilic organic solvents having high mutual solubility in both water and a low surface tension solvent. Note that the hydrophilic organic solvent used in the washing step can serve as a preliminary replacement for the solvent replacement step.
  • examples of hydrophilic organic solvents include methanol, ethanol, 2-propanol, acetone, and methyl ethyl ketone. From the economical point of view, methanol, ethanol, or methyl ethyl ketone may be used.
  • the amount of water or organic solvent used in the washing step can be an amount that can be sufficiently washed by replacing the solvent in the wet gel.
  • the amount can be 3 to 10 times the volume of the wet gel.
  • the washing can be repeated until the moisture content in the wet gel after washing is 10% by mass or less with respect to the silica mass.
  • the temperature environment in the washing step can be a temperature not higher than the boiling point of the solvent used for washing.
  • the temperature can be raised to about 30 to 60 ° C.
  • the solvent of the washed wet gel is replaced with a predetermined replacement solvent in order to suppress shrinkage in the drying step described later.
  • the replacement efficiency can be improved by heating.
  • Specific examples of the solvent for substitution include a low surface tension solvent described later in the drying step when drying is performed under atmospheric pressure at a temperature lower than the critical point of the solvent used for drying.
  • examples of the substitution solvent include ethanol, methanol, 2-propanol, dichlorodifluoromethane, carbon dioxide, and the like, or a mixture of two or more thereof.
  • Examples of the low surface tension solvent include a solvent having a surface tension at 20 ° C. of 30 mN / m or less. The surface tension may be 25 mN / m or less, or 20 mN / m or less.
  • Examples of the low surface tension solvent include pentane (15.5), hexane (18.4), heptane (20.2), octane (21.7), 2-methylpentane (17.4), 3- Aliphatic hydrocarbons such as methylpentane (18.1), 2-methylhexane (19.3), cyclopentane (22.6), cyclohexane (25.2), 1-pentene (16.0); Aromatic hydrocarbons such as (28.9), toluene (28.5), m-xylene (28.7), p-xylene (28.3); dichloromethane (27.9), chloroform (27.2) ), Carbon tetrachloride (26.9), 1-chloropropane (21.8),
  • the parenthesis indicates the surface tension at 20 ° C., and the unit is [mN / m].
  • aliphatic hydrocarbons hexane, heptane, etc.
  • a hydrophilic organic solvent such as acetone, methyl ethyl ketone, 1,2-dimethoxyethane
  • it can be used as the organic solvent in the washing step.
  • a solvent having a boiling point at normal pressure of 100 ° C. or less may be used because it is easy to dry in the drying step described later. You may use said solvent individually or in mixture of 2 or more types.
  • the amount of the solvent used in the solvent replacement step can be an amount that can sufficiently replace the solvent in the wet gel after washing.
  • the amount can be 3 to 10 times the volume of the wet gel.
  • the temperature environment in the solvent replacement step can be a temperature not higher than the boiling point of the solvent used for the replacement.
  • the temperature can be increased to about 30 to 60 ° C.
  • the solvent replacement step is not necessarily essential as described above.
  • the inferred mechanism is as follows. That is, conventionally, in order to suppress the shrinkage of the gel in the drying process, the solvent of the wet gel is replaced with a predetermined replacement solvent (a low surface tension solvent). By functioning as a support for the original network-like skeleton, the skeleton is supported, and the shrinkage of the gel in the drying process is suppressed. Therefore, it is considered that the gel can be directly subjected to the drying step without replacing the solvent used for washing. Thus, in this embodiment, the drying process can be simplified from the washing and solvent replacement process. However, this embodiment does not exclude performing the solvent substitution step at all.
  • the drying method is not particularly limited, and known atmospheric pressure drying, supercritical drying, or freeze drying can be used.
  • atmospheric drying or supercritical drying can be used from the viewpoint of easy production of a low-density airgel composite.
  • atmospheric pressure drying can be used.
  • the normal pressure means 0.1 MPa (atmospheric pressure).
  • the airgel composite of the present embodiment can be obtained by drying a wet gel that has been washed and solvent-substituted (if necessary) at a temperature below the critical point of the solvent used for drying under atmospheric pressure.
  • the drying temperature varies depending on the type of substituted solvent (the solvent used for washing if solvent substitution is not performed), but especially when drying at a high temperature increases the evaporation rate of the solvent and causes large cracks in the gel. In view of the above, it can be set to 20 to 150 ° C, and may be 60 to 120 ° C.
  • the drying time varies depending on the wet gel volume and the drying temperature, but can be 4 to 120 hours. In the present embodiment, it is also included in the atmospheric pressure drying to accelerate the drying by applying a pressure less than the critical point within a range not inhibiting the productivity.
  • the airgel composite of the present embodiment can also be obtained by supercritical drying a wet gel that has been washed and (if necessary) solvent-substituted.
  • Supercritical drying can be performed by a known method. Examples of the supercritical drying method include a method of removing the solvent at a temperature and pressure higher than the critical point of the solvent contained in the wet gel. Further, as a method of supercritical drying, all or part of the solvent contained in the wet gel is obtained by immersing the wet gel in liquefied carbon dioxide under conditions of, for example, about 20 to 25 ° C. and about 5 to 20 MPa. And carbon dioxide having a lower critical point than that of the solvent, and then removing carbon dioxide alone or a mixture of carbon dioxide and the solvent.
  • the airgel composite obtained by such normal pressure drying or supercritical drying may be further dried at 105 to 200 ° C. for about 0.5 to 2 hours under normal pressure. This makes it easier to obtain an airgel composite having a low density and having small pores. Additional drying may be performed at 150 to 200 ° C. under normal pressure.
  • the airgel composite of the present embodiment described as described above has excellent heat insulating properties and flexibility, which has been difficult to achieve with conventional airgel, by containing an airgel component and silica particles.
  • the particularly excellent flexibility has made it possible to form an airgel composite layer on a film-like support member, a fibrous support member and a foil-like support member, which have been difficult to achieve in the past.
  • the airgel composite of the present embodiment can be applied to a use as a heat insulating material in an architectural field, an automobile field, a home appliance, a semiconductor field, an industrial facility, and the like.
  • the airgel composite of this embodiment can be used as a coating additive, cosmetics, antiblocking agent, catalyst carrier, etc., in addition to its use as a heat insulating material.
  • the heat insulating material of the present embodiment includes the airgel composite described so far, and has high heat insulating properties and excellent flexibility.
  • the airgel composite obtained by the manufacturing method of the said airgel composite can be made into a heat insulating material as it is (processed into a predetermined shape as needed).
  • Example 1 Dispersion of hollow silica particles in an aqueous solution in which 187.5 parts by mass of water and 20.0 parts by mass of cetyltrimethylammonium bromide (manufactured by Wako Pure Chemical Industries, Ltd., hereinafter abbreviated as “CTAB”) as a cationic surfactant are mixed.
  • CTL cetyltrimethylammonium bromide
  • the obtained wet gel was immersed in a mixed solution of 1000.0 parts by mass of water and 1500.0 parts by mass of methanol, and washed at 60 ° C. for 3 hours. This washing operation was performed once while exchanging with 2500.0 parts by mass of new methanol.
  • the washed wet gel was immersed in 2500.0 parts by mass of methyl ethyl ketone, which is a low surface tension solvent, and solvent substitution was performed at 60 ° C. for 3 hours. This solvent replacement operation was performed twice while exchanging with new methyl ethyl ketone.
  • the washed and solvent-substituted wet gel was dried at 25 ° C. for 48 hours under normal pressure, and then further dried at 150 ° C. for 2 hours to obtain an airgel composite 1.
  • Example 2 Into an aqueous solution in which 208.8 parts by mass of water and 20.0 parts by mass of CTAB as a cationic surfactant are mixed, 191.7 parts by mass of a hollow silica particle dispersion (product name: Thruria A, manufactured by JGC Catalysts and Chemicals Co., Ltd.) Part, 60.0 parts by mass of MTMS as a silicon compound and 20.0 parts by mass of DMDMS, and 20.0 parts by mass of the polysiloxane compound A as a polysiloxane compound were added and stirred at 25 ° C. for 30 minutes to obtain a sol. . After the obtained sol was gelled at 60 ° C., an airgel composite 2 was obtained in the same manner as in Example 1.
  • a hollow silica particle dispersion product name: Thruria A, manufactured by JGC Catalysts and Chemicals Co., Ltd.
  • Example 3 159.8 parts by mass of hollow silica particle dispersion (product name: Thruria A, manufactured by JGC Catalysts and Chemicals) in an aqueous solution in which 240.7 parts by mass of water and 20.0 parts by mass of CTAB as a cationic surfactant are mixed.
  • MTMS hollow silica particle dispersion
  • CTAB a cationic surfactant
  • Comparative Example 1 200.0 parts by mass of water, 0.10 parts by mass of acetic acid as an acid catalyst, 20.0 parts by mass of CTAB as a cationic surfactant, and 120.0 parts by mass of urea as a thermohydrolyzable compound were mixed. 100.0 parts by mass of MTMS as a silicon compound was added and stirred at 25 ° C. for 120 minutes to obtain a sol. The obtained sol was gelled at 60 ° C. and then aged at 80 ° C. for 24 hours to obtain a wet gel. Then, airgel 4 was obtained like Example 1 using the obtained wet gel.
  • Comparative Example 2 200.0 parts by mass of water, 0.10 parts by mass of acetic acid as an acid catalyst, 20.0 parts by mass of CTAB as a cationic surfactant, and 120.0 parts by mass of urea as a thermohydrolyzable compound were mixed.
  • As a silicon compound 80.0 parts by mass of MTMS and 20.0 parts by mass of DMDMS were added and stirred at 25 ° C. for 120 minutes to obtain a sol.
  • the obtained sol was gelled at 60 ° C. and then aged at 80 ° C. for 24 hours to obtain a wet gel. Then, airgel 5 was obtained like Example 1 using the obtained wet gel.
  • Table 1 below collectively shows the drying method, the types and addition amounts of the silicone components (silicon compound and polysiloxane compound), and the addition amount of the hollow silica particle dispersion in each Example and Comparative Example.
  • the volume shrinkage ratio SV before and after drying of the sample was obtained from the following equation.
  • the volume shrinkage ratio SV was 5% or less, it was evaluated as “no shrinkage”, and when it exceeded 5%, it was evaluated as “shrinkage”.
  • SV (V 0 ⁇ V 1 ) / V 0 ⁇ 100
  • V 0 represents the volume of the sample before drying
  • V 1 represents the volume of the sample after drying.
  • the thermal conductivity was measured using a steady-state thermal conductivity measuring device “HFM436 Lambda” (manufactured by NETZSCH, product name).
  • the measurement conditions were an average temperature of 25 ° C. under atmospheric pressure.
  • the measurement sample obtained as described above was sandwiched between the upper and lower heaters with a load of 0.3 MPa, the temperature difference ⁇ T was set to 20 ° C., and the guard sample was adjusted so as to obtain a one-dimensional heat flow. Upper surface temperature, lower surface temperature, etc. were measured.
  • thermal resistance RS of the measurement sample was calculated
  • R S N ((T U ⁇ T L ) / Q) ⁇ R O
  • T U represents a measurement sample top surface temperature
  • T L represents the measurement sample lower surface temperature
  • R O represents the thermal contact resistance of the upper and lower interfaces
  • Q is shows the heat flux meter output.
  • N is a proportionality coefficient, and is obtained in advance using a calibration sample.
  • a small tabletop testing machine “EZTest” manufactured by Shimadzu Corporation, product name
  • 500N was used as a load cell.
  • an upper platen ( ⁇ 20 mm) and a lower platen ( ⁇ 118 mm) made of stainless steel were used as compression measurement jigs.
  • a measurement sample was set between an upper platen and a lower platen arranged in parallel, and compression was performed at a speed of 1 mm / min.
  • the measurement temperature was 25 ° C., and the measurement was terminated when a load exceeding 500 N was applied or when the measurement sample was destroyed.
  • the strain ⁇ was obtained from the following equation.
  • ⁇ d / d1
  • ⁇ d the displacement (mm) of the thickness of the measurement sample due to the load
  • d1 the thickness (mm) of the measurement sample before the load is applied.
  • the compressive stress ⁇ (MPa) was obtained from the following equation.
  • F / A
  • F represents the compressive force (N)
  • A represents the cross-sectional area (mm 2 ) of the measurement sample before applying a load.
  • the compressive elastic modulus E (MPa) was obtained from the following equation in the compression force range of 0.1 to 0.2N.
  • E ( ⁇ 2 ⁇ 1 ) / ( ⁇ 2 ⁇ 1 )
  • ⁇ 1 indicates a compressive stress (MPa) measured at a compressive force of 0.1 N
  • ⁇ 2 indicates a compressive stress (MPa) measured at a compressive force of 0.2 N
  • ⁇ 1 indicates a compressive stress.
  • the compressive strain measured at ⁇ 1 is shown
  • ⁇ 2 shows the compressive strain measured at the compressive stress ⁇ 2 .
  • the airgel composites of the examples have small thermal conductivity and compression modulus, and are excellent in both high heat insulation and high flexibility.

Abstract

The present disclosure pertains to: an aerogel composite containing an aerogel component and hollow silica particles; an aerogel composite containing hollow silica particles as a component constituting a three-dimensional mesh skeleton; or an aerogel composite that is the dried product of a wet gel that is the product of a sol containing hollow silica particles and at least one substance selected from the group consisting of: silicon compounds having a hydrolysable functional group or a condensable functional group; and hydrolysates of silicon compounds having said hydrolysable functional group.

Description

エアロゲル複合体及び断熱材Airgel composite and heat insulating material
 本開示は、エアロゲル複合体及び断熱材に関する。 The present disclosure relates to an airgel composite and a heat insulating material.
 熱伝導率が小さく断熱性を有する材料としてシリカエアロゲルが知られている。シリカエアロゲルは、優れた機能性(断熱性等)、特異な光学特性、特異な電気特性などを有する機能素材として有用なものである。シリカエアロゲルは、例えば、シリカエアロゲルの超低誘電率特性を利用した電子基板材料、シリカエアロゲルの高断熱性を利用した断熱材料、シリカエアロゲルの超低屈折率を利用した光反射材料等に用いられている。 Silica airgel is known as a material having low thermal conductivity and heat insulation. Silica airgel is useful as a functional material having excellent functionality (such as heat insulation), unique optical characteristics, and unique electrical characteristics. Silica airgel is used, for example, as an electronic substrate material that utilizes the ultra-low dielectric constant characteristics of silica airgel, a heat-insulating material that utilizes the high thermal insulation property of silica airgel, and a light-reflecting material that utilizes the ultra-low refractive index of silica airgel. ing.
 このようなシリカエアロゲルを製造する方法として、アルコキシシランを加水分解し、重合して得られたゲル状化合物(アルコゲル)を、分散媒の超臨界条件下で乾燥する超臨界乾燥法が知られている(例えば、特許文献1参照)。超臨界乾燥法は、アルコゲルと分散媒(乾燥に用いる溶媒)とを高圧容器中に導入し、分散媒をその臨界点以上の温度と圧力をかけて超臨界流体とすることにより、アルコゲルに含まれる溶媒を除去する方法である。しかし、超臨界乾燥法は高圧プロセスを要するため、超臨界に耐え得る特殊な装置等への設備投資が必要であり、なおかつ多くの手間と時間が必要である。 As a method for producing such a silica airgel, a supercritical drying method is known in which a gel-like compound (alcogel) obtained by hydrolyzing and polymerizing alkoxysilane is dried under supercritical conditions of a dispersion medium. (For example, refer to Patent Document 1). In the supercritical drying method, an alcogel and a dispersion medium (solvent used for drying) are introduced into a high-pressure vessel, and the dispersion medium is applied to the supercritical fluid by applying a temperature and pressure above its critical point to form a supercritical fluid. It is a method of removing the solvent. However, since the supercritical drying method requires a high-pressure process, capital investment is required for a special apparatus that can withstand supercriticality, and much labor and time are required.
 そこで、アルコゲルを、高圧プロセスを要しない汎用的な方法を用いて乾燥する手法が提案されている。このような方法としては、例えば、ゲル原料として、モノアルキルトリアルコキシシランとテトラアルコキシシランとを特定の比率で併用することにより、得られるアルコゲルの強度を向上させ、常圧で乾燥させる方法が知られている(例えば、特許文献2参照)。しかしながら、このような常圧乾燥を採用する場合、アルコゲル内部の毛細管力に起因するストレスにより、ゲルが収縮する傾向がある。 Therefore, a technique for drying alcogel using a general-purpose method that does not require a high-pressure process has been proposed. As such a method, for example, a method of improving the strength of the resulting alcogel by using a monoalkyltrialkoxysilane and a tetraalkoxysilane in combination at a specific ratio as a gel material and drying at normal pressure is known. (For example, refer to Patent Document 2). However, when such atmospheric pressure drying is employed, the gel tends to contract due to stress caused by the capillary force inside the alcogel.
米国特許第4402927号U.S. Pat. No. 4,402,927 特開2011-93744号公報JP 2011-93744 A
 このように、従来の製造プロセスが抱える問題点について様々な観点からの検討が行われている一方で、上記いずれのプロセスを採用したとしても、得られたエアロゲルは取り扱い性が悪く、大型化が困難であるため、生産性に課題がある。例えば、上記プロセスにより得られた塊状のエアロゲルは、手で触って持ち上げようとするだけで破損してしまう場合がある。これは、エアロゲルの密度が低いことと、エアロゲルが10nm程度の微粒子が弱く連結しているだけの細孔構造を有していることとに由来すると推察される。 As described above, while the problems of the conventional manufacturing process have been studied from various viewpoints, even if any of the above processes is adopted, the obtained airgel is poor in handling and large in size. Because it is difficult, there is a problem in productivity. For example, the agglomerated airgel obtained by the above process may be broken simply by trying to lift it by hand. This is presumably due to the fact that the density of the airgel is low and that the airgel has a pore structure in which fine particles of about 10 nm are weakly connected.
 従来のエアロゲルが有するこのような問題を改善する手法として、ゲルの細孔径をマイクロメータースケール程度にまで大きくすることでゲルに柔軟性を付与する方法が考えられる。しかしながら、そのようにして得られるエアロゲルは熱伝導率が大幅に増大するという問題があり、エアロゲルの優れた断熱性が失われてしまう。 As a method for improving such problems of conventional aerogels, a method of imparting flexibility to the gel by enlarging the pore diameter of the gel to the micrometer scale is conceivable. However, the airgel thus obtained has a problem that the thermal conductivity is greatly increased, and the excellent heat insulating property of the airgel is lost.
 本開示は上記の事情に鑑みてなされたものであり、断熱性と柔軟性とに優れたエアロゲル複合体を提供することを目的とする。本開示はまた、そのようなエアロゲル複合体を備える断熱材を提供する。 The present disclosure has been made in view of the above circumstances, and an object thereof is to provide an airgel composite excellent in heat insulation and flexibility. The present disclosure also provides a thermal insulation comprising such an airgel composite.
 本発明者は、上記目的を達成するために鋭意研究を重ねた結果、エアロゲル中に中空シリカ粒子を複合化したエアロゲル複合体であれば、優れた断熱性と柔軟性とが発現されることを見出した。 As a result of intensive studies to achieve the above object, the present inventor has demonstrated that excellent heat insulation and flexibility can be expressed if an airgel composite in which hollow silica particles are combined in an airgel. I found it.
 本開示は、エアロゲル成分及び中空シリカ粒子を含有するエアロゲル複合体を提供するものである。本開示のエアロゲル複合体は、従来技術により得られるエアロゲルとは異なり、断熱性と柔軟性とに優れるものである。 The present disclosure provides an airgel composite containing an airgel component and hollow silica particles. The airgel composite of the present disclosure is excellent in heat insulation and flexibility, unlike the airgel obtained by the prior art.
 上記エアロゲル複合体は、エアロゲル成分及び中空シリカ粒子により形成された三次元網目骨格と、細孔とを有することができる。これにより、断熱性と柔軟性とを更に向上し易くなる。 The airgel composite can have a three-dimensional network skeleton formed by an airgel component and hollow silica particles, and pores. Thereby, it becomes easy to improve heat insulation and a softness | flexibility further.
 本開示はまた、三次元網目骨格を構成する成分として中空シリカ粒子を含有するエアロゲル複合体を提供するものである。このようなエアロゲル複合体は、断熱性と柔軟性とに優れるものである。 The present disclosure also provides an airgel composite containing hollow silica particles as a component constituting a three-dimensional network skeleton. Such an airgel composite is excellent in heat insulation and flexibility.
 本開示はまた、中空シリカ粒子と、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物、及び、前記加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種と、を含有するゾルの縮合物である湿潤ゲルの乾燥物である、エアロゲル複合体を提供するものである。このようにして得られたエアロゲル複合体は、断熱性と柔軟性とに優れるものである。 The present disclosure is also selected from the group consisting of hollow silica particles, a silicon compound having a hydrolyzable functional group or a condensable functional group, and a hydrolysis product of the silicon compound having the hydrolyzable functional group. The airgel composite is a dried product of a wet gel that is a condensate of a sol containing at least one of the above. The airgel composite thus obtained is excellent in heat insulation and flexibility.
 なお、上述したエアロゲル複合体もまた、中空シリカ粒子と、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物、及び、前記加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種と、を含有するゾルの縮合物である湿潤ゲルの乾燥物であってもよい。 The above-described airgel composite also includes hollow silica particles, a silicon compound having a hydrolyzable functional group or a condensable functional group, and a hydrolysis product of the silicon compound having the hydrolyzable functional group. It may be a dried product of a wet gel that is a condensate of a sol containing at least one selected from the group consisting of:
 本開示において、上記ケイ素化合物は、加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物を含むことができる。これにより、更に優れた断熱性及び柔軟性を達成することができる。 In the present disclosure, the silicon compound may include a polysiloxane compound having a hydrolyzable functional group or a condensable functional group. Thereby, the further outstanding heat insulation and softness | flexibility can be achieved.
 また、中空シリカ粒子の平均一次粒子径は1nm~100μmとすることができる。これにより、断熱性と柔軟性とを更に向上し易くなる。 The average primary particle diameter of the hollow silica particles can be 1 nm to 100 μm. Thereby, it becomes easy to improve heat insulation and a softness | flexibility further.
 上記中空シリカ粒子の形状は、球状とすることができる。これにより、ゾル中での凝集が抑制され易く、更に優れた断熱性及び柔軟性を達成することができる。 The hollow silica particles can have a spherical shape. Thereby, aggregation in a sol is easy to be suppressed, and further excellent heat insulation and flexibility can be achieved.
 上記中空シリカ粒子は、溶融シリカ粒子、ヒュームドシリカ粒子及びコロイダルシリカ粒子からなる群より選択される少なくとも一種であってもよい。これにより、更に優れた断熱性及び柔軟性を達成することができる。 The hollow silica particles may be at least one selected from the group consisting of fused silica particles, fumed silica particles, and colloidal silica particles. Thereby, the further outstanding heat insulation and softness | flexibility can be achieved.
 断熱性と柔軟性とにより一層優れる観点から、本開示に係るエアロゲル複合体の25℃における圧縮弾性率は、3MPa以下とすることができる。 From the viewpoint of further superior heat insulation and flexibility, the compression elastic modulus at 25 ° C. of the airgel composite according to the present disclosure can be 3 MPa or less.
 本開示は、さらに、上記エアロゲル複合体を備える断熱材を提供するものである。本開示に係る断熱材は、上記エアロゲル複合体が優れた断熱性及び柔軟性を有していることから、優れた断熱性と従来の断熱材では達成困難な優れた屈曲性とを発現することができる。 The present disclosure further provides a heat insulating material including the airgel composite. The heat insulating material according to the present disclosure exhibits excellent heat insulating properties and excellent flexibility that is difficult to achieve with conventional heat insulating materials because the airgel composite has excellent heat insulating properties and flexibility. Can do.
 本開示によれば、断熱性と柔軟性とに優れるエアロゲル複合体を提供することができる。すなわち、優れた断熱性が発現されるとともに、優れた柔軟性が発現されるため、取り扱い性が向上して大型化も可能となり、生産性を高めることができるエアロゲル複合体を提供することができる。このように断熱性と柔軟性とに優れるエアロゲル複合体は、様々な用途に活用できる可能性を有している。本開示はまた、上述したエアロゲル複合体を備え、断熱性及び柔軟性に優れる断熱材を提供することができる。ここで、本開示に係る重要な点は、従来のエアロゲルよりも断熱性及び柔軟性の制御を行うことが容易になったことにある。このことは、柔軟性を得るためには断熱性を犠牲にしたり、又は断熱性を得るためには柔軟性を犠牲にしたりする必要があった従来のエアロゲルでは達成できなかったことである。なお、上記「断熱性と柔軟性とに優れる」とは、双方の特性を表す数値が共に高いことを必ずしも意味するものではなく、例えば、「断熱性を良好に保ちながら柔軟性が優れる」こと、「柔軟性を良好に保ちながら断熱性が優れる」こと等を包含する。 According to the present disclosure, an airgel composite excellent in heat insulation and flexibility can be provided. That is, while exhibiting excellent heat insulation properties and excellent flexibility, it is possible to provide an airgel composite that can be handled and improved in size and can be increased in productivity. . Thus, the airgel composite which is excellent in heat insulation and a softness | flexibility has the possibility of being utilized for various uses. The present disclosure can also provide a heat insulating material including the above-described airgel composite and having excellent heat insulating properties and flexibility. Here, an important point according to the present disclosure is that it becomes easier to control heat insulation and flexibility than conventional aerogels. This was not possible with conventional aerogels that required sacrificing thermal insulation to obtain flexibility or sacrificing flexibility to obtain thermal insulation. The above “excellent in heat insulation and flexibility” does not necessarily mean that both numerical values representing both characteristics are high. For example, “excellent flexibility while maintaining good heat insulation” , “Excellent thermal insulation while maintaining good flexibility” and the like.
本開示の一実施形態に係るエアロゲル複合体の微細構造を模式的に表す図である。It is a figure showing typically the fine structure of the airgel composite concerning one embodiment of this indication. 粒子の二軸平均一次粒子径の算出方法を示す図である。It is a figure which shows the calculation method of the biaxial average primary particle diameter of particle | grains.
 以下、場合により図面を参照しつつ本開示の好適な実施形態について詳細に説明する。ただし、本開示は以下の実施形態に限定されるものではない。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the drawings depending on the cases. However, the present disclosure is not limited to the following embodiment.
<定義>
 本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。「A又はB」とは、A及びBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。本明細書に例示する材料は、特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。本明細書において、組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する複数の物質の合計量を意味する。
<Definition>
In this specification, a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively. In the numerical ranges described stepwise in this specification, the upper limit value or the lower limit value of a numerical range in a certain step may be replaced with the upper limit value or the lower limit value of a numerical range in another step. In the numerical range described in this specification, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples. “A or B” only needs to include either A or B, and may include both. The materials exemplified in the present specification can be used singly or in combination of two or more unless otherwise specified. In the present specification, the content of each component in the composition means the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition. means.
<エアロゲル複合体>
 狭義には、湿潤ゲルに対して超臨界乾燥法を用いて得られた乾燥ゲルをエアロゲル、大気圧下での乾燥により得られた乾燥ゲルをキセロゲル、凍結乾燥により得られた乾燥ゲルをクライオゲルと称するが、本実施形態においては、湿潤ゲルのこれらの乾燥手法によらず、得られた低密度の乾燥ゲルをエアロゲルと称する。すなわち、本実施形態においてエアロゲルとは、広義のエアロゲルである「Gel comprised of a microporous solid in which the dispersed phase is a gas(分散相が気体である微多孔性固体から構成されるゲル)」を意味するものである。一般的にエアロゲルの内部は網目状の微細構造となっており、2~20nm程度のエアロゲル粒子(エアロゲルを構成する粒子)が結合したクラスター構造を有している。このクラスターにより形成される骨格間には、200nmに満たない微細な細孔が存在し、三次元的に微細な多孔性の構造をしている。なお、本実施形態におけるエアロゲルは、シリカを主成分とするシリカエアロゲルである。シリカエアロゲルとしては、例えば、有機基(メチル基等)又は有機鎖を導入した、いわゆる有機-無機ハイブリッド化されたシリカエアロゲルが挙げられる。なお、本実施形態のエアロゲル複合体は、エアロゲル中に中空シリカ粒子が複合化されながらも、上記エアロゲルの特徴であるクラスター構造を有しており、三次元的に微細な多孔性の構造を有している。
<Airgel composite>
In a narrow sense, dry gel obtained by using supercritical drying method for wet gel is aerogel, dry gel obtained by drying under atmospheric pressure is xerogel, dry gel obtained by freeze-drying is cryogel and However, in the present embodiment, the obtained low-density dried gel is referred to as an aerogel regardless of the drying method of the wet gel. In other words, in the present embodiment, the airgel means “a gel composed of a microporous solid whose dispersed phase is a gas”, which is an aerogel in a broad sense, that is, “Gel compressed of a microporous solid in which the dispersed phase is a gas”. To do. In general, the inside of an airgel has a network-like fine structure, and has a cluster structure in which airgel particles of about 2 to 20 nm (particles constituting the airgel) are bonded. Between the skeletons formed by the clusters, there are fine pores less than 200 nm, and a three-dimensionally fine porous structure is formed. In addition, the airgel in this embodiment is a silica airgel which has a silica as a main component. Examples of the silica airgel include so-called organic-inorganic hybrid silica airgel into which an organic group (such as a methyl group) or an organic chain is introduced. The airgel composite of the present embodiment has a cluster structure that is a feature of the above-mentioned airgel, even though hollow silica particles are complexed in the airgel, and has a three-dimensionally fine porous structure. is doing.
 本実施形態のエアロゲル複合体は、エアロゲル成分及び中空シリカ粒子を含有するものである。なお、本実施形態において、必ずしもこれと同じ概念を意味するものではないが、本実施形態のエアロゲル複合体は、三次元網目骨格を構成する成分として中空シリカ粒子を含有するものである、と表現することも可能である。本実施形態のエアロゲル複合体は、後述するとおり断熱性と柔軟性とに優れている。特に、柔軟性が優れていることによりエアロゲル複合体としての取り扱い性が向上して大型化も可能となるため、生産性を高めることができる。なお、このようなエアロゲル複合体は、エアロゲルの製造環境中に中空シリカ粒子を存在させることにより得られるものである。そして中空シリカ粒子を存在させることによるメリットは、複合体自体の断熱性、柔軟性等を向上できることのみならず、後述する湿潤ゲル生成工程の時間短縮、又は、洗浄及び溶媒置換工程から乾燥工程の簡略化が可能であることにもある。なお、この工程の時間短縮及び工程の簡略化は、柔軟性が優れるエアロゲル複合体を作製する上で必ずしも求められることではない。 The airgel composite of this embodiment contains an airgel component and hollow silica particles. In the present embodiment, the same concept is not necessarily meant, but the airgel composite of the present embodiment is expressed as containing hollow silica particles as a component constituting the three-dimensional network skeleton. It is also possible to do. The airgel composite of this embodiment is excellent in heat insulation and flexibility as described later. In particular, since the flexibility is excellent, the handling property as an airgel composite is improved and the size can be increased, so that the productivity can be increased. In addition, such an airgel composite is obtained by making hollow silica particles exist in the airgel production environment. And the merit by making hollow silica particles exist is not only that the heat insulation property and flexibility of the composite itself can be improved, but also shortening the time of the wet gel generation step described later, or from the washing and solvent replacement step to the drying step. In some cases, simplification is possible. In addition, shortening of the time of this process and simplification of a process are not necessarily calculated | required when producing the airgel composite which is excellent in a softness | flexibility.
 本開示において、エアロゲル成分とは、エアロゲル複合体を構成するシリコーン成分を意味し、中空シリカ粒子とは、中空構造を有するシリカ粒子を意味する。ここで、中空構造を有するシリカ粒子は、粒子の外殻がシリカを含む細孔構造で構成され、内部(前記外殻よりも内側)が中空となっている粒子である。また、中空構造をバルーン構造と呼ぶ場合があるため、バルーンシリカとも呼ばれる粒子である。 In the present disclosure, the airgel component means a silicone component constituting the airgel composite, and the hollow silica particle means a silica particle having a hollow structure. Here, the silica particle having a hollow structure is a particle in which the outer shell of the particle has a pore structure containing silica, and the inside (inner side than the outer shell) is hollow. Further, since the hollow structure is sometimes called a balloon structure, the particles are also called balloon silica.
 本実施形態において、エアロゲル成分と中空シリカ粒子との複合化態様は様々である。例えば、エアロゲル成分は膜状等の不定形であってもよく、粒子状(エアロゲル粒子)であってもよい。いずれの態様においても、エアロゲル成分が様々な形態になり中空シリカ粒子間に存在しているため、複合体の骨格に柔軟性が付与されていると推察される。 In the present embodiment, there are various composite modes of the airgel component and the hollow silica particles. For example, the airgel component may be in an indeterminate form such as a film or may be in the form of particles (aerogel particles). In any embodiment, since the airgel component is in various forms and exists between the hollow silica particles, it is presumed that flexibility is imparted to the skeleton of the composite.
 まず、エアロゲル成分と中空シリカ粒子との複合化態様としては、不定形のエアロゲル成分が中空シリカ粒子間に介在する態様が挙げられる。このような態様としては、具体的には、例えば、中空シリカ粒子が膜状のエアロゲル成分(シリコーン成分)により被覆された態様(エアロゲル成分が中空シリカ粒子を内包する態様)、エアロゲル成分がバインダーとなり中空シリカ粒子同士が連結された態様、エアロゲル成分が複数の中空シリカ粒子の間隙を充填している態様、これらの態様の組み合わせの態様(クラスター状に並んだ中空シリカ粒子がエアロゲル成分により被覆された態様等)、など様々な態様が挙げられる。このように、本実施形態においてエアロゲル複合体は、三次元網目骨格が中空シリカ粒子とエアロゲル成分(シリコーン成分)とから構成されることができ、その具体的態様(形態)に特に制限はない。 First, examples of the composite form of the airgel component and the hollow silica particles include an aspect in which an amorphous airgel component is interposed between the hollow silica particles. As such an embodiment, specifically, for example, an embodiment in which the hollow silica particles are coated with a film-like airgel component (silicone component) (an embodiment in which the airgel component encloses the hollow silica particles), the airgel component serves as a binder. A mode in which hollow silica particles are connected to each other, a mode in which an airgel component fills a gap between a plurality of hollow silica particles, a mode of a combination of these modes (clustered hollow silica particles are covered with an airgel component) Various aspects) and the like. Thus, in this embodiment, the airgel composite can have a three-dimensional network skeleton composed of hollow silica particles and an airgel component (silicone component), and the specific mode (form) is not particularly limited.
 一方、後述するように、本実施形態においてエアロゲル成分は、不定形ではなく図1のように明確な粒子状となって中空シリカ粒子と複合化していてもよい。 On the other hand, as will be described later, in the present embodiment, the airgel component may be in the form of a clear particle as shown in FIG.
 本実施形態のエアロゲル複合体においてこのような様々な態様が生じるメカニズムは必ずしも定かではないが、本発明者は、ゲル化工程におけるエアロゲル成分の生成速度が関与していると推察している。例えば、中空シリカ粒子のシラノール基数を変動させることによってエアロゲル成分の生成速度が変動する傾向がある。また、系のpHを変動させることによってもエアロゲル成分の生成速度が変動する傾向がある。 The mechanism by which such various aspects occur in the airgel composite of the present embodiment is not necessarily clear, but the present inventor speculates that the generation rate of the airgel component in the gelation process is involved. For example, the production rate of the airgel component tends to vary by varying the number of silanol groups in the hollow silica particles. Further, the production rate of the airgel component also tends to fluctuate by changing the pH of the system.
 このことは、中空シリカ粒子のサイズ、形状、シラノール基数、系のpH等を調整することにより、エアロゲル複合体の態様(三次元網目骨格のサイズ、形状等)を制御できることを示唆する。したがって、エアロゲル複合体の密度、気孔率等の制御が可能となり、エアロゲル複合体の断熱性及び柔軟性を制御することができると考えられる。なお、エアロゲル複合体の三次元網目骨格は、上述した様々な態様の一種類のみから構成されていてもよいし、二種以上の態様から構成されていてもよい。 This suggests that the aspect of the airgel composite (size, shape, etc. of the three-dimensional network skeleton) can be controlled by adjusting the size, shape, silanol group number, pH of the system, etc. of the hollow silica particles. Therefore, it is considered that the density, porosity, etc. of the airgel composite can be controlled, and the heat insulating property and flexibility of the airgel composite can be controlled. In addition, the three-dimensional network skeleton of the airgel composite may be composed of only one kind of the various aspects described above, or may be composed of two or more kinds of aspects.
 以下、図1を例にとり、本実施形態のエアロゲル複合体について説明するが、上述のとおり本開示は図1の態様に限定されるものではない。ただし、上記いずれの態様にも共通する事項(中空シリカ粒子の種類、サイズ、含有量等)については、以下の記載を適宜参照することができる。 Hereinafter, the airgel composite of the present embodiment will be described using FIG. 1 as an example. However, as described above, the present disclosure is not limited to the aspect of FIG. However, for matters common to any of the above aspects (type, size, content, etc. of the hollow silica particles), the following description can be referred to as appropriate.
 図1は、本開示の一実施形態に係るエアロゲル複合体の微細構造を模式的に表す図である。図1に示されるように、エアロゲル複合体10は、エアロゲル成分を構成するエアロゲル粒子1が部分的に中空シリカ粒子2を介して三次元的にランダムに連なることにより形成される三次元網目骨格と、当該骨格に囲まれた細孔3とを有する。この際、中空シリカ粒子2はエアロゲル粒子1間に介在し、三次元網目骨格を支持する骨格支持体として機能していると推察される。したがって、このような構造を有することにより、エアロゲルとしての断熱性及び柔軟性を維持しつつ、適度な強度がエアロゲルに付与されることになると考えられる。なお、本実施形態においては、エアロゲル複合体は、中空シリカ粒子がエアロゲル粒子を介して三次元的にランダムに連なることにより形成される三次元網目骨格を有していてもよい。また、中空シリカ粒子はエアロゲル粒子により被覆されていてもよい。なお、上記エアロゲル粒子(エアロゲル成分)は、ケイ素化合物から構成されるため、中空シリカ粒子への親和性が高いと推察される。そのため、本実施形態においてはエアロゲルの三次元網目骨格中に中空シリカ粒子を導入することに成功したと考えられる。この点においては、中空シリカ粒子のシラノール基も、両者の親和性に寄与していると考えられる。 FIG. 1 is a diagram schematically illustrating a fine structure of an airgel composite according to an embodiment of the present disclosure. As shown in FIG. 1, the airgel composite 10 includes a three-dimensional network skeleton formed by three-dimensionally randomly connecting airgel particles 1 constituting an airgel component partially through hollow silica particles 2. And pores 3 surrounded by the skeleton. At this time, it is presumed that the hollow silica particles 2 are interposed between the airgel particles 1 and function as a skeleton support that supports the three-dimensional network skeleton. Therefore, it is thought that by having such a structure, moderate strength is imparted to the airgel while maintaining the heat insulation and flexibility as the airgel. In the present embodiment, the airgel composite may have a three-dimensional network skeleton formed by three-dimensionally connecting hollow silica particles via the airgel particles. The hollow silica particles may be covered with airgel particles. In addition, since the said airgel particle (aerogel component) is comprised from a silicon compound, it is guessed that the affinity to a hollow silica particle is high. Therefore, in this embodiment, it is considered that the hollow silica particles were successfully introduced into the three-dimensional network skeleton of the airgel. In this respect, it is considered that the silanol groups of the hollow silica particles also contribute to the affinity between them.
 エアロゲル粒子1は、複数の一次粒子から構成される二次粒子の態様を取っていると考えられており、概ね球状である。エアロゲル粒子1の平均粒子径(すなわち二次粒子径)は2nm以上とすることができ、5nm以上であってもよく、10nm以上であってもよい。当該平均粒子径は、50μm以下とすることができ、2μm以下であってもよく、200nm以下であってもよい。すなわち、当該平均粒子径は、2nm~50μmとすることができ、5nm~2μmであってもよく、10nm~200nmであってもよい。エアロゲル粒子1の平均粒子径が2nm以上であることにより、柔軟性に優れるエアロゲル複合体が得易くなり、一方、平均粒子径が50μm以下であることにより、断熱性に優れるエアロゲル複合体が得易くなる。なお、エアロゲル粒子1を構成する一次粒子の平均粒子径は、低密度の多孔質構造の2次粒子を形成し易いという観点から、0.1nm~5μmとすることができ、0.5nm~200nmであってもよく、1nm~20nmであってもよい。 The airgel particle 1 is considered to be in the form of secondary particles composed of a plurality of primary particles, and is generally spherical. The airgel particle 1 may have an average particle size (that is, a secondary particle size) of 2 nm or more, may be 5 nm or more, and may be 10 nm or more. The average particle diameter may be 50 μm or less, may be 2 μm or less, and may be 200 nm or less. That is, the average particle diameter can be 2 nm to 50 μm, and can be 5 nm to 2 μm, or 10 nm to 200 nm. When the airgel particle 1 has an average particle diameter of 2 nm or more, an airgel composite having excellent flexibility can be easily obtained. On the other hand, when the average particle diameter is 50 μm or less, an airgel composite having excellent heat insulation can be easily obtained. Become. The average particle diameter of the primary particles constituting the airgel particles 1 can be set to 0.1 nm to 5 μm and 0.5 nm to 200 nm from the viewpoint of easy formation of secondary particles having a low density porous structure. It may be 1 nm to 20 nm.
 エアロゲル複合体を作製する際に用いる中空シリカ粒子の形態は、特に制限されないが、例えば、溶融シリカ粒子、ヒュームドシリカ粒子及びコロイダルシリカ粒子からなる群より選択される少なくとも一種が挙げられる。中空シリカ粒子として、例えば、日揮触媒化成株式会社の製品名「スルーリア」、日鉄鉱業株式会社の製品名「シリナックス」等を商業的に入手することができる。また、シラスを原料としたシラスバルーン(例えば、株式会社アクシーズケミカルの製品名「ウインライト」、SiO含有量75~77質量%)も、中空シリカ粒子として使用することができる。 The form of the hollow silica particles used for producing the airgel composite is not particularly limited, and examples thereof include at least one selected from the group consisting of fused silica particles, fumed silica particles, and colloidal silica particles. As the hollow silica particles, for example, the product name “Thruria” of JGC Catalysts & Chemicals Co., Ltd., the product name “Sirinax” of Nittetsu Mining Co., Ltd. and the like can be obtained commercially. Also, shirasu balloon made from shirasu (for example, “Winlite”, product name of Axes Chemical Co., Ltd., SiO 2 content 75 to 77 mass%) can be used as the hollow silica particles.
 中空シリカ粒子がコロイダルシリカ粒子の場合、コロイダルシリカ粒子が溶媒に分散されたスラリーのpHは8.0以下であるとよい。これにより、エアロゲル複合体を作製する際にゲル化反応の制御が容易になる。 When the hollow silica particles are colloidal silica particles, the pH of the slurry in which the colloidal silica particles are dispersed in a solvent is preferably 8.0 or less. This facilitates control of the gelation reaction when producing the airgel composite.
 コロイダルシリカ粒子が分散された溶媒としては、特に制限なく用いることができる。溶媒として、例えば、水、アルコール、ヘキサン、ベンゼン及びトルエンが挙げられる。 The solvent in which colloidal silica particles are dispersed can be used without any particular limitation. Examples of the solvent include water, alcohol, hexane, benzene, and toluene.
 柔軟性、すなわち中空シリカ粒子中の殻の割合の指標である中空シリカ粒子の屈折率の下限値は、強靭性の観点から、1.20以上とすることができ、1.25以上であってもよく、1.30以上であってもよい。中空シリカ粒子の屈折率の上限値は、柔軟性の観点から、1.50以下とすることができ、1.45以下であってもよく、1.40以下であってもよい。すなわち、中空シリカ粒子の屈折率は、1.20~1.50とすることができ、1.25~1.45であってもよく、1.30~1.40であってもよい。 The lower limit of the refractive index of the hollow silica particles, which is an index of the flexibility, that is, the ratio of the shell in the hollow silica particles, can be 1.20 or more from the viewpoint of toughness, and is 1.25 or more. It may be 1.30 or more. From the viewpoint of flexibility, the upper limit of the refractive index of the hollow silica particles can be 1.50 or less, may be 1.45 or less, and may be 1.40 or less. That is, the refractive index of the hollow silica particles can be 1.20 to 1.50, may be 1.25 to 1.45, and may be 1.30 to 1.40.
 中空シリカ粒子2の形状は特に制限されず、球状、まゆ型、会合型等が挙げられる。これらのうち、中空シリカ粒子2として球状の粒子を用いることにより、ゾル中での凝集を抑制し易くなる。適度な強度をエアロゲル複合体に付与し易くなり、乾燥時の耐収縮性に優れるエアロゲル複合体が得易くなることから、中空シリカ粒子の平均一次粒子径は、1nm以上とすることができ、5nm以上であってもよく、10nm以上であってもよい。中空シリカ粒子の固体熱伝導を抑制し易くなり、断熱性に優れるエアロゲル複合体が得易くなることから、中空シリカ粒子の平均一次粒子径は、100μm以下とすることができ、70μm以下であってもよく、50μm以下であってもよい。すなわち、中空シリカ粒子2の平均一次粒子径は、1nm~100μmとすることができ、5nm~70μmであってもよく、10nm~50μmであってもよい。 The shape of the hollow silica particles 2 is not particularly limited, and examples thereof include a spherical shape, an eyebrows type, and an association type. Among these, the use of spherical particles as the hollow silica particles 2 makes it easy to suppress aggregation in the sol. Since it becomes easy to impart an appropriate strength to the airgel composite and it becomes easy to obtain an airgel composite having excellent shrinkage resistance during drying, the average primary particle diameter of the hollow silica particles can be 1 nm or more, and 5 nm. The above may be sufficient and 10 nm or more may be sufficient. Since it becomes easy to suppress the solid heat conduction of the hollow silica particles and it becomes easy to obtain an airgel composite excellent in heat insulation, the average primary particle diameter of the hollow silica particles can be 100 μm or less, and is 70 μm or less. Or 50 μm or less. That is, the average primary particle diameter of the hollow silica particles 2 can be 1 nm to 100 μm, 5 nm to 70 μm, or 10 nm to 50 μm.
 中空シリカ粒子の表面構造は特に制限されず、表面に存在するシラノール基を修飾していない中空シリカ粒子、シラノール基の一部若しくは全部をカチオン基、アニオン基、ノニオン基等で修飾した中空シリカ粒子、又は、シラノール基の一部若しくは全部をアルコキシ基、ヒドロキシアルキル基等に置換した中空シリカ粒子を使用することもできる。 The surface structure of the hollow silica particles is not particularly limited, and hollow silica particles in which silanol groups present on the surface are not modified, or hollow silica particles in which some or all of the silanol groups are modified with a cation group, an anion group, a nonion group, or the like. Alternatively, hollow silica particles in which some or all of the silanol groups are substituted with alkoxy groups, hydroxyalkyl groups, or the like can also be used.
 エアロゲル粒子1(エアロゲル成分)と中空シリカ粒子2とは、水素結合及び/又は化学結合の態様を取って結合していると推測される。この際、水素結合及び/又は化学結合は、エアロゲル粒子1(エアロゲル成分)のシラノール基及び/又はシラノール基以外の反応性基と、中空シリカ粒子2のシラノール基により形成されると考えられる。そのため、結合の態様が化学結合であると、適度な強度をエアロゲルに付与し易いと考えられる。このことから考えると、エアロゲル成分と複合化させる粒子として、中空シリカ粒子に限らず、粒子表面にシラノール基を有する無機粒子又は有機粒子も用いることができる。 It is presumed that the airgel particle 1 (aerogel component) and the hollow silica particle 2 are bonded in the form of hydrogen bonding and / or chemical bonding. At this time, hydrogen bonds and / or chemical bonds are considered to be formed by the silanol groups and / or reactive groups other than the silanol groups of the airgel particles 1 (aerogel component) and the silanol groups of the hollow silica particles 2. Therefore, it is thought that moderate strength is easily imparted to the airgel when the bonding mode is chemical bonding. Considering this, the particles to be combined with the airgel component are not limited to hollow silica particles, and inorganic particles or organic particles having a silanol group on the particle surface can also be used.
 中空シリカ粒子2の1g当りのシラノール基数は、10×1018個/g以上とすることができ、50×1018個/g以上であってもよく、100×1018個/g以上であってもよい。当該シラノール基数は、10000×1018個/g以下とすることができ、8000×1018個/g以下であってもよく、7000×1018個/g以下であってもよい。すなわち、当該シラノール基数は、10×1018~10000×1018個/gとすることができ、50×1018~8000×1018個/gであってもよく、又は100×1018~7000×1018個/gであってもよい。中空シリカ粒子2の1g当りのシラノール基数が10×1018個/g以上であることにより、エアロゲル粒子1(エアロゲル成分)とのより良好な反応性を有することができ、より適度な強度をエアロゲル複合体に付与し易いため、耐収縮性に優れるエアロゲル複合体を得易くなる。一方、シラノール基数が10000×1018個/g以下であることにより、ゾル作製時における急なゲル化を抑制し易くなり、均質なエアロゲル複合体が得易くなる。 The number of silanol groups per gram of the hollow silica particles 2 can be 10 × 10 18 pieces / g or more, may be 50 × 10 18 pieces / g or more, and is 100 × 10 18 pieces / g or more. May be. The number of silanol groups can be 10000 × 10 18 pieces / g or less, 8000 × 10 18 pieces / g or less, or 7000 × 10 18 pieces / g or less. That is, the number of silanol groups can be 10 × 10 18 to 10000 × 10 18 pcs / g, 50 × 10 18 to 8000 × 10 18 pcs / g, or 100 × 10 18 to 7000. X10 18 pieces / g may be sufficient. When the number of silanol groups per gram of the hollow silica particles 2 is 10 × 10 18 pieces / g or more, the hollow silica particles 2 can have better reactivity with the airgel particles 1 (aerogel component), and have a more appropriate strength. Since it is easy to give to a composite, it becomes easy to obtain the airgel composite which is excellent in shrink resistance. On the other hand, when the number of silanol groups is 10000 × 10 18 / g or less, it is easy to suppress abrupt gelation at the time of sol preparation, and a homogeneous airgel composite is easily obtained.
 本実施形態において、粒子の平均粒子径(エアロゲル粒子の平均二次粒子径及び中空シリカ粒子の平均一次粒子径)は、走査型電子顕微鏡(以下「SEM」と略記する。)を用いてエアロゲル複合体の断面を直接観察することにより得ることができる。例えば、三次元網目骨格からは、その断面の直径に基づきエアロゲル粒子又は中空シリカ粒子個々の粒子径を得ることができる。ここでいう直径とは、三次元網目骨格を形成する骨格の断面を円とみなした場合の直径を意味する。また、断面を円とみなした場合の直径とは、断面の面積を同じ面積の円に置き換えたときの当該円の直径のことである。なお、平均粒子径の算出に当たっては、100個の粒子について円の直径を求め、その平均を取るものとする。 In the present embodiment, the average particle size of the particles (the average secondary particle size of the airgel particles and the average primary particle size of the hollow silica particles) is determined using an airgel composite using a scanning electron microscope (hereinafter abbreviated as “SEM”). It can be obtained by directly observing the cross section of the body. For example, from the three-dimensional network skeleton, the particle diameter of each airgel particle or hollow silica particle can be obtained based on the diameter of the cross section. The diameter here means the diameter when the cross section of the skeleton forming the three-dimensional network skeleton is regarded as a circle. The diameter when the cross section is regarded as a circle is the diameter of the circle when the area of the cross section is replaced with a circle having the same area. In calculating the average particle diameter, the diameter of a circle is obtained for 100 particles, and the average is taken.
 なお、中空シリカ粒子については原料から平均粒子径を測定することが可能である。例えば、二軸平均一次粒子径は、任意の粒子20個をSEMにより観察した結果から、次のようにして算出される。すなわち、通常水に分散している固形分濃度5~40質量%のコロイダルシリカ粒子を例にすると、コロイダルシリカ粒子の分散液にパターン配線付きウエハを2cm角に切ったチップを約30秒浸した後、当該チップを純水にて約30秒間すすぎ、窒素ブローにより乾燥する。その後、チップをSEM観察用の試料台に載せ、加速電圧10kVを掛け、10万倍の倍率にて中空シリカ粒子を観察し、画像を撮影する。得られた画像から20個の中空シリカ粒子を任意に選択し、それらの粒子の粒子径の平均を平均粒子径とする。この際、選択したシリカ粒子が図2に示すような形状であった場合、中空シリカ粒子2に外接し、その長辺が最も長くなるように配置した長方形(外接長方形L)を導く。そして、その外接長方形Lの長辺をX、短辺をYとして、(X+Y)/2として二軸平均一次粒子径を算出し、その粒子の粒子径とする。 For hollow silica particles, the average particle diameter can be measured from the raw material. For example, the biaxial average primary particle diameter is calculated as follows from the result of observing 20 arbitrary particles by SEM. That is, in the case of colloidal silica particles having a solid concentration of 5 to 40% by mass normally dispersed in water, for example, a chip with a 2 cm square wafer with a pattern wiring is immersed in the dispersion of colloidal silica particles for about 30 seconds. Thereafter, the chip is rinsed with pure water for about 30 seconds and dried by nitrogen blowing. Thereafter, the chip is placed on a sample stage for SEM observation, an acceleration voltage of 10 kV is applied, the hollow silica particles are observed at a magnification of 100,000, and an image is taken. 20 hollow silica particles are arbitrarily selected from the obtained image, and the average of the particle diameters of these particles is defined as the average particle diameter. At this time, when the selected silica particles have a shape as shown in FIG. 2, a rectangle (circumscribed rectangle L) that circumscribes the hollow silica particles 2 and has the longest side is guided. And the long side of the circumscribed rectangle L is X, the short side is Y, and the biaxial average primary particle diameter is calculated as (X + Y) / 2, and is defined as the particle diameter of the particle.
 エアロゲル複合体に含まれるエアロゲル成分の含有量は、適度な強度をエアロゲル複合体に付与し易くなることから、エアロゲル複合体の総量100質量部に対し、4質量部以上とすることができ、10質量部以上であってもよい。当該含有量は、より良好な断熱性を得易くなることから、エアロゲル複合体の総量100質量部に対し、25質量部以下とすることができ、20質量部以下であってもよい。すなわち、エアロゲル複合体に含まれるエアロゲル成分の含有量は、エアロゲル複合体の総量100質量部に対し、4~25質量部とすることができるが、10~20質量部であってもよい。 Since the content of the airgel component contained in the airgel composite can be easily imparted with an appropriate strength to the airgel composite, it can be 4 parts by mass or more with respect to 100 parts by mass of the total amount of the airgel composite. It may be greater than or equal to parts by mass. Since the said content becomes easy to acquire better heat insulation, it can be 25 mass parts or less with respect to 100 mass parts of total amounts of an airgel composite, and may be 20 mass parts or less. That is, the content of the airgel component contained in the airgel composite can be 4 to 25 parts by mass with respect to 100 parts by mass of the total amount of the airgel composite, but may be 10 to 20 parts by mass.
 エアロゲル複合体に含まれる中空シリカ粒子の含有量は、より適度な強度をエアロゲル複合体に付与し易くなることから、エアロゲル複合体の総量100質量部に対し、1質量部以上とすることができ、3質量部以上であってもよい。当該含有量は、中空シリカ粒子の固体熱伝導を抑制し易くなることから、25質量部以下とすることができ、15質量部以下であってもよい。すなわち、エアロゲル複合体に含まれる中空シリカ粒子の含有量は、エアロゲル複合体の総量100質量部に対し、1~25質量部とすることができるが、3~15質量部であってもよい。 The content of the hollow silica particles contained in the airgel composite can easily be imparted with a more appropriate strength to the airgel composite, and therefore can be 1 part by mass or more with respect to 100 parts by mass of the total amount of the airgel composite. It may be 3 parts by mass or more. The content can be 25 parts by mass or less, or 15 parts by mass or less, because it is easy to suppress the solid heat conduction of the hollow silica particles. That is, the content of the hollow silica particles contained in the airgel composite can be 1 to 25 parts by mass with respect to 100 parts by mass of the total amount of the airgel composite, but may be 3 to 15 parts by mass.
 エアロゲル複合体は、これらエアロゲル成分及び中空シリカ粒子の他に、熱線輻射抑制等を目的として、カーボングラファイト、アルミニウム化合物、マグネシウム化合物、銀化合物、チタン化合物等のその他の成分を更に含んでいてもよい。その他の成分の含有量は特に制限されないが、エアロゲル複合体の所期の効果を十分に確保する観点から、エアロゲル複合体の総量100質量部に対し、1~5質量部とすることができる。 In addition to these airgel components and hollow silica particles, the airgel composite may further contain other components such as carbon graphite, an aluminum compound, a magnesium compound, a silver compound, and a titanium compound for the purpose of suppressing heat radiation. . The content of other components is not particularly limited, but can be 1 to 5 parts by mass with respect to 100 parts by mass of the total amount of the airgel complex from the viewpoint of sufficiently securing the desired effect of the airgel complex.
<エアロゲル複合体の具体的態様>
 本実施形態のエアロゲル複合体は、中空シリカ粒子と、(分子内に)加水分解性の官能基又は縮合性の官能基を有するケイ素化合物、及び、前記加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種と、を含有するゾルの縮合物である湿潤ゲルの乾燥物であってもよい。すなわち、本実施形態のエアロゲル複合体は、中空シリカ粒子と、(分子内に)加水分解性の官能基又は縮合性の官能基を有するケイ素化合物、及び、前記加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種と、を含有するゾルから生成された湿潤ゲルを乾燥して得ることができる。これらの態様を採用することにより、エアロゲル複合体の断熱性と柔軟性とがより向上する。前記縮合物は、加水分解性の官能基を有するケイ素化合物の加水分解により得られた加水分解生成物の縮合反応により得られてもよく、加水分解により得られた官能基ではない縮合性の官能基を有するケイ素化合物の縮合反応により得られてもよい。前記ケイ素化合物は、加水分解性の官能基及び縮合性の官能基の少なくとも一方を有していればよく、加水分解性の官能基及び縮合性の官能基の双方を有していてもよい。なお、後述する各エアロゲル複合体は、このように、中空シリカ粒子と、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物、及び、前記加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種と、を含有するゾルの縮合物である湿潤ゲルの乾燥物(前記ゾルから生成された湿潤ゲルを乾燥することで得られるもの)であってもよい。
<Specific embodiment of airgel composite>
The airgel composite of the present embodiment includes hollow silica particles, a silicon compound having a hydrolyzable functional group or a condensable functional group (in the molecule), and a silicon compound having the hydrolyzable functional group. It may be a dried product of a wet gel that is a condensate of a sol containing at least one selected from the group consisting of hydrolysis products. That is, the airgel composite of this embodiment includes hollow silica particles, a silicon compound having a hydrolyzable functional group or a condensable functional group (in the molecule), and silicon having the hydrolyzable functional group. The wet gel produced | generated from the sol containing at least 1 type selected from the group which consists of a hydrolysis product of a compound can be obtained by drying. By adopting these aspects, the heat insulating property and flexibility of the airgel composite are further improved. The condensate may be obtained by a condensation reaction of a hydrolysis product obtained by hydrolysis of a silicon compound having a hydrolyzable functional group, and is not a functional group obtained by hydrolysis. It may be obtained by a condensation reaction of a silicon compound having a group. The silicon compound may have at least one of a hydrolyzable functional group and a condensable functional group, and may have both a hydrolyzable functional group and a condensable functional group. In addition, each airgel composite described later includes hollow silica particles, a silicon compound having a hydrolyzable functional group or a condensable functional group, and a silicon compound having the hydrolyzable functional group. A wet gel dried product (obtained by drying a wet gel generated from the sol), which is a condensate of a sol containing at least one selected from the group consisting of hydrolysis products, Also good.
 本実施形態のエアロゲル複合体は、シロキサン結合(Si-O-Si)を含む主鎖を有するポリシロキサンを含有することができる。エアロゲル複合体は、構造単位として、下記M単位、D単位、T単位又はQ単位を有することができる。 The airgel composite of the present embodiment can contain polysiloxane having a main chain including a siloxane bond (Si—O—Si). The airgel composite may have the following M unit, D unit, T unit or Q unit as a structural unit.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記式中、Rは、ケイ素原子に結合している原子(水素原子等)又は原子団(アルキル基等)を示す。M単位は、ケイ素原子が1個の酸素原子と結合した一価の基からなる単位である。D単位は、ケイ素原子が2個の酸素原子と結合した二価の基からなる単位である。T単位は、ケイ素原子が3個の酸素原子と結合した三価の基からなる単位である。Q単位は、ケイ素原子が4個の酸素原子と結合した四価の基からなる単位である。これらの単位の含有量に関する情報は、Si-NMRにより得ることができる。 In the above formula, R represents an atom (hydrogen atom or the like) or an atomic group (alkyl group or the like) bonded to a silicon atom. The M unit is a unit composed of a monovalent group in which a silicon atom is bonded to one oxygen atom. The D unit is a unit composed of a divalent group in which a silicon atom is bonded to two oxygen atoms. The T unit is a unit composed of a trivalent group in which a silicon atom is bonded to three oxygen atoms. The Q unit is a unit composed of a tetravalent group in which a silicon atom is bonded to four oxygen atoms. Information on the content of these units can be obtained by Si-NMR.
 加水分解性の官能基としては、例えば、アルコキシ基が挙げられる。縮合性の官能基(加水分解性の官能基に該当する官能基を除く)としては、例えば、水酸基、シラノール基、カルボキシル基及びフェノール性水酸基が挙げられる。水酸基は、ヒドロキシアルキル基等の水酸基含有基に含まれていてもよい。加水分解性の官能基及び縮合性の官能基のそれぞれは、単独で又は2種類以上を混合して用いてもよい。 Examples of the hydrolyzable functional group include an alkoxy group. Examples of the condensable functional group (excluding the functional group corresponding to the hydrolyzable functional group) include a hydroxyl group, a silanol group, a carboxyl group, and a phenolic hydroxyl group. The hydroxyl group may be contained in a hydroxyl group-containing group such as a hydroxyalkyl group. Each of the hydrolyzable functional group and the condensable functional group may be used alone or in admixture of two or more.
 ケイ素化合物は、加水分解性の官能基としてアルコキシ基を有するケイ素化合物を含むことが可能であり、また、縮合性の官能基としてヒドロキシアルキル基を有するケイ素化合物を含むことができる。ケイ素化合物は、エアロゲル複合体の柔軟性を向上する観点から、アルコキシ基、シラノール基、ヒドロキシアルキル基及びポリエーテル基からなる群より選ばれる少なくとも1種を有することができる。ケイ素化合物は、ゾルの相溶性が向上する観点から、アルコキシ基及びヒドロキシアルキル基からなる群より選ばれる少なくとも1種を有することができる。 The silicon compound can include a silicon compound having an alkoxy group as a hydrolyzable functional group, and can also include a silicon compound having a hydroxyalkyl group as a condensable functional group. The silicon compound can have at least one selected from the group consisting of an alkoxy group, a silanol group, a hydroxyalkyl group, and a polyether group from the viewpoint of improving the flexibility of the airgel composite. The silicon compound can have at least one selected from the group consisting of an alkoxy group and a hydroxyalkyl group from the viewpoint of improving the compatibility of the sol.
 ケイ素化合物の反応性の向上とエアロゲル複合体の熱伝導率の低減の観点から、アルコキシ基及びヒドロキシアルキル基のそれぞれの炭素数は、1~6とすることができ、エアロゲル複合体の柔軟性がより向上する観点から2~4であってもよい。アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基等が挙げられる。ヒドロキシアルキル基としては、ヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシプロピル基等が挙げられる。 From the viewpoint of improving the reactivity of the silicon compound and reducing the thermal conductivity of the airgel composite, the number of carbon atoms of each of the alkoxy group and the hydroxyalkyl group can be 1 to 6, and the flexibility of the airgel composite is improved. It may be 2 to 4 from the viewpoint of further improvement. Examples of the alkoxy group include a methoxy group, an ethoxy group, and a propoxy group. Examples of the hydroxyalkyl group include a hydroxymethyl group, a hydroxyethyl group, and a hydroxypropyl group.
 加水分解性の官能基又は縮合性の官能基を有するケイ素化合物としては、後述するポリシロキサン化合物以外のケイ素化合物(シリコン化合物)を用いることができる。すなわち、本実施形態のエアロゲル複合体は、中空シリカ粒子と、(分子内に)加水分解性の官能基又は縮合性の官能基を有するケイ素化合物(ポリシロキサン化合物を除く)、及び、前記加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種の化合物(以下、場合により「ケイ素化合物群」という)を含有するゾルの縮合物である湿潤ゲルの乾燥物であってもよい。ケイ素化合物における分子内のケイ素数は、1又は2とすることができる。 As the silicon compound having a hydrolyzable functional group or a condensable functional group, a silicon compound (silicon compound) other than the polysiloxane compound described later can be used. That is, the airgel composite of this embodiment includes hollow silica particles, a silicon compound (excluding a polysiloxane compound) having a hydrolyzable functional group or a condensable functional group (inside the molecule), and the hydrolysis Wet gel dried product which is a condensate of sol containing at least one compound selected from the group consisting of hydrolysis products of silicon compounds having functional functional groups (hereinafter sometimes referred to as “silicon compound group”) It may be. The number of silicon atoms in the molecule of the silicon compound can be 1 or 2.
 加水分解性の官能基を有するケイ素化合物としては、特に限定されないが、例えば、アルキルケイ素アルコキシドが挙げられる。アルキルケイ素アルコキシドにおいて、耐水性が向上する観点から、加水分解性の官能基の数は、3個以下であってもよく、2~3個であってもよい。アルキルケイ素アルコキシドとしては、例えば、モノアルキルトリアルコキシシラン、モノアルキルジアルコキシシラン、ジアルキルジアルコキシシラン、モノアルキルモノアルコキシシラン、ジアルキルモノアルコキシシラン及びトリアルキルモノアルコキシシランが挙げられる。アルキルケイ素アルコキシドとしては、例えば、メチルトリメトキシシラン、メチルジメトキシシラン、ジメチルジメトキシシラン及びエチルトリメトキシシランが挙げられる。 The silicon compound having a hydrolyzable functional group is not particularly limited, and examples thereof include alkyl silicon alkoxides. In the alkyl silicon alkoxide, from the viewpoint of improving water resistance, the number of hydrolyzable functional groups may be 3 or less, or 2 to 3. Examples of the alkyl silicon alkoxide include monoalkyltrialkoxysilane, monoalkyldialkoxysilane, dialkyldialkoxysilane, monoalkylmonoalkoxysilane, dialkylmonoalkoxysilane and trialkylmonoalkoxysilane. Examples of the alkyl silicon alkoxide include methyltrimethoxysilane, methyldimethoxysilane, dimethyldimethoxysilane, and ethyltrimethoxysilane.
 縮合性の官能基を有するケイ素化合物としては、特に限定されないが、例えば、シランテトラオール、メチルシラントリオール、ジメチルシランジオール、フェニルシラントリオール、フェニルメチルシランジオール、ジフェニルシランジオール、n-プロピルシラントリオール、ヘキシルシラントリオール、オクチルシラントリオール、デシルシラントリオール及びトリフルオロプロピルシラントリオールが挙げられる。 The silicon compound having a condensable functional group is not particularly limited. For example, silane tetraol, methyl silane triol, dimethyl silane diol, phenyl silane triol, phenyl methyl silane diol, diphenyl silane diol, n-propyl silane triol, Examples include hexyl silane triol, octyl silane triol, decyl silane triol, and trifluoropropyl silane triol.
 加水分解性の官能基又は縮合性の官能基を有するケイ素化合物は、加水分解性の官能基及び縮合性の官能基とは異なる反応性基(加水分解性の官能基及び縮合性の官能基に該当しない官能基)を更に有していてもよい。反応性基としては、例えば、エポキシ基、メルカプト基、グリシドキシ基、ビニル基、アクリロイル基、メタクリロイル基及びアミノ基が挙げられる。エポキシ基は、グリシドキシ基等のエポキシ基含有基に含まれていてもよい。 A silicon compound having a hydrolyzable functional group or a condensable functional group is a reactive group different from the hydrolyzable functional group and the condensable functional group (hydrolyzable functional group and condensable functional group). It may further have a functional group (not applicable). Examples of the reactive group include an epoxy group, a mercapto group, a glycidoxy group, a vinyl group, an acryloyl group, a methacryloyl group, and an amino group. The epoxy group may be contained in an epoxy group-containing group such as a glycidoxy group.
 加水分解性の官能基の数が3個以下であり、反応性基を有するケイ素化合物として、ビニルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、ビニルトリメトキシシラン等も用いることができる。 The number of hydrolyzable functional groups is 3 or less, and silicon compounds having reactive groups include vinyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3 -Methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, N-phenyl-3-aminopropyl Trimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, vinyltrimethoxysilane and the like can also be used.
 縮合性の官能基を有し、前述の反応性基を有するケイ素化合物として、ビニルシラントリオール、3-グリシドキシプロピルシラントリオール、3-グリシドキシプロピルメチルシランジオール、3-メタクリロキシプロピルシラントリオール、3-メタクリロキシプロピルメチルシランジオール、3-アクリロキシプロピルシラントリオール、3-メルカプトプロピルシラントリオール、3-メルカプトプロピルメチルシランジオール、N-フェニル-3-アミノプロピルシラントリオール、N-2-(アミノエチル)-3-アミノプロピルメチルシランジオール等も用いることができる。 As a silicon compound having a condensable functional group and having the above-mentioned reactive group, vinylsilane triol, 3-glycidoxypropylsilanetriol, 3-glycidoxypropylmethylsilanediol, 3-methacryloxypropylsilanetriol, 3-methacryloxypropylmethylsilanediol, 3-acryloxypropylsilanetriol, 3-mercaptopropylsilanetriol, 3-mercaptopropylmethylsilanediol, N-phenyl-3-aminopropylsilanetriol, N-2- (aminoethyl ) -3-Aminopropylmethylsilanediol and the like can also be used.
 分子末端の加水分解性の官能基が3個以下のケイ素化合物として、ビストリメトキシシリルメタン、ビストリメトキシシリルエタン、ビストリメトキシシリルヘキサン等も用いることができる。 Bistrimethoxysilylmethane, bistrimethoxysilylethane, bistrimethoxysilylhexane, etc. can be used as the silicon compound having 3 or less hydrolyzable functional groups at the molecular terminals.
 加水分解性の官能基又は縮合性の官能基を有するケイ素化合物(ポリシロキサン化合物を除く)、及び、前記加水分解性の官能基を有するケイ素化合物の加水分解生成物のそれぞれは、単独で又は2種類以上を混合して用いてもよい。 Each of the hydrolyzable functional group or the silicon compound having a condensable functional group (excluding the polysiloxane compound) and the hydrolyzate of the silicon compound having the hydrolyzable functional group, either alone or 2 You may mix and use a kind or more.
 本実施形態のエアロゲル複合体を作製するにあたり、上記ケイ素化合物は、加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物を含むことができる。すなわち、上記ケイ素化合物を含有するゾルは、分子内に反応性基を有するポリシロキサン化合物及び該ポリシロキサン化合物の加水分解生成物からなる群より選択される少なくとも一種を更に含有することができる。 In preparing the airgel composite of the present embodiment, the silicon compound can include a polysiloxane compound having a hydrolyzable functional group or a condensable functional group. That is, the sol containing the silicon compound can further contain at least one selected from the group consisting of a polysiloxane compound having a reactive group in the molecule and a hydrolysis product of the polysiloxane compound.
 本実施形態のエアロゲル複合体は、中空シリカ粒子と、(分子内に)加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物、及び、前記加水分解性の官能基を有するポリシロキサン化合物の加水分解生成物(前記加水分解性の官能基が加水分解したポリシロキサン化合物)からなる群より選択される少なくとも一種の化合物(以下、場合により「ポリシロキサン化合物群」という)を含有するゾルの縮合物である湿潤ゲルの乾燥物であってもよい。すなわち、本実施形態のエアロゲル複合体は、中空シリカ粒子と、(分子内に)加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物、及び、前記加水分解性の官能基を有するポリシロキサン化合物の加水分解生成物からなる群より選択される少なくとも一種と、を含有するゾルから生成された湿潤ゲルを乾燥して得られるものであってもよい。 The airgel composite of the present embodiment includes hollow silica particles, a polysiloxane compound having a hydrolyzable functional group or a condensable functional group (in the molecule), and the polysiloxane having the hydrolyzable functional group. A sol containing at least one compound selected from the group consisting of a hydrolysis product of a compound (polysiloxane compound in which the hydrolyzable functional group is hydrolyzed) (hereinafter sometimes referred to as “polysiloxane compound group”). It may be a dried product of a wet gel which is a condensate. That is, the airgel composite of this embodiment has hollow silica particles, a polysiloxane compound having a hydrolyzable functional group or a condensable functional group (in the molecule), and the hydrolyzable functional group. It may be obtained by drying a wet gel produced from a sol containing at least one selected from the group consisting of hydrolysis products of polysiloxane compounds.
 ポリシロキサン化合物群における官能基は、特に限定されないが、同じ官能基同士で反応するか、あるいは他の官能基と反応する基とすることができる。加水分解性の官能基としては、例えば、アルコキシ基が挙げられる。縮合性の官能基としては、水酸基、シラノール基、カルボキシル基及びフェノール性水酸基が挙げられる。水酸基は、ヒドロキシアルキル基等の水酸基含有基に含まれていてもよい。加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物は、加水分解性の官能基及び縮合性の官能基とは異なる前述の反応性基(加水分解性の官能基及び縮合性の官能基に該当しない官能基)を更に有していてもよい。これらの官能基及び反応性基を有するポリシロキサン化合物は単独で、又は2種類以上を混合して用いてもよい。これらの官能基及び反応性基のうち、例えば、エアロゲル複合体の柔軟性を向上する基としては、アルコキシ基、シラノール基、ヒドロキシアルキル基等が挙げられ、これらのうち、アルコキシ基及びヒドロキシアルキル基はゾルの相溶性をより向上することができる。また、ポリシロキサン化合物の反応性の向上とエアロゲル複合体の熱伝導率の低減の観点から、アルコキシ基及びヒドロキシアルキル基の炭素数は1~6とすることができるが、エアロゲル複合体の柔軟性をより向上する観点から2~4であってもよい。 The functional group in the polysiloxane compound group is not particularly limited, but may be a group that reacts with the same functional group or reacts with another functional group. Examples of the hydrolyzable functional group include an alkoxy group. Examples of the condensable functional group include a hydroxyl group, a silanol group, a carboxyl group, and a phenolic hydroxyl group. The hydroxyl group may be contained in a hydroxyl group-containing group such as a hydroxyalkyl group. The polysiloxane compound having a hydrolyzable functional group or a condensable functional group is different from the above-mentioned reactive group (hydrolyzable functional group and condensable functional group). You may further have a functional group which does not correspond to a functional group. These polysiloxane compounds having a functional group and a reactive group may be used alone or in combination of two or more. Among these functional groups and reactive groups, examples of the group that improves the flexibility of the airgel composite include an alkoxy group, a silanol group, and a hydroxyalkyl group. Among these, an alkoxy group and a hydroxyalkyl group Can further improve the compatibility of the sol. Further, from the viewpoint of improving the reactivity of the polysiloxane compound and reducing the thermal conductivity of the airgel composite, the number of carbon atoms of the alkoxy group and hydroxyalkyl group can be 1 to 6, but the flexibility of the airgel composite is not limited. It may be 2 to 4 from the viewpoint of further improving.
 ヒドロキシアルキル基を有するポリシロキサン化合物としては、例えば、下記一般式(A)で表される構造を有する化合物が挙げられる。 Examples of the polysiloxane compound having a hydroxyalkyl group include compounds having a structure represented by the following general formula (A).
 式(A)中、R1aはヒドロキシアルキル基を示し、R2aはアルキレン基を示し、R3a及びR4aはそれぞれ独立にアルキル基又はアリール基を示し、nは1~50の整数を示す。ここで、アリール基としては、例えば、フェニル基及び置換フェニル基が挙げられる。置換フェニル基の置換基としては、例えば、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基及びシアノ基が挙げられる。式(A)中、2個のR1aは各々同一であっても異なっていてもよく、同様に、2個のR2aは各々同一であっても異なっていてもよい。式(A)中、2個以上のR3aは各々同一であっても異なっていてもよく、同様に、2個以上のR4aは各々同一であっても異なっていてもよい。 In formula (A), R 1a represents a hydroxyalkyl group, R 2a represents an alkylene group, R 3a and R 4a each independently represents an alkyl group or an aryl group, and n represents an integer of 1 to 50. Here, examples of the aryl group include a phenyl group and a substituted phenyl group. Examples of the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group. In formula (A), two R 1a s may be the same or different, and similarly, two R 2a s may be the same or different. In formula (A), two or more R 3a s may be the same or different, and similarly, two or more R 4a s may be the same or different.
 上記構造のポリシロキサン化合物を含有するゾルの縮合物である湿潤ゲル(前記ゾルから生成された湿潤ゲル)を用いることにより、低熱伝導率かつ柔軟なエアロゲルを更に得易くなる。同様の観点から、以下に示す特徴を満たしてもよい。式(A)中、R1aとしては、例えば、炭素数が1~6のヒドロキシアルキル基が挙げられ、具体的には、ヒドロキシエチル基及びヒドロキシプロピル基が挙げられる。式(A)中、R2aとしては、例えば、炭素数が1~6のアルキレン基が挙げられ、具体的には、エチレン基及びプロピレン基が挙げられる。式(A)中、R3a及びR4aはそれぞれ独立に炭素数が1~6のアルキル基又はフェニル基であってもよい。該アルキル基は、メチル基であってもよい。式(A)中、nは2~30とすることができ、5~20であってもよい。 By using a wet gel that is a condensate of a sol containing the polysiloxane compound having the above structure (a wet gel generated from the sol), it becomes easier to obtain a flexible airgel having low thermal conductivity. From the same viewpoint, the following features may be satisfied. In formula (A), examples of R 1a include a hydroxyalkyl group having 1 to 6 carbon atoms, and specific examples include a hydroxyethyl group and a hydroxypropyl group. In the formula (A), examples of R 2a include an alkylene group having 1 to 6 carbon atoms, and specific examples include an ethylene group and a propylene group. In the formula (A), R 3a and R 4a may each independently be an alkyl group having 1 to 6 carbon atoms or a phenyl group. The alkyl group may be a methyl group. In the formula (A), n may be 2 to 30, and may be 5 to 20.
 上記一般式(A)で表される構造を有するポリシロキサン化合物としては、市販品を用いることができ、例えば、X-22-160AS、KF-6001、KF-6002、KF-6003等の化合物(いずれも、信越化学工業株式会社製)、及び、XF42-B0970、Fluid OFOH 702-4%等の化合物(いずれも、モメンティブ社製)が挙げられる。 As the polysiloxane compound having the structure represented by the general formula (A), commercially available products can be used. For example, compounds such as X-22-160AS, KF-6001, KF-6002, KF-6003 and the like ( All of which are manufactured by Shin-Etsu Chemical Co., Ltd.) and compounds such as XF42-B0970, Fluid OFOH 702-4% (all manufactured by Momentive).
 アルコキシ基を有するポリシロキサン化合物としては、例えば、下記一般式(B)で表される構造を有する化合物が挙げられる。 Examples of the polysiloxane compound having an alkoxy group include compounds having a structure represented by the following general formula (B).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(B)中、R1bはアルキル基、アルコキシ基又はアリール基を示し、R2b及びR3bはそれぞれ独立にアルコキシ基を示し、R4b及びR5bはそれぞれ独立にアルキル基又はアリール基を示し、mは1~50の整数を示す。ここで、アリール基としては、例えば、フェニル基及び置換フェニル基が挙げられる。置換フェニル基の置換基としては、例えば、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基及びシアノ基が挙げられる。なお、式(B)中、2個のR1bは各々同一であっても異なっていてもよく、2個のR2bは各々同一であっても異なっていてもよく、同様に、2個のR3bは各々同一であっても異なっていてもよい。式(B)中、mが2以上の整数の場合、2個以上のR4bは各々同一であっても異なっていてもよく、同様に、2個以上のR5bは各々同一であっても異なっていてもよい。 In formula (B), R 1b represents an alkyl group, an alkoxy group or an aryl group, R 2b and R 3b each independently represent an alkoxy group, and R 4b and R 5b each independently represent an alkyl group or an aryl group. , M represents an integer of 1 to 50. Here, examples of the aryl group include a phenyl group and a substituted phenyl group. Examples of the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group. In the formula (B), two R 1b s may be the same or different, and two R 2b s may be the same or different. Similarly, R 3b may be the same or different. In the formula (B), when m is an integer of 2 or more, two or more R 4b may be the same or different, and similarly, two or more R 5b may be the same. May be different.
 上記構造のポリシロキサン化合物又はその加水分解生成物を含有するゾルの縮合物である湿潤ゲル(前記ゾルから生成された湿潤ゲル)を用いることにより、低熱伝導率かつ柔軟なエアロゲルを更に得易くなる。同様の観点から、以下に示す特徴を満たしてもよい。式(B)中、R1bとしては、例えば、炭素数が1~6のアルキル基及び炭素数が1~6のアルコキシ基が挙げられ、具体的には、メチル基、メトキシ基及びエトキシ基が挙げられる。式(B)中、R2b及びR3bは、それぞれ独立に炭素数が1~6のアルコキシ基であってもよい。該アルコキシ基としては、例えば、メトキシ基及びエトキシ基が挙げられる。式(B)中、R4b及びR5bは、それぞれ独立に炭素数が1~6のアルキル基又はフェニル基であってもよい。該アルキル基としては、例えば、メチル基が挙げられる。式(B)中、mは2~30とすることができ、5~20であってもよい。 By using a wet gel (wet gel generated from the sol) that is a condensate of a sol containing the polysiloxane compound having the above structure or a hydrolysis product thereof, it becomes easier to obtain a flexible airgel having low thermal conductivity. . From the same viewpoint, the following features may be satisfied. In the formula (B), examples of R 1b include an alkyl group having 1 to 6 carbon atoms and an alkoxy group having 1 to 6 carbon atoms. Specifically, a methyl group, a methoxy group, and an ethoxy group can be exemplified. Can be mentioned. In the formula (B), R 2b and R 3b may each independently be an alkoxy group having 1 to 6 carbon atoms. Examples of the alkoxy group include a methoxy group and an ethoxy group. In the formula (B), R 4b and R 5b may each independently be an alkyl group having 1 to 6 carbon atoms or a phenyl group. Examples of the alkyl group include a methyl group. In the formula (B), m can be 2 to 30, and may be 5 to 20.
 上記一般式(B)で表される構造を有するポリシロキサン化合物は、例えば、特開2000-26609号公報、特開2012-233110号公報等にて報告される製造方法を適宜参照して得ることができる。 The polysiloxane compound having the structure represented by the general formula (B) can be obtained by appropriately referring to the production methods reported in, for example, JP-A Nos. 2000-26609 and 2012-233110. Can do.
 なお、アルコキシ基は加水分解するため、アルコキシ基を有するポリシロキサン化合物はゾル中にて加水分解生成物として存在する可能性があり、アルコキシ基を有するポリシロキサン化合物と、その加水分解生成物とは混在していてもよい。また、アルコキシ基を有するポリシロキサン化合物において、分子中のアルコキシ基の全てが加水分解されていてもよいし、部分的に加水分解されていてもよい。 In addition, since the alkoxy group is hydrolyzed, the polysiloxane compound having an alkoxy group may exist as a hydrolysis product in the sol. The polysiloxane compound having an alkoxy group and the hydrolysis product are It may be mixed. In the polysiloxane compound having an alkoxy group, all of the alkoxy groups in the molecule may be hydrolyzed or partially hydrolyzed.
 これらのポリシロキサン化合物群は、単独で又は2種類以上を混合して用いてもよい。 These polysiloxane compound groups may be used alone or in combination of two or more.
 良好な反応性を更に得易くなることから、上記ゾルに含まれるケイ素化合物群の含有量(加水分解性の官能基又は縮合性の官能基を有するケイ素化合物(ポリシロキサン化合物を除く)の含有量、及び、前記加水分解性の官能基を有するケイ素化合物の加水分解生成物の含有量の総和)は、ゾルの総量100質量部に対し、5質量部以上とすることができ、10質量部以上であってもよく、12質量部以上であってもよい。良好な相溶性を更に得易くなることから、ケイ素化合物群の前記含有量は、ゾルの総量100質量部に対し、50質量部以下とすることができ、30質量部以下であってもよく、25質量部以下であってもよい。すなわち、ケイ素化合物群の前記含有量は、ゾルの総量100質量部に対し、5~50質量部とすることができ、10~30質量部であってもよく、12~25質量部であってもよい。 Content of silicon compounds contained in the sol (contents of silicon compounds having hydrolyzable functional groups or condensable functional groups (excluding polysiloxane compounds) contained in the sol because it becomes easier to obtain good reactivity. , And the total content of hydrolysis products of the silicon compound having a hydrolyzable functional group) can be 5 parts by mass or more with respect to 100 parts by mass of the total amount of the sol. It may be 12 parts by mass or more. Since it becomes easier to obtain good compatibility, the content of the silicon compound group can be 50 parts by mass or less with respect to 100 parts by mass of the total amount of the sol, and may be 30 parts by mass or less. It may be 25 parts by mass or less. That is, the content of the silicon compound group may be 5 to 50 parts by mass, may be 10 to 30 parts by mass, and 12 to 25 parts by mass with respect to 100 parts by mass of the sol. Also good.
 上記ゾルがポリシロキサン化合物群を含有する場合、良好な反応性を更に得易くなることから、上記ゾルに含まれるポリシロキサン化合物群の含有量(加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物の含有量、及び、前記加水分解性の官能基を有するポリシロキサン化合物の加水分解生成物の含有量の総和)は、ゾルの総量100質量部に対し、1質量部以上とすることができ、3質量部以上であってもよく、5質量部以上であってもよく、7質量部以上であってもよく、10質量部以上であってもよい。良好な相溶性を更に得易くなることから、ポリシロキサン化合物群の前記含有量は、ゾルの総量100質量部に対し、50質量部以下とすることができ、30質量部以下であってもよく、15質量部以下であってもよい。すなわち、ポリシロキサン化合物群の含有量は、ゾルの総量100質量部に対し、1~50質量部とすることができ、3~50質量部であってもよく、5~50質量部であってもよく、7~30質量部であってもよく、10~30質量部であってもよく、10~15質量部であってもよい。 When the sol contains a polysiloxane compound group, it becomes easier to obtain good reactivity. Therefore, the content of the polysiloxane compound group contained in the sol (hydrolyzable functional group or condensable functional group) The total content of the polysiloxane compound and the total hydrolysis product content of the polysiloxane compound having a hydrolyzable functional group is 1 part by mass or more with respect to 100 parts by mass of the total amount of the sol. 3 parts by mass or more, 5 parts by mass or more, 7 parts by mass or more, or 10 parts by mass or more. Since it becomes easier to obtain good compatibility, the content of the polysiloxane compound group can be 50 parts by mass or less with respect to 100 parts by mass of the total amount of the sol, and may be 30 parts by mass or less. 15 parts by mass or less. That is, the content of the polysiloxane compound group can be 1 to 50 parts by weight, or 3 to 50 parts by weight, or 5 to 50 parts by weight with respect to 100 parts by weight of the total sol. It may be 7 to 30 parts by mass, 10 to 30 parts by mass, or 10 to 15 parts by mass.
 ケイ素化合物群の含有量及びポリシロキサン化合物群の含有量の総和は、良好な反応性を更に得易くなることから、ゾルの総量100質量部に対し、5質量部以上とすることができ、10質量部以上であってもよく、15質量部以上であってもよい。良好な相溶性を更に得易くなることから、前記含有量の総和は、ゾルの総量100質量部に対し、50質量部以下とすることができ、30質量部以下であってもよく、25質量部以下であってもよい。すなわち、前記含有量の総和は、ゾルの総量100質量部に対し、5~50質量部とすることができ、10~30質量部であってもよく、15~25質量部であってもよい。 The total of the content of the silicon compound group and the content of the polysiloxane compound group can further easily obtain good reactivity, and therefore can be 5 parts by mass or more with respect to 100 parts by mass of the sol. It may be greater than or equal to 15 parts by weight. Since it becomes easier to obtain good compatibility, the sum of the contents can be 50 parts by mass or less, or 30 parts by mass or less, and 25 parts by mass with respect to 100 parts by mass of the sol. Or less. That is, the total content can be 5 to 50 parts by mass with respect to 100 parts by mass of the sol, 10 to 30 parts by mass, or 15 to 25 parts by mass. .
 前記ケイ素化合物群の含有量と、前記ポリシロキサン化合物群の含有量との比(ケイ素化合物群:ポリシロキサン化合物群)は、0.5:1~4:1とすることができ、1:1~2:1であってもよく、2:1~4:1であってもよく、3:1~4:1であってもよい。これらの化合物の含有量の比を0.5:1以上とすることにより、良好な相溶性を更に得易くなる。上記含有量の比を4:1以下とすることにより、ゲルの収縮を更に抑制し易くなる。 The ratio of the content of the silicon compound group to the content of the polysiloxane compound group (silicon compound group: polysiloxane compound group) may be 0.5: 1 to 4: 1. It may be ˜2: 1, may be 2: 1 to 4: 1, and may be 3: 1 to 4: 1. By setting the ratio of the content of these compounds to 0.5: 1 or more, it becomes easier to obtain good compatibility. By making the content ratio 4: 1 or less, it becomes easier to further suppress the shrinkage of the gel.
 上記ゾルに含まれる中空シリカ粒子の含有量は、適度な強度をエアロゲル複合体に付与し易くなり、乾燥時の耐収縮性に優れるエアロゲル複合体が得易くなることから、ゾルの総量100質量部に対し、1質量部以上にすることができ、4質量部以上であってもよく、6質量部以上であってもよい。中空シリカ粒子の固体熱伝導を抑制し易くなり、断熱性に優れるエアロゲル複合体が得易くなることから、上記中空シリカ粒子の含有量は、20質量部以下とすることができ、15質量部以下であってもよく、10質量部以下であってもよい。すなわち、上記ゾルに含まれる中空シリカ粒子の含有量は、ゾルの総量100質量部に対し、1~20質量部とすることができるが、4~15質量部であってもよく、6~10質量部であってもよい。 The content of the hollow silica particles contained in the sol makes it easy to impart an appropriate strength to the airgel composite and makes it easy to obtain an airgel composite having excellent shrinkage resistance during drying. Therefore, the total amount of sol is 100 parts by mass. On the other hand, it can be 1 part by mass or more, may be 4 parts by mass or more, and may be 6 parts by mass or more. Since it becomes easy to suppress the solid heat conduction of the hollow silica particles and it becomes easy to obtain an airgel composite having excellent heat insulation, the content of the hollow silica particles can be 20 parts by mass or less, and 15 parts by mass or less. It may be 10 parts by mass or less. That is, the content of the hollow silica particles contained in the sol can be 1 to 20 parts by mass with respect to 100 parts by mass of the sol, but may be 4 to 15 parts by mass, A mass part may be sufficient.
 本実施形態のエアロゲル複合体におけるエアロゲル成分としては、例えば、以下の態様が挙げられる。これらの態様を採用することにより、エアロゲル複合体の断熱性及び柔軟性を所望の水準に制御することが容易となる。各々の態様を採用することで、各々の態様に応じた熱伝導率及び圧縮弾性率を有するエアロゲル複合体を得ることができる。したがって、用途に応じた断熱性及び柔軟性を有するエアロゲル複合体を提供することができる。 Examples of the airgel component in the airgel composite of the present embodiment include the following modes. By adopting these aspects, it becomes easy to control the heat insulating property and flexibility of the airgel composite to a desired level. By employ | adopting each aspect, the airgel composite which has the heat conductivity and compression elastic modulus according to each aspect can be obtained. Therefore, the airgel composite which has the heat insulation according to a use and a softness | flexibility can be provided.
 本実施形態のエアロゲル複合体は、下記一般式(1)で表される構造を有することができる。本実施形態に係るエアロゲル成分は、式(1)で表される構造を含む構造として、下記一般式(1a)で表される構造を有することができる。上記一般式(A)で表される構造を有するポリシロキサン化合物を使用することにより、式(1)及び式(1a)で表される構造をエアロゲル成分の骨格中に導入することができる。 The airgel composite of the present embodiment can have a structure represented by the following general formula (1). The airgel component which concerns on this embodiment can have a structure represented by the following general formula (1a) as a structure containing the structure represented by Formula (1). By using the polysiloxane compound having the structure represented by the general formula (A), the structures represented by the formulas (1) and (1a) can be introduced into the skeleton of the airgel component.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(1)及び式(1a)中、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、R及びRはそれぞれ独立にアルキレン基を示す。ここで、アリール基としては、例えば、フェニル基及び置換フェニル基が挙げられる。置換フェニル基の置換基としては、例えば、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基及びシアノ基が挙げられる。pは1~50の整数を示す。式(1a)中、2個以上のRは各々同一であっても異なっていてもよく、同様に、2個以上のRは各々同一であっても異なっていてもよい。式(1a)中、2個のRは各々同一であっても異なっていてもよく、同様に、2個のRは各々同一であっても異なっていてもよい。 In formula (1) and formula (1a), R 1 and R 2 each independently represent an alkyl group or an aryl group, and R 3 and R 4 each independently represent an alkylene group. Here, examples of the aryl group include a phenyl group and a substituted phenyl group. Examples of the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group. p represents an integer of 1 to 50. In formula (1a), two or more R 1 s may be the same or different, and similarly, two or more R 2 s may be the same or different. In formula (1a), two R 3 s may be the same or different, and similarly, two R 4 s may be the same or different.
 上記式(1)又は式(1a)で表される構造をエアロゲル複合体の骨格中に導入することにより、低熱伝導率かつ柔軟なエアロゲル複合体となる。同様の観点から、以下に示す特徴を満たしてもよい。式(1)及び式(1a)中、R及びRは、それぞれ独立に炭素数が1~6のアルキル基又はフェニル基であってもよい。該アルキル基としては、例えば、メチル基が挙げられる。式(1)及び式(1a)中、R及びRは、それぞれ独立に炭素数が1~6のアルキレン基であってもよい。該アルキレン基としては、例えば、エチレン基及びプロピレン基が挙げられる。式(1a)中、pは2~30とすることができ、5~20であってもよい。 By introducing the structure represented by the above formula (1) or formula (1a) into the skeleton of the airgel composite, it becomes a flexible airgel composite with low thermal conductivity. From the same viewpoint, the following features may be satisfied. In formula (1) and formula (1a), R 1 and R 2 may each independently be an alkyl group having 1 to 6 carbon atoms or a phenyl group. Examples of the alkyl group include a methyl group. In formula (1) and formula (1a), R 3 and R 4 may each independently be an alkylene group having 1 to 6 carbon atoms. Examples of the alkylene group include an ethylene group and a propylene group. In the formula (1a), p can be 2 to 30, and can be 5 to 20.
 本実施形態のエアロゲル複合体は、支柱部及び橋かけ部を備えるラダー型構造を有するエアロゲル複合体であり、かつ、橋かけ部が下記一般式(2)で表される構造を有するエアロゲル複合体であってもよい。このようなラダー型構造をエアロゲル成分としてエアロゲル複合体の骨格中に導入することにより、耐熱性と機械的強度を向上させることができる。上記一般式(B)で表される構造を有するポリシロキサン化合物を使用することにより、一般式(2)で表される構造を有する橋かけ部を含むラダー型構造をエアロゲルの骨格中に導入することができる。なお、本実施形態において「ラダー型構造」とは、2本の支柱部(struts)と支柱部同士を連結する橋かけ部(bridges)とを有するもの(いわゆる「梯子」の形態を有するもの)である。本態様において、エアロゲル複合体の骨格がラダー型構造からなっていてもよいが、エアロゲル複合体が部分的にラダー型構造を有していてもよい。 The airgel composite of the present embodiment is an airgel composite having a ladder structure including a support portion and a bridge portion, and the airgel composite having a structure in which the bridge portion is represented by the following general formula (2). It may be. By introducing such a ladder structure as an airgel component into the skeleton of the airgel composite, heat resistance and mechanical strength can be improved. By using the polysiloxane compound having the structure represented by the general formula (B), a ladder structure including a bridge portion having the structure represented by the general formula (2) is introduced into the skeleton of the airgel. be able to. In this embodiment, the “ladder structure” has two struts and bridges connecting the struts (having a so-called “ladder” form). It is. In this embodiment, the skeleton of the airgel composite may have a ladder structure, but the airgel composite may partially have a ladder structure.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(2)中、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、bは1~50の整数を示す。ここで、アリール基としては、例えば、フェニル基及び置換フェニル基が挙げられる。置換フェニル基の置換基としては、例えば、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基及びシアノ基が挙げられる。なお、式(2)中、bが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよく、同様に、2個以上のRは各々同一であっても異なっていてもよい。 In formula (2), R 5 and R 6 each independently represents an alkyl group or an aryl group, and b represents an integer of 1 to 50. Here, examples of the aryl group include a phenyl group and a substituted phenyl group. Examples of the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group. In formula (2), when b is an integer of 2 or more, two or more R 5 s may be the same or different, and similarly, two or more R 6 s are the same. Or different.
 上記の構造をエアロゲル成分としてエアロゲル複合体の骨格中に導入することにより、例えば、従来のラダー型シルセスキオキサンに由来する構造を有する(すなわち、下記一般式(X)で表される構造を有する)エアロゲルよりも優れた柔軟性を有するエアロゲル複合体となる。シルセスキオキサンは、構造単位として上記T単位を有するポリシロキサンであり、組成式:(RSiO1.5を有する。シルセスキオキサンは、カゴ型、ラダー型、ランダム型等の種々の骨格構造を有することができる。下記一般式(X)にて示すように、従来のラダー型シルセスキオキサンに由来する構造を有するエアロゲルでは、橋かけ部の構造が-O-であるが、本態様のエアロゲル複合体では、橋かけ部の構造が上記一般式(2)で表される構造(ポリシロキサン構造)である。本実施形態のエアロゲル複合体は、一般式(1)~(3)で表される構造に加え、シルセスキオキサンに由来する構造を更に有していてもよい。
Figure JPOXMLDOC01-appb-C000007
By introducing the above structure as an airgel component into the skeleton of the airgel complex, for example, it has a structure derived from a conventional ladder-type silsesquioxane (that is, a structure represented by the following general formula (X) An airgel composite having flexibility superior to that of the airgel. Silsesquioxane is a polysiloxane having the above T unit as a structural unit, and has a composition formula: (RSiO 1.5 ) n . Silsesquioxane can have various skeletal structures such as a cage type, a ladder type, and a random type. As shown by the following general formula (X), in the airgel having a structure derived from a conventional ladder-type silsesquioxane, the structure of the bridge portion is —O—, but in the airgel composite of this embodiment, The structure of the bridge portion is a structure (polysiloxane structure) represented by the general formula (2). The airgel composite of this embodiment may further have a structure derived from silsesquioxane in addition to the structures represented by the general formulas (1) to (3).
Figure JPOXMLDOC01-appb-C000007
 式(X)中、Rはヒドロキシ基、アルキル基又はアリール基を示す。 In the formula (X), R represents a hydroxy group, an alkyl group or an aryl group.
 支柱部となる構造及びその鎖長、並びに橋かけ部となる構造の間隔は特に限定されないが、耐熱性と機械的強度とをより向上させるという観点から、ラダー型構造としては、下記一般式(3)で表されるラダー型構造を有していてもよい。
Figure JPOXMLDOC01-appb-C000008
There are no particular limitations on the structure to be the strut portion and its chain length, and the interval between the structures to be the bridging portions, but from the viewpoint of further improving the heat resistance and mechanical strength, the ladder structure has the following general formula ( It may have a ladder structure represented by 3).
Figure JPOXMLDOC01-appb-C000008
 式(3)中、R、R、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、a及びcはそれぞれ独立に1~3000の整数を示し、bは1~50の整数を示す。ここで、アリール基としては、例えば、フェニル基及び置換フェニル基が挙げられる。置換フェニル基の置換基としては、例えば、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基及びシアノ基が挙げられる。式(3)中、bが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよく、同様に、2個以上のRは各々同一であっても異なっていてもよい。式(3)中、aが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよく、同様に、cが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよい。 In the formula (3), R 5 , R 6 , R 7 and R 8 each independently represents an alkyl group or an aryl group, a and c each independently represents an integer of 1 to 3000, and b is 1 to 50 Indicates an integer. Here, examples of the aryl group include a phenyl group and a substituted phenyl group. Examples of the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group. In Formula (3), when b is an integer of 2 or more, two or more R 5 s may be the same or different, and similarly, two or more R 6 s may be the same. May be different. In formula (3), when a is an integer of 2 or more, two or more R 7 s may be the same or different. Similarly, when c is an integer of 2 or more, 2 or more R 8 may be the same or different from each other.
 より優れた柔軟性を得る観点から、式(2)及び式(3)中、R、R、R及びR(ただし、R及びRは式(3)中のみ)は、それぞれ独立に炭素数が1~6のアルキル基又はフェニル基であってもよい。該アルキル基としては、例えば、メチル基が挙げられる。式(3)中、a及びcは、それぞれ独立に6~2000とすることができ、10~1000であってもよい。式(2)及び式(3)中、bは、2~30とすることができ、5~20であってもよい。 From the viewpoint of obtaining better flexibility, in formula (2) and formula (3), R 5 , R 6 , R 7 and R 8 (however, R 7 and R 8 are only in formula (3)) are: Each may be independently an alkyl group having 1 to 6 carbon atoms or a phenyl group. Examples of the alkyl group include a methyl group. In the formula (3), a and c can be independently 6 to 2000, and may be 10 to 1000. In the formulas (2) and (3), b can be 2 to 30, and can be 5 to 20.
 本実施形態のエアロゲル複合体は、下記一般式(4)で表される構造を有することができる。本実施形態のエアロゲル複合体は、シリカ粒子を含有すると共に、下記一般式(4)で表される構造を有することができる。
Figure JPOXMLDOC01-appb-C000009
The airgel composite of the present embodiment can have a structure represented by the following general formula (4). The airgel composite of the present embodiment contains silica particles and can have a structure represented by the following general formula (4).
Figure JPOXMLDOC01-appb-C000009
 式(4)中、Rはアルキル基を示す。アルキル基としては、例えば、炭素数が1~6のアルキル基が挙げられ、具体的には、メチル基が挙げられる。 In formula (4), R 9 represents an alkyl group. Examples of the alkyl group include alkyl groups having 1 to 6 carbon atoms, and specific examples include a methyl group.
 本実施形態のエアロゲル複合体は、下記一般式(5)で表される構造を有することができる。本実施形態のエアロゲル複合体は、シリカ粒子を含有すると共に、下記一般式(5)で表される構造を有することができる。
Figure JPOXMLDOC01-appb-C000010
The airgel composite of the present embodiment can have a structure represented by the following general formula (5). The airgel composite of the present embodiment contains silica particles and can have a structure represented by the following general formula (5).
Figure JPOXMLDOC01-appb-C000010
 式(5)中、R10及びR11はそれぞれ独立にアルキル基を示す。アルキル基としては、例えば炭素数が1~6のアルキル基が挙げられ、具体的には、メチル基が挙げられる。 In formula (5), R 10 and R 11 each independently represent an alkyl group. Examples of the alkyl group include alkyl groups having 1 to 6 carbon atoms, and specific examples include a methyl group.
 本実施形態のエアロゲル複合体は、下記一般式(6)で表される構造を有することができる。本実施形態のエアロゲル複合体は、シリカ粒子を含有すると共に、下記一般式(6)で表される構造を有することができる。
Figure JPOXMLDOC01-appb-C000011
The airgel composite of this embodiment can have a structure represented by the following general formula (6). The airgel composite of the present embodiment contains silica particles and can have a structure represented by the following general formula (6).
Figure JPOXMLDOC01-appb-C000011
 式(6)中、R12はアルキレン基を示す。アルキレン基としては、例えば、炭素数が1~10のアルキレン基が挙げられ、具体的には、エチレン基及びヘキシレン基が挙げられる。 In the formula (6), R 12 represents an alkylene group. Examples of the alkylene group include an alkylene group having 1 to 10 carbon atoms, and specific examples include an ethylene group and a hexylene group.
<エアロゲル複合体の物性>
[熱伝導率]
 本実施形態のエアロゲル複合体において、大気圧下、25℃における熱伝導率は0.03W/m・K以下とすることができ、0.025W/m・K以下であってもよく、0.02W/m・K以下であってもよい。熱伝導率が0.03W/m・K以下であることにより、高性能断熱材であるポリウレタンフォーム以上の断熱性を得ることができる。なお、熱伝導率の下限値は特に限定されないが、例えば0.01W/m・Kとすることができる。
<Physical properties of airgel composite>
[Thermal conductivity]
In the airgel composite of the present embodiment, the thermal conductivity at 25 ° C. under atmospheric pressure can be 0.03 W / m · K or less, or 0.025 W / m · K or less. It may be 02 W / m · K or less. When the thermal conductivity is 0.03 W / m · K or less, it is possible to obtain a heat insulating property higher than that of the polyurethane foam which is a high performance heat insulating material. The lower limit value of the thermal conductivity is not particularly limited, but can be set to 0.01 W / m · K, for example.
 熱伝導率は、定常法により測定することができる。熱伝導率は、例えば、定常法熱伝導率測定装置「HFM436Lambda」(NETZSCH社製、製品名、HFM436Lambdaは登録商標)を用いて測定することができる。定常法熱伝導率測定装置を用いた熱伝導率の測定方法の概要は次のとおりである。 Thermal conductivity can be measured by a steady method. The thermal conductivity can be measured using, for example, a steady-state thermal conductivity measuring device “HFM436 Lambda” (manufactured by NETZSCH, product name, HFM436 Lambda is a registered trademark). The outline of the measurement method of the thermal conductivity using the steady method thermal conductivity measuring device is as follows.
(測定サンプルの準備)
 刃角約20~25度の刃を用いて、エアロゲル複合体を150mm×150mm×100mmのサイズに加工し、測定サンプルとする。なお、HFM436Lambdaにおける推奨サンプルサイズは300mm×300mm×100mmであるが、上記サンプルサイズで測定した際の熱伝導率は、推奨サンプルサイズで測定した際の熱伝導率と同程度の値となることを確認済みである。次に、面の平行を確保するために、必要に応じて#1500以上の紙やすりで測定サンプルを整形する。そして、熱伝導率測定前に、定温乾燥機「DVS402」(ヤマト科学株式会社製、製品名)を用いて、大気圧下、100℃で30分間、測定サンプルを乾燥する。次いで測定サンプルをデシケータ中に移し、25℃まで冷却する。これにより、熱伝導率測定用の測定サンプルを得る。
(Preparation of measurement sample)
The airgel composite is processed into a size of 150 mm × 150 mm × 100 mm using a blade having a blade angle of about 20 to 25 degrees to obtain a measurement sample. In addition, although the recommended sample size in HFM436Lambda is 300 mm × 300 mm × 100 mm, the thermal conductivity when measured with the above sample size is the same value as the thermal conductivity when measured with the recommended sample size. Confirmed. Next, in order to ensure parallelism of the surface, the measurement sample is shaped with a sandpaper of # 1500 or more as necessary. Then, before the thermal conductivity measurement, the measurement sample is dried at 100 ° C. for 30 minutes under atmospheric pressure using a constant temperature dryer “DVS402” (manufactured by Yamato Scientific Co., Ltd., product name). The measurement sample is then transferred into a desiccator and cooled to 25 ° C. Thereby, the measurement sample for thermal conductivity measurement is obtained.
(測定方法)
 測定条件は、大気圧下、平均温度25℃とする。上記のとおり得られた測定サンプルを0.3MPaの荷重にて上部及び下部ヒーター間に挟み、温度差ΔTを20℃とし、ガードヒーターによって一次元の熱流になるように調整しながら、測定サンプルの上面温度、下面温度等を測定する。そして、測定サンプルの熱抵抗Rを次式より求める。
  R=N((T-T)/Q)-R
 式中、Tは測定サンプル上面温度を示し、Tは測定サンプル下面温度を示し、Rは上下界面の接触熱抵抗を示し、Qは熱流束計出力を示す。なお、Nは比例係数であり、較正試料を用いて予め求めておく。
(Measuring method)
The measurement conditions are an atmospheric pressure and an average temperature of 25 ° C. The measurement sample obtained as described above was sandwiched between the upper and lower heaters with a load of 0.3 MPa, the temperature difference ΔT was set to 20 ° C., and the guard sample was adjusted so as to obtain a one-dimensional heat flow. Measure upper surface temperature, lower surface temperature, etc. And the thermal resistance RS of a measurement sample is calculated | required from following Formula.
R S = N ((T U −T L ) / Q) −R O
Wherein, T U represents a measurement sample top surface temperature, T L represents the measurement sample lower surface temperature, R O represents the thermal contact resistance of the upper and lower interfaces, Q is shows the heat flux meter output. N is a proportionality coefficient, and is obtained in advance using a calibration sample.
 得られた熱抵抗Rより、測定サンプルの熱伝導率λを次式より求める。
  λ=d/R
 式中、dは測定サンプルの厚さを示す。
From the obtained thermal resistance RS , the thermal conductivity λ of the measurement sample is obtained from the following equation.
λ = d / R S
In formula, d shows the thickness of a measurement sample.
[圧縮弾性率]
 本実施形態のエアロゲル複合体において、25℃における圧縮弾性率は3MPa以下とすることができ、2MPa以下であってもよく、1MPa以下であってもよく、又は0.5MPa以下であってもよい。圧縮弾性率が3MPa以下であることにより、取り扱い性が優れるエアロゲル複合体とし易くなる。なお、圧縮弾性率の下限値は特に限定されないが、例えば0.05MPaとすることができる。
[Compressive modulus]
In the airgel composite of this embodiment, the compression elastic modulus at 25 ° C. can be 3 MPa or less, 2 MPa or less, 1 MPa or less, or 0.5 MPa or less. . When the compression elastic modulus is 3 MPa or less, it becomes easy to obtain an airgel composite having excellent handleability. In addition, the lower limit value of the compression elastic modulus is not particularly limited, but may be 0.05 MPa, for example.
 圧縮弾性率は、小型卓上試験機「EZTest」(株式会社島津製作所製、製品名)を用いて測定することができる。小型卓上試験機を用いた圧縮弾性率等の測定方法の概要は次のとおりである。 Compressive modulus can be measured using a small desktop testing machine “EZTest” (manufactured by Shimadzu Corporation, product name). The outline of the measurement method such as compression modulus using a small tabletop testing machine is as follows.
(測定サンプルの準備)
 刃角約20~25度の刃を用いて、エアロゲル複合体を7.0mm角の立方体(サイコロ状)に加工し、測定サンプルとする。次に、面の平行を確保するために、必要に応じて#1500以上の紙やすりで測定サンプルを整形する。そして、測定前に、定温乾燥機「DVS402」(ヤマト科学株式会社製、製品名)を用いて、大気圧下、100℃で30分間、測定サンプルを乾燥する。次いで測定サンプルをデシケータ中に移し、25℃まで冷却する。これにより、圧縮弾性率測定用の測定サンプルを得る。
(Preparation of measurement sample)
Using a blade with a blade angle of about 20 to 25 degrees, the airgel composite is processed into a 7.0 mm square cube (die shape) to obtain a measurement sample. Next, in order to ensure parallelism of the surface, the measurement sample is shaped with a sandpaper of # 1500 or more as necessary. Before measurement, the measurement sample is dried at 100 ° C. for 30 minutes under atmospheric pressure using a constant temperature dryer “DVS402” (manufactured by Yamato Scientific Co., Ltd., product name). The measurement sample is then transferred into a desiccator and cooled to 25 ° C. Thereby, a measurement sample for measuring the compression modulus is obtained.
(測定方法)
 500Nのロードセルを使用する。また、ステンレス製の上圧盤(φ20mm)、下圧盤(φ118mm)を圧縮測定用冶具として用いる。測定サンプルをこれら冶具の間にセットし、1mm/minの速度で圧縮を行い、25℃における測定サンプルサイズの変位等を測定する。測定は、500N超の負荷をかけた時点又は測定サンプルが破壊した時点で終了とする。ここで、圧縮ひずみεは次式より求めることができる。
  ε=Δd/d1
 式中、Δdは負荷による測定サンプルの厚みの変位(mm)を示し、d1は負荷をかける前の測定サンプルの厚み(mm)を示す。
 また、圧縮応力σ(MPa)は、次式より求めることができる。
  σ=F/A
 式中、Fは圧縮力(N)を示し、Aは負荷をかける前の測定サンプルの断面積(mm)を示す。
(Measuring method)
A 500N load cell is used. A stainless upper platen (φ20 mm) and a lower platen plate (φ118 mm) are used as a compression measurement jig. A measurement sample is set between these jigs, compressed at a speed of 1 mm / min, and the displacement of the measurement sample size at 25 ° C. is measured. The measurement is terminated when a load exceeding 500 N is applied or when the measurement sample is destroyed. Here, the compressive strain ε can be obtained from the following equation.
ε = Δd / d1
In the formula, Δd represents the displacement (mm) of the thickness of the measurement sample due to the load, and d1 represents the thickness (mm) of the measurement sample before the load is applied.
The compressive stress σ (MPa) can be obtained from the following equation.
σ = F / A
In the formula, F represents the compressive force (N), and A represents the cross-sectional area (mm 2 ) of the measurement sample before applying a load.
 圧縮弾性率E(MPa)は、例えば0.1~0.2Nの圧縮力範囲において、次式より求めることができる。
  E=(σ-σ)/(ε-ε
 式中、σは圧縮力が0.1Nにおいて測定される圧縮応力(MPa)を示し、σは圧縮力が0.2Nにおいて測定される圧縮応力(MPa)を示し、εは圧縮応力σにおいて測定される圧縮ひずみを示し、εは圧縮応力σにおいて測定される圧縮ひずみを示す。
The compression elastic modulus E (MPa) can be obtained from the following equation in the compression force range of 0.1 to 0.2 N, for example.
E = (σ 2 −σ 1 ) / (ε 2 −ε 1 )
In the formula, σ 1 indicates a compressive stress (MPa) measured at a compressive force of 0.1 N, σ 2 indicates a compressive stress (MPa) measured at a compressive force of 0.2 N, and ε 1 indicates a compressive stress. The compressive strain measured at σ 1 is shown, and ε 2 shows the compressive strain measured at the compressive stress σ 2 .
 なお、これら熱伝導率及び圧縮弾性率は、エアロゲル複合体の製造条件、原料等を変更することにより適宜調整することができる。 In addition, these heat conductivity and compression elastic modulus can be suitably adjusted by changing the manufacturing conditions, raw materials, etc. of an airgel composite.
<エアロゲル複合体の製造方法>
 次に、エアロゲル複合体の製造方法について説明する。エアロゲル複合体の製造方法は、特に限定されないが、例えば、以下の方法により製造することができる。
<Method for producing airgel composite>
Next, the manufacturing method of an airgel composite is demonstrated. Although the manufacturing method of an airgel composite is not specifically limited, For example, it can manufacture with the following method.
 すなわち、本実施形態のエアロゲル複合体は、ゾル生成工程と、ゾル生成工程で得られたゾルをゲル化し、その後熟成して湿潤ゲルを得る湿潤ゲル生成工程と、湿潤ゲル生成工程で得られた湿潤ゲルを洗浄及び(必要に応じ)溶媒置換する工程と、洗浄及び溶媒置換した湿潤ゲルを乾燥する乾燥工程とを主に備える製造方法により製造することができる。なお、「ゾル」とは、ゲル化反応が生じる前の状態であって、本実施形態においては、上記ケイ素化合物(ケイ素化合物群及び/又はポリシロキサン化合物群)と、中空シリカ粒子とが溶媒中に溶解若しくは分散している状態を意味する。また、「湿潤ゲル」とは、液体媒体を含んでいながらも、流動性を有しない湿潤状態のゲル固形物を意味する。 That is, the airgel composite of the present embodiment was obtained in the sol generation step, the wet gel generation step in which the sol obtained in the sol generation step was gelled and then aged to obtain a wet gel, and the wet gel generation step. The wet gel can be produced by a production method mainly comprising a step of washing and (if necessary) replacing the solvent with a solvent and a drying step of drying the wet gel after washing and solvent substitution. The “sol” is a state before the gelation reaction occurs, and in the present embodiment, the silicon compound (silicon compound group and / or polysiloxane compound group) and the hollow silica particles are in a solvent. Means dissolved or dispersed. The “wet gel” means a gel solid in a wet state that contains a liquid medium but does not have fluidity.
 以下、本実施形態のエアロゲル複合体の製造方法の各工程について説明する。 Hereafter, each process of the manufacturing method of the airgel composite of this embodiment is demonstrated.
(ゾル生成工程)
 ゾル生成工程は、上述のケイ素化合物と、中空シリカ粒子及び/又は中空シリカ粒子を含む溶媒とを混合し、加水分解させてゾルを生成する工程である。本工程においては、加水分解反応を促進させるため、溶媒中に更に酸触媒を添加してもよい。また、特許第5250900号公報に示されるように、溶媒中に界面活性剤、熱加水分解性化合物等を添加することもできる。さらに、熱線輻射抑制等を目的として、溶媒中にカーボングラファイト、アルミニウム化合物、マグネシウム化合物、銀化合物、チタン化合物等の成分を添加してもよい。
(Sol generation process)
A sol production | generation process is a process of mixing the above-mentioned silicon compound and the solvent containing a hollow silica particle and / or a hollow silica particle, and making it hydrolyze and producing | generating a sol. In this step, an acid catalyst may be further added to the solvent in order to promote the hydrolysis reaction. Further, as disclosed in Japanese Patent No. 5250900, a surfactant, a thermohydrolyzable compound, or the like can be added to the solvent. Furthermore, components such as carbon graphite, an aluminum compound, a magnesium compound, a silver compound, and a titanium compound may be added to the solvent for the purpose of suppressing heat radiation.
 溶媒としては、例えば、水、又は、水及びアルコール類の混合液を用いることができる。アルコール類としては、メタノール、エタノール、n-プロパノール、2-プロパノール、n-ブタノール、2-ブタノール、t-ブタノール等が挙げられる。これらの中でも、ゲル壁との界面張力を低減させる点で、表面張力が低くかつ沸点の低いアルコールとしては、メタノール、エタノール、2-プロパノール等が挙げられる。これらは単独で、又は2種類以上を混合して用いてもよい。 As the solvent, for example, water or a mixed solution of water and alcohols can be used. Examples of alcohols include methanol, ethanol, n-propanol, 2-propanol, n-butanol, 2-butanol, and t-butanol. Among these, alcohols having a low surface tension and a low boiling point in terms of reducing the interfacial tension with the gel wall include methanol, ethanol, 2-propanol and the like. You may use these individually or in mixture of 2 or more types.
 例えば溶媒としてアルコール類を用いる場合、アルコール類の量は、ケイ素化合物(ケイ素化合物群及びポリシロキサン化合物群)の総量1モルに対し、4~8モルとすることができるが、4~6.5モルであってもよく、又は4.5~6モルであってもよい。アルコール類の量を4モル以上にすることにより良好な相溶性を更に得易くなり、また、8モル以下にすることによりゲルの収縮を更に抑制し易くなる。 For example, when alcohols are used as the solvent, the amount of alcohols can be 4 to 8 mol with respect to 1 mol of the total amount of silicon compounds (silicon compound group and polysiloxane compound group), but 4 to 6.5. It may be a mole or 4.5 to 6 mole. By making the amount of alcohols 4 mol or more, it becomes easier to obtain good compatibility, and by making the amount 8 mol or less, it becomes easier to suppress gel shrinkage.
 酸触媒としては、フッ酸、塩酸、硝酸、硫酸、亜硫酸、リン酸、亜リン酸、次亜リン酸、臭素酸、塩素酸、亜塩素酸、次亜塩素酸等の無機酸類;酸性リン酸アルミニウム、酸性リン酸マグネシウム、酸性リン酸亜鉛等の酸性リン酸塩類;酢酸、ギ酸、プロピオン酸、シュウ酸、マロン酸、コハク酸、クエン酸、リンゴ酸、アジピン酸、アゼライン酸等の有機カルボン酸類などが挙げられる。これらの中でも、得られるエアロゲル複合体の耐水性をより向上する酸触媒としては有機カルボン酸類が挙げられる。当該有機カルボン酸類としては酢酸が挙げられるが、ギ酸、プロピオン酸、シュウ酸、マロン酸等であってもよい。これらは、単独で又は2種類以上を混合して用いてもよい。 Examples of the acid catalyst include hydrofluoric acid, hydrochloric acid, nitric acid, sulfuric acid, sulfurous acid, phosphoric acid, phosphorous acid, hypophosphorous acid, bromic acid, chloric acid, chlorous acid, hypochlorous acid, and other inorganic acids; acidic phosphoric acid Acidic phosphates such as aluminum, acidic magnesium phosphate and acidic zinc phosphate; organic carboxylic acids such as acetic acid, formic acid, propionic acid, oxalic acid, malonic acid, succinic acid, citric acid, malic acid, adipic acid and azelaic acid Etc. Among these, an organic carboxylic acid is mentioned as an acid catalyst which improves the water resistance of the airgel composite obtained more. Examples of the organic carboxylic acids include acetic acid, but may be formic acid, propionic acid, oxalic acid, malonic acid and the like. You may use these individually or in mixture of 2 or more types.
 酸触媒を用いることで、ケイ素化合物の加水分解反応を促進させて、より短時間でゾルを得ることができる。 By using an acid catalyst, the hydrolysis reaction of the silicon compound is promoted, and a sol can be obtained in a shorter time.
 酸触媒の添加量は、ケイ素化合物の総量100質量部に対し、0.001~0.1質量部とすることができる。 The addition amount of the acid catalyst can be 0.001 to 0.1 parts by mass with respect to 100 parts by mass of the total amount of the silicon compound.
 界面活性剤としては、非イオン性界面活性剤、イオン性界面活性剤等を用いることができる。これらは単独で、又は2種類以上を混合して用いてもよい。 As the surfactant, a nonionic surfactant, an ionic surfactant, or the like can be used. You may use these individually or in mixture of 2 or more types.
 非イオン性界面活性剤としては、例えば、ポリオキシエチレン等の親水部と主にアルキル基からなる疎水部とを含む化合物、ポリオキシプロピレン等の親水部を含む化合物を使用できる。ポリオキシエチレン等の親水部と主にアルキル基からなる疎水部とを含む化合物としては、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンアルキルエーテル等が挙げられる。ポリオキシプロピレン等の親水部を含む化合物としては、ポリオキシプロピレンアルキルエーテル、ポリオキシエチレンとポリオキシプロピレンとのブロック共重合体等が挙げられる。 As the nonionic surfactant, for example, a compound containing a hydrophilic part such as polyoxyethylene and a hydrophobic part mainly composed of an alkyl group, or a compound containing a hydrophilic part such as polyoxypropylene can be used. Examples of the compound containing a hydrophilic part such as polyoxyethylene and a hydrophobic part mainly composed of an alkyl group include polyoxyethylene nonyl phenyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene alkyl ether and the like. Examples of the compound having a hydrophilic portion such as polyoxypropylene include polyoxypropylene alkyl ether, a block copolymer of polyoxyethylene and polyoxypropylene, and the like.
 イオン性界面活性剤としては、カチオン性界面活性剤、アニオン性界面活性剤、両イオン性界面活性剤等を用いることができる。カチオン性界面活性剤としては、例えば、臭化セチルトリメチルアンモニウム及び塩化セチルトリメチルアンモニウムが挙げられる。アニオン性界面活性剤としては、例えば、ドデシルスルホン酸ナトリウムが挙げられる。両イオン性界面活性剤としては、例えば、アミノ酸系界面活性剤、ベタイン系界面活性剤及びアミンオキシド系界面活性剤が挙げられる。アミノ酸系界面活性剤としては、例えば、アシルグルタミン酸が挙げられる。ベタイン系界面活性剤としては、例えば、ラウリルジメチルアミノ酢酸ベタイン及びステアリルジメチルアミノ酢酸ベタインが挙げられる。アミンオキシド系界面活性剤としては、例えば、ラウリルジメチルアミンオキシドが挙げられる。 As the ionic surfactant, a cationic surfactant, an anionic surfactant, an amphoteric surfactant, or the like can be used. Examples of the cationic surfactant include cetyltrimethylammonium bromide and cetyltrimethylammonium chloride. Examples of the anionic surfactant include sodium dodecyl sulfonate. Examples of amphoteric surfactants include amino acid surfactants, betaine surfactants, and amine oxide surfactants. Examples of amino acid surfactants include acyl glutamic acid. Examples of betaine surfactants include lauryldimethylaminoacetic acid betaine and stearyldimethylaminoacetic acid betaine. Examples of the amine oxide surfactant include lauryl dimethylamine oxide.
 これらの界面活性剤は、後述する湿潤ゲル生成工程において、反応系中の溶媒と、成長していくシロキサン重合体との間の化学的親和性の差異を小さくし、相分離を抑制する作用をすると考えられている。 These surfactants have the effect of reducing the difference in chemical affinity between the solvent in the reaction system and the growing siloxane polymer and suppressing phase separation in the wet gel formation process described later. It is considered to be.
 界面活性剤の添加量は、界面活性剤の種類、又は、ケイ素化合物(ケイ素化合物群及びポリシロキサン化合物群)の種類並びに量にも左右されるが、例えば、ケイ素化合物の総量100質量部に対し、1~100質量部とすることができ、5~60質量部であってもよい。 The amount of surfactant added depends on the type of surfactant or the type and amount of silicon compound (silicon compound group and polysiloxane compound group). For example, the total amount of silicon compound is 100 parts by mass. The amount may be 1 to 100 parts by mass, and may be 5 to 60 parts by mass.
 熱加水分解性化合物は、熱加水分解により塩基触媒を発生して、反応溶液を塩基性とし、後述する湿潤ゲル生成工程でのゾルゲル反応を促進すると考えられている。よって、この熱加水分解性化合物としては、加水分解後に反応溶液を塩基性にできる化合物であれば、特に限定されず、尿素;ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド等の酸アミド;ヘキサメチレンテトラミン等の環状窒素化合物を挙げることができる。これらの中でも、特に尿素は上記促進効果を得られ易い。 The thermohydrolyzable compound is considered to generate a base catalyst by thermal hydrolysis to make the reaction solution basic and to promote the sol-gel reaction in the wet gel generation process described later. Accordingly, the thermohydrolyzable compound is not particularly limited as long as it can make the reaction solution basic after hydrolysis. Urea; formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N -Acid amides such as methylacetamide and N, N-dimethylacetamide; and cyclic nitrogen compounds such as hexamethylenetetramine. Among these, urea is particularly easy to obtain the above-mentioned promoting effect.
 熱加水分解性化合物の添加量は、後述する湿潤ゲル生成工程でのゾルゲル反応を十分に促進することができる量であれば、特に限定されない。例えば、熱加水分解性化合物として尿素を用いた場合、その添加量は、ケイ素化合物の総量100質量部に対して、1~200質量部とすることができる。なお、同添加量は2~150質量部であってもよい。添加量を1質量部以上とすることにより、良好な反応性を更に得易くなる。添加量を200質量部以下とすることにより、結晶の析出及びゲル密度の低下を更に抑制し易くなる。 The addition amount of the thermohydrolyzable compound is not particularly limited as long as it can sufficiently promote the sol-gel reaction in the wet gel generation step described later. For example, when urea is used as the thermally hydrolyzable compound, the amount added can be 1 to 200 parts by mass with respect to 100 parts by mass of the total amount of the silicon compound. The added amount may be 2 to 150 parts by mass. By making the addition amount 1 mass part or more, it becomes easier to obtain good reactivity. By making the addition amount 200 parts by mass or less, it becomes easier to suppress the precipitation of crystals and the decrease in gel density.
 ゾル生成工程の加水分解は、混合液中のケイ素化合物、ポリシロキサン化合物、中空シリカ粒子、酸触媒、界面活性剤等の種類及び量にも左右されるが、例えば、20~60℃の温度環境下で10分~24時間行ってもよく、50~60℃の温度環境下で5分~8時間行ってもよい。これにより、ケイ素化合物及びポリシロキサン化合物中の加水分解性官能基が十分に加水分解され、ケイ素化合物の加水分解生成物及びポリシロキサン化合物の加水分解生成物をより確実に得ることができる。 The hydrolysis in the sol production step depends on the type and amount of silicon compound, polysiloxane compound, hollow silica particles, acid catalyst, surfactant, etc. in the mixed solution, but for example, a temperature environment of 20 to 60 ° C. The reaction may be performed for 10 minutes to 24 hours at a lower temperature, or for 5 minutes to 8 hours in a temperature environment of 50 to 60 ° C. Thereby, the hydrolyzable functional group in a silicon compound and a polysiloxane compound is fully hydrolyzed, and the hydrolysis product of a silicon compound and the hydrolysis product of a polysiloxane compound can be obtained more reliably.
 溶媒中に熱加水分解性化合物を添加する場合は、ゾル生成工程の温度環境を、熱加水分解性化合物の加水分解を抑制してゾルのゲル化を抑制する温度に調節してもよい。この時の温度は、熱加水分解性化合物の加水分解を抑制できる温度であれば、いずれの温度であってもよい。例えば、熱加水分解性化合物として尿素を用いた場合は、ゾル生成工程の温度環境は0~40℃とすることができるが、10~30℃であってもよい。 When adding a thermohydrolyzable compound in the solvent, the temperature environment of the sol generation step may be adjusted to a temperature that suppresses hydrolysis of the thermohydrolyzable compound and suppresses gelation of the sol. The temperature at this time may be any temperature as long as the hydrolysis of the thermally hydrolyzable compound can be suppressed. For example, when urea is used as the thermally hydrolyzable compound, the temperature environment of the sol production step can be 0 to 40 ° C., but may be 10 to 30 ° C.
(湿潤ゲル生成工程)
 湿潤ゲル生成工程は、ゾル生成工程で得られたゾルをゲル化し、その後熟成して湿潤ゲルを得る工程である。本工程では、ゲル化を促進させるため塩基触媒を用いることができる。
(Wet gel production process)
The wet gel generation step is a step in which the sol obtained in the sol generation step is gelled and then aged to obtain a wet gel. In this step, a base catalyst can be used to promote gelation.
 塩基触媒としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム等のアルカリ金属水酸化物;水酸化アンモニウム、フッ化アンモニウム、塩化アンモニウム、臭化アンモニウム等のアンモニウム化合物;メタ燐酸ナトリウム、ピロ燐酸ナトリウム、ポリ燐酸ナトリウム等の塩基性燐酸ナトリウム塩;アリルアミン、ジアリルアミン、トリアリルアミン、イソプロピルアミン、ジイソプロピルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、2-エチルヘキシルアミン、3-エトキシプロピルアミン、ジイソブチルアミン、3-(ジエチルアミノ)プロピルアミン、ジ-2-エチルヘキシルアミン、3-(ジブチルアミノ)プロピルアミン、テトラメチルエチレンジアミン、t-ブチルアミン、sec-ブチルアミン、プロピルアミン、3-(メチルアミノ)プロピルアミン、3-(ジメチルアミノ)プロピルアミン、3-メトキシアミン、ジメチルエタノールアミン、メチルジエタノールアミン、ジエタノールアミン、トリエタノールアミン等の脂肪族アミン類;モルホリン、N-メチルモルホリン、2-メチルモルホリン、ピペラジン及びその誘導体、ピペリジン及びその誘導体、イミダゾール及びその誘導体等の含窒素複素環状化合物類などが挙げられる。これらの中でも、水酸化アンモニウム(アンモニア水)は、揮発性が高く、乾燥後のエアロゲル複合体中に残存し難いため耐水性を損ないづらいという点、更には経済性の点で優れている。上記の塩基触媒は、単独で又は2種類以上を混合して用いてもよい。 Base catalysts include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, and cesium hydroxide; ammonium compounds such as ammonium hydroxide, ammonium fluoride, ammonium chloride, and ammonium bromide; sodium metaphosphate Basic sodium phosphates such as sodium pyrophosphate and sodium polyphosphate; allylamine, diallylamine, triallylamine, isopropylamine, diisopropylamine, ethylamine, diethylamine, triethylamine, 2-ethylhexylamine, 3-ethoxypropylamine, diisobutylamine, 3 -(Diethylamino) propylamine, di-2-ethylhexylamine, 3- (dibutylamino) propylamine, tetramethylethylenediamine, t-butylamine, sec Aliphatic amines such as butylamine, propylamine, 3- (methylamino) propylamine, 3- (dimethylamino) propylamine, 3-methoxyamine, dimethylethanolamine, methyldiethanolamine, diethanolamine, triethanolamine; morpholine, N -Nitrogen-containing heterocyclic compounds such as methylmorpholine, 2-methylmorpholine, piperazine and derivatives thereof, piperidine and derivatives thereof, imidazole and derivatives thereof, and the like. Among these, ammonium hydroxide (ammonia water) is excellent in that it has high volatility and does not easily remain in the airgel composite after drying, so that it is difficult to impair water resistance, and further, it is economical. You may use said base catalyst individually or in mixture of 2 or more types.
 塩基触媒を用いることで、ゾル中のケイ素化合物(ポリシロキサン化合物群及びケイ素化合物群)及び中空シリカ粒子の脱水縮合反応及び/又は脱アルコール縮合反応を促進することができ、ゾルのゲル化をより短時間で行うことができる。また、これにより、強度(剛性)のより高い湿潤ゲルを得ることができる。特に、アンモニア水は揮発性が高く、エアロゲル複合体中に残留し難いので、塩基触媒としてアンモニア水を用いることで、より耐水性の優れたエアロゲル複合体を得ることができる。 By using a base catalyst, the dehydration condensation reaction and / or dealcoholization condensation reaction of the silicon compound (polysiloxane compound group and silicon compound group) and hollow silica particles in the sol can be promoted, and the sol can be further gelled. It can be done in a short time. Thereby, a wet gel with higher strength (rigidity) can be obtained. In particular, since aqueous ammonia has high volatility and hardly remains in the airgel composite, by using ammonia water as a base catalyst, an airgel composite with better water resistance can be obtained.
 塩基触媒の添加量は、ケイ素化合物(ポリシロキサン化合物群及びケイ素化合物群)の総量100質量部に対し、0.5~5質量部とすることができ、1~4質量部であってもよい。塩基触媒の添加量を0.5質量部以上とすることにより、ゲル化をより短時間で行うことができる。塩基触媒の添加量を5質量部以下とすることにより、耐水性の低下をより抑制することができる。 The addition amount of the base catalyst can be 0.5 to 5 parts by mass with respect to 100 parts by mass of the total amount of silicon compounds (polysiloxane compound group and silicon compound group), and may be 1 to 4 parts by mass. . By making the addition amount of the base catalyst 0.5 parts by mass or more, gelation can be performed in a shorter time. The fall of water resistance can be suppressed more by making the addition amount of a base catalyst into 5 mass parts or less.
 湿潤ゲル生成工程におけるゾルのゲル化は、溶媒及び塩基触媒が揮発しないように密閉容器内で行ってもよい。ゲル化温度は、30~90℃とすることができ、40~80℃であってもよい。ゲル化温度を30℃以上とすることにより、ゲル化をより短時間に行うことができ、強度(剛性)のより高い湿潤ゲルを得ることができる。また、ゲル化温度を90℃以下にすることにより、溶媒(特にアルコール類)の揮発を抑制し易くなるため、体積収縮を抑えながらゲル化することができる。 The gelation of the sol in the wet gel generation step may be performed in a sealed container so that the solvent and the base catalyst do not volatilize. The gelation temperature can be 30 to 90 ° C, and may be 40 to 80 ° C. By setting the gelation temperature to 30 ° C. or higher, gelation can be performed in a shorter time, and a wet gel with higher strength (rigidity) can be obtained. Moreover, since it becomes easy to suppress volatilization of a solvent (especially alcohol) by making gelation temperature into 90 degrees C or less, it can gelatinize, suppressing volume shrinkage.
 湿潤ゲル生成工程における熟成は、溶媒及び塩基触媒が揮発しないように密閉容器内で行ってもよい。熟成により、湿潤ゲルを構成する成分の結合が強くなり、その結果、乾燥時の収縮を抑制するのに十分な強度(剛性)の高い湿潤ゲルを得ることができる。熟成温度は、例えば、30~90℃とすることができ、40~80℃であってもよい。熟成温度を30℃以上とすることにより、強度(剛性)のより高い湿潤ゲルを得ることができ、熟成温度を90℃以下にすることにより、溶媒(特にアルコール類)の揮発を抑制し易くなるため、体積収縮を抑えながらゲル化することができる。 The aging in the wet gel generation step may be performed in a sealed container so that the solvent and the base catalyst do not volatilize. By aging, the components of the wet gel are strongly bonded, and as a result, a wet gel having a high strength (rigidity) sufficient to suppress shrinkage during drying can be obtained. The aging temperature can be, for example, 30 to 90 ° C., and may be 40 to 80 ° C. By setting the aging temperature to 30 ° C. or higher, a wet gel with higher strength (rigidity) can be obtained, and by setting the aging temperature to 90 ° C. or lower, volatilization of the solvent (especially alcohols) can be easily suppressed. Therefore, it can be gelled while suppressing volume shrinkage.
 なお、ゾルのゲル化終了時点を判別することは困難な場合が多いため、ゾルのゲル化とその後の熟成とは、連続して一連の操作で行ってもよい。 In addition, since it is often difficult to determine the end point of gelation of the sol, gelation of the sol and subsequent aging may be performed in a series of operations.
 ゲル化時間と熟成時間は、ゲル化温度及び熟成温度により異なるが、本実施形態においてはゾル中に中空シリカ粒子が含まれていることから、従来のエアロゲルの製造方法と比較して特にゲル化時間を短縮することができる。その理由は、ゾル中のケイ素化合物群及びポリシロキサン化合物群が有するシラノール基及び/又はシラノール基以外の反応性基が、中空シリカ粒子のシラノール基と水素結合及び/又は化学結合を形成するためであると推察する。なお、ゲル化時間は、例えば、10~120分間とすることができ、20~90分間であってもよい。ゲル化時間を10分間以上とすることにより均質な湿潤ゲルを得易くなり、120分間以下とすることにより後述する洗浄及び溶媒置換工程から乾燥工程の簡略化が可能となる。なお、ゲル化及び熟成の工程全体として、ゲル化時間と熟成時間との合計時間は、例えば、4~480時間とすることができ、6~120時間であってもよい。ゲル化時間と熟成時間との合計を4時間以上とすることにより、強度(剛性)のより高い湿潤ゲルを得ることができ、480時間以下にすることにより熟成の効果をより維持し易くなる。 Although the gelation time and the aging time differ depending on the gelation temperature and the aging temperature, in this embodiment, since the sol contains hollow silica particles, the gelation is particularly performed as compared with the conventional airgel manufacturing method. Time can be shortened. The reason is that the silanol groups and / or reactive groups other than the silanol groups of the silicon compound group and the polysiloxane compound group in the sol form hydrogen bonds and / or chemical bonds with the silanol groups of the hollow silica particles. I guess there is. The gelation time can be, for example, 10 to 120 minutes, or 20 to 90 minutes. By setting the gelation time to 10 minutes or more, it becomes easy to obtain a homogeneous wet gel, and by setting it to 120 minutes or less, the drying process can be simplified from the washing and solvent replacement process described later. As the entire gelation and aging process, the total time of the gelation time and the aging time can be, for example, 4 to 480 hours, or 6 to 120 hours. By setting the total of the gelation time and the aging time to 4 hours or more, a wet gel with higher strength (rigidity) can be obtained, and by setting it to 480 hours or less, the effect of aging can be more easily maintained.
 得られるエアロゲル複合体の密度を下げたり、平均細孔径を大きくするために、ゲル化温度及び熟成温度を上記範囲内で高めたり、ゲル化時間と熟成時間との合計時間を上記範囲内で長くしてもよい。また、得られるエアロゲル複合体の密度を上げたり、平均細孔径を小さくするために、ゲル化温度及び熟成温度を上記範囲内で低くしたり、ゲル化時間と熟成時間との合計時間を上記範囲内で短くしてもよい。 In order to reduce the density of the obtained airgel composite or increase the average pore diameter, the gelation temperature and the aging temperature are increased within the above range, or the total time of the gelation time and the aging time is increased within the above range. May be. Further, in order to increase the density of the obtained airgel composite or to reduce the average pore diameter, the gelation temperature and the aging temperature are decreased within the above range, or the total time of the gelation time and the aging time is within the above range. It may be shortened within.
(洗浄及び溶媒置換工程)
 洗浄及び溶媒置換工程は、上記湿潤ゲル生成工程により得られた湿潤ゲルを洗浄する工程(洗浄工程)と、湿潤ゲル中の洗浄液を乾燥条件(後述の乾燥工程)に適した溶媒に置換する工程(溶媒置換工程)を有する工程である。洗浄及び溶媒置換工程は、湿潤ゲルを洗浄する工程を行わず、溶媒置換工程のみを行う形態でも実施可能であるが、湿潤ゲル中の未反応物、副生成物等の不純物を低減し、より純度の高いエアロゲル複合体の製造を可能にする観点からは、湿潤ゲルを洗浄してもよい。なお、本実施形態においては、ゲル中に中空シリカ粒子が含まれていることから、後述するように溶媒置換工程は必ずしも必須ではない。
(Washing and solvent replacement process)
The washing and solvent replacement step is a step of washing the wet gel obtained by the wet gel generation step (washing step), and a step of replacing the washing liquid in the wet gel with a solvent suitable for the drying conditions (the drying step described later). It is a process which has (solvent substitution process). The washing and solvent replacement step can be performed in a form in which only the solvent replacement step is performed without performing the step of washing the wet gel, but the impurities such as unreacted substances and by-products in the wet gel are reduced, and more From the viewpoint of enabling the production of a highly pure airgel composite, the wet gel may be washed. In the present embodiment, since the hollow silica particles are contained in the gel, the solvent replacement step is not necessarily essential as described later.
 洗浄工程では、上記湿潤ゲル生成工程で得られた湿潤ゲルを洗浄する。当該洗浄は、例えば、水又は有機溶媒を用いて繰り返し行うことができる。この際、加温することにより洗浄効率を向上させることができる。 In the washing step, the wet gel obtained in the wet gel production step is washed. The said washing | cleaning can be repeatedly performed using water or an organic solvent, for example. At this time, washing efficiency can be improved by heating.
 有機溶媒としては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、アセトン、メチルエチルケトン、1,2-ジメトキシエタン、アセトニトリル、ヘキサン、トルエン、ジエチルエーテル、クロロホルム、酢酸エチル、テトラヒドロフラン、塩化メチレン、N、N-ジメチルホルムアミド、ジメチルスルホキシド、酢酸、ギ酸等の各種の有機溶媒を使用することができる。上記の有機溶媒は、単独で又は2種類以上を混合して用いてもよい。 Organic solvents include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, acetone, methyl ethyl ketone, 1,2-dimethoxyethane, acetonitrile, hexane, toluene, diethyl ether, chloroform, ethyl acetate, tetrahydrofuran, methylene chloride , N, N-dimethylformamide, dimethyl sulfoxide, acetic acid, formic acid, and other various organic solvents can be used. You may use said organic solvent individually or in mixture of 2 or more types.
 後述する溶媒置換工程では、乾燥によるゲルの収縮を抑制するため、低表面張力の溶媒を用いることができる。しかし、低表面張力の溶媒は、一般的に水との相互溶解度が極めて低い。そのため、溶媒置換工程において低表面張力の溶媒を用いる場合、洗浄工程で用いる有機溶媒としては、水及び低表面張力の溶媒の双方に対して高い相互溶解性を有する親水性有機溶媒が挙げられる。なお、洗浄工程において用いられる親水性有機溶媒は、溶媒置換工程のための予備置換の役割を果たすことができる。上記の有機溶媒の中で、親水性有機溶媒としては、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン等が挙げられる。経済性の点から、メタノール、エタノール又はメチルエチルケトンを用いてもよい。 In the solvent replacement step described later, a low surface tension solvent can be used in order to suppress gel shrinkage due to drying. However, low surface tension solvents generally have very low mutual solubility with water. Therefore, when using a low surface tension solvent in the solvent replacement step, examples of the organic solvent used in the washing step include hydrophilic organic solvents having high mutual solubility in both water and a low surface tension solvent. Note that the hydrophilic organic solvent used in the washing step can serve as a preliminary replacement for the solvent replacement step. Among the above organic solvents, examples of hydrophilic organic solvents include methanol, ethanol, 2-propanol, acetone, and methyl ethyl ketone. From the economical point of view, methanol, ethanol, or methyl ethyl ketone may be used.
 洗浄工程に使用される水又は有機溶媒の量としては、湿潤ゲル中の溶媒を十分に置換し、洗浄できる量とすることができる。当該量は、湿潤ゲルの容量に対して3~10倍の量とすることができる。洗浄は、洗浄後の湿潤ゲル中の含水率が、シリカ質量に対し、10質量%以下となるまで繰り返すことができる。 The amount of water or organic solvent used in the washing step can be an amount that can be sufficiently washed by replacing the solvent in the wet gel. The amount can be 3 to 10 times the volume of the wet gel. The washing can be repeated until the moisture content in the wet gel after washing is 10% by mass or less with respect to the silica mass.
 洗浄工程における温度環境は、洗浄に用いる溶媒の沸点以下の温度とすることができ、例えば、メタノールを用いる場合は、30~60℃程度の加温とすることができる。 The temperature environment in the washing step can be a temperature not higher than the boiling point of the solvent used for washing. For example, when methanol is used, the temperature can be raised to about 30 to 60 ° C.
 溶媒置換工程では、後述する乾燥工程における収縮を抑制するため、洗浄した湿潤ゲルの溶媒を所定の置換用溶媒に置き換える。この際、加温することにより置換効率を向上させることができる。置換用溶媒としては、具体的には、乾燥工程において、乾燥に用いられる溶媒の臨界点未満の温度にて、大気圧下で乾燥する場合は、後述の低表面張力の溶媒が挙げられる。一方、超臨界乾燥をする場合は、置換用溶媒としては、例えば、エタノール、メタノール、2-プロパノール、ジクロロジフルオロメタン、二酸化炭素等、又はこれらを2種以上混合した溶媒が挙げられる。 In the solvent replacement step, the solvent of the washed wet gel is replaced with a predetermined replacement solvent in order to suppress shrinkage in the drying step described later. At this time, the replacement efficiency can be improved by heating. Specific examples of the solvent for substitution include a low surface tension solvent described later in the drying step when drying is performed under atmospheric pressure at a temperature lower than the critical point of the solvent used for drying. On the other hand, when performing supercritical drying, examples of the substitution solvent include ethanol, methanol, 2-propanol, dichlorodifluoromethane, carbon dioxide, and the like, or a mixture of two or more thereof.
 低表面張力の溶媒としては、例えば、20℃における表面張力が30mN/m以下の溶媒が挙げられる。当該表面張力は、25mN/m以下であってもよく、20mN/m以下であってもよい。低表面張力の溶媒としては、例えば、ペンタン(15.5)、ヘキサン(18.4)、ヘプタン(20.2)、オクタン(21.7)、2-メチルペンタン(17.4)、3-メチルペンタン(18.1)、2-メチルヘキサン(19.3)、シクロペンタン(22.6)、シクロヘキサン(25.2)、1-ペンテン(16.0)等の脂肪族炭化水素類;ベンゼン(28.9)、トルエン(28.5)、m-キシレン(28.7)、p-キシレン(28.3)等の芳香族炭化水素類;ジクロロメタン(27.9)、クロロホルム(27.2)、四塩化炭素(26.9)、1-クロロプロパン(21.8)、2-クロロプロパン(18.1)等のハロゲン化炭化水素類;エチルエーテル(17.1)、プロピルエーテル(20.5)、イソプロピルエーテル(17.7)、ブチルエチルエーテル(20.8)、1,2-ジメトキシエタン(24.6)等のエーテル類;アセトン(23.3)、メチルエチルケトン(24.6)、メチルプロピルケトン(25.1)、ジエチルケトン(25.3)等のケトン類;酢酸メチル(24.8)、酢酸エチル(23.8)、酢酸プロピル(24.3)、酢酸イソプロピル(21.2)、酢酸イソブチル(23.7)、エチルブチレート(24.6)等のエステル類が挙げられる。かっこ内は20℃での表面張力を示し、単位は[mN/m]である。これらの中で、脂肪族炭化水素類(ヘキサン、ヘプタン等)は低表面張力でありかつ作業環境性に優れている。また、これらの中でも、アセトン、メチルエチルケトン、1,2-ジメトキシエタン等の親水性有機溶媒を用いることで、上記洗浄工程の有機溶媒と兼用することができる。なお、これらの中でも、更に後述する乾燥工程における乾燥が容易な点で、常圧での沸点が100℃以下の溶媒を用いてもよい。上記の溶媒は単独で、又は2種類以上を混合して用いてもよい。 Examples of the low surface tension solvent include a solvent having a surface tension at 20 ° C. of 30 mN / m or less. The surface tension may be 25 mN / m or less, or 20 mN / m or less. Examples of the low surface tension solvent include pentane (15.5), hexane (18.4), heptane (20.2), octane (21.7), 2-methylpentane (17.4), 3- Aliphatic hydrocarbons such as methylpentane (18.1), 2-methylhexane (19.3), cyclopentane (22.6), cyclohexane (25.2), 1-pentene (16.0); Aromatic hydrocarbons such as (28.9), toluene (28.5), m-xylene (28.7), p-xylene (28.3); dichloromethane (27.9), chloroform (27.2) ), Carbon tetrachloride (26.9), 1-chloropropane (21.8), 2-chloropropane (18.1) and other halogenated hydrocarbons; ethyl ether (17.1), propyl ether (20.5) ), Isop Ethers such as pyrether (17.7), butyl ethyl ether (20.8), 1,2-dimethoxyethane (24.6); acetone (23.3), methyl ethyl ketone (24.6), methyl propyl ketone (25.1), ketones such as diethyl ketone (25.3); methyl acetate (24.8), ethyl acetate (23.8), propyl acetate (24.3), isopropyl acetate (21.2), Examples include esters such as isobutyl acetate (23.7) and ethyl butyrate (24.6). The parenthesis indicates the surface tension at 20 ° C., and the unit is [mN / m]. Among these, aliphatic hydrocarbons (hexane, heptane, etc.) have a low surface tension and an excellent working environment. Among these, by using a hydrophilic organic solvent such as acetone, methyl ethyl ketone, 1,2-dimethoxyethane, it can be used as the organic solvent in the washing step. Among these, a solvent having a boiling point at normal pressure of 100 ° C. or less may be used because it is easy to dry in the drying step described later. You may use said solvent individually or in mixture of 2 or more types.
 溶媒置換工程に使用される溶媒の量としては、洗浄後の湿潤ゲル中の溶媒を十分に置換できる量とすることができる。当該量は、湿潤ゲルの容量に対して3~10倍の量とすることができる。 The amount of the solvent used in the solvent replacement step can be an amount that can sufficiently replace the solvent in the wet gel after washing. The amount can be 3 to 10 times the volume of the wet gel.
 溶媒置換工程における温度環境は、置換に用いる溶媒の沸点以下の温度とすることができ、例えば、ヘプタンを用いる場合は、30~60℃程度の加温とすることができる。 The temperature environment in the solvent replacement step can be a temperature not higher than the boiling point of the solvent used for the replacement. For example, when heptane is used, the temperature can be increased to about 30 to 60 ° C.
 なお、本実施形態においては、ゲル中に中空シリカ粒子が含まれていることから、上述のとおり溶媒置換工程は必ずしも必須ではない。推察されるメカニズムとしては次のとおりである。すなわち、従来であれば乾燥工程におけるゲルの収縮を抑制するため、湿潤ゲルの溶媒を所定の置換用溶媒(低表面張力の溶媒)に置き換えていたが、本実施形態においては中空シリカ粒子が三次元網目状の骨格の支持体として機能することにより、当該骨格が支持され、乾燥工程におけるゲルの収縮が抑制される。そのため、洗浄に用いた溶媒を置換せずに、ゲルをそのまま乾燥工程に付すことができると考えられる。このように、本実施形態においては、洗浄及び溶媒置換工程から乾燥工程の簡略化が可能である。ただし、本実施形態は溶媒置換工程を行うことを何ら排除するものではない。 In the present embodiment, since the hollow silica particles are contained in the gel, the solvent replacement step is not necessarily essential as described above. The inferred mechanism is as follows. That is, conventionally, in order to suppress the shrinkage of the gel in the drying process, the solvent of the wet gel is replaced with a predetermined replacement solvent (a low surface tension solvent). By functioning as a support for the original network-like skeleton, the skeleton is supported, and the shrinkage of the gel in the drying process is suppressed. Therefore, it is considered that the gel can be directly subjected to the drying step without replacing the solvent used for washing. Thus, in this embodiment, the drying process can be simplified from the washing and solvent replacement process. However, this embodiment does not exclude performing the solvent substitution step at all.
(乾燥工程)
 乾燥工程では、上記のとおり洗浄及び(必要に応じ)溶媒置換した湿潤ゲルを乾燥させる。これにより、最終的にエアロゲル複合体を得ることができる。
(Drying process)
In the drying step, the wet gel that has been washed and solvent-substituted (if necessary) as described above is dried. Thereby, an airgel composite can be finally obtained.
 乾燥の手法としては特に制限されず、公知の常圧乾燥、超臨界乾燥又は凍結乾燥を用いることができる。これらの中で、低密度のエアロゲル複合体を製造し易いという観点からは、常圧乾燥又は超臨界乾燥を用いることができる。また、低コストで生産可能という観点からは、常圧乾燥を用いることができる。なお、本実施形態において、常圧とは0.1MPa(大気圧)を意味する。 The drying method is not particularly limited, and known atmospheric pressure drying, supercritical drying, or freeze drying can be used. Among these, atmospheric drying or supercritical drying can be used from the viewpoint of easy production of a low-density airgel composite. Further, from the viewpoint that production is possible at low cost, atmospheric pressure drying can be used. In the present embodiment, the normal pressure means 0.1 MPa (atmospheric pressure).
 本実施形態のエアロゲル複合体は、洗浄及び(必要に応じ)溶媒置換した湿潤ゲルを、乾燥に用いられる溶媒の臨界点未満の温度にて、大気圧下で乾燥することにより得ることができる。上記乾燥は、乾燥に用いられる溶媒の臨界点未満の温度及び大気圧下で行うことにより、断熱性と柔軟性とに優れるエアロゲル複合体を更に得易くなる。乾燥温度は、置換された溶媒(溶媒置換を行わない場合は洗浄に用いられた溶媒)の種類により異なるが、特に高温での乾燥が溶媒の蒸発速度を速め、ゲルに大きな亀裂を生じさせる場合があるという点に鑑み、20~150℃とすることができ、60~120℃であってもよい。また、乾燥時間は、湿潤ゲルの容量及び乾燥温度により異なるが、4~120時間とすることができる。なお、本実施形態において、生産性を阻害しない範囲内において臨界点未満の圧力をかけて乾燥を早めることも、常圧乾燥に包含されるものとする。 The airgel composite of the present embodiment can be obtained by drying a wet gel that has been washed and solvent-substituted (if necessary) at a temperature below the critical point of the solvent used for drying under atmospheric pressure. By performing the drying at a temperature lower than the critical point of the solvent used for drying and at atmospheric pressure, it becomes easier to obtain an airgel composite having excellent heat insulation and flexibility. The drying temperature varies depending on the type of substituted solvent (the solvent used for washing if solvent substitution is not performed), but especially when drying at a high temperature increases the evaporation rate of the solvent and causes large cracks in the gel. In view of the above, it can be set to 20 to 150 ° C, and may be 60 to 120 ° C. The drying time varies depending on the wet gel volume and the drying temperature, but can be 4 to 120 hours. In the present embodiment, it is also included in the atmospheric pressure drying to accelerate the drying by applying a pressure less than the critical point within a range not inhibiting the productivity.
 本実施形態のエアロゲル複合体は、また、洗浄及び(必要に応じ)溶媒置換した湿潤ゲルを、超臨界乾燥することによっても得ることができる。超臨界乾燥は、公知の手法にて行うことができる。超臨界乾燥する方法としては、例えば、湿潤ゲルに含まれる溶媒の臨界点以上の温度及び圧力にて溶媒を除去する方法が挙げられる。また、超臨界乾燥する方法としては、湿潤ゲルを、液化二酸化炭素中に、例えば、20~25℃、5~20MPa程度の条件で浸漬することで、湿潤ゲルに含まれる溶媒の全部又は一部を当該溶媒より臨界点の低い二酸化炭素に置換した後、二酸化炭素を単独で、又は二酸化炭素及び溶媒の混合物を除去する方法が挙げられる。 The airgel composite of the present embodiment can also be obtained by supercritical drying a wet gel that has been washed and (if necessary) solvent-substituted. Supercritical drying can be performed by a known method. Examples of the supercritical drying method include a method of removing the solvent at a temperature and pressure higher than the critical point of the solvent contained in the wet gel. Further, as a method of supercritical drying, all or part of the solvent contained in the wet gel is obtained by immersing the wet gel in liquefied carbon dioxide under conditions of, for example, about 20 to 25 ° C. and about 5 to 20 MPa. And carbon dioxide having a lower critical point than that of the solvent, and then removing carbon dioxide alone or a mixture of carbon dioxide and the solvent.
 このような常圧乾燥又は超臨界乾燥により得られたエアロゲル複合体は、更に常圧下にて、105~200℃で0.5~2時間程度追加乾燥してもよい。これにより、密度が低く、小さな細孔を有するエアロゲル複合体を更に得易くなる。追加乾燥は、常圧下にて、150~200℃で行ってもよい。 The airgel composite obtained by such normal pressure drying or supercritical drying may be further dried at 105 to 200 ° C. for about 0.5 to 2 hours under normal pressure. This makes it easier to obtain an airgel composite having a low density and having small pores. Additional drying may be performed at 150 to 200 ° C. under normal pressure.
 以上のとおり説明をした本実施形態のエアロゲル複合体は、エアロゲル成分及びシリカ粒子を含有することにより、従来のエアロゲルでは達成困難であった優れた断熱性と柔軟性とを有している。特に優れた柔軟性は、従来達成困難であったフィルム状支持部材、繊維状支持部材及び箔状支持部材上にエアロゲル複合体の層を形成することを可能とした。 The airgel composite of the present embodiment described as described above has excellent heat insulating properties and flexibility, which has been difficult to achieve with conventional airgel, by containing an airgel component and silica particles. The particularly excellent flexibility has made it possible to form an airgel composite layer on a film-like support member, a fibrous support member and a foil-like support member, which have been difficult to achieve in the past.
 このような利点から、本実施形態のエアロゲル複合体は、建築分野、自動車分野、家電製品、半導体分野、産業用設備等における断熱材としての用途等に適用できる。また、本実施形態のエアロゲル複合体は、断熱材としての用途の他に、塗料用添加剤、化粧品、アンチブロッキング剤、触媒担持体等として利用することができる。 Because of such advantages, the airgel composite of the present embodiment can be applied to a use as a heat insulating material in an architectural field, an automobile field, a home appliance, a semiconductor field, an industrial facility, and the like. Moreover, the airgel composite of this embodiment can be used as a coating additive, cosmetics, antiblocking agent, catalyst carrier, etc., in addition to its use as a heat insulating material.
<断熱材>
 本実施形態の断熱材は、これまで説明したエアロゲル複合体を備えるものであり、高断熱性と優れた屈曲性とを有している。なお、上記エアロゲル複合体の製造方法により得られるエアロゲル複合体をそのまま(必要に応じ所定の形状に加工し)断熱材とすることができる。
<Insulation material>
The heat insulating material of the present embodiment includes the airgel composite described so far, and has high heat insulating properties and excellent flexibility. In addition, the airgel composite obtained by the manufacturing method of the said airgel composite can be made into a heat insulating material as it is (processed into a predetermined shape as needed).
 次に、下記の実施例により本開示を更に詳しく説明するが、これらの実施例は本開示をいかなる意味においても制限するものではない。 Next, the present disclosure will be described in more detail by the following examples, but these examples do not limit the present disclosure in any way.
(中空シリカ粒子分散液)
 中空シリカ粒子分散液として、日揮触媒化成株式会社の製品名「スルーリアA」(平均一次粒子径50nm、屈折率1.30である中空シリカ粒子20質量%、イソプロピルアルコール70質量%及びメタノール10質量%を含有)を用いた。
(Hollow silica particle dispersion)
As a hollow silica particle dispersion, product name “Thruria A” of JGC Catalysts & Chemicals Co., Ltd. (average primary particle diameter 50 nm, refractive index 1.30 hollow silica particles 20 mass%, isopropyl alcohol 70 mass% and methanol 10 mass%) Containing) was used.
(合成例1)
 撹拌機、温度計及びジムロート冷却管を備えた1リットルの3つ口フラスコにて、ヒドロキシ末端ジメチルポリシロキサン(製品名:XC96-723、モメンティブ社製)を100.0質量部、メチルトリメトキシシランを181.3質量部及びt-ブチルアミンを0.50質量部混合し、30℃で5時間反応させた。その後、この反応液を、1.3kPaの減圧下、140℃で2時間加熱し、揮発分を除去することで、上記一般式(B)で表される両末端2官能アルコキシ変性ポリシロキサン化合物(ポリシロキサン化合物A)を得た。
(Synthesis Example 1)
100.0 parts by mass of hydroxy-terminated dimethylpolysiloxane (product name: XC96-723, manufactured by Momentive), methyltrimethoxysilane in a 1-liter three-necked flask equipped with a stirrer, thermometer and Dimroth condenser Was mixed with 181.3 parts by mass and 0.50 part by mass of t-butylamine and reacted at 30 ° C. for 5 hours. Thereafter, the reaction solution was heated at 140 ° C. for 2 hours under a reduced pressure of 1.3 kPa to remove volatile components, whereby a bifunctional alkoxy-modified polysiloxane compound represented by the above general formula (B) ( Polysiloxane compound A) was obtained.
[エアロゲルの作製]
(実施例1)
 水を187.5質量部、カチオン性界面活性剤として臭化セチルトリメチルアンモニウム(和光純薬工業株式会社製、以下「CTAB」と略記)を20.0質量部混合した水溶液に、中空シリカ粒子分散液(製品名:スルーリアA、日揮触媒化成株式会社製)を213.0質量部、ケイ素化合物としてメチルトリメトキシシラン(製品名:KBM-13、信越化学工業株式会社製、以下「MTMS」と略記)を60.0質量部及びジメトキシジメチルシラン(東京化成工業株式会社製、以下「DMDMS」と略記)を20.0質量部、ポリシロキサン化合物として上記ポリシロキサン化合物Aを20.0質量部加え、25℃で30分攪拌してゾルを得た。得られたゾルを60℃でゲル化した後、60℃で60時間熟成して湿潤ゲルを得た。
[Production of airgel]
Example 1
Dispersion of hollow silica particles in an aqueous solution in which 187.5 parts by mass of water and 20.0 parts by mass of cetyltrimethylammonium bromide (manufactured by Wako Pure Chemical Industries, Ltd., hereinafter abbreviated as “CTAB”) as a cationic surfactant are mixed. 213.0 parts by mass of liquid (product name: Thruria A, manufactured by JGC Catalysts and Chemicals Co., Ltd.), methyltrimethoxysilane (product name: KBM-13, manufactured by Shin-Etsu Chemical Co., Ltd., hereinafter abbreviated as “MTMS”) ) 60.0 parts by mass and 20.0 parts by mass of dimethoxydimethylsilane (manufactured by Tokyo Chemical Industry Co., Ltd., hereinafter abbreviated as “DMDMS”), 20.0 parts by mass of the polysiloxane compound A as a polysiloxane compound, A sol was obtained by stirring at 25 ° C. for 30 minutes. The obtained sol was gelled at 60 ° C. and then aged at 60 ° C. for 60 hours to obtain a wet gel.
 その後、得られた湿潤ゲルを水1000.0質量部及びメタノール1500.0質量部の混合液に浸漬し、60℃で3時間かけて洗浄を行った。この洗浄操作を、新しいメタノール2500.0質量部に交換しながら1回行った。次に、洗浄した湿潤ゲルを、低表面張力溶媒であるメチルエチルケトン2500.0質量部に浸漬し、60℃で3時間かけて溶媒置換を行った。この溶媒置換操作を、新しいメチルエチルケトンに交換しながら2回行った。洗浄及び溶媒置換された湿潤ゲルを、常圧下にて、25℃で48時間乾燥し、その後更に150℃で2時間乾燥することで、エアロゲル複合体1を得た。 Then, the obtained wet gel was immersed in a mixed solution of 1000.0 parts by mass of water and 1500.0 parts by mass of methanol, and washed at 60 ° C. for 3 hours. This washing operation was performed once while exchanging with 2500.0 parts by mass of new methanol. Next, the washed wet gel was immersed in 2500.0 parts by mass of methyl ethyl ketone, which is a low surface tension solvent, and solvent substitution was performed at 60 ° C. for 3 hours. This solvent replacement operation was performed twice while exchanging with new methyl ethyl ketone. The washed and solvent-substituted wet gel was dried at 25 ° C. for 48 hours under normal pressure, and then further dried at 150 ° C. for 2 hours to obtain an airgel composite 1.
(実施例2)
 水を208.8質量部、カチオン性界面活性剤としてCTABを20.0質量部混合した水溶液に、中空シリカ粒子分散液(製品名:スルーリアA、日揮触媒化成株式会社製)を191.7質量部、ケイ素化合物としてMTMSを60.0質量部及びDMDMSを20.0質量部、ポリシロキサン化合物として上記ポリシロキサン化合物Aを20.0質量部加え、25℃で30分攪拌してゾルを得た。得られたゾルを60℃でゲル化した後は、実施例1と同様にしてエアロゲル複合体2を得た。
(Example 2)
Into an aqueous solution in which 208.8 parts by mass of water and 20.0 parts by mass of CTAB as a cationic surfactant are mixed, 191.7 parts by mass of a hollow silica particle dispersion (product name: Thruria A, manufactured by JGC Catalysts and Chemicals Co., Ltd.) Part, 60.0 parts by mass of MTMS as a silicon compound and 20.0 parts by mass of DMDMS, and 20.0 parts by mass of the polysiloxane compound A as a polysiloxane compound were added and stirred at 25 ° C. for 30 minutes to obtain a sol. . After the obtained sol was gelled at 60 ° C., an airgel composite 2 was obtained in the same manner as in Example 1.
(実施例3)
 水を240.7質量部、カチオン性界面活性剤としてCTABを20.0質量部混合した水溶液に、中空シリカ粒子分散液(製品名:スルーリアA、日揮触媒化成株式会社製)を159.8質量部、ケイ素化合物としてMTMSを60.0質量部及びDMDMSを20.0質量部、ポリシロキサン化合物として上記ポリシロキサン化合物Aを20.0質量部加え、25℃で30分攪拌してゾルを得た。得られたゾルを60℃でゲル化した後は、実施例1と同様にしてエアロゲル複合体3を得た。
(Example 3)
159.8 parts by mass of hollow silica particle dispersion (product name: Thruria A, manufactured by JGC Catalysts and Chemicals) in an aqueous solution in which 240.7 parts by mass of water and 20.0 parts by mass of CTAB as a cationic surfactant are mixed. Part, 60.0 parts by mass of MTMS as a silicon compound and 20.0 parts by mass of DMDMS, and 20.0 parts by mass of the polysiloxane compound A as a polysiloxane compound were added and stirred at 25 ° C. for 30 minutes to obtain a sol. . After the obtained sol was gelled at 60 ° C., an airgel composite 3 was obtained in the same manner as in Example 1.
(比較例1)
 水を200.0質量部、酸触媒として酢酸を0.10質量部、カチオン性界面活性剤としてCTABを20.0質量部及び熱加水分解性化合物として尿素を120.0質量部混合し、これにケイ素化合物としてMTMSを100.0質量部加え、25℃で120分攪拌してゾルを得た。得られたゾルを60℃でゲル化した後、80℃で24時間熟成して湿潤ゲルを得た。その後、得られた湿潤ゲルを用いて、実施例1と同様にしてエアロゲル4を得た。
(Comparative Example 1)
200.0 parts by mass of water, 0.10 parts by mass of acetic acid as an acid catalyst, 20.0 parts by mass of CTAB as a cationic surfactant, and 120.0 parts by mass of urea as a thermohydrolyzable compound were mixed. 100.0 parts by mass of MTMS as a silicon compound was added and stirred at 25 ° C. for 120 minutes to obtain a sol. The obtained sol was gelled at 60 ° C. and then aged at 80 ° C. for 24 hours to obtain a wet gel. Then, airgel 4 was obtained like Example 1 using the obtained wet gel.
(比較例2)
 水を200.0質量部、酸触媒として酢酸を0.10質量部、カチオン性界面活性剤としてCTABを20.0質量部及び熱加水分解性化合物として尿素を120.0質量部混合し、これにケイ素化合物としてMTMSを80.0質量部及びDMDMSを20.0質量部加え、25℃で120分攪拌してゾルを得た。得られたゾルを60℃でゲル化した後、80℃で24時間熟成して湿潤ゲルを得た。その後、得られた湿潤ゲルを用いて、実施例1と同様にしてエアロゲル5を得た。
(Comparative Example 2)
200.0 parts by mass of water, 0.10 parts by mass of acetic acid as an acid catalyst, 20.0 parts by mass of CTAB as a cationic surfactant, and 120.0 parts by mass of urea as a thermohydrolyzable compound were mixed. As a silicon compound, 80.0 parts by mass of MTMS and 20.0 parts by mass of DMDMS were added and stirred at 25 ° C. for 120 minutes to obtain a sol. The obtained sol was gelled at 60 ° C. and then aged at 80 ° C. for 24 hours to obtain a wet gel. Then, airgel 5 was obtained like Example 1 using the obtained wet gel.
(比較例3)
 水を200.0質量部、酸触媒として酢酸を0.10質量部、カチオン性界面活性剤としてCTABを20.0質量部及び熱加水分解性化合物として尿素を120.0質量部混合し、これにケイ素化合物としてMTMSを70.0質量部及びDMDMSを30.0質量部加え、25℃で120分攪拌してゾルを得た。得られたゾルを60℃でゲル化した後、80℃で24時間熟成して湿潤ゲルを得た。その後、得られた湿潤ゲルを用いて、実施例1と同様にしてエアロゲル6を得た。
(Comparative Example 3)
200.0 parts by mass of water, 0.10 parts by mass of acetic acid as an acid catalyst, 20.0 parts by mass of CTAB as a cationic surfactant, and 120.0 parts by mass of urea as a thermohydrolyzable compound were mixed. As a silicon compound, 70.0 parts by mass of MTMS and 30.0 parts by mass of DMDMS were added and stirred at 25 ° C. for 120 minutes to obtain a sol. The obtained sol was gelled at 60 ° C. and then aged at 80 ° C. for 24 hours to obtain a wet gel. Then, airgel 6 was obtained like Example 1 using the obtained wet gel.
 各実施例及び比較例における、乾燥方法、シリコーン成分(ケイ素化合物及びポリシロキサン化合物)の種類及び添加量、並びに中空シリカ粒子分散液の添加量を下記表1にまとめて示す。 Table 1 below collectively shows the drying method, the types and addition amounts of the silicone components (silicon compound and polysiloxane compound), and the addition amount of the hollow silica particle dispersion in each Example and Comparative Example.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
[各種評価]
 各実施例で得られた湿潤ゲル及びエアロゲル複合体、並びに各比較例で得られた湿潤ゲル及びエアロゲルについて、以下の条件に従って測定又は評価した。メタノール置換ゲルの常圧乾燥におけるエアロゲル複合体及びエアロゲルの状態、並びにエアロゲル複合体及びエアロゲルの熱伝導率、圧縮弾性率の評価結果をまとめて下記表2に示す。
[Various evaluations]
The wet gel and airgel composite obtained in each example and the wet gel and airgel obtained in each comparative example were measured or evaluated according to the following conditions. The state of the airgel composite and the airgel in the atmospheric pressure drying of the methanol-substituted gel, and the evaluation results of the thermal conductivity and the compression elastic modulus of the airgel composite and the airgel are collectively shown in Table 2 below.
(1)メタノール置換ゲルの常圧乾燥におけるエアロゲル複合体及びエアロゲルの状態
 各実施例及び比較例で得られた湿潤ゲル30.0質量部を、メタノール150.0質量部に浸漬し、60℃で12時間かけて洗浄を行った。この洗浄操作を、新しいメタノールに交換しながら3回行った。次に、洗浄された湿潤ゲルを、刃角約20~25度の刃を用いて、100mm×100mm×100mmのサイズに加工し、乾燥前サンプルとした。得られた乾燥前サンプルを安全扉付き恒温器「SPH(H)-202」(エスペック株式会社製、製品名)を用い、60℃で2時間、100℃で3時間乾燥し、その後更に150℃で2時間乾燥することで乾燥後サンプルを得た(特に溶媒蒸発速度等は制御していない)。ここで、サンプルの乾燥前後の体積収縮率SVを次式より求めた。そして、体積収縮率SVが5%以下であるときを「収縮なし」と評価し、5%を超えるときを「収縮」と評価した。
  SV=(V-V)/V×100
 式中、Vは乾燥前サンプルの体積を示し、Vは乾燥後サンプルの体積を示す。
(1) State of airgel composite and airgel in atmospheric pressure drying of methanol-substituted gel 30.0 parts by mass of wet gel obtained in each Example and Comparative Example was immersed in 150.0 parts by mass of methanol at 60 ° C. Washing was performed for 12 hours. This washing operation was performed 3 times while exchanging with fresh methanol. Next, the washed wet gel was processed into a size of 100 mm × 100 mm × 100 mm using a blade having a blade angle of about 20 to 25 degrees, and used as a sample before drying. The obtained pre-drying sample was dried at 60 ° C. for 2 hours and 100 ° C. for 3 hours using a constant temperature chamber “SPH (H) -202” (product name, manufactured by ESPEC CORP.) With a safety door, and then further 150 ° C. And dried for 2 hours to obtain a sample after drying (especially the solvent evaporation rate is not controlled). Here, the volume shrinkage ratio SV before and after drying of the sample was obtained from the following equation. When the volume shrinkage ratio SV was 5% or less, it was evaluated as “no shrinkage”, and when it exceeded 5%, it was evaluated as “shrinkage”.
SV = (V 0 −V 1 ) / V 0 × 100
In the formula, V 0 represents the volume of the sample before drying, and V 1 represents the volume of the sample after drying.
(2)熱伝導率の測定
 刃角約20~25度の刃を用いて、エアロゲル複合体及びエアロゲルを150mm×150mm×100mmのサイズに加工し、測定サンプルとした。次に、面の平行を確保するために、必要に応じて#1500以上の紙やすりで整形した。得られた測定サンプルを、熱伝導率測定前に、定温乾燥機「DVS402」(ヤマト科学株式会社製、製品名)を用いて、大気圧下、100℃で30分間乾燥した。次いで測定サンプルをデシケータ中に移し、25℃まで冷却した。これにより、熱伝導率測定用の測定サンプルを得た。
(2) Measurement of thermal conductivity Using a blade with a blade angle of about 20 to 25 degrees, the airgel composite and the airgel were processed into a size of 150 mm × 150 mm × 100 mm to obtain a measurement sample. Next, in order to ensure parallelism of the surface, shaping was performed with sandpaper of # 1500 or more as necessary. The obtained measurement sample was dried at 100 ° C. for 30 minutes under atmospheric pressure using a constant temperature dryer “DVS402” (manufactured by Yamato Scientific Co., Ltd., product name) before measuring the thermal conductivity. The measurement sample was then transferred into a desiccator and cooled to 25 ° C. Thereby, the measurement sample for thermal conductivity measurement was obtained.
 熱伝導率の測定は、定常法熱伝導率測定装置「HFM436Lambda」(NETZSCH社製、製品名)を用いて行った。測定条件は、大気圧下、平均温度25℃とした。上記のとおり得られた測定サンプルを0.3MPaの荷重にて上部及び下部ヒーター間に挟み、温度差ΔTを20℃とし、ガードヒーターによって一次元の熱流になるように調整しながら、測定サンプルの上面温度、下面温度等を測定した。そして、測定サンプルの熱抵抗Rを次式より求めた。
  R=N((T-T)/Q)-R
 式中、Tは測定サンプル上面温度を示し、Tは測定サンプル下面温度を示し、Rは上下界面の接触熱抵抗を示し、Qは熱流束計出力を示す。なお、Nは比例係数であり、較正試料を用いて予め求めておいた。
The thermal conductivity was measured using a steady-state thermal conductivity measuring device “HFM436 Lambda” (manufactured by NETZSCH, product name). The measurement conditions were an average temperature of 25 ° C. under atmospheric pressure. The measurement sample obtained as described above was sandwiched between the upper and lower heaters with a load of 0.3 MPa, the temperature difference ΔT was set to 20 ° C., and the guard sample was adjusted so as to obtain a one-dimensional heat flow. Upper surface temperature, lower surface temperature, etc. were measured. And thermal resistance RS of the measurement sample was calculated | required from following Formula.
R S = N ((T U −T L ) / Q) −R O
Wherein, T U represents a measurement sample top surface temperature, T L represents the measurement sample lower surface temperature, R O represents the thermal contact resistance of the upper and lower interfaces, Q is shows the heat flux meter output. Note that N is a proportionality coefficient, and is obtained in advance using a calibration sample.
 得られた熱抵抗Rより、測定サンプルの熱伝導率λを次式より求めた。
  λ=d/R
 式中、dは測定サンプルの厚さを示す。
From the obtained thermal resistance RS , the thermal conductivity λ of the measurement sample was obtained from the following equation.
λ = d / R S
In formula, d shows the thickness of a measurement sample.
(3)圧縮弾性率の測定
 刃角約20~25度の刃を用いて、エアロゲル複合体及びエアロゲルを7.0mm角の立方体(サイコロ状)に加工し、測定サンプルとした。次に、面の平行を確保するために、必要に応じて#1500以上の紙やすりで測定サンプルを整形した。得られた測定サンプルを、測定前に、定温乾燥機「DVS402」(ヤマト科学株式会社製、製品名)を用いて、大気圧下、100℃で30分間乾燥した。次いで測定サンプルをデシケータ中に移し、25℃まで冷却した。これにより、圧縮弾性率測定用の測定サンプルを得た。
(3) Measurement of compression elastic modulus Using a blade having a blade angle of about 20 to 25 degrees, the airgel composite and the airgel were processed into a 7.0 mm square cube (dice shape) to obtain a measurement sample. Next, in order to ensure parallelism of the surfaces, the measurement sample was shaped with sandpaper of # 1500 or more as necessary. The obtained measurement sample was dried at 100 ° C. for 30 minutes under atmospheric pressure using a constant temperature dryer “DVS402” (manufactured by Yamato Scientific Co., Ltd., product name) before measurement. The measurement sample was then transferred into a desiccator and cooled to 25 ° C. Thereby, the measurement sample for compression elastic modulus measurement was obtained.
 測定装置としては、小型卓上試験機「EZTest」(株式会社島津製作所製、製品名)を用いた。なお、ロードセルとしては500Nを使用した。また、ステンレス製の上圧盤(φ20mm)及び下圧盤(φ118mm)を圧縮測定用冶具として用いた。平行に配置した上圧盤及び下圧盤の間に測定サンプルをセットし、1mm/minの速度で圧縮を行った。測定温度は25℃とし、測定は、500N超の負荷をかけた時点又は測定サンプルが破壊した時点で終了とした。ここで、ひずみεは次式より求めた。
  ε=Δd/d1
 式中、Δdは負荷による測定サンプルの厚みの変位(mm)を示し、d1は負荷をかける前の測定サンプルの厚み(mm)を示す。
 また、圧縮応力σ(MPa)は、次式より求めた。
  σ=F/A
 式中、Fは圧縮力(N)を示し、Aは負荷をかける前の測定サンプルの断面積(mm)を示す。
As a measuring apparatus, a small tabletop testing machine “EZTest” (manufactured by Shimadzu Corporation, product name) was used. In addition, 500N was used as a load cell. Further, an upper platen (φ20 mm) and a lower platen (φ118 mm) made of stainless steel were used as compression measurement jigs. A measurement sample was set between an upper platen and a lower platen arranged in parallel, and compression was performed at a speed of 1 mm / min. The measurement temperature was 25 ° C., and the measurement was terminated when a load exceeding 500 N was applied or when the measurement sample was destroyed. Here, the strain ε was obtained from the following equation.
ε = Δd / d1
In the formula, Δd represents the displacement (mm) of the thickness of the measurement sample due to the load, and d1 represents the thickness (mm) of the measurement sample before the load is applied.
The compressive stress σ (MPa) was obtained from the following equation.
σ = F / A
In the formula, F represents the compressive force (N), and A represents the cross-sectional area (mm 2 ) of the measurement sample before applying a load.
 圧縮弾性率E(MPa)は、0.1~0.2Nの圧縮力範囲において、次式より求めた。
  E=(σ-σ)/(ε-ε
 式中、σは圧縮力が0.1Nにおいて測定される圧縮応力(MPa)を示し、σは圧縮力が0.2Nにおいて測定される圧縮応力(MPa)を示し、εは圧縮応力σにおいて測定される圧縮ひずみを示し、εは圧縮応力σにおいて測定される圧縮ひずみを示す。
The compressive elastic modulus E (MPa) was obtained from the following equation in the compression force range of 0.1 to 0.2N.
E = (σ 2 −σ 1 ) / (ε 2 −ε 1 )
In the formula, σ 1 indicates a compressive stress (MPa) measured at a compressive force of 0.1 N, σ 2 indicates a compressive stress (MPa) measured at a compressive force of 0.2 N, and ε 1 indicates a compressive stress. The compressive strain measured at σ 1 is shown, and ε 2 shows the compressive strain measured at the compressive stress σ 2 .
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表2から、実施例のエアロゲル複合体は、メタノール置換ゲルを用いた常圧乾燥において良好な耐収縮性を有することが確認できる。なお、今回の評価において、いずれの実施例においても良好な耐収縮性が示されたことは、溶媒置換工程を実施せずとも良質なエアロゲル複合体を得られることが示されたことになる。 From Table 2, it can be confirmed that the airgel composites of the examples have good shrinkage resistance in atmospheric drying using a methanol-substituted gel. In this evaluation, the fact that good shrinkage resistance was shown in any of the examples showed that a good-quality airgel composite could be obtained without carrying out the solvent replacement step.
 また、実施例のエアロゲル複合体は、熱伝導率及び圧縮弾性率が小さく、高断熱性と高柔軟性の両方に優れることが読み取れる。 Also, it can be read that the airgel composites of the examples have small thermal conductivity and compression modulus, and are excellent in both high heat insulation and high flexibility.
 一方、比較例1~3は、メタノール置換ゲルを用いた常圧乾燥でゲルが収縮し、表面にクラックを生じており、また、熱伝導率及び柔軟性のいずれかが劣っていた。 On the other hand, in Comparative Examples 1 to 3, the gel contracted by atmospheric drying using a methanol-substituted gel, cracks were generated on the surface, and either thermal conductivity or flexibility was inferior.
 1…エアロゲル粒子、2…中空シリカ粒子、3…細孔、10…エアロゲル複合体、L…外接長方形。 1 ... airgel particles, 2 ... hollow silica particles, 3 ... pores, 10 ... airgel composite, L ... circumscribed rectangle.

Claims (11)

  1.  エアロゲル成分及び中空シリカ粒子を含有する、エアロゲル複合体。 An airgel composite containing an airgel component and hollow silica particles.
  2.  前記エアロゲル成分及び前記中空シリカ粒子により形成された三次元網目骨格と、細孔とを有する、請求項1に記載のエアロゲル複合体。 The airgel composite according to claim 1, comprising a three-dimensional network skeleton formed by the airgel component and the hollow silica particles, and pores.
  3.  三次元網目骨格を構成する成分として中空シリカ粒子を含有する、エアロゲル複合体。 An airgel composite containing hollow silica particles as a component constituting a three-dimensional network skeleton.
  4.  中空シリカ粒子と、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物、及び、前記加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種と、を含有するゾルの縮合物である湿潤ゲルの乾燥物である、エアロゲル複合体。 At least one selected from the group consisting of hollow silica particles, a silicon compound having a hydrolyzable functional group or a condensable functional group, and a hydrolysis product of the silicon compound having a hydrolyzable functional group An airgel composite that is a dried product of a wet gel that is a condensate of a sol containing
  5.  前記中空シリカ粒子と、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物、及び、前記加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種と、を含有するゾルの縮合物である湿潤ゲルの乾燥物である、請求項1~3のいずれか一項に記載のエアロゲル複合体。 At least one selected from the group consisting of the hollow silica particles, a silicon compound having a hydrolyzable functional group or a condensable functional group, and a hydrolysis product of the silicon compound having the hydrolyzable functional group. The airgel composite according to any one of claims 1 to 3, which is a dried product of a wet gel that is a condensate of a sol containing:
  6.  前記ケイ素化合物が、加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物を含む、請求項4又は5に記載のエアロゲル複合体。 The airgel composite according to claim 4 or 5, wherein the silicon compound includes a polysiloxane compound having a hydrolyzable functional group or a condensable functional group.
  7.  前記中空シリカ粒子の平均一次粒子径が1nm~100μmである、請求項1~6のいずれか一項に記載のエアロゲル複合体。 The airgel composite according to any one of claims 1 to 6, wherein the hollow silica particles have an average primary particle diameter of 1 nm to 100 µm.
  8.  前記中空シリカ粒子の形状が球状である、請求項1~7のいずれか一項に記載のエアロゲル複合体。 The airgel composite according to any one of claims 1 to 7, wherein the hollow silica particles have a spherical shape.
  9.  前記中空シリカ粒子が、溶融シリカ粒子、ヒュームドシリカ粒子及びコロイダルシリカ粒子からなる群より選択される少なくとも一種である、請求項1~8のいずれか一項に記載のエアロゲル複合体。 The airgel composite according to any one of claims 1 to 8, wherein the hollow silica particles are at least one selected from the group consisting of fused silica particles, fumed silica particles, and colloidal silica particles.
  10.  25℃における圧縮弾性率が3MPa以下である、請求項1~9のいずれか一項に記載のエアロゲル複合体。 The airgel composite according to any one of claims 1 to 9, wherein the compression elastic modulus at 25 ° C is 3 MPa or less.
  11.  請求項1~10のいずれか一項に記載のエアロゲル複合体を備える、断熱材。 A heat insulating material comprising the airgel composite according to any one of claims 1 to 10.
PCT/JP2016/074868 2015-08-28 2016-08-25 Aerogel composite, and heat-insulating material WO2017038646A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017537813A JP6288382B2 (en) 2015-08-28 2016-08-25 Airgel composite and heat insulating material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015168802 2015-08-28
JP2015-168802 2015-08-28

Publications (1)

Publication Number Publication Date
WO2017038646A1 true WO2017038646A1 (en) 2017-03-09

Family

ID=58187487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074868 WO2017038646A1 (en) 2015-08-28 2016-08-25 Aerogel composite, and heat-insulating material

Country Status (3)

Country Link
JP (2) JP6288382B2 (en)
TW (1) TW201711962A (en)
WO (1) WO2017038646A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164184A1 (en) * 2016-03-25 2017-09-28 日立化成株式会社 Sol composition, aerogel composite, support member provided with aerogel composite, and heat insulator
CN110408167A (en) * 2019-08-22 2019-11-05 唐山师范学院 Aeroge and its preparation method and application, high temperature insulating material or lightweight prevent/heat-barrier material
CN113286773A (en) * 2019-03-19 2021-08-20 松下知识产权经营株式会社 Method for manufacturing heat insulating sheet
WO2022014194A1 (en) * 2020-07-14 2022-01-20 国立研究開発法人物質・材料研究機構 Hybrid aerogel, production method for same, and heat insulation material using hybrid aerogel
WO2022107365A1 (en) * 2020-11-20 2022-05-27 国立研究開発法人物質・材料研究機構 Method for manufacturing aerogel powder and heat-insulating material using same
WO2022107437A1 (en) * 2020-11-20 2022-05-27 国立研究開発法人物質・材料研究機構 Heat insulating pipe
WO2022154014A1 (en) * 2021-01-14 2022-07-21 株式会社トクヤマ Porous spherical silica and method for producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022082216A (en) * 2020-11-20 2022-06-01 黒崎播磨株式会社 Molded aerogel composite

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005525454A (en) * 2002-05-15 2005-08-25 キャボット コーポレイション Composition of airgel and hollow particle binder, insulating composite material, and production method thereof
WO2006068183A1 (en) * 2004-12-25 2006-06-29 Matsushita Electric Works, Ltd. Liquid crystal display unit
JP2012006807A (en) * 2010-06-28 2012-01-12 Nichias Corp Composite particle, heat insulating material, and method for producing the same
JP2012188323A (en) * 2011-03-11 2012-10-04 Konica Minolta Holdings Inc Method for manufacturing porous structure, optical material, and insulation material
JP2014167078A (en) * 2013-02-28 2014-09-11 Panasonic Corp Composition for molding heat insulating material, molded body, and manufacturing method of molded body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005525454A (en) * 2002-05-15 2005-08-25 キャボット コーポレイション Composition of airgel and hollow particle binder, insulating composite material, and production method thereof
WO2006068183A1 (en) * 2004-12-25 2006-06-29 Matsushita Electric Works, Ltd. Liquid crystal display unit
JP2012006807A (en) * 2010-06-28 2012-01-12 Nichias Corp Composite particle, heat insulating material, and method for producing the same
JP2012188323A (en) * 2011-03-11 2012-10-04 Konica Minolta Holdings Inc Method for manufacturing porous structure, optical material, and insulation material
JP2014167078A (en) * 2013-02-28 2014-09-11 Panasonic Corp Composition for molding heat insulating material, molded body, and manufacturing method of molded body

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164184A1 (en) * 2016-03-25 2017-09-28 日立化成株式会社 Sol composition, aerogel composite, support member provided with aerogel composite, and heat insulator
US10995184B2 (en) 2016-03-25 2021-05-04 Show A Denko Materials Co., Ltd. Sol composition, aerogel composite, support member provided with aerogel composite, and heat insulator
CN113286773A (en) * 2019-03-19 2021-08-20 松下知识产权经营株式会社 Method for manufacturing heat insulating sheet
CN110408167A (en) * 2019-08-22 2019-11-05 唐山师范学院 Aeroge and its preparation method and application, high temperature insulating material or lightweight prevent/heat-barrier material
CN110408167B (en) * 2019-08-22 2022-05-17 唐山师范学院 Aerogel, preparation method and application thereof, high-temperature heat-insulating material or light-weight heat-preventing/insulating material
WO2022014194A1 (en) * 2020-07-14 2022-01-20 国立研究開発法人物質・材料研究機構 Hybrid aerogel, production method for same, and heat insulation material using hybrid aerogel
WO2022107365A1 (en) * 2020-11-20 2022-05-27 国立研究開発法人物質・材料研究機構 Method for manufacturing aerogel powder and heat-insulating material using same
WO2022107437A1 (en) * 2020-11-20 2022-05-27 国立研究開発法人物質・材料研究機構 Heat insulating pipe
WO2022154014A1 (en) * 2021-01-14 2022-07-21 株式会社トクヤマ Porous spherical silica and method for producing same

Also Published As

Publication number Publication date
JP6288382B2 (en) 2018-03-07
TW201711962A (en) 2017-04-01
JP2018087136A (en) 2018-06-07
JPWO2017038646A1 (en) 2018-04-12

Similar Documents

Publication Publication Date Title
JP6428783B2 (en) Airgel composite, support member with airgel composite, and heat insulating material
JP6288382B2 (en) Airgel composite and heat insulating material
JP6597064B2 (en) Airgel composite
WO2017164184A1 (en) Sol composition, aerogel composite, support member provided with aerogel composite, and heat insulator
JP7375841B2 (en) Method for producing airgel composite powder
JP6288384B2 (en) Airgel
JP6269903B2 (en) Airgel composite, support member with airgel composite, and heat insulating material
WO2017038776A1 (en) Sol composition and aerogel
JP6705250B2 (en) Airgel complex
WO2017170498A1 (en) Aerogel composite, and support member and adiabatic material provided with aerogel composite
WO2017038781A1 (en) Aerogel complex
JP6693221B2 (en) Method for producing airgel composite
JP6699292B2 (en) Method for producing airgel composite
JP6693222B2 (en) Airgel composite manufacturing method, airgel composite, support member with airgel composite, and heat insulating material
WO2018163354A1 (en) Method for producing aerogel complex and aerogel complex

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841678

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017537813

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16841678

Country of ref document: EP

Kind code of ref document: A1