WO2017038345A1 - Magnetic resonance imaging device and imaging sequence generating method - Google Patents

Magnetic resonance imaging device and imaging sequence generating method Download PDF

Info

Publication number
WO2017038345A1
WO2017038345A1 PCT/JP2016/072585 JP2016072585W WO2017038345A1 WO 2017038345 A1 WO2017038345 A1 WO 2017038345A1 JP 2016072585 W JP2016072585 W JP 2016072585W WO 2017038345 A1 WO2017038345 A1 WO 2017038345A1
Authority
WO
WIPO (PCT)
Prior art keywords
delay time
image
magnetic resonance
sequence
perfusion
Prior art date
Application number
PCT/JP2016/072585
Other languages
French (fr)
Japanese (ja)
Inventor
崇 西原
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2017537675A priority Critical patent/JP6483269B2/en
Publication of WO2017038345A1 publication Critical patent/WO2017038345A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging

Definitions

  • the present invention relates to a Magnetic Resonance Imaging (hereinafter referred to as MRI) apparatus, and in particular, a non-contrast perfusion that confirms a dominant region of a specific blood vessel by applying a two-dimensional selective excitation pulse (hereinafter referred to as a 2DRF pulse) as a label pulse to a plurality of locations. It relates to imaging.
  • MRI Magnetic Resonance Imaging
  • 2DRF pulse two-dimensional selective excitation pulse
  • Non-contrast perfusion imaging of the head using a two-dimensional selective excitation pulse (hereinafter referred to as 2DRF pulse) as a label pulse and non-contrast perfusion imaging of the liver using a label pulse of normal slice selective excitation are known.
  • 2DRF pulse two-dimensional selective excitation pulse
  • Non-Patent Document 1 and Non-Patent Document 2 Non-contrast perfusion imaging of the head using a two-dimensional selective excitation pulse
  • T1 value changes according to the oxygen partial pressure (see, for example, Non-Patent Document 3).
  • non-contrast perfusion imaging using a label pulse of slice selective excitation is performed on a tissue such as a liver that is cured by a plurality of blood vessels other than the head.
  • This imaging has the following problems.
  • the liver is cured from the two systems of hepatic artery and portal vein. Tumors are dominated by hepatic artery curing. Therefore, to determine whether or not the tumor is a tumor, it is essential to determine which region is the hepatic artery or portal vein.
  • IR label pulse
  • a plurality of imaging operations are required, and the examination efficiency is poor.
  • the optimal delay time differs between the hepatic artery and portal vein, which are the hepatic blood vessels, and data cannot be acquired with the optimal Delay for both blood flows, and the perfusion may be underestimated, It is possible that the dominant region of the hepatic artery and portal vein cannot be clearly separated. Note that the optimal delay time differs between the hepatic artery and portal vein, which are factors that determine the optimal delay time, such as blood flow velocity, T1 value, and distance from the label position to the perfusion area. Because.
  • the present invention has been made in view of the above circumstances, and a perfusion image of a tissue in which perfusion regions of a plurality of blood vessels are mixed and in which perfusion regions for each blood vessel are clearly distinguished can be obtained while suppressing an increase in examination time.
  • the purpose is to provide the technology to obtain.
  • a two-dimensional selective excitation pulse (2DRF Pulse). Further, after determining the application position of each label pulse, a delay time is determined for each blood vessel, and an imaging sequence is assembled using the determined delay time.
  • the label pulse to be applied after the second is applied within the delay time of the label pulse to be applied first and immediately before the corresponding data acquisition period.
  • the label pulse application timing is set based on the trigger for blood flow that is greatly affected by body movement.
  • the present invention it is possible to acquire a perfusion image of a tissue in which perfusion regions of a plurality of blood vessels are mixed, in which perfusion regions for each blood vessel are clearly distinguished, while suppressing an increase in examination time.
  • Block diagram of the MRI apparatus of the first embodiment Functional block diagram of the control unit of the first embodiment (a) is explanatory drawing for demonstrating the imaging target of 1st embodiment, (b) is explanatory drawing for demonstrating a non-contrast perfusion sequence.
  • Flow chart of imaging processing of the first embodiment Explanatory drawing for demonstrating the example of a reception screen of 1st embodiment (a) is explanatory drawing for demonstrating the example of a display of 1st embodiment
  • (b) is explanatory drawing for demonstrating the other example of a display of 1st embodiment.
  • Flowchart of the delay time determination process of the first embodiment Flowchart of the delay time determination process of the first embodiment Explanatory drawing for demonstrating the delay time determination process of 1st embodiment.
  • Explanatory drawing for demonstrating the sampling example of the other example of the non-orthogonal system sampling method of 1st embodiment (a) is a conventional imaging sequence example, (b) and (c) are explanatory diagrams for explaining an imaging sequence example of the present embodiment, respectively.
  • Flowchart of imaging sequence generation processing of the first embodiment Explanatory drawing for demonstrating the example of an imaging sequence of 2nd embodiment.
  • Flowchart of label pulse application period determination process of the second embodiment Explanatory drawing for demonstrating the label pulse application period determination process of 2nd embodiment.
  • Explanatory drawing for demonstrating the modification of the label pulse application aspect of 2nd embodiment Explanatory drawing for demonstrating the modification of the label pulse application aspect of 2nd embodiment.
  • FIG. 1A is a block diagram of the MRI apparatus 100 of the present embodiment.
  • the MRI apparatus 100 of the present embodiment is an apparatus that obtains a tomographic image of the subject 101 using the NMR phenomenon. As shown in FIG.
  • a static magnetic field generating magnet 102 a gradient magnetic field coil 103 and a gradient magnetic field power source 106
  • a transmission RF coil (transmission coil) 104 an RF transmission unit 107, a reception RF coil (reception coil) 105, and a signal
  • a detection unit 108 a signal processing unit 109, a sequencer 110, a control unit 120, a display device 121, an operation unit 122, a storage device 123, and a subject 101 are mounted, and the subject 101 generates a static magnetic field.
  • a bed 111 to be taken in and out of the magnet 102.
  • the static magnetic field generating magnet 102 functions as a static magnetic field generating unit that generates a static magnetic field.
  • the static magnetic field generating magnet 102 generates a uniform static magnetic field in the direction perpendicular to the body axis of the subject 101 in the vertical magnetic field method and in the body axis direction in the horizontal magnetic field method.
  • a permanent magnet type, normal conducting type or superconducting type static magnetic field generating source is arranged around the.
  • the gradient magnetic field coil 103 and the gradient magnetic field power source 106 function as a gradient magnetic field application unit that applies a gradient magnetic field to the subject 101 arranged in a static magnetic field.
  • the gradient magnetic field coil 103 is a coil wound in the three-axis directions of X, Y, and Z that are the real space coordinate system (stationary coordinate system) of the MRI apparatus.
  • Each of the gradient magnetic field coils is connected to a gradient magnetic field power source 106 for driving the gradient coil and supplied with a current.
  • the gradient magnetic field power supply 106 of each gradient coil is driven according to a command from a sequencer 110 described later, and supplies a current to each gradient coil 103.
  • gradient magnetic fields Gx, Gy, and Gz are generated in the three axial directions of X, Y, and Z.
  • a slice gradient magnetic field pulse (Gs) is applied in a direction orthogonal to the slice plane (imaging section) to set the slice plane for the subject 101.
  • a phase encoding gradient magnetic field pulse (Gp) and a frequency encoding (leadout) gradient magnetic field pulse (Gf) are applied in the remaining two directions orthogonal to the slice plane and orthogonal to each other, and the echo signal in each direction is applied.
  • Location information is encoded.
  • the transmission coil 104 and the RF transmitter 107 function as a high-frequency magnetic field transmitter that transmits a high-frequency magnetic field pulse (RF pulse) that excites the magnetization of the subject 101 at a predetermined flip angle.
  • the transmission coil 104 is a coil that irradiates the subject 101 with an RF pulse, is connected to the RF transmission unit 107, and is supplied with an RF pulse current from the RF transmission unit 107.
  • an NMR phenomenon is induced in the nuclear spins of the atoms constituting the biological tissue of the subject 101.
  • the RF transmission unit 107 is driven according to a command from a sequencer 110 described later, amplitude-modulates and amplifies the high-frequency pulse, and supplies it to the transmission coil 104 disposed in the vicinity of the subject 101.
  • the supplied high frequency pulse is applied to the subject 101 from the transmission coil 104.
  • the reception coil 105 and the signal detection unit 108 function as a signal reception unit that receives an echo signal generated by the subject 101.
  • the reception coil 105 is a coil that receives an NMR signal (echo signal) emitted by the NMR phenomenon of the nuclear spin that constitutes the biological tissue of the subject 101, and is connected to the signal detection unit 108 to signal the received echo signal.
  • the data is sent to the detection unit 108.
  • the signal detection unit 108 performs detection processing of the echo signal received by the reception coil 105.
  • the signal detection unit 108 when the echo signal of the response of the subject 101 induced by the RF pulse irradiated from the transmission coil 104 is received by the reception coil 105 disposed in the vicinity of the subject 101, the signal detection unit Sent to 108.
  • the signal detection unit 108 amplifies the received echo signal according to a command from the sequencer 110 described later, divides the signal into two orthogonal signals by quadrature detection, and each of them is a predetermined number (for example, 128, 256, 512, etc.). ) Sampling, A / D conversion of each sampling signal is converted into a digital quantity, and sent to the signal processing unit 109 described later.
  • the echo signal is obtained as time-series digital data (hereinafter referred to as echo data) composed of a predetermined number of sampling data.
  • the signal processing unit 109 performs various signal processing on the echo data, and sends the processed echo data to the control unit 120.
  • the sequencer 110 mainly transmits various commands for data collection necessary for the reconstruction of the tomographic image of the subject 101 to the gradient magnetic field power source 106, the RF transmission unit 107, and the signal detection unit 108.
  • the sequencer 110 operates under the control of the control unit 120, which will be described later, and controls the gradient magnetic field power source 106, the RF transmission unit 107, and the signal detection unit 108 in accordance with the imaging sequence, and the RF pulse to the subject 101.
  • the application of the gradient magnetic field pulse and the detection of the echo signal from the subject 101 are repeatedly executed to collect echo data necessary for reconstruction of the image of the imaging region of the subject 101.
  • the control unit 120 performs control of the sequencer 110, various data processing, display of processing results, storage, and the like, and has a CPU and a memory therein.
  • an image is reconstructed from the echo signal received by the signal receiving unit described above, and a command for controlling the operations of the gradient magnetic field applying unit, the high frequency magnetic field transmitting unit, and the signal receiving unit is given to the sequencer 110 according to the imaging sequence.
  • the imaging sequence is generated by imaging parameters set by the user and a pulse sequence specified by the user.
  • control unit 120 of the present embodiment controls the sequencer 110 to execute the collection of echo data, and the collected echo data is stored in the memory based on the encoding information applied to the echo data.
  • a group of echo data stored in an area corresponding to the k space of the memory is also referred to as k space data.
  • the k-space data is subjected to processing such as signal processing and image reconstruction by Fourier transform, and the resulting image of the subject 101 is displayed on the display device 121 described later and recorded in the storage device 123. To do.
  • the display device 121 and the operation unit 122 are interfaces for exchanging various control information of the MRI apparatus 100, information necessary for arithmetic processing, and arithmetic processing results with the user.
  • the MRI apparatus 100 of the present embodiment accepts input from the user via the display device 121 and the operation unit 122.
  • the operation unit 122 is disposed in the vicinity of the display device 121, and an operator interactively controls various processes of the MRI apparatus 100 through the operation unit 122 while looking at the display device 121.
  • the display device 121 displays a reconstructed image of the subject 101 and the like.
  • the operation unit 122 includes at least one of a trackball, a mouse, a keyboard, and the like serving as an input device.
  • the storage device 123 stores information necessary for the operation of the MRI apparatus 100, data being processed, and the like.
  • it is composed of an optical disk, a magnetic disk, or the like.
  • the transmission coil 104 and the gradient magnetic field coil 103 are opposed to the subject 101 in the static magnetic field space of the static magnetic field generating magnet 102 into which the subject 101 is inserted, in the case of the vertical magnetic field method, If the horizontal magnetic field method is used, the object 101 is installed so as to surround it.
  • the receiving coil 105 is installed so as to face or surround the subject 101.
  • a body movement detection device 124 for detecting the periodic body movement of the subject 101 is further provided. You may have.
  • the body movement detection device 124 is installed at a position of the subject 101 where the body movement to be detected can be detected.
  • the detected body motion information is transmitted to the control unit 120.
  • the nuclide to be imaged by the current MRI apparatus 100 is a hydrogen nucleus (proton) that is a main constituent material of the subject 101 as widely used clinically.
  • the information about the spatial distribution of proton density and the spatial distribution of the relaxation time of the excited state is imaged, so that the form or function of the human head, abdomen, limbs, etc. can be expressed two-dimensionally or three-dimensionally.
  • an RF pulse is applied together with a gradient magnetic field in order to excite only protons in a specific region.
  • a two-dimensional selective excitation pulse (2DRF pulse) is used as a label pulse for non-contrast perfusion imaging in which a label pulse is applied to confirm a dominant region of a specific blood vessel.
  • a label pulse is applied to each blood vessel, and the blood flow control region of the blood vessel is confirmed.
  • the time from label pulse application to data acquisition (hereinafter referred to as delay time) is calculated for each blood vessel.
  • delay time the time from label pulse application to data acquisition
  • an optimum delay time is calculated.
  • one imaging sequence is generated using the calculated delay time.
  • imaging is executed according to the generated imaging sequence.
  • the control unit 120 determines a delay time determination unit 130 that determines a delay time (preferably an optimal delay time) for each of a plurality of different blood vessels, as shown in FIG. 1B.
  • An imaging sequence generation unit 140 that generates one imaging sequence using the delay time, an imaging unit 150 that obtains a perfusion image by performing imaging according to a predetermined imaging sequence including the generated imaging sequence, and a reconstructed image
  • An image generation unit 160 that adds various types of processing and generates an image to be displayed on the display device 121, and a reception unit 170 that receives various instructions from the user.
  • Each function realized by the control unit 120 is realized by causing the CPU of the control unit 120 to load and execute a program stored in the storage device 123. All or some of the functions may be realized by hardware such as ASIC (Application Specific Integrated Circuit) or FPGA (field-programmable gate array). Various data used for processing of each function and various data generated during the processing are stored in the storage device 123.
  • ASIC Application Specific Integrated Circuit
  • FPGA field-programmable gate array
  • control unit 120 may not realize at least one processing unit of the delay time determination unit 130, the imaging sequence generation unit 140, and the image generation unit 160.
  • the information processing apparatus may be constructed on an information processing apparatus that is capable of transmitting / receiving data to / from the MRI apparatus 100 and independent of the MRI apparatus 100.
  • the two-dimensional selective excitation pulse (2DRF pulse) used for the label pulse in this embodiment is an RF pulse that is applied together with a gradient magnetic field and excites a local region into a cylinder type.
  • the imaging target tissue is the liver 200
  • the blood vessels (observation target blood vessels) for observing the dominant region are the hepatic artery 210 that is an artery and the portal that is a vein.
  • the case of the pulse 220 will be described as an example.
  • the imaging sequence of the present embodiment obtains a first perfusion image that is a perfusion image of the imaging target tissue (liver 200) by the first blood vessel (hepatic artery 210), as shown in FIG.
  • the first non-contrast perfusion sequence 501 includes a first label pulse (arterial label pulse) 510 and a first data acquisition sequence (arterial data acquisition sequence) 512.
  • the sequence 502 includes a second label pulse (venous label pulse) 520 and a second data acquisition sequence (venous data acquisition sequence) 522.
  • the imaging sequence generation unit 140 of the present embodiment combines the first non-contrast perfusion sequence 501 and the second non-contrast perfusion sequence 502 to generate an imaging sequence.
  • the delay time determining unit 130 then applies the first delay time 511 from the application of the first label pulse 510 to the start of the first data acquisition sequence 512 and the second data acquisition sequence from the application of the second label pulse 520. Second delay times 521 until the start of 522 are respectively determined.
  • the delay time determination unit 130 determines a suitable or optimal first delay time 511 and second delay time 521.
  • the meaning of “optimal” includes the meaning of “preferably” or “substantially optimal”. The same applies to other embodiments.
  • FIG. 3 is a processing flow of the imaging processing of the present embodiment. This process starts when an instruction to start an inspection is received from the user via the receiving unit 170.
  • the imaging unit 150 performs pre-imaging including acquisition of a positioning image (step S1101).
  • pre-imaging including acquisition of a positioning image (step S1101).
  • imaging such as shimming for correcting the magnetic field is also performed as necessary.
  • the reception unit 170 generates a reception screen for receiving various settings using the positioning image, displays the reception screen on the display device 121, and receives designation of an imaging range (FOV) from the user via the reception screen (step S1102). ).
  • FOV imaging range
  • the reception screen 300 includes a positioning image display area 310 and an OK button 320 that receives a setting intention.
  • the user designates the imaging area 311 on the positioning image displayed in the positioning image display area 310.
  • the accepting unit 170 sets the designated area as the imaging area 311.
  • the accepting unit 170 accepts designation of label pulse application positions for the hepatic artery 210 and the portal vein 220 (step S1103). These designations are accepted via the acceptance screen 300.
  • the user selects the hepatic artery stack 312 as the application position of the first label pulse 510 and the portal as the application position of the second label pulse 520.
  • Each of the pulse stacks 313 is designated so that the stack is superimposed only on the target blood vessel.
  • the display mode of the stack designated by the user may be changed for each blood vessel. For example, the color, solid line / dotted line, etc. are changed and displayed.
  • the receiving unit 170 further receives designation of a region of interest (ROI) 314 (step S1104).
  • ROI 314 is also received on the positioning image.
  • the user designates the entire imaging tissue (in this case, the liver 200) as ROI 314.
  • the imaging target tissue may be automatically set to ROI 314.
  • the delay time determination unit 130 determines each observation target blood vessel (here, hepatic artery 210 And the portal vein 220) delay time determination processing for determining the optimum delay time (hereinafter referred to as optimal delay time or optimal value) is performed (step S1105). Details of the delay time determination processing will be described later.
  • the imaging sequence generation unit 140 performs imaging sequence generation processing for generating an imaging sequence reflecting the optimal delay time (step S1106). Details of the imaging sequence generation process will also be described later.
  • the imaging unit 150 controls each unit according to the generated imaging sequence, performs imaging, obtains a reconstructed image, and obtains a perfusion image (a first perfusion image and a second perfusion image) from the reconstructed image (step S1107).
  • the perfusion image for confirming the dominant region of the blood vessel to be observed was obtained without applying the label pulse with the same imaging sequence as the image (labeled image) reconstructed from the data obtained with the imaging sequence with the label pulse applied It is generated as a difference image from an image reconstructed from data (image without label). Therefore, here, for each blood vessel, a sequence in which a label pulse is applied and a sequence in which no label pulse is applied are executed to obtain reconstructed images (labeled images and unlabeled images), respectively. And the difference of both is calculated and a perfusion image is obtained. Note that the difference processing may be performed on raw data (k-space data) before Fourier transform.
  • the image generation unit 160 generates a display image to be displayed on the display device 121 from each obtained perfusion image (step S1108). Then, the generated display image is displayed on the display device 121 (step S1109), and the process ends.
  • step S1108 the display image generated in step S1108 will be described.
  • the image generation unit 160 generates a display image from each perfusion image for each blood vessel to be observed and displays the display image on the display device 121 is illustrated in FIG.
  • the image generation unit 160 as shown in this figure, the display image 410 generated from the perfusion image by the hepatic artery 210 (first display image generated from the first perfusion image) 410 and the perfusion by the portal vein 220 An image (second display image generated from the second perfusion image) 420 is displayed side by side. At this time, the display mode of the second display image 420 may be changed from the display mode of the first display image 410.
  • the image generation unit 160 may generate an image 430 in which perfusion images of the blood vessels to be observed are superimposed and display them. That is, the first display image and the second display image may be superimposed and displayed on the display device 121. In addition, at this time, it displays in the aspect which a user can identify, such as attaching
  • the dominant region of the vein is blue and the dominant region of the artery (hepatic artery) is red. This makes it easier for the user to grasp the dominant region of each blood vessel. That is, normal liver tissue is cured in both arteries and veins. Therefore, it is displayed in purple due to the overlap of red and blue. However, if there is a tumor, it is displayed in red because it is the dominant region of the artery.
  • subjected such a color may be displayed as it is, you may display it superimposed on a normal form image. This makes it easier to understand the location of the tumor.
  • the delay time determination unit 130 is determined by applying a label pulse to a position actually designated by the user and performing imaging. Further, as described above, depending on the blood flow, it is affected by body movement such as pulsation. For this reason, imaging when determining the optimum delay time is performed using a non-orthogonal sampling method that is not easily affected by body movement.
  • the delay time determination unit 130 of the present embodiment efficiently updates a part of the k-space and acquires data in multiphase while suppressing the influence of body motion using a non-orthogonal sampling method for each observation target blood vessel. Then, follow the signal change and determine the optimal delay time.
  • echo signals are collected using a hybrid radial method, which is one of the radial methods in the non-orthogonal sampling method.
  • the hybrid radial method is a sequence for collecting k-space data radially in units of blades. A signal value in a predetermined area is calculated every time one blade is collected, and the blade data collection timing at which the signal value is minimum is set as the optimum delay time.
  • the delay time determination unit 130 of the present embodiment is obtained by imaging the imaging target tissue (liver 200) by the non-orthogonal sampling method immediately after the application of the first label pulse 510 and the second label pulse 520.
  • An optimum value (optimum delay time) is determined according to the echo data of each k-space blade.
  • the delay time determination unit 130 measures the signal value in a predetermined region of interest (ROI 314) when the target blood vessel for which the optimal value is determined is an artery (hepatic artery 210), and determines the optimal value.
  • ROI 314 a predetermined region of interest
  • the blood vessel is a vein (portal vein 220)
  • signal values outside the region of interest (ROI 314) or in the entire imaging region 311 are measured.
  • FIG. 6 and 7 are process flows of the delay time determination process of the present embodiment.
  • FIG. 8 is a diagram for explaining the delay time determination process of the present embodiment.
  • the optimum delay time of the first blood vessel (here, hepatic artery 210) is determined.
  • the delay time determination unit 130 collects echo data for one slice (314 in FIG. 4) including the center of gravity of the ROI 314 in the imaging region 311 and parallel to the imaging region 311 using the hybrid radial method ( FIG. 6: Step S1201).
  • the echo data collected for all slices for one slice is referred to as initial echo data 600 as shown in FIG.
  • the initial echo data 600 is stored in a memory or the like.
  • the delay time determination unit 130 applies an arterial label pulse (first label pulse) 510 to the set hepatic artery stack 312 (FIG. 6: step S1202).
  • a counter n for counting N is initialized (FIG. 6: Step S1203), and data collection is started immediately after application of the label pulse 510 for the artery.
  • the delay time determination unit 130 collects echo data 611 for one blade of the nth blade (FIG. 6: step S1204). Then, the echo data of the nth blade in the initial echo data 600 is replaced with newly collected echo data (step S1205), and an image is reconstructed (FIG. 6: step S1206).
  • the delay time determination unit 130 measures an average value (signal average value) Si1 AV of signals in a predetermined region on the reconstructed image (FIG. 6: step S1207).
  • the region where the signal average value is measured is ROI 314.
  • the measurement result is stored in association with the timing at which the echo signal of the blade is collected (elapsed time t1 n from the application of the label pulse 510). At this time, as the position of the ROI 314, a position set by the user on the positioning image is used.
  • step S1204 to step S1207 is performed by using the replaced data as initial echo data 600 until the elapsed time t1 n from the application of the label pulse 510 exceeds a predetermined time T or until the counter n becomes N. Further, it is repeated while updating the next blade (FIG. 6: Steps S1208 and 1209).
  • the delay time determining unit 130 determines the timing t1 n at which the minimum signal average value Si1 AV is obtained as the optimum delay time Delay (A) of the hepatic artery (FIG. 6: step S1210).
  • the reason why the timing at which the signal average value Si1 AV is minimized is determined as the optimum delay time because the signal value is lowered by that amount when the labeled blood flows. In particular, since the tumor is cured from the artery, the signal drop of ROI 314 is large.
  • the delay time determination unit 130 determines the optimum delay time on the other side (here, the portal vein).
  • the delay time determination unit 130 collects echo data 621 for one blade of the nth blade (FIG. 7: Step S1303). Then, the echo data of the nth blade in the initial echo data 600 is replaced with newly collected echo data 621 (FIG. 7: step S1304), and an image is reconstructed (FIG. 7: step S1305).
  • Step S1306 it is determined whether or not a local region considered to be a tumor is set as the ROI 314 (FIG. 7: Step S1306).
  • the determination may be configured such that the delay time determination unit 130 automatically determines from the set size, position, etc. of the ROI 314, or may be configured so that the user inputs which is set when setting the ROI 314. Good. Further, this determination process may not be performed for each blade. For example, when the first blade is acquired, a determination is made and a flag or the like is set. In subsequent iterations, processing is performed according to the presence or absence of a flag.
  • the average value (signal average value) Si2 AV of the region other than the ROI 314 in the image is measured (FIG. 7: Step S1307).
  • the labeled blood flows into the extratumor area of the liver. Therefore, it is an area outside the ROI 314 that the signal decreases at the timing when the labeled blood flows.
  • the signal average value Si2 AV in the ROI 314, that is, the entire imaging target region is measured (FIG. 7: Step S1308).
  • the measurement result is stored in association with the timing (elapsed time t2 n since the application of the vein label pulse 520) when the echo signal of the blade is collected.
  • step S1303 to step S1308 The processing from step S1303 to step S1308 is executed by updating the blade until the elapsed time t2 n from the application of the vein label pulse 520 exceeds a predetermined time T or until the counter n becomes N ( FIG. 7: Steps S1309 and 1310).
  • the delay time determination unit 130 determines the timing t2 n at which the minimum signal average value is obtained as the optimum delay time Delay (V) of the portal vein (FIG. 7: Step S1311), and ends the process.
  • the order of determining the delay time of each blood vessel is not limited.
  • the timing at which the signal value in the predetermined region is minimized is determined as the optimum delay time, but is not limited to this method. For example, you may comprise so that a user may designate.
  • the delay time determination unit 130 reconstructs an image reflecting echo data of the k-space blade and presents it to the user, and selects an image selected by the user from the presented images.
  • the timing at which the latest echo data of the k-space blade reflected at the time of reconfiguration may be determined as the optimum value (optimum delay time).
  • the delay time determination unit 130 displays a reconstructed image obtained by updating the data of the blade on the display device 121.
  • the user confirms one or more displayed images and selects an image acquired at the timing when the signal is the lowest.
  • the delay time determination unit 130 receives the selection and sets the timing at which the selected image is obtained as the optimum delay time.
  • the image displayed at this time may be the reconstructed image as it is, or may be a signal intensity ratio image with respect to the initial image obtained by reconstructing the initial echo data 600. Moreover, it is good also as a difference image with an initial image.
  • deformation or misalignment may be corrected by affine transformation or the like using the initial image as a reference. By doing so, it becomes easier to see the difference in signals.
  • the peak intensity or integral value of the echo signal of the blade may be used, and the timing at which these values are minimized may be determined as the optimum delay time.
  • the delay time determination unit 130 calculates either the peak intensity value or the integral value of the echo data as an echo value, and the k-space where the echo value is minimized You may determine the timing which acquired the echo data of a braid
  • hybrid radial method sequence is used as the non-orthogonal sampling method
  • sequence used is not limited to this.
  • a multi-shot spiral sampling method may be used.
  • An example of k-space sampling using the 6-shot spiral sampling method is shown in FIG.
  • the optimum delay time is determined by the same method as described above. That is, first, the initial echo data is collected, and then each time the echo data on one spiral locus is collected, the echo data of the locus of the initial echo data is updated, the image is reconstructed, and the signal of the predetermined area The timing at which the average value is minimized is set as the optimum delay time.
  • the user may specify, or the optimal delay time may be determined using the peak intensity or the integrated value of the echo signal without reconstructing the image.
  • FIG. 10 (a) is a diagram for explaining a conventional imaging sequence 509
  • FIG. 10 (b) is a diagram for explaining an imaging sequence 500 of the present embodiment
  • FIG. 11 is a process flow of the imaging sequence generation process of the present embodiment.
  • label pulses are applied to a plurality of blood vessels to obtain perfusion images, as shown in FIG. 10 (a), label pulses (510, 520) are individually applied and data acquisition sequences are performed for each blood vessel. We were performing (512, 522). For this reason, the total imaging time is significantly increased.
  • Reference numeral 530 denotes a trigger 530 timing at the time of synchronous heartbeat imaging.
  • the imaging sequence 500 is generated so as to apply the label pulse for imaging one other blood vessel during the delay time for imaging one blood vessel.
  • the total imaging time is shortened compared to the case where the individual imaging is performed.
  • the imaging sequence generation unit 140 of the present embodiment uses the optimum value (optimum delay time) for the first delay time 511 and the second delay time 521, respectively, and during the first delay time 511, The imaging sequence 500 is generated so that the second label pulse 520 is applied immediately before the execution of the first data acquisition sequence 512 is started.
  • the timing for applying the arterial label pulse (first label pulse) 510 needs to be determined in synchronization with the electrocardiogram / pulse wave. is there.
  • the vein here, the portal vein 220
  • the application of the vein label pulse (second label pulse) 520 may be asynchronous.
  • the imaging sequence generation unit 140 generates an imaging sequence so that the first label pulse 510 is applied in synchronization with a predetermined body movement. Therefore, the imaging sequence generation unit 140 first sets an arterial label pulse 510 and an arterial data acquisition sequence (first data acquisition sequence) 512.
  • the imaging sequence generation unit 140 first sets the arterial label pulse 510 to be applied after a predetermined time from a predetermined trigger 530 (step S1401). Then, after applying the arterial label pulse 510, the arterial data acquisition sequence 512 is set at a timing after the optimal delay time Delay (A) 511 of the hepatic artery (step S1402).
  • the imaging sequence generation unit 140 sets a vein label pulse 520 and a vein data acquisition sequence (second data acquisition sequence) 522.
  • the imaging sequence generation unit 140 first sets a vein label pulse 520 (step S1403).
  • the venous label pulse 520 is set to be applied immediately before the start timing of the arterial data acquisition sequence 512.
  • the vein data acquisition sequence 522 is set at the timing after the optimal delay time Delay (V) 521 of the portal vein (step S1404), and the processing is terminated.
  • V optimal delay time Delay
  • vein label pulse 520 is set to be applied immediately before the start timing of the arterial data acquisition sequence 512 is to increase the application interval between the two label pulses 510 and 520 as much as possible. Thereby, it is possible to suppress the influence of both label pulses 510 and 520 from being mixed.
  • the imaging time is extended as compared with the case where images are individually taken sequentially in the conventional imaging sequence 509 shown in FIG. 10 (a) while maintaining the optimum delay time. Can be suppressed.
  • both data acquisition sequences 512 and 522 is also shorter than when imaging individually. Therefore, the positional shift due to the body movement between the two data acquisition sequences can be reduced as compared with the case of individually capturing images.
  • diagnosis is often performed by comparing perfusion images of the blood vessels. This is useful in such cases.
  • the imaging sequence generation method is described by taking the case where the first blood vessel is the hepatic artery (artery) 210 and the second blood vessel is the portal vein (vein) 220 as an example. did.
  • the configuration related to the artery is set first as described above.
  • an imaging sequence is generated so that a label pulse of a non-contrast perfusion sequence with a short optimum delay time is applied first between the veins.
  • the blood vessel sequence having the shortest delay time is set as the first non-contrast imaging sequence, and this non-contrast imaging sequence is set.
  • the first label pulse is set, the first delay time is set, and the first data acquisition sequence is set.
  • the blood vessel sequence with the second shortest delay time is set as the second non-contrast imaging sequence, and this non-contrast imaging sequence is set.
  • the second label pulse is set immediately before the first data acquisition sequence, and the second data acquisition sequence is set after a second delay time.
  • the second non-contrast imaging sequence is the first non-contrast imaging sequence
  • the blood vessel sequence with the third shortest delay time is the second non-contrast imaging sequence
  • the second non-contrast imaging sequence is the same as above. Set the sequence. This is repeated to set a non-contrast imaging sequence for all veins.
  • FIG. 10C shows a generation example of the imaging sequence 503 when one artery and two veins are blood vessels to be observed.
  • the optimal delay time for one artery is Delay (A)
  • the optimal delay time for the first vein is Delay (Va)
  • the optimal delay time for the second vein is Delay (Vb)
  • the artery and the vein with the shortest optimal delay time among the veins are referred to as the first blood vessel and the second blood vessel, respectively.
  • the imaging sequence is generated by the method described above.
  • the application timing of the arterial label pulse 510 and the execution timing of the arterial data acquisition sequence 512 are determined.
  • the application timing of the arterial label pulse 510 is set after elapse of a predetermined time interval from the trigger 530.
  • the arterial data acquisition sequence 512 is set after delay (A) has elapsed after the application of the arterial label pulse 510.
  • the application timing of the first vein label pulse 520a is determined. Here, as described above, it is set immediately before the arterial data acquisition sequence 512. Then, after the delay (Va) time elapses, a first vein data acquisition sequence 522a is set.
  • the imaging sequence 503 is generated by the above method using the first vein and the second vein as the first blood vessel and the second blood vessel.
  • the optimum value of the first delay time is equal to or less than the optimum value of the second delay time because the label pulse of the sequence having a short delay time is generated to be applied first.
  • the application timing of the second vein label pulse 520b is determined.
  • it is assumed to be immediately before the first vein data acquisition sequence 522a.
  • a second vein data acquisition sequence 522b is set.
  • respiratory synchronization is also required.
  • the vein is also set as respiratory synchronization.
  • the MRI apparatus 100 of the present embodiment includes the first label pulse 510 and the first data acquisition sequence 512, and is the first perfusion image of the imaging target tissue 200 by the first blood vessel 210.
  • a second non-contrast perfusion sequence 501 for obtaining a perfusion image, a second label pulse 520 and a second data acquisition sequence 522, and a second perfusion image of the imaging target tissue 200 by the second blood vessel 220
  • a second non-contrast perfusion sequence 502 for obtaining a perfusion image 420 of the first imaging sequence generator 140 for generating an imaging sequence 500 using the first non-contrast perfusion sequence 502, and the first data acquisition sequence from the application of the first label pulse 510 First delay time 511 until 512 start and second delay time 521 from the application of the second label pulse 520 to the start of the second data acquisition sequence 522, respectively.
  • the imaging sequence 500 is generated so that the second label pulse 520 is applied, and the delay time determination unit 130 is configured to perform the non-orthogonal system immediately after the application of the first label pulse 510 and the second label pulse 520.
  • the first delay time 511 and the second delay time 521 are respectively set according to echo data of each k-space blade obtained by imaging the imaging target tissue by the sampling method. Determined.
  • the delay time determination unit 130 determines optimum values for the first delay time 511 and the second delay time 521, respectively.
  • a two-dimensional selective excitation pulse that excites a local region in a cylinder shape is used.
  • a two-dimensional selective excitation pulse is used as a label pulse for suppressing a blood signal, and labeling is performed for each blood vessel to be observed.
  • the imaging sequence is generated using the delay time determined as described above for each blood vessel to be observed, and applying a label pulse of another blood vessel during the delay time. For this reason, the imaging time can be shortened as compared with the case of executing individually.
  • the delay time used when the imaging sequence is generated is determined by performing imaging by actually applying a label according to the label application position set by the user. Therefore, the delay time for each blood vessel can be determined with high accuracy. Since imaging is performed using the delay time determined in this way, information on the dominant region for each blood vessel can be obtained with high accuracy.
  • the imaging used for determining the delay time uses a non-orthogonal sampling method, it is less susceptible to body movements. Further, since the hybrid radial method is used and the change in the signal value of the predetermined area is followed and determined each time the blade is updated, the delay time can be determined efficiently.
  • the present embodiment when performing non-contrast perfusion imaging with an MRI apparatus, information on the dominant region for each blood vessel to be observed can be efficiently and with good contrast while minimizing the extension of examination time. Obtainable. Using this information, the perfusion region of a plurality of blood vessels in the region to be imaged can be clearly separated and presented to the user.
  • the present embodiment it is possible to suppress the extension of the examination time while improving the tissue separation ability and resolution of arterial and venous perfusion regions in abdominal organs such as the liver.
  • CASL is a technique of applying a label pulse continuously for a predetermined period
  • pCASL is a technique of applying a label pulse intermittently for a predetermined period.
  • the application period is predetermined based on the blood flow velocity of the blood vessel to be applied, the T1 value, and the like.
  • the MRI apparatus of the present embodiment has basically the same configuration as the MRI apparatus 100 of the first embodiment.
  • the CASL or pCASL method in which a high-frequency magnetic field pulse is applied continuously or intermittently for a predetermined period is used as the first label pulse 510 and the second label pulse 520.
  • the processing of the imaging sequence generation unit 140 is different. There is also a difference in the processing of the delay time determination unit 130.
  • the present embodiment will be described focusing on the configuration different from the first embodiment. Also in the present embodiment, a case where the imaging region is the liver 200, the observation target blood vessel is the hepatic artery (first blood vessel) 210, and the portal vein (second blood vessel) 220 will be described as an example.
  • the imaging sequence generation unit 140 of the present embodiment basically sets the arterial label pulse 513 based on the trigger as in the first embodiment, and sets the optimum delay time Delay.
  • the arterial data acquisition sequence 512 is arranged after 511. Thereafter, the venous label pulse 623 is arranged immediately before the arterial data acquisition sequence 512, and the venous data acquisition sequence 522 is arranged after the delay (V) 521.
  • the delay time is the time from the label pulse application end timing to the data acquisition sequence start timing.
  • the label pulse application period has a predetermined width. Therefore, for example, among the venous blood labeled with the label pulse 523, there is a possibility that the venous blood that has been labeled at an early stage has reached the perfusion region at the timing of obtaining the arterial data. Therefore, in the image reconstructed from the data acquired at the data acquisition timing for arteries, the signal decrease in the arterial control region and the signal decrease due to venous blood coexist, so the contrast between the arterial control region and the vein control region decreases. there is a possibility.
  • the imaging sequence generation unit 140 of the present embodiment sets a limit on the application period of the label pulse (second label pulse 523 in this case) to be applied after the second time. This suppresses the decrease in contrast.
  • the imaging sequence generation unit 140 of the present embodiment further determines the application period of the second label pulse 523 using the suppression rate by the first label pulse 513.
  • the imaging sequence generation unit 140 calculates the maximum suppression rate RAmin of the arterial dominating region (here, ROI 314) based on the arterial label pulse 513 (step S2101).
  • the maximum suppression rate RAmin is calculated by the following equation (1) using, for example, the initial value Si1 AV 0 of the signal average value of the ROI 314 and the minimum value Si1 AV min.
  • Si1 AV 0 and Si1 AV min use values acquired when the delay time determination unit 130 determines the first optimum delay time Delay (A) 511.
  • Si1 AV min is obtained by the same method as in the first embodiment.
  • the delay time determination unit 130 obtains Si1 AV 0 by reconstructing an image and measuring the signal intensity of the ROI 314 when the initial echo data 600 is acquired.
  • the imaging sequence generation unit 140 uses the value acquired when the delay time determination unit 130 determines the second optimum delay time Delay (V) 521, and uses the elapsed time t from the start of application of the vein label pulse 523.
  • a signal reduction rate RV (t) according to the above is calculated (step S2102).
  • the decrease rate Rv (t) is applied, for example, to the initial value Si2 AV 0 of the signal average value of a predetermined region used when determining the optimum delay time for veins and the timing t2 n when the nth blade is acquired.
  • t n signal average Si2 AV (t n) in (elapsed time from the start of the application of intravenous labels pulse 523) period is calculated by the following equation (2).
  • the delay time determination unit 130 obtains Si 2 AV 0 by reconstructing an image and measuring the signal intensity in the above-described region when the initial echo data 600 is acquired.
  • the imaging sequence generation unit 140 determines the maximum value of the timing t n at which Rv (t n ) is smaller than the predetermined ratio ⁇ of RAmin as the application period TV of the venous label pulse 523 (step S2103).
  • the ratio ⁇ may be a value less than 1.0, held by the system, or configured to be designated by the user.
  • the application period TV of the venous label pulse 523 is shorter than Delay (A) so that the arterial label pulse 513 and the venous label pulse 523 do not overlap in the time axis direction in the imaging sequence. To do.
  • Processing other than the application period determination method by the imaging sequence generation unit 140 is the same as in the first embodiment.
  • the method for determining the optimum delay time by the delay time determination unit 130 is also the same.
  • the MRI apparatus of this embodiment includes the same imaging sequence generation unit 140, delay time determination unit 130, and imaging unit 150 as those of the first embodiment.
  • the first label pulse 510 and the second label pulse 520 are high-frequency magnetic field pulses applied intermittently or continuously for a predetermined period, and the imaging sequence generation unit 140 includes the first label pulse 510
  • the application period of the second label pulse 520 is further determined using the suppression rate according to the above.
  • the present embodiment when performing non-contrast perfusion imaging with the MRI apparatus as in the first embodiment, the present embodiment also enables efficient and excellent contrast for each blood vessel to be observed while minimizing the extension of the examination time. Can obtain information on the dominating area. Using this information, the perfusion region of a plurality of blood vessels in the region to be imaged can be clearly separated and presented to the user.
  • MRI apparatus 101 subject, 102 static magnetic field generating magnet, 103 gradient magnetic field coil, 104 transmission coil, 105 reception coil, 106 gradient magnetic field power supply, 107 RF transmission unit, 108 signal detection unit, 109 signal processing unit, 110 sequencer, 111 bed, 120 control unit, 121 display device, 122 operation unit, 123 storage device, 124 body motion detection device, 130 delay time determination unit, 140 imaging sequence generation unit, 150 imaging unit, 160 image generation unit, 170 reception unit, 200 imaging target tissue (liver), 210 first blood vessel (hepatic artery), 220 second blood vessel (portal vein), 300 reception screen, 310 positioning image display area, 311 imaging area, 312 hepatic artery stack, 313 gates Pulse stack, 314 region of interest (ROI), 315 slice, 320 OK button, 410 display image, 420 display image, 430 display image, 500 imaging sequence, 501 non-contrast perfusion sequence, 502 non-construction Perfusion sequence, 503 imaging sequence, 509 imaging sequence, 510 first

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

The objective of the present invention is to make it possible to obtain a perfusion image of tissue in which a plurality of blood vessel perfusion regions coexist, wherein the perfusion region for each blood vessel is clearly distinguished, while limiting an increase in the examination time. With respect to tissue in which a plurality of blood vessel perfusion regions coexist, in order to obtain a perfusion image in which the perfusion region for each blood vessel is clearly distinguished, two-dimensional selective excitation pulses (2DRF pulses) are used as label pulses for each blood vessel, and after the position at which each label pulse is to be applied has been determined, a delay time is determined for each blood vessel and an imaging sequence is assembled using the determined delay times. When assembling the imaging sequence, the second and subsequent label pulses to be applied are applied within the delay time of the preceding label pulse, and immediately before the corresponding data acquisition period.

Description

磁気共鳴イメージング装置および撮像シーケンス生成方法Magnetic resonance imaging apparatus and imaging sequence generation method
 本発明は、Magnetic Resonance Imaging(以下、MRI)装置に関し、特に、2次元選択励起パルス(以下、2DRFパルス)をラベルパルスとして複数個所に印加し、特定血管の支配領域を確認する非造影パーフュージョン撮像に関する。 The present invention relates to a Magnetic Resonance Imaging (hereinafter referred to as MRI) apparatus, and in particular, a non-contrast perfusion that confirms a dominant region of a specific blood vessel by applying a two-dimensional selective excitation pulse (hereinafter referred to as a 2DRF pulse) as a label pulse to a plurality of locations. It relates to imaging.
 2次元選択励起パルス(以下、2DRFパルス)をラベルパルスとして用いた頭部の非造影パーフュージョン撮像や、通常のスライス選択励起のラベルパルスを用いた肝臓の非造影パーフュージョン撮像が知られている(例えば、非特許文献1、非特許文献2参照)。 Non-contrast perfusion imaging of the head using a two-dimensional selective excitation pulse (hereinafter referred to as 2DRF pulse) as a label pulse and non-contrast perfusion imaging of the liver using a label pulse of normal slice selective excitation are known. (For example, see Non-Patent Document 1 and Non-Patent Document 2).
 また、一般に、酸素分圧に応じて、T1値が変化することが知られている(例えば、非特許文献3参照)。 Also, it is generally known that the T1 value changes according to the oxygen partial pressure (see, for example, Non-Patent Document 3).
 上述のように、従来、肝臓等、頭部以外で複数の血管により養生されている組織については、スライス選択励起のラベルパルスを用いた非造影パーフュージョン撮像が行われている。この撮像には以下の課題がある。 As described above, conventionally, non-contrast perfusion imaging using a label pulse of slice selective excitation is performed on a tissue such as a liver that is cured by a plurality of blood vessels other than the head. This imaging has the following problems.
 1)肝臓、特に動脈の近傍は拍動により動いている。このため、この動きにより、血管と肝実質との描出能が低下しやすい。 1) The liver, especially the vicinity of the artery, is moving due to pulsation. For this reason, this movement tends to reduce the ability to depict blood vessels and liver parenchyma.
 2)肝臓は肝動脈と門脈の2系統から養生される。腫瘍は、肝動脈からの養生が支配的である。従って、腫瘍であるか否かの判断には、肝動脈と門脈とのいずれの支配領域であるかの判別が必須である。しかしながら、スライス選択励起のラベルパルス(IR)では、解剖学的な配置から、肝臓実質を抑制せずに肝動脈と門脈とを個別にラベルする事は困難である。なお、肝臓実質が一部描出できないことを許容して、個別にラベルする場合、複数回の撮像が必要となり、検査効率が悪い。 2) The liver is cured from the two systems of hepatic artery and portal vein. Tumors are dominated by hepatic artery curing. Therefore, to determine whether or not the tumor is a tumor, it is essential to determine which region is the hepatic artery or portal vein. However, with the label pulse (IR) of slice selective excitation, it is difficult to label the hepatic artery and portal vein individually without suppressing the liver parenchyma from the anatomical arrangement. In addition, in the case where the liver parenchyma is allowed to be partially rendered and is individually labeled, a plurality of imaging operations are required, and the examination efficiency is poor.
 3)非造影パーフュージョンでは、ラベルした血液が組織の灌流領域に到達したタイミングで生じる数%の僅かな信号低下に注目し、画像化する。従って、ラベルパルスの印加からデータ取得までの時間(ディレイ時間)が非常に重要である。しかしながら、肝臓の養生血管である肝動脈と門脈とでは、最適なディレイ時間が異なり、両血流に最適なDelayでデータを取得することができず、灌流が過小評価される可能性や、肝動脈と門脈の支配領域を明確に分けることができない可能性がある。なお、肝動脈と門脈とで最適なディレイ時間が異なるのは、最適なディレイ時間を決定する要因である、血流速度、T1値、ラベル位置から灌流域までの距離などが、両者は異なるためである。 3) In non-contrast perfusion, focus on the slight signal drop of several percent that occurs when the labeled blood reaches the perfusion region of the tissue and image it. Therefore, the time (delay time) from application of the label pulse to data acquisition is very important. However, the optimal delay time differs between the hepatic artery and portal vein, which are the hepatic blood vessels, and data cannot be acquired with the optimal Delay for both blood flows, and the perfusion may be underestimated, It is possible that the dominant region of the hepatic artery and portal vein cannot be clearly separated. Note that the optimal delay time differs between the hepatic artery and portal vein, which are factors that determine the optimal delay time, such as blood flow velocity, T1 value, and distance from the label position to the perfusion area. Because.
 これは、肝臓に限らず、動脈と静脈とによる灌流領域が混在している組織、あるいは、複数の静脈による灌流領域を別箇に観察したい組織において、MRI装置による非造影パーフュージョン撮像を行う場合の共通の課題である。 This applies to non-contrast perfusion imaging using an MRI device not only in the liver, but also in tissues where perfusion areas of arteries and veins are mixed, or in tissues where multiple perfusion areas of veins are to be observed separately It is a common problem.
 本発明は、上記事情に鑑みてなされたもので、複数の血管による灌流領域が混在している組織の、血管毎の灌流領域が明確に区別された灌流画像を、検査時間の延長を抑えて得る技術を提供することを目的とする。 The present invention has been made in view of the above circumstances, and a perfusion image of a tissue in which perfusion regions of a plurality of blood vessels are mixed and in which perfusion regions for each blood vessel are clearly distinguished can be obtained while suppressing an increase in examination time. The purpose is to provide the technology to obtain.
 本発明によれば、複数の血管による灌流領域が混在している組織に関し、血管毎の灌流領域が明確に区別された灌流画像を得るにあたり、各血管のラベルパルスに2次元選択励起パルス(2DRFパルス)を用いる。また、各ラベルパルスの印加位置を決定後、血管毎にディレイ時間を決定し、この決定したディレイ時間を用いて撮像シーケンスを組み立てる。 According to the present invention, regarding a tissue in which perfusion regions of a plurality of blood vessels are mixed, in order to obtain a perfusion image in which perfusion regions for each blood vessel are clearly distinguished, a two-dimensional selective excitation pulse (2DRF Pulse). Further, after determining the application position of each label pulse, a delay time is determined for each blood vessel, and an imaging sequence is assembled using the determined delay time.
 撮像シーケンスの組み立てにあたっては、2番目以降に印加するラベルパルスは、先に印加するラベルパルスのディレイ時間内であって、対応するデータ取得期間の直前に印加する。このとき、体動の影響の大きい血流に関しては、トリガを基準にラベルパルスの印加タイミングを設定する。 In assembling the imaging sequence, the label pulse to be applied after the second is applied within the delay time of the label pulse to be applied first and immediately before the corresponding data acquisition period. At this time, the label pulse application timing is set based on the trigger for blood flow that is greatly affected by body movement.
 本発明によれば、複数の血管による灌流領域が混在している組織の、血管毎の灌流領域が明確に区別された灌流画像を、検査時間の延長を抑えて取得できる。 According to the present invention, it is possible to acquire a perfusion image of a tissue in which perfusion regions of a plurality of blood vessels are mixed, in which perfusion regions for each blood vessel are clearly distinguished, while suppressing an increase in examination time.
第一の実施形態のMRI装置のブロック図Block diagram of the MRI apparatus of the first embodiment 第一の実施形態の制御部の機能ブロック図Functional block diagram of the control unit of the first embodiment (a)は、第一の実施形態の撮像対象を説明するための説明図であり、(b)は、非造影パーフュージョンシーケンスを説明するための説明図(a) is explanatory drawing for demonstrating the imaging target of 1st embodiment, (b) is explanatory drawing for demonstrating a non-contrast perfusion sequence. 第一の実施形態の撮像処理のフローチャートFlow chart of imaging processing of the first embodiment 第一の実施形態の受付画面例を説明するための説明図Explanatory drawing for demonstrating the example of a reception screen of 1st embodiment (a)は、第一の実施形態の表示例を説明するための説明図であり、(b)は、第一の実施形態の他の表示例を説明するための説明図(a) is explanatory drawing for demonstrating the example of a display of 1st embodiment, (b) is explanatory drawing for demonstrating the other example of a display of 1st embodiment. 第一の実施形態のディレイ時間決定処理のフローチャートFlowchart of the delay time determination process of the first embodiment 第一の実施形態のディレイ時間決定処理のフローチャートFlowchart of the delay time determination process of the first embodiment 第一の実施形態のディレイ時間決定処理を説明するための説明図Explanatory drawing for demonstrating the delay time determination process of 1st embodiment. 第一の実施形態の非直交系サンプリング法の他の例のサンプリング例を説明するための説明図Explanatory drawing for demonstrating the sampling example of the other example of the non-orthogonal system sampling method of 1st embodiment (a)は、従来の撮像シーケンス例を、(b)および(c)は、本実施形態の撮像シーケンス例を、それぞれ説明するための説明図(a) is a conventional imaging sequence example, (b) and (c) are explanatory diagrams for explaining an imaging sequence example of the present embodiment, respectively. 第一の実施形態の撮像シーケンス生成処理のフローチャートFlowchart of imaging sequence generation processing of the first embodiment 第二の実施形態の撮像シーケンス例を説明するための説明図Explanatory drawing for demonstrating the example of an imaging sequence of 2nd embodiment. 第二の実施形態のラベルパルスの印加期間決定処理のフローチャートFlowchart of label pulse application period determination process of the second embodiment 第二の実施形態のラベルパルス印加期間決定処理を説明するための説明図Explanatory drawing for demonstrating the label pulse application period determination process of 2nd embodiment. 第二の実施形態のラベルパルス印加態様の変形例を説明するための説明図Explanatory drawing for demonstrating the modification of the label pulse application aspect of 2nd embodiment.
 <<第一の実施形態>>
 以下、本発明を適用する第一の実施形態について説明する。以下、本発明の実施形態を説明するための全図において、同一機能を有するものは、基本的に同一符号を付し、その繰り返しの説明は省略する。
<< First Embodiment >>
Hereinafter, a first embodiment to which the present invention is applied will be described. Hereinafter, in all the drawings for explaining the embodiments of the present invention, those having the same function are basically denoted by the same reference numerals, and the repeated explanation thereof is omitted.
 まず、本実施形態のMRI装置の構成について説明する。図1Aは本実施形態のMRI装置100のブロック図である。本実施形態のMRI装置100は、NMR現象を利用して被検体101の断層画像を得る装置である。図1Aに示すように、静磁場発生磁石102と、傾斜磁場コイル103及び傾斜磁場電源106と、送信RFコイル(送信コイル)104及びRF送信部107と、受信RFコイル(受信コイル)105及び信号検出部108と、信号処理部109と、シーケンサ110と、制御部120と、表示装置121と、操作部122と、記憶装置123と、被検体101を搭載してその被検体101を静磁場発生磁石102の内部に出し入れするベッド111と、を備える。 First, the configuration of the MRI apparatus of this embodiment will be described. FIG. 1A is a block diagram of the MRI apparatus 100 of the present embodiment. The MRI apparatus 100 of the present embodiment is an apparatus that obtains a tomographic image of the subject 101 using the NMR phenomenon. As shown in FIG. 1A, a static magnetic field generating magnet 102, a gradient magnetic field coil 103 and a gradient magnetic field power source 106, a transmission RF coil (transmission coil) 104, an RF transmission unit 107, a reception RF coil (reception coil) 105, and a signal A detection unit 108, a signal processing unit 109, a sequencer 110, a control unit 120, a display device 121, an operation unit 122, a storage device 123, and a subject 101 are mounted, and the subject 101 generates a static magnetic field. And a bed 111 to be taken in and out of the magnet 102.
 静磁場発生磁石102は、静磁場を発生する静磁場発生部として機能する。静磁場発生磁石102は、垂直磁場方式であれば被検体101の体軸と直交する方向に、水平磁場方式であれば体軸方向に、それぞれ均一な静磁場を発生させるもので、被検体101の周りに永久磁石方式、常電導方式あるいは超電導方式の静磁場発生源が配置される。 The static magnetic field generating magnet 102 functions as a static magnetic field generating unit that generates a static magnetic field. The static magnetic field generating magnet 102 generates a uniform static magnetic field in the direction perpendicular to the body axis of the subject 101 in the vertical magnetic field method and in the body axis direction in the horizontal magnetic field method. A permanent magnet type, normal conducting type or superconducting type static magnetic field generating source is arranged around the.
 傾斜磁場コイル103と傾斜磁場電源106とは、静磁場中に配置された被検体101に対し、傾斜磁場を印加する傾斜磁場印加部として機能する。傾斜磁場コイル103は、MRI装置の実空間座標系(静止座標系)であるX,Y,Zの3軸方向に巻かれたコイルである。それぞれの傾斜磁場コイルは、それを駆動する傾斜磁場電源106に接続され、電流が供給される。具体的には、各傾斜磁場コイルの傾斜磁場電源106は、それぞれ後述のシーケンサ110からの命令に従って駆動されて、それぞれの傾斜磁場コイル103に電流を供給する。これにより、X,Y,Zの3軸方向に傾斜磁場Gx,Gy,Gzが発生する。 The gradient magnetic field coil 103 and the gradient magnetic field power source 106 function as a gradient magnetic field application unit that applies a gradient magnetic field to the subject 101 arranged in a static magnetic field. The gradient magnetic field coil 103 is a coil wound in the three-axis directions of X, Y, and Z that are the real space coordinate system (stationary coordinate system) of the MRI apparatus. Each of the gradient magnetic field coils is connected to a gradient magnetic field power source 106 for driving the gradient coil and supplied with a current. Specifically, the gradient magnetic field power supply 106 of each gradient coil is driven according to a command from a sequencer 110 described later, and supplies a current to each gradient coil 103. Thereby, gradient magnetic fields Gx, Gy, and Gz are generated in the three axial directions of X, Y, and Z.
 例えば、2次元スライス面の撮像時には、スライス面(撮像断面)に直交する方向にスライス傾斜磁場パルス(Gs)が印加されて被検体101に対するスライス面が設定される。そのスライス面に直交し、且つ互いに直交する残りの2つの方向に位相エンコード傾斜磁場パルス(Gp)と周波数エンコード(リードアウト)傾斜磁場パルス(Gf)とが印加され、エコー信号にそれぞれの方向の位置情報がエンコードされる。 For example, when imaging a two-dimensional slice plane, a slice gradient magnetic field pulse (Gs) is applied in a direction orthogonal to the slice plane (imaging section) to set the slice plane for the subject 101. A phase encoding gradient magnetic field pulse (Gp) and a frequency encoding (leadout) gradient magnetic field pulse (Gf) are applied in the remaining two directions orthogonal to the slice plane and orthogonal to each other, and the echo signal in each direction is applied. Location information is encoded.
 送信コイル104とRF送信部107とは、被検体101の磁化を所定のフリップ角で励起させる高周波磁場パルス(RFパルス)を送信する高周波磁場送信部として機能する。送信コイル104は、被検体101にRFパルスを照射するコイルであり、RF送信部107に接続され、RF送信部107からRFパルス電流が供給される。送信コイル104から被検体101にRFパルスを照射することにより、被検体101の生体組織を構成する原子の原子核スピンにNMR現象が誘起される。 The transmission coil 104 and the RF transmitter 107 function as a high-frequency magnetic field transmitter that transmits a high-frequency magnetic field pulse (RF pulse) that excites the magnetization of the subject 101 at a predetermined flip angle. The transmission coil 104 is a coil that irradiates the subject 101 with an RF pulse, is connected to the RF transmission unit 107, and is supplied with an RF pulse current from the RF transmission unit 107. By irradiating the subject 101 with an RF pulse from the transmission coil 104, an NMR phenomenon is induced in the nuclear spins of the atoms constituting the biological tissue of the subject 101.
 具体的には、RF送信部107は、後述のシーケンサ110からの命令に従って駆動され、高周波パルスを振幅変調し、増幅し、被検体101に近接して配置される送信コイル104に供給する。供給された高周波パルスが、送信コイル104から被検体101に照射される。 Specifically, the RF transmission unit 107 is driven according to a command from a sequencer 110 described later, amplitude-modulates and amplifies the high-frequency pulse, and supplies it to the transmission coil 104 disposed in the vicinity of the subject 101. The supplied high frequency pulse is applied to the subject 101 from the transmission coil 104.
 受信コイル105と信号検出部108とは、被検体101が発生するエコー信号を受信する信号受信部として機能する。受信コイル105は、被検体101の生体組織を構成する原子核スピンのNMR現象により放出されるNMR信号(エコー信号)を受信するコイルであり、信号検出部108に接続され、受信したエコー信号を信号検出部108に送る。信号検出部108は、受信コイル105で受信したエコー信号の検出処理を行う。 The reception coil 105 and the signal detection unit 108 function as a signal reception unit that receives an echo signal generated by the subject 101. The reception coil 105 is a coil that receives an NMR signal (echo signal) emitted by the NMR phenomenon of the nuclear spin that constitutes the biological tissue of the subject 101, and is connected to the signal detection unit 108 to signal the received echo signal. The data is sent to the detection unit 108. The signal detection unit 108 performs detection processing of the echo signal received by the reception coil 105.
 具体的には、送信コイル104から照射されたRFパルスによって誘起された被検体101の応答のエコー信号は、被検体101に近接して配置された受信コイル105で受信されると、信号検出部108に送られる。信号検出部108は、後述のシーケンサ110からの命令に従って、受信されたエコー信号を増幅し、直交位相検波により直交する二系統の信号に分割し、それぞれを所定数(例えば128,256,512等)サンプリングし、各サンプリング信号をA/D変換してディジタル量に変換し、後述の信号処理部109に送る。このように、エコー信号は所定数のサンプリングデータからなる時系列のデジタルデータ(以下、エコーデータという)として得られる。 Specifically, when the echo signal of the response of the subject 101 induced by the RF pulse irradiated from the transmission coil 104 is received by the reception coil 105 disposed in the vicinity of the subject 101, the signal detection unit Sent to 108. The signal detection unit 108 amplifies the received echo signal according to a command from the sequencer 110 described later, divides the signal into two orthogonal signals by quadrature detection, and each of them is a predetermined number (for example, 128, 256, 512, etc.). ) Sampling, A / D conversion of each sampling signal is converted into a digital quantity, and sent to the signal processing unit 109 described later. Thus, the echo signal is obtained as time-series digital data (hereinafter referred to as echo data) composed of a predetermined number of sampling data.
 信号処理部109は、エコーデータに対して各種の信号処理を行い、処理後のエコーデータを制御部120に送る。 The signal processing unit 109 performs various signal processing on the echo data, and sends the processed echo data to the control unit 120.
 シーケンサ110は、被検体101の断層画像の再構成に必要なデータ収集のための種々の命令を、主に、傾斜磁場電源106と、RF送信部107と、信号検出部108に送信し、これらを制御する。具体的には、シーケンサ110は、後述する制御部120の制御で動作し、撮像シーケンスに従って、傾斜磁場電源106、RF送信部107及び信号検出部108を制御して、被検体101へのRFパルスと傾斜磁場パルスとの印加、および被検体101からのエコー信号の検出を繰り返し実行し、被検体101の撮像領域の画像の再構成に必要なエコーデータを収集する。 The sequencer 110 mainly transmits various commands for data collection necessary for the reconstruction of the tomographic image of the subject 101 to the gradient magnetic field power source 106, the RF transmission unit 107, and the signal detection unit 108. To control. Specifically, the sequencer 110 operates under the control of the control unit 120, which will be described later, and controls the gradient magnetic field power source 106, the RF transmission unit 107, and the signal detection unit 108 in accordance with the imaging sequence, and the RF pulse to the subject 101. And the application of the gradient magnetic field pulse and the detection of the echo signal from the subject 101 are repeatedly executed to collect echo data necessary for reconstruction of the image of the imaging region of the subject 101.
 制御部120は、シーケンサ110の制御、各種データ処理、処理結果の表示、および保存等の制御を行うものであって、CPU及びメモリを内部に有する。本実施形態では、上述の信号受信部が受信したエコー信号から画像を再構成するとともに、撮像シーケンスに従って、シーケンサ110に傾斜磁場印加部、高周波磁場送信部、信号受信部の動作を制御する指令を与える。なお、撮像シーケンスは、ユーザにより設定された撮像パラメータおよびユーザにより指定されたパルスシーケンスにより生成される。 The control unit 120 performs control of the sequencer 110, various data processing, display of processing results, storage, and the like, and has a CPU and a memory therein. In the present embodiment, an image is reconstructed from the echo signal received by the signal receiving unit described above, and a command for controlling the operations of the gradient magnetic field applying unit, the high frequency magnetic field transmitting unit, and the signal receiving unit is given to the sequencer 110 according to the imaging sequence. give. The imaging sequence is generated by imaging parameters set by the user and a pulse sequence specified by the user.
 本実施形態の制御部120は、具体的には、シーケンサ110を制御してエコーデータの収集を実行させ、収集されたエコーデータを、そのエコーデータに印加されたエンコード情報に基づいて、メモリのk空間に相当する領域に記憶する。メモリのk空間に相当する領域に記憶されたエコーデータ群をk空間データともいう。そして、このk空間データに対して信号処理やフーリエ変換による画像再構成等の処理を実行し、その結果である被検体101の画像を、後述の表示装置121に表示させると共に記憶装置123に記録する。 Specifically, the control unit 120 of the present embodiment controls the sequencer 110 to execute the collection of echo data, and the collected echo data is stored in the memory based on the encoding information applied to the echo data. Store in an area corresponding to k-space. A group of echo data stored in an area corresponding to the k space of the memory is also referred to as k space data. The k-space data is subjected to processing such as signal processing and image reconstruction by Fourier transform, and the resulting image of the subject 101 is displayed on the display device 121 described later and recorded in the storage device 123. To do.
 表示装置121および操作部122は、MRI装置100の各種制御情報や演算処理に必要な情報および演算処理結果をユーザとやりとりするインタフェースである。本実施形態のMRI装置100は、表示装置121および操作部122を介して、ユーザからの入力を受け付ける。この操作部122は表示装置121に近接して配置され、操作者が表示装置121を見ながら操作部122を通してインタラクティブにMRI装置100の各種処理を制御する。例えば、表示装置121は、再構成された被検体101の画像等を表示する。また、操作部122は、入力装置となるトラックボール、マウス、キーボード等の少なくとも1つを備える。 The display device 121 and the operation unit 122 are interfaces for exchanging various control information of the MRI apparatus 100, information necessary for arithmetic processing, and arithmetic processing results with the user. The MRI apparatus 100 of the present embodiment accepts input from the user via the display device 121 and the operation unit 122. The operation unit 122 is disposed in the vicinity of the display device 121, and an operator interactively controls various processes of the MRI apparatus 100 through the operation unit 122 while looking at the display device 121. For example, the display device 121 displays a reconstructed image of the subject 101 and the like. The operation unit 122 includes at least one of a trackball, a mouse, a keyboard, and the like serving as an input device.
 記憶装置123は、MRI装置100の動作に必要な情報、処理途中のデータ等が記憶される。例えば、光ディスク、磁気ディスク等で構成される。 The storage device 123 stores information necessary for the operation of the MRI apparatus 100, data being processed, and the like. For example, it is composed of an optical disk, a magnetic disk, or the like.
 なお、図1Aにおいて、送信コイル104と傾斜磁場コイル103とは、被検体101が挿入される静磁場発生磁石102の静磁場空間内に、垂直磁場方式であれば被検体101に対向して、水平磁場方式であれば被検体101を取り囲むようにして設置される。また、受信コイル105は、被検体101に対向して、或いは取り囲むように設置される。 In FIG. 1A, the transmission coil 104 and the gradient magnetic field coil 103 are opposed to the subject 101 in the static magnetic field space of the static magnetic field generating magnet 102 into which the subject 101 is inserted, in the case of the vertical magnetic field method, If the horizontal magnetic field method is used, the object 101 is installed so as to surround it. The receiving coil 105 is installed so as to face or surround the subject 101.
 また、例えば、心電同期、呼吸同期撮像のように、被検体101の周期的体動に同期して撮像を行う場合、被検体101の周期的体動を検出する体動検出装置124をさらに備えていてもよい。体動検出装置124は、被検体101の、検出対象の体動を検出可能な位置に設置される。検出した体動情報は、制御部120に送信される。 Further, for example, when imaging is performed in synchronization with the periodic body movement of the subject 101, such as electrocardiogram synchronization and respiratory synchronization imaging, a body movement detection device 124 for detecting the periodic body movement of the subject 101 is further provided. You may have. The body movement detection device 124 is installed at a position of the subject 101 where the body movement to be detected can be detected. The detected body motion information is transmitted to the control unit 120.
 現在のMRI装置100の撮像対象核種は、臨床で普及しているものとしては、被検体101の主たる構成物質である水素原子核(プロトン)である。MRI装置100では、プロトン密度の空間分布や、励起状態の緩和時間の空間分布に関する情報を画像化することで、人体頭部、腹部、四肢等の形態または、機能を2次元もしくは3次元的に撮像する。このとき、MRIでは、特定領域のプロトンのみを励起するため、RFパルスを傾斜磁場とともに印加する。 The nuclide to be imaged by the current MRI apparatus 100 is a hydrogen nucleus (proton) that is a main constituent material of the subject 101 as widely used clinically. In the MRI 100, the information about the spatial distribution of proton density and the spatial distribution of the relaxation time of the excited state is imaged, so that the form or function of the human head, abdomen, limbs, etc. can be expressed two-dimensionally or three-dimensionally. Take an image. At this time, in MRI, an RF pulse is applied together with a gradient magnetic field in order to excite only protons in a specific region.
 本実施形態では、ラベルパルスを印加して、特定血管の支配領域を確認する非造影パーフュージョン撮像のラベルパルスに2次元選択励起パルス(2DRFパルス)を用いる。 In this embodiment, a two-dimensional selective excitation pulse (2DRF pulse) is used as a label pulse for non-contrast perfusion imaging in which a label pulse is applied to confirm a dominant region of a specific blood vessel.
 複数の異なる血管により養生される組織において、各血管それぞれにラベルパルスを印加し、当該血管の血流の支配領域を確認する。このとき、血管毎に、ラベルパルスの印加からデータ取得までの時間(以下、ディレイ時間と呼ぶ)を算出する。好ましくは、最適なディレイ時間を算出する。そして、算出したディレイ時間を用いて1つの撮像シーケンスを生成する。そして生成した撮像シーケンスに従って、撮像を実行する。 In a tissue cured by a plurality of different blood vessels, a label pulse is applied to each blood vessel, and the blood flow control region of the blood vessel is confirmed. At this time, the time from label pulse application to data acquisition (hereinafter referred to as delay time) is calculated for each blood vessel. Preferably, an optimum delay time is calculated. Then, one imaging sequence is generated using the calculated delay time. Then, imaging is executed according to the generated imaging sequence.
 これを実現するため、本実施形態の制御部120は、図1Bに示すように、複数の異なる血管それぞれのディレイ時間(好ましくは最適なディレイ時間)を決定するディレイ時間決定部130と、決定したディレイ時間を用いて、1つの撮像シーケンスを生成する撮像シーケンス生成部140と、生成した撮像シーケンスを含む、予め定めた撮像シーケンスに従って撮像を行い、灌流画像を得る撮像部150と、再構成画像に各種の処理を加え、表示装置121に表示する画像を生成する画像生成部160と、ユーザから各種の指示を受け付ける受付部170と、を備える。 In order to realize this, the control unit 120 according to the present embodiment determines a delay time determination unit 130 that determines a delay time (preferably an optimal delay time) for each of a plurality of different blood vessels, as shown in FIG. 1B. An imaging sequence generation unit 140 that generates one imaging sequence using the delay time, an imaging unit 150 that obtains a perfusion image by performing imaging according to a predetermined imaging sequence including the generated imaging sequence, and a reconstructed image An image generation unit 160 that adds various types of processing and generates an image to be displayed on the display device 121, and a reception unit 170 that receives various instructions from the user.
 制御部120が実現する各機能は、記憶装置123に格納されたプログラムを、制御部120のCPUがメモリにロードして実行することにより実現される。また、全部または一部の機能は、ASIC(Application Specific Integrated Circuit)、FPGA(field-programmable gate array)などのハードウェアによって実現してもよい。また、各機能の処理に用いる各種のデータ、処理中に生成される各種のデータは、記憶装置123に格納される。 Each function realized by the control unit 120 is realized by causing the CPU of the control unit 120 to load and execute a program stored in the storage device 123. All or some of the functions may be realized by hardware such as ASIC (Application Specific Integrated Circuit) or FPGA (field-programmable gate array). Various data used for processing of each function and various data generated during the processing are stored in the storage device 123.
 また、ディレイ時間決定部130、撮像シーケンス生成部140、画像生成部160の少なくとも一つの処理部は、制御部120が実現しなくてもよい。MRI装置100とデータの送受信が可能な、MRI装置100とは独立した情報処理装置上に構築されてもよい。 Also, the control unit 120 may not realize at least one processing unit of the delay time determination unit 130, the imaging sequence generation unit 140, and the image generation unit 160. The information processing apparatus may be constructed on an information processing apparatus that is capable of transmitting / receiving data to / from the MRI apparatus 100 and independent of the MRI apparatus 100.
 なお、本実施形態でラベルパルスに用いる2次元選択励起パルス(2DRFパルス)は、傾斜磁場とともに印加し、局所領域をシリンダ型に励起するRFパルスである。 Note that the two-dimensional selective excitation pulse (2DRF pulse) used for the label pulse in this embodiment is an RF pulse that is applied together with a gradient magnetic field and excites a local region into a cylinder type.
 以下、本実施形態では、図2(a)に示すように、撮像対象組織を肝臓200とし、支配領域を観察する血管(観察対象血管)として、動脈である肝動脈210と、静脈である門脈220とする場合を例にあげて説明する。 Hereinafter, in the present embodiment, as shown in FIG. 2 (a), the imaging target tissue is the liver 200, and the blood vessels (observation target blood vessels) for observing the dominant region are the hepatic artery 210 that is an artery and the portal that is a vein. The case of the pulse 220 will be described as an example.
 従って、本実施形態の撮像シーケンスは、図2(b)に示すように、第一の血管(肝動脈210)による撮像対象組織(肝臓200)の灌流画像である第一の灌流画像を得る第一の非造影パーフュージョンシーケンス501と、第二の血管(門脈220)による撮像対象組織(肝臓200)の灌流画像である第二の灌流画像を得る第二の非造影パーフュージョンシーケンス502と、を備える。また、第一の非造影パーフュージョンシーケンス501は、第一のラベルパルス(動脈用ラベルパルス)510および第一のデータ取得シーケンス(動脈用データ取得シーケンス)512を備え、第二の非造影パーフュージョンシーケンス502は、第二のラベルパルス(静脈用ラベルパルス)520および第二のデータ取得シーケンス(静脈用データ取得シーケンス)522を備える。 Therefore, the imaging sequence of the present embodiment obtains a first perfusion image that is a perfusion image of the imaging target tissue (liver 200) by the first blood vessel (hepatic artery 210), as shown in FIG. One non-contrast perfusion sequence 501 and a second non-contrast perfusion sequence 502 for obtaining a second perfusion image that is a perfusion image of the imaging target tissue (liver 200) by the second blood vessel (portal vein 220), Is provided. The first non-contrast perfusion sequence 501 includes a first label pulse (arterial label pulse) 510 and a first data acquisition sequence (arterial data acquisition sequence) 512. The sequence 502 includes a second label pulse (venous label pulse) 520 and a second data acquisition sequence (venous data acquisition sequence) 522.
 本実施形態の撮像シーケンス生成部140は、これらの第一の非造影パーフュージョンシーケンス501と第二の非造影パーフュージョンシーケンス502とを組み合わせ、撮像シーケンスを生成する。 The imaging sequence generation unit 140 of the present embodiment combines the first non-contrast perfusion sequence 501 and the second non-contrast perfusion sequence 502 to generate an imaging sequence.
 そして、ディレイ時間決定部130は、第一のラベルパルス510の印加から第一のデータ取得シーケンス512開始までの第一のディレイ時間511および第二のラベルパルス520の印加から第二のデータ取得シーケンス522開始までの第二のディレイ時間521をそれぞれ決定する。好ましくは、ディレイ時間決定部130は、好適又は最適な第一のディレイ時間511および第二のディレイ時間521を決定する。以下、「最適」の意味は、「好適」又は「実質的に最適」の意味を含むものとする。他の実施形態でも同様である。 The delay time determining unit 130 then applies the first delay time 511 from the application of the first label pulse 510 to the start of the first data acquisition sequence 512 and the second data acquisition sequence from the application of the second label pulse 520. Second delay times 521 until the start of 522 are respectively determined. Preferably, the delay time determination unit 130 determines a suitable or optimal first delay time 511 and second delay time 521. Hereinafter, the meaning of “optimal” includes the meaning of “preferably” or “substantially optimal”. The same applies to other embodiments.
 [撮像処理]
 上記各部による処理の詳細を、本実施形態の撮像処理の流れに沿って説明する。図3は、本実施形態の撮像処理の処理フローである。本処理は、受付部170を介して、ユーザから検査開始の指示を受け付けたことを契機に開始する。
[Imaging processing]
Details of the processing by each of the above-described units will be described along the flow of imaging processing of the present embodiment. FIG. 3 is a processing flow of the imaging processing of the present embodiment. This process starts when an instruction to start an inspection is received from the user via the receiving unit 170.
 撮像部150は、位置決め画像の取得を含む事前撮像を行う(ステップS1101)。
 本実施形態では、事前撮像として、磁場を補正するシミング等の撮像も必要に応じて行う。
The imaging unit 150 performs pre-imaging including acquisition of a positioning image (step S1101).
In the present embodiment, as prior imaging, imaging such as shimming for correcting the magnetic field is also performed as necessary.
 受付部170は、位置決め画像を用いて、各種の設定を受け付ける受付画面を生成し、表示装置121に表示し、当該受付画面を介して、ユーザから撮像範囲(FOV)の指定を受け付ける(ステップS1102)。 The reception unit 170 generates a reception screen for receiving various settings using the positioning image, displays the reception screen on the display device 121, and receives designation of an imaging range (FOV) from the user via the reception screen (step S1102). ).
 ここで、受付部170が生成し、表示装置121に表示する受付画面300の例を図4に示す。本図に示すように、受付画面300は、位置決め画像表示領域310と、設定の意思を受け付けるOKボタン320とを備える。ユーザは、位置決め画像表示領域310に表示される位置決め画像上で、撮像領域311を指定する。受付部170は、指定された領域を、撮像領域311に設定する。 Here, an example of a reception screen 300 generated by the reception unit 170 and displayed on the display device 121 is shown in FIG. As shown in the figure, the reception screen 300 includes a positioning image display area 310 and an OK button 320 that receives a setting intention. The user designates the imaging area 311 on the positioning image displayed in the positioning image display area 310. The accepting unit 170 sets the designated area as the imaging area 311.
 次に、受付部170は、肝動脈210および門脈220に対するラベルパルスの印加位置の指定を受け付ける(ステップS1103)。これらの指定は、受付画面300を介して受け付ける。 Next, the accepting unit 170 accepts designation of label pulse application positions for the hepatic artery 210 and the portal vein 220 (step S1103). These designations are accepted via the acceptance screen 300.
 図4に示すように、ユーザは、位置決め画像表示領域310内の位置決め画像上で、第一のラベルパルス510の印加位置として肝動脈用スタック312と、第二のラベルパルス520の印加位置として門脈用スタック313とを、それぞれ、目的の血管のみにスタックが重畳するよう指定する。なお、例えば、ユーザが指定を分別しやすくするため、血管毎に、ユーザが指定したスタックの表示態様を変更してもよい。例えば、色、実線/点線などをそれ変えて表示する。 As shown in FIG. 4, on the positioning image in the positioning image display area 310, the user selects the hepatic artery stack 312 as the application position of the first label pulse 510 and the portal as the application position of the second label pulse 520. Each of the pulse stacks 313 is designated so that the stack is superimposed only on the target blood vessel. For example, in order to make it easier for the user to sort the designation, the display mode of the stack designated by the user may be changed for each blood vessel. For example, the color, solid line / dotted line, etc. are changed and displayed.
 なお、ユーザが特に注目する領域、例えば、腫瘍と考える領域がある場合、受付部170は、さらに関心領域(ROI)314の指定を受け付ける(ステップS1104)。ROI314も、位置決め画像上で受け付ける。ROI314を受け付けることにより、後述するように、最適なディレイ時間を、より正確に算出できる。なお、注目する領域が無い場合は、ユーザは、撮像組織(この場合は、肝臓200)全体を、ROI314と指定する。なお、ユーザがROI314を指定しない場合、撮像対象組織を自動的にROI314に設定するよう構成してもよい。 Note that if there is a region that the user particularly pays attention to, for example, a region that is considered to be a tumor, the receiving unit 170 further receives designation of a region of interest (ROI) 314 (step S1104). ROI 314 is also received on the positioning image. By receiving the ROI 314, the optimum delay time can be calculated more accurately as will be described later. When there is no region of interest, the user designates the entire imaging tissue (in this case, the liver 200) as ROI 314. When the user does not designate ROI 314, the imaging target tissue may be automatically set to ROI 314.
 次に、ユーザが指定した情報(撮像領域311、肝動脈用スタック312、門脈用スタック313、関心領域314)を用い、ディレイ時間決定部130は、各観察対象血管(ここでは、肝動脈210および門脈220)それぞれの最適なディレイ時間(以下、最適ディレイ時間または最適値)を決定するディレイ時間決定処理を行う(ステップS1105)。ディレイ時間決定処理の詳細は、後述する。 Next, using information specified by the user (imaging region 311, hepatic artery stack 312, portal vein stack 313, region of interest 314), the delay time determination unit 130 determines each observation target blood vessel (here, hepatic artery 210 And the portal vein 220) delay time determination processing for determining the optimum delay time (hereinafter referred to as optimal delay time or optimal value) is performed (step S1105). Details of the delay time determination processing will be described later.
 各観察対象血管の最適ディレイ時間が決定すると、撮像シーケンス生成部140は、最適ディレイ時間を反映し、撮像シーケンスを生成する撮像シーケンス生成処理を行う(ステップS1106)。撮像シーケンス生成処理の詳細も後述する。 When the optimal delay time of each observation target blood vessel is determined, the imaging sequence generation unit 140 performs imaging sequence generation processing for generating an imaging sequence reflecting the optimal delay time (step S1106). Details of the imaging sequence generation process will also be described later.
 撮像部150は、生成された撮像シーケンスに従って、各部を制御し、撮像を行い、再構成画像を得、再構成画像から灌流画像(第一の潅流画像および第二の灌流画像)を得る(ステップS1107)。 The imaging unit 150 controls each unit according to the generated imaging sequence, performs imaging, obtains a reconstructed image, and obtains a perfusion image (a first perfusion image and a second perfusion image) from the reconstructed image (step S1107).
 観察対象血管の支配領域を確認するための灌流画像は、ラベルパルスを印加した撮像シーケンスで得たデータから再構成された画像(ラベル有画像)と同じ撮像シーケンスでラベルパルスを印加しないで得たデータから再構成された画像(ラベル無画像)との差分画像として生成される。従って、ここでは、各血管について、ラベルパルスを印加するシーケンスと、ラベルパルスを印加しないシーケンスとを実行し、それぞれ再構成画像(ラベル有画像およびラベル無画像)を得る。そして、両者の差分を計算し、灌流画像を得る。
 なお、差分処理は、フーリエ変換前のローデータ(k空間データ)で行ってもよい。
The perfusion image for confirming the dominant region of the blood vessel to be observed was obtained without applying the label pulse with the same imaging sequence as the image (labeled image) reconstructed from the data obtained with the imaging sequence with the label pulse applied It is generated as a difference image from an image reconstructed from data (image without label). Therefore, here, for each blood vessel, a sequence in which a label pulse is applied and a sequence in which no label pulse is applied are executed to obtain reconstructed images (labeled images and unlabeled images), respectively. And the difference of both is calculated and a perfusion image is obtained.
Note that the difference processing may be performed on raw data (k-space data) before Fourier transform.
 画像生成部160は、得られた各灌流画像から、表示装置121に表示する表示画像を生成する(ステップS1108)。そして、生成した表示画像を表示装置121に表示し(ステップS1109)、処理を終了する。 The image generation unit 160 generates a display image to be displayed on the display device 121 from each obtained perfusion image (step S1108). Then, the generated display image is displayed on the display device 121 (step S1109), and the process ends.
 ここで、ステップS1108で生成される表示画像を説明する。まず、画像生成部160が、観察対象の血管毎の灌流画像からそれぞれ表示画像を生成し、表示装置121に表示する例を図5(a)に示す。 Here, the display image generated in step S1108 will be described. First, an example in which the image generation unit 160 generates a display image from each perfusion image for each blood vessel to be observed and displays the display image on the display device 121 is illustrated in FIG.
 この場合、画像生成部160は、本図に示すように、肝動脈210による灌流画像から生成した表示画像(第一の灌流画像から生成した第一の表示画像)410と、門脈220による灌流画像(第二の潅流画像から生成した第二の表示画像)420とを並べて表示する。なお、このとき、第二の表示画像420の表示態様は、第一の表示画像410の表示態様と変えてもよい。 In this case, the image generation unit 160, as shown in this figure, the display image 410 generated from the perfusion image by the hepatic artery 210 (first display image generated from the first perfusion image) 410 and the perfusion by the portal vein 220 An image (second display image generated from the second perfusion image) 420 is displayed side by side. At this time, the display mode of the second display image 420 may be changed from the display mode of the first display image 410.
 また、画像生成部160は、図5(b)に示すように、各観察対象の血管の灌流画像を重畳した画像430を生成し、これを表示してもよい。すなわち、第一の表示画像と第二の表示画像とを重畳し、表示装置121に表示してもよい。なお、このとき、各血管の支配領域毎に、異なる色を付すなど、ユーザが識別可能な態様で表示する。 Further, as shown in FIG. 5 (b), the image generation unit 160 may generate an image 430 in which perfusion images of the blood vessels to be observed are superimposed and display them. That is, the first display image and the second display image may be superimposed and displayed on the display device 121. In addition, at this time, it displays in the aspect which a user can identify, such as attaching | subjecting a different color for every control area | region of each blood vessel.
 例えば、静脈(門脈)の支配領域に青、動脈(肝動脈)の支配領域に赤を付すなどとする。これにより、ユーザは、各血管の支配領域を把握しやすくなる。すなわち、通常の肝組織は、動脈と静脈との両方で養生される。従って、赤と青との重なりで紫に表示される。しかしながら、腫瘍がある場合、腫瘍は動脈の支配領域となるため、赤に表示される。 For example, suppose that the dominant region of the vein (portal vein) is blue and the dominant region of the artery (hepatic artery) is red. This makes it easier for the user to grasp the dominant region of each blood vessel. That is, normal liver tissue is cured in both arteries and veins. Therefore, it is displayed in purple due to the overlap of red and blue. However, if there is a tumor, it is displayed in red because it is the dominant region of the artery.
 なお、このような色を付した灌流画像等は、そのまま表示してもよいが、通常の形態画像に重ねて表示してもよい。これにより、腫瘍の位置がよりわかりやすくなる。 In addition, although the perfusion image etc. which attached | subjected such a color may be displayed as it is, you may display it superimposed on a normal form image. This makes it easier to understand the location of the tumor.
 [ディレイ時間決定処理]
 次に、本実施形態のディレイ時間決定部130によるディレイ時間決定処理の詳細を説明する。上述のように、最適なディレイ時間は、血流速度、T1値、ユーザが指定したラベル位置から灌流域までの距離などにより異なる。従って、本実施形態のディレイ時間決定部130は、実際にユーザが指定した位置にラベルパルスを印加し、撮像を行うことで決定する。また、上述のように、血流によっては、拍動など体動の影響を受ける。このため、最適ディレイ時間を決定する際の撮像は、体動の影響を受けにくい非直交系サンプリング法を用いて行う。
[Delay time determination processing]
Next, details of the delay time determination process by the delay time determination unit 130 of the present embodiment will be described. As described above, the optimum delay time varies depending on the blood flow velocity, the T1 value, the distance from the label position designated by the user to the perfusion region, and the like. Therefore, the delay time determination unit 130 according to the present embodiment is determined by applying a label pulse to a position actually designated by the user and performing imaging. Further, as described above, depending on the blood flow, it is affected by body movement such as pulsation. For this reason, imaging when determining the optimum delay time is performed using a non-orthogonal sampling method that is not easily affected by body movement.
 本実施形態のディレイ時間決定部130は、観察対象血管毎に、非直交系サンプリング法を用いて体動の影響を抑えながら、k空間の一部を効率よく更新し、マルチフェーズでデータを取得し、信号変化を追い、最適なディレイ時間を決定する。 The delay time determination unit 130 of the present embodiment efficiently updates a part of the k-space and acquires data in multiphase while suppressing the influence of body motion using a non-orthogonal sampling method for each observation target blood vessel. Then, follow the signal change and determine the optimal delay time.
 具体的には、非直交系サンプリング法の中のラディアル法の一つであるハイブリッドラディアル法を用いてエコー信号を収集する。ハイブリッドラディアル法は、ブレード単位で放射状にk空間データを収集するシーケンスである。そして、1ブレード分収集する毎に予め定めた領域内の信号値を算出し、当該信号値が最小となるブレードのデータ収集タイミングを、最適ディレイ時間とする。 Specifically, echo signals are collected using a hybrid radial method, which is one of the radial methods in the non-orthogonal sampling method. The hybrid radial method is a sequence for collecting k-space data radially in units of blades. A signal value in a predetermined area is calculated every time one blade is collected, and the blade data collection timing at which the signal value is minimum is set as the optimum delay time.
 すなわち、本実施形態のディレイ時間決定部130は、第一のラベルパルス510および第二のラベルパルス520それぞれの印加直後から非直交系サンプリング法で撮像対象組織(肝臓200)を撮像して得られる各k空間ブレードのエコーデータに応じて、最適値(最適ディレイ時間)をそれぞれ決定する。 That is, the delay time determination unit 130 of the present embodiment is obtained by imaging the imaging target tissue (liver 200) by the non-orthogonal sampling method immediately after the application of the first label pulse 510 and the second label pulse 520. An optimum value (optimum delay time) is determined according to the echo data of each k-space blade.
 このとき、本実施形態のディレイ時間決定部130は、k空間ブレードのエコーデータを取得する毎に、得られる当該エコーデータを反映して再構成画像を得、再構成画像を得る毎に、予め定めた領域の信号値を計測し、その平均値を算出する、そして、算出した平均値の中から、その値が最小となる再構成画像を特定する。当該再構成画像を得る際に反映した最新のk空間ブレードのエコーデータを取得したタイミングを、最適値と決定する。 At this time, each time the delay time determination unit 130 of the present embodiment acquires the echo data of the k-space blade, the obtained delay data is reflected to obtain a reconstructed image, and each time a reconstructed image is obtained, The signal value of the determined area is measured, the average value is calculated, and the reconstructed image having the minimum value is specified from the calculated average values. The timing at which the latest echo data of the k-space blade reflected when obtaining the reconstructed image is acquired is determined as the optimum value.
 なお、ディレイ時間決定部130は、最適値を決定する対象の血管が動脈(肝動脈210)の場合、予め定めた関心領域(ROI314)内の信号値を計測し、最適値を決定する対象の血管が静脈(門脈220)の場合、関心領域(ROI314)外または全撮像領域311の信号値を計測する。 The delay time determination unit 130 measures the signal value in a predetermined region of interest (ROI 314) when the target blood vessel for which the optimal value is determined is an artery (hepatic artery 210), and determines the optimal value. When the blood vessel is a vein (portal vein 220), signal values outside the region of interest (ROI 314) or in the entire imaging region 311 are measured.
 以下、本実施形態のディレイ時間決定部130によるディレイ時間決定処理を、当該処理の流れに沿って説明する。図6、図7は、本実施形態のディレイ時間決定処理の処理フローである。また、図8は、本実施形態のディレイ時間決定処理を説明するための図である。 Hereinafter, the delay time determination process by the delay time determination unit 130 of the present embodiment will be described along the flow of the process. 6 and 7 are process flows of the delay time determination process of the present embodiment. FIG. 8 is a diagram for explaining the delay time determination process of the present embodiment.
 まず、第一の血管(ここでは、肝動脈210)の、最適ディレイ時間を決定する。 First, the optimum delay time of the first blood vessel (here, hepatic artery 210) is determined.
 ディレイ時間決定部130は、撮像領域311の中で、ROI314の重心を含み、かつ撮像領域311に平行な1スライス(図4の314)分のエコーデータを、ハイブリッドラディアル法を用いて収集する(図6:ステップS1201)。なお、ここで収集した、1スライス分の全ブレードのエコーデータを、図8に示すように、初期エコーデータ600と呼ぶ。なお、初期エコーデータ600は、メモリ等に保持しておく。 The delay time determination unit 130 collects echo data for one slice (314 in FIG. 4) including the center of gravity of the ROI 314 in the imaging region 311 and parallel to the imaging region 311 using the hybrid radial method ( FIG. 6: Step S1201). The echo data collected for all slices for one slice is referred to as initial echo data 600 as shown in FIG. The initial echo data 600 is stored in a memory or the like.
 次に、ディレイ時間決定部130は、動脈用のラベルパルス(第一のラベルパルス)510を、設定した肝動脈用スタック312に印加する(図6:ステップS1202)。 Next, the delay time determination unit 130 applies an arterial label pulse (first label pulse) 510 to the set hepatic artery stack 312 (FIG. 6: step S1202).
 ここで、1スライス分のk空間を構成するブレード数をNとする(Nは1以上の整数)。なお、図8では、N=6の場合を例示する。Nをカウントするカウンタnを初期化し(図6:ステップS1203)、動脈用のラベルパルス510の印加直後からデータの収集を開始する。 Suppose here that the number of blades constituting the k space for one slice is N (N is an integer of 1 or more). FIG. 8 illustrates the case where N = 6. A counter n for counting N is initialized (FIG. 6: Step S1203), and data collection is started immediately after application of the label pulse 510 for the artery.
 そして、ディレイ時間決定部130は、n番目のブレードの1ブレード分のエコーデータ611を収集する(図6:ステップS1204)。そして、初期エコーデータ600のn番目のブレードのエコーデータを、新たに収集したエコーデータに置き換え(ステップS1205)、画像を再構成する(図6:ステップS1206)。 Then, the delay time determination unit 130 collects echo data 611 for one blade of the nth blade (FIG. 6: step S1204). Then, the echo data of the nth blade in the initial echo data 600 is replaced with newly collected echo data (step S1205), and an image is reconstructed (FIG. 6: step S1206).
 ディレイ時間決定部130は、再構成画像上の、予め定めた領域内の信号の平均値(信号平均値)Si1AVを計測する(図6:ステップS1207)。ここで、最適ディレイ時間決定対象の血管が動脈の場合、信号平均値を計測する領域は、ROI314とする。 The delay time determination unit 130 measures an average value (signal average value) Si1 AV of signals in a predetermined region on the reconstructed image (FIG. 6: step S1207). Here, when the blood vessel whose optimum delay time is to be determined is an artery, the region where the signal average value is measured is ROI 314.
 また、計測結果は、当該ブレードのエコー信号を収集したタイミング(ラベルパルス510の印加からの経過時間t1n)に対応づけて記憶する。なお、このとき、ROI314の位置は、位置決め画像上でユーザが設定した位置を用いる。 The measurement result is stored in association with the timing at which the echo signal of the blade is collected (elapsed time t1 n from the application of the label pulse 510). At this time, as the position of the ROI 314, a position set by the user on the positioning image is used.
 ステップS1204からステップS1207の処理を、ラベルパルス510の印加からの経過時間t1nが予め定めた時間Tを超えるまで、あるいは、カウンタnがNとなるまで、置換後のデータを初期エコーデータ600として、さらに次のブレードを更新しながら、繰返す(図6:ステップS1208、1209)。 The processing from step S1204 to step S1207 is performed by using the replaced data as initial echo data 600 until the elapsed time t1 n from the application of the label pulse 510 exceeds a predetermined time T or until the counter n becomes N. Further, it is repeated while updating the next blade (FIG. 6: Steps S1208 and 1209).
 そして、ディレイ時間決定部130は、最小の信号平均値Si1AVを得たタイミングt1nを、肝動脈の最適ディレイ時間Delay(A)と決定する(図6:ステップS1210)。信号平均値Si1AVが最小となるタイミングを最適ディレイ時間と決定するのは、ラベルされた血液が流入すると、その分信号値が低下するためである。特に、腫瘍は動脈から養生されるため、ROI314の信号の低下は大きい。 Then, the delay time determining unit 130 determines the timing t1 n at which the minimum signal average value Si1 AV is obtained as the optimum delay time Delay (A) of the hepatic artery (FIG. 6: step S1210). The reason why the timing at which the signal average value Si1 AV is minimized is determined as the optimum delay time because the signal value is lowered by that amount when the labeled blood flows. In particular, since the tumor is cured from the artery, the signal drop of ROI 314 is large.
 続いて、ディレイ時間決定部130は、他方(ここでは、門脈)の、最適ディレイ時間を決定する。 Subsequently, the delay time determination unit 130 determines the optimum delay time on the other side (here, the portal vein).
 まず、ディレイ時間決定部130は、静脈用ラベルパルス520を、設定した門脈用スタック313に印加する(図7:ステップS1301)。そして、カウンタnを初期化(n=1)する(図7:ステップS1302)。ここでも、静脈用ラベルパルス520の印加直後からデータの収集を開始する。 First, the delay time determination unit 130 applies the vein label pulse 520 to the set portal vein stack 313 (FIG. 7: step S1301). Then, the counter n is initialized (n = 1) (FIG. 7: Step S1302). Again, data collection starts immediately after application of the vein label pulse 520.
 ディレイ時間決定部130は、n番目のブレードの1ブレード分のエコーデータ621を収集する(図7:ステップS1303)。そして、初期エコーデータ600のn番目のブレードのエコーデータを新たに収集したエコーデータ621に置き換え(図7:ステップS1304)、画像を再構成する(図7:ステップS1305)。 The delay time determination unit 130 collects echo data 621 for one blade of the nth blade (FIG. 7: Step S1303). Then, the echo data of the nth blade in the initial echo data 600 is replaced with newly collected echo data 621 (FIG. 7: step S1304), and an image is reconstructed (FIG. 7: step S1305).
 ここで、ROI314として腫瘍と考えられる局所領域が設定されているか否かを判別する(図7:ステップS1306)。判別は、設定されたROI314のサイズ、位置等からディレイ時間決定部130が自動的に判別するよう構成してもよいし、ユーザが、ROI314設定時にいずれを設定したか入力するよう構成してもよい。また、この判別処理は、ブレード毎に行わなくてもよい。例えば、最初のブレードを取得した際、判別を行い、フラグ等を立てておく。その後の繰り返しでは、フラグの有無に応じて処理を行う。 Here, it is determined whether or not a local region considered to be a tumor is set as the ROI 314 (FIG. 7: Step S1306). The determination may be configured such that the delay time determination unit 130 automatically determines from the set size, position, etc. of the ROI 314, or may be configured so that the user inputs which is set when setting the ROI 314. Good. Further, this determination process may not be performed for each blade. For example, when the first blade is acquired, a determination is made and a flag or the like is set. In subsequent iterations, processing is performed according to the presence or absence of a flag.
 局所領域が設定されている場合、画像内のROI314以外の領域の信号の平均値(信号平均値)Si2AVを計測する(図7:ステップS1307)。上述のように、静脈は腫瘍には供給されないため、ラベルされた血液は、肝臓の腫瘍外の領域に流入する。従って、ラベルされた血液が流入したタイミングで信号が低下するのは、ROI314外の領域となる。 When the local region is set, the average value (signal average value) Si2 AV of the region other than the ROI 314 in the image is measured (FIG. 7: Step S1307). As mentioned above, since the veins are not supplied to the tumor, the labeled blood flows into the extratumor area of the liver. Therefore, it is an area outside the ROI 314 that the signal decreases at the timing when the labeled blood flows.
 一方、撮像対象部位全体(ここでは、肝臓)がROI314として設定されている場合は、ROI314内、すなわち、撮像対象部位全体の信号平均値Si2AVを計測する(図7:ステップS1308)。 On the other hand, when the entire imaging target region (here, the liver) is set as the ROI 314, the signal average value Si2 AV in the ROI 314, that is, the entire imaging target region is measured (FIG. 7: Step S1308).
 また、この場合も、計測結果は、当該ブレードのエコー信号を収集したタイミング(静脈用ラベルパルス520の印加からの経過時間t2n)に対応づけて記憶する。 Also in this case, the measurement result is stored in association with the timing (elapsed time t2 n since the application of the vein label pulse 520) when the echo signal of the blade is collected.
 ステップS1303からステップS1308の処理を、静脈用ラベルパルス520の印加からの経過時間t2nが予め定めた時間Tを超えるまで、あるいは、カウンタnがNとなるまで、ブレードを更新し、実行する(図7:ステップS1309、1310)。 The processing from step S1303 to step S1308 is executed by updating the blade until the elapsed time t2 n from the application of the vein label pulse 520 exceeds a predetermined time T or until the counter n becomes N ( FIG. 7: Steps S1309 and 1310).
 そして、ディレイ時間決定部130は、最小の信号平均値を得たタイミングt2nを、門脈の最適ディレイ時間Delay(V)と決定し(図7:ステップS1311)、処理を終了する。 Then, the delay time determination unit 130 determines the timing t2 n at which the minimum signal average value is obtained as the optimum delay time Delay (V) of the portal vein (FIG. 7: Step S1311), and ends the process.
 なお、ディレイ時間決定処理において、各血管のディレイ時間の決定順は、問わない。 In the delay time determination process, the order of determining the delay time of each blood vessel is not limited.
 また、本実施形態のディレイ時間決定処理では、所定の領域の信号値が最小となるタイミングを、最適ディレイ時間と決定しているが、この手法に限定されない。例えば、ユーザが指定するよう構成してもよい。 Further, in the delay time determination process of the present embodiment, the timing at which the signal value in the predetermined region is minimized is determined as the optimum delay time, but is not limited to this method. For example, you may comprise so that a user may designate.
 この場合、ディレイ時間決定部130は、k空間ブレード毎に、当該k空間ブレードのエコーデータを反映した画像を再構成してユーザに提示し、提示した各画像の中からユーザが選択した画像を再構成する際に反映した最新のk空間ブレードのエコーデータを得たタイミングを、最適値(最適ディレイ時間)と決定してもよい。 In this case, for each k-space blade, the delay time determination unit 130 reconstructs an image reflecting echo data of the k-space blade and presents it to the user, and selects an image selected by the user from the presented images. The timing at which the latest echo data of the k-space blade reflected at the time of reconfiguration may be determined as the optimum value (optimum delay time).
 具体的には、ディレイ時間決定部130は、n番目のブレードのエコーデータを収集する毎に、当該ブレードのデータを更新して得られた再構成画像を表示装置121に表示していく。ユーザは、表示された1以上の画像を確認し、信号が最も低下したタイミングで取得された画像を選択する。ディレイ時間決定部130は、選択を受け、選択された画像を得たタイミングを最適ディレイ時間とする。 Specifically, every time the echo data of the nth blade is collected, the delay time determination unit 130 displays a reconstructed image obtained by updating the data of the blade on the display device 121. The user confirms one or more displayed images and selects an image acquired at the timing when the signal is the lowest. The delay time determination unit 130 receives the selection and sets the timing at which the selected image is obtained as the optimum delay time.
 なお、このとき表示する画像は、再構成した画像そのままでも良いし、初期エコーデータ600を再構成して得た初期画像に対する信号強度比画像としても良い。また、初期画像との差分画像としても良い。信号強度比画像や差分画像を作成する際には、初期画像を基準として、アフィン変換などで変形や位置ずれを補正してもよい。このようにすることで、信号の差が見やすくなる。 The image displayed at this time may be the reconstructed image as it is, or may be a signal intensity ratio image with respect to the initial image obtained by reconstructing the initial echo data 600. Moreover, it is good also as a difference image with an initial image. When creating a signal intensity ratio image or a difference image, deformation or misalignment may be corrected by affine transformation or the like using the initial image as a reference. By doing so, it becomes easier to see the difference in signals.
 なお、ユーザが目視で判定するよう構成する場合、ROI314の設定は不要である。 Note that when the user makes a visual decision, the setting of ROI 314 is not necessary.
 また、ここでは、ブレードのエコー信号を取得する毎に、当該ブレードを置き換えて画像を再構成し、得られた所定領域の信号強度を用い、最適ディレイ時間を決定しているが、必ずしも画像を再構成しなくてもよい。 Here, every time the echo signal of the blade is acquired, the blade is replaced and the image is reconstructed, and the optimum delay time is determined using the obtained signal intensity of the predetermined area. There is no need to reconfigure.
 例えば、ブレードの信号を取得する毎に、当該ブレードのエコー信号のピーク強度や積分値を用い、これらの値が最小となるタイミングを、最適ディレイ時間と決定するよう構成してもよい。 For example, each time a blade signal is acquired, the peak intensity or integral value of the echo signal of the blade may be used, and the timing at which these values are minimized may be determined as the optimum delay time.
 すなわち、ディレイ時間決定部130は、k空間ブレードのエコーデータを取得する毎に当該エコーデータのピーク強度値および積分値のいずれか一方をエコー値として算出し、前記エコー値が最小となるk空間ブレードのエコーデータを取得したタイミングを最適値と決定してもよい。 That is, every time the echo data of the k-space blade is acquired, the delay time determination unit 130 calculates either the peak intensity value or the integral value of the echo data as an echo value, and the k-space where the echo value is minimized You may determine the timing which acquired the echo data of a braid | blade as an optimal value.
 この場合も、ROI314を設定する必要はない。このように構成することで、より簡単に最適ディレイ時間を決定できる。 In this case, it is not necessary to set ROI314. With this configuration, the optimum delay time can be determined more easily.
 さらに、ここでは、非直交系サンプリング法として、ハイブリッドラディアル法のシーケンスを用いる場合を例にあげて説明したが、用いるシーケンスはこれに限定されない。
例えば、マルチショットのスパイラルサンプリング法を用いてもよい。6ショットのスパイラルサンプリング法によるk空間のサンプリング例を図9に示す。
Furthermore, although the case where the hybrid radial method sequence is used as the non-orthogonal sampling method has been described as an example here, the sequence used is not limited to this.
For example, a multi-shot spiral sampling method may be used. An example of k-space sampling using the 6-shot spiral sampling method is shown in FIG.
 この場合も、上記同様の手法で最適ディレイ時間を決定する。すなわち、まず、初期エコーデータを収集し、その後、1つのスパイラル軌跡上のエコーデータを収集する毎に、初期エコーデータの当該軌跡のエコーデータを更新し、画像を再構成し、所定領域の信号平均値が最小となるタイミングを最適ディレイ時間とする。あるいは、上記同様、ユーザが指定するよう構成してもよいし、画像を再構成せず、エコー信号のピーク強度や積分値を用いて最適ディレイ時間を決定してもよい。 In this case, the optimum delay time is determined by the same method as described above. That is, first, the initial echo data is collected, and then each time the echo data on one spiral locus is collected, the echo data of the locus of the initial echo data is updated, the image is reconstructed, and the signal of the predetermined area The timing at which the average value is minimized is set as the optimum delay time. Alternatively, similarly to the above, the user may specify, or the optimal delay time may be determined using the peak intensity or the integrated value of the echo signal without reconstructing the image.
 [撮像シーケンス生成処理]
 次に、本実施形態の撮像シーケンス生成部140による撮像シーケンス生成処理を説明する。図10(a)は、従来の撮像シーケンス509を、図10(b)は、本実施形態の撮像シーケンス500を、それぞれ、説明するための図である。図11は、本実施形態の撮像シーケンス生成処理の処理フローである。
[Imaging sequence generation processing]
Next, imaging sequence generation processing by the imaging sequence generation unit 140 of this embodiment will be described. FIG. 10 (a) is a diagram for explaining a conventional imaging sequence 509, and FIG. 10 (b) is a diagram for explaining an imaging sequence 500 of the present embodiment. FIG. 11 is a process flow of the imaging sequence generation process of the present embodiment.
 従来、複数の血管にラベルパルスを印加し、それぞれ、灌流画像を得る場合、図10(a)に示すように、血管毎に、個別にラベルパルス(510、520)の印加およびデータ取得シーケンスの実行(512、522)を行っていた。このため、総撮像時間は大幅に長くなる。なお、530は心拍同期撮像時のトリガ530タイミングである。 Conventionally, when label pulses are applied to a plurality of blood vessels to obtain perfusion images, as shown in FIG. 10 (a), label pulses (510, 520) are individually applied and data acquisition sequences are performed for each blood vessel. We were performing (512, 522). For this reason, the total imaging time is significantly increased. Reference numeral 530 denotes a trigger 530 timing at the time of synchronous heartbeat imaging.
 しかしながら、本実施形態では、図10(b)に示すように、1つの血管の撮像のディレイ時間の間に、他の1つの血管の撮像のラベルパルスを印加するよう、撮像シーケンス500を生成し、総撮像時間を個別に撮像を行っていた場合に比べ、短縮する。 However, in the present embodiment, as shown in FIG. 10 (b), the imaging sequence 500 is generated so as to apply the label pulse for imaging one other blood vessel during the delay time for imaging one blood vessel. The total imaging time is shortened compared to the case where the individual imaging is performed.
 すなわち、本実施形態の撮像シーケンス生成部140は、最適値(最適ディレイ時間)をそれぞれ第一のディレイ時間511および第二のディレイ時間521に用いるとともに、第一のディレイ時間511中であって、第一のデータ取得シーケンス512の実行開始直前に第二のラベルパルス520が印加されるよう、撮像シーケンス500を生成する。 That is, the imaging sequence generation unit 140 of the present embodiment uses the optimum value (optimum delay time) for the first delay time 511 and the second delay time 521, respectively, and during the first delay time 511, The imaging sequence 500 is generated so that the second label pulse 520 is applied immediately before the execution of the first data acquisition sequence 512 is started.
 ここで、動脈(ここでは、肝動脈210)は拍動の影響を受けるため、動脈用ラベルパルス(第一のラベルパルス)510を印加するタイミングは、心電/脈波同期で決定する必要がある。一方、静脈(ここでは、門脈220)は拍動の影響を受けないため、静脈用ラベルパルス(第二のラベルパルス)520の印加は非同期でよい。 Here, since the artery (here, the hepatic artery 210) is affected by pulsation, the timing for applying the arterial label pulse (first label pulse) 510 needs to be determined in synchronization with the electrocardiogram / pulse wave. is there. On the other hand, since the vein (here, the portal vein 220) is not affected by pulsation, the application of the vein label pulse (second label pulse) 520 may be asynchronous.
 従って、撮像シーケンス生成部140は、第一のラベルパルス510が予め定めた体動に同期して印加されるよう撮像シーケンスを生成する。このため、撮像シーケンス生成部140は、まず、動脈用ラベルパルス510と、動脈用データ取得シーケンス(第一のデータ取得シーケンス)512とを設定する。 Therefore, the imaging sequence generation unit 140 generates an imaging sequence so that the first label pulse 510 is applied in synchronization with a predetermined body movement. Therefore, the imaging sequence generation unit 140 first sets an arterial label pulse 510 and an arterial data acquisition sequence (first data acquisition sequence) 512.
 具体的には、撮像シーケンス生成部140は、まず、動脈用ラベルパルス510を、予め定めたトリガ530から所定の時間後に印加するよう設定する(ステップS1401)。そして、動脈用ラベルパルス510印加後、肝動脈の最適ディレイ時間Delay(A)511後のタイミングに、動脈用データ取得シーケンス512を設定する(ステップS1402)。 Specifically, the imaging sequence generation unit 140 first sets the arterial label pulse 510 to be applied after a predetermined time from a predetermined trigger 530 (step S1401). Then, after applying the arterial label pulse 510, the arterial data acquisition sequence 512 is set at a timing after the optimal delay time Delay (A) 511 of the hepatic artery (step S1402).
 次に、撮像シーケンス生成部140は、静脈用ラベルパルス520と、静脈用データ取得シーケンス(第二のデータ取得シーケンス)522とを設定する。 Next, the imaging sequence generation unit 140 sets a vein label pulse 520 and a vein data acquisition sequence (second data acquisition sequence) 522.
 具体的には、撮像シーケンス生成部140は、まず、静脈用ラベルパルス520を設定する(ステップS1403)。ここでは、静脈用ラベルパルス520は、動脈用データ取得シーケンス512の開始タイミングの直前に印加されるよう設定する。そして、静脈用ラベルパルス520印加後、門脈の最適ディレイ時間Delay(V)521後のタイミングに、静脈用データ取得シーケンス522を設定し(ステップS1404)、処理を終了する。 Specifically, the imaging sequence generation unit 140 first sets a vein label pulse 520 (step S1403). Here, the venous label pulse 520 is set to be applied immediately before the start timing of the arterial data acquisition sequence 512. After the vein label pulse 520 is applied, the vein data acquisition sequence 522 is set at the timing after the optimal delay time Delay (V) 521 of the portal vein (step S1404), and the processing is terminated.
 静脈用ラベルパルス520を、動脈用データ取得シーケンス512の開始タイミングの直前に印加するよう設定する理由は、2つのラベルパルス510、520の印加間隔をできる限り大きくするためである。これにより、両ラベルパルス510、520影響が混在することを抑制できる。 The reason why the vein label pulse 520 is set to be applied immediately before the start timing of the arterial data acquisition sequence 512 is to increase the application interval between the two label pulses 510 and 520 as much as possible. Thereby, it is possible to suppress the influence of both label pulses 510 and 520 from being mixed.
 また、このように撮像シーケンス500を設定することにより、最適ディレイ時間を維持しつつ、図10(a)に示す従来の撮像シーケンス509のように個別に順に撮像する場合に比べ、撮像時間の延長を抑えることができる。 In addition, by setting the imaging sequence 500 in this way, the imaging time is extended as compared with the case where images are individually taken sequentially in the conventional imaging sequence 509 shown in FIG. 10 (a) while maintaining the optimum delay time. Can be suppressed.
 さらに、両データ取得シーケンス512、522の実行間隔も、個別に撮像する場合に比べ短くなる。従って、両データ取得シーケンス間の体動による位置ずれも、個別に撮像する場合に比べ、低減できる。一般に、観察対象の血管が複数ある場合、それぞれの血管による灌流画像を比較し、診断を行うことが多い。このような場合に有用である。 Furthermore, the execution interval of both data acquisition sequences 512 and 522 is also shorter than when imaging individually. Therefore, the positional shift due to the body movement between the two data acquisition sequences can be reduced as compared with the case of individually capturing images. In general, when there are a plurality of blood vessels to be observed, diagnosis is often performed by comparing perfusion images of the blood vessels. This is useful in such cases.
 以上、本実施形態の前提に従って、第一の血管が肝動脈(動脈)210であり、第二の血管が門脈(静脈)220である場合を例にあげて、撮像シーケンスの生成手法を説明した。 As described above, in accordance with the premise of the present embodiment, the imaging sequence generation method is described by taking the case where the first blood vessel is the hepatic artery (artery) 210 and the second blood vessel is the portal vein (vein) 220 as an example. did.
 このように、観察対象血管が、動脈と静脈の場合は、上述のように動脈に係る構成を先に設定する。しかしながら、観察対象血管に静脈が複数ある場合がある。例えば、それぞれ由来する臓器が異なる静脈による灌流画像を得たい場合などがある。 As described above, when the blood vessels to be observed are an artery and a vein, the configuration related to the artery is set first as described above. However, there may be a plurality of veins in the observation target blood vessel. For example, there is a case where it is desired to obtain a perfusion image by veins having different organs.
 観察対象血管に、由来する臓器が異なる複数の静脈が含まれる場合、静脈間では、最適ディレイ時間が短い非造影パーフュージョンシーケンスのラベルパルスが先に印加されるよう撮像シーケンスを生成する。 When the observation target blood vessel includes a plurality of veins having different origins, an imaging sequence is generated so that a label pulse of a non-contrast perfusion sequence with a short optimum delay time is applied first between the veins.
 すなわち、最適ディレイ時間が最も短い血管のシーケンスを第一の非造影撮像シーケンスとし、この非造影撮像シーケンスを設定する。ここでは、第一のラベルパルスを設定し、第一のディレイ時間を空けて、第一のデータ取得シーケンスを設定する。 That is, the blood vessel sequence having the shortest delay time is set as the first non-contrast imaging sequence, and this non-contrast imaging sequence is set. Here, the first label pulse is set, the first delay time is set, and the first data acquisition sequence is set.
 次に、最適ディレイ時間が2番目に短い血管のシーケンスを第二の非造影撮像シーケンスとし、この非造影撮像シーケンスを設定する。ここでは、第二のラベルパルスを、第一のデータ取得シーケンスの直前に設定し、第二のディレイ時間を空けて、第二のデータ取得シーケンスを設定する。 Next, the blood vessel sequence with the second shortest delay time is set as the second non-contrast imaging sequence, and this non-contrast imaging sequence is set. Here, the second label pulse is set immediately before the first data acquisition sequence, and the second data acquisition sequence is set after a second delay time.
 次に、上記第二の非造影撮像シーケンスを第一の非造影撮像シーケンスとし、最適ディレイ時間が3番目に短い血管のシーケンスを第二の非造影撮像シーケンスとし、上記同様、第二の非造影シーケンスを設定する。これを繰り返し、全静脈の非造影撮像シーケンスを設定する。 Next, the second non-contrast imaging sequence is the first non-contrast imaging sequence, the blood vessel sequence with the third shortest delay time is the second non-contrast imaging sequence, and the second non-contrast imaging sequence is the same as above. Set the sequence. This is repeated to set a non-contrast imaging sequence for all veins.
 例えば、1つの動脈と、2つの静脈とが観察対象血管の場合の撮像シーケンス503の生成例を図10(c)に示す。1つの動脈の最適ディレイ時間をDelay(A)、第一の静脈の最適ディレイ時間をDelay(Va)、第二の静脈の最適ディレイ時間をDelay(Vb)とし、Delay(Va)<Delay(Vb)とする。 For example, FIG. 10C shows a generation example of the imaging sequence 503 when one artery and two veins are blood vessels to be observed. The optimal delay time for one artery is Delay (A), the optimal delay time for the first vein is Delay (Va), the optimal delay time for the second vein is Delay (Vb), and Delay (Va) <Delay (Vb ).
 本図に示すように、まず、動脈と、静脈の中で最も最適ディレイ時間が短い静脈(ここでは、第一の静脈)とを、それぞれ、上記第一の血管および第二の血管として、上述の手法で撮像シーケンスを生成する。 As shown in the figure, first, the artery and the vein with the shortest optimal delay time among the veins (here, the first vein) are referred to as the first blood vessel and the second blood vessel, respectively. The imaging sequence is generated by the method described above.
 すなわち、動脈に関し、動脈用ラベルパルス510の印加タイミングと、動脈用データ取得シーケンス512の実行タイミングとを決定する。上述のように、動脈用ラベルパルス510の印加タイミングは、トリガ530から所定の時間間隔経過後に設定する。また、動脈用データ取得シーケンス512は、動脈用ラベルパルス510の印加後、Delay(A)経過後に設定する。 That is, for the artery, the application timing of the arterial label pulse 510 and the execution timing of the arterial data acquisition sequence 512 are determined. As described above, the application timing of the arterial label pulse 510 is set after elapse of a predetermined time interval from the trigger 530. The arterial data acquisition sequence 512 is set after delay (A) has elapsed after the application of the arterial label pulse 510.
 次に、第一の静脈のラベルパルス520aの印加タイミングを決定する。ここでは、上述のように、動脈用データ取得シーケンス512の直前とする。そして、そのDelay(Va)時間経過後に、第一の静脈用のデータ取得シーケンス522aを設定する。 Next, the application timing of the first vein label pulse 520a is determined. Here, as described above, it is set immediately before the arterial data acquisition sequence 512. Then, after the delay (Va) time elapses, a first vein data acquisition sequence 522a is set.
 次に、第一の静脈および第二の静脈を前記第一の血管および第二の血管として、上記手法で撮像シーケンス503を生成する。なお、ディレイ時間の短いシーケンスのラベルパルスを先に印加するよう生成するため、この場合、第一のディレイ時間の最適値は、第二のディレイ時間の最適値以下である。 Next, the imaging sequence 503 is generated by the above method using the first vein and the second vein as the first blood vessel and the second blood vessel. In this case, the optimum value of the first delay time is equal to or less than the optimum value of the second delay time because the label pulse of the sequence having a short delay time is generated to be applied first.
 すなわち、第二の静脈のラベルパルス520bの印加タイミングを決定する。ここでは、第一の静脈用のデータ取得シーケンス522aの直前とする。そして、そのDelay(Vb)時間経過後に、第二の静脈用のデータ取得シーケンス522bを設定する。 That is, the application timing of the second vein label pulse 520b is determined. Here, it is assumed to be immediately before the first vein data acquisition sequence 522a. Then, after the Delay (Vb) time has elapsed, a second vein data acquisition sequence 522b is set.
 観察対象の静脈数が3以上の場合も同様とする。 The same applies when the number of veins to be observed is 3 or more.
 なお、呼吸による血管の移動が大きい部位が撮像対象部位の場合、呼吸同期も必要となる。この場合は、静脈も呼吸同期として設定する。 It should be noted that when a region where blood vessel movement due to respiration is large is a region to be imaged, respiratory synchronization is also required. In this case, the vein is also set as respiratory synchronization.
 以上説明したように、本実施形態のMRI装置100は、第一のラベルパルス510および第一のデータ取得シーケンス512を備え、第一の血管210による撮像対象組織200の灌流画像である第一の灌流画像を得る第一の非造影パーフュージョンシーケンス501と、第二のラベルパルス520および第二のデータ取得シーケンス522を備え、第二の血管220による前記撮像対象組織200の灌流画像である第二の灌流画像420を得る第二の非造影パーフュージョンシーケンス502と、を用いて撮像シーケンス500を生成する撮像シーケンス生成部140と、前記第一のラベルパルス510の印加から前記第一のデータ取得シーケンス512開始までの第一のディレイ時間511および前記第二のラベルパルス520の印加から前記第二のデータ取得シーケンス522開始までの第二のディレイ時間521をそれぞれ決定するディレイ時間決定部130と、前記撮像シーケンス500に従って撮像を行い、前記第一の潅流画像と前記第二の灌流画像420とを得る撮像部150と、を備え、前記撮像シーケンス生成部140は、前記決定した前記第一のディレイ時間511および前記第二のディレイ時間521を用いて、前記第一のディレイ511時間中であって、前記第一のデータ取得シーケンス512の実行開始直前に前記第二のラベルパルス520が印加されるよう、前記撮像シーケンス500を生成し、前記ディレイ時間決定部130は、前記第一のラベルパルス510および前記第二のラベルパルス520それぞれの印加直後から非直交系サンプリング法で前記撮像対象組織を撮像して得られる各k空間ブレードのエコーデータに応じて、前記第一のディレイ時間511および前記第二のディレイ時間521をそれぞれ決定する。 As described above, the MRI apparatus 100 of the present embodiment includes the first label pulse 510 and the first data acquisition sequence 512, and is the first perfusion image of the imaging target tissue 200 by the first blood vessel 210. A second non-contrast perfusion sequence 501 for obtaining a perfusion image, a second label pulse 520 and a second data acquisition sequence 522, and a second perfusion image of the imaging target tissue 200 by the second blood vessel 220 A second non-contrast perfusion sequence 502 for obtaining a perfusion image 420 of the first imaging sequence generator 140 for generating an imaging sequence 500 using the first non-contrast perfusion sequence 502, and the first data acquisition sequence from the application of the first label pulse 510 First delay time 511 until 512 start and second delay time 521 from the application of the second label pulse 520 to the start of the second data acquisition sequence 522, respectively. A delay time determining unit 130 for determining, and an imaging unit 150 that performs imaging according to the imaging sequence 500 and obtains the first perfusion image and the second perfusion image 420, and the imaging sequence generation unit 140 includes: Using the determined first delay time 511 and the second delay time 521, the first delay time 511 during the first delay 511 time, immediately before the execution of the first data acquisition sequence 512 is started. The imaging sequence 500 is generated so that the second label pulse 520 is applied, and the delay time determination unit 130 is configured to perform the non-orthogonal system immediately after the application of the first label pulse 510 and the second label pulse 520. The first delay time 511 and the second delay time 521 are respectively set according to echo data of each k-space blade obtained by imaging the imaging target tissue by the sampling method. Determined.
 好ましくは、前記ディレイ時間決定部130は、前記第一のディレイ時間511および前記第二のディレイ時間521の最適値をそれぞれ決定する。 Preferably, the delay time determination unit 130 determines optimum values for the first delay time 511 and the second delay time 521, respectively.
 前記第一のラベルパルス510および前記第二のラベルパルス520には、局所領域をシリンダ型に励起する2次元選択励起パルスを用いる。 As the first label pulse 510 and the second label pulse 520, a two-dimensional selective excitation pulse that excites a local region in a cylinder shape is used.
 このように、本実施形態によれば、血液信号の抑制のためのラベルパルスに2次元選択励起パルスを用い、観察対象の血管毎に個別にラベルを行う。そして、撮像シーケンスは、各観察対象の血管に上記のように決定したディレイ時間を用い、そのディレイ時間の間に、他の血管のラベルパルスを印加するよう生成される。このため、個別に実行する場合に比べ、撮像時間が短くて済む。 Thus, according to the present embodiment, a two-dimensional selective excitation pulse is used as a label pulse for suppressing a blood signal, and labeling is performed for each blood vessel to be observed. The imaging sequence is generated using the delay time determined as described above for each blood vessel to be observed, and applying a label pulse of another blood vessel during the delay time. For this reason, the imaging time can be shortened as compared with the case of executing individually.
 また、撮像シーケンス生成時に用いるディレイ時間は、ユーザが設定したラベル印加位置に応じて、実際にラベルを印加して撮像を行うことで決定する。従って、高精度に血管毎のディレイ時間を決定することができる。このように決定したディレイ時間を用いて撮像を行うため、血管毎の支配領域の情報を高い精度で得ることができる。 Also, the delay time used when the imaging sequence is generated is determined by performing imaging by actually applying a label according to the label application position set by the user. Therefore, the delay time for each blood vessel can be determined with high accuracy. Since imaging is performed using the delay time determined in this way, information on the dominant region for each blood vessel can be obtained with high accuracy.
 さらに、このディレイ時間決定時に用いる撮像は、非直交系サンプリング法を用いるため、体動の影響を受けにくい。また、ハイブリッドラディアル法を用い、ブレードを更新する毎に所定領域の信号値の変化を追い、決定するため、効率良くディレイ時間を決定できる。 Furthermore, since the imaging used for determining the delay time uses a non-orthogonal sampling method, it is less susceptible to body movements. Further, since the hybrid radial method is used and the change in the signal value of the predetermined area is followed and determined each time the blade is updated, the delay time can be determined efficiently.
 よって、本実施形態によれば、MRI装置で非造影パーフュージョン撮像を行う場合、検査時間の延長を最小限に抑えながら、効率よく、良好なコントラストで観察対象の血管毎の支配領域の情報を得ることができる。この情報を用い、撮像対象部位の、複数の血管による灌流領域を明確に切り分けて、ユーザに提示することができる。 Therefore, according to the present embodiment, when performing non-contrast perfusion imaging with an MRI apparatus, information on the dominant region for each blood vessel to be observed can be efficiently and with good contrast while minimizing the extension of examination time. Obtainable. Using this information, the perfusion region of a plurality of blood vessels in the region to be imaged can be clearly separated and presented to the user.
 特に、本実施形態によれば、肝臓など、腹部の臓器における動脈、静脈の灌流領域の組織分離能と分解能を向上ししつつ、検査時間の延長を抑えることができる。 In particular, according to the present embodiment, it is possible to suppress the extension of the examination time while improving the tissue separation ability and resolution of arterial and venous perfusion regions in abdominal organs such as the liver.
 <<第二の実施形態>>
 次に、本発明の第二の実施形態を説明する。第一の実施形態では、非造影パーフュージョン撮像(ASL Perfusion)のうち、1つのラベルパルスを用いるPulsed ASL(PASL)を用いる。一方、本実施形態では、非造影パーフュージョン撮像のうち、ラベルパルスを所定期間印加するContinuous ASL(CASL)、pseudo Continuous ASL(pCASL)を用いる。
<< Second Embodiment >>
Next, a second embodiment of the present invention will be described. In the first embodiment, pulsed ASL (PASL) using one label pulse among non-contrast perfusion imaging (ASL Perfusion) is used. On the other hand, in this embodiment, among non-contrast perfusion imaging, Continuous ASL (CASL) and pseudo Continuous ASL (pCASL) that apply a label pulse for a predetermined period are used.
 CASLは、ラベルパルスを、所定の期間、連続して印加する手法であり、pCASLは、ラベルパルスを、所定の期間、断続的に印加する手法である。一般に、印加期間は、印加対象の血管の血流速度、T1値等に基づき、予め定められる。 CASL is a technique of applying a label pulse continuously for a predetermined period, and pCASL is a technique of applying a label pulse intermittently for a predetermined period. In general, the application period is predetermined based on the blood flow velocity of the blood vessel to be applied, the T1 value, and the like.
 本実施形態のMRI装置は、基本的に第一の実施形態のMRI装置100と同様の構成を有する。しかしながら、本実施形態では、第一のラベルパルス510および第二のラベルパルス520として、所定期間連続または断続して高周波磁場パルスを印加するCASLまたはpCASL法を用いる。 The MRI apparatus of the present embodiment has basically the same configuration as the MRI apparatus 100 of the first embodiment. However, in the present embodiment, the CASL or pCASL method in which a high-frequency magnetic field pulse is applied continuously or intermittently for a predetermined period is used as the first label pulse 510 and the second label pulse 520.
 ラベルパルスとして用いるパルスが異なるため、撮像シーケンス生成部140の処理が異なる。また、ディレイ時間決定部130の処理にも違いがある。以下、本実施形態について、第一の実施形態と異なる構成に主眼をおいて説明する。本実施形態においても、撮像部位を肝臓200、観察対象血管を肝動脈(第一の血管)210、門脈(第二の血管)220とする場合を例にあげて説明する。 Since the pulse used as the label pulse is different, the processing of the imaging sequence generation unit 140 is different. There is also a difference in the processing of the delay time determination unit 130. Hereinafter, the present embodiment will be described focusing on the configuration different from the first embodiment. Also in the present embodiment, a case where the imaging region is the liver 200, the observation target blood vessel is the hepatic artery (first blood vessel) 210, and the portal vein (second blood vessel) 220 will be described as an example.
 本実施形態の撮像シーケンス生成部140は、基本的には、図12に示すように、第一の実施形態同様、まず、動脈用ラベルパルス513を、トリガを基準に設定し、最適ディレイ時間Delay(A)511を空けて動脈用データ取得シーケンス512を配置する。その後、動脈用データ取得シーケンス512の直前に静脈用ラベルパルス623を配置し、Delay(V)521を空けて静脈用データ取得シーケンス522を配置する。なお、ディレイ時間は、ラベルパルス印加終了タイミングからデータ取得シーケンス開始タイミングまでの間の時間とする。 As shown in FIG. 12, the imaging sequence generation unit 140 of the present embodiment basically sets the arterial label pulse 513 based on the trigger as in the first embodiment, and sets the optimum delay time Delay. (A) The arterial data acquisition sequence 512 is arranged after 511. Thereafter, the venous label pulse 623 is arranged immediately before the arterial data acquisition sequence 512, and the venous data acquisition sequence 522 is arranged after the delay (V) 521. The delay time is the time from the label pulse application end timing to the data acquisition sequence start timing.
 このとき、動脈用ラベルパルス513、静脈用ラベルパルス523に、CASL又はpCASL形式のラベルパルスを用いる場合、ラベルパルスの印加期間は、所定の幅がある。従って、例えば、ラベルパルス523によりラベルされた静脈血のうち、早期にラベルされたが静脈血が、動脈用データ取得のタイミングにおいて、灌流域に到達している可能性がある。従って、動脈用データ取得タイミングで取得したデータから再構成された画像において、動脈支配領域の信号低下と静脈血による信号低下とが混在するので、動脈支配領域と静脈支配領域とのコントラストが低下する可能性がある。 At this time, when a CASL or pCASL type label pulse is used for the arterial label pulse 513 and the venous label pulse 523, the label pulse application period has a predetermined width. Therefore, for example, among the venous blood labeled with the label pulse 523, there is a possibility that the venous blood that has been labeled at an early stage has reached the perfusion region at the timing of obtaining the arterial data. Therefore, in the image reconstructed from the data acquired at the data acquisition timing for arteries, the signal decrease in the arterial control region and the signal decrease due to venous blood coexist, so the contrast between the arterial control region and the vein control region decreases. there is a possibility.
 これを防ぐため、本実施形態の撮像シーケンス生成部140は、2回目以降に印加するラベルパルス(ここでは、第二のラベルパルス523)の印加期間に制限を設定する。これにより、コントラストの低下を抑制する。 In order to prevent this, the imaging sequence generation unit 140 of the present embodiment sets a limit on the application period of the label pulse (second label pulse 523 in this case) to be applied after the second time. This suppresses the decrease in contrast.
 このため、本実施形態の撮像シーケンス生成部140は、さらに、第一のラベルパルス513による抑制率を用いて第二のラベルパルス523の印加期間を決定する。 For this reason, the imaging sequence generation unit 140 of the present embodiment further determines the application period of the second label pulse 523 using the suppression rate by the first label pulse 513.
 以下、図13、図14を用いて、本実施形態の撮像シーケンス生成部140による第二のラベルパルス520の印加期間決定手法を説明する。ここでは、ラベルパルス513、523として、断続的に印加するパルスを用いる場合を例示する。 Hereinafter, a method for determining the application period of the second label pulse 520 by the imaging sequence generation unit 140 according to the present embodiment will be described with reference to FIGS. Here, the case where pulses intermittently applied are used as the label pulses 513 and 523 is exemplified.
 まず、本実施形態の撮像シーケンス生成部140は、動脈用ラベルパルス513による、動脈支配領域(ここでは、ROI314)の最大抑制率RAminを算出する(ステップS2101)。 First, the imaging sequence generation unit 140 according to the present embodiment calculates the maximum suppression rate RAmin of the arterial dominating region (here, ROI 314) based on the arterial label pulse 513 (step S2101).
 最大抑制率RAminは、例えば、ROI314の信号平均値の初期値Si1AV0と、最小値Si1AVminとを用い、以下の式(1)で算出する。 The maximum suppression rate RAmin is calculated by the following equation (1) using, for example, the initial value Si1 AV 0 of the signal average value of the ROI 314 and the minimum value Si1 AV min.
   RAmin=(Si1AV0-Si1AVmin)/Si1AV0 ・・・(1)
 なお、Si1AV0と、Si1AVminとは、ディレイ時間決定部130が、第一の最適ディレイ時間Delay(A)511を決定する際取得した値を用いる。Si1AVminは、第一の実施形態と同様の手法で取得する。なお、本実施形態では、ディレイ時間決定部130は、初期エコーデータ600を取得した時点で、画像を再構成し、ROI314の信号強度を計測することにより、Si1AV0を得る。
RAmin = (Si1 AV 0-Si1 AV min) / Si1 AV 0 (1)
Note that Si1 AV 0 and Si1 AV min use values acquired when the delay time determination unit 130 determines the first optimum delay time Delay (A) 511. Si1 AV min is obtained by the same method as in the first embodiment. In the present embodiment, the delay time determination unit 130 obtains Si1 AV 0 by reconstructing an image and measuring the signal intensity of the ROI 314 when the initial echo data 600 is acquired.
 次に、撮像シーケンス生成部140は、ディレイ時間決定部130が第二の最適ディレイ時間Delay(V)521を決定する際取得した値を用い、静脈用ラベルパルス523の印加開始からの経過時間tに応じた信号の低下率RV(t)を算出する(ステップS2102)。 Next, the imaging sequence generation unit 140 uses the value acquired when the delay time determination unit 130 determines the second optimum delay time Delay (V) 521, and uses the elapsed time t from the start of application of the vein label pulse 523. A signal reduction rate RV (t) according to the above is calculated (step S2102).
 低下率Rv(t)は、例えば、静脈用最適ディレイ時間を決定する際に用いた所定の領域の信号平均値の初期値Si2AV0と、n番目のブレードを取得したタイミングt2nに、印加期間を加えたtn(静脈用ラベルパルス523の印加開始からの経過時間)における信号平均値Si2AV(tn)とを用い、以下の式(2)で算出する。 The decrease rate Rv (t) is applied, for example, to the initial value Si2 AV 0 of the signal average value of a predetermined region used when determining the optimum delay time for veins and the timing t2 n when the nth blade is acquired. using the the mixture was t n signal average Si2 AV (t n) in (elapsed time from the start of the application of intravenous labels pulse 523) period, is calculated by the following equation (2).
   RV(tn)=(Si2AV0-Si2AV(tn))/Si2AV0 ・・・(2)
 なお、この場合も、ディレイ時間決定部130は、初期エコーデータ600を取得した時点で、画像を再構成し、上述の領域の信号強度を計測することにより、Si2AV0を得ておく。
RV (t n ) = (Si2 AV 0-Si2 AV (t n )) / Si2 AV 0 (2)
In this case as well, the delay time determination unit 130 obtains Si 2 AV 0 by reconstructing an image and measuring the signal intensity in the above-described region when the initial echo data 600 is acquired.
 そして、撮像シーケンス生成部140は、Rv(tn)が、RAminの所定の割合αより小さくなるタイミングtnの最大値を、静脈用ラベルパルス523の印加期間TVと決定する(ステップS2103)。なお、この割合αは、1.0未満の値で、システムが保持してもよいし、ユーザが指定するよう構成してもよい。 Then, the imaging sequence generation unit 140 determines the maximum value of the timing t n at which Rv (t n ) is smaller than the predetermined ratio α of RAmin as the application period TV of the venous label pulse 523 (step S2103). The ratio α may be a value less than 1.0, held by the system, or configured to be designated by the user.
 なお、装置の制約上、動脈用ラベルパルス513と静脈用ラベルパルス523とが撮像シーケンスにおいて時間軸方向に重なることがないよう、静脈用ラベルパルス523の印加期間TVは、Delay(A)より短くする。 Due to device limitations, the application period TV of the venous label pulse 523 is shorter than Delay (A) so that the arterial label pulse 513 and the venous label pulse 523 do not overlap in the time axis direction in the imaging sequence. To do.
 ただし、印加期間の短いパルスを断続的に印加するpCASL法のラベルパルスの場合、このような制限を設けなくてもよい。例えば、時間軸方向に両パルスの印加期間が重なった場合、図15に示すように、交互に印加するよう構成してもよい。なお、この場合、断続的に印加する1つ1つのパルス(ビームパルス)について、各ビームパルスの印加間隔は、1つのビームパルスの印加期間より長いものとする。 However, in the case of a pCASL method label pulse in which a pulse having a short application period is applied intermittently, such a restriction need not be provided. For example, when the application periods of both pulses overlap in the time axis direction, as shown in FIG. 15, they may be applied alternately. In this case, for each pulse (beam pulse) applied intermittently, the application interval of each beam pulse is longer than the application period of one beam pulse.
 撮像シーケンス生成部140による印加期間の決定手法以外の処理は、第一の実施形態と同様とする。また、ディレイ時間決定部130による最適ディレイ時間の決定手法も同様である。 Processing other than the application period determination method by the imaging sequence generation unit 140 is the same as in the first embodiment. The method for determining the optimum delay time by the delay time determination unit 130 is also the same.
 以上説明したように、本実施形態のMRI装置は、第一の実施形態同様の撮像シーケンス生成部140と、ディレイ時間決定部130と、撮像部150とを備える。そして、前記第一のラベルパルス510および前記第二のラベルパルス520は、所定期間断続または連続して印加される高周波磁場パルスであり、前記撮像シーケンス生成部140は、前記第一のラベルパルス510による抑制率を用いて前記第二のラベルパルス520の印加期間をさらに決定する。 As described above, the MRI apparatus of this embodiment includes the same imaging sequence generation unit 140, delay time determination unit 130, and imaging unit 150 as those of the first embodiment. The first label pulse 510 and the second label pulse 520 are high-frequency magnetic field pulses applied intermittently or continuously for a predetermined period, and the imaging sequence generation unit 140 includes the first label pulse 510 The application period of the second label pulse 520 is further determined using the suppression rate according to the above.
 このように、本実施形態も第一の実施形態同様、MRI装置で非造影パーフュージョン撮像を行う場合、検査時間の延長を最小限に抑えながら、効率よく、良好なコントラストで観察対象の血管毎の支配領域の情報を得ることができる。この情報を用い、撮像対象部位の、複数の血管による灌流領域を明確に切り分けて、ユーザに提示することができる。 As described above, when performing non-contrast perfusion imaging with the MRI apparatus as in the first embodiment, the present embodiment also enables efficient and excellent contrast for each blood vessel to be observed while minimizing the extension of the examination time. Can obtain information on the dominating area. Using this information, the perfusion region of a plurality of blood vessels in the region to be imaged can be clearly separated and presented to the user.
 さらに、ラベルパルスに所定の印加期間を有するCASL、pCASLであっても、好適又は最適な印加期間を決定し、コントラストの低下を抑制できる。 Furthermore, even in the case of CASL or pCASL having a predetermined application period for the label pulse, a suitable or optimal application period can be determined and the reduction in contrast can be suppressed.
 100 MRI装置、101 被検体、102 静磁場発生磁石、103 傾斜磁場コイル、104 送信コイル、105 受信コイル、106 傾斜磁場電源、107 RF送信部、108 信号検出部、109 信号処理部、110 シーケンサ、111 ベッド、120 制御部、121 表示装置、122 操作部、123 記憶装置、124 体動検出装置、130 ディレイ時間決定部、140 撮像シーケンス生成部、150 撮像部、160 画像生成部、170 受付部、200 撮像対象組織(肝臓)、210 第一の血管(肝動脈)、220 第二の血管(門脈)、300 受付画面、310 位置決め画像表示領域、311 撮像領域、312 肝動脈用スタック、313 門脈用スタック、314 関心領域(ROI)、315 スライス、320 OKボタン、410 表示画像、420 表示画像、430 表示画像、500 撮像シーケンス、501 非造影パーフュージョンシーケンス、502 非造影パーフュージョンシーケンス、503 撮像シーケンス、509 撮像シーケンス、510 第一のラベルパルス(動脈用ラベルパルス)、511 ディレイ時間、512 第一のデータ取得シーケンス(動脈用データ取得シーケンス)、513 動脈用ラベルパルス、520 第二のラベルパルス(静脈用ラベルパルス)、520a 第一の静脈のラベルパルス、520b 第二の静脈のラベルパルス、521 ディレイ時間、522 第二のデータ取得シーケンス(静脈用データ取得シーケンス)、522a データ取得シーケンス、522b データ取得シーケンス、523 静脈用ラベルパルス、530 トリガ、600 初期エコーデータ、611 エコーデータ、621 エコーデータ、623 静脈用ラベルパルス 100 MRI apparatus, 101 subject, 102 static magnetic field generating magnet, 103 gradient magnetic field coil, 104 transmission coil, 105 reception coil, 106 gradient magnetic field power supply, 107 RF transmission unit, 108 signal detection unit, 109 signal processing unit, 110 sequencer, 111 bed, 120 control unit, 121 display device, 122 operation unit, 123 storage device, 124 body motion detection device, 130 delay time determination unit, 140 imaging sequence generation unit, 150 imaging unit, 160 image generation unit, 170 reception unit, 200 imaging target tissue (liver), 210 first blood vessel (hepatic artery), 220 second blood vessel (portal vein), 300 reception screen, 310 positioning image display area, 311 imaging area, 312 hepatic artery stack, 313 gates Pulse stack, 314 region of interest (ROI), 315 slice, 320 OK button, 410 display image, 420 display image, 430 display image, 500 imaging sequence, 501 non-contrast perfusion sequence, 502 non-construction Perfusion sequence, 503 imaging sequence, 509 imaging sequence, 510 first label pulse (arterial label pulse), 511 delay time, 512 first data acquisition sequence (arterial data acquisition sequence), 513 arterial label pulse, 520 second label pulse (venous label pulse), 520a first vein label pulse, 520b second vein label pulse, 521 delay time, 522 second data acquisition sequence (venous data acquisition sequence), 522a data acquisition sequence, 522b data acquisition sequence, 523 vein label pulse, 530 trigger, 600 initial echo data, 611 echo data, 621 echo data, 623 vein label pulse

Claims (15)

  1.  第一のラベルパルスおよび第一のデータ取得シーケンスを備え、第一の血管による撮像対象組織の灌流画像である第一の灌流画像を得る第一の非造影パーフュージョンシーケンスと、第二のラベルパルスおよび第二のデータ取得シーケンスを備え、第二の血管による前記撮像対象組織の灌流画像である第二の灌流画像を得る第二の非造影パーフュージョンシーケンスと、を用いて撮像シーケンスを生成する撮像シーケンス生成部と、
     前記第一のラベルパルスの印加から前記第一のデータ取得シーケンス開始までの第一のディレイ時間および前記第二のラベルパルスの印加から前記第二のデータ取得シーケンス開始までの第二のディレイ時間をそれぞれ決定するディレイ時間決定部と、
     前記撮像シーケンスに従って撮像を行い、前記第一の潅流画像と前記第二の灌流画像とを得る撮像部と、を備え、
     前記撮像シーケンス生成部は、前記第一のディレイ時間中であって、前記第一のデータ取得シーケンスの実行開始直前に前記第二のラベルパルスが印加されるよう、前記撮像シーケンスを生成し、
     前記ディレイ時間決定部は、前記第一のラベルパルスおよび前記第二のラベルパルスそれぞれの印加直後から非直交系サンプリング法で前記撮像対象組織を撮像して得られる各k空間ブレードのエコーデータに応じて、前記第一のディレイ時間および前記第二のディレイ時間をそれぞれ決定することを特徴とする磁気共鳴イメージング装置。
    A first non-contrast perfusion sequence that has a first label pulse and a first data acquisition sequence, and obtains a first perfusion image that is a perfusion image of a tissue to be imaged by a first blood vessel, and a second label pulse And a second data acquisition sequence, and a second non-contrast perfusion sequence for obtaining a second perfusion image that is a perfusion image of the imaging target tissue by a second blood vessel, and generating an imaging sequence A sequence generator;
    A first delay time from the application of the first label pulse to the start of the first data acquisition sequence and a second delay time from the application of the second label pulse to the start of the second data acquisition sequence; A delay time determining unit for determining each,
    An imaging unit that performs imaging according to the imaging sequence and obtains the first perfusion image and the second perfusion image, and
    The imaging sequence generation unit generates the imaging sequence so that the second label pulse is applied immediately before the execution of the first data acquisition sequence during the first delay time,
    The delay time determination unit responds to echo data of each k-space blade obtained by imaging the imaging target tissue by a non-orthogonal sampling method immediately after application of the first label pulse and the second label pulse. And determining the first delay time and the second delay time, respectively.
  2.  請求項1記載の磁気共鳴イメージング装置であって、
     前記第一の血管は、動脈であり、
     前記第二の血管は、静脈であることを特徴とする磁気共鳴イメージング装置。
    The magnetic resonance imaging apparatus according to claim 1,
    The first blood vessel is an artery;
    The magnetic resonance imaging apparatus, wherein the second blood vessel is a vein.
  3.  請求項1記載の磁気共鳴イメージング装置であって、
     前記第一の血管は静脈であり、
     前記第二の血管は、前記第一の血管と由来する臓器が異なる静脈であることを特徴とする磁気共鳴イメージング装置。
    The magnetic resonance imaging apparatus according to claim 1,
    The first blood vessel is a vein;
    The magnetic resonance imaging apparatus, wherein the second blood vessel is a vein having a different organ from the first blood vessel.
  4.  請求項2記載の磁気共鳴イメージング装置であって、
     前記撮像シーケンス生成部は、前記第一のラベルパルスが予め定めた体動に同期して印加されるよう前記撮像シーケンスを生成することを特徴とする磁気共鳴イメージング装置。
    The magnetic resonance imaging apparatus according to claim 2,
    The magnetic resonance imaging apparatus, wherein the imaging sequence generation unit generates the imaging sequence so that the first label pulse is applied in synchronization with a predetermined body motion.
  5.  請求項3記載の磁気共鳴イメージング装置であって、
     前記第一のディレイ時間は、前記第二のディレイ時間以下であることを特徴とする磁気共鳴イメージング装置。
    The magnetic resonance imaging apparatus according to claim 3,
    The magnetic resonance imaging apparatus, wherein the first delay time is equal to or shorter than the second delay time.
  6.  請求項1記載の磁気共鳴イメージング装置であって、
     前記ディレイ時間決定部は、前記k空間ブレードのエコーデータを取得する毎に得られる当該エコーデータを反映して再構成画像を得、前記再構成画像を得る毎に予め定めた領域の信号値を計測し、前記信号値の平均値が最小となる再構成画像を得る際に反映した最新の前記k空間ブレードの前記エコーデータを取得したタイミングを前記第一のディレイ時間および前記第二のディレイ時間と決定することを特徴とする磁気共鳴イメージング装置。
    The magnetic resonance imaging apparatus according to claim 1,
    The delay time determination unit obtains a reconstructed image reflecting the echo data obtained every time the echo data of the k-space blade is obtained, and obtains a signal value of a predetermined region every time the reconstructed image is obtained. The first delay time and the second delay time are the timings at which the latest echo data of the k-space blade reflected when measuring and obtaining a reconstructed image in which the average value of the signal values is minimum are obtained. A magnetic resonance imaging apparatus, characterized by:
  7.  請求項1記載の磁気共鳴イメージング装置であって、
     前記ディレイ時間決定部は、前記k空間ブレード毎に、当該k空間ブレードのエコーデータを反映して画像を再構成してユーザに提示し、ユーザが選択した画像を再構成する際に反映した最新の前記k空間ブレードの前記エコーデータを得たタイミングを前記第一のディレイ時間および前記第二のディレイ時間と決定することを特徴とする磁気共鳴イメージング装置。
    The magnetic resonance imaging apparatus according to claim 1,
    The delay time determination unit reconstructs an image reflecting the echo data of the k-space blade for each k-space blade and presents it to the user, and reflects the latest image reflected when reconstructing the image selected by the user. A magnetic resonance imaging apparatus characterized in that the timing at which the echo data of the k-space blade is obtained is determined as the first delay time and the second delay time.
  8.  請求項1記載の磁気共鳴イメージング装置であって、
     前記ディレイ時間決定部は、前記k空間ブレードのエコーデータを取得する毎に当該エコーデータのピーク強度値および積分値のいずれか一方をエコー値として算出し、前記エコー値が最小となる前記k空間ブレードの前記エコーデータを取得したタイミングを前記第一のディレイ時間および前記第二のディレイ時間と決定することを特徴とする磁気共鳴イメージング装置。
    The magnetic resonance imaging apparatus according to claim 1,
    The delay time determination unit calculates, as the echo value, one of the peak intensity value and the integral value of the echo data every time the echo data of the k space blade is acquired, and the k space where the echo value is minimized The magnetic resonance imaging apparatus characterized in that the timing at which the echo data of the blade is acquired is determined as the first delay time and the second delay time.
  9.  請求項1記載の磁気共鳴イメージング装置であって、
     前記第一のラベルパルスおよび前記第二のラベルパルスは、所定期間断続または連続して印加される高周波磁場パルスであり、
     前記撮像シーケンス生成部は、前記第一のラベルパルスによる抑制率を用いて前記第二のラベルパルスの印加期間をさらに決定することを特徴とする磁気共鳴イメージング装置。
    The magnetic resonance imaging apparatus according to claim 1,
    The first label pulse and the second label pulse are high frequency magnetic field pulses applied intermittently or continuously for a predetermined period,
    The imaging sequence generation unit further determines an application period of the second label pulse by using a suppression rate by the first label pulse.
  10.  請求項1記載の磁気共鳴イメージング装置であって、
     前記第一の灌流画像と、前記第二の灌流画像とから、表示画像を生成し、表示装置に表示する画像生成部をさらに備えることを特徴とする磁気共鳴イメージング装置。
    The magnetic resonance imaging apparatus according to claim 1,
    A magnetic resonance imaging apparatus, further comprising: an image generation unit that generates a display image from the first perfusion image and the second perfusion image and displays the display image on a display device.
  11.  請求項10記載の磁気共鳴イメージング装置であって、
     前記画像生成部は、前記第一の灌流画像から第一の表示画像を生成し、前記第二の灌流画像から前記第一の表示画像とは異なる態様の第二の表示画像を生成することを特徴とする磁気共鳴イメージング装置。
    The magnetic resonance imaging apparatus according to claim 10,
    The image generation unit generates a first display image from the first perfusion image, and generates a second display image having a mode different from the first display image from the second perfusion image. A magnetic resonance imaging apparatus.
  12.  請求項11記載の磁気共鳴イメージング装置であって、
     前記画像生成部は、前記第一の表示画像と前記第二の表示画像とを重畳し、前記表示装置に表示すること
     を特徴とする磁気共鳴イメージング装置。
    The magnetic resonance imaging apparatus according to claim 11,
    The magnetic resonance imaging apparatus, wherein the image generation unit superimposes the first display image and the second display image on the display device.
  13.  請求項6記載の磁気共鳴イメージング装置であって、
     前記ディレイ時間決定部は、対象の血管が動脈の場合、予め定めた関心領域内の信号値を計測し、対象の血管が静脈の場合、関心領域外または全撮像領域の信号値を計測することを特徴とする磁気共鳴イメージング装置。
    The magnetic resonance imaging apparatus according to claim 6,
    The delay time determination unit measures a signal value in a predetermined region of interest when the target blood vessel is an artery, and measures a signal value outside the region of interest or in the entire imaging region when the target blood vessel is a vein. A magnetic resonance imaging apparatus.
  14.  請求項1記載の磁気共鳴イメージング装置であって、
     前記第一のラベルパルスおよび前記第二のラベルパルスは、局所領域をシリンダ型に励起する2次元選択励起パルスであることを特徴とする磁気共鳴イメージング装置。
    The magnetic resonance imaging apparatus according to claim 1,
    The magnetic resonance imaging apparatus, wherein the first label pulse and the second label pulse are two-dimensional selective excitation pulses that excite a local region in a cylinder shape.
  15.  第一の血管による撮像対象組織の灌流画像を得る第一の非造影パーフュージョンシーケンスにおける第一のラベルパルスの印加から第一のデータ取得シーケンス開始までの第一のディレイ時間および第二の血管による前記撮像対象組織の灌流画像を得る第二の非造影パーフュージョンシーケンスにおける第二のラベルパルスの印加から第二のデータ取得シーケンス開始までの第二のディレイ時間をそれぞれ決定し、
     前記第一のディレイ時間中であって、前記第一のデータ取得シーケンスの実行開始直前に前記第二のラベルパルスが印加されるよう、前記撮像シーケンスを生成し、
     前記第一のラベルパルスおよび前記第二のラベルパルスそれぞれの印加直後から非直交系サンプリング法で前記撮像対象組織を撮像して得られる各k空間ブレードのエコーデータに応じて、前記第一のディレイ時間および前記第二のディレイ時間をそれぞれ決定することを特徴とする撮像シーケンス生成方法。
    According to the first delay time from the application of the first label pulse to the start of the first data acquisition sequence and the second blood vessel in the first non-contrast perfusion sequence for obtaining a perfusion image of the imaging target tissue by the first blood vessel Determining a second delay time from the application of the second label pulse to the start of the second data acquisition sequence in the second non-contrast perfusion sequence for obtaining a perfusion image of the imaging target tissue,
    Generating the imaging sequence so that the second label pulse is applied during the first delay time and immediately before starting the execution of the first data acquisition sequence;
    The first delay according to the echo data of each k-space blade obtained by imaging the tissue to be imaged by the non-orthogonal sampling method immediately after the application of the first label pulse and the second label pulse. An imaging sequence generation method, wherein the time and the second delay time are respectively determined.
PCT/JP2016/072585 2015-08-31 2016-08-02 Magnetic resonance imaging device and imaging sequence generating method WO2017038345A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017537675A JP6483269B2 (en) 2015-08-31 2016-08-02 Magnetic resonance imaging apparatus and imaging sequence generation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-170104 2015-08-31
JP2015170104 2015-08-31

Publications (1)

Publication Number Publication Date
WO2017038345A1 true WO2017038345A1 (en) 2017-03-09

Family

ID=58187289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072585 WO2017038345A1 (en) 2015-08-31 2016-08-02 Magnetic resonance imaging device and imaging sequence generating method

Country Status (2)

Country Link
JP (1) JP6483269B2 (en)
WO (1) WO2017038345A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109907758A (en) * 2019-03-15 2019-06-21 脑玺(上海)智能科技有限公司 The image mask method and system of intracranial vessel blood flow delay
JP2021528143A (en) * 2018-06-19 2021-10-21 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. MR phantom for spiral acquisition
US20220225889A1 (en) * 2021-01-20 2022-07-21 Canon Medical Systems Corporation Magnetic resonance imaging apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086747A (en) * 2006-09-06 2008-04-17 Toshiba Corp Magnetic resonance imaging apparatus and image processor
JP2009028525A (en) * 2007-06-29 2009-02-12 Toshiba Corp Magnetic resonance imaging apparatus and magnetic resonance imaging method
JP2013516276A (en) * 2010-01-04 2013-05-13 メイヨ フォンデーシヨン フォー メディカル エジュケーション アンド リサーチ Time-resolved magnetic resonance angiography and perfusion imaging systems and methods
JP2014210175A (en) * 2013-04-04 2014-11-13 株式会社東芝 Magnetic resonance imaging apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9435871B2 (en) * 2011-01-17 2016-09-06 Hitachi Medical Corporation Magnetic resonance imaging apparatus and fluid-enhanced image acquisition method
DE102011078273B4 (en) * 2011-06-29 2014-11-20 Siemens Aktiengesellschaft MR angiography with non-Cartesian signal acquisition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086747A (en) * 2006-09-06 2008-04-17 Toshiba Corp Magnetic resonance imaging apparatus and image processor
JP2009028525A (en) * 2007-06-29 2009-02-12 Toshiba Corp Magnetic resonance imaging apparatus and magnetic resonance imaging method
JP2013516276A (en) * 2010-01-04 2013-05-13 メイヨ フォンデーシヨン フォー メディカル エジュケーション アンド リサーチ Time-resolved magnetic resonance angiography and perfusion imaging systems and methods
JP2014210175A (en) * 2013-04-04 2014-11-13 株式会社東芝 Magnetic resonance imaging apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021528143A (en) * 2018-06-19 2021-10-21 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. MR phantom for spiral acquisition
US11733334B2 (en) 2018-06-19 2023-08-22 Koninklijke Philips N.V. Image quality assessment of magnetic resonance images using a phantom
CN109907758A (en) * 2019-03-15 2019-06-21 脑玺(上海)智能科技有限公司 The image mask method and system of intracranial vessel blood flow delay
US20220225889A1 (en) * 2021-01-20 2022-07-21 Canon Medical Systems Corporation Magnetic resonance imaging apparatus

Also Published As

Publication number Publication date
JP6483269B2 (en) 2019-03-13
JPWO2017038345A1 (en) 2018-04-26

Similar Documents

Publication Publication Date Title
JP5366370B2 (en) Magnetic resonance imaging system
JP5523718B2 (en) Medical imaging device
JP5942268B2 (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method
US20130076357A1 (en) Method and magnetic resonance apparatus to generate a series of mr images to monitor a position of an interventional device
US9123121B2 (en) Magnetic resonance imaging apparatus and fluid imaging method
JP5735916B2 (en) Magnetic resonance imaging apparatus and synchronous measurement method
US10274558B2 (en) Magnetic resonance imaging apparatus
JP2009160378A (en) Magnetic resonance imaging apparatus
JP2009106480A (en) Magnetic resonance imaging apparatus
JP6483269B2 (en) Magnetic resonance imaging apparatus and imaging sequence generation method
JP5294879B2 (en) Magnetic resonance imaging system
US7917191B2 (en) Method for generation of an image in contrast agent-supported MR angiography and magnetic resonance apparatus
EP2572638B1 (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method
JPWO2010064572A1 (en) Magnetic resonance imaging apparatus and synchronous imaging method
JP2009254629A (en) Magnetic resonance imaging apparatus
JP2008055023A (en) Magnetic resonance imaging apparatus
JP5643790B2 (en) Magnetic resonance imaging system
KR101797674B1 (en) Magnetic resonance imaging apparatus and scanning method for magnetic resonance image thereof
JP4349647B2 (en) Magnetic resonance imaging system
KR101541290B1 (en) Method and apparatus for measuring magnetic resonance signals
WO2016021440A1 (en) Magnetic resonance imaging device
US20150374247A1 (en) Method of measuring blood flow velocity performed by medical imaging apparatus, and the medical imaging apparatus
KR102342813B1 (en) Apparatus and method for generating volume selective 3-dimensional magnetic resonance image
JP2007082753A (en) Magnetic resonance imaging apparatus, and control method and operation program of magnetic resonance imaging apparatus
WO2009047690A2 (en) Segmented multi-shot mri involving magnetization preparation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841377

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017537675

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16841377

Country of ref document: EP

Kind code of ref document: A1