WO2017038086A1 - Exhaust diffuser - Google Patents

Exhaust diffuser Download PDF

Info

Publication number
WO2017038086A1
WO2017038086A1 PCT/JP2016/003958 JP2016003958W WO2017038086A1 WO 2017038086 A1 WO2017038086 A1 WO 2017038086A1 JP 2016003958 W JP2016003958 W JP 2016003958W WO 2017038086 A1 WO2017038086 A1 WO 2017038086A1
Authority
WO
WIPO (PCT)
Prior art keywords
strut
tubular
inner cylinder
tubular strut
flat
Prior art date
Application number
PCT/JP2016/003958
Other languages
French (fr)
Japanese (ja)
Inventor
拓也 池口
晃司 寺内
恵次 追風
直人 阪井
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to CN201680044263.XA priority Critical patent/CN107923261B/en
Priority to US15/755,915 priority patent/US10851676B2/en
Priority to GB1803441.3A priority patent/GB2556798B/en
Priority to DE112016003468.7T priority patent/DE112016003468T5/en
Publication of WO2017038086A1 publication Critical patent/WO2017038086A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/30Exhaust heads, chambers, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • F01D25/162Bearing supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/06Fluid supply conduits to nozzles or the like
    • F01D9/065Fluid supply or removal conduits traversing the working fluid flow, e.g. for lubrication-, cooling-, or sealing fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K1/00Steam accumulators
    • F01K1/04Steam accumulators for storing steam in a liquid, e.g. Ruth's type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/52Nozzles specially constructed for positioning adjacent to another nozzle or to a fixed member, e.g. fairing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/21Manufacture essentially without removing material by casting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/128Nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/23Three-dimensional prismatic
    • F05D2250/231Three-dimensional prismatic cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/23Three-dimensional prismatic
    • F05D2250/232Three-dimensional prismatic conical

Definitions

  • the present invention relates to an exhaust diffuser.
  • Patent Document 1 discloses an exhaust diffuser incorporated in a gas turbine engine.
  • the inner cylinder and the outer cylinder are connected by a plurality of struts. Between the inner cylinder and the outer cylinder, an exhaust passage that extends from the front toward the rear is formed.
  • the struts have the same plate shape and are arranged on the same circumference at an equiangular pitch.
  • some of the plurality of struts are formed into a tubular shape, and piping or the like is passed through the inside.
  • piping or the like is passed through the inside.
  • some of the struts are tubular and thickened in this way, the pressure loss increases in the region where the struts exist.
  • an object of the present invention is to provide an exhaust diffuser that can reduce pressure loss caused by a tubular strut even when the tubular strut is included.
  • an exhaust diffuser includes an outer cylinder that forms an exhaust passage that extends from the front toward the rear between the inner cylinder and the inner cylinder, At least one tubular strut connecting the inner cylinder and the outer cylinder, and the outer cylinder has a front cone portion in front of the tubular strut, and has a larger inclination angle than the front cone portion. It has an outer flare portion that starts to spread from the front side of the tubular strut, and the inner cylinder has a front straight portion that faces the front cone portion and the outer flare portion, and a maximum width portion and a rear portion of the tubular strut. It has an inside flare part which begins to spread from between the edges.
  • front and “rear” refer to one side (upstream side of exhaust flow) and the other side (downstream side of exhaust flow) of the exhaust diffuser, respectively.
  • the exhaust passage is enlarged by the outer flare portion in front of the tubular strut, the exhaust gas flowing through the exhaust passage is sufficiently decelerated and then flows between the tubular struts. Therefore, the pressure loss in the vicinity of the front edge of the tubular strut can be reduced.
  • the cross-sectional area of the exhaust passage increases rapidly due to the decrease in the area occupied by the tubular struts behind the maximum width portion of the tubular struts.
  • there is an inner flare part such a rapid increase in the cross-sectional area of the exhaust passage can be mitigated by the inner flare part. Thereby, pressure loss can be reduced even in the vicinity of the rear edge of the tubular strut.
  • a part of the outer cylinder and a part of the inner cylinder may be integrally formed with the tubular strut by casting. According to this configuration, an exhaust diffuser suitable for medium-sized and small-sized gas turbine engines can be realized.
  • the outer cylinder has an outer straight portion extending rearward from the rear end of the outer flare portion beyond the maximum width portion of the tubular strut, and a rear conical portion expanding in diameter from the rear end of the outer straight portion
  • the inner cylinder may have a rear straight portion extending rearward from a rear end of the inner flare portion. According to this configuration, the outer cylinder is not formed with a recess that is recessed radially outward from the exhaust channel, and the inner cylinder is not formed with a recess that is recessed radially inward from the exhaust channel.
  • the exhaust diffuser may further include at least one flat strut that connects the inner cylinder and the outer cylinder and overlaps the tubular strut in the axial direction of the exhaust diffuser.
  • a thin strut can be employed at a place where there is no piping or the like, and a large cross-sectional area of the exhaust passage can be ensured. Thereby, pressure loss can be made smaller than when all the struts are tubular struts.
  • the front edge of the flat strut may be located in front of the front edge of the tubular strut, and the rear edge of the flat strut may be located behind the maximum width portion of the tubular strut. According to this configuration, since the cross-sectional area of the exhaust passage is reduced by the flat strut and then greatly reduced by the tubular strut, the cross-sectional area of the exhaust passage can be changed gently. Thereby, compared with the case where the front edge of a tubular strut and the front edge of a flat strut correspond, pressure loss can be made small.
  • the trailing edge of the flat strut may be positioned in front of the trailing edge of the tubular strut. According to this configuration, the exhaust gas flowing through the exhaust flow passage merges in the vicinity of the trailing edge of the flat strut and then merges in the vicinity of the trailing edge of the tubular strut. Thereby, a flow can be stabilized.
  • An exhaust diffuser includes an inner cylinder, an outer cylinder that forms an exhaust passage that extends from the front toward the rear, and the inner cylinder and the outer cylinder. At least one tubular strut that connects the inner cylinder and the outer cylinder, and at least one flat strut that overlaps the tubular strut in the axial direction of the exhaust diffuser, and the front of the flat strut The edge is located forward of the front edge of the tubular strut, and the rear edge of the flat strut is located behind the maximum width portion of the tubular strut.
  • the trailing edge of the flat strut may be positioned forward of the trailing edge of the tubular strut. According to this configuration, the exhaust gas flowing through the exhaust flow passage merges in the vicinity of the trailing edge of the flat strut and then merges in the vicinity of the trailing edge of the tubular strut. Thereby, a flow can be stabilized.
  • a part of the outer cylinder and a part of the inner cylinder may be integrally formed with the tubular strut by casting. According to this configuration, an exhaust diffuser suitable for medium-sized and small-sized gas turbine engines can be realized.
  • the pressure loss due to the tubular strut can be reduced.
  • FIG. 1 is a schematic configuration diagram of a gas turbine engine in which an exhaust diffuser according to an embodiment of the present invention is incorporated. It is sectional drawing of an exhaust diffuser.
  • FIG. 3 is a sectional view taken along line III-III in FIG. 2.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 3.
  • FIG. 1 shows a gas turbine engine 1 in which an exhaust diffuser 2 according to an embodiment of the present invention is incorporated.
  • an exhaust diffuser 2 according to an embodiment of the present invention is incorporated.
  • one (the upstream side of the exhaust flow) in the axial direction (horizontal direction in the present embodiment) of the exhaust diffuser 2 is referred to as the front, and the other (the downstream side of the exhaust flow) is referred to as the rear.
  • the gas turbine engine 1 includes a compressor 11, a combustion chamber 12 and a turbine 13.
  • the exhaust diffuser 2 is disposed downstream of the turbine 13.
  • the gas turbine engine 1 also includes a rotor 14 that penetrates the compressor 11 and the turbine 13.
  • a generator 15 is connected to the front end of the rotor 14.
  • the exhaust diffuser 2 includes an inner cylinder 3 and an outer cylinder 4.
  • An exhaust passage 21 is formed between the inner cylinder 3 and the outer cylinder 4 so as to expand from the front toward the rear.
  • the inner cylinder 3 and the outer cylinder 4 are mutually connected by a plurality of (two in the illustrated example) tubular struts 5 and a plurality of (four in the illustrated example) flat struts 6 extending in the radial direction of the exhaust diffuser 2. It is connected.
  • each of the tubular struts 5 and the flat struts 6 may be at least one, and the number of the tubular struts 5 and the number of the flat struts 6 can be appropriately determined.
  • the tubular strut 5 and the flat strut 6 are arranged in the circumferential direction of the exhaust diffuser 2.
  • Each flat strut 6 is parallel to the radial direction of the exhaust diffuser 2.
  • each flat strut 6 may be inclined with respect to the radial direction of the exhaust diffuser 2.
  • two tubular struts 5 are arranged above and below the inner cylinder 3, and two flat struts 6 are arranged on the right and left sides of the inner cylinder 3, respectively.
  • the exhaust diffuser 2 of this embodiment is suitable for medium and small gas turbine engines. For this reason, a part of the outer cylinder 4 and a part of the inner cylinder 3 are integrally formed with the tubular strut 5 and the flat strut 6 by casting.
  • the outer cylinder 4 is divided into a front piece 4A and a rear piece 4B
  • the inner cylinder 3 is divided into a front piece 3A and a rear piece 3B.
  • the front piece 4A of the outer cylinder 4 and the front piece 3A of the inner cylinder 3 are integrally formed with the tubular strut 5 and the flat strut 6 by casting.
  • Each of the rear piece 4B of the outer cylinder 4 and the rear piece 3B of the inner cylinder 3 is manufactured by sheet metal processing, for example.
  • the flat strut 6 protrudes forward from the tubular strut 5. In other words, the flat strut 6 partially overlaps the tubular strut 5 in the axial direction of the exhaust diffuser 2.
  • each tubular strut 5 is a waterdrop shape that sharpens toward the rear, and the front from the maximum width portion 55 is semicircular, and the rear from the maximum width portion 55 is substantially V-shaped.
  • width refers to the thickness of the tubular strut 5 in the circumferential direction of the exhaust diffuser 2.
  • the front piece 4A of the outer cylinder 4 and the front piece 3A of the inner cylinder 3 are respectively provided with openings 45 and 35 (see FIGS. 2 and 3) having the same shape as the internal space of the tubular strut 5.
  • the front edge 61 of the flat strut 6 is located in front of the front edge 51 of the tubular strut 5 by a distance A. Further, the rear edge 62 of the flat strut 6 is positioned forward by a distance B from the rear edge 52 of the tubular strut 5. However, the rear edge 62 of the flat strut 6 is located behind the maximum width portion 55 of the tubular strut 5.
  • the “front edge” and the “rear edge” refer to straight edges of portions having a constant cross-sectional shape in each of the tubular strut 5 and the flat strut 6.
  • the outer cylinder 4 has a front conical portion 41, an outer flare portion 42, an outer straight portion 43, and a rear conical portion 44 in order from the front.
  • These portions 41 to 44 constitute a continuous inward wall surface. That is, the front end of the front cone portion 41 is the front end of the outer cylinder 4, the rear end of the rear cone portion 44 is the rear end of the outer cylinder 4, and the rear end and the front end of adjacent portions are connected to each other. Yes.
  • the front cone part 41, the outer flare part 42, and the outer straight part 43 are components of the front piece 4A, and the rear cone part 44 is a component of the rear piece 4B.
  • the front cone part 41 is located in front of the tubular strut 5 and the flat strut 6.
  • the front cone portion 41 has a diameter that increases toward the rear at a relatively gentle inclination angle.
  • the outer flare portion 42 starts to spread from the front side with respect to the tubular strut 5 and the flat strut 6 at a larger inclination angle than the front cone portion 41.
  • the rear end of the outer flare portion 42 is located behind the front edge 51 of the tubular strut 5.
  • the rear end of the outer flare portion 42 may be located at the same position as the front edge 51 of the tubular strut 5, or may be located forward of the front edge 51 of the tubular strut 5.
  • the outer flare portion 42 is formed by reducing the cross-sectional area of the exhaust passage 21 due to the tubular strut 5 in the vicinity of the front edge 51 of the tubular strut 5 (in some cases, in the vicinity of the front edge 61 of the flat strut 6.
  • the diameter of the outer cylinder 4 is increased so as to cancel (and not necessarily to zero) the reduction in the cross-sectional area of the exhaust passage 21 caused by the flat strut 6.
  • the outer straight portion 43 extends rearward from the rear end of the outer flare portion 42 beyond the maximum width portion 55 of the tubular strut 5.
  • the rear end of the outer straight portion 43 is located behind the rear edge 52 of the tubular strut 5.
  • the rear end of the outer straight portion 43 may be located at the same position as the rear edge 52 of the tubular strut 5 or may be located forward of the rear edge 52 of the tubular strut 5.
  • the rear conical part 44 is enlarged in diameter from the rear end of the outer straight part 43 toward the rear.
  • the inclination angle of the rear cone portion 44 may be the same as or different from the inclination angle of the front cone portion 41.
  • the inner cylinder 3 has a front straight part 31, an inner flare part 32, and a rear straight part 33 in order from the front.
  • These portions 31 to 33 constitute a continuous outward wall surface. That is, the front end of the front straight portion 31 is the front end of the inner cylinder 3, the rear end of the rear straight portion 33 is the rear end of the inner cylinder 3, and the rear end and the front end of adjacent portions are connected to each other. Yes.
  • the front straight portion 31 and the inner flare portion 32 are components of the front piece 3A, and the rear straight portion 33 is a component of the rear piece 3B.
  • the front straight portion 31 extends rearward from the front end of the inner cylinder 3 beyond the maximum width portion 55 of the tubular strut 5. For this reason, the front straight portion 31 faces the entire front conical portion 41 and the outer flare portion 42 of the outer cylinder 4 and also faces a part of the outer straight portion 43.
  • the inner flare portion 32 starts to spread between the maximum width portion 55 and the rear edge 52 of the tubular strut 5.
  • the rear end of the inner flare portion 32 is located behind the rear edge 52 of the tubular strut 5.
  • the inner flare portion 32 increases the cross-sectional area of the exhaust passage 21 due to the tubular strut 5 in the vicinity of the rear edge 52 of the tubular strut 5 (in some cases, in the vicinity of the rear edge 62 of the flat strut 6.
  • the diameter of the inner cylinder 3 is increased so as to cancel out (and increase in the cross-sectional area of the exhaust passage 21 caused by the flat strut 6) (not necessarily zero).
  • the rear straight portion 33 extends rearward from the rear end of the inner flare portion 32 and faces the rear conical portion 44 of the outer cylinder 4.
  • the exhaust passage 21 is enlarged by the outer flare portion 42 in front of the tubular strut 5, so that the exhaust flowing through the exhaust passage 21 is sufficiently decelerated. It flows between the tubular struts 5. Therefore, the pressure loss in the vicinity of the front edge 51 of the tubular strut 5 can be reduced.
  • the cross-sectional area of the exhaust passage 21 increases rapidly due to the decrease in the area occupied by the tubular strut 5 behind the maximum width portion 55 of the tubular strut 5.
  • the rapid increase in the cross-sectional area of the exhaust passage 21 can be mitigated by the inner flare part 32. Thereby, the pressure loss can be reduced even in the vicinity of the rear edge 52 of the tubular strut 5.
  • the front edge 61 of the flat strut 6 is positioned in front of the front edge 51 of the tubular strut 5, the cross-sectional area of the exhaust passage 21 is reduced slightly by the flat strut 6. It is greatly reduced by the tubular strut 5. For this reason, the cross-sectional area of the exhaust passage 21 can be changed gently. Thereby, compared with the case where the front edge 51 of the tubular strut 5 and the front edge 61 of the flat strut 6 correspond, pressure loss can be made small.
  • the tubular strut 5 is connected after the exhaust gas flowing through the exhaust passage 21 merges in the vicinity of the trailing edge 62 of the flat strut 6. Merges in the vicinity of the trailing edge 52. Thereby, a flow can be stabilized.
  • the outer cylinder 4 is not formed with a recess that is recessed radially outward from the exhaust flow path 21, and the inner cylinder 3 is not formed with a recess that is recessed radially inward from the exhaust flow path. .
  • the number of divisions of the mold for example, a wooden mold
  • the exhaust diffuser 2 is not necessarily incorporated into the gas turbine engine 1, and may be disposed downstream of the steam turbine, for example.
  • the flat strut 6 does not necessarily overlap with the tubular strut 5, and the flat strut 6 may overlap with the tubular strut 5 as a whole.
  • the flat strut 6 is not necessarily required, and only a plurality of tubular struts 5 may be provided. However, if at least one tubular strut 5 and at least one flat strut 6 are provided as in the above-described embodiment, a thin strut can be adopted in a place where there is no piping or the like, and the exhaust passage 21 is disconnected. A large area can be secured. Thereby, compared with the case where all the struts are made into the tubular strut 5, pressure loss can be made small.
  • the front end of the outer flare portion 42 may be located behind the front edge 61 of the flat strut 6. However, if the front end of the outer flare part 42 is located in front of the front edge 61 of the flat strut 6 as in the above embodiment, the speed of the exhaust gas flowing between the flat struts 6 can be reduced.
  • the rear edge 62 of the flat strut 6 does not necessarily have to be positioned forward of the rear edge 52 of the tubular strut 5, and is the same position as the rear edge 52 of the tubular strut 5 or the rear edge 52 of the tubular strut 5. May be located rearward.
  • an intermediate cone portion having the same inclination angle as that of the rear cone portion 44 may be provided instead of the outer straight portion 43 of the outer cylinder 4.
  • a conical portion whose diameter is reduced from the rear end of the inner flare portion 32 is adopted, and instead of the rear conical portion 44 of the outer cylinder 4, the straight portion is It may be adopted.
  • each of the front piece 4A of the outer cylinder 4 and the front piece 3A of the inner cylinder 3 may be manufactured by sheet metal processing. Furthermore, each of the outer cylinder 4 and the inner cylinder 3 may be a single member.
  • the outer cylinder 4 does not have the outer flare part 42 and the inner cylinder 3 does not have the inner flare part 32. Also good. That is, in the above-described embodiment, since the front edge 61 of the flat strut 6 is positioned in front of the front edge 51 of the tubular strut 5, the cross-sectional area of the exhaust passage 21 is reduced by the flat strut 6 to a small extent. It is greatly reduced by the tubular strut 5. For this reason, the cross-sectional area of the exhaust passage 21 can be changed gently.
  • the inner cylinder 3 and the outer cylinder 4 have the exhaust passage 21 formed between them from the front to the rear. Any shape may be used as long as it spreads out.
  • the rear edge 62 of the flat strut 6 does not necessarily have to be located in front of the rear edge 52 of the tubular strut 5. Instead, it may be located at the same position as the rear edge 52 of the tubular strut 5 or behind the rear edge 52 of the tubular strut 5.
  • each of the outer cylinder 4 and the inner cylinder 3 may be manufactured by sheet metal processing as a whole or may be a single member.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Exhaust Silencers (AREA)
  • Supercharger (AREA)

Abstract

An exhaust diffuser is provided with an inner cylinder, an outer cylinder that together with the inner cylinder forms an exhaust passage widening rearward from the front, and at least one tubular strut linking the inner cylinder and the outer cylinder. The outer cylinder has a front conic section in front of the tubular strut, and an outer flare section that begins to widen in front of the tubular strut at a greater angle of inclination than the front conic section. The inner cylinder has a front strut section facing the front conic section and the outer flare section, and an inner flare section that begins to widen between the widest portion and the rear edge of the tubular strut.

Description

排気ディフューザExhaust diffuser
 本発明は、排気ディフューザに関する。 The present invention relates to an exhaust diffuser.
 従来から、タービンの下流には、タービンからの排気の動圧を静圧に変換する排気ディフューザが配置されている。例えば、特許文献1には、ガスタービンエンジンに組み込まれた排気ディフューザが開示されている。 Conventionally, an exhaust diffuser that converts the dynamic pressure of the exhaust gas from the turbine into a static pressure is disposed downstream of the turbine. For example, Patent Document 1 discloses an exhaust diffuser incorporated in a gas turbine engine.
 特許文献1に開示された排気ディフューザでは、内筒と外筒とが複数のストラットによって連結されている。内筒と外筒の間には、前方から後方に向かって広がる排気流路が形成されている。ストラットは、互いに同一の板状をなしており、同一円周上に等角度ピッチで配置されている。 In the exhaust diffuser disclosed in Patent Document 1, the inner cylinder and the outer cylinder are connected by a plurality of struts. Between the inner cylinder and the outer cylinder, an exhaust passage that extends from the front toward the rear is formed. The struts have the same plate shape and are arranged on the same circumference at an equiangular pitch.
特開2014-77441号公報JP 2014-77441 A
 ところで、複数のストラットのうちのいくつかを管状にし、その内部に配管などを通すことも行われている。しかしながら、このようにストラットのうちのいくつかを管状にして太くした場合には、ストラットが存する領域で圧力損失が大きくなる。 By the way, some of the plurality of struts are formed into a tubular shape, and piping or the like is passed through the inside. However, when some of the struts are tubular and thickened in this way, the pressure loss increases in the region where the struts exist.
 そこで、本発明は、管状ストラットを含んでいても、管状ストラットに起因する圧力損失を小さくすることができる排気ディフューザを提供することを目的とする。 Therefore, an object of the present invention is to provide an exhaust diffuser that can reduce pressure loss caused by a tubular strut even when the tubular strut is included.
 前記課題を解決するために、本発明の1つの側面からの排気ディフューザは、内筒と、前記内筒との間に、前方から後方に向かって広がる排気流路を形成する外筒と、前記内筒と前記外筒とを連結する少なくとも1つの管状ストラットと、を備え、前記外筒は、前記管状ストラットよりも前方に前側円錐部を有するとともに、前記前側円錐部よりも大きな傾斜角度で前記管状ストラットよりも前方から広がり始める外側フレア部を有しており、前記内筒は、前記前側円錐部および前記外側フレア部と対向する前側ストレート部を有するとともに、前記管状ストラットの最大幅部分と後縁の間から広がり始める内側フレア部を有している、ことを特徴とする。 In order to solve the above-described problem, an exhaust diffuser according to one aspect of the present invention includes an outer cylinder that forms an exhaust passage that extends from the front toward the rear between the inner cylinder and the inner cylinder, At least one tubular strut connecting the inner cylinder and the outer cylinder, and the outer cylinder has a front cone portion in front of the tubular strut, and has a larger inclination angle than the front cone portion. It has an outer flare portion that starts to spread from the front side of the tubular strut, and the inner cylinder has a front straight portion that faces the front cone portion and the outer flare portion, and a maximum width portion and a rear portion of the tubular strut. It has an inside flare part which begins to spread from between the edges.
 ここで、「前方」および「後方」とは、それぞれ排気ディフューザの軸方向の一方(排気の流れの上流側)および他方(排気の流れの下流側)をいう。 Here, “front” and “rear” refer to one side (upstream side of exhaust flow) and the other side (downstream side of exhaust flow) of the exhaust diffuser, respectively.
 上記の構成によれば、管状ストラットの前方で外側フレア部により排気流路が拡大されるため、排気流路を流れる排気は十分に減速された後に管状ストラット間に流入する。従って、管状ストラットの前縁近傍での圧力損失を小さくすることができる。一方、内側フレア部がない場合には、管状ストラットの最大幅部分よりも後方では、管状ストラットの占有面積の減少により、排気流路の断面積が急激に増加する。これに対し、内側フレア部があれば、内側フレア部によってそのような排気流路の断面積の急激な増加を緩和することができる。これにより、管状ストラットの後縁近傍でも圧力損失を小さくすることができる。 According to the above configuration, since the exhaust passage is enlarged by the outer flare portion in front of the tubular strut, the exhaust gas flowing through the exhaust passage is sufficiently decelerated and then flows between the tubular struts. Therefore, the pressure loss in the vicinity of the front edge of the tubular strut can be reduced. On the other hand, when there is no inner flare portion, the cross-sectional area of the exhaust passage increases rapidly due to the decrease in the area occupied by the tubular struts behind the maximum width portion of the tubular struts. On the other hand, if there is an inner flare part, such a rapid increase in the cross-sectional area of the exhaust passage can be mitigated by the inner flare part. Thereby, pressure loss can be reduced even in the vicinity of the rear edge of the tubular strut.
 前記外筒の一部および前記内筒の一部は、鋳造により前記管状ストラットと一体的に形成されていてもよい。この構成によれば、中型および小型のガスタービンエンジンに適した排気ディフューザを実現できる。 A part of the outer cylinder and a part of the inner cylinder may be integrally formed with the tubular strut by casting. According to this configuration, an exhaust diffuser suitable for medium-sized and small-sized gas turbine engines can be realized.
 前記外筒は、前記外側フレア部の後端から前記管状ストラットの最大幅部分を超えて後方に延びる外側ストレート部と、前記外側ストレート部の後端から拡径する後側円錐部を有し、前記内筒は、前記内側フレア部の後端から後方に延びる後側ストレート部を有してもよい。この構成によれば、外筒に排気流路から径方向外向きに窪む凹部が形成されず、かつ、内筒に排気流路から径方向内向きに窪む凹部が形成されないため、外筒の一部および内筒の一部を管状ストラットと共に鋳造により製造する際に、鋳型の分割数を少なくすることができる。 The outer cylinder has an outer straight portion extending rearward from the rear end of the outer flare portion beyond the maximum width portion of the tubular strut, and a rear conical portion expanding in diameter from the rear end of the outer straight portion, The inner cylinder may have a rear straight portion extending rearward from a rear end of the inner flare portion. According to this configuration, the outer cylinder is not formed with a recess that is recessed radially outward from the exhaust channel, and the inner cylinder is not formed with a recess that is recessed radially inward from the exhaust channel. When a part of the inner cylinder and a part of the inner cylinder are manufactured together with the tubular strut by casting, the number of mold divisions can be reduced.
 上記の排気ディフューザは、前記内筒と前記外筒とを連結する、当該排気ディフューザの軸方向において前記管状ストラットと重なり合う少なくとも1つの扁平ストラットをさらに備えてもよい。この構成によれば、配管などが無い箇所では細いストラットを採用することができ、排気流路の断面積を大きく確保することができる。これにより、全てのストラットを管状ストラットとしたときと比べて、圧力損失を小さくすることができる。 The exhaust diffuser may further include at least one flat strut that connects the inner cylinder and the outer cylinder and overlaps the tubular strut in the axial direction of the exhaust diffuser. According to this configuration, a thin strut can be employed at a place where there is no piping or the like, and a large cross-sectional area of the exhaust passage can be ensured. Thereby, pressure loss can be made smaller than when all the struts are tubular struts.
 前記扁平ストラットの前縁は、前記管状ストラットの前縁よりも前方に位置しており、前記扁平ストラットの後縁は、前記管状ストラットの最大幅部分よりも後方に位置していてもよい。この構成によれば、排気流路の断面積が、扁平ストラットによって小さく減少された後に管状ストラットによって大きく減少されるため、排気流路の断面積を緩やかに変化させることができる。これにより、管状ストラットの前縁と扁平ストラットの前縁が一致している場合に比べ、圧力損失を小さくすることができる。 The front edge of the flat strut may be located in front of the front edge of the tubular strut, and the rear edge of the flat strut may be located behind the maximum width portion of the tubular strut. According to this configuration, since the cross-sectional area of the exhaust passage is reduced by the flat strut and then greatly reduced by the tubular strut, the cross-sectional area of the exhaust passage can be changed gently. Thereby, compared with the case where the front edge of a tubular strut and the front edge of a flat strut correspond, pressure loss can be made small.
 前記扁平ストラットの後縁は、前記管状ストラットの後縁よりも前方に位置していてもよい。この構成によれば、排気流路を流れる排気が扁平ストラットの後縁近傍で合流した後に管状ストラットの後縁近傍で合流する。これにより、流れを安定化させることができる。 The trailing edge of the flat strut may be positioned in front of the trailing edge of the tubular strut. According to this configuration, the exhaust gas flowing through the exhaust flow passage merges in the vicinity of the trailing edge of the flat strut and then merges in the vicinity of the trailing edge of the tubular strut. Thereby, a flow can be stabilized.
 また、本発明の他の側面からの排気ディフューザは、内筒と、前記内筒との間に、前方から後方に向かって広がる排気流路を形成する外筒と、前記内筒と前記外筒とを連結する少なくとも1つの管状ストラットと、前記内筒と前記外筒とを連結する、当該排気ディフューザの軸方向において前記管状ストラットと重なり合う少なくとも1つの扁平ストラットと、を備え、前記扁平ストラットの前縁は、前記管状ストラットの前縁よりも前方に位置しており、前記扁平ストラットの後縁は、前記管状ストラットの最大幅部分よりも後方に位置している、ことを特徴とする。 An exhaust diffuser according to another aspect of the present invention includes an inner cylinder, an outer cylinder that forms an exhaust passage that extends from the front toward the rear, and the inner cylinder and the outer cylinder. At least one tubular strut that connects the inner cylinder and the outer cylinder, and at least one flat strut that overlaps the tubular strut in the axial direction of the exhaust diffuser, and the front of the flat strut The edge is located forward of the front edge of the tubular strut, and the rear edge of the flat strut is located behind the maximum width portion of the tubular strut.
 上記の構成によれば、排気流路の断面積が、扁平ストラットによって小さく減少された後に管状ストラットによって大きく減少されるため、排気流路の断面積を緩やかに変化させることができる。これにより、管状ストラットの前縁と扁平ストラットの前縁が一致している場合に比べ、圧力損失を小さくすることができる。 According to the above configuration, since the cross-sectional area of the exhaust passage is reduced by the flat strut and then greatly reduced by the tubular strut, the cross-sectional area of the exhaust passage can be changed gently. Thereby, compared with the case where the front edge of a tubular strut and the front edge of a flat strut correspond, pressure loss can be made small.
 上記の他の側面からの排気ディフューザにおいて、前記扁平ストラットの後縁は、前記管状ストラットの後縁よりも前方に位置していてもよい。この構成によれば、排気流路を流れる排気が扁平ストラットの後縁近傍で合流した後に管状ストラットの後縁近傍で合流する。これにより、流れを安定化させることができる。 In the exhaust diffuser from the other side surface, the trailing edge of the flat strut may be positioned forward of the trailing edge of the tubular strut. According to this configuration, the exhaust gas flowing through the exhaust flow passage merges in the vicinity of the trailing edge of the flat strut and then merges in the vicinity of the trailing edge of the tubular strut. Thereby, a flow can be stabilized.
 上記の他の側面からの排気ディフューザにおいて、前記外筒の一部および前記内筒の一部は、鋳造により前記管状ストラットと一体的に形成されていてもよい。この構成によれば、中型および小型のガスタービンエンジンに適した排気ディフューザを実現できる。 In the exhaust diffuser from the other side surface, a part of the outer cylinder and a part of the inner cylinder may be integrally formed with the tubular strut by casting. According to this configuration, an exhaust diffuser suitable for medium-sized and small-sized gas turbine engines can be realized.
 本発明によれば、管状ストラットを含んでいても、管状ストラットに起因する圧力損失を小さくすることができる。 According to the present invention, even if a tubular strut is included, the pressure loss due to the tubular strut can be reduced.
本発明の一実施形態に係る排気ディフューザが組み込まれたガスタービンエンジンの概略構成図である。1 is a schematic configuration diagram of a gas turbine engine in which an exhaust diffuser according to an embodiment of the present invention is incorporated. 排気ディフューザの断面図である。It is sectional drawing of an exhaust diffuser. 図2のIII-III線に沿った断面図である。FIG. 3 is a sectional view taken along line III-III in FIG. 2. 図3のIV-IV線に沿った断面図である。FIG. 4 is a sectional view taken along line IV-IV in FIG. 3.
 図1に、本発明の一実施形態に係る排気ディフューザ2が組み込まれたガスタービンエンジン1を示す。以下では、排気ディフューザ2の軸方向(本実施形態では水平方向)の一方(排気の流れの上流側)を前方、他方(排気の流れの下流側)を後方という。 FIG. 1 shows a gas turbine engine 1 in which an exhaust diffuser 2 according to an embodiment of the present invention is incorporated. Hereinafter, one (the upstream side of the exhaust flow) in the axial direction (horizontal direction in the present embodiment) of the exhaust diffuser 2 is referred to as the front, and the other (the downstream side of the exhaust flow) is referred to as the rear.
 ガスタービンエンジン1は、圧縮機11、燃焼室12およびタービン13を含む。排気ディフューザ2は、タービン13の下流に配置されている。また、ガスタービンエンジン1は、圧縮機11およびタービン13を貫通するロータ14を含む。ロータ14の前端部には、発電機15が接続されている。 The gas turbine engine 1 includes a compressor 11, a combustion chamber 12 and a turbine 13. The exhaust diffuser 2 is disposed downstream of the turbine 13. The gas turbine engine 1 also includes a rotor 14 that penetrates the compressor 11 and the turbine 13. A generator 15 is connected to the front end of the rotor 14.
 図2および図3に示すように、排気ディフューザ2は、内筒3および外筒4を含む。内筒3と外筒4との間には、前方から後方に向かって広がる排気流路21が形成されている。本実施形態では、内筒3と外筒4とが、排気ディフューザ2の径方向に延びる複数(図例では2つ)の管状ストラット5および複数(図例では4つ)の扁平ストラット6によって互いに連結されている。ただし、管状ストラット5および扁平ストラット6のそれぞれは少なくとも1つあればよく、管状ストラット5の数および扁平ストラット6の数は適宜決定可能である。 2 and 3, the exhaust diffuser 2 includes an inner cylinder 3 and an outer cylinder 4. An exhaust passage 21 is formed between the inner cylinder 3 and the outer cylinder 4 so as to expand from the front toward the rear. In this embodiment, the inner cylinder 3 and the outer cylinder 4 are mutually connected by a plurality of (two in the illustrated example) tubular struts 5 and a plurality of (four in the illustrated example) flat struts 6 extending in the radial direction of the exhaust diffuser 2. It is connected. However, each of the tubular struts 5 and the flat struts 6 may be at least one, and the number of the tubular struts 5 and the number of the flat struts 6 can be appropriately determined.
 管状ストラット5および扁平ストラット6は、排気ディフューザ2の周方向に並んでいる。各扁平ストラット6は、排気ディフューザ2の径方向に平行である。ただし、各扁平ストラット6は、排気ディフューザ2の径方向に対して傾斜していてもよい。本実施形態では、内筒3の上方および下方に2つの管状ストラット5が配置され、内筒3の右方および左方に扁平ストラット6が2つずつ配置されている。 The tubular strut 5 and the flat strut 6 are arranged in the circumferential direction of the exhaust diffuser 2. Each flat strut 6 is parallel to the radial direction of the exhaust diffuser 2. However, each flat strut 6 may be inclined with respect to the radial direction of the exhaust diffuser 2. In the present embodiment, two tubular struts 5 are arranged above and below the inner cylinder 3, and two flat struts 6 are arranged on the right and left sides of the inner cylinder 3, respectively.
 本実施形態の排気ディフューザ2は、中型および小型のガスタービンエンジンに適したものである。このため、外筒4の一部および内筒3の一部は、鋳造により管状ストラット5および扁平ストラット6と一体的に形成されている。 The exhaust diffuser 2 of this embodiment is suitable for medium and small gas turbine engines. For this reason, a part of the outer cylinder 4 and a part of the inner cylinder 3 are integrally formed with the tubular strut 5 and the flat strut 6 by casting.
 より詳しくは、外筒4は前方ピース4Aと後方ピース4Bとに分割されており、内筒3は前方ピース3Aと後方ピース3Bとに分割されている。そして、外筒4の前方ピース4Aおよび内筒3の前方ピース3Aが、鋳造により管状ストラット5および扁平ストラット6と一体的に形成されている。外筒4の後方ピース4Bおよび内筒3の後方ピース3Bのそれぞれは、例えば板金加工によって製造される。 More specifically, the outer cylinder 4 is divided into a front piece 4A and a rear piece 4B, and the inner cylinder 3 is divided into a front piece 3A and a rear piece 3B. And the front piece 4A of the outer cylinder 4 and the front piece 3A of the inner cylinder 3 are integrally formed with the tubular strut 5 and the flat strut 6 by casting. Each of the rear piece 4B of the outer cylinder 4 and the rear piece 3B of the inner cylinder 3 is manufactured by sheet metal processing, for example.
 また、本実施形態では、扁平ストラット6が管状ストラット5よりも前方に突出している。換言すれば、扁平ストラット6は、排気ディフューザ2の軸方向において、管状ストラット5と部分的に重なり合っている。 Further, in this embodiment, the flat strut 6 protrudes forward from the tubular strut 5. In other words, the flat strut 6 partially overlaps the tubular strut 5 in the axial direction of the exhaust diffuser 2.
 より詳しくは、図4に示すように、各管状ストラット5の断面形状は後方に向かって尖る水滴状であり、最大幅部分55から前方が半円状、最大幅部分55から後方が略V字状である。ここで、「幅」とは、排気ディフューザ2の周方向における管状ストラット5の厚さをいう。外筒4の前方ピース4Aおよび内筒3の前方ピース3Aには、管状ストラット5の内部空間と同形状の開口45,35(図2,3参照)がそれぞれ設けられている。 More specifically, as shown in FIG. 4, the cross-sectional shape of each tubular strut 5 is a waterdrop shape that sharpens toward the rear, and the front from the maximum width portion 55 is semicircular, and the rear from the maximum width portion 55 is substantially V-shaped. Is. Here, “width” refers to the thickness of the tubular strut 5 in the circumferential direction of the exhaust diffuser 2. The front piece 4A of the outer cylinder 4 and the front piece 3A of the inner cylinder 3 are respectively provided with openings 45 and 35 (see FIGS. 2 and 3) having the same shape as the internal space of the tubular strut 5.
 扁平ストラット6の前縁61は、管状ストラット5の前縁51よりも距離Aだけ前方に位置している。また、扁平ストラット6の後縁62は、管状ストラット5の後縁52よりも距離Bだけ前方に位置している。ただし、扁平ストラット6の後縁62は、管状ストラット5の最大幅部分55よりも後方に位置している。ここで、「前縁」および「後縁」とは、管状ストラット5および扁平ストラット6のそれぞれにおける断面形状が一定の部分の直線状の縁をいう。 The front edge 61 of the flat strut 6 is located in front of the front edge 51 of the tubular strut 5 by a distance A. Further, the rear edge 62 of the flat strut 6 is positioned forward by a distance B from the rear edge 52 of the tubular strut 5. However, the rear edge 62 of the flat strut 6 is located behind the maximum width portion 55 of the tubular strut 5. Here, the “front edge” and the “rear edge” refer to straight edges of portions having a constant cross-sectional shape in each of the tubular strut 5 and the flat strut 6.
 図2に戻って、外筒4は、前方から順に、前側円錐部41、外側フレア部42、外側ストレート部43および後側円錐部44を有している。これの部位41~44は連続した内向き壁面を構成している。つまり、前側円錐部41の前端が外筒4の前端であり、後側円錐部44の後端が外筒4の後端であるとともに、隣り合う部位の後端と前端とが互いに接続されている。前側円錐部41、外側フレア部42および外側ストレート部43は前方ピース4Aの構成要素であり、後側円錐部44は後方ピース4Bの構成要素である。 2, the outer cylinder 4 has a front conical portion 41, an outer flare portion 42, an outer straight portion 43, and a rear conical portion 44 in order from the front. These portions 41 to 44 constitute a continuous inward wall surface. That is, the front end of the front cone portion 41 is the front end of the outer cylinder 4, the rear end of the rear cone portion 44 is the rear end of the outer cylinder 4, and the rear end and the front end of adjacent portions are connected to each other. Yes. The front cone part 41, the outer flare part 42, and the outer straight part 43 are components of the front piece 4A, and the rear cone part 44 is a component of the rear piece 4B.
 前側円錐部41は、管状ストラット5および扁平ストラット6よりも前方に位置している。前側円錐部41は、比較的に緩やかな傾斜角度で後方に向かって拡径している。 The front cone part 41 is located in front of the tubular strut 5 and the flat strut 6. The front cone portion 41 has a diameter that increases toward the rear at a relatively gentle inclination angle.
 外側フレア部42は、前側円錐部41よりも大きな傾斜角度で、管状ストラット5および扁平ストラット6よりも前方から広がり始めている。本実施形態では、外側フレア部42の後端が管状ストラット5の前縁51よりも後方に位置している。ただし、外側フレア部42の後端は、管状ストラット5の前縁51と同じ位置に位置していてもよいし、管状ストラット5の前縁51よりも前方に位置していてもよい。 The outer flare portion 42 starts to spread from the front side with respect to the tubular strut 5 and the flat strut 6 at a larger inclination angle than the front cone portion 41. In the present embodiment, the rear end of the outer flare portion 42 is located behind the front edge 51 of the tubular strut 5. However, the rear end of the outer flare portion 42 may be located at the same position as the front edge 51 of the tubular strut 5, or may be located forward of the front edge 51 of the tubular strut 5.
 例えば、外側フレア部42は、管状ストラット5の前縁51の近傍での管状ストラット5に起因する排気流路21の断面積の減少(場合によっては、扁平ストラット6の前縁61の近傍での扁平ストラット6に起因する排気流路21の断面積の減少も)を打ち消す(必ずしもゼロにする必要はない)ように外筒4を拡径する。 For example, the outer flare portion 42 is formed by reducing the cross-sectional area of the exhaust passage 21 due to the tubular strut 5 in the vicinity of the front edge 51 of the tubular strut 5 (in some cases, in the vicinity of the front edge 61 of the flat strut 6. The diameter of the outer cylinder 4 is increased so as to cancel (and not necessarily to zero) the reduction in the cross-sectional area of the exhaust passage 21 caused by the flat strut 6.
 外側ストレート部43は、外側フレア部42の後端から管状ストラット5の最大幅部分55を超えて後方に延びている。本実施形態では、外側ストレート部43の後端が管状ストラット5の後縁52よりも後方に位置している。ただし、外側ストレート部43の後端は、管状ストラット5の後縁52と同じ位置に位置していてもよいし、管状ストラット5の後縁52よりも前方に位置していてもよい。 The outer straight portion 43 extends rearward from the rear end of the outer flare portion 42 beyond the maximum width portion 55 of the tubular strut 5. In the present embodiment, the rear end of the outer straight portion 43 is located behind the rear edge 52 of the tubular strut 5. However, the rear end of the outer straight portion 43 may be located at the same position as the rear edge 52 of the tubular strut 5 or may be located forward of the rear edge 52 of the tubular strut 5.
 後側円錐部44は、外側ストレート部43の後端から後方に向かって拡径している。後側円錐部44の傾斜角度は、前側円錐部41の傾斜角度と同じであってもよいし異なっていてもよい。 The rear conical part 44 is enlarged in diameter from the rear end of the outer straight part 43 toward the rear. The inclination angle of the rear cone portion 44 may be the same as or different from the inclination angle of the front cone portion 41.
 一方、内筒3は、前方から順に、前側ストレート部31、内側フレア部32および後側ストレート部33を有している。これの部位31~33は連続した外向き壁面を構成している。つまり、前側ストレート部31の前端が内筒3の前端であり、後側ストレート部33の後端が内筒3の後端であるとともに、隣り合う部位の後端と前端とが互いに接続されている。前側ストレート部31および内側フレア部32は前方ピース3Aの構成要素であり、後側ストレート部33は後方ピース3Bの構成要素である。 On the other hand, the inner cylinder 3 has a front straight part 31, an inner flare part 32, and a rear straight part 33 in order from the front. These portions 31 to 33 constitute a continuous outward wall surface. That is, the front end of the front straight portion 31 is the front end of the inner cylinder 3, the rear end of the rear straight portion 33 is the rear end of the inner cylinder 3, and the rear end and the front end of adjacent portions are connected to each other. Yes. The front straight portion 31 and the inner flare portion 32 are components of the front piece 3A, and the rear straight portion 33 is a component of the rear piece 3B.
 前側ストレート部31は、内筒3の前端から、管状ストラット5の最大幅部分55を超えて後方に延びている。このため、前側ストレート部31は、外筒4の前側円錐部41および外側フレア部42の全体と対向しているとともに、外側ストレート部43の一部とも対向している。 The front straight portion 31 extends rearward from the front end of the inner cylinder 3 beyond the maximum width portion 55 of the tubular strut 5. For this reason, the front straight portion 31 faces the entire front conical portion 41 and the outer flare portion 42 of the outer cylinder 4 and also faces a part of the outer straight portion 43.
 内側フレア部32は、管状ストラット5の最大幅部分55と後縁52の間から広がり始めている。内側フレア部32の後端は、管状ストラット5の後縁52よりも後方に位置している。 The inner flare portion 32 starts to spread between the maximum width portion 55 and the rear edge 52 of the tubular strut 5. The rear end of the inner flare portion 32 is located behind the rear edge 52 of the tubular strut 5.
 例えば、内側フレア部32は、管状ストラット5の後縁52の近傍での管状ストラット5に起因する排気流路21の断面積の増加(場合によっては、扁平ストラット6の後縁62の近傍での扁平ストラット6に起因する排気流路21の断面積の増加も)を打ち消す(必ずしもゼロにする必要はない)ように内筒3を拡径する。 For example, the inner flare portion 32 increases the cross-sectional area of the exhaust passage 21 due to the tubular strut 5 in the vicinity of the rear edge 52 of the tubular strut 5 (in some cases, in the vicinity of the rear edge 62 of the flat strut 6. The diameter of the inner cylinder 3 is increased so as to cancel out (and increase in the cross-sectional area of the exhaust passage 21 caused by the flat strut 6) (not necessarily zero).
 後側ストレート部33は、内側フレア部32の後端から後方に延びており、外筒4の後側円錐部44と対向している。 The rear straight portion 33 extends rearward from the rear end of the inner flare portion 32 and faces the rear conical portion 44 of the outer cylinder 4.
 以上説明したように、本実施形態の排気ディフューザ2では、管状ストラット5の前方で外側フレア部42により排気流路21が拡大されるため、排気流路21を流れる排気は十分に減速された後に管状ストラット5間に流入する。従って、管状ストラット5の前縁51近傍での圧力損失を小さくすることができる。一方、内側フレア部32がない場合には、管状ストラット5の最大幅部分55よりも後方では、管状ストラット5の占有面積の減少により、排気流路21の断面積が急激に増加する。これに対し、内側フレア部32があれば、内側フレア部32によってそのような排気流路21の断面積の急激な増加を緩和することができる。これにより、管状ストラット5の後縁52近傍でも圧力損失を小さくすることができる。 As described above, in the exhaust diffuser 2 of the present embodiment, the exhaust passage 21 is enlarged by the outer flare portion 42 in front of the tubular strut 5, so that the exhaust flowing through the exhaust passage 21 is sufficiently decelerated. It flows between the tubular struts 5. Therefore, the pressure loss in the vicinity of the front edge 51 of the tubular strut 5 can be reduced. On the other hand, in the absence of the inner flare portion 32, the cross-sectional area of the exhaust passage 21 increases rapidly due to the decrease in the area occupied by the tubular strut 5 behind the maximum width portion 55 of the tubular strut 5. On the other hand, if there is the inner flare part 32, the rapid increase in the cross-sectional area of the exhaust passage 21 can be mitigated by the inner flare part 32. Thereby, the pressure loss can be reduced even in the vicinity of the rear edge 52 of the tubular strut 5.
 さらに、本実施形態では、扁平ストラット6の前縁61が管状ストラット5の前縁51よりも前方に位置しているので、排気流路21の断面積が、扁平ストラット6によって小さく減少された後に管状ストラット5によって大きく減少される。このため、排気流路21の断面積を緩やかに変化させることができる。これにより、管状ストラット5の前縁51と扁平ストラット6の前縁61が一致している場合に比べ、圧力損失を小さくすることができる。 Furthermore, in the present embodiment, since the front edge 61 of the flat strut 6 is positioned in front of the front edge 51 of the tubular strut 5, the cross-sectional area of the exhaust passage 21 is reduced slightly by the flat strut 6. It is greatly reduced by the tubular strut 5. For this reason, the cross-sectional area of the exhaust passage 21 can be changed gently. Thereby, compared with the case where the front edge 51 of the tubular strut 5 and the front edge 61 of the flat strut 6 correspond, pressure loss can be made small.
 また、扁平ストラット6の後縁62は管状ストラット5の後縁52よりも前方に位置しているので、排気流路21を流れる排気が扁平ストラット6の後縁62近傍で合流した後に管状ストラット5の後縁52近傍で合流する。これにより、流れを安定化させることができる。 Further, since the trailing edge 62 of the flat strut 6 is located in front of the trailing edge 52 of the tubular strut 5, the tubular strut 5 is connected after the exhaust gas flowing through the exhaust passage 21 merges in the vicinity of the trailing edge 62 of the flat strut 6. Merges in the vicinity of the trailing edge 52. Thereby, a flow can be stabilized.
 さらに、本実施形態では、外筒4に排気流路21から径方向外向きに窪む凹部が形成されず、かつ、内筒3に排気流路から径方向内向きに窪む凹部が形成されない。このため、外筒4の前方ピース4Aおよび内筒3の前方ピース3Aを管状ストラット5および扁平ストラット6と共に鋳造により製造する際に、鋳型(例えば、木型)の分割数を少なくすることができる。 Further, in the present embodiment, the outer cylinder 4 is not formed with a recess that is recessed radially outward from the exhaust flow path 21, and the inner cylinder 3 is not formed with a recess that is recessed radially inward from the exhaust flow path. . For this reason, when manufacturing the front piece 4A of the outer cylinder 4 and the front piece 3A of the inner cylinder 3 together with the tubular strut 5 and the flat strut 6 by casting, the number of divisions of the mold (for example, a wooden mold) can be reduced. .
 (変形例)
 本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変形が可能である。
(Modification)
The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention.
 例えば、排気ディフューザ2は、必ずしもガスタービンエンジン1に組み込まれる必要はなく、例えば蒸気タービンの下流に配置されてもよい。 For example, the exhaust diffuser 2 is not necessarily incorporated into the gas turbine engine 1, and may be disposed downstream of the steam turbine, for example.
 また、排気ディフューザ2の軸方向において、扁平ストラット6は必ずしも管状ストラット5と部分的に重なり合う必要はなく、扁平ストラット6は管状ストラット5と全体的に重なり合ってもよい。 In the axial direction of the exhaust diffuser 2, the flat strut 6 does not necessarily overlap with the tubular strut 5, and the flat strut 6 may overlap with the tubular strut 5 as a whole.
 さらに、扁平ストラット6は必ずしも必要ではなく、複数の管状ストラット5のみが設けられてもよい。ただし、前記実施形態のように、少なくとも1つの管状ストラット5と少なくとも1つの扁平ストラット6が設けられていれば、配管などが無い箇所では細いストラットを採用することができ、排気流路21の断面積を大きく確保することができる。これにより、全てのストラットを管状ストラット5としたときと比べて、圧力損失を小さくすることができる。 Furthermore, the flat strut 6 is not necessarily required, and only a plurality of tubular struts 5 may be provided. However, if at least one tubular strut 5 and at least one flat strut 6 are provided as in the above-described embodiment, a thin strut can be adopted in a place where there is no piping or the like, and the exhaust passage 21 is disconnected. A large area can be secured. Thereby, compared with the case where all the struts are made into the tubular strut 5, pressure loss can be made small.
 また、外側フレア部42の前端は、扁平ストラット6の前縁61よりも後方に位置していてもよい。ただし、前記実施形態のように、外側フレア部42の前端が扁平ストラット6の前縁61よりも前方に位置していれば、扁平ストラット6間に流入する排気の速度を低減させることができる。 Further, the front end of the outer flare portion 42 may be located behind the front edge 61 of the flat strut 6. However, if the front end of the outer flare part 42 is located in front of the front edge 61 of the flat strut 6 as in the above embodiment, the speed of the exhaust gas flowing between the flat struts 6 can be reduced.
 また、扁平ストラット6の後縁62は、必ずしも管状ストラット5の後縁52よりも前方に位置している必要はなく、管状ストラット5の後縁52と同じ位置または管状ストラット5の後縁52よりも後方に位置していてもよい。 Further, the rear edge 62 of the flat strut 6 does not necessarily have to be positioned forward of the rear edge 52 of the tubular strut 5, and is the same position as the rear edge 52 of the tubular strut 5 or the rear edge 52 of the tubular strut 5. May be located rearward.
 また、図示は省略するが、外筒4の外側ストレート部43の代わりに、後側円錐部44と同じ傾斜角度の中間円錐部が設けられてもよい。さらに、内筒3の後側ストレート部33に代えて、内側フレア部32の後端から縮径する円錐部が採用されるとともに、外筒4の後側円錐部44に代えて、ストレート部が採用されてもよい。 Although not shown, an intermediate cone portion having the same inclination angle as that of the rear cone portion 44 may be provided instead of the outer straight portion 43 of the outer cylinder 4. Furthermore, instead of the rear straight portion 33 of the inner cylinder 3, a conical portion whose diameter is reduced from the rear end of the inner flare portion 32 is adopted, and instead of the rear conical portion 44 of the outer cylinder 4, the straight portion is It may be adopted.
 また、外筒4の前方ピース4Aおよび内筒3の前方ピース3Aのそれぞれは、板金加工により製造されてもよい。さらに、外筒4および内筒3のそれぞれは、単一の部材であってもよい。 Further, each of the front piece 4A of the outer cylinder 4 and the front piece 3A of the inner cylinder 3 may be manufactured by sheet metal processing. Furthermore, each of the outer cylinder 4 and the inner cylinder 3 may be a single member.
 ところで、前記実施形態の管状ストラット5と扁平ストラット6との位置関係に着目すれば、外筒4が外側フレア部42を有さず、かつ、内筒3が内側フレア部32を有さなくてもよい。すなわち、前記実施形態では、扁平ストラット6の前縁61が管状ストラット5の前縁51よりも前方に位置しているので、排気流路21の断面積が、扁平ストラット6によって小さく減少された後に管状ストラット5によって大きく減少される。このため、排気流路21の断面積を緩やかに変化させることができる。これにより、管状ストラット5の前縁51と扁平ストラット6の前縁61が一致している場合に比べ、圧力損失を小さくすることができる。このように前記実施形態の管状ストラット5と扁平ストラット6との位置関係に着目した場合には、内筒3および外筒4は、それらの間に形成される排気流路21が前方から後方に向かって広がる限りどのような形状であってもよい。 By the way, paying attention to the positional relationship between the tubular strut 5 and the flat strut 6 of the above embodiment, the outer cylinder 4 does not have the outer flare part 42 and the inner cylinder 3 does not have the inner flare part 32. Also good. That is, in the above-described embodiment, since the front edge 61 of the flat strut 6 is positioned in front of the front edge 51 of the tubular strut 5, the cross-sectional area of the exhaust passage 21 is reduced by the flat strut 6 to a small extent. It is greatly reduced by the tubular strut 5. For this reason, the cross-sectional area of the exhaust passage 21 can be changed gently. Thereby, compared with the case where the front edge 51 of the tubular strut 5 and the front edge 61 of the flat strut 6 correspond, pressure loss can be made small. Thus, when paying attention to the positional relationship between the tubular strut 5 and the flat strut 6 of the embodiment, the inner cylinder 3 and the outer cylinder 4 have the exhaust passage 21 formed between them from the front to the rear. Any shape may be used as long as it spreads out.
 また、前記実施形態の管状ストラット5と扁平ストラット6との位置関係に着目した場合でも、扁平ストラット6の後縁62は、必ずしも管状ストラット5の後縁52よりも前方に位置している必要はなく、管状ストラット5の後縁52と同じ位置または管状ストラット5の後縁52よりも後方に位置していてもよい。さらに、外筒4および内筒3のそれぞれは、全体が板金加工で製造されてもよいし、単一の部材であってもよい。 Even when attention is paid to the positional relationship between the tubular strut 5 and the flat strut 6 in the embodiment, the rear edge 62 of the flat strut 6 does not necessarily have to be located in front of the rear edge 52 of the tubular strut 5. Instead, it may be located at the same position as the rear edge 52 of the tubular strut 5 or behind the rear edge 52 of the tubular strut 5. Further, each of the outer cylinder 4 and the inner cylinder 3 may be manufactured by sheet metal processing as a whole or may be a single member.
 2  排気ディフューザ
 21 排気流路
 3  内筒
 31 前側ストレート部
 32 内側フレア部
 33 後側ストレート部
 4  外筒
 41 前側円錐部
 42 外側フレア部
 43 外側ストレート部
 44 後側円錐部
 5  管状ストラット
 51 前縁
 52 後縁
 55 最大幅部分
 6  扁平ストラット
 61 前縁
 62 後縁
2 Exhaust diffuser 21 Exhaust flow path 3 Inner cylinder 31 Front straight part 32 Inner flare part 33 Rear straight part 4 Outer cylinder 41 Front conical part 42 Outer flare part 43 Outer straight part 44 Rear conical part 5 Tubular strut 51 Front edge 52 Trailing edge 55 Maximum width 6 Flat strut 61 Leading edge 62 Trailing edge

Claims (9)

  1.  内筒と、
     前記内筒との間に、前方から後方に向かって広がる排気流路を形成する外筒と、
     前記内筒と前記外筒とを連結する少なくとも1つの管状ストラットと、を備え、
     前記外筒は、前記管状ストラットよりも前方に前側円錐部を有するとともに、前記前側円錐部よりも大きな傾斜角度で前記管状ストラットよりも前方から広がり始める外側フレア部を有しており、
     前記内筒は、前記前側円錐部および前記外側フレア部と対向する前側ストレート部を有するとともに、前記管状ストラットの最大幅部分と後縁の間から広がり始める内側フレア部を有している、排気ディフューザ。
    An inner cylinder,
    An outer cylinder that forms an exhaust passage extending from the front to the rear between the inner cylinder and the inner cylinder;
    And at least one tubular strut connecting the inner cylinder and the outer cylinder,
    The outer cylinder has a front conical portion in front of the tubular strut, and an outer flare portion that starts to spread from the front with respect to the tubular strut at a larger inclination angle than the front conical portion,
    The inner cylinder has a front straight portion facing the front conical portion and the outer flare portion, and has an inner flare portion that starts to spread from between the maximum width portion and the rear edge of the tubular strut. .
  2.  前記外筒の一部および前記内筒の一部は、鋳造により前記管状ストラットと一体的に形成されている、請求項1に記載の排気ディフューザ。 The exhaust diffuser according to claim 1, wherein a part of the outer cylinder and a part of the inner cylinder are integrally formed with the tubular strut by casting.
  3.  前記外筒は、前記外側フレア部の後端から前記管状ストラットの最大幅部分を超えて後方に延びる外側ストレート部と、前記外側ストレート部の後端から拡径する後側円錐部を有し、
     前記内筒は、前記内側フレア部の後端から後方に延びる後側ストレート部を有する、請求項1または2に記載の排気ディフューザ。
    The outer cylinder has an outer straight portion extending rearward from the rear end of the outer flare portion beyond the maximum width portion of the tubular strut, and a rear conical portion expanding in diameter from the rear end of the outer straight portion,
    The exhaust diffuser according to claim 1 or 2, wherein the inner cylinder has a rear straight portion extending rearward from a rear end of the inner flare portion.
  4.  前記内筒と前記外筒とを連結する、当該排気ディフューザの軸方向において前記管状ストラットと重なり合う少なくとも1つの扁平ストラットをさらに備える、請求項1~3のいずれか一項に記載の排気ディフューザ。 The exhaust diffuser according to any one of claims 1 to 3, further comprising at least one flat strut that connects the inner cylinder and the outer cylinder and overlaps the tubular strut in the axial direction of the exhaust diffuser.
  5.  前記扁平ストラットの前縁は、前記管状ストラットの前縁よりも前方に位置しており、
     前記扁平ストラットの後縁は、前記管状ストラットの最大幅部分よりも後方に位置している、請求項4に記載の排気ディフューザ。
    The front edge of the flat strut is located in front of the front edge of the tubular strut;
    The exhaust diffuser according to claim 4, wherein a rear edge of the flat strut is located behind a maximum width portion of the tubular strut.
  6.  前記扁平ストラットの後縁は、前記管状ストラットの後縁よりも前方に位置している、請求項5に記載の排気ディフューザ。 The exhaust diffuser according to claim 5, wherein a rear edge of the flat strut is located in front of a rear edge of the tubular strut.
  7.  内筒と、
     前記内筒との間に、前方から後方に向かって広がる排気流路を形成する外筒と、
     前記内筒と前記外筒とを連結する少なくとも1つの管状ストラットと、
     前記内筒と前記外筒とを連結する、当該排気ディフューザの軸方向において前記管状ストラットと重なり合う少なくとも1つの扁平ストラットと、を備え、
     前記扁平ストラットの前縁は、前記管状ストラットの前縁よりも前方に位置しており、
     前記扁平ストラットの後縁は、前記管状ストラットの最大幅部分よりも後方に位置している、排気ディフューザ。
    An inner cylinder,
    An outer cylinder that forms an exhaust passage extending from the front to the rear between the inner cylinder and the inner cylinder;
    At least one tubular strut connecting the inner cylinder and the outer cylinder;
    Connecting the inner cylinder and the outer cylinder, and including at least one flat strut overlapping the tubular strut in the axial direction of the exhaust diffuser,
    The front edge of the flat strut is located in front of the front edge of the tubular strut;
    The exhaust diffuser, wherein a rear edge of the flat strut is located behind a maximum width portion of the tubular strut.
  8.  前記扁平ストラットの後縁は、前記管状ストラットの後縁よりも前方に位置している、請求項7に記載の排気ディフューザ。 The exhaust diffuser according to claim 7, wherein a rear edge of the flat strut is located in front of a rear edge of the tubular strut.
  9.  前記外筒の一部および前記内筒の一部は、鋳造により前記管状ストラットと一体的に形成されている、請求項7または8に記載の排気ディフューザ。 The exhaust diffuser according to claim 7 or 8, wherein a part of the outer cylinder and a part of the inner cylinder are integrally formed with the tubular strut by casting.
PCT/JP2016/003958 2015-08-31 2016-08-30 Exhaust diffuser WO2017038086A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680044263.XA CN107923261B (en) 2015-08-31 2016-08-30 Exhaust gas diffuser
US15/755,915 US10851676B2 (en) 2015-08-31 2016-08-30 Exhaust diffuser
GB1803441.3A GB2556798B (en) 2015-08-31 2016-08-30 Exhaust Diffuser
DE112016003468.7T DE112016003468T5 (en) 2015-08-31 2016-08-30 EXHAUST DIFFUSER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015170156A JP6546481B2 (en) 2015-08-31 2015-08-31 Exhaust diffuser
JP2015-170156 2015-08-31

Publications (1)

Publication Number Publication Date
WO2017038086A1 true WO2017038086A1 (en) 2017-03-09

Family

ID=58187036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003958 WO2017038086A1 (en) 2015-08-31 2016-08-30 Exhaust diffuser

Country Status (6)

Country Link
US (1) US10851676B2 (en)
JP (1) JP6546481B2 (en)
CN (1) CN107923261B (en)
DE (1) DE112016003468T5 (en)
GB (1) GB2556798B (en)
WO (1) WO2017038086A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11242762B2 (en) * 2019-11-21 2022-02-08 Raytheon Technologies Corporation Vane with collar
KR102403823B1 (en) * 2019-12-13 2022-05-30 두산에너빌리티 주식회사 Strut structure with strip for exhaust diffuser and gas turbine having the same
FR3126021A1 (en) * 2021-08-05 2023-02-10 Safran Aircraft Engines PASSAGE OF SERVITUDES IN AN AIRCRAFT TURBOMACHINE EXHAUST CASING

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02245428A (en) * 1988-12-29 1990-10-01 General Electric Co <Ge> Turbine engine assembly
JP2014122622A (en) * 2012-12-20 2014-07-03 General Electric Co <Ge> Staggered double row, slotted airfoil design for gas turbine exhaust frame
JP2014211159A (en) * 2013-04-17 2014-11-13 ゼネラル・エレクトリック・カンパニイ Flow manipulating arrangement for turbine exhaust diffuser
JP2015514898A (en) * 2012-03-30 2015-05-21 アルストム テクノロジー リミテッドALSTOM Technology Ltd Exhaust diffuser for gas turbine

Family Cites Families (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2110679A (en) * 1936-04-22 1938-03-08 Gen Electric Elastic fluid turbine
BE471415A (en) * 1946-02-25
US3024969A (en) * 1957-12-26 1962-03-13 Gen Electric Compressor rear frame
US3075744A (en) * 1960-08-16 1963-01-29 United Aircraft Corp Turbine nozzle vane mounting means
US3286461A (en) * 1965-07-22 1966-11-22 Gen Motors Corp Turbine starter and cooling
US3800864A (en) * 1972-09-05 1974-04-02 Gen Electric Pin-fin cooling system
US3965066A (en) * 1974-03-15 1976-06-22 General Electric Company Combustor-turbine nozzle interconnection
US4292008A (en) * 1977-09-09 1981-09-29 International Harvester Company Gas turbine cooling systems
US4464094A (en) * 1979-05-04 1984-08-07 Trw Inc. Turbine engine component and method of making the same
US4375891A (en) * 1980-05-10 1983-03-08 Rolls-Royce Limited Seal between a turbine rotor of a gas turbine engine and associated static structure of the engine
US4642024A (en) * 1984-12-05 1987-02-10 United Technologies Corporation Coolable stator assembly for a rotary machine
US4821522A (en) * 1987-07-02 1989-04-18 United Technologies Corporation Sealing and cooling arrangement for combustor vane interface
US5197856A (en) * 1991-06-24 1993-03-30 General Electric Company Compressor stator
GB9305012D0 (en) * 1993-03-11 1993-04-28 Rolls Royce Plc Sealing structures for gas turbine engines
GB9304994D0 (en) * 1993-03-11 1993-04-28 Rolls Royce Plc Improvements in or relating to gas turbine engines
US5332360A (en) * 1993-09-08 1994-07-26 General Electric Company Stator vane having reinforced braze joint
JPH10184304A (en) 1996-12-27 1998-07-14 Toshiba Corp Turbine nozzle and turbine moving blade of axial flow turbine
US6164903A (en) * 1998-12-22 2000-12-26 United Technologies Corporation Turbine vane mounting arrangement
US6431824B2 (en) * 1999-10-01 2002-08-13 General Electric Company Turbine nozzle stage having thermocouple guide tube
US6439841B1 (en) * 2000-04-29 2002-08-27 General Electric Company Turbine frame assembly
FR2840974B1 (en) * 2002-06-13 2005-12-30 Snecma Propulsion Solide SEAL RING FOR COMBUSTION CAHMBERS AND COMBUSTION CHAMBER COMPRISING SUCH A RING
JP3840556B2 (en) * 2002-08-22 2006-11-01 川崎重工業株式会社 Combustor liner seal structure
US9068464B2 (en) * 2002-09-17 2015-06-30 Siemens Energy, Inc. Method of joining ceramic parts and articles so formed
US6884030B2 (en) * 2002-12-20 2005-04-26 General Electric Company Methods and apparatus for securing multi-piece nozzle assemblies
US6860716B2 (en) * 2003-05-29 2005-03-01 General Electric Company Turbomachine frame structure
GB2402717B (en) * 2003-06-10 2006-05-10 Rolls Royce Plc A vane assembly for a gas turbine engine
US7004720B2 (en) * 2003-12-17 2006-02-28 Pratt & Whitney Canada Corp. Cooled turbine vane platform
US7114339B2 (en) * 2004-03-30 2006-10-03 United Technologies Corporation Cavity on-board injection for leakage flows
BRPI0418861A (en) * 2004-05-27 2007-11-20 Volvo Aero Corp upstream structure on a turbine or compressor device and method for assembling the structure
US7100358B2 (en) * 2004-07-16 2006-09-05 Pratt & Whitney Canada Corp. Turbine exhaust case and method of making
US7527469B2 (en) * 2004-12-10 2009-05-05 Siemens Energy, Inc. Transition-to-turbine seal apparatus and kit for transition/turbine junction of a gas turbine engine
US7452184B2 (en) * 2004-12-13 2008-11-18 Pratt & Whitney Canada Corp. Airfoil platform impingement cooling
FR2882394B1 (en) * 2005-02-22 2007-05-18 Snecma Moteurs Sa DEVICE FOR VARYING THE COLLAR SECTION OF A TURBINE DISPENSER
US7452182B2 (en) * 2005-04-07 2008-11-18 Siemens Energy, Inc. Multi-piece turbine vane assembly
US7360988B2 (en) * 2005-12-08 2008-04-22 General Electric Company Methods and apparatus for assembling turbine engines
US7976274B2 (en) * 2005-12-08 2011-07-12 General Electric Company Methods and apparatus for assembling turbine engines
US7836702B2 (en) * 2006-09-15 2010-11-23 Pratt & Whitney Canada Corp. Gas turbine combustor exit duct and HP vane interface
US7726131B2 (en) * 2006-12-19 2010-06-01 Pratt & Whitney Canada Corp. Floatwall dilution hole cooling
US20080199661A1 (en) * 2007-02-15 2008-08-21 Siemens Power Generation, Inc. Thermally insulated CMC structure with internal cooling
FR2917458B1 (en) * 2007-06-13 2009-09-25 Snecma Sa EXHAUST CASING HUB COMPRISING STRESS DISTRIBUTION RIBS
EP2229507B1 (en) * 2007-12-29 2017-02-08 General Electric Technology GmbH Gas turbine
EP2242916B1 (en) * 2008-02-20 2015-06-24 Alstom Technology Ltd Gas turbine
WO2009107438A1 (en) * 2008-02-27 2009-09-03 三菱重工業株式会社 Connection structure of exhaust chamber, support structure of turbine, and gas turbine
US8099962B2 (en) * 2008-11-28 2012-01-24 Pratt & Whitney Canada Corp. Mid turbine frame system and radial locator for radially centering a bearing for gas turbine engine
US8061969B2 (en) * 2008-11-28 2011-11-22 Pratt & Whitney Canada Corp. Mid turbine frame system for gas turbine engine
US8091371B2 (en) * 2008-11-28 2012-01-10 Pratt & Whitney Canada Corp. Mid turbine frame for gas turbine engine
US20100132371A1 (en) * 2008-11-28 2010-06-03 Pratt & Whitney Canada Corp. Mid turbine frame system for gas turbine engine
US8371812B2 (en) * 2008-11-29 2013-02-12 General Electric Company Turbine frame assembly and method for a gas turbine engine
US8177488B2 (en) * 2008-11-29 2012-05-15 General Electric Company Integrated service tube and impingement baffle for a gas turbine engine
US8408011B2 (en) * 2009-04-30 2013-04-02 Pratt & Whitney Canada Corp. Structural reinforcement strut for gas turbine case
US20100275572A1 (en) * 2009-04-30 2010-11-04 Pratt & Whitney Canada Corp. Oil line insulation system for mid turbine frame
US8388307B2 (en) * 2009-07-21 2013-03-05 Honeywell International Inc. Turbine nozzle assembly including radially-compliant spring member for gas turbine engine
US8500392B2 (en) * 2009-10-01 2013-08-06 Pratt & Whitney Canada Corp. Sealing for vane segments
US9284887B2 (en) * 2009-12-31 2016-03-15 Rolls-Royce North American Technologies, Inc. Gas turbine engine and frame
WO2012086044A1 (en) * 2010-12-24 2012-06-28 三菱重工業株式会社 Flow path structure and gas turbine exhaust diffuser
US9938900B2 (en) * 2011-05-26 2018-04-10 United Technologies Corporation Ceramic matrix composite turbine exhaust case for a gas turbine engine
US9097141B2 (en) * 2011-09-15 2015-08-04 Pratt & Whitney Canada Corp. Axial bolting arrangement for mid turbine frame
US9200536B2 (en) * 2011-10-17 2015-12-01 United Technologies Corporation Mid turbine frame (MTF) for a gas turbine engine
US8826669B2 (en) * 2011-11-09 2014-09-09 Pratt & Whitney Canada Corp. Gas turbine exhaust case
US9115593B2 (en) * 2012-04-02 2015-08-25 United Technologies Corporation Turbomachine thermal management
US9222413B2 (en) * 2012-07-13 2015-12-29 United Technologies Corporation Mid-turbine frame with threaded spokes
EP2900956B1 (en) * 2012-09-26 2019-11-20 United Technologies Corporation Gas turbine engine comprising a seal assembly for a static structure thereof
US9359900B2 (en) 2012-10-05 2016-06-07 General Electric Company Exhaust diffuser
US9311445B2 (en) * 2012-11-20 2016-04-12 General Electric Company Method, process, and system for high efficiency gas turbine exhaust duct flow-path
US10036324B2 (en) * 2012-12-29 2018-07-31 United Technologies Corporation Installation mounts for a turbine exhaust case
US9845695B2 (en) * 2012-12-29 2017-12-19 United Technologies Corporation Gas turbine seal assembly and seal support
US9850780B2 (en) * 2012-12-29 2017-12-26 United Technologies Corporation Plate for directing flow and film cooling of components
US10060291B2 (en) * 2013-03-05 2018-08-28 United Technologies Corporation Mid-turbine frame rod and turbine case flange
FR3008136B1 (en) * 2013-07-04 2017-12-15 Snecma SUSPENSION OF A STRUCTURE IN A TURBOREACTOR BY A HYPERSTATIC MESH WITH PRE-TENSION BONDING ELEMENTS AND ASSOCIATED PRE-TENSIONING METHOD
US9540956B2 (en) * 2013-11-22 2017-01-10 Siemens Energy, Inc. Industrial gas turbine exhaust system with modular struts and collars
US9644497B2 (en) * 2013-11-22 2017-05-09 Siemens Energy, Inc. Industrial gas turbine exhaust system with splined profile tail cone
US9587519B2 (en) * 2013-11-22 2017-03-07 Siemens Energy, Inc. Modular industrial gas turbine exhaust system
US9752447B2 (en) * 2014-04-04 2017-09-05 United Technologies Corporation Angled rail holes
US10655482B2 (en) * 2015-02-05 2020-05-19 Rolls-Royce Corporation Vane assemblies for gas turbine engines
US9897093B2 (en) * 2015-03-25 2018-02-20 Hamilton Sundstrand Corporation Bearing cooling flow and energy recovery systems
US9863260B2 (en) * 2015-03-30 2018-01-09 General Electric Company Hybrid nozzle segment assemblies for a gas turbine engine
US9828914B2 (en) * 2015-04-13 2017-11-28 United Technologies Corporation Thermal management system and method of circulating air in a gas turbine engine
US9777595B2 (en) * 2015-05-05 2017-10-03 United Technologies Corporation Lubrication system for geared gas turbine engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02245428A (en) * 1988-12-29 1990-10-01 General Electric Co <Ge> Turbine engine assembly
JP2015514898A (en) * 2012-03-30 2015-05-21 アルストム テクノロジー リミテッドALSTOM Technology Ltd Exhaust diffuser for gas turbine
JP2014122622A (en) * 2012-12-20 2014-07-03 General Electric Co <Ge> Staggered double row, slotted airfoil design for gas turbine exhaust frame
JP2014211159A (en) * 2013-04-17 2014-11-13 ゼネラル・エレクトリック・カンパニイ Flow manipulating arrangement for turbine exhaust diffuser

Also Published As

Publication number Publication date
GB2556798A8 (en) 2018-07-04
GB201803441D0 (en) 2018-04-18
CN107923261B (en) 2020-12-04
GB2556798A (en) 2018-06-06
GB2556798B (en) 2020-12-30
JP6546481B2 (en) 2019-07-17
US20180328230A1 (en) 2018-11-15
JP2017048683A (en) 2017-03-09
DE112016003468T5 (en) 2018-04-19
US10851676B2 (en) 2020-12-01
CN107923261A (en) 2018-04-17

Similar Documents

Publication Publication Date Title
JP5145007B2 (en) Fan platform fins
JP6351049B2 (en) Turbine housing and method for manufacturing turbine housing
US8425188B2 (en) Diffuser pipe and assembly for gas turbine engine
WO2017038086A1 (en) Exhaust diffuser
JP2015017607A5 (en)
JP2014077441A5 (en)
JP2016079904A5 (en)
US20160177728A1 (en) Vane structure for axial flow turbomachine and gas turbine engine
JP2019120152A5 (en)
JP2012140955A5 (en)
WO2017110973A1 (en) Gas turbine engine
JP6580494B2 (en) Exhaust frame
JP6498534B2 (en) Exhaust diffuser
JP2017115857A (en) Fan case for use in turbofan engine, and method of assembling turbofan engine
JP6661323B2 (en) Compressor intake structure
WO2016080025A1 (en) Axial-flow-machine blade
JP6654039B2 (en) Gas turbine engine
JP2019090355A5 (en)
JP6785368B2 (en) gas turbine
JP6642258B2 (en) Supercharger
US11441428B2 (en) Turbine blade and steam turbine including the same
US9657631B2 (en) Gas leakage prevention cover and exhaust manifold having the same
US9822706B2 (en) Gas turbine subassembly
JP2008291741A (en) Nozzle vane cascade, movingblade cascade, and axial flow turbine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841120

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15755915

Country of ref document: US

Ref document number: 112016003468

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 201803441

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20160830

122 Ep: pct application non-entry in european phase

Ref document number: 16841120

Country of ref document: EP

Kind code of ref document: A1