WO2017037068A1 - Medium voltage switchgear with frame and/or support element - Google Patents

Medium voltage switchgear with frame and/or support element Download PDF

Info

Publication number
WO2017037068A1
WO2017037068A1 PCT/EP2016/070425 EP2016070425W WO2017037068A1 WO 2017037068 A1 WO2017037068 A1 WO 2017037068A1 EP 2016070425 W EP2016070425 W EP 2016070425W WO 2017037068 A1 WO2017037068 A1 WO 2017037068A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole parts
joining element
medium voltage
voltage switchgear
fixed
Prior art date
Application number
PCT/EP2016/070425
Other languages
French (fr)
Inventor
Manfred Sauer
Dietmar Gentsch
Original Assignee
Abb Schweiz Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abb Schweiz Ag filed Critical Abb Schweiz Ag
Priority to CN201680049824.5A priority Critical patent/CN107924785B/en
Priority to EP16757913.5A priority patent/EP3345202B1/en
Publication of WO2017037068A1 publication Critical patent/WO2017037068A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/6606Terminal arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/6606Terminal arrangements
    • H01H2033/6613Cooling arrangements directly associated with the terminal arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements
    • H01H2033/6665Details concerning the mounting or supporting of the individual vacuum bottles

Definitions

  • the invention relates to a medium voltage switchgear with frame, wherein a three phase arrangement of pole parts with vacuum interrupters inside circuit breakers are fixed at one end on a support or a frame element, which is arranged in a switchgear panel, wherein the open ends of the pole parts, opposite to the fixed ends of the pole parts fixed on the support or frame, are among themselves mechanically joined or connected by an additional joining element, and near to the aforesaid open ends of the pole parts, one electrical terminal per pole part is placed, according to the preamble of claim 1 .
  • the invention is based on medium voltage vacuum circuit breakers for switchgears and vacuum circuit breaker "stand-alone".
  • medium voltage vacuum circuit breakers mainly consist of a drive mechanism and electric poles.
  • Vacuum interrupters are installed within the poles or pole parts.
  • the drive is connected to the vacuum interrupters via pushrods which drive the mechanical movement of the switching contacts inside the vacuum interrupters.
  • the poles provide the mechanical support to the vacuum interrupters.
  • the poles are fixed to the circuit breaker structure and therewith to the gas-insulated switchgear panel or inside air-insulated environment.
  • EP 2 720 245 A1 An assembled pole parts are disclosed in EP 2 720 245 A1 .
  • This document discloses a vacuum interrupter which is arranged or mounted between two halfshells made of insulating material. In three phase arrangements, three pole parts are arranged in parallel. Short circuits cause a high mechanical impact to the positioned pole parts, so that joining elements are used to mechanically connect such pole parts in such arrangements.
  • the pole-design has to withstand also the dielectric and thermal stress during service and testing conditions.
  • the insulation parts of electric poles must provide sufficient electric creepage distance on electrically stressed paths and sufficient high electric resistivity. Furthermore the design should avoid thin gas gaps between insulating and electrically stressed parts where an accumulation of the electric field appears.
  • the pole design and especially the mechanically supporting parts of the poles must withstand the mechanical stress during switching of the circuit breaker and the electromagnetic forces during short circuit current application like short time current or short circuit current interruption operation.
  • the invention proposes, that the joining element is made of insulating material and tightly fixed among the open ends of the pole parts in such, that they mechanically interconnect the pole parts and additionally increases the dielectrical withstand between the terminals of the pole parts from each other. Thermal conductivity can be provided to enable the part as a heat sink.
  • the joining element made of insulating material which is fixed tightly over the open ends of the pole parts, reinforces the mechanical stiffness of the pole part arrangement, and simultaneously results in an increase of the dielectrical withstand between the electrical terminals of the pole parts in this region.
  • the joining element is at least partly covered by a conductive surface deposition in order to compensate electrical surface charging.
  • the joining element is a plate.
  • the joining element is reinforced at least at one surface by a crossbeam structure.
  • the joining element is provided with sealing strips or paths or regions between each pole part, at that side of the joining element, which is directly fixed on the pole parts.
  • the joining element is fixed commonly at the open ends of the pole parts via insulating screws, screwed into female threads, which are integrated or implemented in the insulating half shells or embedding cover of the pole parts.
  • the insulating half shells or the insulating embedding cover of the vacuum interrupters are made of
  • thermoplastic BMC or duroplastic material.
  • the joining element is fixed commonly at the open ends of the pole parts via high strength insulating or metallic screws, at least at the resulting four corners of the joining element, screwed into female screw threads, which are integrated or implemented in the insulating half shells or resin of the pole parts.
  • the insulating half shells or the insulating material for embedding the vacuum interrupters are made of thermoplastic material.
  • the invention can be realized in an advantageous way in so called assembled pole parts, in which the insulation cover of the vacuum interrupters consists of assembled half shells, like is is shown in figure 1 .
  • pole parts partly or fully embedded vacuum interrupters are not the only possible embodiment for the invention. It is also applicable for pole parts partly or fully embedded vacuum interrupters.
  • This joining element is in one embodiment designed as or provided with a cross beam structure 3 on the opposite surface of the plate fixed tightly among the electric poles or pole parts 2. It is fixed to the ends of the poles opposite to the drive.
  • the joining element 1 is provided with openings 3, in which counter- or fixation- discs or -plates 4 are introduced, in order to fix the joining element with each of the pole parts 2, like shown in figure 3.
  • the complete reinforcement element including the mechanically reinforcing cross beam structure is made from thermoplastic material and is produced in a single injection molding process.
  • the joining element is designed to be fixed on poles which mechanical support structure is realized by thermoplastic half- shells.
  • the fixation of the joining element to the end of the pole half-shells is done by e.g. high-strength, insulating screws and/or some overlapping areas to fix or take the forces from the half shell to the support structure.
  • the transition between the end-faces of the pole half-shells and the joining element is sealed by an elastic two compound sealing material. This sealing is already fixed to the joining element during its molding process. It is important, that the sealing is tight, in dielectric sense.
  • reinforcement element prevents from flash- overs between conducting parts of the poles at high voltage levels and narrow pole distances.
  • a further alternative embodiment of the joining element may be provided with a low conductive suface finish in order to allow the equalization of accumulated electric charges between the insulating pole supports.
  • a further embodiment of the reinforcement element may be fixed to the pole half-shells by self-tapping screws.
  • Figure 2 shows the joining element 1 from the side, which comes into tight mechanical contact to the ends of the pole parts 2.
  • the joining element is provided at that side with sealing strips 4, in order to result in good dieletric withstand. Therefore sealing elements were extruded on the joining elements surface. So far, also sealing elements can be used which are positioned in grooves on the surface of the joining element. Furthermore glueing is possible.

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

The invention relates to a Medium voltage switchgear with frame, wherein a three phase arrangement of pole parts with vacuum interrupters are fixed at one end on a support or a frame element, which is arranged in a switchgear panel, wherein the open ends of the pole parts, opposite to the fixed ends of the pole parts fixed on the support or frame, are among themselves mechanically joined or connected by an additional joining and /or overlapping element, and near to the aforesaid open ends of the pole parts, one electrical terminal per pole part is placed, according to the preamble of claim 1. In order to result in the function of mechanical reinforcement coupled with the enhancement of dielectric withstand, with easy structural features, the invention is, that the joining element (1 ) is made of insulating material and tightly fixed among the open ends of the pole parts (2) in such, that they mechanically interconnect the pole parts and additionally increases the dielectrical withstand between the terminals of the pole parts from each other.

Description

Medium voltage switchgear with frame and/or support element
The invention relates to a medium voltage switchgear with frame, wherein a three phase arrangement of pole parts with vacuum interrupters inside circuit breakers are fixed at one end on a support or a frame element, which is arranged in a switchgear panel, wherein the open ends of the pole parts, opposite to the fixed ends of the pole parts fixed on the support or frame, are among themselves mechanically joined or connected by an additional joining element, and near to the aforesaid open ends of the pole parts, one electrical terminal per pole part is placed, according to the preamble of claim 1 .
The invention is based on medium voltage vacuum circuit breakers for switchgears and vacuum circuit breaker "stand-alone". In general such medium voltage vacuum circuit breakers mainly consist of a drive mechanism and electric poles. Vacuum interrupters are installed within the poles or pole parts. The drive is connected to the vacuum interrupters via pushrods which drive the mechanical movement of the switching contacts inside the vacuum interrupters. The poles provide the mechanical support to the vacuum interrupters. The poles are fixed to the circuit breaker structure and therewith to the gas-insulated switchgear panel or inside air-insulated environment.
An assembled pole parts are disclosed in EP 2 720 245 A1 . This document discloses a vacuum interrupter which is arranged or mounted between two halfshells made of insulating material. In three phase arrangements, three pole parts are arranged in parallel. Short circuits cause a high mechanical impact to the positioned pole parts, so that joining elements are used to mechanically connect such pole parts in such arrangements.
Additionally to this mechanical requirement, the pole-design has to withstand also the dielectric and thermal stress during service and testing conditions.
In respect of dielectric stress the insulation parts of electric poles must provide sufficient electric creepage distance on electrically stressed paths and sufficient high electric resistivity. Furthermore the design should avoid thin gas gaps between insulating and electrically stressed parts where an accumulation of the electric field appears.
In respect of thermal stress the insulating parts of electric poles must withstand the ambient temperature in the circuit breaker compartment and the
temperature of conducting parts with which they are in contact. Mechanical and dielectric properties of the insulating parts of the poles must not change inappropriately.
In respect of mechanical stress the pole design and especially the mechanically supporting parts of the poles must withstand the mechanical stress during switching of the circuit breaker and the electromagnetic forces during short circuit current application like short time current or short circuit current interruption operation.
Mainly two different embodiments of electric poles for medium-voltage vacuum circuit breakers are known. I.e. embedded pole parts, the vacuum interrupter and connecting parts are embedded in insulating material like thermosets, bulk moulded compounds (BMC) and thermoplastic material, and discrete structures, assembled pole parts in which mechanically supporting elements, electrically connecting elements, insulating elements and the vacuum interrupter are glued, screwed or snapped together. In assembled poles the mechanical support for the vacuum interrupter is known to be made from insulating threaded rods, insulating plates or insulating half-shells. In order to assure additional mechanical stability between the poles simple mechanical cross beams are known to be fixed across the poles.
As a result from well known pole designs, disadvantages for such known arrangements are at first the mechanical instability of electric poles during short circuit current, which can cause further damage to the switchgear.
Furthermore flashovers can occur between electric poles at narrow pole- distance.
Furthermore, known constructions for preventing the aforesaid negative consequences result in constructive big structures for high power ratings.
According to that, it is the object of the invention, to prevent the aforesaid functionally bad consequences with constructionally compact elements, in such, that the function of mechanical reinforcement is coupled with the enhancement of dielectric withstand, with easy structural features.
This is solved by the features of claim 1 .
Further advantageous embodiments of the invention is mentioned in the depending claims.
The invention proposes, that the joining element is made of insulating material and tightly fixed among the open ends of the pole parts in such, that they mechanically interconnect the pole parts and additionally increases the dielectrical withstand between the terminals of the pole parts from each other. Thermal conductivity can be provided to enable the part as a heat sink.
So as a result, the joining element made of insulating material, which is fixed tightly over the open ends of the pole parts, reinforces the mechanical stiffness of the pole part arrangement, and simultaneously results in an increase of the dielectrical withstand between the electrical terminals of the pole parts in this region.
So, by using this joining element, positioned at the defined place, mechanical reinforcement as well as increase of dielectrical withstand is enhanced by only one element.
In a special embodiement the joining element is at least partly covered by a conductive surface deposition in order to compensate electrical surface charging.
In a further advantageous embodiment, the joining element is a plate.
Alternatively and higly advantageous the joining element is reinforced at least at one surface by a crossbeam structure.
In a further advantageous embodiment, the joining element is provided with sealing strips or paths or regions between each pole part, at that side of the joining element, which is directly fixed on the pole parts.
In a further advantageous embodiment, the joining element is fixed commonly at the open ends of the pole parts via insulating screws, screwed into female threads, which are integrated or implemented in the insulating half shells or embedding cover of the pole parts.
In a further advantageous embodiment, the insulating half shells or the insulating embedding cover of the vacuum interrupters are made of
thermoplastic, BMC or duroplastic material.
In a further advantageous embodiment, the joining element is fixed commonly at the open ends of the pole parts via high strength insulating or metallic screws, at least at the resulting four corners of the joining element, screwed into female screw threads, which are integrated or implemented in the insulating half shells or resin of the pole parts.
In a further advantageous and final embodiment, the insulating half shells or the insulating material for embedding the vacuum interrupters are made of thermoplastic material.
The invention can be realized in an advantageous way in so called assembled pole parts, in which the insulation cover of the vacuum interrupters consists of assembled half shells, like is is shown in figure 1 .
But this is not the only possible embodiment for the invention. It is also applicable for pole parts partly or fully embedded vacuum interrupters.
So an electrical and mechanical joining and therefore reinforceing element 1 is for the medium voltage switchgear the basical part of the invention. This joining element is in one embodiment designed as or provided with a cross beam structure 3 on the opposite surface of the plate fixed tightly among the electric poles or pole parts 2. It is fixed to the ends of the poles opposite to the drive.
It significantly decreases the mechanical and electrical stress on and between the poles.
The joining element 1 is provided with openings 3, in which counter- or fixation- discs or -plates 4 are introduced, in order to fix the joining element with each of the pole parts 2, like shown in figure 3.
The complete reinforcement element including the mechanically reinforcing cross beam structure is made from thermoplastic material and is produced in a single injection molding process. The joining element is designed to be fixed on poles which mechanical support structure is realized by thermoplastic half- shells. The fixation of the joining element to the end of the pole half-shells is done by e.g. high-strength, insulating screws and/or some overlapping areas to fix or take the forces from the half shell to the support structure. The transition between the end-faces of the pole half-shells and the joining element is sealed by an elastic two compound sealing material. This sealing is already fixed to the joining element during its molding process. It is important, that the sealing is tight, in dielectric sense.
Above mentioned design of the reinforcement element prevents from flash- overs between conducting parts of the poles at high voltage levels and narrow pole distances.
Secondly it improves the mechanical stability during fault current by coupling the ends of the poles mechanically and reducing the risk of cracking of the pole supports or of the poles themselves.
A further alternative embodiment of the joining element may be provided with a low conductive suface finish in order to allow the equalization of accumulated electric charges between the insulating pole supports.
A further embodiment of the reinforcement element may be fixed to the pole half-shells by self-tapping screws.
Figure 2 shows the joining element 1 from the side, which comes into tight mechanical contact to the ends of the pole parts 2.
The joining element is provided at that side with sealing strips 4, in order to result in good dieletric withstand. Therefore sealing elements were extruded on the joining elements surface. So far, also sealing elements can be used which are positioned in grooves on the surface of the joining element. Furthermore glueing is possible.

Claims

Claims
1 . Medium voltage switchgear with frame, wherein a three phase
arrangement of pole parts with circuit breakers are fixed at one end on a support or a frame element, which is arranged in a switchgear panel, wherein the open ends of the pole parts, opposite to the fixed ends of the pole parts fixed on the support or frame, are among themselves mechanically joined or connected by an additional joining element, and near to the aforesaid open ends of the pole parts, one electrical terminal per pole part is placed, characterized in
that the joining element (1 ) is made of insulating material and tightly fixed among the open ends of the pole parts (2) in such, that they
mechanically interconnect the pole parts and additionally increases the dielectrical withstand between the terminals of the pole parts from each other.
2. Medium voltage switchgear according to claim 1 ,
characterized in
that the joining element (1 ) is made of electrically insulating material.
3. Medium voltage switchgear according to claim 1 ,
characterized in
that the joining element (1 ) is at least partly covered by conducting or semi-conducting surface.
4. Medium voltage switchgear according to claim 2 or 3,
characterized in
that the joining element (1 ) is a plate.
5. Medium voltage switchgear according to one of the aforesaid claims 1 to characterized In
that the joining element (1 ) is provided with a cross beam structure (3) on the opposite surface of the plate fixed tightly among the electric poles or pole parts (2).
6. Medium voltage switchgear according to one of the aforesaid claims 1 to 5,
characterized in
that the joining element (1 ) is provided with sealing strips (4) or paths or regions between each pole part, at that side of the joining element, which is directly fixed on the pole parts.
7. Medium voltage switchgear according to one of the aforesaid claims, characterized in
that the joining element is fixed commonly at the open ends of the pole parts via insulating screws, screwed into female screw threads, which are integrated or implemented in the insulating half shells or embedding cover of the pole parts.
8. Medium voltage switchgear according to one of the aforesaid claims, characterized in
that the insulating half shells or the insulating embedding cover of the circuit breakers are made of thermoplastic, bulk moulding components (BMC) or duroplastic material.
9. Medium voltage switchgear according to one of the aforesaid claims, characterized in
that the joining element (1 ) is made from thermal conductive material, in order ot get heat dissipation by the function as a heat sink.
10. Medium voltage switchgear according to one of the aforesaid claims, characterized in
that the joining element (1 ) is provided with openings, in which counter- or fixation-discs or -plates (4) are introduced, in order to fix the joining element with each of the pole parts (2).
PCT/EP2016/070425 2015-08-31 2016-08-30 Medium voltage switchgear with frame and/or support element WO2017037068A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680049824.5A CN107924785B (en) 2015-08-31 2016-08-30 medium voltage switchgear with frame and/or support element
EP16757913.5A EP3345202B1 (en) 2015-08-31 2016-08-30 Medium voltage switchgear with frame and/or support element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP15183216.9A EP3136415A1 (en) 2015-08-31 2015-08-31 Medium voltage switchgear with frame and/or support element
EP15183216.9 2015-08-31

Publications (1)

Publication Number Publication Date
WO2017037068A1 true WO2017037068A1 (en) 2017-03-09

Family

ID=54014675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/070425 WO2017037068A1 (en) 2015-08-31 2016-08-30 Medium voltage switchgear with frame and/or support element

Country Status (3)

Country Link
EP (2) EP3136415A1 (en)
CN (1) CN107924785B (en)
WO (1) WO2017037068A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3836322B1 (en) * 2019-12-11 2023-08-30 ABB Schweiz AG A circuit breaker pole for low voltage or medium voltage operation
EP3944276B1 (en) * 2020-07-20 2023-02-08 ABB Schweiz AG Circuit breaker compartment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54101476U (en) * 1977-12-28 1979-07-17
JP2000357442A (en) * 1999-06-15 2000-12-26 Toshiba Corp Vacuum breaker and metal-closed switching gear
US20020043517A1 (en) * 2000-10-16 2002-04-18 Kenichi Koyama Switching apparatus
EP2568554A1 (en) * 2011-09-12 2013-03-13 ABB Technology AG An integrated support for fixing electrical buses

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201359956Y (en) * 2008-06-27 2009-12-09 石家庄科林电气设备有限公司 Combined medium-voltage vacuum circuit breaker
EP2387057B1 (en) * 2010-05-12 2012-05-23 ABB Technology AG Gas-isolated high voltage switch
CN202332699U (en) * 2011-11-28 2012-07-11 现代重工(中国)电气有限公司 Insulation bracket for fixing vacuum tube of vacuum breaker
EP2720245A1 (en) 2012-10-15 2014-04-16 ABB Technology AG Assembled pole part with pole part frame
CN204464163U (en) * 2015-03-17 2015-07-08 江苏森源电气股份有限公司 A kind of monostable permanent-magnet breaker framework

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54101476U (en) * 1977-12-28 1979-07-17
JP2000357442A (en) * 1999-06-15 2000-12-26 Toshiba Corp Vacuum breaker and metal-closed switching gear
US20020043517A1 (en) * 2000-10-16 2002-04-18 Kenichi Koyama Switching apparatus
EP2568554A1 (en) * 2011-09-12 2013-03-13 ABB Technology AG An integrated support for fixing electrical buses

Also Published As

Publication number Publication date
EP3345202B1 (en) 2021-12-01
CN107924785A (en) 2018-04-17
CN107924785B (en) 2019-12-13
EP3136415A1 (en) 2017-03-01
EP3345202A1 (en) 2018-07-11

Similar Documents

Publication Publication Date Title
US7910852B2 (en) Encapsulated pole unit conductor assembly for an encapsulated pole unit and medium voltage circuit interrupter including the same
EP1693873B1 (en) Vacuum switchgear
EP2593953B1 (en) Method for producing a circuit-breaker pole part
Matsui et al. Development and technology of high voltage VCBs; Breaf history and state of art
US20150244156A1 (en) Integrated compact bushing structure combining the functionality of primary contact with a current transformer primary conductor and a post insulator
EP3345202B1 (en) Medium voltage switchgear with frame and/or support element
KR100860528B1 (en) Load break switch and manufacturing method thereof
US20140048514A1 (en) Contact assembly and vacuum switch including the same
CN106463300B (en) Method for producing a solid-insulated switching pole and solid-insulated switching pole
KR102417925B1 (en) Circuit Breaker for Gas Insulated Switchgear
KR20090115547A (en) A distributing board having solid-state insulating switchgear
US20130188297A1 (en) Neutral bus for a neutral bar and electrical distribution panel including the same
JP2006049329A (en) Switch gear
KR101036147B1 (en) Switching and breaking part used in switch and breaker, method for manufacturing the same, and switch and breaker having the same
US11688566B2 (en) Switching apparatus for electric systems
EP3893261B1 (en) A pole contact arm for an electric pole unit
AU2013245603A1 (en) Circuit breaker arrangement having a metal-encapsulated circuit breaker housing
CN217486111U (en) Wall bushing
US9633756B2 (en) Device for connecting a circuit breaker
US11764020B2 (en) Pole component and circuit breaker comprising same
CN111029207B (en) Switchgear with arrangement for bushings
EP2549500A1 (en) Gas-insulated switch gear, especially SF6-insulated panels or switchboards
JP3369216B2 (en) Disconnector with resistance
CN203013638U (en) Embedded type electrode for GIS circuit breaker of medium-voltage gas insulated ring main unit
US20190259553A1 (en) High-Voltage Switching Device and Switchgear Comprising a High-Voltage Switching Device and Method for Producing a High-Voltage Switching Device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16757913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE