WO2017036940A1 - Procede et systeme de rehaussement d'un signal audio - Google Patents

Procede et systeme de rehaussement d'un signal audio Download PDF

Info

Publication number
WO2017036940A1
WO2017036940A1 PCT/EP2016/070151 EP2016070151W WO2017036940A1 WO 2017036940 A1 WO2017036940 A1 WO 2017036940A1 EP 2016070151 W EP2016070151 W EP 2016070151W WO 2017036940 A1 WO2017036940 A1 WO 2017036940A1
Authority
WO
WIPO (PCT)
Prior art keywords
audio signal
frequency
hearing
raising
threshold
Prior art date
Application number
PCT/EP2016/070151
Other languages
English (en)
Inventor
Amira BEN JEMAA
Meriem Jaidane
Sonia LARBI
Nader MECHERGUI
Yosra MZAH
Sylvie SEVESTRE-GHALILA
Monia Turki
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Publication of WO2017036940A1 publication Critical patent/WO2017036940A1/fr

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0316Speech enhancement, e.g. noise reduction or echo cancellation by changing the amplitude
    • G10L21/0364Speech enhancement, e.g. noise reduction or echo cancellation by changing the amplitude for improving intelligibility
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/70Adaptation of deaf aid to hearing loss, e.g. initial electronic fitting
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • G10L21/0232Processing in the frequency domain

Definitions

  • the invention relates to the real-time enhancement of sound signals broadcast in diverse situations of sound environments.
  • the invention applies to speech signals or alarm type signals.
  • the invention aims at raising sound signals in public spaces, for example railway stations or airports, but also in fixed private spaces, for example a hospital room, or mobile private spaces, for example a personal vehicle.
  • the invention also relates to the adaptation of the diffusion of sound signals to the acoustic environment.
  • the invention aims to enhance sound signals adapted to particular auditory profiles, including hearing profiles dependent on the age of the listener.
  • the invention takes into account, in particular, the auditory profiles of presbyacous persons and makes it possible to target a population with a large statistical diversity of hearing losses.
  • a general problem addressed by the invention is to process sound signals to emerge the useful signal (constituted for example by a voice announcement or an alarm) in a given sound environment.
  • the invention addresses several specific problems encountered in the field of the broadcasting of sound signals.
  • the hearing comfort problem occurs, for the listener, when the sound signals broadcast have a too high sound level. This phenomenon is particularly present when the age of the listener increases but also for people subjected to the same noise level for a long time (for example people working on the place of diffusion).
  • a security problem arises if the sound signals broadcast have a sound level too low. In this case, they may not be heard by people suffering from a decrease in their hearing ability, for example presbyacous people. For example, this problem appears especially in the case of broadcasting a warning ring or an announcement in a retirement home. This problem also occurs when a senior, having a natural hearing loss due to his age, no longer perceives certain alarms of his vehicle due to urban ambient noise. This problem also exists in a station in which the sound announcements are broadcast in a sound environment with a sometimes high noise level which is also reinforced by the phenomenon of reverberation of sound. To be able to adapt to a given environment, a system for broadcasting audio messages or alerts is most often subject to adjustments during its installation and in use. In particular, if the system targets a specific population or a specific consumer profile, the noise level should be adjusted accordingly.
  • the systems are adjusted during installation, either by a technician is not always aware of the technical nature of the treatments or of the population who frequent the place, either by the consumer himself who is also not an expert on the subject.
  • This parameter setting made during the installation is delicate because it must be appropriate to the nature of the place and the population concerned.
  • the invention proposes a method and a sound diffusion system that makes it possible to take into account a given population or a specific consumer profile.
  • the invention takes into account the profile of presbyacous persons and a variety of auditory profiles.
  • the invention also takes into account the variation of the acoustic diffusion environment.
  • the invention takes into account various auditory profiles of listeners.
  • the invention takes into account the elevation of the absolute hearing threshold as a function of age, the frequency losses as a function of the age of the listener, and the phenomenon of auditory recruitment which corresponds to a limitation Progressive auditory system dynamics of presbyacous individuals that causes abnormal sound volume growth and induces a feeling of discomfort compared to loud sounds.
  • the subject of the invention is a method for raising an audio signal intended to be broadcast to at least one target listener, said method comprising the following steps:
  • the absolute hearing threshold being determined for a given audience profile.
  • the hearing threshold difference values are gap values between a hearing threshold for said at least one target listener and a reference hearing threshold.
  • the hearing threshold difference values are median values.
  • the hearing difference values are averaged according to the sex of said at least one target listener.
  • the frequency mask of the frequency enhancement filter is determined by means of a frequency interpolation of said difference values.
  • the method according to the invention further comprises a step of low-pass filtering of the signal enhanced by the frequency enhancement filter, the cut-off frequency of the low-pass filter being taken as equal as the maximum to the frequency of switching off a loudspeaker (intended to broadcast the filtered audio signal.
  • the audio signal is a speech signal and the normalization gain is a fixed average gain applied to the signal for all frequencies.
  • the audio signal is an alarm and the gain of normalization is a variable gain in frequency and configured according to the frequency components of the signal before the normalization step.
  • said at least one target listener comprises a presbyacous listener.
  • the invention also relates to a device for frequency enhancement of an audio signal comprising means configured to perform the method of raising an audio signal according to the invention.
  • the subject of the invention is also a computer program comprising instructions for executing the method of raising an audio signal according to the invention, when the program is executed by a processor and a recording medium readable by a user.
  • FIG. 1 a block diagram of an electro-acoustic sound message broadcasting system according to the invention
  • FIG. 2 is a flowchart schematizing the implementation steps of a method of frequency pre-compensation of an audio signal
  • FIGS. 3a, 3b two diagrams representing the median values of the differences in hearing threshold according to sex (female (3a), male (3b)), for three age groups of 40, 50 and 60 years,
  • FIG. 4 an example of a median hearing threshold difference and the difference in hearing threshold expected to be exceeded by 25% of a normal 60-year-old male population
  • FIG. 5 a diagram showing three examples of enhancement filter templates according to the invention for three different profiles of populations corresponding to various applications
  • FIGS. 6a and 6b are two diagrams illustrating two examples of enhancement filter templates to which a low-pass filtering step adapted to the loudspeaker of the system has been added,
  • FIG. 7a, 7b two diagrams showing isosonic curves versus loudness level and frequency for persons with normal hearing ability
  • FIG. 8 another diagram illustrating an example of applying a gain of normalization to the enhanced speech signal.
  • Figure 1 shows a block diagram of an electro-acoustic system
  • Such a system 101 receives as input a first audio signal s (t) to be broadcast.
  • This first signal may be a speech signal, for example a voice announcement, or an alarm type signal. It can come from a microphone or a pre-recorded signal. Preferably, the signal is digital or digitized.
  • the system 101 is connected at its output to a loudspeaker HP responsible for broadcasting the audio signal s (t) which has been previously modified by the processing implemented by the system 101.
  • the system 101 comprises a pre-compensation filter FPC according to the invention which will be described in more detail below.
  • the system 101 may also include an audio signal reverberation processing module TR and an AGC automatic gain control device.
  • the system 101 may be input connected to a second microphone whose role is to capture the sound environment of the place where the signal is to be broadcast. The sound environment is measured as a second audio signal n (t).
  • An APP training module may be integrated with the system 101 to take into account the measurement of the second audio signal in the automatic gain control processing.
  • a general objective of the system 101 is to bring out the useful signal s (t) of the sound environment n (t) with an acceptable sound level for a given audience. By acceptable sound level, it is necessary to understand a level neither too low nor too high, ie a level within a range of amplitude comfortable for the human ear.
  • a particular object of the invention is to take into account different profiles of listeners, especially according to their age, to adapt the level of the sound signal broadcast by the HP speaker accordingly.
  • the invention proposes a pre-compensation filter FPC which implements a frequency pre-compensation method of the audio signal S (t), this method comprising mainly three steps as illustrated in FIG.
  • the frequency pre-compensation method comprises a first step 201 of frequency enhancement, a second step 202 low pass filtering adapted to the HP speaker and a third step 203 of signal level normalization.
  • An objective of the frequency pre-compensation method according to the invention is to compensate the frequency spectrum of the audio signal s (t) to adapt it to a target listener profile, taking into account the average hearing loss suffered by the target listener. and also taking into account the maximum acceptable sound level for the target listener.
  • the first step 201 of frequency enhancement is to apply to the incoming signal s (t) an enhancement filter to selectively amplify the signal to make it intelligible to a target listener.
  • the filtering applied is preferentially a digital filtering and respects a given frequency mask that depends on a target listener profile.
  • a listener profile is specified based on the age of the listener. In fact, frequency losses in the hearing capacity of an individual increase statistically with age.
  • the filter template is generated from a statistical distribution of hearing thresholds for a set of audiometric frequencies. This statistical distribution depends on a particular listener profile of the listener's age and gender. There are several situations that lead to a statistical consideration of the hearing threshold. In the first place, when measuring the hearing threshold of a given person, this is done for some discrete values of frequencies and in general only the absolute threshold of hearing is considered. Moreover, the threshold of hearing varies over time, in particular according to the state of fatigue of the person, the period of the day. For the same person there is therefore a statistical distribution of its hearing threshold. Second, there is also a statistical distribution associated with a population of a given age. For example, people aged 65 have a given average profile with a statistical distribution around this average profile. Finally, when considering a set of people who will frequent a place, there will also be a statistical distribution associated with age variability.
  • hearing threshold difference values for certain audiometric frequencies, specifically the frequencies [125, 250, 500, 1000, 1500, 2000, 3000, 4000, 6000, 8000] Hertz.
  • the hearing threshold difference is defined according to ISO 7029 as the difference between the hearing threshold of a subject and a reference threshold.
  • the reference threshold is, according to ISO 7029, equal to the median threshold of hearing of a population of 18-year-olds who are otologically normal and of the same sex.
  • the reference threshold can still be defined as an absolute hearing threshold which designates the minimum sound pressure level that must be imposed on a sinusoidal signal so that it is perceived in a quiet environment.
  • FIGS. 3a and 3b show, on a frequency-dependent chart expressed in Hertz, examples of median values of the differences in the hearing threshold by sex (the values for women are shown in FIG. 3a and the values for men in Figure 3b), for three age populations.
  • Curves 301a, 301b correspond to age populations of 40 years.
  • the curves 302a, 302b correspond to 50-year-old populations.
  • Curves 303a, 303b correspond to age populations of 60 years.
  • Figure 4 shows the curve 303b of Figure 3b, i.e., the median value of the difference in hearing threshold for men aged 60 years.
  • the median value means that the difference in hearing threshold represented by curve 303b is reached by 50% of the target population.
  • curve 304b is shown which gives the difference in the hearing threshold reached by 25% of the target population, that is to say men aged 60.
  • the deviation of the hearing threshold is characterized by a gradual decrease in hearing with age and an increase in hearing loss as a function of frequency.
  • the mask H (f) of the frequency enhancement filter is determined from the hearing threshold differences for a given audience target. The differences can be averaged between men and women for the same age target.
  • the statistical values used may be median values or may be other decile values, or more generally values that share the population in X subpopulations of the same size, where X is a positive integer of at least two.
  • the filter mask is obtained, for a given age profile, from statistical values of the differences of the hearing threshold by averaging the values obtained for the men of one hand and for women on the other hand.
  • a interpolation operation is performed.
  • This operation may be piecewise polynomial interpolation, for example a cubic interpolation, for example a Hermite interpolation. Any other interpolation operation making it possible to obtain continuous values over a given frequency range from discrete values in this range is also compatible with the invention.
  • the values of the filter mask are constant and taken equal to the median value of the difference of the hearing threshold with respect to the absolute hearing threshold for the frequency 125 Hz.
  • the gain of the filter is fixed at a constant value equal to the gain obtained for the 8 kHz frequency. Above 8kHz, frequency losses may be greater but there is a lack of knowledge of the frequency behavior of hearing for speech-like or alarm-type sounds that typically have a localized spectrum at frequencies below 8 kHz.
  • the interpolation operation can be extended at these frequencies and beyond the range [ 0.125, 8] kHz.
  • Figure 5 shows three templates of frequency enhancement filters 501, 502,503 obtained using the procedure described above.
  • the first filter 501 corresponds to a target profile of 40 year olds.
  • the second filter 502 corresponds to a target profile of 50-year-olds.
  • the third filter 503 corresponds to a target profile of 60-year-olds.
  • the first filter 501 can be used to target a profile of people with a specific audiogram with mild hearing loss. It can be used for private applications, for example in a private place such as a vehicle.
  • the second filter 502 can be used to target a wide range of people as it may be suitable for people with low hearing loss as well as for people with higher hearing loss. In particular, this second filter 502 can be used for applications in public spaces such as railway stations, airports or other public places frequented by a large number of people. These spaces can typically contain both a population of people with normal hearing abilities and a population whose hearing loss will vary with age.
  • the third filter 503 can be used to target senior citizens in the framework of facilities for the elderly.
  • the coefficients of the temporal filter applied to the signal s (t) by the step 201 of the method according to the invention can be obtained from the frequency mask of the filter using any method of synthesis of a digital filter. .
  • a recursive filter structure can be chosen because it allows parsimonious filters, with a small number of parameters, because the specific shape of the template would require a large number of coefficients with a transverse structure.
  • the number of coefficients and the values of the coefficients of this structure will depend on the sampling frequency.
  • a filter can be linear or nonlinear phase.
  • the filter settings can be optimized according to an iterative approach, for example using the least squares method.
  • the procedure described above for generating an enhancement filter used in step 201 of the method is compatible with both speech and alarm signals.
  • the second step 202 of the method according to the invention consists of a low-pass filtering of the raised signal, the low-pass filter used being adapted to the loudspeaker HP of the system 101.
  • This second step 202 makes it possible to adapt the compensation introduced by the enhancement filter to the first step 201 to the loudspeaker HP used while avoiding its saturation.
  • the low-pass filter used in step 202 is tuned to the frequency response of the speaker HP through which the audio signal is broadcast to the end user.
  • the template of the low-pass filter is designed in particular so as not to enhance the spurious noise outside the frequency bandwidth of the speaker.
  • Each loudspeaker can be considered globally as a low-pass filter of cut-off frequency f H p. More precisely, the frequency behavior of the loudspeaker above this cutoff frequency f H p may vary depending on the type of loudspeaker. It is therefore useful to implement, in the pre-compensation filter FPC, a low-pass filter of cut-off frequency lower than the cut-off frequency of the speaker HP, to avoid raising background noise, in the band frequency beyond the speaker cutoff frequency.
  • the cut-off frequency of the low-pass filter can be chosen close to the cut-off frequency of the loudspeaker HP.
  • the low-pass filter used in step 202 can be produced by a conventional digital low-pass filter defined by its template, parameterized in particular by its cut-off frequency fc.
  • FIGS. 6a and 6b illustrate the frequency response of the overall filtering operation performed by the concatenation of steps 201 and 202 for two different cutoff frequencies respectively equal to 5 kHz (FIG. 6a) and 8 kHz (FIG. 6b).
  • FIGS. 6a and 6b show firstly the frequency response of the enhancement filter 601 used in step 201 and secondly the frequency response 602,603 of the set (enhancement filter and low-pass filter). ).
  • the steps 201 and 202 can be carried out jointly to directly generate a filter template 602, 603 which includes both the raising and the low-pass filtering adapted to the loudspeaker.
  • a normalization is applied via a gain to adjust the level of the output signal.
  • This gain of normalization depends on the type of audio signal s (t) received which can be either a speech signal whose spectrum is extended over a wide frequency range, or an alarm type signal whose frequency spectrum is narrower.
  • step 203 consists in applying to the enhancement filter a fixed scalar gain intended to replace the signal in a zone of auditory comfort for the targeted user.
  • This comfort zone is defined by the average spectrum of the speech signal (designated by the acronym LTASS for Long Term Average Speech Spectrum) associated with the statistical dispersion of this average spectrum.
  • the comfort zone can also take into account the type of ads broadcast in order to adapt to the average spectrum of the specific type of advertisements. For example, the type of ads considered may be limited to a female voice, a given speaker, or a given language.
  • the gain applied is also configured to take into account the phenomenon of recruitment which corresponds to a progressive limitation of the dynamics of the auditory system of presbyacous persons. This phenomenon has the effect of generating a very uncomfortable feeling of discomfort, for this type of people, when the sound level is too high.
  • Figures 7a and 7b show a set of isosonic curves for a set of people corresponding to a given auditory profile. These curves define sound pressure levels in decibels (in ordinate) as a function of the frequency (in abscissa), which cause the same sensation of loudness for the human ear.
  • FIG. 7a shows six isosonic curves C, Cl 2 , Cl 3 , Cl 4 , Cl 5 and Cl 6 for persons with normal hearing capabilities, each curve being associated with a level of sound intensity.
  • this same figure 7a is also represented the average spectrum LTASS of the speech signal.
  • FIG. 7b shows six isosonic curves Cl ' 1 , Cl' 2 , Cl ' 3 , Cl' 4 , Cl ' 5 , Cl' 6 , for presbyacous persons, each curve being associated with a level of sound intensity.
  • FIG. 7b is also represented the average spectrum LTASS of the speech signal.
  • FIG. 8 illustrates, in one example, the effect of the normalization step 203 of the method according to the invention.
  • the objective of this step 203 is to position the average spectrum of the speech signal at the output of the filtering steps 201, 202, above the threshold absolute SAA hearing shown in Figure 8 for a hearing-impaired target.
  • the average spectrum of the signal should be positioned in a listening comfort zone taking into account the standard-frequency deviation and not exceeding the speech level peaks NP.
  • FIG. 8 An example of an average spectrum curve 800 of a raised and normalized speech signal is shown in FIG. 8 for a target level of maximum sound pressure level of 80 dB.
  • the normalization gain applied in step 203 is therefore calculated so that the maximum standard deviation of the average spectrum as well as the speech level peaks on all ETM frequencies are between the audition threshold of the listener. and his threshold of discomfort.
  • the adjustment of the normalization gain is made in such a way that the probability that the average spectrum of the speech signal (with its statistical dispersion) remains in the comfort zone (with its statistical distribution) is large. This level makes it possible to obtain a good enhancement of the speech signal while remaining at a distance from the pain threshold SD also represented in FIG. 8.
  • the normalization step 203 of the method consists in setting a fixed scalar normalization gain in frequency bands.
  • the gain value is set on each range so that the components of the enhanced alarm signal do not exceed a given threshold.
  • the gain of normalization is fixed in particular so that the level of the speech signal after normalization 203 does not exceed a maximum threshold defined by frequency band.
  • a new dominant frequency component can appear in the signal.
  • the Normalization 203 ensures that these new potential components do not exceed a predefined maximum threshold.
  • the normalization gain depends on the precise frequency content of the alarm considered.
  • the main band there are two important frequency bands, the main band and the high frequency band.
  • the main band in particular, it is important that the signal does not exceed the predetermined threshold.
  • the maximum threshold is defined according to the threshold of tolerance or threshold of pain for a given profile of listeners and takes into account the phenomenon of recruitment in the people presbyacousiques.
  • the normalization gain applied in step 203 is calculated so that the raised and normalized alarm signal is between the absolute hearing threshold and the pain threshold, for a given individual profile.
  • the principle of adjusting the normalization gain in the case of an alarm signal is substantially the same as that of the setting in the case of a speech signal with that specific that the frequency content of the alarm is known either can be learned in real time.
  • the setting of the normalization gain is done by frequency band for the alarms both because this leads to a less complex algorithm for embedded applications and because it is possible to distinguish between the useful or main band (related at the fundamental frequency of often tonal alarms) and the high frequencies which contain the harmonics of this fundamental frequency.
  • frequency band gain values is given in the following table for an alarm signal.
  • the method of frequency pre-compensation of an audio signal makes it possible in particular to combat frequency losses as a function of the age of the listener by the use of an enhancement filter 201.
  • the addition of a normalization step 203, as well as the addition of a low-pass filter 202 also makes it possible to combat the lowering of the absolute hearing threshold as a function of the age of an auditor and against the phenomenon of recruitment in presbyacous people.
  • the invention notably makes it possible to improve speech intelligibility for presbyacous persons and persons with normal hearing capabilities without altering the quality of sound perceived by them.
  • the invention makes it possible to improve the perception and the location of the alarm and to keep the alarming power.
  • the system 101 according to the invention and in particular the FPC precompensation filter can be implemented from hardware and / or software elements.
  • the FPC precompensation filter can be implemented as a computer program. Alternatively it can be implemented by a processor associated with a memory.
  • the processor may be a specific or generic processor or an integrated circuit.
  • the invention applies to the broadcasting of sound signals in public spaces such as railway stations, airports, sports facilities, museums, marquees, shopping centers, religious establishments, but also smaller spaces such as sports facilities. home for the elderly and disabled, conference rooms, educational institutions, health institutions, administrations or call centers.
  • the invention also applies to the broadcasting of sound alerts in private spaces such as motorized means of transport among which a motor vehicle, an ambulance, an elevator, a gondola, an airplane cockpit or a boat cabin.

Landscapes

  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Quality & Reliability (AREA)
  • Computational Linguistics (AREA)
  • Multimedia (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurosurgery (AREA)
  • Otolaryngology (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

Procédé de rehaussement d'un signal audio destiné à être diffusé à au moins un auditeur cible, ledit procédé comprenant les étapes suivantes : - Recevoir un signal audio s(t), - Filtrer (201) le signal audio s(t) par un filtre de rehaussement fréquentiel dont le gabarit fréquentiel est déterminé à partir de valeurs statistiques d'écart de seuil d'audition, fonctions de la fréquence, caractéristiques dudit au moins un auditeur cible, - normaliser (203) le signal filtré, par un gain configuré en fonction dudit au moins un auditeur cible, de sorte à être compris entre un seuil d'audition absolu (SAA) et un seuil de douleur (SD), - le seuil d'audition absolu (SAA) étant déterminé pour un profil d'auditeurs donné.

Description

Procédé et système de rehaussement d'un signal audio
L'invention concerne le rehaussement temps réel de signaux sonores diffusés dans des situations diversifiées d'ambiances sonores. L'invention s'applique à des signaux de parole ou des signaux du type alarmes.
L'invention vise le rehaussement de signaux sonores dans des espaces recevant du public, par exemple des gares ou des aéroports, mais également dans des espaces privés fixes, par exemple une chambre d'hôpital, ou des espaces privés mobiles, par un exemple un véhicule personnel. A cet effet, l'invention concerne également l'adaptation de la diffusion de signaux sonores à l'environnement acoustique.
En outre, l'invention vise le rehaussement de signaux sonores adapté à des profils auditifs particuliers, notamment des profils auditifs dépendant de l'âge de l'auditeur. L'invention prend en compte, en particulier, les profils auditifs de personnes presbyacousiques et permet de cibler une population présentant une grande diversité statistique de pertes auditives.
Un problème général visé par l'invention consiste à traiter des signaux sonores pour faire émerger le signal utile (constitué par exemple par une annonce vocale ou une alarme) dans un environnement sonore donné.
Plus précisément, l'invention adresse plusieurs problématiques spécifiques rencontrées dans le domaine de la diffusion de signaux sonores.
En premier lieu, il existe un problème lié à la variation de l'environnement sonore ou acoustique qui peut engendrer une perte d'information sonore et une perte de confort auditif pour l'auditeur.
En second lieu, il existe également un problème de diversité auditive du public visé par la diffusion de signaux sonores. En effet le profil auditif moyen varie d'une personne à une autre et ceci est dû à une perte auditive qui s'accentue en fonction de l'âge.
Ces deux problèmes influent sur le confort auditif de l'auditeur et sur la sécurité liée à une diffusion correcte des messages ou annonces. Le problème de confort auditif intervient, pour l'auditeur, lorsque les signaux sonores diffusés présentent un niveau sonore trop important. Ce phénomène est particulièrement existant lorsque l'âge de l'auditeur augmente mais également pour des personnes soumises au même niveau sonore pendant une durée importante (par exemple des personnes travaillant sur le lieu de diffusion).
A l'inverse, un problème de sécurité apparaît si les signaux sonores diffusés présentent un niveau sonore trop faible. Dans ce cas, ils peuvent ne pas être entendus par des personnes souffrant d'une diminution de leur capacité auditive, par exemple des personnes presbyacousiques. A titre d'exemple, ce problème apparaît notamment dans le cas de diffusion d'une sonnerie d'alerte ou d'une annonce dans une maison de retraite. Ce problème intervient également lorsqu'une personne senior, ayant une perte auditive naturelle induite par son âge, ne perçoit plus certaines alarmes de son véhicule du fait du bruit ambiant urbain. Ce problème existe aussi dans une gare dans laquelle les annonces sonores sont diffusées au sein d'une ambiance sonore comportant un niveau de bruit parfois élevé qui est également renforcé par le phénomène de réverbération du son. Pour pouvoir s'adapter à un environnement donné, un système de diffusion de messages sonores ou d'alertes est le plus souvent soumis à des réglages lors de son installation et en cours d'utilisation. En particulier, si le système vise une population donnée ou un profil précis de consommateur, le niveau sonore doit être réglé en conséquence.
Selon le type d'environnement visé (gare, salle de conférences, salle d'hôpital, musées, structure d'accueil pour personnes âgées, ...) le réglage des systèmes est fait lors de l'installation, soit par un technicien qui n'est pas toujours au fait de la technicité des traitements ni de la population qui fréquente le lieu, soit par le consommateur lui-même qui lui non plus n'est pas expert du sujet. Ce réglage des paramètres réalisé lors de l'installation est délicat car il doit être approprié à la nature du lieu et à la population concernée.
Il existe donc un besoin pour un système de diffusion de signaux audio adapté à des profils auditifs variés.
Les systèmes classiques de diffusion de messages sonores tels que celui décrit dans la demande de brevet européenne EP2131357 sont basés sur l'estimation du niveau du bruit ambiant hors messages vocaux et la détermination du gain de diffusion nécessaire pour obtenir une qualité de référence en termes de rapport signal utile à bruit.
D'autres systèmes, comme celui décrit dans la demande internationale WO2010000878, sont orientés vers une prise en compte spécifique de la composante de réverbération dans l'ajustement du niveau de diffusion de signaux. Il s'agit, dans ce cas, de procédés qui en plus de l'estimation du niveau de bruit ambiant, se basent sur une estimation du niveau de réverbération afin d'optimiser le rapport signal utile à bruit.
Ces systèmes ne traitent pas de manière explicite les profils variés de consommateurs et en particulier ne prennent pas en compte les profils presbyacousiques. Ces systèmes ne prennent en considération que l'environnement acoustique de diffusion sans addresser la problématique de la spécificité de l'auditeur. Or la diversité auditive du public dans un lieu donné fait qu'on ne peut pas atteindre avec ces systèmes un confort auditif de même niveau pour tous. L'invention propose une méthode et un système de diffusion sonore qui permet de prendre en compte une population donnée ou un profil précis de consommateurs. A cet effet, l'invention prend en compte le profil des personnes presbyacousiques ainsi qu'une diversité de profils auditifs. L'invention prend également en compte la variation de l'environnement acoustique de diffusion. L'invention prend en compte des profils auditifs variés d'auditeurs. Notamment, l'invention prend en compte, l'élévation du seuil d'audition absolu en fonction de l'âge, les pertes fréquentielles en fonction de l'âge de l'auditeur, et le phénomène de recrutement auditif qui correspond à une limitation progressive de la dynamique du système auditif des personnes presbyacousiques qui provoque la croissance anormale du volume sonore et induit une sensation d'inconfort par rapport aux sons forts.
L'invention a pour objet un procédé de rehaussement d'un signal audio destiné à être diffusé à au moins un auditeur cible, ledit procédé comprenant les étapes suivantes :
- Recevoir un signal audio s(t),
- Filtrer le signal audio s(t) par un filtre de rehaussement fréquentiel dont le gabarit fréquentiel est déterminé à partir de valeurs statistiques d'écart de seuil d'audition, fonctions de la fréquence, caractéristiques dudit au moins un auditeur cible,
- normaliser le signal filtré, par un gain configuré en fonction dudit au moins un auditeur cible, de sorte à être compris entre un seuil d'audition absolu et un seuil de douleur,
- le seuil d'audition absolu étant déterminé pour un profil d'auditeurs donné.
Selon un aspect particulier de l'invention, les valeurs d'écart de seuil d'audition sont des valeurs d'écart entre un seuil d'audition pour ledit au moins un auditeur cible et un seuil d'audition de référence.
Selon un aspect particulier de l'invention, les valeurs d'écart de seuil d'audition sont des valeurs médianes.
Selon un aspect particulier de l'invention, les valeurs d'écart d'audition sont moyennées selon le sexe dudit au moins un auditeur cible. Selon un aspect particulier de l'invention, le gabarit fréquentiel du filtre de rehaussement fréquentiel est déterminé à l'aide d'une interpolation fréquentielle desdites valeurs d'écart.
Selon une variante de réalisation, le procédé selon l'invention comprend en outre une étape de filtrage passe-bas du signal rehaussé par le filtre de rehaussement fréquentiel, la fréquence de coupure du filtre passe- bas étant prise égale au maximum à la fréquence de coupure d'un haut- parleur (destiné à diffuser le signal audio filtré.
Selon un aspect particulier de l'invention, le signal audio est un signal de parole et le gain de normalisation est un gain moyen fixe appliqué au signal pour toutes les fréquences.
Selon un aspect particulier de l'invention, le signal audio est une alarme et le gain de normalisation est un gain variable en fréquence et configuré en fonction des composantes fréquentielles du signal avant l'étape de normalisation.
Selon un aspect particulier de l'invention, ledit au moins un auditeur cible comprend un auditeur presbyacousique.
L'invention a également pour objet un dispositif de rehaussement fréquentiel d'un signal audio comprenant des moyens configurés pour exécuter le procédé de rehaussement d'un signal audio selon l'invention.
L'invention a encore pour objet un programme d'ordinateur comportant des instructions pour l'exécution du procédé de rehaussement d'un signal audio selon l'invention, lorsque le programme est exécuté par un processeur et un support d'enregistrement lisible par un processeur sur lequel est enregistré un programme comportant des instructions pour l'exécution du procédé de rehaussement d'un signal audio selon l'invention, lorsque le programme est exécuté par un processeur.
D'autres caractéristiques et avantages de la présente invention apparaîtront mieux à la lecture de la description qui suit en relation aux dessins annexés qui représentent : - La figure 1 , un synoptique d'un système électro-acoustique de diffusion de messages sonores selon l'invention,
- La figure 2, un organigramme schématisant les étapes de mise en œuvre d'un procédé de pré-compensation fréquentielle d'un signal audio,
- Les figures 3a,3b, deux diagrammes représentant les valeurs médianes des écarts du seuil d'audition selon le sexe (femme (3a), homme (3b)), pour trois populations d'âge de 40, 50 et 60 ans,
- La figure 4, un exemple d'écart de seuil d'audition médian et l'écart du seuil d'audition attendu d'être dépassé par 25 % d'une population normale d'homme d'âge de 60 ans,
- La figure 5, un diagramme représentant trois exemples de gabarits de filtres de rehaussement selon l'invention pour trois profils différents de populations correspondant à des applications diverses,
- Les figures 6a,6b deux diagrammes illustrant deux exemples de gabarits de filtres de rehaussement auxquels on a ajouté une étape de filtrage passe-bas adapté au haut-parleur du système,
- Les figures 7a,7b deux diagrammes représentant des courbes isosoniques en fonction du niveau d'intensité sonore et de la fréquence pour des personnes ayant une capacité auditive normale
(figure 7a) et pour des personnes presbyacousiques (figure 7b),
- La figure 8, un autre diagramme illustrant un exemple d'application d'un gain de normalisation au signal de parole rehaussé. La figure 1 schématise un synoptique d'un système électro-acoustique
101 de diffusion de messages sonores selon l'invention.
Un tel système 101 reçoit en entrée un premier signal audio s(t) à diffuser. Ce premier signal peut être un signal de parole, par exemple une annonce vocale, ou un signal de type alarme. Il peut provenir d'un microphone ou d'un signal préenregistré. Préférentiellement, le signal est numérique ou numérisé. Le système 101 est connecté à sa sortie à un haut parleur HP chargé de diffuser le signal audio s(t) qui a été préalablement modifié par les traitements implémentés par le système 101 .
A cet effet, le système 101 comporte un filtre de pré-compensation FPC selon l'invention qui sera décrit plus en détail par la suite.
Le système 101 peut également comporter un module TR de traitement des réverbérations du signal audio ainsi qu'un dispositif de contrôle automatique de gain CAG. En outre, dans un mode de réalisation particulier, le système 101 peut être connecté en entrée à un second microphone qui a pour rôle de capter l'ambiance sonore du lieu dans lequel le signal doit être diffusé. L'ambiance sonore est mesurée sous la forme d'un second signal audio n(t). Un module d'apprentissage APP peut être intégré au système 101 pour prendre en compte la mesure du second signal audio dans le traitement de contrôle automatique de gain. Un objectif général du système 101 est de faire émerger le signal utile s(t) de l'ambiance sonore n(t) avec un niveau sonore acceptable pour un public donné. Par niveau sonore acceptable, il faut comprendre un niveau ni trop faible ni trop élevé, autrement dit un niveau compris dans une plage d'amplitude confortable pour l'oreille humaine.
Un objectif particulier de l'invention est de prendre en compte différents profils d'auditeurs, notamment en fonction de leur âge, pour adapter le niveau du signal sonore diffusé par le haut parleur HP en conséquence. A cet effet, l'invention propose un filtre de pré-compensation FPC qui implémente un procédé de pré-compensation fréquentielle du signal audio S(t), ce procédé comprenant principalement trois étapes tel qu'illustré à la figure 2.
Le procédé de pré-compensation fréquentielle comprend une première étape 201 de rehaussement fréquentiel, une deuxième étape 202 de filtrage passe bas adaptée au haut parleur HP et une troisième étape 203 de normalisation du niveau du signal.
Un objectif du procédé de pré-compensation fréquentielle selon l'invention est de compenser le spectre fréquentiel du signal audio s(t) pour l'adapter à un profil d'auditeur cible en tenant compte des pertes auditives moyennes subies par l'auditeur cible et aussi en tenant compte du niveau maximum sonore acceptable pour l'auditeur cible.
La première étape 201 de rehaussement fréquentiel consiste à appliquer au signal entrant s(t) un filtre de rehaussement pour amplifier sélectivement le signal afin de le rendre intelligible pour un auditeur cible.
Le filtrage appliqué est préférentiellement un filtrage numérique et respecte un gabarit fréquentiel donné qui dépend d'un profil d'auditeur cible.
Par exemple, un profil d'auditeur est spécifié en fonction de l'âge de l'auditeur. En effet, les pertes fréquentielles dans la capacité auditive d'un individu augmentent statistiquement avec l'âge.
Le gabarit du filtre de rehaussement fréquentiel est défini comme suit : H(f)=P(f), avec f variant dans l'intervalle [0 ;Fs/2], où Fs est la fréquence d'échantillonnage du signal audio s(t) numérisé. P est une fonction d'interpolation.
Le gabarit du filtre est généré à partir d'une distribution statistique de seuils d'audition pour un ensemble de fréquences audiométriques. Cette distribution statistique dépend d'un profil d'auditeur en particulier de l'âge de l'auditeur et de son sexe. Il y a plusieurs situations qui entraînent une prise en compte statistique du seuil d'audition. En premier lieu, lorsque l'on mesure le seuil d'audition d'une personne donnée, cela se fait pour quelques valeurs discrètes de fréquences et en général seul est considéré le seuil absolu d'audition. Par ailleurs le seuil d'audition varie au cours du temps notamment selon l'état de fatigue de la personne, la période de la journée. Pour une même personne il y a donc une distribution statistique de son seuil d'audition. En second lieu, il y a aussi une distribution statistique associée à une population d'un âge donné. Par exemple, les personnes de 65 ans ont un profil moyen donné avec une distribution statistique autour de ce profil moyen. Enfin, lorsque l'on considère un ensemble de personnes qui vont fréquenter un lieu, il y aura aussi une distribution statistique associée à la variabilité des âges.
Ces distributions statistiques sont par exemple fournies par la norme ISO 7029 produite par l'AFNOR et relative au domaine de l'acoustique.
Ces distributions statistiques sont fournies sous la forme de valeurs d'écarts de seuils d'audition pour certaines fréquences audiométriques, précisément les fréquences [125, 250, 500, 1000, 1500, 2000, 3000, 4000, 6000, 8000] Hertz.
L'écart de seuil d'audition est défini, selon la norme ISO 7029 comme l'écart entre le seuil d'audition d'un sujet et un seuil de référence. Le seuil de référence est pris, selon la norme ISO 7029, égal au seuil médian d'audition d'une population de sujets âgés de 18 ans otologiquement normaux et de même sexe. Le seuil de référence peut encore être défini comme un seuil d'audition absolu qui désigne le niveau minimal de pression acoustique qu'il faut imposer à un signal sinusoïdal pour qu'il soit perçu dans une ambiance silencieuse.
La norme ISO 7029 précise comment calculer en fonction de l'âge et du sexe l'écart de seuil d'audition médian mais également la distribution statistique attendue de part et d'autre de cette valeur médiane. Les figures 3a et 3b représentent, sur un diagramme fonction de la fréquence exprimée en Hertz, des exemples de valeurs médianes des écarts du seuil d'audition selon le sexe (les valeurs pour les femmes sont représentées à la figure 3a et les valeurs pour les hommes à la figure 3b), pour trois populations d'âges. Les courbes 301 a,301 b correspondent à des populations d'âge de 40 ans. Les courbes 302a,302b correspondent à des populations d'âge de 50 ans. Les courbes 303a,303b correspondent à des populations d'âge de 60 ans.
La figure 4 représente la courbe 303b de la figure 3b, c'est-à-dire la valeur médiane de l'écart du seuil d'audition pour des hommes âgés de 60 ans. La valeur médiane signifie que l'écart du seuil d'audition représenté par la courbe 303b est atteint par 50% de la population visée. Sur cette même figure 4, on a représenté la courbe 304b qui donne l'écart du seuil d'audition atteint par 25% de la population visée, c'est-à-dire les hommes de 60 ans.
La déviation du seuil d'audition est caractérisée par une diminution progressive de l'audition avec l'âge et une augmentation des pertes auditives en fonction des fréquences. Le gabarit H(f) du filtre de rehaussement fréquentiel est déterminé à partir des écarts de seuil d'audition pour une cible d'auditeurs donnés. Les écarts peuvent être moyennés entre les hommes et les femmes pour la même cible d'âge. Les valeurs statistiques utilisées peuvent être des valeurs médianes ou peuvent être d'autres valeurs de déciles, ou plus généralement des valeurs qui partagent la population en X sous-populations de la même taille, X étant un nombre entier positif au moins égal à deux.
Pour générer le gabarit H(f) du filtre pour des fréquences comprises entre 20 Hz et Fs/2, on procède de la façon suivante.
Pour la bande de fréquences comprise entre 125 Hz et 8000 Hz, le gabarit du filtre est obtenu, pour un profil d'âge donné, à partir de valeurs statistiques des écarts du seuil d'audition en moyennant les valeurs obtenues pour les hommes d'une part et pour les femmes d'autre part.
En outre, comme les valeurs d'écarts de seuils d'audition ne sont données que pour certaines fréquences par la norme ISO 7029, pour obtenir un gabarit fréquentiel sur toute la plage de valeurs [125, 8000] Hz, une opération d'interpolation est réalisée. Cette opération peut être une interpolation polynomiale par morceaux, par exemple une interpolation cubique, par exemple une interpolation de Hermite. Toute autre opération d'interpolation permettant d'obtenir des valeurs continues sur une plage de fréquences donnée à partir de valeurs discrètes comprises dans cette plage est également compatible de l'invention.
Pour la bande de fréquences [0 125] Hz, les valeurs du gabarit du filtre sont constantes et prises égales à la valeur médiane de l'écart du seuil d'audition par rapport au seuil d'audition absolu pour la fréquence 125 Hz.
Pour la bande de fréquences [8000 Hz Fs/2], le gain du filtre est fixé à une valeur constante égale au gain obtenu pour la fréquence 8 kHz. Au delà de 8kHz, les pertes fréquentielles peuvent être plus importantes mais il y a un manque de connaissance du comportement fréquentiel de l'audition pour des sons de type parole ou alarmes qui présentent généralement un spectre localisé à des fréquences inférieures à 8 kHz.
De façon plus générale, si des statistiques sur les seuils d'audition peuvent être obtenues pour des fréquences inférieures à 125 Hz ou supérieures à 8 kHz, l'opération d'interpolation peut être étendue à ces fréquences et au-delà de la plage [0,125, 8] kHz.
La figure 5 représente trois gabarits de filtres de rehaussement fréquentiels 501 ,502,503 obtenus à l'aide de la procédure décrite ci-dessus. Le premier filtre 501 correspond à un profil cible de personnes âgées de 40 ans. Le deuxième filtre 502 correspond à un profil cible de personnes âgées de 50 ans. Le troisième filtre 503 correspond à un profil cible de personnes âgées de 60 ans.
Le premier filtre 501 peut être utilisé pour cibler un profil de personnes ayant un audiogramme spécifique avec une perte auditive légère. Il peut être utilisé pour des applications privées, par exemple dans un lieu privé tel qu'un véhicule. Le deuxième filtre 502 peut être utilisé pour cibler une large gamme de personnes car il peut convenir aussi bien pour des personnes présentant peu de perte auditive que pour des personnes présentant une perte auditive plus importante. En particulier, ce deuxième filtre 502 peut être utilisé pour des applications dans des espaces publics tels que des gares, des aéroports ou d'autres lieux publics fréquentés par un grand nombre de personnes. Ces espaces peuvent typiquement contenir aussi bien une population de personnes ayant des capacités auditives normales qu'une population dont la perte auditive variera avec l'âge.
Le troisième filtre 503 peut être utilisé pour cibler des personnes seniors dans le cadre de structures d'accueil pour personnes âgées.
Les trois exemples de filtres présentés sont donnés à titre illustratif et ne doivent pas être considérés comme limitant la portée de l'invention.
A partir de distributions statistiques de seuils d'audition pour des profils de personnes donnés, on peut concevoir d'autres filtres adaptés pour ces profils.
Les coefficients du filtre temporel appliqué au signal s(t) par l'étape 201 du procédé selon l'invention peuvent être obtenus à partir du gabarit fréquentiel du filtre à l'aide de n'importe quelle méthode de synthèse d'un filtre numérique.
Par exemple, une structure récursive de filtre peut être choisie car elle permet d'avoir des filtres parcimonieux, à faible nombre de paramètres, car la forme spécifique du gabarit nécessiterait un grand nombre de coefficients avec une structure transverse. Le nombre de coefficients et les valeurs des coefficients de cette structure vont dépendre de la fréquence d'échantillonnage. Pour un même type de structure il y a plusieurs réalisations possibles (directes, factorisées, treillis,...). Un filtre peut être à phase linéaire ou non linéaire. Les paramètres du filtre peuvent être optimisés selon une approche itérative, par exemple selon la méthode des moindres carrés.
La procédure décrite ci-dessus pour générer un filtre de rehaussement utilisé à l'étape 201 du procédé est compatible à la fois de signaux de parole et de signaux d'alarme.
La deuxième étape 202 du procédé selon l'invention consiste en un filtrage passe-bas du signal rehaussé, le filtre passe-bas utilisé étant adapté au haut-parleur HP du système 101 .
Cette deuxième étape 202 permet d'adapter la compensation introduite par le filtre de rehaussement à la première étape 201 au haut- parleur HP utilisé en évitant sa saturation.
Le filtre passe-bas utilisé à l'étape 202 est accordé à la réponse fréquentielle du haut-parleur HP par lequel se fait la diffusion du signal audio vers l'utilisateur final.
Le gabarit du filtre passe- bas est conçu notamment de sorte à ne pas rehausser les bruits parasites en dehors de la bande passante fréquentielle du haut-parleur.
Chaque haut-parleur peut être considéré globalement comme un filtre passe-bas de fréquence de coupure fHp. Plus précisément le comportement fréquentiel du haut-parleur au-dessus de cette fréquence de coupure fHp peut-être variable selon le type d'enceinte acoustique. Il est donc utile d'implémenter, dans le filtre de pré-compensation FPC, un filtre passe-bas de fréquence de coupure inférieure à la fréquence de coupure du haut- parleur HP, pour éviter de rehausser les bruits de fond, dans la bande de fréquence au-delà de la fréquence de coupure du haut-parleur. Avantageusement, la fréquence de coupure du filtre passe-bas peut être choisie proche de la fréquence de coupure du haut-parleur HP.
Le filtre passe-bas utilisé dans l'étape 202 peut être réalisé par un filtre passe-bas numérique classique défini par son gabarit, paramétré notamment par sa fréquence de coupure fc. Les figures 6a et 6b illustrent la réponse frequentielle de l'opération globale de filtrage effectuée par la concaténation des étapes 201 et 202 pour deux fréquences de coupures différentes respectivement égales à 5kHz (figure 6a) et 8 kHz (figure 6b).
Sur chaque figure 6a,6b, on a représenté d'une part la réponse fréquentielle du filtre de rehaussement 601 utilisé à l'étape 201 et d'autre part la réponse fréquentielle 602,603 de l'ensemble (filtre de rehaussement et filtre passe-bas).
Dans une variante particulière de l'invention, les étapes 201 et 202 peuvent être réalisées conjointement pour générer directement un gabarit de filtre 602,603 qui inclut à la fois le rehaussement et le filtrage passe-bas adapté au haut -parleur.
Selon une troisième étape 203 du procédé selon l'invention, on applique une normalisation par l'intermédiaire d'un gain pour ajuster le niveau du signal en sortie.
Ce gain de normalisation dépend du type de signal audio s(t) reçu qui peut être soit un signal de parole dont le spectre est étendu sur une plage de fréquences large, soit un signal de type alarme dont le spectre en fréquence est plus étroit.
Pour le cas d'un signal de parole, l'étape 203 consiste à appliquer au filtre de rehaussement un gain fixe scalaire destiné à replacer le signal dans une zone de confort auditif pour l'utilisateur ciblé. Cette zone de confort est définie par le spectre moyen du signal de parole (désigné par l'acronyme anglo-saxon LTASS pour Long Term Average Speech Spectrum) associé à la dispersion statistique de ce spectre moyen. La zone de confort peut aussi prendre en compte le type d'annonces diffusé de manière à s'adapter au spectre moyen du type précis d'annonces. Par exemple, le type d'annonces considéré peut être limité à une voix féminine, à un locuteur donné ou à une langue donnée. Le gain appliqué est également configuré pour prendre en compte le phénomène de recrutement qui correspond à une limitation progressive de la dynamique du système auditif de personnes presbyacousiques. Ce phénomène a pour effet d'engendrer une sensation d'inconfort très gênante, pour ce type de personnes, lorsque le niveau du son est trop élevé.
Les figures 7a et 7b représentent un ensemble de courbes isosoniques pour un ensemble de personnes correspondant à un profil auditif donné. Ces courbes définissent des niveaux de pression acoustique en décibels (en ordonnée) en fonction de la fréquence (en abscisse), qui provoquent la même sensation d'intensité sonore pour l'oreille humaine.
Sur la figure 7a sont représentées six courbes isosoniques C , Cl2, Cl3, Cl4, Cl5, Cl6, pour des personnes ayant des capacités auditives normales, chaque courbe étant associée à un niveau d'intensité sonore. Sur cette même figure 7a est également représenté le spectre moyen LTASS du signal de parole.
Sur la figure 7b sont représentées six courbes isosoniques Cl'i , Cl'2, Cl'3, Cl'4, Cl'5, Cl'6, pour des personnes presbyacousiques, chaque courbe étant associée à un niveau d'intensité sonore. Sur cette même figure 7b est également représenté le spectre moyen LTASS du signal de parole.
On remarque en comparant les figures 7a et 7b que les courbes isosoniques sont sensiblement plus resserrées pour les personnes presbyacousiques, ce qui traduit une diminution de la dynamique du système auditif chez ces personnes. Ainsi, les personnes presbyacousiques s'approchent plus rapidement du seuil de douleur que les personnes qui ont une audition normale, en fonction du niveau d'intensité sonore. Ce phénomène est qualifié de recrutement.
La figure 8 illustre, sur un exemple, l'effet de l'étape de normalisation 203 du procédé selon l'invention.
L'objectif de cette étape 203 est de positionner le spectre moyen du signal de parole en sortie des étapes de filtrage 201 ,202, au dessus du seuil d'audition absolu SAA représenté à la figure 8 pour une cible de personnes mal-entendantes. Le spectre moyen du signal doit être positionné dans une zone de confort d'écoute en tenant compte de l'écart- type-par fréquences et en ne dépassant pas les pics de niveau de la parole NP.
Un exemple de courbe 800 de spectre moyen d'un signal de parole rehaussé et normalisé est représenté à la figure 8 pour un niveau cible de niveau de pression acoustique maximum de 80 dB. Le gain de normalisation appliqué à l'étape 203 est donc calculé de sorte que l'écart type maximum du spectre moyen ainsi que les pics de niveau de parole sur l'ensemble des fréquences ETM soient entre le seuil d'audition de l'auditeur et son seuil d'inconfort. Le réglage du gain de normalisation est fait de manière à ce que la probabilité pour que le spectre moyen du signal de parole (avec sa dispersion statistique) reste dans la zone de confort (avec sa distribution statistique) soit grande. Ce niveau permet d'obtenir un bon rehaussement du signal de parole tout en restant éloigné du seuil de douleur SD également représenté à la figure 8.
L'exemple de la figure 8 est donné à titre illustratif. On comprend que le gain de normalisation dépend du profil d'auditeur visé et est calculé de sorte à ce que le spectre moyen du signal de parole soit compris entre le seuil d'audition absolu et le seuil de douleur, pour un profil d'individu donné.
Pour le cas d'un signal de type alarme, l'étape de normalisation 203 du procédé consiste à fixer un gain de normalisation scalaire fixe par bandes de fréquences. La valeur du gain est fixée sur chaque plage de sorte que les composantes du signal d'alarme rehaussé ne dépassent pas un seuil donné. Le gain de normalisation est notamment fixé de sorte que le niveau du signal de parole après normalisation 203 ne dépasse pas un seuil maximum défini par bande de fréquences. Suite au rehaussement fréquentiel 201 , une nouvelle composante fréquentielle dominante peut apparaître dans le signal. Comme le rehaussement est plus important dans les hautes fréquences, la normalisation 203 permet d'assurer que ces nouvelles composantes éventuelles ne dépassent pas un seuil maximum prédéfini.
Dans le cas d'une alarme, le gain de normalisation dépend du contenu fréquentiel précis de l'alarme considérée.
En particulier, on distingue deux bandes de fréquences importantes, la bande principale et la bande haute fréquence. Dans ces deux bandes en particulier, il est important que le signal ne dépasse pas le seuil prédéterminé.
Le seuil maximum est défini en fonction du seuil de tolérance ou seuil de douleur pour un profil d'auditeurs donné et prend en compte le phénomène de recrutement chez les personnes presbyacousiques.
Ainsi, le gain de normalisation appliqué à l'étape 203 est calculé de sorte que le signal d'alarme rehaussé et normalisé soit compris entre le seuil d'audition absolu et le seuil de douleur, pour un profil d'individu donné
Le principe du réglage du gain de normalisation dans le cas d'un signal d'alarme est sensiblement le même que celui du réglage dans le cas d'un signal de parole avec cela de spécifique que le contenu fréquentiel de l'alarme est soit connu soit peut être appris en temps réel. Le réglage du gain de normalisation est effectué par bande de fréquences pour les alarmes à la fois parce que cela conduit à un algorithme moins complexe pour des applications embarquées et parce qu'il est possible de faire la distinction entre la bande utile ou principale (liées à la fréquence fondamentale d'alarmes souvent tonales) et les hautes fréquences qui contiennent les harmoniques de cette fréquence fondamentale.
Un exemple de valeurs de gain par bandes de fréquences est donné dans le tableau suivant pour un signal d'alarme.
Fréquences 63 125 250 500 1000 2000 4000 8000 centrale par bande
d'octaves (Hz)
Gain (dB) 90 90 90 90 93 97 90 85 Le procédé de pré-compensation fréquentielle d'un signal audio, selon l'invention, permet notamment de lutter contre les pertes fréquentielles en fonction de l'âge de l'auditeur par l'utilisation d'un filtre de rehaussement 201 . En outre, l'ajout d'une étape de normalisation 203, ainsi que l'ajout d'un filtre passe-bas 202, permet de lutter également contre l'abaissement du seuil d'audition absolu en fonction de l'âge d'un auditeur et contre le phénomène de recrutement chez les personnes presbyacousiques.
Pour des signaux de parole, l'invention permet notamment d'améliorer l'intelligibilité de la parole pour des personnes presbyacousiques et les personnes ayant des capacités auditives normales sans altérer la qualité du son perçu par ces derniers.
Pour des signaux de type alarme, l'invention permet d'améliorer la perception et la localisation de l'alarme et de conserver le pouvoir alarmant.
Le système 101 selon l'invention et en particulier le filtre de précompensation FPC peut être implémenté à partir d'éléments matériel et/ou logiciels. Le filtre de précompensation FPC peut être mis en œuvre sous forme de programme d'ordinateur. Alternativement il peut être mis en œuvre par un processeur associé à une mémoire. Le processeur peut être un processeur spécifique ou générique ou un circuit intégré.
L'invention s'applique à la diffusion de signaux sonores dans des espaces publics tels que des gares, aéroports, établissements sportifs, musées, chapiteaux, centres commerciaux, établissements de cultes, mais également des espaces de taille plus réduite telles que des structures d'accueil pour personnes âgées et handicapées, des salles de conférence, des établissements d'enseignement, des établissements sanitaires, des administrations ou encore des centres d'appels.
L'invention s'applique également à la diffusion d'alertes sonores dans des espaces privés tels que des moyens de transports motorisés parmi lesquels un véhicule automobile, une ambulance, un ascenseur, une télécabine, un cockpit d'avion ou une cabine de bateau.

Claims

REVENDICATIONS
1 . Procédé de rehaussement d'un signal audio destiné à être diffusé à au moins un auditeur cible, ledit procédé comprenant les étapes suivantes :
- Recevoir un signal audio s(t),
- Filtrer (201 ) le signal audio s(t) par un filtre de rehaussement fréquentiel dont le gabarit fréquentiel est déterminé à partir de valeurs statistiques d'écart de seuil d'audition, fonctions de la fréquence, caractéristiques dudit au moins un auditeur cible,
- normaliser (203) le signal filtré, par un gain configuré en fonction dudit au moins un auditeur cible, de sorte à être compris entre un seuil d'audition absolu (SAA) et un seuil de douleur (SD),
- le seuil d'audition absolu (SAA) étant déterminé pour un profil d'auditeurs donné.
2. Procédé de rehaussement d'un signal audio selon la revendication 1 dans lequel les valeurs d'écart de seuil d'audition sont des valeurs d'écart entre un seuil d'audition pour ledit au moins un auditeur cible et un seuil d'audition de référence.
3. Procédé de rehaussement d'un signal audio selon l'une des revendications précédentes dans lequel les valeurs d'écart de seuil d'audition sont des valeurs médianes.
4. Procédé de rehaussement d'un signal audio selon l'une des revendications précédentes dans lequel les valeurs d'écart d'audition sont moyennées selon le sexe dudit au moins un auditeur cible.
5. Procédé de rehaussement d'un signal audio selon l'une des revendications précédentes dans lequel le gabarit fréquentiel du filtre de rehaussement fréquentiel est déterminé à l'aide d'une interpolation fréquentielle desdites valeurs d'écart.
6. Procédé de rehaussement d'un signal audio selon l'une des revendications précédentes comprenant en outre une étape (202) de filtrage passe-bas du signal rehaussé par le filtre de rehaussement fréquentiel, la fréquence de coupure du filtre passe-bas étant prise égale au maximum à la fréquence de coupure d'un haut-parleur (HP) destiné à diffuser le signal audio filtré.
7. Procédé de rehaussement d'un signal audio selon la revendication 1 dans lequel le signal audio est un signal de parole et le gain de normalisation est un gain moyen fixe appliqué au signal pour toutes les fréquences.
8. Procédé de rehaussement d'un signal audio selon la revendication 1 dans lequel le signal audio est une alarme et le gain de normalisation est un gain variable en fréquence et configuré en fonction des composantes fréquentielles du signal avant l'étape (203) de normalisation.
9. Procédé de rehaussement d'un signal audio selon l'une des revendications précédentes dans lequel ledit au moins un auditeur cible comprend un auditeur presbyacousique.
10. Dispositif (101 ) de rehaussement fréquentiel d'un signal audio comprenant des moyens (FPC) configurés pour exécuter le procédé de rehaussement d'un signal audio selon l'une des revendications précédentes.
1 1 . Programme d'ordinateur comportant des instructions pour l'exécution du procédé de rehaussement d'un signal audio selon l'une quelconque des revendications 1 à 9, lorsque le programme est exécuté par un processeur.
12. Support d'enregistrement lisible par un processeur sur lequel est enregistré un programme comportant des instructions pour l'exécution du procédé de rehaussement d'un signal audio selon l'une quelconque des revendications 1 à 9, lorsque le programme est exécuté par un processeur.
PCT/EP2016/070151 2015-08-28 2016-08-26 Procede et systeme de rehaussement d'un signal audio WO2017036940A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1557986 2015-08-28
FR1557986A FR3040522B1 (fr) 2015-08-28 2015-08-28 Procede et systeme de rehaussement d'un signal audio

Publications (1)

Publication Number Publication Date
WO2017036940A1 true WO2017036940A1 (fr) 2017-03-09

Family

ID=54937245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/070151 WO2017036940A1 (fr) 2015-08-28 2016-08-26 Procede et systeme de rehaussement d'un signal audio

Country Status (2)

Country Link
FR (1) FR3040522B1 (fr)
WO (1) WO2017036940A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11368776B1 (en) * 2019-06-01 2022-06-21 Apple Inc. Audio signal processing for sound compensation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3573059B1 (fr) * 2018-05-25 2021-03-31 Dolby Laboratories Licensing Corporation Amélioration de dialogue basée sur la parole synthétisée

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6724862B1 (en) * 2002-01-15 2004-04-20 Cisco Technology, Inc. Method and apparatus for customizing a device based on a frequency response for a hearing-impaired user
US20050078838A1 (en) * 2003-10-08 2005-04-14 Henry Simon Hearing ajustment appliance for electronic audio equipment
EP2131357A1 (fr) 2008-06-04 2009-12-09 Parrot Système de contrôle automatique du gain appliqué à un signal audio en fonction du bruit ambiant
WO2010000878A2 (fr) 2009-10-27 2010-01-07 Phonak Ag Système et procédé d’amélioration de la qualité de la parole
FR2986897A1 (fr) * 2012-02-10 2013-08-16 Peugeot Citroen Automobiles Sa Procede d'adaptation de signaux sonores par filtre de correction sonore fonction d'un profil auditif, et dispositif de traitement associe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6724862B1 (en) * 2002-01-15 2004-04-20 Cisco Technology, Inc. Method and apparatus for customizing a device based on a frequency response for a hearing-impaired user
US20050078838A1 (en) * 2003-10-08 2005-04-14 Henry Simon Hearing ajustment appliance for electronic audio equipment
EP2131357A1 (fr) 2008-06-04 2009-12-09 Parrot Système de contrôle automatique du gain appliqué à un signal audio en fonction du bruit ambiant
WO2010000878A2 (fr) 2009-10-27 2010-01-07 Phonak Ag Système et procédé d’amélioration de la qualité de la parole
FR2986897A1 (fr) * 2012-02-10 2013-08-16 Peugeot Citroen Automobiles Sa Procede d'adaptation de signaux sonores par filtre de correction sonore fonction d'un profil auditif, et dispositif de traitement associe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GAËL MAHE: "Age Sensitive ICT Systems for Intelligible City For All I'CityForAll Coordinated by CEA", VITE'14: VIVRE ET SE MOUVOIR DANS LA VILLE GRÂCE AUX NOUVELLES TECHNOLOGIES, PARIS, FRANCE, 5 FEBRUARY 2014, 5 February 2014 (2014-02-05), XP055268238, Retrieved from the Internet <URL:http://www.icityforall.eu/publications/vite14-2.pdf> [retrieved on 20160425] *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11368776B1 (en) * 2019-06-01 2022-06-21 Apple Inc. Audio signal processing for sound compensation

Also Published As

Publication number Publication date
FR3040522A1 (fr) 2017-03-03
FR3040522B1 (fr) 2019-07-19

Similar Documents

Publication Publication Date Title
US11710473B2 (en) Method and device for acute sound detection and reproduction
US11276384B2 (en) Ambient sound enhancement and acoustic noise cancellation based on context
US8964998B1 (en) System for dynamic spectral correction of audio signals to compensate for ambient noise in the listener&#39;s environment
US9138178B2 (en) Method and system for self-managed sound enhancement
US11153677B2 (en) Ambient sound enhancement based on hearing profile and acoustic noise cancellation
EP3641343B1 (fr) Procédé permettant d&#39;améliorer le signal audio provenant d&#39;un dispositif de sortie audio
CN112087701B (zh) 用于风检测的麦克风的扬声器仿真
KR20110050500A (ko) 보청기에서의 사운드 처리 방법 및 보청기
JP6514371B2 (ja) ダイナミックコンプレッサを制御する装置及び方法並びにダイナミックコンプレッサの増幅値を決定する方法
US20190313196A1 (en) Method to acquire preferred dynamic range function for speech enhancement
US20170195803A1 (en) Audio systems, devices, and methods
FR3040522B1 (fr) Procede et systeme de rehaussement d&#39;un signal audio
Kuk et al. Improving hearing aid performance in noise: Challenges and strategies
Brons et al. Detection threshold for sound distortion resulting from noise reduction in normal-hearing and hearing-impaired listeners
US11368776B1 (en) Audio signal processing for sound compensation
WO2017207286A1 (fr) Combine audio micro/casque comprenant des moyens de detection d&#39;activite vocale multiples a classifieur supervise
EP3755006A1 (fr) Système audio autonome pour appui-tête de siège, appui-tête de siège et véhicule associés
WO2009077665A1 (fr) Baladeur audio ou audio-video comprenant des moyens de capture d&#39;un signal audio externe
FR3073694A1 (fr) Procede de sonorisation live, au casque, tenant compte des caracteristiques de perception auditive de l’auditeur
Ives et al. Effects of noise reduction on AM perception for hearing-impaired listeners
FR2921747A1 (fr) Procede de traitement d&#39;un signal audio dans un dispositif portable
FR2921746A1 (fr) Baladeur audio ou audio-video comprenant des moyens de capture d&#39;un signal audio externe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16757250

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16757250

Country of ref document: EP

Kind code of ref document: A1