WO2017036178A1 - 统计复用光传送网方法及装置 - Google Patents

统计复用光传送网方法及装置 Download PDF

Info

Publication number
WO2017036178A1
WO2017036178A1 PCT/CN2016/082260 CN2016082260W WO2017036178A1 WO 2017036178 A1 WO2017036178 A1 WO 2017036178A1 CN 2016082260 W CN2016082260 W CN 2016082260W WO 2017036178 A1 WO2017036178 A1 WO 2017036178A1
Authority
WO
WIPO (PCT)
Prior art keywords
oduflex
oduk
rate
mapped
gfp
Prior art date
Application number
PCT/CN2016/082260
Other languages
English (en)
French (fr)
Inventor
付锡华
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017036178A1 publication Critical patent/WO2017036178A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/08Time-division multiplex systems

Definitions

  • This application relates to, but is not limited to, the field of optical communications.
  • the optical transport network (Optical Channel Payload Unit, OPU) payload space of the optical transport network (OTN) is fixedly divided into multiple time slots of the same size; each time slot is fixed to occupy the same number of words.
  • the number of sections, the OPU bandwidth (large pipe) is fixedly divided into multiple small pipes of equal bandwidth.
  • the bandwidth of the time slot is over 2.5G, 1.25G (100G), 10G (Beyond 100G)->5G (Beyond 100G).
  • OPU4 is divided into 80 small pipes of 1.25G, and OPUCn of Beyond 100G OTN is divided into 20*n 5G small pipes.
  • Low-order optical data units (ODUs)/ODUflex to higher-order OPUs is a fixed occupation of multiple time slots.
  • the data of the low-order ODU/ODUflex must appear periodically in the fixed time slot position of each OPU frame, and the bandwidth allocation strategy is fixedly allocated in advance.
  • the low-order ODU/ODUflex must occupy multiple time slot bandwidths, regardless of whether the bandwidth is fully utilized.
  • OTN pipes are still not flexible and flexible.
  • the choice of slot size is limited by the complexity of the OTN Framer chip implementation and the degree of matching with the OTN customer bandwidth. The smaller the time slot, the more complex the OTN Framer implementation is.
  • the OTN Framer chip generally uses the space division processing and the time division processing conversion.
  • the time slots in the OPUCn frame use a wider byte interpolation, such as 16 bytes. , but still can not avoid the conversion of space and time processing.
  • the time slot size of the B100G OTN is changed from 10G to 5G.
  • the IEEE and the Optical Internet Forum (OIF) are discussing the definition of new rates of Ethernet services, such as 2.5GE, 5GE, and Flex Ethernet (multiple rates of 10GE, 40GE, and 25GE). IEEE-defined services often affect OTN standards. , in particular, the choice of slot granularity.
  • the bearer mode includes Synchronous Digital Hierarchy (SDH)/SDH-based multi-service transport platform (Multi-Service Transfer). Platform, MSTP) (suitable for carrying hundreds of megabits or less) and packet transport network (PTN) / transport network layer of all interfaces Internet Protocol Radio Access Network (IPRAN) transmitted by IP. Due to the small bandwidth, OTN is not suitable for directly carrying these dedicated line services.
  • SDH Synchronous Digital Hierarchy
  • MSTP suitable for carrying hundreds of megabits or less
  • PDN packet transport network
  • IPRAN Internet Protocol Radio Access Network
  • Metro core level 1 level gathers into a large amount of traffic, and finally accesses the OTN at the core of the metropolitan area.
  • MPLS-TP Multiprotocol Label Switching-Transport Profile
  • the metro core level 1 level gathers into a large amount of traffic, and finally accesses the OTN at the core of the metropolitan area.
  • these large customer private line traffic and mobile backhaul, home customer traffic are superimposed on the metropolitan area network, and are uniformly carried by the IPRAN or MPLS-TP of the metropolitan area network.
  • POTN Packet Optical Transport Network
  • a statistical multiplexing optical transport network method comprising: mapping, in an optical transport network OTN, a packet service to a different flexible rate optical data unit ODUflex through a general framing process GFP,
  • the pipe rate of ODUflex is not lower than the set minimum rate
  • the ODUflex is rate-filled without the idle frame of GFP
  • the different ODUflex is multiplexed to the same ODUk pipe through the statistical multiplexing technology of the optical transport network OTN.
  • the packet service bandwidth is less than the entire ODUk pipeline
  • Pipeline rate; ODUk carrying ODUflex is exchanged at the passing intermediate node and transmitted to the sink node.
  • ODUk carrying the ODUflex is transmitted to the sink node, the ODUflex is demapped from the ODUk, and the packet service is removed from the ODUflex by GFP. Unmapped.
  • the ODUk carrying the ODUflex is exchanged at the intermediate node that is passed through: when the ODUflex mapped to the same ODUk is the same-same and the same, the intermediate node through which the ODUk passes is directly exchanged with the ODUk; when the ODUflex mapped to the same ODUk is the same
  • the source node is different from the ODUk.
  • the ODUflex from the upstream node is demapped from the ODUk, and the ODUflex is switched to the different egress direction through the OTN cross-matrix. After the ODUflex crosses the matrix, it goes down with the intermediate node.
  • the ODUflex of the same downstream node is mapped to the same ODUk by statistical multiplexing technology.
  • the method further includes: setting a minimum rate for the ODUflex carrying the packet service, where the minimum rate can meet the rate requirement of the channel layer monitoring PM and the segment layer monitoring SM overhead for transmitting the ODUflex; the pipe rate in the ODUflex is lower than the setting At the minimum rate, when no packet is mapped to ODUflex through GFP, the GFP idle frame is mapped to ODUflex, and the ODUflex is rate-filled so that the pipe rate of the ODUflex is greater than or equal to the minimum rate value.
  • mapping the packet service to the different ODUflex by using the GFP includes: dividing the frame of the optical channel payload layer OPUk into multiple logical channel units with fixed lengths, and identifying the ODUflex carried by the logical channel unit by using the logical channel unit number. Data; the logical channel unit is allocated to the ODUflex that needs to transmit data by using the statistical multiplexing technology, and the ODUflex is transmitted by using the logical channel unit in the OPU frame as needed, and the idle frame is used when the bandwidth of the OPU is remaining. Fill it up.
  • the cross matrix of the ODUflex through the OTN includes: directly exchanging the data stream of the ODUflex as a normal packet data stream by using a packet switching kernel.
  • a statistical multiplexing optical transport network device comprising: a mapping multiplexing module, configured to: in optical transmission In the network OTN, the packet service is mapped to different flexible rate optical data units ODUflex through the general framing process, and the ODUflex is rate-filled without using the idle frame of the GFP when the pipe rate of the ODUflex is not lower than the set minimum rate, and The ODUflex is multiplexed into the same ODUk pipeline through the statistical multiplexing technology of the optical transport network OTN.
  • the pipeline rate of the ODUk is passed through the idle IDLE frame of the statistical multiplexing technology.
  • the exchange demapping module is configured to: exchange the ODUk carrying the ODUflex in the intermediate node that passes through, And transmitting to the sink node, when the ODUk carrying the ODUflex is transmitted to the sink node, the ODUflex is demapped from the ODUk, and the packet service is demapped from the ODUflex through the GFP.
  • the exchange demapping module is configured to: when the ODUflex mapped to the same ODUk is the same-same and the same, the intermediate node through the ODUk directly exchanges the ODUk; when the ODUflex mapped to the same ODUk is a homologous different sink, the The intermediate node through which the ODUk passes demaps the ODUflex from the upstream node from the ODUk, and the ODUflex is switched to the different egress directions through the OTN cross-matrix. After the ODUflex passes through the cross-matrix, the intermediate node goes to the next downstream. The ODUflex of the node is mapped to the same ODUk through statistical multiplexing technology.
  • the mapping multiplexing module is further configured to: set a minimum rate for the ODUflex carrying the packet service, and the minimum rate can meet the rate requirement of the channel layer monitoring PM and the segment layer monitoring SM overhead for transmitting the ODUflex; the pipe rate at the ODUflex When the minimum rate is lower than the set minimum rate, when no data packet is mapped to the ODUflex through GFP, the GFP idle frame is mapped to the ODUflex, and the ODUflex is rate-filled so that the ODUflex pipe rate is greater than or equal to the minimum rate value.
  • the mapping multiplexing module is configured to: divide the frame of the optical channel payload layer OPUk into a plurality of logical channel units with fixed lengths, and use the logical channel unit number to identify data of the ODUflex carried by the logical channel unit;
  • the logical channel unit uses the statistical multiplexing technology to allocate ODUflex to the data to be transmitted as needed, and uses the logical channel unit in the OPU frame to transmit the ODUflex as needed.
  • the idle frame is used for filling.
  • the exchange demapping module is configured to: directly exchange the data stream of the ODUflex as a normal packet data stream through the packet switching kernel, so that the ODUflex passes through the OTN.
  • the cross matrix is configured to: directly exchange the data stream of the ODUflex as a normal packet data stream through the packet switching kernel, so that the ODUflex passes through the OTN.
  • a computer readable storage medium storing computer executable instructions for performing the method of any of the above.
  • the POTN in the related technology simply solves the problem that the MPLS-TP and the OTN are simply superimposed to carry packet traffic, and the device implementation and network management are complicated, and the optical transport network is transformed into a completely flexible pipeline. Effectively carrying variable rate packet services.
  • FIG. 1 is a flowchart of a method for statistical multiplexing optical transport network according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of mapping and multiplexing ODUflex carrying a packet service and ODUflex/ODUj carrying a fixed bit rate service into an ODUk according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a packet service for transmitting a homogenous homogeneous sink through a statistical multiplexing optical transport network according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a packet service for transmitting homogenous different sinks through a statistical multiplexing optical transport network according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a statistical multiplexing optical transport network apparatus according to an embodiment of the present invention.
  • the embodiment of the present invention provides a system.
  • the method and apparatus for multiplexing the optical transmission network will be described below with reference to the accompanying drawings and embodiments. It is to be understood that the embodiments described herein are merely illustrative of the application and are not limiting.
  • FIG. 1 is a flowchart of a statistical multiplexing optical transmission network method according to an embodiment of the present invention.
  • the statistical multiplexing optical transport network method includes the following processing:
  • Step 101 In the optical transport network OTN, the packet service is mapped to different flexible rate optical data units ODUflex through the general framing process GFP, and the idle frame pair of GFP is not used when the pipe rate of the ODUflex is not lower than the set minimum rate.
  • ODUflex performs rate padding and multiplexes different ODUflex to the same ODUk pipe through the statistical multiplexing technology of the optical transport network OTN.
  • the ODUk pipe rate is statistically multiplexed.
  • mapping the packet service to the different ODUflex by using GFP includes: dividing the frame of the optical channel payload layer OPUk into a plurality of logical channel units with fixed lengths, and identifying the logical channel unit by using the logical channel unit number. Which ODUflex data is used; the logical channel unit is allocated to the ODUflex that needs to transmit data as needed by the statistical multiplexing technology, and the ODUflex is transmitted by using the logical channel unit in the OPU frame as needed, in the case where the bandwidth of the OPU is remaining, Use idle frames for padding.
  • a minimum rate can be set for the ODUflex carrying the packet service, and the minimum rate can meet the rate requirement of the channel layer monitoring PM and the segment layer monitoring SM overhead for transmitting the ODUflex; the pipe rate in the ODUflex is lower than the setting.
  • the minimum rate when no packet is mapped to ODUflex through GFP, the GFP idle frame is mapped to ODUflex, and the ODUflex is rate-filled so that the pipe rate of the ODUflex is greater than or equal to the minimum rate value.
  • Step 102 The ODUk carrying the ODUflex is exchanged and processed at the passing intermediate node, and transmitted to the sink node.
  • the ODUflex is removed from the ODUflex.
  • the ODUk is demapped, and the packet service is demapped from the ODUflex by GFP.
  • step 102 the ODUk carrying the ODUflex is exchanged at the intermediate node that is passed through: when the ODUflex mapped to the same ODUk is the same-same and the same, the intermediate node through which the ODUk passes directly exchanges the ODUk; when the ODUflex mapped to the same ODUk is The ODUk from the upstream node is demapped from the ODUk, and the ODUflex is switched to the different egress directions through the OTN cross-matrix. After the ODUflex crosses the matrix, it goes to the intermediate node. The ODUflex of the next identical downstream node is mapped to the same ODUk by statistical multiplexing technology.
  • the cross matrix of the ODUflex through the OTN includes: directly exchanging the data stream of the ODUflex as a normal packet data stream through the packet switching kernel.
  • the packet service is mapped to different ODUflex by GFP, and the ODUflex does not need to fill the rate through the idle IDLE frame of the GFP; the ODUflex is multiplexed into a single ODUk pipeline through the statistical multiplexing OTN technology; if all the packet services are used
  • the bandwidth is less than the entire ODUk pipeline, and the rate is filled by the statistically multiplexed IDLE frame.
  • Each ODUflex has its own OAM and protection mechanism.
  • the ODUflex can perform flexible bandwidth rate adjustment without MPLS forwarding layer processing and MPLS/MPLS-TP. OAM and protection.
  • the intermediate nodes that the ODUk passes through do not need to demap the ODUflex from the ODUk for exchange, and directly exchange the ODUk.
  • the intermediate node through which the ODUk passes demaps the ODUflex from the upstream node from the ODUk.
  • the ODUflex is switched to the different egress directions through the OTN cross-matrix; After the cross matrix, the ODUflex of the same downstream node as the intermediate node is mapped to the same ODUk through statistical multiplexing technology.
  • the packet-switched core in the related art needs to slice the data of the ODUk/ODUflex through the OPF (OTN over Packet Fabric) function block, and slice the ODUk/ODUflex frame into the core.
  • OPF OTN over Packet Fabric
  • the acceptable packet after passing through the packet-switched kernel, the OPF function block assembles the packet into an ODUk/ODUflex frame.
  • the technical solution of the embodiment of the present invention does not need to slice and assemble the variable rate ODUflex through the OPF function block, and the packet switching core can directly treat the ODUflex data stream as an ordinary packet stream. The processing is changed to improve the processing efficiency of the packet switching core for ODUflex.
  • the system sets a maximum bandwidth value for the ODUflex according to the service level agreement provided by the operator to the user.
  • the ODUflex is mapped to the ODUk by using the statistical multiplexing technology, and the bandwidth rate of the ODUflex is Changed, it may take a long time, ODUflex does not carry some packet traffic, which will result in no data to be carried by ODUflex; if you want to reuse OMN OAM and protection mechanism, then ODUflex path monitoring (PM) and segment monitoring The (Section Monitor, SM) overhead is correctly transmitted from the source node of the ODUflex to the sink node or from the sink node to the source node.
  • PM ODUflex path monitoring
  • SM Seg Monitoring
  • the embodiment of the present invention can set a minimum rate for a certain ODUflex carrying packet traffic, and the minimum bandwidth must meet the rate requirement of transmitting the ODUflex SM and PM overhead.
  • the pipe rate of the ODUflex is lower than the set minimum rate, when no packet is mapped to the ODUflex through the GFP-F, the GFP IDLE frame is mapped to the ODUflex, and the ODUflex rate is filled, so that the pipe speed of the ODUflex can be greater than It is equal to the set minimum rate value to ensure that the SM and PM overhead can be transmitted at a certain rate.
  • the ODUk When ODUflex is mapped to the same ODUk through statistical multiplexing, the ODUk no longer divides the bandwidth of the ODUk according to the time slot, and allocates bandwidth for the ODUflex according to a fixed bandwidth allocation policy; instead, the OPUk frame is divided into fixed lengths. Packets, such as the OPU payload, are divided into 32 logical channel units, which have a header. To introduce an MPLS-like tag (which can be called a logical channel number) overhead, which data of a low-order ODUflex is carried by a logical channel unit (packet). These packets are distributed on demand to the ODUflex that needs to transmit data according to statistical multiplexing techniques.
  • MPLS-like tag which can be called a logical channel number
  • the packets in the high-order OPU frame are used to transmit the data stream of the low-order ODU/ODUflex as needed. If the bandwidth of the OPU is not enough, use IDLE data to fill it. The data of an ODU/ODUflex does not need to be fixedly present in every OPU frame.
  • the ODUflex carrying the packet service and the ODUflex/ODUj carrying the fixed bit rate service can be mapped and multiplexed into the ODUk (k>j) by a single level, as shown in FIG. 2 .
  • the mapping mode of the BMP, AMP, and GMP is not required, and the ODUflex is directly mapped to the ODUk through the statistical multiplexing technology.
  • Single-stage multiplexing is suitable for statistical multiplexing OTN single networking. It is deployed in metro access and aggregation, and multi-services carry passengers, mobile backhaul, and home user traffic.
  • the secondary multiplexing mode When it is suitable for statistical multiplexing OTN and existing OTN hybrid networking or docking, you can use the secondary multiplexing mode, as shown in Figure 2.
  • the mapping mode of the BMP, AMP, and GMP is not required, and the ODUflex is directly mapped to the ODUk through the statistical multiplexing technology.
  • These ODUi can be mapped and multiplexed through GMP.
  • These ODUis can be further mapped and multiplexed into ODUCn or transmitted directly through OTUi.
  • the secondary multiplexing can also enable the statistical multiplexing OTN to be deployed in the metro access and aggregation, multi-service bearer, mobile backhaul, and home user traffic. If necessary, it can be connected to the existing OTN.
  • the rate synchronization is required at the mapping and demapping points.
  • the rate synchronization can be based on the related technology GMP (Generic Mapping Procedure) or OPF (OTN over Packet Fabric). Rate synchronization technology. Rate synchronization can also be performed by FMP (Frame-based Mapping Procedure).
  • a statistical multiplexing technology is introduced to transform the optical transport network into a completely flexible pipeline.
  • the statistical multiplexing technology is used to implement on-demand allocation, and the bandwidth is allocated to the service that needs to transmit information, so that the bandwidth can be used satisfactorily, the utilization rate is high, and the pipeline is flexible and flexible. Any bit rate service can be mapped to the statistical multiplexing OTN pipeline without bandwidth waste.
  • the decoupling of OTN and OTN customer service bandwidth granularity makes OTN technology and standard development no longer too limited by OTN customers (mainly IEEE defined Ethernet) bandwidth.
  • the statistical multiplexing OTN changes the allocation mode of the ODUk bandwidth. When the low-order ODUj/ODUflex is mapped to the ODUk, the bandwidth is allocated on demand.
  • the embodiment of the invention further provides a computer readable storage medium storing computer executable instructions for executing the above statistical multiplexing optical transport network method.
  • Example 1 using statistical multiplexing OTN to carry packet services, for example, through statistical multiplexing
  • the service line of the government-owned enterprise network the rate of these services includes 2Mbit/s, 100Mbit/s, 155Mbit/s, 1000Mbit/s, etc.
  • Figure 3 shows the scenario of homologous and identical sinking. The steps include:
  • Step 11 The packet service is encapsulated by the GFP-F (Frame-mapped Generic Framing Procedure) and mapped to the ODUflex of the OTN.
  • GFP-F Framework-mapped Generic Framing Procedure
  • the rate filling is not required by the GFP IDLE frame.
  • Step 14 When the ODUk carrying the ODUflex is transmitted to the sink node, such as the node C of FIG. 3, the ODUflex is demapped from the ODUk, and the node C demaps the packet service from the ODUflex by GFP-F demapping.
  • the multiplexed OTN is used to carry the packet service.
  • the service line of the government-enterprise network is carried out by statistical multiplexing.
  • the rates of these services include 2 Mbit/s, 100 Mbit/s, 155 Mbit/s, 1000 Mbit/s, etc. 4 is a scene of homologous different sinks, and the steps include:
  • Step 21 The packet service is encapsulated by the GFP-F (Frame-mapped Generic Framing Procedure) and mapped to the ODUflex of the OTN.
  • GFP-F Framework-mapped Generic Framing Procedure
  • the rate filling is not required by the GFP IDLE frame.
  • Step 23 When the ODUflex of step 22 is homologous and different, that is, the source node is the same (as shown in FIG. 4). Node A), but when the sink nodes are different (such as node C and node D in Figure 4), the intermediate node through which the ODUk passes needs to demap the ODUflex from the upstream node (node A in Figure 4) from the ODUk. These ODUflex are exchanged to different exit directions through the OTN cross matrix (as shown in Figure 4, Node B's cross matrix); after the ODUflex passes through the cross matrix, the intermediate nodes (such as Node B in Figure 4) will go to the same downstream node's ODUflex. Map to the same ODUk through statistical multiplexing techniques.
  • Step 24 When the ODUk carrying the ODUflex is transmitted to the sink node (such as node C or D in FIG. 4), the ODUflex is demapped from the ODUk, and the node C and the node D are demapped by GFP-F to solve the packet service from the ODUflex. Map it out.
  • the sink node such as node C or D in FIG. 4
  • FIG. 5 is a schematic structural diagram of a statistical multiplexing optical transport network device according to an embodiment of the present invention.
  • the statistical multiplexing optical transport network device includes: a mapping multiplexing module 50 and a switching demapping module 52. Each module of the embodiment of the present invention is described in detail below.
  • the mapping multiplexing module 50 is configured to: in the optical transport network OTN, map the packet service to the different flexible rate optical data unit ODUflex through the universal framing process, when the pipe speed of the ODUflex is not lower than the set minimum rate.
  • ODUflex is rate-filled using GFP idle frames, and different ODUflex are multiplexed into the same ODUk pipeline through the statistical multiplexing technology of the optical transport network OTN.
  • the mapping multiplexing module 50 is further configured to: set a minimum rate for the ODUflex carrying the packet service, and the minimum rate can satisfy the channel layer monitoring PM and the segment layer monitoring SM of the transmitting ODUflex.
  • the rate requirement of the pin when the pipe rate of the ODUflex is lower than the set minimum rate, when no packet is mapped to the ODUflex by GFP, the GFP idle frame is mapped to the ODUflex, and the rate of the ODUflex is filled, so that the pipe rate of the ODUflex is greater than or Equal to the minimum rate value.
  • the mapping multiplexing module 50 is configured to: divide the frame of the optical channel payload layer OPUk into a plurality of logical channel units with fixed lengths, and use the logical channel unit number to identify data of the ODUflex carried by the logical channel unit; Through the statistical multiplexing technology, it is allocated to the ODUflex that needs to transmit data as needed, and the ODUflex is transmitted by the logical channel unit in the OPU frame as needed, and the idle frame is used for filling when the bandwidth of the OPU is left.
  • the exchange demapping module 52 is configured to: exchange the ODUk carrying the ODUflex in the passing intermediate node and transmit it to the sink node, and when the ODUk carrying the ODUflex is transmitted to the sink node, the ODUflex is demapped from the ODUk, and then passed. GFP demaps packet traffic from ODUflex.
  • the exchange demapping module 52 is configured to: when the ODUflex mapped to the same ODUk is homogenous and identical, the ODUk is directly exchanged by the intermediate node passing through the ODUk; when the ODUflex mapped to the same ODUk is a homologous different sink, the ODUk passes through The intermediate node demaps the ODUflex from the upstream node from the ODUk, and passes the ODUflex through the OTN cross matrix to switch to different egress directions. After the ODUflex passes through the cross matrix, the ODUflex goes to the next downstream node of the ODUflex. , through the statistical multiplexing technology, map to the same ODUk.
  • the exchange demapping module 52 can directly exchange the ODUflex data stream as a normal packet data stream through the packet switching kernel when the ODUflex passes through the OTN cross matrix.
  • the POTN in the related technology simply solves the problem that the MPLS-TP and the OTN are simply superimposed to carry packet traffic, and the device implementation and network management are complicated, and the optical transport network is transformed into a completely flexible pipeline. Effectively carrying variable rate packet services.
  • modules in the client in the embodiment can be adaptively changed and placed in one or more clients different from the embodiment.
  • the modules in the embodiments can be combined into one module, and further they can be divided into a plurality of sub-modules or sub-units or sub-components.
  • any combination of the features disclosed in the specification, including the accompanying claims, the abstract and the drawings, and any methods so disclosed, or All processes or units of the client are combined.
  • Each feature disclosed in this specification may be replaced by alternative features that provide the same, equivalent or similar purpose.
  • Component embodiments of the present invention may be implemented in hardware, or in software modules running on one or more processors, or in a combination thereof.
  • a microprocessor or digital signal processor may be used in practice to implement some or all of the functionality of some or all of the components loaded with the ordered web address in accordance with an embodiment of the present invention.
  • Embodiments of the invention may also be implemented as a device or device program (e.g., a computer program and a computer program product) for performing some or all of the methods described herein.
  • Such a program implementing an embodiment of the invention may be stored on a computer readable medium or may be in the form of one or more signals. Such signals may be downloaded from an Internet website, provided on a carrier signal, or provided in any other form.
  • the POTN in the related technology simply solves the problem that the MPLS-TP and the OTN are simply superimposed to carry packet traffic, and the device implementation and network management are complicated, and the optical transport network is transformed into a completely flexible pipeline. Effectively carrying variable rate packet services.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本文公布一种统计复用光传送网方法及装置。该方法包括:在光传送网OTN中,将分组业务通过通用成帧过程GFP映射到不同的灵活速率光数据单元ODUflex,在ODUflex的管道速率未低于设置的最小速率时不使用GFP的空闲帧对ODUflex进行速率填充,并通过光传送网OTN的统计复用技术,将不同的ODUflex复用到同一个ODUk管道,在所有分组业务带宽占不满整个ODUk管道时,将ODUk的管道速率通过统计复用技术的空闲IDLE帧进行填充;承载ODUflex的ODUk在经过的中间节点进行交换处理,并传送到宿节点,当承载ODUflex的ODUk传送到宿节点时,将ODUflex从ODUk解映射出来,再通过GFP将分组业务从ODUflex中解映射出来。

Description

统计复用光传送网方法及装置 技术领域
本申请涉及但不限于光通讯领域。
背景技术
在相关技术中,光传送网(OpticalTransportNetwork,OTN)的高阶光通道净荷层(OpticalChannel Payload Unit,OPU)净荷空间固定划分为多个大小一样的时隙;每个时隙固定占用同样多的字节数,OPU带宽(大管道)就固定被划分为多个带宽相等的小管道。时隙的带宽大小采用过2.5G、1.25G(100G)、10G(Beyond 100G)->5G(Beyond 100G)。OPU4被划分为80个1.25G小管道,Beyond 100G OTN的OPUCn划分为20*n个5G小管道。低阶光数据单元(ODU)/ODUflex映射到高阶OPU是固定占用多个时隙。低阶ODU/ODUflex的数据必须周期性地出现在每一OPU帧的固定时隙位置里,带宽分配策略是预先固定分配的。低阶ODU/ODUflex必须占满多个时隙带宽,不管带宽是否全部被利用起来。尽管引入ODUflex,但OTN管道还是不够灵活和柔性。时隙大小的选择受限于OTN Framer芯片实现的复杂度以及与OTN的客户带宽的匹配程度。时隙越小,OTN Framer实现越复杂。
目前OTN Framer芯片内部普遍采用空分处理与时分处理的转换,为了减低空分与时分转换复杂度,在B100G OTN里,OPUCn帧里的时隙采用更宽字节间插,比如16个字节,但仍然无法避免空分与时分处理的转换。在IEEE出现25GE后,B100G OTN的时隙大小从10G修改为5G。目前IEEE和光联网论坛(Optical Internet Forum,OIF)在讨论定义新速率的以太网业务,例如2.5GE、5GE和Flex Ethernet(10GE、40GE和25GE的倍数速率),IEEE定义的业务往往影响OTN的标准,特别是时隙粒度的选择。
目前运营商为政企网客户提供的专线业务从几兆、几十兆到几百兆,承载方式有同步数字体系(Synchronous Digital Hierarchy,SDH)/基于SDH的多业务传送平台(Multi-Service Transfer Platform,MSTP)(适合承载百兆以下)和分组传送网(Packet Transport Network,PTN)/所有接口的传输网络层使 用IP传输的无线接入网(Internet Protocol Radio Access Network,IPRAN)。由于带宽小,OTN不适合直接承载这些专线业务。
针对大客户的专线、移动回传流量的业务,目前运营商是通过城域的IPRAN或者多协议标签交换-传送架构(Multiprotocol Label Switching-Transport Profile,MPLS-TP)在城域接入、汇聚和城域核心一级一级地汇聚成大流量,最后在城域核心才接入OTN。目前这些大客户专线流量与移动回传、家庭客户流量在城域网叠加在一起,统一由城域网的IPRAN或者MPLS-TP来承载,随着城域网流量越来越大,运营商需要在城域网将OTN大带宽和长距离传输与MPLS-TP统计复用技术叠加在一起传送这些流量,应对流量的不断增长需求,导致多重投资,投资多种网络设备,管理多层网络,成本非常高。
相关技术的分组光传送网(Packet Optical Transport Network,POTN)是将MPLS-TP与OTN简单地进行多层网络叠加在一起,虽然能够同时利用统计复用技术和OTN的大管道传输,但网络管理和设备功能复杂;需要同时管控MPLS-TP和OTN的多层网络;需要同时具备MPLS-TP和OTN的多层网络的OAM和保护以及层间协调。
运营商存在在城域网引入统计复用和大带宽传输的需求,而相关技术的POTN只是简单地将MPLS-TP和OTN叠加在来承载分组流量,设备实现和网络管理复杂。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
鉴于相关技术中POTN只是简单地将MPLS-TP和OTN叠加在来承载分组流量,设备实现和网络管理复杂的问题,提出了本申请以便提供一种克服上述问题或者至少部分地解决上述问题的统计复用光传送网方法及装置。
一种统计复用光传送网方法,包括:在光传送网OTN中,将分组业务通过通用成帧过程GFP映射到不同的灵活速率光数据单元ODUflex,在 ODUflex的管道速率未低于设置的最小速率时不使用GFP的空闲帧对ODUflex进行速率填充,并通过光传送网OTN的统计复用技术,将不同的ODUflex复用到同一个ODUk管道,在所有分组业务带宽占不满整个ODUk管道时,将ODUk的管道速率通过统计复用技术的空闲IDLE帧进行填充,其中,k=0、1、2、2e、3、4、Cn,Cn表示100G倍数的管道速率;承载ODUflex的ODUk在经过的中间节点进行交换处理,并传送到宿节点,当承载ODUflex的ODUk传送到宿节点时,将ODUflex从ODUk解映射出来,再通过GFP将分组业务从ODUflex中解映射出来。
可选地,承载ODUflex的ODUk在经过的中间节点进行交换处理包括:当映射到同一个ODUk的ODUflex为同源同宿,ODUk经过的中间节点直接交换ODUk;当映射到同一个ODUk的ODUflex为同源不同宿,ODUk经过的中间节点,将来自上游节点的ODUflex从ODUk解映射出来,使ODUflex经过OTN的交叉矩阵,交换到不同的出口方向,在ODUflex经过交叉矩阵后,与中间节点去往下一个相同的下游节点的ODUflex,通过统计复用技术,映射到相同的一个ODUk。
可选地,上述方法还包括:为承载了分组业务的ODUflex设置一个最小速率,最小速率能够满足传送ODUflex的通道层监控PM和段层监控SM开销的速率要求;在ODUflex的管道速率低于设置的最小速率时,当没有数据包通过GFP映射到ODUflex时,生成GFP空闲帧映射到ODUflex,对ODUflex进行速率填充,使ODUflex的管道速率大于或者等于最小速率值。
可选地,将分组业务通过GFP映射到不同的ODUflex包括:将光通道净荷层OPUk的帧切分为长度固定的多个逻辑通道单元,并使用逻辑通道单元编号标识逻辑通道单元承载的ODUflex的数据;将逻辑通道单元通过统计复用技术,按需分配给需要传送数据的ODUflex,并按需使用OPU帧里的逻辑通道单元传输ODUflex,在OPU的带宽有剩余的情况下,使用空闲帧进行填充。
可选地,使ODUflex经过OTN的交叉矩阵包括:通过分组交换内核直接将ODUflex的数据流当作普通的分组数据流进行交换处理。
一种统计复用光传送网装置,包括:映射复用模块,设置为:在光传送 网OTN中,将分组业务通过通用成帧过程GFP映射到不同的灵活速率光数据单元ODUflex,在ODUflex的管道速率未低于设置的最小速率时不使用GFP的空闲帧对ODUflex进行速率填充,并通过光传送网OTN的统计复用技术,将不同的ODUflex复用到同一个ODUk管道,在所有分组业务带宽占不满整个ODUk管道时,将ODUk的管道速率通过统计复用技术的空闲IDLE帧进行填充,其中,k=0、1、2、2e、3、4、Cn,Cn表示100G倍数的管道速率;交换解映射模块,设置为:对承载ODUflex的ODUk在经过的中间节点进行交换处理,并传送到宿节点,当承载ODUflex的ODUk传送到宿节点时,将ODUflex从ODUk解映射出来,再通过GFP将分组业务从ODUflex中解映射出来。
可选地,交换解映射模块是设置为:当映射到同一个ODUk的ODUflex为同源同宿,通过ODUk经过的中间节点直接交换ODUk;当映射到同一个ODUk的ODUflex为同源不同宿,通过ODUk经过的中间节点,将来自上游节点的ODUflex从ODUk解映射出来,使ODUflex经过OTN的交叉矩阵,交换到不同的出口方向,在ODUflex经过交叉矩阵后,与中间节点去往下一个相同的下游节点的ODUflex,通过统计复用技术,映射到相同的一个ODUk。
可选地,映射复用模块还设置为:为承载了分组业务的ODUflex设置一个最小速率,最小速率能够满足传送ODUflex的通道层监控PM和段层监控SM开销的速率要求;在ODUflex的管道速率低于设置的最小速率时,当没有数据包通过GFP映射到ODUflex时,生成GFP空闲帧映射到ODUflex,对ODUflex进行速率填充,使ODUflex的管道速率大于或者等于最小速率值。
可选地,映射复用模块是设置为:将光通道净荷层OPUk的帧切分为长度固定的多个逻辑通道单元,并使用逻辑通道单元编号标识逻辑通道单元承载的ODUflex的数据;将逻辑通道单元通过统计复用技术,按需分配给需要传送数据的ODUflex,并按需使用OPU帧里的逻辑通道单元传输ODUflex,在OPU的带宽有剩余的情况下,使用空闲帧进行填充。
可选地,交换解映射模块是设置为:通过分组交换内核直接将ODUflex的数据流当作普通的分组数据流进行交换处理,以使所述ODUflex经过OTN 的交叉矩阵。
一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述任一项的方法。
通过引入统计复用技术,解决了相关技术中POTN只是简单地将MPLS-TP和OTN叠加在来承载分组流量,设备实现和网络管理复杂的问题,将光传送网改造为完全柔性的管道,可以有效地承载速率可变的分组业务。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1是本发明实施例的统计复用光传送网方法的流程图;
图2是本发明实施例的承载分组业务的ODUflex与承载了固定比特速率业务的ODUflex/ODUj映射和复用进ODUk的示意图;
图3是本发明实施例的通过统计复用光传送网传送同源同宿的分组业务的示意图;
图4是本发明实施例的通过统计复用光传送网传送同源不同宿的分组业务的示意图;
图5是本发明实施例的统计复用光传送网装置的结构示意图。
本发明的实施方式
下面将参照附图描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以多种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
为了解决相关技术中POTN只是简单地将MPLS-TP和OTN叠加在来承载分组流量,设备实现和网络管理复杂的问题,本发明实施例提供了一种统 计复用光传送网方法及装置,以下结合附图以及实施例,进行说明。应当理解,此处所描述的实施例仅仅用以解释本申请,并不限定本申请。
方法实施例
根据本发明的实施例,提供了一种统计复用光传送网方法,图1是本发明实施例的统计复用光传送网方法的流程图,如图1所示,根据本发明实施例的统计复用光传送网方法包括如下处理:
步骤101,在光传送网OTN中,将分组业务通过通用成帧过程GFP映射到不同的灵活速率光数据单元ODUflex,在ODUflex的管道速率未低于设置的最小速率时不使用GFP的空闲帧对ODUflex进行速率填充,并通过光传送网OTN的统计复用技术,将不同的ODUflex复用到同一个ODUk管道,在所有分组业务带宽占不满整个ODUk管道时,将ODUk的管道速率通过统计复用技术的空闲IDLE帧进行填充,其中,k=0、1、2、2e、3、4、Cn,Cn表示100G倍数的管道速率;
在步骤101中,将分组业务通过GFP映射到不同的ODUflex包括:将光通道净荷层OPUk的帧切分为长度固定的多个逻辑通道单元,并使用逻辑通道单元编号标识逻辑通道单元承载的是哪个ODUflex的数据;将逻辑通道单元通过统计复用技术,按需分配给需要传送数据的ODUflex,并按需使用OPU帧里的逻辑通道单元传输ODUflex,在OPU的带宽有剩余的情况下,使用空闲帧进行填充。
其中,ODUk(k=0、1、2、2e、3、4、Cn)的帧结构为4行3824列结构,主要由两部分组成:ODUk开销和OPUk。
此外,在实际应用中,还可以为承载了分组业务的ODUflex设置一个最小速率,最小速率能够满足传送ODUflex的通道层监控PM和段层监控SM开销的速率要求;在ODUflex的管道速率低于设置的最小速率时,当没有数据包通过GFP映射到ODUflex时,生成GFP空闲帧映射到ODUflex,对ODUflex进行速率填充,使ODUflex的管道速率大于或者等于最小速率值。
步骤102,承载ODUflex的ODUk在经过的中间节点进行交换处理,并传送到宿节点,当承载ODUflex的ODUk传送到宿节点时,将ODUflex从 ODUk解映射出来,再通过GFP将分组业务从ODUflex中解映射出来。
在步骤102中,承载ODUflex的ODUk在经过的中间节点进行交换处理包括:当映射到同一个ODUk的ODUflex为同源同宿,ODUk经过的中间节点直接交换ODUk;当映射到同一个ODUk的ODUflex为同源不同宿,ODUk经过的中间节点,将来自上游节点的ODUflex从ODUk解映射出来,使ODUflex经过OTN的交叉矩阵,交换到不同的出口方向,在ODUflex经过交叉矩阵后,与中间节点去往下一个相同的下游节点的ODUflex,通过统计复用技术,映射到相同的一个ODUk。
在上述处理中,使ODUflex经过OTN的交叉矩阵包括:通过分组交换内核直接将ODUflex的数据流当作普通的分组数据流进行交换处理。
在本发明实施例中,分组业务通过GFP映射到不同的ODUflex,ODUflex无需通过GFP的空闲IDLE帧进行速率填充;这些ODUflex再通过统计复用OTN技术,复用到单个ODUk管道;如果所有分组业务带宽占不满整个ODUk管道,通过统计复用的IDLE帧进行速率填充,每条ODUflex有自己的OAM和保护机制,ODUflex可以进行灵活的带宽速率调整,无需MPLS转发层处理以及MPLS/MPLS-TP的OAM和保护。
当映射到同一个ODUk(k=0,1,2,2e,3,4)的ODUflex为同源同宿,ODUk所经过的中间节点,无需将这些ODUflex从ODUk解映射出来进行交换,直接交换ODUk。当映射到同一个ODUk的ODUflex为同源不同宿,ODUk所经过的中间节点,将来自上游节点的ODUflex从ODUk解映射出来,这些ODUflex经过OTN的交叉矩阵,交换到不同的出口方向;ODUflex经过交叉矩阵后,与中间节点相同的下游节点的ODUflex通过统计复用技术,映射到相同的一个ODUk。
当速率可变的ODUflex经过交叉矩阵时,相关技术中的分组交换内核需要通过OPF(OTN over Packet Fabric)功能块,对ODUk/ODUflex的数据进行切片,将ODUk/ODUflex的帧切片成分组交换内核可接受的分组包,经过分组交换内核后,OPF功能块再将这些分组包组装成一个ODUk/ODUflex的帧。本发明实施例的技术方案无需将速率可变的ODUflex经过OPF功能块的切片和组装,分组交换内核可直接将ODUflex数据流当作普通的分组流来交 换处理,提高分组交换内核对ODUflex的处理效率。
当ODUflex映射到ODUk时,系统会根据运营商提供给用户的服务级别约定,给这个ODUflex设置一个最大带宽值,由于使用了统计复用技术将ODUflex映射到ODUk,并且这些ODUflex的带宽速率是可变的,可能很长时间,ODUflex都没有承载一些分组流量,这样会导致没有数据通过ODUflex来承载;如果要重用OTN的OAM和保护机制,那么ODUflex的路径监测(Path Monitor,PM)和段监测(Section Monitor,SM)开销要正确地从ODUflex的源节点传送到宿节点或者从宿节点传送到源节点。如果ODUflex在一段时间内没有传送数据,这些开销信息就无法从ODUflex的源节点传送到宿节点或者从宿节点传送到源节点。因此,本发明实施例可为某条承载了分组流量的ODUflex设置一个最小速率,这个最小带宽必须能够满足传送ODUflex的SM和PM开销的速率要求。当这条ODUflex的管道速率低于设置的一个最小速率时,当没有数据包通过GFP-F映射到ODUflex时,生成GFP IDLE帧映射到ODUflex,对ODUflex速率进行填充,使得ODUflex的管道速率能够大于等于所设定的最小速率值,以能够保证SM和PM开销能够以一定的速率进行传送。
当ODUflex通过统计复用映射到同一个ODUk时,ODUk不再按照时隙对ODUk的带宽进行划分,并按照固定的带宽分配策略为ODUflex分配带宽;而是将OPUk的帧切分成长度固定的多个包,比如OPU净荷划分为32个逻辑通道单元,该逻辑通道单元具有包头。要引入类似MPLS的标签(可称为逻辑通道编号)开销,表示某个逻辑通道单元(分组包)承载了哪个低阶ODUflex的数据。这些包按照统计复用技术,按需地分配给需要传送数据的ODUflex。按需地使用高阶OPU帧里的包来传输低阶ODU/ODUflex的数据流。如果OPU的带宽用不完,使用IDLE数据来填充。某个ODU/ODUflex的数据无需固定地在每一OPU帧出现。
承载分组业务的ODUflex与承载了固定比特速率业务的ODUflex/ODUj可通过单级映射和复用进ODUk(k>j),如图2所示。当承载了速率可变的分组业务的ODUflex映射到ODUk时,无需类似BMP,AMP,GMP等的映射方式,直接将ODUflex通过统计复用技术映射到ODUk,这些ODUk可进 一步映射和复用进ODUCn或者直接通过OTUk传送。单级复用适合统计复用OTN单独组网。部署在城域接入和汇聚等,多业务承载集客、移动回传、家庭用户流量。
当适合统计复用OTN与已有OTN混合组网或者对接时,可以采用二级复用方式,如图2所示。当承载了速率可变的分组业务的ODUflex映射到ODUk时,无需类似BMP,AMP,GMP等的映射方式,直接将ODUflex通过统计复用技术映射到ODUk,这些ODUi可通过GMP映射和复用进更高的ODUi(i>k)容器。这些ODUi可进一步映射和复用进ODUCn或者直接通过OTUi传送。二级复用也可以让统计复用OTN可部署在城域接入和汇聚,多业务承载集客、移动回传、家庭用户流量,必要时候与已有OTN对接。
当承载着速率固定的业务的ODUj通过统计复用技术映射到ODUk时,需要在映射和解映射点进行速率的同步,速率同步可借鉴相关技术的GMP(Generic Mapping Procedure)或者OPF(OTN over Packet Fabric)中的速率同步技术。也可通过FMP(Frame-based Mapping Procedure)进行速率同步。
借助于本发明实施例的技术方案,引入统计复用技术,将光传送网改造为完全柔性的管道。其中,本发明实施例采用统计复用技术实行按需分配,对需要传送信息的业务才分配带宽,这样使得带宽能够得到饱满地使用,利用率高,管道灵活和柔性。任意比特速率的业务都可以映射到统计复用OTN的管道里,不存在带宽浪费。将OTN与OTN的客户业务带宽粒度解耦合,使得OTN的技术和标准发展不再过于受限于OTN的客户(主要是IEEE定义的以太网)带宽。统计复用OTN改变了ODUk带宽的分配方式,当低阶ODUj/ODUflex映射到ODUk时,实现了带宽的按需分配。
本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述统计复用光传送网方法。
以下对本发明实施例的上述技术方案进行举例说明。
下面结合附图对本发明技术方案的实施做进一步的详细说明。
实例一,使用统计复用OTN来承载分组业务,比如,通过统计复用承 载政企网专线业务,这些业务的速率包括2Mbit/s,100Mbit/s,155Mbit/s,1000Mbit/s等,图3为同源同宿的场景,步骤包括:
步骤11:分组业务通过GFP-F(Frame-mapped Generic Framing Procedure)封装,映射到OTN的ODUflex,当分组业务通过GFP-F映射到ODUflex时,无需通过GFP IDLE帧来进行速率填充。
步骤12:一组分组业务分别通过GFP-F映射到不同的ODUflex,这些ODUflex在通过统计复用技术,一起映射到同一个ODUk(k=0,1,2,2e,3,4),比如50条20Mbit/s的ODUflex一起映射到同一个ODU0;或者10条100Mbit/s的ODUflex一起映射到同一个ODU0。
步骤13:当步骤12的ODUflex同源同宿,也就是源(如图3的节点A)和宿(如图3的节点C)相同时,所经过的中间节点无需直接对ODUflex进行交换,只需要进行ODUk(k=0,1,2,2e,3e,4)的交换即可以,如图3的节点B,由于这些ODUflex去往同一个目的地,在节点B,这些ODUflex无需从ODUk解映射出来,ODUk可以直接从西向端口交换到东向端口。
步骤14:当承载ODUflex的ODUk传送到宿节点,如图3的节点C后,这些ODUflex从ODUk解映射出来,节点C再通过GFP-F解映射,将分组业务从ODUflex解映射出来。
实例二,使用统计复用OTN来承载分组业务,比如,通过统计复用承载政企网专线业务,这些业务的速率包括2Mbit/s,100Mbit/s,155Mbit/s,1000Mbit/s等等,图4为同源不同宿的场景,步骤包括:
步骤21:分组业务通过GFP-F(Frame-mapped Generic Framing Procedure)封装,映射到OTN的ODUflex,当分组业务通过GFP-F映射到ODUflex时,无需通过GFP IDLE帧来进行速率填充。
步骤22:一组分组业务分别通过GFP-F映射到不同的ODUflex,这些ODUflex在通过统计复用技术,一起映射到同一个ODUk(k=0,1,2,2e,3,4),比如50条20Mbit/s的ODUflex一起映射到同一个ODU0;或者10条100Mbit/s的ODUflex一起映射到同一个ODU0。
步骤23:当步骤22的ODUflex同源不同宿,也就是源节点相同(如图4 的节点A),但宿节点不同(如图4的节点C和节点D)时,ODUk所经过的中间节点,需要将来自上游节点(如图4的节点A)的ODUflex从ODUk解映射出来,这些ODUflex经过OTN的交叉矩阵(如图4节点B的交叉矩阵),交换到不同的出口方向;ODUflex经过交叉矩阵后,中间节点(如图4的节点B)将去往相同的下游节点的ODUflex通过统计复用技术,映射到相同的一个ODUk。比如一组ODUflex要去往相同的下游节点C,那么这些ODUflex将映射到同一个ODUk;另一组去往相同的下游节点D,那么这些ODUflex将映射到同一个ODUk。
步骤24:当承载ODUflex的ODUk传送到宿节点(如图4的节点C或者D),这些ODUflex从ODUk解映射出来,节点C和节点D再通过GFP-F解映射,将分组业务从ODUflex解映射出来。
综上所述,通过引入统计复用技术,解决了相关技术中POTN只是简单地将MPLS-TP和OTN叠加在来承载每种分组流量,设备实现和网络管理复杂的问题,将光传送网改造为完全柔性的管道,可以有效地承载每种速率可变的分组业务。
装置实施例
根据本发明的实施例,提供了一种统计复用光传送网装置,图5是本发明实施例的统计复用光传送网装置的结构示意图,如图5所示,根据本发明实施例的统计复用光传送网装置包括:映射复用模块50、交换解映射模块52,以下对本发明实施例的每个模块进行详细的说明。
映射复用模块50,设置为:在光传送网OTN中,将分组业务通过通用成帧过程GFP映射到不同的灵活速率光数据单元ODUflex,在ODUflex的管道速率未低于设置的最小速率时不使用GFP的空闲帧对ODUflex进行速率填充,并通过光传送网OTN的统计复用技术,将不同的ODUflex复用到同一个ODUk管道,在所有分组业务带宽占不满整个ODUk管道时,将ODUk的管道速率通过统计复用技术的空闲IDLE帧进行填充,其中,k=0、1、2、2e、3、4、Cn,Cn表示100G倍数的管道速率;
映射复用模块50还设置为:为承载了分组业务的ODUflex设置一个最小速率,最小速率能够满足传送ODUflex的通道层监控PM和段层监控SM开 销的速率要求;在ODUflex的管道速率低于设置的最小速率时,当没有数据包通过GFP映射到ODUflex时,生成GFP空闲帧映射到ODUflex,对ODUflex进行速率填充,使ODUflex的管道速率大于或者等于最小速率值。
映射复用模块50是设置为:将光通道净荷层OPUk的帧切分为长度固定的多个逻辑通道单元,并使用逻辑通道单元编号标识逻辑通道单元承载的ODUflex的数据;将逻辑通道单元通过统计复用技术,按需分配给需要传送数据的ODUflex,并按需使用OPU帧里的逻辑通道单元传输ODUflex,在OPU的带宽有剩余的情况下,使用空闲帧进行填充。
交换解映射模块52,设置为:对承载ODUflex的ODUk在经过的中间节点进行交换处理,并传送到宿节点,当承载ODUflex的ODUk传送到宿节点时,将ODUflex从ODUk解映射出来,再通过GFP将分组业务从ODUflex中解映射出来。
交换解映射模块52是设置为:当映射到同一个ODUk的ODUflex为同源同宿,通过ODUk经过的中间节点直接交换ODUk;当映射到同一个ODUk的ODUflex为同源不同宿,通过ODUk经过的中间节点,将来自上游节点的ODUflex从ODUk解映射出来,使ODUflex经过OTN的交叉矩阵,交换到不同的出口方向,在ODUflex经过交叉矩阵后,与中间节点去往下一个相同的下游节点的ODUflex,通过统计复用技术,映射到相同的一个ODUk。
交换解映射模块52使所述ODUflex经过OTN的交叉矩阵时,可以通过分组交换内核直接将ODUflex的数据流当作普通的分组数据流进行交换处理。
通过引入统计复用技术,解决了相关技术中POTN只是简单地将MPLS-TP和OTN叠加在来承载分组流量,设备实现和网络管理复杂的问题,将光传送网改造为完全柔性的管道,可以有效地承载速率可变的分组业务。
本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的 精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
在此提供的算法和显示不与任何特定计算机、虚拟系统或者其它设备固有相关。多种通用系统也可以与基于在此的示教一起使用。根据上面的描述,构造这类系统所要求的结构是显而易见的。此外,本申请也不针对任何特定编程语言。应当明白,可以利用多种编程语言实现在此描述的本申请的内容,并且上面对特定语言所做的描述是为了披露本申请的实施方式。
在此处所提供的说明书中,说明了大量细节。然而,能够理解,本发明的实施例可以在没有这些细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本公开并帮助理解每个发明方面中的一个或多个,在上面对本发明的示例性实施例的描述中,本发明的多个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该公开的方法解释成反映如下意图:即所要求保护的本发明要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如下面的权利要求书所反映的那样,发明方面在于少于前面公开的单个实施例的所有特征。因此,遵循实施方式的权利要求书由此明确地并入该实施方式,其中每个权利要求本身都作为本发明的单独实施例。
本领域那些技术人员可以理解,可以对实施例中的客户端中的模块进行自适应性地改变并且把它们设置在与该实施例不同的一个或多个客户端中。可以把实施例中的模块组合成一个模块,以及此外可以把它们分成多个子模块或子单元或子组件。除了这样的特征和/或过程或者单元中的至少一些是相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者客户端的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组 合意味着处于本发明的范围之内并且形成不同的实施例。例如,在下面的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
本发明的部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本发明实施例的加载有排序网址的客户端中的一些或者全部部件的一些或者全部功能。本发明实施例还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序(例如,计算机程序和计算机程序产品)。这样的实现本发明实施例的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本发明可以借助于包括有一个或多个不同元件的硬件以及借助于适当编程的计算机来实现。在列举了一个或多个装置的单元权利要求中,这些装置中的一个或多个可以是通过同一个硬件项来体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
工业实用性
通过引入统计复用技术,解决了相关技术中POTN只是简单地将MPLS-TP和OTN叠加在来承载分组流量,设备实现和网络管理复杂的问题,将光传送网改造为完全柔性的管道,可以有效地承载速率可变的分组业务。

Claims (10)

  1. 一种统计复用光传送网方法,包括:
    在光传送网OTN中,将分组业务通过通用成帧过程GFP映射到不同的灵活速率光数据单元ODUflex,在所述ODUflex的管道速率未低于设置的最小速率时不使用所述GFP的空闲帧对ODUflex进行速率填充,并通过光传送网OTN的统计复用技术,将所述不同的ODUflex复用到同一个ODUk管道,在所有分组业务带宽占不满整个ODUk管道时,将ODUk的管道速率通过统计复用技术的空闲IDLE帧进行填充,其中,k=0、1、2、2e、3、4、Cn,Cn表示100G倍数的管道速率;
    承载所述ODUflex的ODUk在经过的中间节点进行交换处理,并传送到宿节点,当承载所述ODUflex的ODUk传送到宿节点时,将所述ODUflex从ODUk解映射出来,再通过GFP将分组业务从ODUflex中解映射出来。
  2. 如权利要求1所述的方法,其中,承载所述ODUflex的ODUk在经过的中间节点进行交换处理包括:
    当映射到同一个ODUk的ODUflex为同源同宿,所述ODUk经过的中间节点直接交换ODUk;
    当映射到同一个ODUk的ODUflex为同源不同宿,所述ODUk经过的中间节点,将来自上游节点的ODUflex从ODUk解映射出来,使所述ODUflex经过OTN的交叉矩阵,交换到不同的出口方向,在所述ODUflex经过交叉矩阵后,与所述中间节点去往下一个相同的下游节点的ODUflex,通过统计复用技术,映射到相同的一个ODUk。
  3. 如权利要求1所述的方法,所述方法还包括:
    为承载了分组业务的ODUflex设置一个最小速率,所述最小速率能够满足传送所述ODUflex的通道层监控PM和段层监控SM开销的速率要求;
    在所述ODUflex的管道速率低于设置的所述最小速率时,当没有数据包通过GFP映射到ODUflex时,生成GFP空闲帧映射到所述ODUflex,对所述ODUflex进行速率填充,使所述ODUflex的管道速率大于或者等于所述最小速率值。
  4. 如权利要求1所述的方法,其中,将分组业务通过GFP映射到不同的ODUflex包括:
    将光通道净荷层OPUk的帧切分为长度固定的多个逻辑通道单元,并使用逻辑通道单元编号标识所述逻辑通道单元承载的ODUflex的数据;
    将所述逻辑通道单元通过统计复用技术,按需分配给需要传送数据的ODUflex,并按需使用OPU帧里的逻辑通道单元传输所述ODUflex,在所述OPU的带宽有剩余的情况下,使用空闲帧进行填充。
  5. 如权利要求2所述的方法,其中,使所述ODUflex经过OTN的交叉矩阵包括:通过分组交换内核直接将所述ODUflex的数据流当作普通的分组数据流进行交换处理。
  6. 一种统计复用光传送网装置,包括:
    映射复用模块,设置为:在光传送网OTN中,将分组业务通过通用成帧过程GFP映射到不同的灵活速率光数据单元ODUflex,在所述ODUflex的管道速率未低于设置的最小速率时不使用所述GFP的空闲帧对ODUflex进行速率填充,并通过光传送网OTN的统计复用技术,将所述不同的ODUflex复用到同一个ODUk管道,在所有分组业务带宽占不满整个ODUk管道时,将ODUk的管道速率通过统计复用技术的空闲IDLE帧进行填充,其中,k=0、1、2、2e、3、4、Cn,Cn表示100G倍数的管道速率;
    交换解映射模块,设置为:对承载所述ODUflex的ODUk在经过的中间节点进行交换处理,并传送到宿节点,当承载所述ODUflex的ODUk传送到宿节点时,将所述ODUflex从ODUk解映射出来,再通过GFP将分组业务从ODUflex中解映射出来。
  7. 如权利要求6所述的装置,其中,交换解映射模块是设置为:
    当映射到同一个ODUk的ODUflex为同源同宿,通过所述ODUk经过的中间节点直接交换ODUk;
    当映射到同一个ODUk的ODUflex为同源不同宿,通过所述ODUk经过的中间节点,将来自上游节点的ODUflex从ODUk解映射出来,使所述ODUflex经过OTN的交叉矩阵,交换到不同的出口方向,在所述ODUflex 经过交叉矩阵后,与所述中间节点去往下一个相同的下游节点的ODUflex,通过统计复用技术,映射到相同的一个ODUk。
  8. 如权利要求6所述的装置,其中,所述映射复用模块还设置为:
    为承载了分组业务的ODUflex设置一个最小速率,所述最小速率能够满足传送所述ODUflex的通道层监控PM和段层监控SM开销的速率要求;
    在所述ODUflex的管道速率低于设置的所述最小速率时,当没有数据包通过GFP映射到ODUflex时,生成GFP空闲帧映射到所述ODUflex,对所述ODUflex进行速率填充,使所述ODUflex的管道速率大于或者等于所述最小速率值。
  9. 如权利要求6所述的装置,其中,所述映射复用模块是设置为:
    将光通道净荷层OPUk的帧切分为长度固定的多个逻辑通道单元,并使用逻辑通道单元编号标识所述逻辑通道单元承载的ODUflex的数据;
    将所述逻辑通道单元通过统计复用技术,按需分配给需要传送数据的ODUflex,并按需使用OPU帧里的逻辑通道单元传输所述ODUflex,在所述OPU的带宽有剩余的情况下,使用空闲帧进行填充。
  10. 如权利要求7所述的装置,其中,交换解映射模块是设置为:通过分组交换内核直接将所述ODUflex的数据流当作普通的分组数据流进行交换处理,以使所述ODUflex经过OTN的交叉矩阵。
PCT/CN2016/082260 2015-09-06 2016-05-16 统计复用光传送网方法及装置 WO2017036178A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510557836.6A CN106506110B (zh) 2015-09-06 2015-09-06 统计复用光传送网方法及装置
CN201510557836.6 2015-09-06

Publications (1)

Publication Number Publication Date
WO2017036178A1 true WO2017036178A1 (zh) 2017-03-09

Family

ID=58186626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/082260 WO2017036178A1 (zh) 2015-09-06 2016-05-16 统计复用光传送网方法及装置

Country Status (2)

Country Link
CN (1) CN106506110B (zh)
WO (1) WO2017036178A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113206721A (zh) * 2020-02-03 2021-08-03 华为技术有限公司 一种数据传输方法、装置和系统
CN114915375A (zh) * 2022-04-27 2022-08-16 烽火通信科技股份有限公司 一种业务映射的实现方法和装置
WO2023082500A1 (zh) * 2021-11-09 2023-05-19 深圳市中兴微电子技术有限公司 光传送网的映射复用方法、装置、电子设备及存储介质

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108809901B (zh) * 2017-05-02 2021-05-04 华为技术有限公司 一种业务承载的方法、设备和系统
CN108881330A (zh) * 2017-05-08 2018-11-23 深圳市中兴微电子技术有限公司 一种FlexE终结模式和以太网的OTN映射对接方法和装置
CN107241659B (zh) * 2017-05-27 2019-06-21 烽火通信科技股份有限公司 光传送网通用映射规程的仿真系统及仿真方法
CN108988977B (zh) * 2017-05-31 2021-06-08 中兴通讯股份有限公司 一种灵活以太网协议中传递业务流的方法、装置和系统
CN110460405B (zh) 2018-05-07 2021-04-09 华为技术有限公司 业务信号传输方法及装置
CN110855542B (zh) * 2018-08-20 2021-12-21 中国电信股份有限公司 传送网络切片的管理方法、系统及装置
CN109640198B (zh) * 2018-12-21 2021-07-13 北京格林威尔科技发展有限公司 一种提高otn带宽利用率的方法和装置
CN112636883A (zh) * 2019-09-24 2021-04-09 华为技术有限公司 业务处理方法、装置及存储介质
CN111083580B (zh) * 2019-12-09 2021-12-14 北京格林威尔科技发展有限公司 一种在光传输网络中对以太网链路的保护方法及装置
CN112511925B (zh) * 2020-11-18 2022-09-02 中国联合网络通信集团有限公司 交叉调度方法和装置
CN114598745B (zh) * 2020-12-04 2023-12-08 华为技术有限公司 通信方法及装置
CN116132854A (zh) * 2021-11-15 2023-05-16 深圳市中兴微电子技术有限公司 光传送网的流量处理方法、装置、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102215153A (zh) * 2010-04-02 2011-10-12 华为技术有限公司 带宽调整方法及通信节点
CN102369681A (zh) * 2009-03-09 2012-03-07 阿尔卡特朗讯 在光传输网络中进行数据传输的方法
US20140178073A1 (en) * 2012-12-21 2014-06-26 Fujitsu Limited Optical transmission device including a bit rate adjustment function
WO2014205628A1 (zh) * 2013-06-24 2014-12-31 华为技术有限公司 可变光通道带宽增加方法和减少方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1613123B1 (en) * 2004-07-02 2006-06-14 Alcatel Transport network restoration method supporting extra traffic
CN100518035C (zh) * 2006-05-09 2009-07-22 中兴通讯股份有限公司 一种光网络中的数据通信网系统及其实现方法
CN100490395C (zh) * 2007-02-09 2009-05-20 华为技术有限公司 通过光传送网络传送以太网数据的方法及系统及以太网数据发送及接收装置
CN101051879B (zh) * 2007-04-06 2012-04-04 华为技术有限公司 低速业务复用及解复用的方法和装置
CN102006138A (zh) * 2010-12-01 2011-04-06 烽火通信科技股份有限公司 光网络规划系统中自动生成波分传输系统图的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102369681A (zh) * 2009-03-09 2012-03-07 阿尔卡特朗讯 在光传输网络中进行数据传输的方法
CN102215153A (zh) * 2010-04-02 2011-10-12 华为技术有限公司 带宽调整方法及通信节点
US20140178073A1 (en) * 2012-12-21 2014-06-26 Fujitsu Limited Optical transmission device including a bit rate adjustment function
WO2014205628A1 (zh) * 2013-06-24 2014-12-31 华为技术有限公司 可变光通道带宽增加方法和减少方法及装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113206721A (zh) * 2020-02-03 2021-08-03 华为技术有限公司 一种数据传输方法、装置和系统
CN113206721B (zh) * 2020-02-03 2023-03-28 华为技术有限公司 一种数据传输方法、装置和系统
WO2023082500A1 (zh) * 2021-11-09 2023-05-19 深圳市中兴微电子技术有限公司 光传送网的映射复用方法、装置、电子设备及存储介质
CN114915375A (zh) * 2022-04-27 2022-08-16 烽火通信科技股份有限公司 一种业务映射的实现方法和装置

Also Published As

Publication number Publication date
CN106506110A (zh) 2017-03-15
CN106506110B (zh) 2020-05-29

Similar Documents

Publication Publication Date Title
WO2017036178A1 (zh) 统计复用光传送网方法及装置
US10225037B2 (en) Channelized ODUflex systems and methods
EP3013017B1 (en) Channelized oduflex systems and methods for flexible ethernet and otn multiplexing
US8666247B2 (en) Bandwidth defragmentation systems and methods in optical networks
CN107438028B (zh) 一种客户业务处理的方法和设备
US9497064B2 (en) Method and apparatus for transporting ultra-high-speed Ethernet service
US9240905B2 (en) Protecting hybrid equipment in a network node
US11477549B2 (en) Transmission network system, data switching and transmission method, apparatus and equipment
US20130308943A1 (en) Optical transport network clock transient suppression systems and methods
US8958701B2 (en) Methods and systems of preserving client overhead bytes in optical transport network tunneling applications
US20140126899A1 (en) Mesh restoration and bandwidth allocation systems and methods for shared risk connection groups
US10320510B2 (en) TE-link bandwidth model of ODU switch capable OTN interfaces
EP2667552B1 (en) Method for service transmission over optical transport network, device and system for realizing same
EP3282601B1 (en) Method for mapping packet service to optical transport network, and otn device
EP2958279B1 (en) Service transfer device and method for optical channel data unit
US9344210B2 (en) OTN rate adjustment systems and methods for control plane restoration, congestion control, and network utilization
WO2018014342A1 (zh) 一种多路业务传送、接收方法及装置
US20110318001A1 (en) Method and device for sending and receiving service data
US20170201318A1 (en) Ethernet link state signaling for packet flows mapped into optical transport network with generic framing procedure
BR112018074328B1 (pt) Métodos e sistema de transmissão de serviço, e primeiro e segundo dispositivo de transmissão
CN102480408A (zh) 伪线仿真系统的调度方法及装置
US9167318B1 (en) Bandwidth advertisement systems and methods for optical transport network
WO2021027434A1 (zh) 一种业务传输的方法、装置和系统
KR20150094956A (ko) 보호 경로를 위한 링크 활성화 방법 및 장치
WO2011150807A1 (zh) 带宽分配方法及实现带宽分配的设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16840607

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16840607

Country of ref document: EP

Kind code of ref document: A1