WO2017035887A1 - 一种数据传输和信道测量方法、设备 - Google Patents

一种数据传输和信道测量方法、设备 Download PDF

Info

Publication number
WO2017035887A1
WO2017035887A1 PCT/CN2015/090845 CN2015090845W WO2017035887A1 WO 2017035887 A1 WO2017035887 A1 WO 2017035887A1 CN 2015090845 W CN2015090845 W CN 2015090845W WO 2017035887 A1 WO2017035887 A1 WO 2017035887A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmit power
cca detection
data transmission
base station
power level
Prior art date
Application number
PCT/CN2015/090845
Other languages
English (en)
French (fr)
Inventor
李汉涛
李振宇
李强
李�远
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201580068098.7A priority Critical patent/CN107005949A/zh
Publication of WO2017035887A1 publication Critical patent/WO2017035887A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a data transmission and channel measurement method and device.
  • the spectrum is the basis of wireless communication.
  • unlicensed (also known as unlicensed) spectrum resources are larger than licensed (also known as licensed) spectrum resources.
  • licensed also known as licensed
  • WiFi wireless fidelity
  • WiFi has drawbacks in terms of mobility, security, quality of service (QoS), and simultaneous handling of multi-user scheduling.
  • LTE long-term evolution
  • CA carrier aggregation
  • PCC primary component carrier
  • PCell primary cell
  • SCC secondary component carrier
  • SCell secondary cell
  • wireless communication devices are subject to specific regulatory rules when used on a license-free basis, such as ETSI EN 301893 issued by the European Telecommunications Standards Institute (ETSI), which provides for license-free use.
  • ETSI EN 301893 issued by the European Telecommunications Standards Institute (ETSI)
  • ETSI European Telecommunications Standards Institute
  • the rules of listen before talk (LBT) and channel bandwidth occupation requirements that is, the device first monitors whether the channel is idle or available before using the channel, and can use the unlicensed spectrum for data transmission if the channel is available.
  • LBT listen before talk
  • channel bandwidth occupation requirements that is, the device first monitors whether the channel is idle or available before using the channel, and can use the unlicensed spectrum for data transmission if the channel is available.
  • the time taken to occupy the channel is limited.
  • the unlicensed spectrum After the time limit for occupying the channel reaches the maximum limit, the unlicensed spectrum must be released for a period of time, that is, the data transmission is stopped for a period of time on the unlicensed spectrum; the next time the data is to be transmitted using the unlicensed resource, the channel must be monitored again. Available.
  • the device may perform a clear channel assessment (CCA) through energy detection to determine whether the listening channel is idle or available, that is, if the measured signal energy exceeds the CCA threshold, the channel is considered busy, and the data transmission is stopped; otherwise, the channel is considered Idle, occupying the channel to transmit data.
  • CCA clear channel assessment
  • fair use of the unlicensed spectrum between systems is achieved, and channels are used between systems by time division multiplexing.
  • the channel is multiplexed in a fully time-division manner, and the spectrum usage rate is low, and the unlicensed spectrum resources cannot be fully utilized.
  • the embodiments of the present invention provide a data transmission and channel measurement method and device, which are used to solve the problem of fully time-division multiplexing channels, low spectrum utilization rate, and insufficient use of unlicensed spectrum resources.
  • a data transmission method comprising:
  • the first device obtains a CCA detection result by performing an idle channel assessment CCA detection on a channel on the unlicensed spectrum;
  • the first device determines a transmit power level according to the CCA detection result
  • the first device transmits data by using a transmit power corresponding to the transmit power level.
  • the first device determines, according to the CCA detection result, a transmit power level, including:
  • N Determining, by the first device, the transmit power level according to the CCA detection result and the N CCA detection threshold values, where the first threshold value is a maximum threshold value of the N threshold values, N Is an integer greater than or equal to 2.
  • the first device determines the transmit power level according to the CCA detection result and the N CCA detection threshold values, including :
  • the first device determines that the transmission power level is P N ;
  • the first device determines that the transmission power level is P Ni ;
  • a third possible implementation after the first device determines the transmit power level according to the CCA detection result and the N CCA detection thresholds, Also includes:
  • the first device adjusts, according to the detection result, a transmit power corresponding to the transmit power level, to obtain an adjusted transmit power corresponding to the transmit power level;
  • the first device uses the transmit power corresponding to the transmit power level to transmit data, including: the first device uses the adjusted transmit power to transmit data.
  • the first device determines, according to the CCA detection result, a transmit power level, including:
  • the method further includes:
  • the first device adjusts its own CCA detection threshold according to the obtained interference information of the second device on the channel, where the second device is different from the first device.
  • Equipment or
  • the first device adjusts its own CCA detection threshold according to its own load information and/or the obtained load information of the second device on the channel, and the second device and the first device For different devices; or
  • the first device adjusts a threshold value of the second device according to the obtained CCA detection threshold of the second device, where the second device and the first device are different devices.
  • the method further includes:
  • the first device Determining, by the first device, a transmit power used by the second device to transmit data on the channel according to the obtained correspondence between a CCA detection threshold value of the second device on the channel and a transmit power level
  • the first device adjusts, according to the maximum capacity of the system, the transmit power used by the data transmission according to the transmit power of the second device, where the second device and the first device are different devices; or
  • the first device is different from the first device according to the obtained transmit power of the second device by using the interference information of the second device on the channel to the first device Equipment;
  • the method further includes:
  • the first device schedules part or all of the user equipments within the coverage corresponding to the transmit power corresponding to the transmit power level.
  • the method after the first device determines the user equipment in the coverage corresponding to the transmit power corresponding to the transmit power level, the method also includes:
  • the first device preferentially schedules the user equipment located in the jth ring area
  • the coverage corresponding to the maximum transmit power is divided into N annular regions, the first annular region is the central region, and the Nth annular region is the edge region, and N is an integer greater than or equal to 2; the corresponding transmission of P N
  • the method further includes:
  • the first device notifies the determined transmit power level to the user equipment in the coverage corresponding to the transmit power corresponding to the transmit power level.
  • the method further includes:
  • the first device turns off the transmission.
  • the first device passes the unlicensed spectrum
  • the channel performs CCA detection and obtains CCA detection results, including:
  • the first device obtains a CCA detection result by performing CCA detection on a channel on the unlicensed spectrum before each data transmission.
  • the first device after performing CCA detection on the channel on the unlicensed spectrum, obtaining the CCA detection result, further includes :
  • the first device after performing CCA detection on the channel on the unlicensed spectrum, obtains the CCA detection result, and further includes :
  • the first device determines, according to the CCA detection result, that all the random numbers corresponding to the CCA detection threshold values are reduced to 0, and then performs a data transmission;
  • the first device uses the transmit power corresponding to the transmit power level to transmit data, including:
  • the first device uses the transmit power corresponding to the transmit power level corresponding to the CCA detection threshold value in different time periods of the current data transmission duration, and transmits the data that needs to be transmitted this time.
  • the first device determines, according to the CCA detection result, any CCA detection gate of its own The random number corresponding to the limit is reduced to 0, including:
  • the first device subtracts the value of the random number corresponding to the CCA detection threshold value of the detection result in the relationship by the set step size, and continues the CCA detection until the relationship is smaller than the detection.
  • the resulting random number corresponding to the CCA detection threshold is reduced to zero.
  • the first device is a base station, and the method further include:
  • the first device After receiving the measured quantity reported by the terminal, the first device determines, according to the time point of receiving the measured quantity reported by the terminal, the final determined transmit power level of the first device before the time point;
  • the first device corrects the value of the measured quantity reported by the terminal according to the determined transmit power corresponding to the transmit power level
  • the measurement quantity reported by the terminal is a measurement quantity obtained by the terminal based on the data transmitted by the first device.
  • the first device sends the measured quantity to the terminal according to the determined transmit power corresponding to the transmit power level
  • the values are corrected, including:
  • the first device And the sum of the adjustment amounts corresponding to the transmit power corresponding to the determined transmit power level, the first device, according to the value of the measured quantity corresponding to the maximum transmit power of the first device, As a corrected value of the measured amount reported by the terminal.
  • a communication device includes:
  • the CCA detection module is configured to perform CCA detection by performing idle channel estimation on the channel on the unlicensed spectrum, and obtain a CCA detection result;
  • a transmit power level determining module configured to determine a transmit power level according to the CCA detection result if the CCA detection result is less than a first threshold value
  • a data transmission module configured to transmit data by using the transmit power corresponding to the transmit power level.
  • the transmit power level determining module is specifically configured to:
  • the first threshold is a maximum threshold of the N thresholds, and N is greater than or equal to 2 The integer.
  • the transmit power level determining module is specifically configured to:
  • the transmit power level determining module is further configured to:
  • the data transmission module is specifically configured to: transmit data by using the adjusted transmit power.
  • the transmit power level determining module is specifically configured to:
  • the device further includes: a first adjustment module, configured to:
  • the CCA detection threshold of the device to which the device belongs is a different device
  • the device further includes: a second adjustment module, configured to:
  • the transmit power used by the device to which the device belongs is adjusted according to the transmit power of the second device, and the device to which the second device and the second adjustment module belong are different devices;
  • the devices to which the module belongs are different devices.
  • the device further includes:
  • a scheduling module configured to determine, according to the transmit power level, a user equipment in a coverage area corresponding to a transmit power corresponding to the transmit power level; and schedule a part in a coverage area corresponding to the transmit power corresponding to the transmit power level Or all user devices.
  • the scheduling module is specifically configured to:
  • the user equipment located in the jth ring area is preferentially scheduled
  • the coverage corresponding to the maximum transmit power is divided into N annular regions, the first annular region is the central region, and the Nth annular region is the edge region, and N is an integer greater than or equal to 2; the corresponding transmission of P N
  • the data transmission module is further configured to:
  • the transmit power level determining module is further configured to:
  • the transmission is turned off.
  • the CCA detection module is specifically configured to:
  • the CCA detection result is obtained by performing CCA detection on the channel on the unlicensed spectrum before each data transmission.
  • the CCA detection module is specifically configured to:
  • the CCA detection module is further configured to: determine, according to the CCA detection result, all the CCA detection thresholds After the random number corresponding to the value is reduced to 0, the data transmission module is triggered to perform a data transmission;
  • the data transmission module is specifically configured to: transmit data that needs to be transmitted in this time by using different transmit powers corresponding to the transmit power levels corresponding to the CCA detection thresholds in different time periods of the current data transmission duration.
  • the CCA detection module is specifically configured to:
  • the device further includes:
  • the reporting processing module is configured to: after receiving the measured quantity reported by the terminal, determine, according to the time point of receiving the measured quantity reported by the terminal, the final determined transmit power of the transmit power level determining module before the time point grade;
  • the measurement quantity reported by the terminal is a measurement quantity obtained by the terminal based on the data transmitted by the device.
  • the reporting processing module is specifically configured to:
  • a communication device includes:
  • a processor configured to perform CCA detection on the channel on the unlicensed spectrum to obtain a CCA detection result; if the CCA detection result is less than the first threshold, determine a transmission power level according to the CCA detection result;
  • a transceiver configured to transmit data by using the transmit power corresponding to the transmit power level.
  • the processor is specifically configured to:
  • the first threshold is a maximum threshold of the N thresholds, and N is greater than or equal to 2 The integer.
  • the processor is specifically configured to:
  • the processor is further configured to:
  • the transceiver is specifically configured to: transmit data by using the adjusted transmit power.
  • the processor is specifically configured to:
  • the processor is further configured to:
  • the threshold value of the device to which the processor belongs is adjusted according to the obtained CCA detection threshold value of the second device on the channel, and the second device and the device to which the processor belongs are different devices.
  • the processor is further configured to:
  • the transmission power used by the device to which the device belongs, the second device and the device to which the processor belongs For different devices;
  • the processor is further configured to:
  • the processor is specifically configured to:
  • the user equipment located in the jth ring area is preferentially scheduled
  • the coverage corresponding to the maximum transmit power is divided into N annular regions, the first annular region is the central region, and the Nth annular region is the edge region, and N is an integer greater than or equal to 2; the corresponding transmission of P N
  • the transceiver is further configured to:
  • the processor is further configured to:
  • the transmission is turned off.
  • the processor is specifically configured to:
  • the CCA detection result is obtained by performing CCA detection on the channel on the unlicensed spectrum before each data transmission.
  • the processor is specifically configured to:
  • the processor is further configured to: after determining, according to the CCA detection result, that all the random numbers corresponding to the CCA detection thresholds are reduced to 0, triggering the transceiver to perform a data transmission;
  • the transceiver is specifically configured to: use the transmit power corresponding to the transmit power level corresponding to the CCA detection threshold value in different time periods of the current data transmission duration, and transmit the data that needs to be transmitted this time.
  • the processor is specifically configured to:
  • the processor is further configured to:
  • the transceiver After the transceiver receives the measured quantity reported by the terminal, determining, according to the time point of receiving the measured quantity reported by the terminal, the final determined transmit power level before the time point;
  • the measurement quantity reported by the terminal is a measurement quantity obtained by the terminal based on the data transmitted by the device.
  • the processor is specifically configured to:
  • a fourth aspect is a channel state measurement method, the method comprising:
  • the restricted channel state measurement is: each channel state measurement of the terminal is performed for a pilot signal with the same transmit power and continuous in the same data transmission time period.
  • the terminal obtains a start time and an end time of each data transmission time period of the base station
  • the method further includes: obtaining, by the terminal, a start time of each data transmission time period of the base station;
  • Performing, by the terminal, the restricted channel state measurement on the pilot signal including: the terminal starts performing restricted channel state measurement on the pilot signal at a start time of each data transmission period.
  • the method further includes:
  • the terminal obtains an end time of each data transmission of the base station, and stops the current channel state measurement at the end of each data transmission, and the pilot signal is started at a start time of the next data transmission time period. Make measurements.
  • the method further includes: obtaining, by the terminal, a start time and a termination time of each data transmission time period of the base station;
  • Performing, by the terminal, the restricted channel state measurement on the pilot signal includes: the terminal starts performing restricted channel state measurement on the pilot signal at an end time of each data transmission period.
  • the terminal obtains a start time of each data transmission of the base station, including:
  • the terminal determines the starting time of each data transmission of the base station by performing blind detection on the downlink channel, or
  • the terminal obtains a start time of each data transmission of the base station from the notification signaling sent by the base station.
  • the terminal obtains an end time of each data transmission of the base station, including:
  • the terminal determines the end time of each data transmission of the base station by performing blind detection on the downlink channel, or
  • the terminal obtains, from the notification signaling sent by the base station, a data transmission end time of the base station.
  • the method further includes:
  • the terminal When the terminal needs to report, the terminal reports the measured quantity obtained by the latest channel state measurement to the base station.
  • the method further includes:
  • the terminal corrects the measured value obtained by the channel state measurement of the station according to the transmit power used by the current data transmission of the station carried in the notification signaling sent by the base station;
  • the terminal reports the measured quantity obtained by the latest channel state measurement to the base station, and the terminal includes the terminal to report the corrected measurement quantity to the base station.
  • the terminal corrects the value of the measurement quantity obtained by the channel state measurement of the last time, including:
  • the terminal compares the measured quantity obtained by the last channel state measurement of the terminal with the current data of the base station according to the value of the measured quantity corresponding to the maximum emissivity of the base station carried in the notification signaling sent by the base station The sum of the adjustment amounts corresponding to the transmission power used for transmission is taken as the value of the final corrected measurement amount.
  • the method further The method includes: the terminal smoothing and filtering the corrected measurement amount;
  • the terminal reports the measurement quantity obtained by the latest channel state measurement to the base station, and the terminal includes reporting the measurement quantity obtained by the smoothing and filtering process to the base station.
  • a fifth aspect a terminal, where the terminal includes:
  • a receiving module configured to receive a pilot signal in data sent by the base station in each data transmission period
  • a measuring module configured to perform a restricted channel state measurement on the pilot signal
  • the restricted channel state measurement is: each channel state measurement of the measurement module is performed for a pilot signal having the same transmit power and continuous in the same data transmission time period.
  • the measuring module is specifically configured to:
  • a restricted channel state measurement is performed on the pilot signal at the beginning of each data transmission period.
  • the measurement module is further configured to:
  • the measuring module is specifically configured to:
  • a restricted channel state measurement is performed on the pilot signal at the end of each data transmission period.
  • the measuring module obtains a starting moment of each data transmission of the base station, including:
  • the start time of each data transmission of the base station is determined by blind detection of the downlink channel; or the start time of each data transmission of the base station is obtained from the notification signaling sent by the base station.
  • the measuring module obtains an end time of each data transmission of the base station, including:
  • the end time of each data transmission of the base station is determined by performing blind detection on the downlink channel; or the terminal obtains an end time of each data transmission of the base station from the notification signaling sent by the base station.
  • the measuring module is further configured to:
  • the measurement quantity obtained by the latest channel state measurement is reported to the base station.
  • the measuring module is further configured to:
  • the value of the measured quantity obtained by the channel state measurement of the base station is corrected; the corrected measurement is performed.
  • the quantity is reported to the base station.
  • the measuring module is configured to modify a value of the measured quantity obtained by the channel state measurement of the last time, including:
  • the measurement module corrects the value of the measurement quantity obtained by the channel state measurement of the last time, And: performing smoothing and filtering processing on the corrected measurement quantity; and reporting the measurement quantity obtained by the smoothing and filtering processing to the base station.
  • a sixth aspect a terminal, where the terminal includes:
  • a transceiver configured to receive a pilot signal in data sent by the base station in each data transmission period
  • a processor configured to perform a restricted channel state measurement on the pilot signal
  • the restricted channel state measurement is: each channel state measurement of the processor is performed for a pilot signal having the same transmit power and continuous in the same data transmission time period.
  • the processor is specifically configured to:
  • the processor is further configured to:
  • the processor is specifically configured to:
  • a restricted channel state measurement is performed on the pilot signal at the end of each data transmission period.
  • the processor obtains a starting moment of each data transmission of the base station, including:
  • the start time of each data transmission of the base station is determined by blind detection of the downlink channel; or the start time of each data transmission of the base station is obtained from the notification signaling sent by the base station.
  • the processor obtains an end time of each data transmission of the base station, including:
  • the end time of each data transmission of the base station is determined by performing blind detection on the downlink channel; or the terminal obtains an end time of each data transmission of the base station from the notification signaling sent by the base station.
  • the processor is further configured to:
  • the measurement quantity obtained by the latest channel state measurement is reported to the base station.
  • the processor is further configured to:
  • the value of the measured quantity obtained by the channel state measurement of the base station is corrected; the corrected measurement is performed.
  • the quantity is reported to the base station.
  • the processor corrects a value of the measurement quantity obtained by the channel state measurement of the latest one, including:
  • the processor after the processor corrects the value of the measured quantity obtained by the channel state measurement of the last time, the processor further uses And: performing smoothing and filtering processing on the corrected measurement quantity; and reporting the measurement quantity obtained by the smoothing and filtering processing to the base station.
  • the first device determines a transmit power level according to the CCA detection result, and uses the transmit power corresponding to the transmit power level to transmit data.
  • the transmit power transmission data corresponding to the determined transmit power level can be used, the spectrum resources are reused, and the unlicensed spectrum resources of the channel are fully utilized. , thereby increasing system capacity.
  • FIG. 1 is a schematic flow chart of a data transmission method provided by the present invention.
  • FIG. 2 is a schematic diagram of an optional scheduling manner provided by the present invention.
  • FIG. 3A is a timing diagram of a scenario applied to coexistence of different systems according to an embodiment of the present invention.
  • FIG. 3B is a sequence diagram of a scenario applied to coexistence with the same system according to an embodiment of the present invention.
  • FIG. 5 is a timing diagram of data transmission in the second solution provided by the present invention.
  • FIG. 6 is a timing diagram of data transmission in the fourth scheme provided by the present invention.
  • FIG. 8 is a timing diagram of an optional data transmission method provided by the present invention.
  • FIG. 9 is a timing diagram of another optional data transmission method provided by the present invention.
  • FIG. 10 is a schematic flowchart diagram of a channel measurement method according to the present invention.
  • FIG. 11 is a schematic diagram of determining a duration of each data transmission of a base station according to the first embodiment of the present invention.
  • FIG. 12 is a schematic diagram of determining a duration of each data transmission of a base station according to a second embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a first communication device provided by the present invention.
  • FIG. 14 is a schematic diagram of a second communication device provided by the present invention.
  • Figure 15 is a schematic diagram of a first terminal provided by the present invention.
  • FIG. 16 is a schematic diagram of a second terminal provided by the present invention.
  • the embodiment of the invention provides a data transmission method based on dynamic CCA threshold adjustment and adaptive adjustment of transmit power, which is used to solve the problem of base station and user equipment (UE) on the license-free spectrum in the existing inter-system coexistence scenario.
  • UE base station and user equipment
  • the spectrum utilization rate is low, and the solution provided by the embodiment of the present invention can improve the system capacity under the premise that the inter-system interference level is not raised.
  • the solution provided by the embodiment of the present invention is applied to a wireless communication system, and is particularly applicable to an LTE system that permits spectrum access access, that is, a LAA-LTE (licensed-assisted access-LTE) system.
  • the LTE system that permits spectrum-assisted access refers to an LTE system that uses licensed spectrum and unlicensed spectrum together by CA or non-CA.
  • the mainstream deployment scenario is a scenario in which the licensed spectrum and the unlicensed spectrum are jointly used by the CA, that is, the licensed spectrum, or the carrier included in the licensed spectrum, or the cell operating on the licensed spectrum as the primary serving cell, and the license-free spectrum,
  • the carrier included in the unlicensed spectrum or the cell operating on the unlicensed spectrum serves as the secondary serving cell.
  • the primary serving cell and the secondary serving cell may be deployed in a common station or in a non-common station, and there is an ideal or non-ideal backhaul path between the two serving cells.
  • the embodiment of the present invention is not limited to the scenario of the foregoing CA.
  • Other deployment scenarios include a stand-alone spectrum (standalone) scenario, that is, a scenario where the license-free operation is performed as an independent carrier, and the serving cell on the license-free spectrum is directly An independent access function can be provided without the assistance of a cell operating on the licensed spectrum.
  • the LTE/LTE-A system is taken as an example, but the present invention is not limited thereto.
  • Applicable to LTE systems also applicable to WiFi, namely worldwide interoperability for microwave access (WiMAX), wideband code division multiple access (WCDMA), time division synchronous code division multiple access (time) Division-synchronous code division multiple access (TD-SCDMA), global system for mobile communication (GSM), Zigbee (Zibebe protocol), Bluetooth and other wireless communication systems.
  • WiMAX worldwide interoperability for microwave access
  • WCDMA wideband code division multiple access
  • time time division synchronous code division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • GSM global system for mobile communication
  • Zigbee Zigbee
  • Bluetooth Bluetooth and other wireless communication systems.
  • the licensed spectrum or the unlicensed spectrum may include one or more carriers
  • the licensed spectrum and the unlicensed spectrum are subjected to carrier aggregation, and may include one or more carriers included in the licensed spectrum and the unlicensed spectrum.
  • Carrier aggregation is performed on one or more carriers included.
  • the network element involved in the embodiment of the present invention mainly includes a base station (or an access point) and a user equipment working on the unlicensed spectrum.
  • the cell in the embodiment of the present invention may be a cell corresponding to the base station, and the cell may belong to the macro base station, or may belong to the base station corresponding to the small cell, where the small cell may include: a metro cell, A micro cell, a pico cell, a femto cell, etc., which have the characteristics of small coverage and low transmission power, and are suitable for providing a high-speed data transmission service.
  • the concept of the carrier and the cell in the LTE system is the same.
  • the UE accesses one carrier and accesses one cell, which is equivalent to the concept of the cell in the embodiment of the present invention.
  • the communication device capable of performing data communication with the base station can be regarded as a user equipment, such as a terminal, a relay, etc., and is described in a general sense by the UE in the embodiment of the present invention. Similar to this, it is not listed here.
  • FIG. 1 A data transmission method provided by an embodiment of the present invention is shown in FIG. 1 , and the method includes:
  • the first device performs CCA detection on the current channel on the unlicensed spectrum, and obtains a CCA detection result.
  • the first device determines a transmit power level according to the CCA detection result.
  • the first device uses the transmit power corresponding to the transmit power level to transmit data.
  • the first device determines a transmit power level according to the CCA detection result, and uses the transmit power corresponding to the transmit power level to transmit data.
  • the transmit power transmission data corresponding to the determined transmit power level can be used, the spectrum resources are reused, and the unlicensed spectrum resources of the channel are fully utilized. , thereby increasing system capacity.
  • the first device may be a base station or a user equipment.
  • the method further includes: if the detection result is greater than or equal to the first threshold, the first device turns off the transmission.
  • the detection result obtained by performing CCA detection on the current channel in the embodiment of the present invention may be at least one of the following information:
  • the energy information of the signal received on the current channel the received signal strength indication (RSSI) on the current channel, and the reference signal receiving power (RSRP) on the current channel.
  • RSSI received signal strength indication
  • RSRP reference signal receiving power
  • determining the transmit power level in S12 includes two preferred implementations:
  • the first threshold value is a maximum threshold value of the N threshold values, and N is greater than or equal to 2, according to the detection result and the N CCA detection threshold values.
  • the integer is a maximum threshold value of the N threshold values, and N is greater than or equal to 2, according to the detection result and the N CCA detection threshold values. The integer.
  • the first device determines that the transmission power level is P N ;
  • the first device determines that the transmission power level is P Ni ;
  • each different CCA detection threshold corresponds to a different transmission power level.
  • the method further includes:
  • the first device adjusts, according to the detection result, the transmit power corresponding to the transmit power level, to obtain the adjusted transmit power corresponding to the transmit power level.
  • S13 is specifically: the first device transmits data by using the adjusted transmit power.
  • each of the transmit power levels sets a threshold of the detection result, and if the detection result is greater than the threshold, the transmit power corresponding to the P Ni is decreased; if the detection result is less than the threshold, the increase is performed.
  • the transmission power corresponding to the P Ni .
  • the specific adjustment amount may be a fixed value or a function of a difference between the detection result and the threshold.
  • the transmit power level is determined according to the detection result, specifically:
  • each transmission power level corresponds to different transmission power.
  • the embodiment of the present invention further provides a solution for dynamically adjusting the CCA detection threshold of the first device, and specifically includes the following three preferred implementation manners:
  • the first device adjusts its own CCA detection threshold according to the obtained interference information of the second device on the channel, the second device and the first device. For different devices.
  • the first device adjusts the CCA detection threshold of the first device according to the interference information of the second device on the channel
  • each threshold value of its own CCA detection threshold is increased, or only a part of the threshold value of its own CCA detection threshold is increased; if the interference level corresponding to the interference information is equal to the set interference
  • the threshold does not adjust its own CCA detection threshold.
  • the specific adjustment amount may be a fixed value or may correspond to the interference information. A function of the difference between the interference level and the set interference threshold.
  • the first device adjusts its own CCA detection threshold according to its own load information and/or the obtained load information of the second device on the channel, and the second device and the second device A device is a different device.
  • the CCA detection threshold when the first device adjusts its own CCA detection threshold according to its own load information, if the load level corresponding to the load information is greater than the set load threshold, the CCA detection threshold is increased.
  • the first device adjusts its own CCA detection threshold according to the acquired load information of the second device, if the load level corresponding to the load information is greater than the set load threshold, the self is reduced.
  • the CCA detects each threshold in the threshold, or increases only a part of the threshold of the CCA detection threshold; if the load level corresponding to the load information is equal to the set load threshold, the CCA is not adjusted. Detection threshold.
  • the first device adjusts its own CCA detection threshold according to its own load information and the acquired load information of the second device, if the load level corresponding to its own load information and the first The load level corresponding to the load information of the two devices is greater than the set load threshold, and the CCA detection threshold is not adjusted; if the load level corresponding to the load information of the device and the load information corresponding to the load information of the second device are If it is less than the set load threshold, increase each threshold of its own CCA detection threshold, or increase only part of its own CCA detection threshold; if its own load information corresponds to the load If the level is greater than the set load threshold and the load level corresponding to the load information of the second device is less than the set load threshold, each threshold value of the CCA detection threshold is increased, or only the self is increased.
  • the CCA detection threshold is decreased.
  • Each threshold value, or only a part of the threshold value of the CCA detection threshold of the second device; and the load level corresponding to the load information of the second device and the load information corresponding to the load information of the second device are equal to the setting The load threshold does not adjust its own CCA detection threshold.
  • the specific adjustment amount may be a fixed value, or may be a difference between the load level corresponding to the load information and the set load threshold. The function.
  • the first device adjusts the threshold value of the second device according to the obtained CCA detection threshold of the second device, and the second device and the first device are different devices. .
  • a preferred implementation manner is to adjust the CCA detection threshold of the first device to The CCA detection threshold of the second device is the same.
  • the load information may be a duty ratio of the channel.
  • the interference information may be at least one of the following: a signal to interference and noise ratio (SINR), a block error rate (BLER), and a reference signal.
  • SINR signal to interference and noise ratio
  • BLER block error rate
  • RSRP Reference signal received power
  • RSRQ reference signal received quality
  • the second device may be a device of the same access system that belongs to the same carrier as the first device, or may be the same access system that belongs to a different carrier from the first device.
  • the device may also be a device of a different access system that belongs to the same carrier as the first device, or may be a device that belongs to a different access system of a different carrier from the first device.
  • the same access system refers to a communication system using the same radio access technology (RAT), and different access systems refer to communication systems using different radio access technologies (RATs).
  • RAT radio access technology
  • the first device may directly interact with the second device to obtain a load of the second device.
  • Information, interference information, or a CCA detection threshold of the second device if the first device If the second device is a device of the same access system of a different operator or a device of a different access system of a different operator, the first device may obtain load information or interference information of the second device by using the second device. .
  • the base station is an example of a base station.
  • the base station can interact with other base stations through the S1 port or the X2 port to obtain load information and CCA detection threshold values of other base stations on the current channel.
  • the base station can exchange the load information of the current channel and the threshold value of the CCA detection with other base stations through the signaling of the added S1 port, X2 port, or UU port, thereby better. Perform power coordination.
  • the user equipment can be notified by means of broadcast, multicast or unicast on the PCC for auxiliary measurement, and the user equipment assists in measuring the load information and the interference information of the WiFi device, and reports it to the primary carrier or the secondary carrier.
  • Base station When the interference level measured by the user equipment is strong, the base station can appropriately reduce the transmission power to reduce interference.
  • the first device needs to obtain load information of the second device by using measurement and/or interference of the second device with the first device on the channel.
  • Information the method also includes:
  • the base station of the LAA system can notify the user equipment to perform auxiliary measurement by means of broadcast, multicast, or unicast on the PCC.
  • the user equipment assists in measuring the load information and the interference information of the WiFi device, and reports the information through the primary carrier or the secondary carrier.
  • the base station adjusts its own CCA detection threshold according to the measurement result to reduce interference.
  • the embodiment of the present invention further provides a coordination mechanism between different devices to adjust the transmit power corresponding to the transmit power level to maximize the system capacity, and specifically includes the following three preferred implementation manners:
  • the first device adjusts the transmit power used by the first device based on the correspondence between the CCA detection threshold and the transmit power level of the second device on the channel, as follows:
  • the first device Determining, by the first device, a transmit power used by the second device to transmit data on the channel according to the obtained correspondence between a CCA detection threshold value of the second device on the channel and a transmit power level
  • the first device adjusts the transmit power used by the self-transmitted data according to the transmit power of the second device based on the principle of maximum system capacity.
  • the first device determines a path loss between the first device and the second device according to the received power of the data transmitted by the second device and the transmit power of the second device. Determining, by the first device, the received power of the second device when the first device transmits data according to the determined path loss and the transmit power of the first device; the first device determines the device according to the obtained correspondence relationship Determining the transmit power of the second device by using the received power of the second device; the first device adjusts the transmit power of the data transmission on the current channel by the joint power control (a technique similar to CSPC) Achieve the highest system capacity.
  • the joint power control a technique similar to CSPC
  • the first device is configured to transmit, according to the obtained interference information of the second device on the channel to the first device, the transmission power used by the first device to transmit data to itself.
  • the first device adjusts the transmit power used by the second device to interfere with the data transmitted by the first device on the channel, if the interference level corresponding to the interference information is greater than the set If the interference threshold is used, the transmission power used by the transmission data is reduced; if the interference level corresponding to the interference information is less than the set interference threshold, the transmission power used by the transmission data is increased; if the interference level corresponding to the interference information is equal to The fixed interference threshold does not adjust the transmit power used by the data itself.
  • the specific adjustment amount may be a fixed value, or may be a function of a difference between the interference level corresponding to the interference information and the set interference threshold.
  • the first device adjusts the transmit power used by the first device according to its own load information
  • the load level corresponding to the load information is greater than the set load threshold, Increasing the transmission power used by the transmission data; if the load level corresponding to the load information is less than the set load threshold, reducing the transmission power used by the transmission data; if the load level corresponding to the load information is equal to the set load threshold , does not adjust the transmit power used by itself to transmit data.
  • the first device adjusts the transmit power used by the first device according to the acquired load information of the second device, if the load level corresponding to the load information is greater than the set load threshold, the first device decreases.
  • the transmission power used by the data transmission itself if the load level corresponding to the load information is less than the set load threshold, the transmission power used by the transmission data is increased; if the load level corresponding to the load information is equal to the set load threshold, then The transmit power used by the data transmission itself is not adjusted.
  • the first device adjusts the transmit power used by the first transmission device according to its own load information and the acquired load information of the second device
  • the load level corresponding to the load information of the first device is The load level corresponding to the load information of the second device is greater than the set load threshold, and does not adjust the transmit power used by the self-transmitted data
  • the load level corresponding to the load information of the second device and the load corresponding to the load information of the second device If the water level is less than the set load threshold, the transmission power used by the data transmission is increased; if the load level corresponding to the load information is greater than the set load threshold and the load information corresponding to the load information of the second device is If the load threshold is less than the set load threshold, the transmit power used by the data is increased; if the load level corresponding to the load information is less than the set load threshold and the load information corresponding to the load information of the second device is greater than The fixed load threshold reduces the transmit power used by the data itself; if it is its own load Load information
  • the specific adjustment amount may be a fixed value, or may be a difference between the load level corresponding to the load information and the set load threshold. The function of the value.
  • the method further includes:
  • the first device schedules part or all of the user equipments within the coverage corresponding to the transmit power corresponding to the transmit power level.
  • the base station may determine, according to the transmit power corresponding to the transmit power level, the user equipment in the coverage corresponding to the transmit power, Thereby, some or all of the user equipments within the coverage corresponding to the transmission power can be scheduled.
  • the method further includes:
  • the first device preferentially schedules the user equipment located in the jth ring area
  • the coverage of the maximum transmit power is divided into N ring regions, the first ring region is the center region, and the Nth ring region is the edge region, where N is an integer greater than or equal to 2; the transmit power corresponding to P N
  • the base station may determine the distribution of the user equipment based on the uplink measurement (which may be the PCC or the SCC) or the measurement quantity reported by the user equipment (for example, the A3 measurement of the LTE system), and further identify the user equipment to determine the difference.
  • the uplink measurement which may be the PCC or the SCC
  • the measurement quantity reported by the user equipment for example, the A3 measurement of the LTE system
  • the coverage of the maximum transmit power is divided into N ring regions, the first ring region is the center region, and the Nth ring region is the edge region, that is, the larger the value of N, the user in the corresponding ring region.
  • the transmission power ie, the maximum transmission power
  • the edge user equipment that is, the user equipment in the third ring area, as shown in FIG. 2, the user equipment in the ring area 3; if the detection result is greater than or equal to L1 and less than L2, transmitting a signal with a transmit power level corresponding to the transmit power of P2, and preferentially scheduling the user equipment in the second ring area, such as the user equipment in the ring area 2 shown in FIG.
  • the signal is transmitted with the transmit power corresponding to the transmit power level, and the central user equipment is preferentially scheduled, that is, the user equipment in the first ring area, as shown in the ring area 1 of FIG. Equipment; if the detection result is greater than or equal to L3, the transmission is turned off.
  • the transmission power corresponding to P3>P2 corresponds to the transmission power>P1 corresponding to the transmission power.
  • the method further includes: notifying the determined transmit power level to the user equipment of the coverage corresponding to the transmit power corresponding to the transmit power level, so that the user equipment is capable of transmitting power according to the transmit power level Processing such as measurement and/or demodulation is performed.
  • the determination of the transmission duration may be further increased.
  • the statistics and/or load level detection of the duration of the channel occupied by other devices may be used, and the self is considered.
  • the QoS requirement information of the service determines the duration of the data transmission. details as follows:
  • the transmission duration of the current data is determined according to at least one of the duration of the channel occupied by the other device, the load level of the other device, and the QoS requirement information of the other device.
  • a virtual carrier monitoring mechanism may be introduced, that is, information related to the duration of the occupied channel carried by the communication device in addition to detecting the channel energy (such as network allocation carried by the WiFi device)
  • the vector (NAV) is detected to determine the transmission duration of the communication device, and based on the transmission duration of the communication device, the transmission duration of its own data is determined. details as follows:
  • the transmission duration of the self data is determined according to the information of the duration of the channel occupied by the communication device.
  • the user equipment may be notified by means of broadcast, multicast or unicast on the PCC to perform auxiliary measurement to measure the current channel occupancy and/or interference information, and pass the main The carrier or the secondary carrier is reported to the base station, so that the base station can determine the transmission duration of the self data according to the load information and/or the interference information of the communication device.
  • the execution entity of the foregoing method is a base station
  • the user equipment may be notified by means of broadcast, multicast or unicast on the PCC to perform auxiliary measurement to measure the current channel occupancy and/or interference information, and pass the main The carrier or the secondary carrier is reported to the base station, so that the base station can determine the transmission duration of the self data according to the load information and/or the interference information of the communication device.
  • the solution provided by the present invention can be applied to a scenario where different systems coexist, taking the coexistence of the LAA system and the WiFi system as an example, and the timing diagram thereof is shown in FIG. 3A, and the LAA system can be seen while the device of the WiFi system occupies channel transmission data.
  • the base station can also transmit data at low power, achieve channel sharing, improve spectrum utilization, and increase system capacity. Further, when the base station of the LAA system uses low-power transmission data, the user equipment in the central area can be preferentially scheduled. When the base station of the LAA system uses high-power transmission data, the user equipment in the edge area can be preferentially scheduled.
  • the solution provided by the present invention can also be applied to the scenario where the system coexists.
  • the timing diagram is shown in FIG. 3B. It can be seen that the LAA system LAA1 can also transmit data through the high power occupied channel, and the LAA system LAA2 can also be used. Low-power transmission of data, the same reason, LAA2 uses high-power occupied channel to transmit data, LAA1 can also transmit data with low power, realize channel sharing, improve spectrum utilization, and improve system capacity.
  • LAA1 uses high-power occupied channel to transmit data, it can preferentially schedule user equipment in the edge area.
  • LAA2 uses low-power transmission data to preferentially schedule user equipment in the central area;
  • LAA1 uses low-power occupied channel transmission.
  • the user equipment in the central area can be preferentially scheduled.
  • the LAA2 uses high-power transmission data to preferentially schedule user equipment in the edge area.
  • a random number N is selected, and the base station or the user equipment judges the busy state of the channel according to the set threshold value at each CCA detection time (observe time).
  • the value of N is decremented by 1, and when the value of N is decreased to 0, data transmission begins.
  • each threshold value corresponds to a random number. Initially, the random numbers corresponding to the threshold values are the same, according to the detection result and the threshold obtained each time.
  • the value relationship reduces the random number corresponding to the corresponding threshold (that is, the threshold value smaller than the detection result in the relationship), but the base station or the user equipment cannot simultaneously monitor the channel during the low power transmission, in order to ensure competition with the WiFi. Fairness, the embodiment of the invention provides a correction
  • the N value scheme includes the following five implementation methods:
  • Scenario 1 After the first device determines the size relationship between the detection result and the CCA detection threshold according to the CCA detection threshold of the first device, the method further includes: the first device: The value of the random number corresponding to the threshold value smaller than the detection result in the relationship minus the set step size, and continuing the CCA detection;
  • the first device determines a transmit power level according to the detection result
  • the method further includes: the first device, in the threshold of the CCA detection threshold, corresponding to the transmit power level a random number corresponding to the other threshold value other than the value minus the set fixed value; wherein the threshold value corresponding to the transmit power level is the detection result corresponding to the transmit power level and the CCA detection gate a threshold value smaller than the detection result; and a difference between the random number corresponding to the other threshold value and the fixed value, and determining that the random number corresponding to the other threshold value is lower
  • the initial value of a CCA test in the threshold of the CCA detection threshold, corresponding to the transmit power level a random number corresponding to the other threshold value other than the value minus the set fixed value.
  • the set step size is 1.
  • the channels are time-multiplexed.
  • two CCA detection thresholds are set, one being a high threshold (denoted as H) and one being a low threshold (denoted as L).
  • N the initial value
  • the detection result is lower than L
  • the value of N1 is decreased by 1
  • the detection result is lower than H and higher than L
  • N2 is decreased by 1.
  • N1 is reduced to 0, the data is transmitted with the maximum transmit power (ie, normal transmit power); when N2 is reduced to 0, the data is transmitted with low power (the transmit power is linearly related to the threshold value).
  • the base station cannot simultaneously monitor the channel during low-power transmission, in order to ensure the fairness of competition with the WiFi device, it is assumed that during the low-power transmission, the number of times the detection result is lower than L is M, then after the low-power transmission data is completed, N1
  • the starting value is the value obtained by subtracting M from the original value, and then the statistics are performed according to the same rule. When the value of N1 is 0, the data is transmitted with high power.
  • the size of the M value and the length of the message transmitted by the low power of the LAA system and the WiFi is related.
  • the minimum value can be set to 0 and the maximum value can be set to N1-1.
  • the second method after the first device determines the size relationship between the detection result and the CCA detection threshold according to the CCA detection threshold of the first device, the method further includes: the first device: The value of the random number corresponding to the threshold value smaller than the detection result in the relationship minus the set step size, and continuing the CCA detection;
  • the transmission power level is determined according to the detection result
  • the first device uses the transmit power corresponding to the transmit power level to transmit data, including: at a start time of the next subframe, the first device uses the transmit power corresponding to the transmit power level to transmit data;
  • the method further includes: the first device, in the CCA detection threshold, a threshold corresponding to the transmit power level a random number corresponding to the other threshold value other than the value minus the set fixed value; wherein the threshold value corresponding to the transmit power level is the detection result corresponding to the transmit power level and the CCA detection gate a threshold value that is smaller than the detection result; and the first device subtracts the difference between the random number corresponding to the other threshold value by the fixed value, and determines the other threshold value The initial value of the corresponding random number at the next CCA detection.
  • the set step size is 1.
  • this method mainly considers that when the N2 value is reduced to 0, the low-power transmission data is not immediately adopted, but the next sub-frame boundary of the LAA system arrives (ie, the next sub-subject). At the beginning of the frame, the data transfer begins. During the waiting time (ie, a period of time before the start of the next sub-frame), the CCA process with a low threshold can continue to operate. If the detection result is lower than L, N1 is decreased by 1. If it is reduced to 0, high power can be achieved. The data is transmitted, and if the next subframe boundary N1' is still greater than 0, the data is transmitted at a low power. After the data transmission is completed with low power, its starting value is counted from N1'-M. The meaning of M is the same as that in the first scheme.
  • the method further includes: the first device Subtracting the value of the random number corresponding to the threshold value of the detection result in the relationship by the set step size;
  • the first device Determining, by the first device, the transmit power level according to the detection result, after the random number corresponding to the threshold value of the detection result is reduced to 0 in the relationship, the first device is configured according to the detecting The result determines the transmit power level;
  • the first device uses the transmit power corresponding to the transmit power level to transmit data, including: the first device uses the transmit power corresponding to the transmit power level to transmit data, and extends the time for data transmission by a set duration;
  • the method further includes: the first device, in the CCA detection threshold, a threshold corresponding to the transmit power level a value corresponding to the other threshold value other than the value minus M; wherein the threshold value corresponding to the transmission power level is a relationship between the detection result corresponding to the transmission power level and the CCA detection threshold value a threshold value smaller than the detection result, where M is a random number corresponding to two other threshold values minus a ratio of a waiting time between the step sizes to the duration; and the first device The difference between the random number corresponding to the other threshold value and the fixed value is determined as an initial value of the random number corresponding to the other threshold value at the next CCA detection.
  • the set step size is 1.
  • the time for extending the low-power data transmission is extended, for example, from 1 ms to 13 milliseconds; the magnitude of the M value is estimated based on the operation law of the historical low threshold N1 value.
  • the method further includes: the first device: a value of a random number corresponding to a threshold value smaller than the detection result in the relationship minus a set step size;
  • the first device determines a transmit power level according to the detection result
  • the first device uses the transmit power corresponding to the transmit power level to transmit data, including: the first device uses the transmit power corresponding to the transmit power level to transmit data, where the duration of the transmitted data is less than or equal to the detected The length of time that other devices occupy on the current channel.
  • the WiFi device is monitored for the current channel occupancy, and the channel occupancy time is detected (for example, it can be obtained by analyzing the NAV value carried by the WiFi).
  • the length of each packet of power transmission data shall not exceed the duration of the current WiFi packet.
  • the M value in the previous scheme can be set to 0, that is, in the process of using the low power transmission data by the LAA device, the N1 value corresponding to the low threshold does not need to be corrected.
  • the first device in S11 obtains a CCA detection result by performing CCA detection on a channel on the unlicensed spectrum, including:
  • the first device obtains a CCA detection result by performing CCA detection on a channel on the unlicensed spectrum before each data transmission.
  • the method further includes:
  • the first device determines, according to the CCA detection result, that the random number corresponding to any of the CCA detection thresholds is reduced to 0, and performs data transmission.
  • the base station needs to listen to the channel (ie, CCA detection) before each data transmission, and perform power adjustment according to the CCA detection result obtained by each CCA detection.
  • Each data transmission is called a burst, and the data transmission in a burst is continuous and uninterrupted.
  • the transmit power used by the base station is unchanged, and the transmit power used by the base station in any two bursts may change according to the CCA test result. As shown in FIG.
  • the base station transmits data by using the transmit power corresponding to the transmit power level P1, and the transmit power does not change during the current data transmission; after the second CCA detection, the base station adopts Transmit power level P2 The transmit power transmits data, and the transmit power does not change during this data transmission.
  • the first device determines that the random number corresponding to any of the CCA detection thresholds is reduced to 0, including:
  • the first device Determining, by the first device, a size relationship between the CCA detection result and the CCA detection threshold according to the CCA detection threshold; the first device is a CCA that is smaller than the detection result in the relationship.
  • the value of the random number corresponding to the detection threshold value is subtracted from the set step size, and the CCA detection is continued until the random number corresponding to the CCA detection threshold value smaller than the detection result in the relationship is reduced to zero.
  • the method further includes:
  • the first device determines, according to the CCA detection result, that the random number corresponding to the CCA detection threshold value of the first device is reduced to 0, and performs data transmission.
  • the first device in S13 uses the transmit power corresponding to the transmit power level to transmit data, including: the first device uses different CCA detection thresholds in different time periods of the current data transmission duration.
  • the transmit power corresponding to the transmit power level corresponding to the value, and the data to be transmitted this time is transmitted.
  • the base station needs to listen to the channel (ie, CCA detection) before each data transmission, and use multiple CCA thresholds ("multiple” in the embodiment of the present invention refers to two or more) Performing a CCA detection process, after the random number corresponding to each CCA detection threshold is reduced to 0, the base station performs a data transmission (ie, a burst), since each CCA threshold corresponds to a different transmission power level, Therefore, multiple transmit power levels are determined, and the base station may use different transmit power levels corresponding to the transmit power levels corresponding to the CCA detection thresholds in different time periods of one data transmission according to a certain rule, and transmit the transmissions that need to be transmitted this time. data.
  • the transmission power corresponding to the transmission power level corresponding to the different CCA detection threshold values is used in different time periods of one data transmission.
  • the time period here may be a sub-frame granularity, such as using P1 to transmit data in subframe 1, and P2 for transmitting data in subframe 2; for example, using P1 to transmit data in subframes 1 and 2, in sub-frames P2 transmits data in frames 3 to 5.
  • the base station After one CCA detection, the base station performs a data transmission. Since three different transmission power levels, that is, P1, P2, and P3, are determined during the CCA detection process, in this data transmission, The data is transmitted by using the transmit power corresponding to P1. After a period of time, the data is transmitted by using the transmit power corresponding to P2, and after a period of time, the data is transmitted by using the transmit power corresponding to P3, thereby completing the data transmission.
  • the first device determines, according to the CCA detection result, that the random number corresponding to each of the CCA detection thresholds of the first device is reduced to 0, including:
  • the first device subtracts the value of the random number corresponding to the CCA detection threshold value of the detection result in the relationship by the set step size, and continues the CCA detection until the relationship is smaller than the detection.
  • the resulting random number corresponding to the CCA detection threshold is reduced to zero.
  • the method further includes: the first device preferentially scheduling user equipments at different locations according to a transmit power level used for data transmission in the time period in different time periods.
  • the first device preferentially schedules user equipments at different locations according to a transmit power level used for data transmission in the time period in different time periods, including:
  • the first device preferentially schedules the user equipment located in the jth ring area
  • the coverage corresponding to the maximum transmit power is divided into N annular regions, the first annular region is the central region, and the Nth annular region is the edge region, and N is an integer greater than or equal to 2; the corresponding transmission of P N
  • the method further includes:
  • the first device After receiving the measured quantity reported by the terminal, the first device determines, according to the time point of receiving the measured quantity reported by the terminal, the final determined transmit power level of the first device before the time point;
  • the first device corrects the value of the measured quantity reported by the terminal according to the determined transmit power corresponding to the transmit power level
  • the measurement quantity reported by the terminal is a measurement quantity obtained by the terminal based on the data transmitted by the first device.
  • the first device according to the determined transmit power corresponding to the transmit power level, corrects the value of the measured quantity reported by the terminal, including:
  • the first device And the sum of the adjustment amounts corresponding to the transmit power corresponding to the determined transmit power level, the first device, according to the value of the measured quantity corresponding to the maximum transmit power of the first device, As a corrected value of the measured amount reported by the terminal.
  • the first device is based on the maximum transmit power and the value of the measured quantity obtained by performing channel state measurement (such as channel state information (CSI) measurement) at the maximum transmit power, and is based on different transmissions to the terminal.
  • the value of the measured quantity obtained by the channel state measurement by the pilot signal in the power data is corrected to normalize the change of the channel state caused by the different transmit power.
  • the embodiment of the present invention further provides a channel measurement method on the terminal side. As shown in FIG. 10, the method includes:
  • the terminal receives a pilot signal in data sent by the base station in each data transmission period.
  • the terminal performs a restricted channel state measurement on the pilot signal, where the restricted channel state measurement is: each channel state measurement of the terminal is the same for the same data transmission time period. And continuous pilot signals are carried out.
  • the method further includes: obtaining, by the terminal, a start time of each data transmission time period of the base station;
  • the terminal in S102 performs the restricted channel state measurement on the pilot signal, including: the terminal starts to perform a restricted channel on the pilot signal at a start time of each data transmission period. State measurement.
  • the method further includes: the terminal obtaining an end time of each data transmission of the base station, and stopping the current channel state measurement at the end of each data transmission, and in the next data The pilot signal is measured at the start time of the transmission time period.
  • the terminal performs channel state measurement on the received pilot signal at the beginning of each data transmission time period of the base station, and stops the current channel state at the end of each data transmission time period.
  • the received pilot signal is measured and measured at the start of the start time of the next data transmission period of the base station.
  • the method further includes: obtaining, by the terminal, a start time and a termination time of each data transmission time period of the base station;
  • the terminal in S102 performs the restricted channel state measurement on the pilot signal, including: the terminal starts performing a restricted channel state on the pilot signal at an end time of each data transmission time period. measuring.
  • the terminal After obtaining the start time and the end time of each data transmission time period of the base station, the terminal starts to measure the channel state of the received pilot signal, at the end of each data transmission time period, The current channel state measurement is stopped, and the received pilot signal is measured at the start time of the start time of the next data transmission period of the base station.
  • the terminal obtains a starting moment of each data transmission of the base station, and includes the following two optional methods:
  • the terminal determines the starting time of each data transmission of the base station by performing blind detection on the downlink channel.
  • the terminal determines the data transmission of the physical downlink shared physical channel (PDSCH) of each base station according to the blind detection of the pilot signal (Cell-specific Reference Signals (CRS)).
  • the starting time that is, when data transmission is detected, the time is determined as the starting time of the current data transmission of the base station.
  • the terminal obtains a start time of each data transmission of the base station from the notification signaling sent by the base station.
  • the base station notifies the terminal of the start time of the current data transmission by using the notification signaling before each data transmission.
  • the terminal obtains the starting moment of the data transmission to be transmitted by the base station by parsing the notification signaling.
  • the terminal obtains the end time of each data transmission of the base station according to any one of the foregoing two alternative implementation manners, and includes the following two optional methods:
  • the terminal determines the end time of each data transmission of the base station by performing blind detection on the downlink channel.
  • the terminal determines the data transmission of the physical downlink shared physical channel (PDSCH) of each base station according to the blind detection of the pilot signal (Cell-specific Reference Signals (CRS)).
  • the terminal determines the duration of each data transmission by the base station.
  • the terminal determines the time as the starting time of the current data transmission of the base station.
  • the data is detected to be continuous, it indicates that the data transmission of the base station continues; when it is not detected In the case of data, it is determined that the data transmission of the base station is completed, and the time is determined as the end time of the current data transmission of the base station, as shown in FIG.
  • the terminal obtains an end time of each data transmission of the base station from the notification signaling sent by the base station.
  • the base station notifies the terminal of the start time and the end time of the current data transmission by using the notification signaling before each data transmission.
  • the terminal obtains the start time and the end time of the data transmission to be transmitted by the base station by parsing the notification signaling, as shown in FIG. 12 .
  • the notification signaling further carries the transmit power used by the base station for the current data transmission.
  • the notification signaling further carries a duration of using the different transmit power to transmit data in the current data transmission of the base station.
  • the base station uses P1 to P3 to transmit data in the data transmission, the base station also carries the length of the data transmitted by P1 in the notification signaling sent to the terminal, and uses P2 to transmit the data. The length of the data.
  • the method further includes:
  • the terminal When the terminal needs to report, the terminal reports the measurement quantity obtained by the latest channel state measurement to the base station.
  • the terminal may report the report periodically, or may report the report after the base station triggers.
  • the terminal feeds back a measurement quantity obtained by performing channel state measurement based on a pilot signal in data of the latest burst service or the latest power transmission using the same power.
  • the method further includes:
  • the terminal corrects the value of the measured quantity obtained by the channel state measurement of the current channel state according to the transmit power used by the base station for the current data transmission carried in the notification signaling sent by the base station;
  • the terminal reports the measured quantity obtained by the channel state measurement to the base station, and the terminal reports the corrected measurement quantity to the base station.
  • the terminal corrects the value of the measured quantity obtained by the channel state measurement of the last time, including:
  • the terminal compares the value of the measured quantity obtained by the last channel state measurement of the terminal with the base station according to the value of the measured quantity corresponding to the maximum transmit power of the base station carried in the notification signaling sent by the base station.
  • the sum of the adjustment amounts corresponding to the transmission power used for data transmission is used as the value of the measured amount after the terminal is corrected.
  • the method further includes: the terminal performing smoothing and filtering processing on the corrected measurement quantity;
  • the terminal reports the measurement quantity obtained by the channel state measurement to the base station, and the terminal reports the measurement quantity obtained by the smoothing and filtering process to the base station.
  • the above method processing flow can be implemented by a software program, which can be stored in a storage medium, and when the stored software program is called, the above method steps are performed.
  • a communication device is further provided in the embodiment of the present invention. Since the principle of solving the problem is similar to the foregoing data transmission method, the implementation of the device can refer to the implementation of the method, and the repetition is no longer Narration.
  • a communication device provided by an embodiment of the present invention as shown in FIG. 13, the device includes:
  • the CCA detection module 131 is configured to perform CCA detection by performing an idle channel assessment CCA detection on the channel on the unlicensed spectrum to obtain a CCA detection result;
  • a transmit power level determining module 132 configured to determine, according to the CCA detection result, a transmit power level, if the CCA detection result is less than a first threshold
  • the data transmission module 133 is configured to transmit data by using the transmit power corresponding to the transmit power level.
  • the transmit power level determining module 132 is specifically configured to:
  • the first threshold is a maximum threshold of the N thresholds, and N is greater than or equal to 2 The integer.
  • the transmit power level determining module 132 is specifically configured to:
  • the transmit power level determining module 132 is further configured to:
  • the data transmission module 133 is specifically configured to: transmit data by using the adjusted transmit power.
  • the transmit power level determining module 132 is specifically configured to:
  • the device further includes: a first adjustment module, configured to:
  • the load information is adjusted to the CCA detection threshold of the device to which the device belongs, and the second device and the device to which the first adjustment module belongs are different devices; or
  • the device further includes: a second adjustment module, configured to:
  • the transmit power used by the device to which the device belongs is adjusted according to the transmit power of the second device, and the device to which the second device and the second adjustment module belong are different devices;
  • the devices to which the module belongs are different devices.
  • the device further includes:
  • a scheduling module configured to determine, according to the transmit power level, a user equipment in a coverage area corresponding to a transmit power corresponding to the transmit power level; and schedule a part in a coverage area corresponding to the transmit power corresponding to the transmit power level Or all user devices.
  • the scheduling module is specifically configured to:
  • the user equipment located in the jth ring area is preferentially scheduled
  • the coverage corresponding to the maximum transmit power is divided into N annular regions, the first annular region is the central region, and the Nth annular region is the edge region, and N is an integer greater than or equal to 2; the corresponding transmission of P N
  • the data transmission module 133 is further configured to:
  • the transmit power level determining module 132 is further configured to:
  • the transmission is turned off.
  • the CCA detection module 131 is specifically configured to:
  • the CCA detection result is obtained by performing CCA detection on the channel on the unlicensed spectrum before each data transmission.
  • the CCA detection module 131 is specifically configured to:
  • the CCA detecting module 131 is further configured to: after determining, according to the CCA detection result, that all the random numbers corresponding to the CCA detection thresholds are reduced to 0, triggering the data transmission module to perform the data transmission;
  • the data transmission module 133 is specifically configured to: use the transmit power corresponding to the transmit power level corresponding to the CCA detection threshold value in different time periods of the current data transmission duration, and transmit the data that needs to be transmitted this time.
  • the CCA detection module 131 is specifically configured to:
  • the device further includes:
  • the reporting processing module is configured to: after receiving the measured quantity reported by the terminal, determine, according to the time point of receiving the measured quantity reported by the terminal, that the transmitting power level determining module is at the time point The last determined transmission power level; the value of the measurement quantity reported by the terminal is corrected according to the determined transmission power corresponding to the transmission power level; wherein the measurement quantity reported by the terminal is based on the terminal The amount of measurement obtained by measuring the data transmitted by the device.
  • reporting processing module is specifically configured to:
  • the device includes:
  • the processor 141 is configured to obtain a CCA detection result by performing an idle channel evaluation CCA detection on the channel on the unlicensed spectrum; and if the CCA detection result is less than the first threshold, determining a transmission power level according to the CCA detection result;
  • the transceiver 142 is configured to transmit data by using the transmit power corresponding to the transmit power level.
  • the processor 141 is specifically configured to:
  • the first threshold is a maximum threshold of the N thresholds, and N is greater than or equal to 2 The integer.
  • the processor 141 is specifically configured to:
  • the processor 141 is further configured to:
  • the transceiver 142 is specifically configured to: transmit data by using the adjusted transmit power.
  • the processor 141 is specifically configured to:
  • the processor 141 is further configured to:
  • the threshold value of the device to which the processor belongs is adjusted according to the obtained CCA detection threshold value of the second device on the channel, and the second device and the device to which the processor belongs are different devices.
  • the processor 141 is further configured to:
  • the transmission power used by the device to which the device belongs, the second device and the device to which the processor belongs For different devices;
  • the processor 141 is further configured to:
  • the processor 141 is specifically configured to:
  • the user equipment located in the jth ring area is preferentially scheduled
  • the coverage corresponding to the maximum transmit power is divided into N annular regions, the first annular region is the central region, and the Nth annular region is the edge region, and N is an integer greater than or equal to 2; the corresponding transmission of P N
  • the transceiver 142 is further configured to:
  • the processor 141 is further configured to:
  • the transmission is turned off.
  • the processor 141 is specifically configured to:
  • the CCA detection result is obtained by performing CCA detection on the channel on the unlicensed spectrum before each data transmission.
  • the processor 141 is specifically configured to:
  • the processor 141 is further configured to: after determining that all the random numbers corresponding to the CCA detection thresholds are reduced to 0, trigger the transceiver 142 to perform data according to the CCA detection result. transmission;
  • the transceiver 142 is specifically configured to: use the transmit power corresponding to the transmit power level corresponding to the CCA detection threshold value in different time periods of the current data transmission duration, and transmit the data that needs to be transmitted this time.
  • the processor 141 is specifically configured to:
  • the processor 141 is further configured to:
  • the transceiver 142 After the transceiver 142 receives the measured quantity reported by the terminal, determining, according to the time point of receiving the measured quantity reported by the terminal, the final determined transmit power level before the time point; The transmit power corresponding to the transmit power level is used to correct the value of the measured quantity reported by the terminal; wherein the measured quantity reported by the terminal is a measured quantity obtained by the terminal based on the data transmitted by the device.
  • the processor 141 is specifically configured to:
  • a terminal provided by the embodiment of the present invention, as shown in FIG. 15, the terminal includes:
  • the receiving module 151 is configured to receive a pilot signal in data sent by the base station in each data transmission period;
  • a measurement module 152 configured to perform a restricted channel state measurement on the pilot signal
  • the restricted channel state measurement is: each channel state measurement of the measurement module is performed for a pilot signal having the same transmit power and continuous in the same data transmission time period.
  • the measurement module 152 is specifically configured to:
  • a restricted channel state measurement is performed on the pilot signal at the beginning of each data transmission period.
  • the measurement module 152 is further configured to:
  • the measurement module 152 is specifically configured to:
  • a restricted channel state measurement is performed on the pilot signal at the end of each data transmission period.
  • the measuring module 152 obtains a starting moment of each data transmission of the base station, including:
  • the start time of each data transmission of the base station is determined by blind detection of the downlink channel; or the start time of each data transmission of the base station is obtained from the notification signaling sent by the base station.
  • the determining, by the measurement module 152, the end time of each data transmission of the base station includes:
  • the end time of each data transmission of the base station is determined by performing blind detection on the downlink channel; or the terminal obtains an end time of each data transmission of the base station from the notification signaling sent by the base station.
  • the measurement module 152 is further configured to:
  • the measurement quantity obtained by the latest channel state measurement is reported to the base station.
  • the measurement module 152 is further configured to:
  • the value of the measured quantity obtained by the channel state measurement of the base station is corrected; the corrected measurement is performed.
  • the quantity is reported to the base station.
  • the measuring module 152 corrects the value of the measured quantity obtained by the channel state measurement of the last time, including:
  • the measurement module 152 is further configured to: perform smoothing and filtering processing on the corrected measurement quantity; and obtain the smoothing and filtering process.
  • the measured quantity is reported to the base station.
  • the terminal includes:
  • the transceiver 161 is configured to receive a pilot signal in data sent by the base station in each data transmission period;
  • the processor 162 is configured to perform a restricted channel state measurement on the pilot signal.
  • the restricted channel state measurement is: each channel state measurement of the processor is performed for a pilot signal having the same transmit power and continuous in the same data transmission time period.
  • the processor 162 is specifically configured to:
  • a restricted channel state measurement is performed on the pilot signal at the beginning of each data transmission period.
  • processor 162 is further configured to:
  • the processor 162 is specifically configured to:
  • a restricted channel state measurement is performed on the pilot signal at the end of each data transmission period.
  • the processor 162 obtains a start time of each data transmission of the base station, including:
  • the start time of each data transmission of the base station is determined by blind detection of the downlink channel; or the start time of each data transmission of the base station is obtained from the notification signaling sent by the base station.
  • the processor 162 obtains an end time of each data transmission of the base station, including:
  • the end time of each data transmission of the base station is determined by performing blind detection on the downlink channel; or the terminal obtains an end time of each data transmission of the base station from the notification signaling sent by the base station.
  • the processor 162 is further configured to:
  • the measurement quantity obtained by the latest channel state measurement is reported to the base station.
  • processor 162 is further configured to:
  • the value of the measured quantity obtained by the channel state measurement of the base station is corrected according to the transmit power used by the base station for the current data transmission carried in the notification signaling sent by the base station; and the transceiver is controlled. 161 reports the corrected measurement amount to the base station.
  • the processor 162 corrects the value of the measured quantity obtained by the channel state measurement of the last time, including:
  • the processor 162 after the processor 162 corrects the value of the measurement quantity obtained by the channel state measurement of the last time, the processor 162 is further configured to: perform smoothing and filtering processing on the corrected measurement quantity; and control the transceiver 161 to be smoothed. And the measured quantity obtained after the filtering process is reported to the base station.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the device is implemented in a flow chart or Multiple processes and/or block diagrams The functions specified in one or more boxes.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种数据传输和信道测量方法、设备,用于解决完全时分的方式复用信道,频谱使用率低,无法充分利用免许可频谱资源的问题。该方法包括如下步骤:第一设备在免许可频谱上,对当前信道进行空闲信道评估(CCA)检测,获得CCA检测结果(S11);若所述CCA检测结果小于第一门限值,所述第一设备根据所述CCA检测结果确定发射功率等级(S12);所述第一设备采用所述发射功率等级对应的发射功率传输数据(S13)。采用本发明,可以在所述CCA检测结果小于第一门限值时,能够采用确定出的发射功率等级对应的发射功率传输数据,因此更好地进行了频谱资源的复用,充分利用了信道的免许可频谱资源,从而提升了系统容量。

Description

一种数据传输和信道测量方法、设备
本申请要求在2015年8月28日提交中国专利局、申请号为PCT/CN2015/088448、发明名称为“一种数据传输方法和设备”的PCT专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,特别涉及一种数据传输和信道测量方法、设备。
背景技术
频谱是无线通信的基础。根据联邦通讯委员会(federal communications commission,FCC)最新发布的国际频谱白皮书,免许可(unlicensed,也称为未授权)频谱资源要大于许可(licensed,也称为授权)频谱资源。目前,免许可频谱上使用的接入技术是无线保真(wireless fidelity,WiFi),但是WiFi在移动性、安全性、服务质量(quality of service,QoS)、以及同时处理多用户调度方面存在缺陷,因此,将长期演进(long-term evolution,LTE)设备应用在免许可频谱上,不仅可以有效利用免许可频谱资源,还可以提供更为有效的无线接入、满足日益增长的移动宽带服务的需求。因此在未来的移动通信场景中,免许可频谱上会同时存在LTE设备以及WiFi设备。
为了使LTE设备在免许可频谱上工作时,也能保持在移动性、安全性、服务质量以及同时处理多用户调度方面的优势,一种方法是通过载波聚合(carrier aggregation,CA)的方式,使许可频谱和免许可频谱聚合在一起,也就是说,LTE设备可以通过CA的方式,将许可频谱作为主成员载波(primary component carrier,PCC)或主小区(primary cell,PCell),将免许可频谱作为辅成员载波(secondary component carrier,SCC)或辅小区(secondary cell,SCell),这样LTE设备既可以通过许可频谱继承LTE设备用于无线通信的传 统优势,例如在移动性、安全性、服务质量以及同时处理多用户调度方面的优势,又可以利用免许可频谱资源。
由于免许可频谱上对无线通信系统和运营商使用没有约束,即存在多种通信系统的多个运营商都想要占用相同频谱的情况,为了实现免许可频谱上不同无线通信系统对该频谱使用的公平性,在某些地区,无线通信设备在免许可上使用时需要遵循特定的法规规则,例如欧洲电信标准协会(european telecommunications standards Institute,ETSI)发布的ETSI EN 301893中对免许可使用时规定了先听后说(listen before talk,LBT)、信道带宽占用需求等规则,即设备在使用信道之前,首先监听信道是否空闲或是否可用,如果信道可用则可以使用该免许可频谱用于数据传输,但占用该信道的时间是受限制的。在占用该信道的时间达到最大限制后,必须释放该免许可频谱一段时间,也就是说在免许可频谱上停止数据传输一段时间;在下一次要利用免许可资源传输数据之前,必须再次监听信道是否可用。
设备可以通过能量检测执行空闲信道评估(clear channel assessment,CCA),判断监听信道是否空闲或是否可用,即:如果测得的信号能量超过CCA门限,则认为信道忙,停止数据发送;否则认为信道空闲,占用信道传输数据。从而实现系统间对免许可频谱的公平使用,系统间通过时分复用的方式使用信道。然而,完全时分的方式复用信道,频谱使用率低,无法充分利用免许可频谱资源。
发明内容
本发明实施例提供了一种数据传输和信道测量方法、设备,用于解决完全时分的方式复用信道,频谱使用率低,无法充分利用免许可频谱资源的问题。
第一方面,一种数据传输方法,该方法包括:
所述第一设备通过对免许可频谱上的信道进行空闲信道评估CCA检测,获得CCA检测结果;
若所述CCA检测结果小于第一门限值,所述第一设备根据所述CCA检测结果确定发射功率等级;
所述第一设备采用所述发射功率等级对应的发射功率传输数据。
结合第一方面,在第一种可能的实现方式中,所述第一设备根据所述CCA检测结果确定发射功率等级,包括:
所述第一设备根据所述CCA检测结果与N个CCA检测门限值确定所述发射功率等级,其中,所述第一门限值为所述N个门限值中最大门限值,N为大于或等于2的整数。
结合第一方面的第一种可能的实现方式,在第二种可能的实现方式中,所述第一设备根据所述CCA检测结果与N个CCA检测门限值确定所述发射功率等级,包括:
若所述检测结果小于门限值L1,所述第一设备确定出所述发射功率等级为PN
若所述检测结果大于或等于门限值Li且小于门限值Li+1,所述第一设备确定出所述发射功率等级为PN-i
其中,门限值Li+1大于门限值Li,PN对应的发射功率为最大发射功率,Pj+1对应的发射功率大于Pj对应的发射功率,i=1,…,N,j=1,…,N。
结合第一方面的第二种可能的实现方式,在第三种可能的实现方式中,所述第一设备根据所述CCA检测结果与N个CCA检测门限值确定所述发射功率等级之后,还包括:
所述第一设备根据所述检测结果,对所述发射功率等级对应的发射功率进行调整,得到所述发射功率等级对应的调整后的发射功率;
所述第一设备采用所述发射功率等级对应的发射功率传输数据,包括:所述第一设备采用调整后的发射功率传输数据。
结合第一方面,在第四种可能的实现方式中,所述第一设备根据所述CCA检测结果确定发射功率等级,包括:
所述第一设备根据检测结果与发射功率等级的对应关系,确定出所述检 测结果对应的发射功率等级。
结合第一方面、或者第一方面的第一种至第四种可能的实现方式中的任一方式,在第五种可能的实现方式中,该方法还包括:
所述第一设备根据获得到的第二设备在所述信道上对所述第一设备的干扰信息对自身的CCA检测门限值进行调整,所述第二设备与所述第一设备为不同的设备;或者
所述第一设备根据自身的负载信息和/或获得到的所述信道上的第二设备的负载信息,对自身的CCA检测门限值进行调整,所述第二设备与所述第一设备为不同的设备;或者
所述第一设备根据获得到的所述信道上的第二设备的CCA检测门限值,对自身的门限值进行调整,所述第二设备与所述第一设备为不同的设备。
结合第一方面、或者第一方面的第一种至第五种可能的实现方式中的任一方式,在第六种可能的实现方式中,该方法还包括:
所述第一设备根据获得到的所述信道上的第二设备的CCA检测门限值与发射功率等级的对应关系,确定出所述第二设备在所述信道上传输数据所采用的发射功率;所述第一设备基于系统容量最大原则,根据所述第二设备的发射功率,调整自身传输数据所采用的发射功率,所述第二设备与所述第一设备为不同的设备;或者
所述第一设备根据获得到的第二设备在所述信道上对所述第一设备的干扰信息,对自身传输数据所采用的发射功率,所述第二设备与所述第一设备为不同的设备;或者
所述第一设备根据自身的负载信息和/或获得到的所述信道上的第二设备的负载信息,对自身传输数据所采用的发射功率,所述第二设备与所述第一设备为不同的设备。
结合第一方面、或者第一方面的第一种至第六种可能的实现方式中的任一方式,在第七种可能的实现方式中,该方法还包括:
所述第一设备根据所述发射功率等级,确定出所述发射功率等级对应的 发射功率对应的覆盖范围内的用户设备;
所述第一设备调度所述发射功率等级对应的发射功率对应的覆盖范围内的部分或全部用户设备。
结合第一方面的第七种可能的实现方式,在第八种可能的实现方式中,所述第一设备确定出所述发射功率等级对应的发射功率对应的覆盖范围内的用户设备之后,该方法还包括:
若确定出的发射功率等级为Pj,所述第一设备优先调度位于第j个环形区域内的用户设备;
其中,最大发射功率对应的覆盖范围被划分为N个环形区域,第一个环形区域为中心区域,且第N个环形区域为边缘区域,N为大于或等于2的整数;PN对应的发射功率为最大发射功率,Pj+1对应的发射功率大于Pj对应的发射功率,j=1,…,N。
结合第一方面的第七种可能的实现方式、或者第一方面的第八种可能的实现方式,在第九种可能的实现方式中,该方法还包括:
所述第一设备将确定出的发射功率等级通知给所述发射功率等级对应的发射功率对应的覆盖范围内的用户设备。
结合第一方面,在第十种可能的实现方式中,该方法还包括:
若所述检测结果大于或等于所述第一门限值,所述第一设备关闭发射。
结合第一方面、或者第一方面的第一种至第十种可能的实现方式中的任一方式,在第十一种可能的实现方式中,所述第一设备通过对免许可频谱上的信道进行CCA检测,获得CCA检测结果,包括:
所述第一设备在每次数据传输之前,通过对免许可频谱上的信道进行CCA检测,获得CCA检测结果。
结合第一方面的第十一种可能的实现方式,在第十二种可能的实现方式中,所述第一设备通过对免许可频谱上的信道进行CCA检测,获得CCA检测结果之后,还包括:
所述第一设备根据所述CCA检测结果,确定出任一所述CCA检测门限 值对应的随机数减小至0后,进行一次数据传输。
结合第一方面的第十一种可能的实现方式,在第十三种可能的实现方式中,所述第一设备通过对免许可频谱上的信道进行CCA检测,获得CCA检测结果之后,还包括:
所述第一设备根据所述CCA检测结果,确定出所有所述CCA检测门限值对应的随机数均减小至0后,进行一次数据传输;
所述第一设备采用所述发射功率等级对应的发射功率传输数据,包括:
所述第一设备在本次数据传输时长的不同的时间段内,采用不同的CCA检测门限值对应的发射功率等级对应的发射功率,传输本次需要传输的数据。
结合第一方面的第十二种或十三种可能的实现方式,在第十四种可能的实现方式中,所述第一设备根据所述CCA检测结果,确定出自身的任一CCA检测门限值对应的随机数减小至0,包括:
所述第一设备根据所述CCA检测门限值,确定出所述CCA检测结果与所述CCA检测门限值的大小关系;
所述第一设备将所述关系中小于所述检测结果的CCA检测门限值对应的随机数的值减去设定的步长,并继续进行CCA检测,直至所述关系中小于所述检测结果的CCA检测门限值对应的随机数减小至0。
结合第一方面、或者第一方面的第一种至第十四种可能的实现方式中的任一方式,在第十五种可能的实现方式中,所述第一设备为基站,该方法还包括:
所述第一设备接收到终端上报的测量量后,根据接收到所述终端上报的测量量的时间点,确定出所述第一设备在所述时间点之前最后确定出的发射功率等级;
所述第一设备根据确定出的发射功率等级对应的发射功率,对所述终端上报的测量量的值进行修正;
其中,所述终端上报的测量量为所述终端基于所述第一设备传输的数据进行测量得到的测量量。
结合第一方面的第十五种可能的实现方式,在第十六种可能的实现方式中,所述第一设备根据确定出的发射功率等级对应的发射功率,对所述终端上报的测量量的值进行修正,包括:
所述第一设备根据所述第一设备的最大发射功率对应的测量量的值,将所述终端上报的测量量的值与确定出的发射功率等级对应的发射功率对应的调整量之和,作为所述终端上报的测量量的修正后的值。
第二方面,一种通信设备,该设备包括:
CCA检测模块,用于通过对免许可频谱上的信道进行空闲信道评估CCA检测,获得CCA检测结果;
发射功率等级确定模块,用于若所述CCA检测结果小于第一门限值,根据所述CCA检测结果确定发射功率等级;
数据传输模块,用于采用所述发射功率等级对应的发射功率传输数据。
结合第二方面,在第一种可能的实现方式中,所述发射功率等级确定模块具体用于:
根据所述CCA检测结果与N个CCA检测门限值确定所述发射功率等级,其中,所述第一门限值为所述N个门限值中最大门限值,N为大于或等于2的整数。
结合第二方面的第一种可能的实现方式,在第二种可能的实现方式中,所述发射功率等级确定模块具体用于:
若所述检测结果小于门限值L1,确定出所述发射功率等级为PN
若所述检测结果大于或等于门限值Li且小于门限值Li+1,确定出所述发射功率等级为PN-i
其中,门限值Li+1大于门限值Li,PN对应的发射功率为最大发射功率,Pj+1对应的发射功率大于Pj对应的发射功率,i=1,…,N,j=1,…,N。
结合第二方面的第二种可能的实现方式,在第三种可能的实现方式中,所述发射功率等级确定模块还用于:
根据所述检测结果,对所述发射功率等级对应的发射功率进行调整,得 到所述发射功率等级对应的调整后的发射功率;
所述数据传输模块具体用于:采用调整后的发射功率传输数据。
结合第二方面,在第四种可能的实现方式中,所述发射功率等级确定模块具体用于:
根据检测结果与发射功率等级的对应关系,确定出所述检测结果对应的发射功率等级。
结合第二方面、或者第二方面的第一种至第四种可能的实现方式中的任一方式,在第五种可能的实现方式中,该设备还包括:第一调整模块,用于:
根据获得到的第二设备在所述信道上对所述第一调整模块所属的设备的干扰信息对自身所属的设备的CCA检测门限值进行调整,所述第二设备与所述第一调整模块所属的设备为不同的设备;或者
根据自身所属的设备的负载信息和/或获得到的所述信道上的第二设备的负载信息,对自身所属的设备的CCA检测门限值进行调整,所述第二设备与所述第一调整模块所属的设备为不同的设备;或者
根据获得到的所述信道上的第二设备的CCA检测门限值,对自身所属的设备的门限值进行调整,所述第二设备与所述第一调整模块所属的设备为不同的设备。
结合第二方面、或者第二方面的第一种至第五种可能的实现方式中的任一方式,在第六种可能的实现方式中,该设备还包括:第二调整模块,用于:
根据获得到的所述信道上的第二设备的CCA检测门限值与发射功率等级的对应关系,确定出所述第二设备在所述信道上传输数据所采用的发射功率;基于系统容量最大原则,根据所述第二设备的发射功率,调整自身所属的设备传输数据所采用的发射功率,所述第二设备与所述第二调整模块所属的设备为不同的设备;或者
根据获得到的第二设备在所述信道上对所述第二调整模块所属的设备的干扰信息,对自身所属的设备传输数据所采用的发射功率,所述第二设备与所述第二调整模块所属的设备为不同的设备;或者
根据自身所属的设备的负载信息和/或获得到的所述信道上的第二设备的负载信息,对自身所属的设备传输数据所采用的发射功率,所述第二设备与所述第二调整模块所属的设备为不同的设备。
结合第二方面、或者第二方面的第一种至第六种可能的实现方式中的任一方式,在第七种可能的实现方式中,该设备还包括:
调度模块,用于根据所述发射功率等级,确定出所述发射功率等级对应的发射功率对应的覆盖范围内的用户设备;以及调度所述发射功率等级对应的发射功率对应的覆盖范围内的部分或全部用户设备。
结合第二方面的第七种可能的实现方式,在第八种可能的实现方式中,所述调度模块具体用于:
若确定出的发射功率等级为Pj,优先调度位于第j个环形区域内的用户设备;
其中,最大发射功率对应的覆盖范围被划分为N个环形区域,第一个环形区域为中心区域,且第N个环形区域为边缘区域,N为大于或等于2的整数;PN对应的发射功率为最大发射功率,Pj+1对应的发射功率大于Pj对应的发射功率,j=1,…,N。
结合第二方面的第七种可能的实现方式、或者第二方面的第八种可能的实现方式,在第九种可能的实现方式中,所述数据传输模块还用于:
将确定出的发射功率等级通知给所述发射功率等级对应的发射功率对应的覆盖范围内的用户设备。
结合第二方面,在第十种可能的实现方式中,所述发射功率等级确定模块还用于:
若所述检测结果大于或等于所述第一门限值,关闭发射。
结合第二方面、或者第二方面的第一种至第十种可能的实现方式中的任一方式,在第十一种可能的实现方式中,所述CCA检测模块具体用于:
在每次数据传输之前,通过对免许可频谱上的信道进行CCA检测,获得CCA检测结果。
结合第一方面的第十一种可能的实现方式,在第十二种可能的实现方式中,所述CCA检测模块具体用于:
根据所述CCA检测结果,确定出任一所述CCA检测门限值对应的随机数减小至0后,触发所述数据传输模块进行一次数据传输。
结合第二方面的第十一种可能的实现方式,在第十三种可能的实现方式中,所述CCA检测模块还用于:根据所述CCA检测结果,确定出所有所述CCA检测门限值对应的随机数均减小至0后,触发所述数据传输模块进行一次数据传输;
所述数据传输模块具体用于:在本次数据传输时长的不同的时间段内,采用不同的CCA检测门限值对应的发射功率等级对应的发射功率,传输本次需要传输的数据。
结合第二方面的第十二种或十三种可能的实现方式,在第十四种可能的实现方式中,所述CCA检测模块具体用于:
根据所述CCA检测门限值,确定出所述CCA检测结果与所述CCA检测门限值的大小关系;
将所述关系中小于所述检测结果的CCA检测门限值对应的随机数的值减去设定的步长,并继续进行CCA检测,直至所述关系中小于所述检测结果的CCA检测门限值对应的随机数减小至0。
结合第二方面、或者第一方面的第一种至第十四种可能的实现方式中的任一方式,在第十五种可能的实现方式中,所述设备还包括:
上报处理模块,用于接收到终端上报的测量量后,根据接收到所述终端上报的测量量的时间点,确定出所述发射功率等级确定模块在所述时间点之前最后确定出的发射功率等级;
根据确定出的发射功率等级对应的发射功率,对所述终端上报的测量量的值进行修正;
其中,所述终端上报的测量量为所述终端基于所述设备传输的数据进行测量得到的测量量。
结合第二方面的第十五种可能的实现方式,在第十六种可能的实现方式中,所述上报处理模块具体用于:
根据自身所属的设备的最大发射功率对应的测量量的值,将所述终端上报的测量量的值与确定出的发射功率等级对应的发射功率对应的调整量之和,作为所述终端上报的测量量的修正后的值。
第三方面,一种通信设备,该设备包括:
处理器,用于通过对免许可频谱上的信道进行空闲信道评估CCA检测,获得CCA检测结果;若所述CCA检测结果小于第一门限值,根据所述CCA检测结果确定发射功率等级;
收发器,用于采用所述发射功率等级对应的发射功率传输数据。
结合第三方面,在第一种可能的实现方式中,所述处理器具体用于:
根据所述CCA检测结果与N个CCA检测门限值确定所述发射功率等级,其中,所述第一门限值为所述N个门限值中最大门限值,N为大于或等于2的整数。
结合第三方面的第一种可能的实现方式,在第二种可能的实现方式中,处理器具体用于:
若所述检测结果小于门限值L1,确定出所述发射功率等级为PN
若所述检测结果大于或等于门限值Li且小于门限值Li+1,确定出所述发射功率等级为PN-i
其中,门限值Li+1大于门限值Li,PN对应的发射功率为最大发射功率,Pj+1对应的发射功率大于Pj对应的发射功率,i=1,…,N,j=1,…,N。
结合第三方面的第二种可能的实现方式,在第三种可能的实现方式中,所述处理器还用于:
根据所述检测结果,对所述发射功率等级对应的发射功率进行调整,得到所述发射功率等级对应的调整后的发射功率;
所述收发器具体用于:采用调整后的发射功率传输数据。
结合第三方面,在第四种可能的实现方式中,所述处理器具体用于:
根据检测结果与发射功率等级的对应关系,确定出所述检测结果对应的发射功率等级。
结合第三方面、或者第三方面的第一种至第四种可能的实现方式中的任一方式,在第五种可能的实现方式中,所述处理器还用于:
根据获得到的第二设备在所述信道上对所述处理器所属的设备的干扰信息对自身所属的设备的CCA检测门限值进行调整,所述第二设备与所述处理器所属的设备为不同的设备;或者
根据自身所属的设备的负载信息和/或获得到的所述信道上的第二设备的负载信息,对自身所属的设备的CCA检测门限值进行调整,所述第二设备与所述处理器所属的设备为不同的设备;或者
根据获得到的所述信道上的第二设备的CCA检测门限值,对自身所属的设备的门限值进行调整,所述第二设备与所述处理器所属的设备为不同的设备。
结合第三方面、或者第三方面的第一种至第五种可能的实现方式中的任一方式,在第六种可能的实现方式中,所述处理器还用于:
根据获得到的所述信道上的第二设备的CCA检测门限值与发射功率等级的对应关系,确定出所述第二设备在所述信道上传输数据所采用的发射功率;基于系统容量最大原则,根据所述第二设备的发射功率,调整自身所属的设备传输数据所采用的发射功率,所述第二设备与所述处理器所属的设备为不同的设备;或者
根据获得到的第二设备在所述信道上对所述处理器所属的设备的干扰信息,对自身所属的设备传输数据所采用的发射功率,所述第二设备与所述处理器所属的设备为不同的设备;或者
根据自身所属的设备的负载信息和/或获得到的所述信道上的第二设备的负载信息,对自身所属的设备传输数据所采用的发射功率,所述第二设备与所述处理器所属的设备为不同的设备。
结合第三方面、或者第三方面的第一种至第六种可能的实现方式中的任 一方式,在第七种可能的实现方式中,所述处理器还用于:
根据所述发射功率等级,确定出所述发射功率等级对应的发射功率对应的覆盖范围内的用户设备;以及调度所述发射功率等级对应的发射功率对应的覆盖范围内的部分或全部用户设备。
结合第三方面的第七种可能的实现方式,在第八种可能的实现方式中,所述处理器具体用于:
若确定出的发射功率等级为Pj,优先调度位于第j个环形区域内的用户设备;
其中,最大发射功率对应的覆盖范围被划分为N个环形区域,第一个环形区域为中心区域,且第N个环形区域为边缘区域,N为大于或等于2的整数;PN对应的发射功率为最大发射功率,Pj+1对应的发射功率大于Pj对应的发射功率,j=1,…,N。
结合第三方面的第七种可能的实现方式、或者第二方面的第八种可能的实现方式,在第九种可能的实现方式中,所述收发器还用于:
将所述处理器确定出的发射功率等级通知给所述发射功率等级对应的发射功率对应的覆盖范围内的用户设备。
结合第三方面,在第十种可能的实现方式中,所述处理器还用于:
若所述检测结果大于或等于所述第一门限值,关闭发射。
结合第三方面、或者第三方面的第一种至第十种可能的实现方式中的任一方式,在第十一种可能的实现方式中,所述处理器具体用于:
在每次数据传输之前,通过对免许可频谱上的信道进行CCA检测,获得CCA检测结果。
结合第三方面的第十一种可能的实现方式,在第十二种可能的实现方式中,所述处理器具体用于:
根据所述CCA检测结果,确定出任一所述CCA检测门限值对应的随机数减小至0后,触发所述收发器进行一次数据传输。
结合第三方面的第十一种可能的实现方式,在第十三种可能的实现方式 中,所述处理器还用于:根据所述CCA检测结果,确定出所有所述CCA检测门限值对应的随机数均减小至0后,触发所述收发器进行一次数据传输;
所述收发器具体用于:在本次数据传输时长的不同的时间段内,采用不同的CCA检测门限值对应的发射功率等级对应的发射功率,传输本次需要传输的数据。
结合第三方面的第十二种或十三种可能的实现方式,在第十四种可能的实现方式中,所述处理器具体用于:
根据所述CCA检测门限值,确定出所述CCA检测结果与所述CCA检测门限值的大小关系;
将所述关系中小于所述检测结果的CCA检测门限值对应的随机数的值减去设定的步长,并继续进行CCA检测,直至所述关系中小于所述检测结果的CCA检测门限值对应的随机数减小至0。
结合第三方面、或者第三方面的第一种至第十四种可能的实现方式中的任一方式,在第十五种可能的实现方式中,所述处理器还用于:
在所述收发器接收到终端上报的测量量后,根据接收到所述终端上报的测量量的时间点,确定出自身在所述时间点之前最后确定出的发射功率等级;
根据确定出的发射功率等级对应的发射功率,对所述终端上报的测量量的值进行修正;
其中,所述终端上报的测量量为所述终端基于所述设备传输的数据进行测量得到的测量量。
结合第三方面的第十五种可能的实现方式,在第十六种可能的实现方式中,所述处理器具体用于:
根据自身所属的设备的最大发射功率对应的测量量的值,将所述终端上报的测量量的值与确定出的发射功率等级对应的发射功率对应的调整量之和,作为所述终端上报的测量量的修正后的值。
第四方面,一种信道状态测量方法,该方法包括:
终端接收基站在每个数据传输时间段内发送的数据中的导频信号;
所述终端对所述导频信号,进行限制性信道状态测量;
其中,所述限制性信道状态测量为:所述终端的每次信道状态测量是针对同一数据传输时间段内发射功率相同且连续的导频信号进行的。
终端获得基站每次数据传输时间段的起始时刻和结束时刻;
结合第四方面,在第一种可能的实现方式中,该方法还包括:所述终端获得基站的每个数据传输时间段的起始时刻;
所述终端对所述导频信号,进行限制性信道状态测量,包括:所述终端在每个数据传输时间段的起始时刻开始对所述导频信号,进行限制性信道状态测量。
结合第四方面的第一种可能的实现方式,在第二种可能的实现方式中,该方法还包括:
所述终端获得所述基站每次数据传输的结束时刻,并在每次数据传输的结束时刻停止本次信道状态测量,并在下一个数据传输时间段的起始时刻开始时刻对所述导频信号进行测量。
结合第四方面,在第三种可能的实现方式中,该方法还包括:所述终端获得基站的每个数据传输时间段的起始时刻和终止时刻;
所述终端对所述导频信号,进行限制性信道状态测量,包括:所述终端在每个数据传输时间段的结束时刻开始对所述导频信号,进行限制性信道状态测量。
结合第四方面的第一种或第三种可能的实现方式,在第四种可能的实现方式中,所述终端获得基站每次数据传输的起始时刻,包括:
所述终端通过对下行信道进行盲检测,确定出所述基站每次数据传输的起始时刻,或者
所述终端从所述基站发送的通知信令中,获得所述基站每次数据传输的起始时刻。
结合第四方面的第二种或第三种可能的实现方式,在第五种可能的实现方式中,所述终端获得所述基站每次数据传输的结束时刻,包括:
所述终端通过对下行信道进行盲检测,确定出所述基站每次数据传输结束时刻,或者
所述终端从所述基站发送的通知信令中,获得所述基站每次数据传输结束时刻。
结合第四方面、或者第四方面的第一种至第五种可能的实现方式中的一种方式,在第六种可能的实现方式中,该方法还包括:
所述终端在需要上报时,将最近一次信道状态测量得到的测量量上报所述基站。
结合第四方面的第六种可能的实现方式,在第七种可能的实现方式中,该方法还包括:
所述终端在需要上报时,根据所述基站发送的通知信令中携带的所述站本次数据传输采用的发射功率,对自身最近一次信道状态测量得到的测量的值进行修正;
所述终端将最近一次信道状态测量得到的测量量上报给所述基站,包括所述终端将修正后的测量量上报给所述基站。
结合第四方面的第七种可能的实现方式,在第八种可能的实现方式中,所述终端对自身最近一次信道状态测量得到的测量量的值进行修正,包括:
所述终端根据所述基站发送的通知信令中携带的所述基站的最大发射率对应的测量量的值,将所述终端最近一次信道状态测量得到的测量量的与所述基站本次数据传输采用的发射功率对应的调整量之和,作为所述终修正后的测量量的值。
结合第四方面的第七种或第八种可能的实现方式,在第九种可能的实方式中,所述终端对自身最近一次信道状态测量得到的测量量的值进行修之后,该方法还包括:所述终端对修正后的测量量进行平滑和滤波处理;
所述终端将最近一次信道状态测量得到的测量量上报给所述基站,包括所述终端将平滑和滤波处理后得到的测量量上报给所述基站。
第五方面,一种终端,所述终端包括:
接收模块,用于接收基站在每个数据传输时间段内发送的数据中的导频信号;
测量模块,用于对所述导频信号,进行限制性信道状态测量;
其中,所述限制性信道状态测量为:所述测量模块的每次信道状态测量是针对同一数据传输时间段内发射功率相同且连续的导频信号进行的。
结合第五方面,在第一种可能的实现方式中,所述测量模块具体用于:
获得基站的每个数据传输时间段的起始时刻;
在每个数据传输时间段的起始时刻开始对所述导频信号,进行限制性信道状态测量。
结合第五方面的第一种可能的实现方式,在第二种可能的实现方式中,所述测量模块还用于:
获得所述基站每次数据传输的结束时刻,并在每次数据传输的结束时刻停止本次信道状态测量,并在下一个数据传输时间段的起始时刻开始时刻对所述导频信号进行测量。
结合第五方面,在第三种可能的实现方式中,所述测量模块具体用于:
获得基站的每个数据传输时间段的起始时刻和终止时刻;
在每个数据传输时间段的结束时刻开始对所述导频信号,进行限制性信道状态测量。
结合第五方面的第一种或第三种可能的实现方式,在第四种可能的实现方式中,所述测量模块获得基站每次数据传输的起始时刻,包括:
通过对下行信道进行盲检测,确定出所述基站每次数据传输的起始时刻;或者从所述基站发送的通知信令中,获得所述基站每次数据传输的起始时刻。
结合第五方面的第二种或第三种可能的实现方式,在第五种可能的实现方式中,所述测量模块获得所述基站每次数据传输的结束时刻,包括:
通过对下行信道进行盲检测,确定出所述基站每次数据传输的结束时刻;或者所述终端从所述基站发送的通知信令中,获得所述基站每次数据传输的结束时刻。
结合第五方面、或者第五方面的第一种至第五种可能的实现方式中的任一种方式,在第六种可能的实现方式中,所述测量模块还用于:
在需要上报时,将最近一次信道状态测量得到的测量量上报给所述基站。
结合第五方面的第六种可能的实现方式,在第七种可能的实现方式中,所述测量模块还用于:
在需要上报时,根据所述基站发送的通知信令中携带的所述基站本次数据传输采用的发射功率,对自身最近一次信道状态测量得到的测量量的值进行修正;将修正后的测量量上报给所述基站。
结合第五方面的第七种可能的实现方式,在第八种可能的实现方式中,所述测量模块对自身最近一次信道状态测量得到的测量量的值进行修正,包括:
根据所述基站发送的通知信令中携带的所述基站的最大发射功率对应的测量量的值,将最近一次信道状态测量得到的测量量的值与所述基站本次数据传输采用的发射功率对应的调整量之和,作为修正后的测量量的值。
结合第五方面的第七种或第八种可能的实现方式,在第九种可能的实现方式中,所述测量模块对自身最近一次信道状态测量得到的测量量的值进行修正之后,还用于:对修正后的测量量进行平滑和滤波处理;将平滑和滤波处理后得到的测量量上报给所述基站。
第六方面,一种终端,所述终端包括:
收发器,用于接收基站在每个数据传输时间段内发送的数据中的导频信号;
处理器,用于对所述导频信号,进行限制性信道状态测量;
其中,所述限制性信道状态测量为:所述处理器的每次信道状态测量是针对同一数据传输时间段内发射功率相同且连续的导频信号进行的。
结合第六方面,在第一种可能的实现方式中,所述处理器具体用于:
获得基站的每个数据传输时间段的起始时刻;
在每个数据传输时间段的起始时刻开始对所述导频信号,进行限制性信 道状态测量。
结合第六方面的第一种可能的实现方式,在第二种可能的实现方式中,所述处理器还用于:
获得所述基站每次数据传输的结束时刻,并在每次数据传输的结束时刻停止本次信道状态测量,并在下一个数据传输时间段的起始时刻开始时刻对所述导频信号进行测量。
结合第六方面,在第三种可能的实现方式中,所述处理器具体用于:
获得基站的每个数据传输时间段的起始时刻和终止时刻;
在每个数据传输时间段的结束时刻开始对所述导频信号,进行限制性信道状态测量。
结合第六方面的第一种或第三种可能的实现方式,在第四种可能的实现方式中,所述处理器获得基站每次数据传输的起始时刻,包括:
通过对下行信道进行盲检测,确定出所述基站每次数据传输的起始时刻;或者从所述基站发送的通知信令中,获得所述基站每次数据传输的起始时刻。
结合第六方面的第二种或第三种可能的实现方式,在第五种可能的实现方式中,所述处理器获得所述基站每次数据传输的结束时刻,包括:
通过对下行信道进行盲检测,确定出所述基站每次数据传输的结束时刻;或者所述终端从所述基站发送的通知信令中,获得所述基站每次数据传输的结束时刻。
结合第六方面、或者第六方面的第一种至第五种可能的实现方式中的任一种方式,在第六种可能的实现方式中,所述处理器还用于:
在需要上报时,将最近一次信道状态测量得到的测量量上报给所述基站。
结合第六方面的第六种可能的实现方式,在第七种可能的实现方式中,所述处理器还用于:
在需要上报时,根据所述基站发送的通知信令中携带的所述基站本次数据传输采用的发射功率,对自身最近一次信道状态测量得到的测量量的值进行修正;将修正后的测量量上报给所述基站。
结合第六方面的第七种可能的实现方式,在第八种可能的实现方式中,所述处理器对自身最近一次信道状态测量得到的测量量的值进行修正,包括:
根据所述基站发送的通知信令中携带的所述基站的最大发射功率对应的测量量的值,将最近一次信道状态测量得到的测量量的值与所述基站本次数据传输采用的发射功率对应的调整量之和,作为修正后的测量量的值。
结合第六方面的第七种或第八种可能的实现方式,在第九种可能的实现方式中,所述处理器对自身最近一次信道状态测量得到的测量量的值进行修正之后,还用于:对修正后的测量量进行平滑和滤波处理;将平滑和滤波处理后得到的测量量上报给所述基站。
本发明实施例中,在所述CCA检测结果小于第一门限值时,所述第一设备根据所述CCA检测结果确定发射功率等级,并采用所述发射功率等级对应的发射功率传输数据。由于在所述CCA检测结果小于第一门限值时,能够采用确定出的发射功率等级对应的发射功率传输数据,更好地进行了频谱资源的复用,充分利用了信道的免许可频谱资源,从而提升了系统容量。
附图说明
图1为本发明提供的一种数据传输方法的流程示意图;
图2为本发明提供的一种可选的调度方式的示意图;
图3A为本发明实施例应用于异系统共存的场景的时序图;
图3B为本发明实施例应用于同系统共存的场景的时序图;
图4为本发明提供的方案一中数据传输的时序图;
图5为本发明提供的方案二中数据传输的时序图;
图6为本发明提供的方案四中数据传输的时序图;
图7为本发明提供的全双工方式中数据传输的时序图;
图8为本发明提供的一种可选的数据传输方式的时序图;
图9为本发明提供的另一种可选的数据传输方式的时序图;
图10为本发明提供的一种信道测量方法的流程示意图;
图11为本发明提供的第一种确定基站每次数据传输的时长的示意图;
图12为本发明提供的第二种确定基站每次数据传输的时长的示意图;
图13为本发明提供的第一种通信设备的示意图;
图14为本发明提供的第二种通信设备的示意图;
图15为本发明提供的第一种终端的示意图;
图16为本发明提供的第二种终端的示意图。
具体实施方式
本发明实施例提供一种基于动态CCA门限调整和发射功率自适应调整的数据传输方法,用于解决现有系统间共存场景下,基站和用户设备(user equipment,UE)在免许可频谱上的数据传输过程中,频谱使用率低的问题,本发明实施例提供的方案在保证系统间干扰水平不抬升的前提下,能够提升系统容量。
本发明实施例提供的方案应用于无线通信系统,尤其适用于许可频谱辅助接入的LTE系统,即LAA-LTE(licensed-assisted access-LTE)系统。许可频谱辅助接入的LTE系统是指将许可频谱和免许可频谱通过CA或者非CA的方式在一起使用的LTE系统。具体的:主流部署场景是将许可频谱和免许可频谱通过CA联合使用的场景,即许可频谱、或许可频谱包括的载波、或工作在许可频谱上的小区作为主服务小区,将免许可频谱、或免许可频谱包括的载波、或工作在免许可频谱上的小区作为辅服务小区。其中主服务小区和辅服务小区可以共站部署,也可以是非共站部署,两个服务小区之间有理想或者非理想的回传路径。
但本发明实施例也不限于上述CA的场景,其他部署场景,还包括免许可频谱独立使用(standalone)的场景,即免许可作为独立的载波工作的场景,在免许可频谱上的服务小区直接可以提供独立接入功能,不需要通过工作在许可频谱上小区的辅助。
本发明实施例中均以LTE/LTE-A系统为例进行说明的,但本发明不限于 应用于LTE系统,同样适用于WiFi,即全球微波互联接入(worldwide interoperability for microwave access,WiMAX),宽带码分多址(wideband code division multiple access,WCDMA),时分同步的码分多址(time division-synchronous code division multiple Access,TD-SCDMA),全球移动通信系统(global system for mobile communication,GSM),Zigbee(紫蜂协议),蓝牙等其他无线通信系统。
本发明实施例中,无论是许可频谱,还是免许可频谱,都可以包括一个或多个载波,许可频谱和免许可频谱进行载波聚合,可以包括许可频谱包括的一个或多个载波与免许可频谱包括的一个或多个载波进行载波聚合。
本发明实施例涉及到的网元主要包括工作在免许可频谱上的基站(或者接入点)和用户设备。本发明实施例中的小区可以是基站对应的小区,该小区可以归属于宏基站,也可以归属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。本发明实施例中,LTE系统中的载波与小区的概念等同,比如UE接入一个载波和接入一个小区是等同的,本发明实施例中将统一以小区的概念来介绍。
本发明实施例中,能够与基站可以进行数据通信的通信设备都可以看为用户设备,如终端、中继(relay)等,本发明实施例中以一般意义上的UE来进行说明,其他情况与此类似,此处不再一一列举。
下面结合说明书附图对本发明实施例作进一步详细描述。应当理解,此处所描述的实施例仅用于说明和解释本发明,并不用于限定本发明。
本发明实施例提供的一种数据传输方法,如图1所示,该方法包括:
S11、第一设备在免许可频谱上,对当前信道进行CCA检测,获得CCA检测结果。
S12、若所述CCA检测结果小于第一门限值,所述第一设备根据所述CCA检测结果确定发射功率等级。
S13、所述第一设备采用所述发射功率等级对应的发射功率传输数据。
本发明实施例中,在所述CCA检测结果小于第一门限值时,所述第一设备根据所述CCA检测结果确定发射功率等级,并采用所述发射功率等级对应的发射功率传输数据。由于在所述CCA检测结果小于第一门限值时,能够采用确定出的发射功率等级对应的发射功率传输数据,更好地进行了频谱资源的复用,充分利用了信道的免许可频谱资源,从而提升了系统容量。
在实施中,所述第一设备可以是基站,也可以是用户设备。
在实施中,该方法还包括:若所述检测结果大于或等于所述第一门限值时,所述第一设备关闭发射。
优选的,本发明实施例中对当前信道进行CCA检测得到的检测结果可以是以下信息中的至少一种:
当前信道上接收到的信号的能量信息、当前信道上的接收信号强度(received signal strength indication,RSSI)、当前信道上的参考信号接收功率(reference signal receiving power,RSRP)。
在实施中,S12中确定发射功率等级包括两种优选的实现方式:
方式1、根据所述检测结果与N个CCA检测门限值确定发射功率等级,其中,所述第一门限值为所述N个门限值中最大门限值,N为大于或等于2的整数。
该方式的一种优选的实现方式如下:
若所述检测结果小于门限值L1,所述第一设备确定出所述发射功率等级为PN
若所述检测结果大于或等于门限值Li且小于门限值Li+1,所述第一设备确定出所述发射功率等级为PN-i
其中,门限值Li+1大于门限值Li,PN对应的发射功率为最大发射功率,Pj+1对应的发射功率大于Pj对应的发射功率,i=1,…,N,j=1,…,N。
该方式中,每个不同的CCA检测门限值对应一个不同的发射功率等级,所述CCA检测门限值越小,对应的发射功率等级越高,对应的发射功率越大。
该方式下,优选的,所述第一设备确定出所述发射功率等级之后,该方法还包括:
所述第一设备根据所述检测结果,对所述发射功率等级对应的发射功率进行调整,得到所述发射功率等级对应的调整后的发射功率。
相应的,S13具体为:所述第一设备采用调整后的发射功率传输数据。
举例说明,每一个发射功率等级设置一个检测结果的阈值,若所述检测结果大于所述阈值,则减小所述PN-i对应的发射功率;若所述检测结果小于所述阈值,则增大所述PN-i对应的发射功率。具体调整量可以是固定值,也可以是所述检测结果与所述阈值的差值的函数。
方式2、仅根据所述检测结果确定所述发射功率等级,具体为:
根据检测结果与发射功率等级的对应关系,确定出所述检测结果对应的发射功率等级。
具体的,检测结果与发射功率等级的对应关系中,不同检测结果对应一个不同的发射功率等级,每个发射功率等级对应不同的发射功率。
基于上述任一实施例,本发明实施例还提供了一种所述第一设备动态调整自身的CCA检测门限值的方案,具体包括以下三种优选的实现方式:
一、所述第一设备根据获得到的第二设备在所述信道上对所述第一设备的干扰信息对自身的CCA检测门限值进行调整,所述第二设备与所述第一设备为不同的设备。
举例说明,所述第一设备根据所述第二设备在所述信道上对所述第一设备的干扰信息对自身的CCA检测门限值进行调整时,若干扰信息对应的干扰水平大于设定的干扰阈值,则减小自身的CCA检测门限值中每个门限值,或仅减小自身的CCA检测门限值中的部分门限值;若干扰信息对应的干扰水平小于设定的干扰阈值,则增大自身的CCA检测门限值中每个门限值,或仅增大自身的CCA检测门限值中的部分门限值;若干扰信息对应的干扰水平等于设定的干扰阈值,则不调整自身的CCA检测门限值。在根据干扰信息调整自身的CCA检测门限值时,具体调整量可以是固定值,也可以是干扰信息对应 的干扰水平与设定的干扰阈值的差值的函数。
二、所述第一设备根据自身的负载信息和/或获得到的所述信道上的第二设备的负载信息,对自身的CCA检测门限值进行调整,所述第二设备与所述第一设备为不同的设备。
举例说明,所述第一设备根据自身的负载信息对自身的CCA检测门限值进行调整时,若负载信息对应的负载水平大于设定的负载阈值,则增大自身的CCA检测门限值中每个门限值,或仅增大自身的CCA检测门限值中的部分门限值;若负载信息对应的负载水平小于设定的负载阈值,则减小自身的CCA检测门限值中每个门限值,或仅减小自身的CCA检测门限值中的部分门限值;若负载信息对应的负载水平等于设定的负载阈值,则不调整自身的CCA检测门限值。
举例说明,所述第一设备根据获取到的所述第二设备的负载信息对自身的CCA检测门限值进行调整时,若负载信息对应的负载水平大于设定的负载阈值,则减小自身的CCA检测门限值中每个门限值,或仅减小自身的CCA检测门限值中的部分门限值;若负载信息对应的负载水平小于设定的负载阈值,则增大自身的CCA检测门限值中每个门限值,或仅增大自身的CCA检测门限值中的部分门限值;若负载信息对应的负载水平等于设定的负载阈值,则不调整自身的CCA检测门限值。
举例说明,所述第一设备根据自身的负载信息和获取到的所述第二设备的负载信息对自身的CCA检测门限值进行调整时,若自身的负载信息对应的负载水平和所述第二设备的负载信息对应的负载水平均大于设定的负载阈值,不调整自身的CCA检测门限值;若自身的负载信息对应的负载水平和所述第二设备的负载信息对应的负载水平均小于设定的负载阈值,则增大自身的CCA检测门限值中每个门限值,或仅增大自身的CCA检测门限值中的部分门限值;若自身的负载信息对应的负载水平大于设定的负载阈值且所述第二设备的负载信息对应的负载水平均小于设定的负载阈值,则增大自身的CCA检测门限值中每个门限值,或仅增大自身的CCA检测门限值中的部分门 限值;若自身的负载信息对应的负载水平小于设定的负载阈值且所述第二设备的负载信息对应的负载水平均大于设定的负载阈值,则减小自身的CCA检测门限值中每个门限值,或仅减小自身的CCA检测门限值中的部分门限值;若自身的负载信息对应的负载水平和所述第二设备的负载信息对应的负载水平均等于设定的负载阈值,则不调整自身的CCA检测门限值。
需要说明的是,所述第一设备在根据负载信息调整自身的CCA检测门限值时,具体调整量可以是固定值,也可以是负载信息对应的负载水平与设定的负载阈值的差值的函数。
三、所述第一设备根据获得到的所述信道上的第二设备的CCA检测门限值,对自身的门限值进行调整,所述第二设备与所述第一设备为不同的设备。
举例说明,所述第一设备根据获得到的第二设备的CCA检测门限值,对自身的门限值进行调整时,一种优选的实现方式是将自身的CCA检测门限值调整至与所述第二设备的CCA检测门限值相同。
优选的,本发明实施例中,负载信息可以为信道的占空比。
优选的,本发明实施例中,干扰信息可以为以下信息中的至少一种:信干噪比(signal to interference and noise ratio,SINR)、块误码率(block error rate,BLER)、参考信号接收功率(reference signal received power,RSRP)和参考信号接收质量(reference signal received quality,RSRQ)。
本发明实施例中,所述第二设备可以是与所述第一设备属于同一运营商的同一接入系统的设备,也可以是与所述第一设备属于不同运营商的同一接入系统的设备,还可以是与所述第一设备属于同一运营商的不同接入系统的设备,还可以是与所述第一设备属于不同运营商的不同接入系统的设备。其中,同一接入系统是指采用相同无线接入技术(RAT)的通信系统,不同接入系统是指采用不同无线接入技术(RAT)的通信系统。
若所述第一设备与所述第二设备为同一运营商的同一接入系统的设备,则所述第一设备可以直接与所述第二设备进行交互以获取到所述第二设备的负载信息、干扰信息或者所述第二设备的CCA检测门限值;若所述第一设备 与所述第二设备为不同运营商的同一接入系统的设备或不同运营商的不同接入系统的设备,则所述第一设备可以通过测量得到所述第二设备的负载信息或干扰信息。
举例说明,以执行主体是基站为例,对于同运营商的同系统,基站可以通过S1口或X2口与其他基站进行交互,以获得其他基站在当前信道上的负载信息和CCA检测门限值,以实现系统容量最大化为目标,以提高系统容量。对于异运营商的同系统,基站可以通过增设的S1口、X2口、或者UU口的信令,与其他基站交互各自在当前信道上的负载信息和进行CCA检测的门限值,从而更好的进行功率协调。例如,对于LAA系统的基站,可以通过PCC上广播、组播或者单播的方式通知用户设备进行辅助测量,用户设备辅助测量WiFi设备的负载信息和干扰信息,并通过主载波或者辅载波上报给基站。当用户设备测到的干扰水平较强时,基站可以适当降低发射功率,以减少干扰。
优选的,若所述第一设备为基站,所述第一设备需要通过测量得到所述第二设备的负载信息和/或所述第二设备在所述信道上对所述第一设备的干扰信息,则该方法还包括:
指示用户设备对当前信道上的第二设备的负载信息和/或所述第二设备对所述第一设备的干扰信息进行测量;以及
接收所述用户设备上报的负载信息和/或干扰信息,以调整自身的CCA检测门限值。
举例说明,对于LAA系统的基站,可以通过PCC上广播、组播或者单播的方式通知用户设备进行辅助测量,用户设备辅助测量WiFi设备的负载信息和干扰信息,并通过主载波或者辅载波上报给基站,基站根据测量结果调整自身的CCA检测门限值,以减少干扰。
基于上述任一实施例,本发明实施例还提供了一种不同设备间的协调机制,以调整发射功率等级对应的发射功率,实现系统容量的最大化,具体包括以下三种优选的实现方式:
一、所述第一设备基于所述信道上的第二设备的CCA检测门限值与发射功率等级的对应关系,调整自身传输数据所采用的发射功率,具体如下:
所述第一设备根据获得到的所述信道上的第二设备的CCA检测门限值与发射功率等级的对应关系,确定出所述第二设备在所述信道上传输数据所采用的发射功率;所述第一设备基于系统容量最大原则,根据所述第二设备的发射功率,调整自身传输数据所采用的发射功率。
举例说明,所述第一设备根据自身接收到的所述第二设备传输的数据的接收功率和自身的发射功率,确定出所述第一设备与所述第二设备之间的路径损耗;所述第一设备根据确定出的路径损耗和自身的发射功率,确定出所述第一设备传输数据时所述第二设备的接收功率;所述第一设备根据获取到的对应关系和确定出所述第二设备的接收功率,确定出所述第二设备的发射功率;所述第一设备通过联合的功率控制(类似CSPC的技术),调整自身在当前信道上进行数据传输的发射功率,以达到系统容量最高的目的。
二、所述第一设备根据获得到的所述信道上的第二设备在所述信道上对所述第一设备的干扰信息,对自身传输数据所采用的发射功率。
举例说明,所述第一设备根据第二设备在所述信道上对所述第一设备的干扰信息对自身传输数据所采用的发射功率进行调整时,若干扰信息对应的干扰水平大于设定的干扰阈值,则减小自身传输数据所采用的发射功率;若干扰信息对应的干扰水平小于设定的干扰阈值,则增大自身传输数据所采用的发射功率;若干扰信息对应的干扰水平等于设定的干扰阈值,则不调整自身传输数据所采用的发射功率。在根据干扰信息调整自身传输数据所采用的发射功率时,具体调整量可以是固定值,也可以是干扰信息对应的干扰水平与设定的干扰阈值的差值的函数。
三、所述第一设备根据自身的负载信息和/或获得到的所述信道上的第二设备的负载信息,对自身传输数据所采用的发射功率。
举例说明,所述第一设备根据自身的负载信息对自身传输数据所采用的发射功率进行调整时,若负载信息对应的负载水平大于设定的负载阈值,则 增大自身传输数据所采用的发射功率;若负载信息对应的负载水平小于设定的负载阈值,则减小自身传输数据所采用的发射功率;若负载信息对应的负载水平等于设定的负载阈值,则不调整自身传输数据所采用的发射功率。
举例说明,所述第一设备根据获取到的所述第二设备的负载信息对自身传输数据所采用的发射功率进行调整时,若负载信息对应的负载水平大于设定的负载阈值,则减小自身传输数据所采用的发射功率;若负载信息对应的负载水平小于设定的负载阈值,则增大自身传输数据所采用的发射功率;若负载信息对应的负载水平等于设定的负载阈值,则不调整自身传输数据所采用的发射功率。
举例说明,所述第一设备根据自身的负载信息和获取到的所述第二设备的负载信息对自身传输数据所采用的发射功率进行调整时,若自身的负载信息对应的负载水平和所述第二设备的负载信息对应的负载水平均大于设定的负载阈值,不调整自身传输数据所采用的发射功率;若自身的负载信息对应的负载水平和所述第二设备的负载信息对应的负载水平均小于设定的负载阈值,则增大自身传输数据所采用的发射功率;若自身的负载信息对应的负载水平大于设定的负载阈值且所述第二设备的负载信息对应的负载水平均小于设定的负载阈值,则增大自身传输数据所采用的发射功率;若自身的负载信息对应的负载水平小于设定的负载阈值且所述第二设备的负载信息对应的负载水平均大于设定的负载阈值,则减小自身传输数据所采用的发射功率;若自身的负载信息对应的负载水平和所述第二设备的负载信息对应的负载水平均等于设定的负载阈值,则不调整自身传输数据所采用的发射功率。
需要说明的是,所述第一设备在根据负载信息调整自身传输数据所采用的发射功率时,具体调整量可以是固定值,也可以是负载信息对应的负载水平与设定的负载阈值的差值的函数。
基于上述任一实施例,该方法还包括:
所述第一设备根据所述发射功率等级,确定出所述发射功率等级对应的发射功率对应的覆盖范围内的用户设备;
所述第一设备调度所述发射功率等级对应的发射功率对应的覆盖范围内的部分或全部用户设备。
具体的,若所述第一设备为基站,则基站在确定出所述发射功率等级后,可以根据所述发射功率等级对应的发射功率,确定出该发射功率对应的覆盖范围内的用户设备,从而可以调度该发射功率对应的覆盖范围内的部分或全部用户设备。
优选的,所述第一设备确定出所述发射功率等级对应的发射功率对应的覆盖范围内的用户设备之后,该方法还包括:
若确定出的发射功率等级为Pj,所述第一设备优先调度位于第j个环形区域内的用户设备;
其中,最大发射功率的覆盖范围被划分为N个环形区域,第一个环形区域为中心区域,且第N个环形区域为边缘区域,N为大于或等于2的整数;PN对应的发射功率为最大发射功率,Pj+1对应的发射功率大于Pj对应的发射功率,j=1,…,N。
举例说明,基站可以基于上行测量(可以是PCC或者SCC)或者用户设备上报的测量量(例如LTE系统的A3测量),确定用户设备的分布情况,进一步可以对用户设备进行标识,从而确定出不同环形区域内的用户设备。
举例说明,最大发射功率的覆盖范围被划分为N个环形区域,第一个环形区域为中心区域,且第N个环形区域为边缘区域,即N值越大,其对应的环形区域内的用户设备与基站的距离越远,或者N值越大,其对应的环形区域内的用户设备的信号强度越小。确定出的发射功率等级越大,即发射功率越大,则优选调度距离基站远的用户设备或者优选调度信号强度低得用户设备。
举例说明,假设设置三个门限值,记为L1~L3,L1<L2<L3,若所述检测结果小于L1,则采用发射功率等级为P3对应的发射功率(即最大发射功率)传输数据,并优先调度边缘用户设备,即第三个环形区域内的用户设备,如图2所示的环形区域3内的用户设备;若所述检测结果大于或等于L1且小于 L2,则采用发射功率等级为P2对应的发射功率发送信号,并优先调度第二个环形区域内的用户设备,如图2所示的环形区域2内的用户设备;若所述检测结果大于或等于L2且小于L3,则采用发射功率等级为P1对应的发射功率发送信号,并优先调度中心用户设备,即第一个环形区域内的用户设备,如图2所示的环形区域1内的用户设备;若所述检测结果大于或等于L3,则关闭发射。其中,P3对应的发射功率>P2对应的发射功率>P1对应的发射功率。
进一步,该方法还包括:将确定出的发射功率等级通知给所述发射功率等级对应的发射功率对应的覆盖范围的用户设备,以使所述用户设备能够根据所述发射功率等级对应的发射功率进行测量和/或解调等处理。
基于上述任一实施例,本发明实施例中还可以增加对发射时长的判决,在进行发射时长的判决时,可以基于其他设备占用该信道的时长的统计和/或负载水平检测,并考虑自身的业务的QoS需求信息,确定本次数据的发送时长。具体如下:
根据其他设备占用该信道的时长、其他设备的负载水平、自身的QoS需求信息中的至少一种信息,确定本次数据的发送时长。
优选的,在发射时长判决时,可以引入虚拟载波监听的机制,即除了对信道能量进行检测之外,还对通信设备所携带的与占用信道的时长相关的信息(如WiFi设备携带的网络分配矢量(NAV))进行检测,从而确定该通信设备的发射时长,并基于该通信设备的发射时长,确定出自身数据的发送时长。具体如下:
检测到当前占用信道的通信设备携带的所述通信设备占用信道的时长的信息;以及
根据所述通信设备占用信道的时长的信息,确定出自身数据的发送时长。
优选的,若上述方法的执行主体为基站,还可以通过在PCC上广播、组播或者单播的方式通知用户设备进行辅助测量,以测量当前信道的占用情况和/或干扰信息,并通过主载波或者辅载波上报给基站,以使基站能够根据所述通信设备的负载信息和/或干扰信息,确定出自身数据的发送时长。具体为:
指示用户设备对当前信道上的通信设备的负载信息和/或干扰信息进行测量;
接收所述用户设备上报的负载信息和/或干扰信息,并根据所述用户设备上报的负载信息和/或干扰信息,确定出自身数据的发送时长。
本发明提供的方案可以应用于异系统共存的场景,以LAA系统和WiFi系统共存为例,其时序图如图3A所示,可以看到在WiFi系统的设备占用信道传输数据的同时,LAA系统的基站也可以低功率传输数据,实现了信道共享,提高了频谱利用率,也提高了系统容量。进一步,在LAA系统的基站采用低功率传输数据时,可以优先调度中心区域内的用户设备;在LAA系统的基站采用高功率传输数据时,可以优先调度边缘区域内的用户设备。
本发明提供的方案也可以应用于同系统共存的场景,其时序图如图3B所示,可以看到在LAA系统的设备LAA1采用高功率占用信道传输数据的同时,LAA系统的设备LAA2也可以低功率传输数据,同理,LAA2采用高功率占用信道传输数据的同时,LAA1也可以低功率传输数据,实现了信道共享,提高了频谱利用率,也提高了系统容量。图中,LAA1采用高功率占用信道传输数据时,可以优先调度边缘区域内的用户设备,此时,LAA2采用低功率传输数据,可以优先调度中心区域内的用户设备;LAA1采用低功率占用信道传输数据时,可以优先调度中心区域内的用户设备,此时,LAA2采用高功率传输数据,可以优先调度边缘区域内的用户设备。
基于上述任一实施例,针对LAA系统,采用LBT技术时会选取一个随机数N,基站或用户设备在每个CCA检测时间(observe time)都会根据设置的门限值来判断信道忙闲的情况,当信道空闲时,N值会减1,当N值减小到0时开始数据传输。若本发明实施例中设置了至少两个门限值,则每个门限值均对应一个随机数,初始时,各门限值对应的随机数相同,根据每次得到的检测结果与门限值的关系对相应门限值(即关系中小于检测结果的门限值)对应的随机数进行减1处理,但是基站或用户设备在低功率发射期间无法同时监听信道,为了保证和WiFi竞争的公平性,本发明实施例提供了修正 N值的方案,具体包括以下五种实现方式:
方案一:在所述第一设备根据自身的CCA检测门限值,确定出所述检测结果与所述CCA检测门限值的大小关系之后,该方法还包括:所述第一设备将所述关系中小于所述检测结果的门限值对应的随机数的值减去设定的步长,并继续进行CCA检测;
在所述关系中小于所述检测结果的门限值对应的随机数减小至0后,所述第一设备根据所述检测结果确定发射功率等级;
所述第一设备在采用所述发射功率等级对应的发射功率完成数据传输之后,该方法还包括:所述第一设备将所述CCA检测门限值中除所述发射功率等级对应的门限值之外的其他门限值对应的随机数减去设定的固定值;其中,所述发射功率等级对应的门限值为所述发射功率等级对应的所述检测结果与所述CCA检测门限值的关系中小于所述检测结果的门限值;以及将所述其他门限值对应的随机数减去所述固定值的差值,确定为所述其他门限值对应的随机数在下一次CCA检测时的初始值。
优选的,设定的步长为1。
举例说明,如图4所示,按照现有技术,WiFi系统和LAA系统共存时,会时分复用信道。为了提升系统容量,本实施例中,设置了两个CCA检测门限值,一个为高门限值(记为H),一个为低门限值(记为L)。每次高功率发射后,他们选择一个相同的随机数N,即初始值N1=N2=N。当检测结果低于L时,N1的值减小1;当检测结果低于H且高于L时,N2减小1。当N1减小至0时,采用最大发射功率(即正常发射功率)传输数据;当N2减小至0时,采用低功率传输数据(发射功率和门限值大小成线性关系)。
由于基站在低功率发射期间无法同时监听信道,为了保证和WiFi设备竞争的公平性,假设在低功率发射期间,检测结果低于L的次数为M,则在低功率传输数据完毕后,N1的起始值为原有值减去M得到的值,然后按照相同的规则进行统计,当N1的值为0时,采用高功率传输数据。
优选的,M值的大小和LAA系统低功率发射的报文的时间长度和WiFi 设备一次报文的发送时间长度相关,最小可以设置为0,最大可以设置为N1-1。
方案二:在所述第一设备根据自身的CCA检测门限值,确定出所述检测结果与所述CCA检测门限值的大小关系之后,该方法还包括:所述第一设备将所述关系中小于所述检测结果的门限值对应的随机数的值减去设定的步长,并继续进行CCA检测;
在所述关系中小于所述检测结果的门限值对应的随机数减小至0后,根据所述检测结果确定发射功率等级;
所述第一设备采用所述发射功率等级对应的发射功率传输数据,包括:在下一个子帧的起始时刻,所述第一设备采用所述发射功率等级对应的发射功率传输数据;
在所述第一设备采用所述发射功率等级对应的发射功率完成数据传输之后,该方法还包括:所述第一设备将所述CCA检测门限值中除所述发射功率等级对应的门限值之外的其他门限值对应的随机数减去设定的固定值;其中,所述发射功率等级对应的门限值为所述发射功率等级对应的所述检测结果与所述CCA检测门限值的关系中小于所述检测结果的门限值;以及所述第一设备将所述其他门限值对应的随机数减去所述固定值的差值,确定为所述其他门限值对应的随机数在下一次CCA检测时的初始值。
优选的,设定的步长为1。
举例说明,如图5所示,该方式主要考虑到当N2值减小为0时,并不立即采用低功率传输数据,而是等到LAA系统的下一个子帧边界到来时(即下一个子帧的起始时刻),才开始传输数据。在等待时间内(即下一个子帧开始之前的一段时间),低门限的CCA过程可以继续运转,如果检测结果低于L一次,则N1减小1,如果减小至0,则可以高功率传输数据,如果直到下一个子帧边界N1’仍大于0,此时采用低功率传输数据。在采用低功率完成数据传输后,其起始值从N1’-M开始计数。其中M的含义和方案一中的含义一样。
方案三:在所述第一设备根据自身的CCA检测门限值,确定出所述检测结果与所述CCA检测门限值的大小关系之后,该方法还包括:所述第一设备 将所述关系中小于所述检测结果的门限值对应的随机数的值减去设定的步长;
所述第一设备根据所述检测结果确定发射功率等级,包括:在所述关系中小于所述检测结果的门限值对应的随机数减小至0后,所述第一设备根据所述检测结果确定发射功率等级;
所述第一设备采用所述发射功率等级对应的发射功率传输数据,包括:所述第一设备采用所述发射功率等级对应的发射功率传输数据,并将数据传输的时间延长设定的时长;
在所述第一设备采用所述发射功率等级对应的发射功率完成数据传输之后,该方法还包括:所述第一设备将所述CCA检测门限值中除所述发射功率等级对应的门限值之外的其他门限值对应的随机数减去M;其中,所述发射功率等级对应的门限值为所述发射功率等级对应的所述检测结果与所述CCA检测门限值的关系中小于所述检测结果的门限值,M为两次所述其他门限值对应的随机数减去所述步长之间的等待时间与所述时长的比值;以及所述第一设备将所述其他门限值对应的随机数减去所述固定值的差值,确定为所述其他门限值对应的随机数在下一次CCA检测时的初始值。
优选的,设定的步长为1。
举例说明,本方案中,延长低功率传输数据的时间,譬如从1ms延长到13毫秒;M值的大小根据历史低门限N1值的运转规律进行推算得知。具体推算方法如下:统计在没有数据传输时,两次N1的值减1之间的等待时间为t,则M=采用低功率传输数据的时间长度/t。
方案四:在所述第一设备根据自身的CCA检测门限值,确定出所述检测结果与所述CCA检测门限值的大小关系之后,该方法还包括:所述第一设备将所述关系中小于所述检测结果的门限值对应的随机数的值减去设定的步长;
在所述关系中小于所述检测结果的门限值对应的随机数减小至0后,所述第一设备根据所述检测结果确定发射功率等级;
所述第一设备采用所述发射功率等级对应的发射功率传输数据,包括:所述第一设备采用所述发射功率等级对应的发射功率传输数据,其中,传输数据的时长小于或等于检测到的其他设备在当前信道上的占用时长。
举例说明,如图6所示,在低门限进行数据发送之前,监听WiFi设备对当前信道的占用情况,并检测到解析其信道占用时间(例如,可以通过解析WiFi携带的NAV值获得),低功率发射数据的每个数据包的长度不得超过WiFi当前数据包的占用时长。这样前面方案中的M值可以设置为0,即在LAA设备采用低功率传输数据的过程中,低门限值对应的N1值无需修正。
需要说明的是,如果系统可以做到在发送数据的时候同时可以进行监听,即全双工方式,如图7所示,本发明实施例中,不同CCA检测门限值可以同时工作和计数,一旦确定某个门限值对应的随机数减小至0,则可以快速确定数据传输时刻及数据传输时采用的发射功率。
基于上述任一实施例,S11中所述第一设备通过对免许可频谱上的信道进行CCA检测,获得CCA检测结果,包括:
所述第一设备在每次数据传输之前,通过对免许可频谱上的信道进行CCA检测,获得CCA检测结果。
作为一种可选的实现方式,S11中所述第一设备通过对免许可频谱上的信道进行CCA检测,获得CCA检测结果之后,还包括:
所述第一设备根据所述CCA检测结果,确定出任一所述CCA检测门限值对应的随机数减小至0后,进行一次数据传输。
该方式下,基站每次数据发送之前都需要对信道进行侦听(即CCA检测),根据每次CCA检测获得的CCA检测结果进行功率调整。每次数据传输称为一次burst,一次burst中的数据传输是连续的、不间断的。在一次burst过程中基站采用的发射功率不变,任意两次burst过程中基站采用的发射功率可能会根据CCA检测结果发生变化。如图8所示,在第一次CCA检测之后,基站采用发射功率等级P1对应的发射功率传输数据,在本次数据传输过程中,发射功率不变;在第二次CCA检测之后,基站采用发射功率等级P2对应的 发射功率传输数据,在本次数据传输过程中,发射功率不变。
可选的,所述第一设备确定出任一所述CCA检测门限值对应的随机数减小至0,包括:
所述第一设备根据所述CCA检测门限值,确定出所述CCA检测结果与所述CCA检测门限值的大小关系;所述第一设备将所述关系中小于所述检测结果的CCA检测门限值对应的随机数的值减去设定的步长,并继续进行CCA检测,直至所述关系中小于所述检测结果的CCA检测门限值对应的随机数减小至0。
作为另一种可选的实现方式,S11中所述第一设备通过对免许可频谱上的信道进行CCA检测,获得CCA检测结果之后,还包括:
所述第一设备根据所述CCA检测结果,确定出自身的CCA检测门限值对应的随机数均减小至0后,进行一次数据传输。
相应的,S13中所述第一设备采用所述发射功率等级对应的发射功率传输数据,包括:所述第一设备在本次数据传输时长的不同的时间段内,采用不同的CCA检测门限值对应的发射功率等级对应的发射功率,传输本次需要传输的数据。
举例说明,基站在每次数据发送之前都需要对信道进行侦听(即CCA检测),使用多个CCA门限值(本发明实施例中的“多个”是指两个或两个以上)进行CCA检测过程,在每个CCA检测门限值对应的随机数均减小至0后,基站才进行一次数据传输(即一次burst),由于每个CCA门限值对应不同的发射功率等级,因此,会确定出多个发射功率等级,基站可以按照一定规则,在一次数据传输的不同时间段内采用不同的CCA检测门限值对应的发射功率等级对应的发射功率,传输本次需要传输的数据。例如按照发射功率等级从小到大的顺序,在一次数据传输的不同时间段内采用不同的CCA检测门限值对应的发射功率等级对应的发射功率。这里的时间段可以是以子帧为粒度,如在子帧1内采用P1传输数据,在子帧2内采用P2传输数据;又如,在子帧1~2内采用P1传输数据,在子帧3~5内采用P2传输数据。
如图9所示,在一次CCA检测之后,基站进行一次数据传输,由于CCA检测过程中确定出了三个不同的发射功率等级,即P1、P2和P3,则在本次数据传输时,先采用P1对应的发射功率传输数据,经过一段时间后,采用P2对应的发射功率传输数据,再经过一段时间后,采用P3对应的发射功率传输数据,从而完成了本次数据传输。
可选的,所述第一设备根据所述CCA检测结果,确定出自身的每一个所述CCA检测门限值对应的随机数减小至0,包括:
所述第一设备根据所述CCA检测门限值,确定出所述CCA检测结果与所述CCA检测门限值的大小关系;
所述第一设备将所述关系中小于所述检测结果的CCA检测门限值对应的随机数的值减去设定的步长,并继续进行CCA检测,直至所述关系中小于所述检测结果的CCA检测门限值对应的随机数减小至0。
该方式下,可选的,该方法还包括:所述第一设备在不同的时间段内,根据该时间段内数据传输采用的发射功率等级,优先调度不同位置的用户设备。
具体的,所述第一设备在不同的时间段内,根据该时间段内数据传输采用的发射功率等级,优先调度不同位置的用户设备,包括:
若发射功率等级为Pj,所述第一设备优先调度位于第j个环形区域内的用户设备;
其中,最大发射功率对应的覆盖范围被划分为N个环形区域,第一个环形区域为中心区域,且第N个环形区域为边缘区域,N为大于或等于2的整数;PN对应的发射功率为最大发射功率,Pj+1对应的发射功率大于Pj对应的发射功率,j=1,…,N。
基于上述任一实施例,若所述第一设备为基站,该方法还包括:
所述第一设备接收到终端上报的测量量后,根据接收到所述终端上报的测量量的时间点,确定出所述第一设备在所述时间点之前最后确定出的发射功率等级;
所述第一设备根据确定出的发射功率等级对应的发射功率,对所述终端上报的测量量的值进行修正;
其中,所述终端上报的测量量为所述终端基于所述第一设备传输的数据进行测量得到的测量量。
可选的,所述第一设备根据确定出的发射功率等级对应的发射功率,对所述终端上报的测量量的值进行修正,包括:
所述第一设备根据所述第一设备的最大发射功率对应的测量量的值,将所述终端上报的测量量的值与确定出的发射功率等级对应的发射功率对应的调整量之和,作为所述终端上报的测量量的修正后的值。
具体的,所述第一设备基于最大发射功率及在最大发射功率下进行信道状态测量(如信道状态信息(Channel State Information,CSI)测量)得到的测量量的值,对所述终端基于不同发射功率的数据中的导频信号进行的信道状态测量得到的测量量的值进行修正,以使不同发射功率引起的信道状态的变化归一化。
基于同一发明构思,本发明实施例还提供了一种终端侧的信道测量方法,如图10所示,该方法包括:
S101、终端接收基站在每个数据传输时间段内发送的数据中的导频信号;
S102、所述终端对所述导频信号,进行限制性信道状态测量;其中,所述限制性信道状态测量为:所述终端的每次信道状态测量是针对同一数据传输时间段内发射功率相同且连续的导频信号进行的。
作为第一种可选的实现方式,该方法还包括:所述终端获得基站的每个数据传输时间段的起始时刻;
相应的,S102中所述终端对所述导频信号,进行限制性信道状态测量,包括:所述终端在每个数据传输时间段的起始时刻开始对所述导频信号,进行限制性信道状态测量。
进一步,该方法还包括:所述终端获得所述基站每次数据传输的结束时刻,并在每次数据传输的结束时刻停止本次信道状态测量,并在下一个数据 传输时间段的起始时刻开始时刻对所述导频信号进行测量。
举例说明,所述终端在基站的每个数据传输时间段的起始时刻开始就对接收到的导频信号进行信道状态的测量,在每个数据传输时间段的结束时刻,停止本次信道状态测量,并在基站的下一个数据传输时间段的起始时刻开始时刻对接收到的导频信号进行测量。
作为第二种可选的实现方式,该方法还包括:所述终端获得基站的每个数据传输时间段的起始时刻和终止时刻;
相应的,S102中所述终端对所述导频信号,进行限制性信道状态测量,包括:所述终端在每个数据传输时间段的结束时刻开始对所述导频信号,进行限制性信道状态测量。
举例说明,所述终端在获得基站的每个数据传输时间段的起始时刻和终止时刻后,开始对接收到的导频信号进行信道状态的测量,在每个数据传输时间段的结束时刻,停止本次信道状态测量,并在基站的下一个数据传输时间段的起始时刻开始时刻对接收到的导频信号进行测量。
基于上述第一种或第二种可选的实现方式,所述终端获得基站每次数据传输的起始时刻,包括以下两种可选的方式:
一、所述终端通过对下行信道进行盲检测,确定出所述基站每次数据传输的起始时刻。
举例说明,终端根据导频信号(如小区专属参考信号(Cell-specific Reference Signals,CRS))的盲检测,确定出每个子帧内基站下行共享物理信道(Physical Downlink Shared Channel,PDSCH)的数据发送的起始时刻,即在检测到有数据发送时,将该时刻确定为基站本次数据传输的起始时刻。
二、所述终端从所述基站发送的通知信令中,获得所述基站每次数据传输的起始时刻。
举例说明,基站在每次数据传输之前,通过通知信令将本次数据传输的起始时刻通知给终端。相应的,终端通过解析该通知信令获得基站即将要传输的数据传输的起始时刻。
基于上述两种可选的实现方式中的任一种方式,所述终端获得所述基站每次数据传输的结束时刻,包括以下两种可选的方式:
一、所述终端通过对下行信道进行盲检测,确定出所述基站每次数据传输的结束时刻。
举例说明,终端根据导频信号(如小区专属参考信号(Cell-specific Reference Signals,CRS))的盲检测,确定出每个子帧内基站下行共享物理信道(Physical Downlink Shared Channel,PDSCH)的数据发送情况,通过判断PDSCH中所承载的数据的连续性确定出基站每次数据传输的结束时刻,从而确定出基站每次数据传输的时长。终端在检测到有数据发送时,将该时刻确定为基站本次数据传输的起始时刻,若检测到该数据一直是连续的,则说明基站本次数据传输还在继续;当检测到不到数据时,确定基站本次数据传输完毕,并将该时刻确定为基站本次数据传输的结束时刻,如图11所示。
二、所述终端从所述基站发送的通知信令中,获得所述基站每次数据传输的结束时刻。
举例说明,基站在每次数据传输之前,通过通知信令将本次数据传输的起始时刻和结束时刻通知给终端。相应的,终端通过解析该通知信令获得基站即将要传输的数据传输的起始时刻和结束时刻,如图12所示。
对于上述第一种或第二种可选的实现方式,可选的,所述通知信令中还携带所述基站本次数据传输采用的发射功率。
对于上述第二种可选的实现方式,可选的,所述通知信令中还携带所述基站本次数据传输中采用不同发射功率传输数据的时长。
举例说明,假设本次数据传输中,基站分别采用了P1~P3传输数据,则基站在发送给终端的通知信令中还携带采用P1传输数据的时长,采用P2传输数据的时长,采用P3传输数据的时长.
基于上述任一实施例,该方法还包括:
所述终端在需要上报时,将最近一次信道状态测量得到的测量量上报给所述基站。
举例说明,终端可以周期进行上报,也可以在基站触发后进行上报。所述终端在需要上报时,反馈基于最近一次burst业务或最近一次采用同一功率传输的数据中的导频信号进行信道状态测量得到的测量量。
可选的,该方法还包括:
所述终端在需要上报时,根据所述基站发送的通知信令中携带的所述基站本次数据传输采用的发射功率,对自身最近一次信道状态测量得到的测量量的值进行修正;
所述终端将最近一次信道状态测量得到的测量量上报给所述基站,包括:所述终端将修正后的测量量上报给所述基站。
可选的,所述终端对自身最近一次信道状态测量得到的测量量的值进行修正,包括:
所述终端根据所述基站发送的通知信令中携带的所述基站的最大发射功率对应的测量量的值,将所述终端最近一次信道状态测量得到的测量量的值与所述基站本次数据传输采用的发射功率对应的调整量之和,作为所述终端修正后的测量量的值。
可选的,所述终端对自身最近一次信道状态测量得到的测量量的值进行修正之后,该方法还包括:所述终端对修正后的测量量进行平滑和滤波处理;
所述终端将最近一次信道状态测量得到的测量量上报给所述基站,包括:所述终端将平滑和滤波处理后得到的测量量上报给所述基站。
上述方法处理流程可以用软件程序实现,该软件程序可以存储在存储介质中,当存储的软件程序被调用时,执行上述方法步骤。
基于同一发明构思,本发明实施例中还提供了一种通信设备,由于该设备解决问题的原理与上述一种数据传输方法相似,因此该设备的实施可以参见方法的实施,重复之处不再赘述。
本发明实施例提供的一种通信设备,如图13所示,该设备包括:
CCA检测模块131,用于通过对免许可频谱上的信道进行空闲信道评估CCA检测,获得CCA检测结果;
发射功率等级确定模块132,用于若所述CCA检测结果小于第一门限值,根据所述CCA检测结果确定发射功率等级;
数据传输模块133,用于采用所述发射功率等级对应的发射功率传输数据。
本发明实施例中,作为一种可选的实现方式,所述发射功率等级确定模块132具体用于:
根据所述CCA检测结果与N个CCA检测门限值确定所述发射功率等级,其中,所述第一门限值为所述N个门限值中最大门限值,N为大于或等于2的整数。
可选的,所述发射功率等级确定模块132具体用于:
若所述检测结果小于门限值L1,确定出所述发射功率等级为PN
若所述检测结果大于或等于门限值Li且小于门限值Li+1,确定出所述发射功率等级为PN-i
其中,门限值Li+1大于门限值Li,PN对应的发射功率为最大发射功率,Pj+1对应的发射功率大于Pj对应的发射功率,i=1,…,N,j=1,…,N。
可选的,所述发射功率等级确定模块132还用于:
根据所述检测结果,对所述发射功率等级对应的发射功率进行调整,得到所述发射功率等级对应的调整后的发射功率;
所述数据传输模块133具体用于:采用调整后的发射功率传输数据。
作为另一种可选的实现方式,所述发射功率等级确定模块132具体用于:
根据检测结果与发射功率等级的对应关系,确定出所述检测结果对应的发射功率等级。
基于上述任一实施例,该设备还包括:第一调整模块,用于:
根据获得到的第二设备在所述信道上对所述第一调整模块所属的设备的干扰信息对自身所属的设备的CCA检测门限值进行调整,所述第二设备与所述第一调整模块所属的设备为不同的设备;或者
根据自身所属的设备的负载信息和/或获得到的所述信道上的第二设备的 负载信息,对自身所属的设备的CCA检测门限值进行调整,所述第二设备与所述第一调整模块所属的设备为不同的设备;或者
根据获得到的所述信道上的第二设备的CCA检测门限值,对自身所属的设备的门限值进行调整,所述第二设备与所述第一调整模块所属的设备为不同的设备。
基于上述任一实施例,该设备还包括:第二调整模块,用于:
根据获得到的所述信道上的第二设备的CCA检测门限值与发射功率等级的对应关系,确定出所述第二设备在所述信道上传输数据所采用的发射功率;基于系统容量最大原则,根据所述第二设备的发射功率,调整自身所属的设备传输数据所采用的发射功率,所述第二设备与所述第二调整模块所属的设备为不同的设备;或者
根据获得到的第二设备在所述信道上对所述第二调整模块所属的设备的干扰信息,对自身所属的设备传输数据所采用的发射功率,所述第二设备与所述第二调整模块所属的设备为不同的设备;或者
根据自身所属的设备的负载信息和/或获得到的所述信道上的第二设备的负载信息,对自身所属的设备传输数据所采用的发射功率,所述第二设备与所述第二调整模块所属的设备为不同的设备。
基于上述任一实施例,该设备还包括:
调度模块,用于根据所述发射功率等级,确定出所述发射功率等级对应的发射功率对应的覆盖范围内的用户设备;以及调度所述发射功率等级对应的发射功率对应的覆盖范围内的部分或全部用户设备。
可选的,所述调度模块具体用于:
若确定出的发射功率等级为Pj,优先调度位于第j个环形区域内的用户设备;
其中,最大发射功率对应的覆盖范围被划分为N个环形区域,第一个环形区域为中心区域,且第N个环形区域为边缘区域,N为大于或等于2的整数;PN对应的发射功率为最大发射功率,Pj+1对应的发射功率大于Pj对应的发 射功率,j=1,…,N。
可选的,所述数据传输模块133还用于:
将确定出的发射功率等级通知给所述发射功率等级对应的发射功率对应的覆盖范围内的用户设备。
可选的,所述发射功率等级确定模块132还用于:
若所述检测结果大于或等于所述第一门限值,关闭发射。
基于上述任一实施例,所述CCA检测模块131具体用于:
在每次数据传输之前,通过对免许可频谱上的信道进行CCA检测,获得CCA检测结果。
可选的,所述CCA检测模块131具体用于:
根据所述CCA检测结果,确定出任一所述CCA检测门限值对应的随机数减小至0后,触发所述数据传输模块进行一次数据传输。
可选的,所述CCA检测模块131还用于:根据所述CCA检测结果,确定出所有所述CCA检测门限值对应的随机数均减小至0后,触发所述数据传输模块进行一次数据传输;
所述数据传输模块133具体用于:在本次数据传输时长的不同的时间段内,采用不同的CCA检测门限值对应的发射功率等级对应的发射功率,传输本次需要传输的数据。
可选的,所述CCA检测模块131具体用于:
根据所述CCA检测门限值,确定出所述CCA检测结果与所述CCA检测门限值的大小关系;
将所述关系中小于所述检测结果的CCA检测门限值对应的随机数的值减去设定的步长,并继续进行CCA检测,直至所述关系中小于所述检测结果的CCA检测门限值对应的随机数减小至0。
基于上述任一实施例,所述设备还包括:
上报处理模块,用于接收到终端上报的测量量后,根据接收到所述终端上报的测量量的时间点,确定出所述发射功率等级确定模块在所述时间点之 前最后确定出的发射功率等级;根据确定出的发射功率等级对应的发射功率,对所述终端上报的测量量的值进行修正;其中,所述终端上报的测量量为所述终端基于所述设备传输的数据进行测量得到的测量量。
可选的,所述上报处理模块具体用于:
根据自身所属的设备的最大发射功率对应的测量量的值,将所述终端上报的测量量的值与确定出的发射功率等级对应的发射功率对应的调整量之和,作为所述终端上报的测量量的修正后的值。
本发明实施例提供的另一种通信设备,如图14所示,该设备包括:
处理器141,用于通过对免许可频谱上的信道进行空闲信道评估CCA检测,获得CCA检测结果;若所述CCA检测结果小于第一门限值,根据所述CCA检测结果确定发射功率等级;
收发器142,用于采用所述发射功率等级对应的发射功率传输数据。
本发明实施例中,作为一种可选的实现方式,所述处理器141具体用于:
根据所述CCA检测结果与N个CCA检测门限值确定所述发射功率等级,其中,所述第一门限值为所述N个门限值中最大门限值,N为大于或等于2的整数。
可选的,处理器141具体用于:
若所述检测结果小于门限值L1,确定出所述发射功率等级为PN
若所述检测结果大于或等于门限值Li且小于门限值Li+1,确定出所述发射功率等级为PN-i
其中,门限值Li+1大于门限值Li,PN对应的发射功率为最大发射功率,Pj+1对应的发射功率大于Pj对应的发射功率,i=1,…,N,j=1,…,N。
可选的,所述处理器141还用于:
根据所述检测结果,对所述发射功率等级对应的发射功率进行调整,得到所述发射功率等级对应的调整后的发射功率;
所述收发器142具体用于:采用调整后的发射功率传输数据。
作为另一种可选的实现方式,所述处理器141具体用于:
根据检测结果与发射功率等级的对应关系,确定出所述检测结果对应的发射功率等级。
基于上述任一实施例,所述处理器141还用于:
根据获得到的第二设备在所述信道上对所述处理器所属的设备的干扰信息对自身所属的设备的CCA检测门限值进行调整,所述第二设备与所述处理器所属的设备为不同的设备;或者
根据自身所属的设备的负载信息和/或获得到的所述信道上的第二设备的负载信息,对自身所属的设备的CCA检测门限值进行调整,所述第二设备与所述处理器所属的设备为不同的设备;或者
根据获得到的所述信道上的第二设备的CCA检测门限值,对自身所属的设备的门限值进行调整,所述第二设备与所述处理器所属的设备为不同的设备。
基于上述任一实施例,所述处理器141还用于:
根据获得到的所述信道上的第二设备的CCA检测门限值与发射功率等级的对应关系,确定出所述第二设备在所述信道上传输数据所采用的发射功率;基于系统容量最大原则,根据所述第二设备的发射功率,调整自身所属的设备传输数据所采用的发射功率,所述第二设备与所述处理器所属的设备为不同的设备;或者
根据获得到的第二设备在所述信道上对所述处理器所属的设备的干扰信息,对自身所属的设备传输数据所采用的发射功率,所述第二设备与所述处理器所属的设备为不同的设备;或者
根据自身所属的设备的负载信息和/或获得到的所述信道上的第二设备的负载信息,对自身所属的设备传输数据所采用的发射功率,所述第二设备与所述处理器所属的设备为不同的设备。
基于上述任一实施例,所述处理器141还用于:
根据所述发射功率等级,确定出所述发射功率等级对应的发射功率对应的覆盖范围内的用户设备;以及调度所述发射功率等级对应的发射功率对应 的覆盖范围内的部分或全部用户设备。
可选的,所述处理器141具体用于:
若确定出的发射功率等级为Pj,优先调度位于第j个环形区域内的用户设备;
其中,最大发射功率对应的覆盖范围被划分为N个环形区域,第一个环形区域为中心区域,且第N个环形区域为边缘区域,N为大于或等于2的整数;PN对应的发射功率为最大发射功率,Pj+1对应的发射功率大于Pj对应的发射功率,j=1,…,N。
可选的,所述收发器142还用于:
将所述处理器141确定出的发射功率等级通知给所述发射功率等级对应的发射功率对应的覆盖范围内的用户设备。
可选的,所述处理器141还用于:
若所述检测结果大于或等于所述第一门限值,关闭发射。
基于上述任一实施例,所述处理器141具体用于:
在每次数据传输之前,通过对免许可频谱上的信道进行CCA检测,获得CCA检测结果。
可选的,所述处理器141具体用于:
根据所述CCA检测结果,确定出任一所述CCA检测门限值对应的随机数减小至0后,触发所述收发器142进行一次数据传输。
可选的,所述处理器141还用于:根据所述CCA检测结果,确定出所有所述CCA检测门限值对应的随机数均减小至0后,触发所述收发器142进行一次数据传输;
所述收发器142具体用于:在本次数据传输时长的不同的时间段内,采用不同的CCA检测门限值对应的发射功率等级对应的发射功率,传输本次需要传输的数据。
可选的,所述处理器141具体用于:
根据所述CCA检测门限值,确定出所述CCA检测结果与所述CCA检测 门限值的大小关系;
将所述关系中小于所述检测结果的CCA检测门限值对应的随机数的值减去设定的步长,并继续进行CCA检测,直至所述关系中小于所述检测结果的CCA检测门限值对应的随机数减小至0。
基于上述任一实施例,所述处理器141还用于:
在所述收发器142接收到终端上报的测量量后,根据接收到所述终端上报的测量量的时间点,确定出自身在所述时间点之前最后确定出的发射功率等级;根据确定出的发射功率等级对应的发射功率,对所述终端上报的测量量的值进行修正;其中,所述终端上报的测量量为所述终端基于所述设备传输的数据进行测量得到的测量量。
可选的,所述处理器141具体用于:
根据自身所属的设备的最大发射功率对应的测量量的值,将所述终端上报的测量量的值与确定出的发射功率等级对应的发射功率对应的调整量之和,作为所述终端上报的测量量的修正后的值。
本发明实施例提供的一种终端,如图15所示,所述终端包括:
接收模块151,用于接收基站在每个数据传输时间段内发送的数据中的导频信号;
测量模块152,用于对所述导频信号,进行限制性信道状态测量;
其中,所述限制性信道状态测量为:所述测量模块的每次信道状态测量是针对同一数据传输时间段内发射功率相同且连续的导频信号进行的。
可选的,所述测量模块152具体用于:
获得基站的每个数据传输时间段的起始时刻;
在每个数据传输时间段的起始时刻开始对所述导频信号,进行限制性信道状态测量。
可选的,所述测量模块152还用于:
获得所述基站每次数据传输的结束时刻,并在每次数据传输的结束时刻停止本次信道状态测量,并在下一个数据传输时间段的起始时刻开始时刻对 所述导频信号进行测量。
可选的,所述测量模块152具体用于:
获得基站的每个数据传输时间段的起始时刻和终止时刻;
在每个数据传输时间段的结束时刻开始对所述导频信号,进行限制性信道状态测量。
可选的,所述测量模块152获得基站每次数据传输的起始时刻包括:
通过对下行信道进行盲检测,确定出所述基站每次数据传输的起始时刻;或者从所述基站发送的通知信令中,获得所述基站每次数据传输的起始时刻。
可选的,所述测量模块152获得所述基站每次数据传输的结束时刻包括:
通过对下行信道进行盲检测,确定出所述基站每次数据传输的结束时刻;或者所述终端从所述基站发送的通知信令中,获得所述基站每次数据传输的结束时刻。
基于上述任一实施例,所述测量模块152还用于:
在需要上报时,将最近一次信道状态测量得到的测量量上报给所述基站。
可选的,所述测量模块152还用于:
在需要上报时,根据所述基站发送的通知信令中携带的所述基站本次数据传输采用的发射功率,对自身最近一次信道状态测量得到的测量量的值进行修正;将修正后的测量量上报给所述基站。
可选的,所述测量模块152对自身最近一次信道状态测量得到的测量量的值进行修正,包括:
根据所述基站发送的通知信令中携带的所述基站的最大发射功率对应的测量量的值,将最近一次信道状态测量得到的测量量的值与所述基站本次数据传输采用的发射功率对应的调整量之和,作为修正后的测量量的值。
可选的,所述测量模块152对自身最近一次信道状态测量得到的测量量的值进行修正之后,还用于:对修正后的测量量进行平滑和滤波处理;将平滑和滤波处理后得到的测量量上报给所述基站。
本发明实施例提供的另一种终端,如图16所示,所述终端包括:
收发器161,用于接收基站在每个数据传输时间段内发送的数据中的导频信号;
处理器162,用于对所述导频信号,进行限制性信道状态测量;
其中,所述限制性信道状态测量为:所述处理器的每次信道状态测量是针对同一数据传输时间段内发射功率相同且连续的导频信号进行的。
可选的,所述处理器162具体用于:
获得基站的每个数据传输时间段的起始时刻;
在每个数据传输时间段的起始时刻开始对所述导频信号,进行限制性信道状态测量。
可选的,所述处理器162还用于:
获得所述基站每次数据传输的结束时刻,并在每次数据传输的结束时刻停止本次信道状态测量,并在下一个数据传输时间段的起始时刻开始时刻对所述导频信号进行测量。
可选的,所述处理器162具体用于:
获得基站的每个数据传输时间段的起始时刻和终止时刻;
在每个数据传输时间段的结束时刻开始对所述导频信号,进行限制性信道状态测量。
可选的,所述处理器162获得基站每次数据传输的起始时刻包括:
通过对下行信道进行盲检测,确定出所述基站每次数据传输的起始时刻;或者从所述基站发送的通知信令中,获得所述基站每次数据传输的起始时刻。
可选的,所述处理器162获得所述基站每次数据传输的结束时刻包括:
通过对下行信道进行盲检测,确定出所述基站每次数据传输的结束时刻;或者所述终端从所述基站发送的通知信令中,获得所述基站每次数据传输的结束时刻。
基于上述任一实施例,所述处理器162还用于:
在需要上报时,将最近一次信道状态测量得到的测量量上报给所述基站。
可选的,所述处理器162还用于:
在需要上报时,根据所述基站发送的通知信令中携带的所述基站本次数据传输采用的发射功率,对自身最近一次信道状态测量得到的测量量的值进行修正;控制所述收发器161将修正后的测量量上报给所述基站。
可选的,所述处理器162对自身最近一次信道状态测量得到的测量量的值进行修正,包括:
根据所述基站发送的通知信令中携带的所述基站的最大发射功率对应的测量量的值,将最近一次信道状态测量得到的测量量的值与所述基站本次数据传输采用的发射功率对应的调整量之和,作为修正后的测量量的值。
可选的,所述处理器162对自身最近一次信道状态测量得到的测量量的值进行修正之后,还用于:对修正后的测量量进行平滑和滤波处理;控制所述收发器161将平滑和滤波处理后得到的测量量上报给所述基站。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或 多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (54)

  1. 一种数据传输方法,其特征在于,该方法包括:
    所述第一设备通过对免许可频谱上的信道进行空闲信道评估CCA检测,获得CCA检测结果;
    若所述CCA检测结果小于第一门限值,所述第一设备根据所述CCA检测结果确定发射功率等级;
    所述第一设备采用所述发射功率等级对应的发射功率传输数据。
  2. 如权利要求1所述的方法,其特征在于,所述第一设备根据所述CCA检测结果确定发射功率等级,包括:
    所述第一设备根据所述CCA检测结果与N个CCA检测门限值确定所述发射功率等级,其中,所述第一门限值为所述N个门限值中最大门限值,N为大于或等于2的整数。
  3. 如权利要求2所述的方法,其特征在于,所述第一设备根据所述CCA检测结果与N个CCA检测门限值确定所述发射功率等级,包括:
    若所述检测结果小于门限值L1,所述第一设备确定出所述发射功率等级为PN
    若所述检测结果大于或等于门限值Li且小于门限值Li+1,所述第一设备确定出所述发射功率等级为PN-i
    其中,门限值Li+1大于门限值Li,PN对应的发射功率为最大发射功率,Pj+1对应的发射功率大于Pj对应的发射功率,i=1,…,N,j=1,…,N。
  4. 如权利要求3所述的方法,其特征在于,所述第一设备根据所述CCA检测结果与N个CCA检测门限值确定所述发射功率等级之后,还包括:
    所述第一设备根据所述检测结果,对所述发射功率等级对应的发射功率进行调整,得到所述发射功率等级对应的调整后的发射功率;
    所述第一设备采用所述发射功率等级对应的发射功率传输数据,包括:所述第一设备采用调整后的发射功率传输数据。
  5. 如权利要求1所述的方法,其特征在于,所述第一设备根据所述CCA检测结果确定发射功率等级,包括:
    所述第一设备根据检测结果与发射功率等级的对应关系,确定出所述检测结果对应的发射功率等级。
  6. 如权利要求1~5任一项所述的方法,其特征在于,该方法还包括:
    所述第一设备根据获得到的第二设备在所述信道上对所述第一设备的干扰信息对自身的CCA检测门限值进行调整,所述第二设备与所述第一设备为不同的设备;或者
    所述第一设备根据自身的负载信息和/或获得到的所述信道上的第二设备的负载信息,对自身的CCA检测门限值进行调整,所述第二设备与所述第一设备为不同的设备;或者
    所述第一设备根据获得到的所述信道上的第二设备的CCA检测门限值,对自身的门限值进行调整,所述第二设备与所述第一设备为不同的设备。
  7. 如权利要求1~6任一项所述的方法,其特征在于,该方法还包括:
    所述第一设备根据获得到的所述信道上的第二设备的CCA检测门限值与发射功率等级的对应关系,确定出所述第二设备在所述信道上传输数据所采用的发射功率;所述第一设备基于系统容量最大原则,根据所述第二设备的发射功率,调整自身传输数据所采用的发射功率,所述第二设备与所述第一设备为不同的设备;或者
    所述第一设备根据获得到的第二设备在所述信道上对所述第一设备的干扰信息,对自身传输数据所采用的发射功率,所述第二设备与所述第一设备为不同的设备;或者
    所述第一设备根据自身的负载信息和/或获得到的所述信道上的第二设备的负载信息,对自身传输数据所采用的发射功率,所述第二设备与所述第一设备为不同的设备。
  8. 如权利要求1~7任一项所述的方法,其特征在于,该方法还包括:
    所述第一设备根据所述发射功率等级,确定出所述发射功率等级对应的 发射功率对应的覆盖范围内的用户设备;
    所述第一设备调度所述发射功率等级对应的发射功率对应的覆盖范围内的部分或全部用户设备。
  9. 如权利要求8所述的方法,其特征在于,所述第一设备确定出所述发射功率等级对应的发射功率对应的覆盖范围内的用户设备之后,该方法还包括:
    若确定出的发射功率等级为Pj,所述第一设备优先调度位于第j个环形区域内的用户设备;
    其中,最大发射功率对应的覆盖范围被划分为N个环形区域,第一个环形区域为中心区域,且第N个环形区域为边缘区域,N为大于或等于2的整数;PN对应的发射功率为最大发射功率,Pj+1对应的发射功率大于Pj对应的发射功率,j=1,…,N。
  10. 如权利要求8或9所述的方法,其特征在于,该方法还包括:
    所述第一设备将确定出的发射功率等级通知给所述发射功率等级对应的发射功率对应的覆盖范围内的用户设备。
  11. 如权利要求1所述的方法,其特征在于,该方法还包括:
    若所述检测结果大于或等于所述第一门限值,所述第一设备关闭发射。
  12. 如权利要求1~11任一项所述的方法,其特征在于,所述第一设备通过对免许可频谱上的信道进行CCA检测,获得CCA检测结果,包括:
    所述第一设备在每次数据传输之前,通过对免许可频谱上的信道进行CCA检测,获得CCA检测结果。
  13. 如权利要求12所述的方法,其特征在于,所述第一设备通过对免许可频谱上的信道进行CCA检测,获得CCA检测结果之后,还包括:
    所述第一设备根据所述CCA检测结果,确定出任一所述CCA检测门限值对应的随机数减小至0后,进行一次数据传输。
  14. 如权利要求12所述的方法,其特征在于,所述第一设备通过对免许可频谱上的信道进行CCA检测,获得CCA检测结果之后,还包括:
    所述第一设备根据所述CCA检测结果,确定出所有所述CCA检测门限值对应的随机数均减小至0后,进行一次数据传输;
    所述第一设备采用所述发射功率等级对应的发射功率传输数据,包括:
    所述第一设备在本次数据传输时长的不同的时间段内,采用不同的CCA检测门限值对应的发射功率等级对应的发射功率,传输本次需要传输的数据。
  15. 如权利要求13或14所述的方法,其特征在于,所述第一设备根据所述CCA检测结果,确定出自身的任一CCA检测门限值对应的随机数减小至0,包括:
    所述第一设备根据所述CCA检测门限值,确定出所述CCA检测结果与所述CCA检测门限值的大小关系;
    所述第一设备将所述关系中小于所述检测结果的CCA检测门限值对应的随机数的值减去设定的步长,并继续进行CCA检测,直至所述关系中小于所述检测结果的CCA检测门限值对应的随机数减小至0。
  16. 如权利要求1~15任一项所述的方法,其特征在于,所述第一设备为基站,该方法还包括:
    所述第一设备接收到终端上报的测量量后,根据接收到所述终端上报的测量量的时间点,确定出所述第一设备在所述时间点之前最后确定出的发射功率等级;
    所述第一设备根据确定出的发射功率等级对应的发射功率,对所述终端上报的测量量的值进行修正;
    其中,所述终端上报的测量量为所述终端基于所述第一设备传输的数据进行测量得到的测量量。
  17. 如权利要求16所述的方法,其特征在于,所述第一设备根据确定出的发射功率等级对应的发射功率,对所述终端上报的测量量的值进行修正,包括:
    所述第一设备根据所述第一设备的最大发射功率对应的测量量的值,将所述终端上报的测量量的值与确定出的发射功率等级对应的发射功率对应的 调整量之和,作为所述终端上报的测量量的修正后的值。
  18. 一种信道状态测量方法,其特征在于,该方法包括:
    终端接收基站在每个数据传输时间段内发送的数据中的导频信号;
    所述终端对所述导频信号,进行限制性信道状态测量;
    其中,所述限制性信道状态测量为:所述终端的每次信道状态测量是针对同一数据传输时间段内发射功率相同且连续的导频信号进行的。
    终端获得基站每次数据传输时间段的起始时刻和结束时刻;
  19. 如权利要求18所述的方法,其特征在于,该方法还包括:所述终端获得基站的每个数据传输时间段的起始时刻;
    所述终端对所述导频信号,进行限制性信道状态测量,包括:所述终端在每个数据传输时间段的起始时刻开始对所述导频信号,进行限制性信道状态测量。
  20. 如权利要求19所述的方法,其特征在于,该方法还包括:
    所述终端获得所述基站每次数据传输的结束时刻,并在每次数据传输的结束时刻停止本次信道状态测量,并在下一个数据传输时间段的起始时刻开始时刻对所述导频信号进行测量。
  21. 如权利要求18所述的方法,其特征在于,该方法还包括:所述终端获得基站的每个数据传输时间段的起始时刻和终止时刻;
    所述终端对所述导频信号,进行限制性信道状态测量,包括:所述终端在每个数据传输时间段的结束时刻开始对所述导频信号,进行限制性信道状态测量。
  22. 如权利要求19或21所述的方法,其特征在于,所述终端获得基站每次数据传输的起始时刻,包括:
    所述终端通过对下行信道进行盲检测,确定出所述基站每次数据传输的起始时刻,或者
    所述终端从所述基站发送的通知信令中,获得所述基站每次数据传输的起始时刻。
  23. 如权利要求20或21所述的方法,其特征在于,所述终端获得所述基站每次数据传输的结束时刻,包括:
    所述终端通过对下行信道进行盲检测,确定出所述基站每次数据传输的结束时刻,或者
    所述终端从所述基站发送的通知信令中,获得所述基站每次数据传输的结束时刻。
  24. 如权利要求18~23任一项所述的方法,其特征在于,该方法还包括:
    所述终端在需要上报时,将最近一次信道状态测量得到的测量量上报给所述基站。
  25. 如权利要求24所述的方法,其特征在于,该方法还包括:
    所述终端在需要上报时,根据所述基站发送的通知信令中携带的所述基站本次数据传输采用的发射功率,对自身最近一次信道状态测量得到的测量量的值进行修正;
    所述终端将最近一次信道状态测量得到的测量量上报给所述基站,包括:所述终端将修正后的测量量上报给所述基站。
  26. 如权利要求25所述的方法,其特征在于,所述终端对自身最近一次信道状态测量得到的测量量的值进行修正,包括:
    所述终端根据所述基站发送的通知信令中携带的所述基站的最大发射功率对应的测量量的值,将所述终端最近一次信道状态测量得到的测量量的值与所述基站本次数据传输采用的发射功率对应的调整量之和,作为所述终端修正后的测量量的值。
  27. 如权利要求25或26所述的方法,其特征在于,所述终端对自身最近一次信道状态测量得到的测量量的值进行修正之后,该方法还包括:所述终端对修正后的测量量进行平滑和滤波处理;
    所述终端将最近一次信道状态测量得到的测量量上报给所述基站,包括:所述终端将平滑和滤波处理后得到的测量量上报给所述基站。
  28. 一种通信设备,其特征在于,所述设备包括:
    CCA检测模块,用于通过对免许可频谱上的信道进行空闲信道评估CCA检测,获得CCA检测结果;
    发射功率等级确定模块,用于若所述CCA检测结果小于第一门限值,根据所述CCA检测结果确定发射功率等级;
    数据传输模块,用于采用所述发射功率等级对应的发射功率传输数据。
  29. 如权利要求28所述的设备,其特征在于,所述发射功率等级确定模块具体用于:
    根据所述CCA检测结果与N个CCA检测门限值确定所述发射功率等级,其中,所述第一门限值为所述N个门限值中最大门限值,N为大于或等于2的整数。
  30. 如权利要求29所述的设备,其特征在于,所述发射功率等级确定模块具体用于:
    若所述检测结果小于门限值L1,确定出所述发射功率等级为PN
    若所述检测结果大于或等于门限值Li且小于门限值Li+1,确定出所述发射功率等级为PN-i
    其中,门限值Li+1大于门限值Li,PN对应的发射功率为最大发射功率,Pj+1对应的发射功率大于Pj对应的发射功率,i=1,…,N,j=1,…,N。
  31. 如权利要求30所述的设备,其特征在于,所述发射功率等级确定模块还用于:
    根据所述检测结果,对所述发射功率等级对应的发射功率进行调整,得到所述发射功率等级对应的调整后的发射功率;
    所述数据传输模块具体用于:采用调整后的发射功率传输数据。
  32. 如权利要求28所述的设备,其特征在于,所述发射功率等级确定模块具体用于:
    根据检测结果与发射功率等级的对应关系,确定出所述检测结果对应的发射功率等级。
  33. 如权利要求28~32任一项所述的设备,其特征在于,该设备还包括: 第一调整模块,用于:
    根据获得到的第二设备在所述信道上对所述第一调整模块所属的设备的干扰信息对自身所属的设备的CCA检测门限值进行调整,所述第二设备与所述第一调整模块所属的设备为不同的设备;或者
    根据自身所属的设备的负载信息和/或获得到的所述信道上的第二设备的负载信息,对自身所属的设备的CCA检测门限值进行调整,所述第二设备与所述第一调整模块所属的设备为不同的设备;或者
    根据获得到的所述信道上的第二设备的CCA检测门限值,对自身所属的设备的门限值进行调整,所述第二设备与所述第一调整模块所属的设备为不同的设备。
  34. 如权利要求28~33任一项所述的设备,其特征在于,该设备还包括:第二调整模块,用于:
    根据获得到的所述信道上的第二设备的CCA检测门限值与发射功率等级的对应关系,确定出所述第二设备在所述信道上传输数据所采用的发射功率;基于系统容量最大原则,根据所述第二设备的发射功率,调整自身所属的设备传输数据所采用的发射功率,所述第二设备与所述第二调整模块所属的设备为不同的设备;或者
    根据获得到的第二设备在所述信道上对所述第二调整模块所属的设备的干扰信息,对自身所属的设备传输数据所采用的发射功率,所述第二设备与所述第二调整模块所属的设备为不同的设备;或者
    根据自身所属的设备的负载信息和/或获得到的所述信道上的第二设备的负载信息,对自身所属的设备传输数据所采用的发射功率,所述第二设备与所述第二调整模块所属的设备为不同的设备。
  35. 如权利要求28~34任一项所述的设备,其特征在于,该设备还包括:
    调度模块,用于根据所述发射功率等级,确定出所述发射功率等级对应的发射功率对应的覆盖范围内的用户设备;以及调度所述发射功率等级对应的发射功率对应的覆盖范围内的部分或全部用户设备。
  36. 如权利要求35所述的设备,其特征在于,所述调度模块具体用于:
    若确定出的发射功率等级为Pj,优先调度位于第j个环形区域内的用户设备;
    其中,最大发射功率对应的覆盖范围被划分为N个环形区域,第一个环形区域为中心区域,且第N个环形区域为边缘区域,N为大于或等于2的整数;PN对应的发射功率为最大发射功率,Pj+1对应的发射功率大于Pj对应的发射功率,j=1,…,N。
  37. 如权利要求35或36所述的设备,其特征在于,所述数据传输模块还用于:
    将确定出的发射功率等级通知给所述发射功率等级对应的发射功率对应的覆盖范围内的用户设备。
  38. 如权利要求28所述的设备,其特征在于,所述发射功率等级确定模块还用于:
    若所述检测结果大于或等于所述第一门限值,关闭发射。
  39. 如权利要求28~38任一项所述的设备,其特征在于,所述CCA检测模块具体用于:
    在每次数据传输之前,通过对免许可频谱上的信道进行CCA检测,获得CCA检测结果。
  40. 如权利要求39所述的设备,其特征在于,所述CCA检测模块具体用于:
    根据所述CCA检测结果,确定出任一所述CCA检测门限值对应的随机数减小至0后,触发所述数据传输模块进行一次数据传输。
  41. 如权利要求39所述的设备,其特征在于,所述CCA检测模块还用于:根据所述CCA检测结果,确定出所有所述CCA检测门限值对应的随机数均减小至0后,触发所述数据传输模块进行一次数据传输;
    所述数据传输模块具体用于:在本次数据传输时长的不同的时间段内,采用不同的CCA检测门限值对应的发射功率等级对应的发射功率,传输本次 需要传输的数据。
  42. 如权利要求40或41所述的设备,其特征在于,所述CCA检测模块具体用于:
    根据所述CCA检测门限值,确定出所述CCA检测结果与所述CCA检测门限值的大小关系;
    将所述关系中小于所述检测结果的CCA检测门限值对应的随机数的值减去设定的步长,并继续进行CCA检测,直至所述关系中小于所述检测结果的CCA检测门限值对应的随机数减小至0。
  43. 如权利要求28~42任一项所述的设备,其特征在于,所述设备还包括:
    上报处理模块,用于接收到终端上报的测量量后,根据接收到所述终端上报的测量量的时间点,确定出所述发射功率等级确定模块在所述时间点之前最后确定出的发射功率等级;
    根据确定出的发射功率等级对应的发射功率,对所述终端上报的测量量的值进行修正;
    其中,所述终端上报的测量量为所述终端基于所述设备传输的数据进行测量得到的测量量。
  44. 如权利要求43所述的设备,其特征在于,所述上报处理模块具体用于:
    根据自身所属的设备的最大发射功率对应的测量量的值,将所述终端上报的测量量的值与确定出的发射功率等级对应的发射功率对应的调整量之和,作为所述终端上报的测量量的修正后的值。
  45. 一种终端,其特征在于,所述终端包括:
    接收模块,用于接收基站在每个数据传输时间段内发送的数据中的导频信号;
    测量模块,用于对所述导频信号,进行限制性信道状态测量;
    其中,所述限制性信道状态测量为:所述测量模块的每次信道状态测量 是针对同一数据传输时间段内发射功率相同且连续的导频信号进行的。
  46. 如权利要求45所述的终端,其特征在于,所述测量模块具体用于:
    获得基站的每个数据传输时间段的起始时刻;
    在每个数据传输时间段的起始时刻开始对所述导频信号,进行限制性信道状态测量。
  47. 如权利要求46所述的终端,其特征在于,所述测量模块还用于:
    获得所述基站每次数据传输的结束时刻,并在每次数据传输的结束时刻停止本次信道状态测量,并在下一个数据传输时间段的起始时刻开始时刻对所述导频信号进行测量。
  48. 如权利要求45所述的终端,其特征在于,所述测量模块具体用于:
    获得基站的每个数据传输时间段的起始时刻和终止时刻;
    在每个数据传输时间段的结束时刻开始对所述导频信号,进行限制性信道状态测量。
  49. 如权利要求46或48所述的终端,其特征在于,所述测量模块获得基站每次数据传输的起始时刻,包括:
    通过对下行信道进行盲检测,确定出所述基站每次数据传输的起始时刻;或者从所述基站发送的通知信令中,获得所述基站每次数据传输的起始时刻。
  50. 如权利要求47或48所述的终端,其特征在于,所述测量模块获得所述基站每次数据传输的结束时刻,包括:
    通过对下行信道进行盲检测,确定出所述基站每次数据传输的结束时刻;或者所述终端从所述基站发送的通知信令中,获得所述基站每次数据传输的结束时刻。
  51. 如权利要求45~50任一项所述的终端,其特征在于,所述测量模块还用于:
    在需要上报时,将最近一次信道状态测量得到的测量量上报给所述基站。
  52. 如权利要求51所述的终端,其特征在于,所述测量模块还用于:
    在需要上报时,根据所述基站发送的通知信令中携带的所述基站本次数 据传输采用的发射功率,对自身最近一次信道状态测量得到的测量量的值进行修正;将修正后的测量量上报给所述基站。
  53. 如权利要求52所述的终端,其特征在于,所述测量模块对自身最近一次信道状态测量得到的测量量的值进行修正,包括:
    根据所述基站发送的通知信令中携带的所述基站的最大发射功率对应的测量量的值,将最近一次信道状态测量得到的测量量的值与所述基站本次数据传输采用的发射功率对应的调整量之和,作为修正后的测量量的值。
  54. 如权利要求52或53所述的终端,其特征在于,所述测量模块对自身最近一次信道状态测量得到的测量量的值进行修正之后,还用于:对修正后的测量量进行平滑和滤波处理;将平滑和滤波处理后得到的测量量上报给所述基站。
PCT/CN2015/090845 2015-08-28 2015-09-25 一种数据传输和信道测量方法、设备 WO2017035887A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580068098.7A CN107005949A (zh) 2015-08-28 2015-09-25 一种数据传输和信道测量方法、设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2015/088448 2015-08-28
CN2015088448 2015-08-28

Publications (1)

Publication Number Publication Date
WO2017035887A1 true WO2017035887A1 (zh) 2017-03-09

Family

ID=58186618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/090845 WO2017035887A1 (zh) 2015-08-28 2015-09-25 一种数据传输和信道测量方法、设备

Country Status (2)

Country Link
CN (1) CN107005949A (zh)
WO (1) WO2017035887A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109769291A (zh) * 2017-11-09 2019-05-17 中国移动通信有限公司研究院 一种终端功率控制的方法和终端
WO2021098062A1 (en) 2020-02-14 2021-05-27 Zte Corporation Method for multiplexing of services with different priority levels

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10798739B2 (en) * 2017-09-29 2020-10-06 Apple Inc. Enhanced LAA transceiver with aid of carrier sensing from WiFi
CN109309926B (zh) * 2018-09-29 2021-12-03 中国科学院上海微系统与信息技术研究所 一种基于干扰等级的先听后说参数配置方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150071270A1 (en) * 2013-09-12 2015-03-12 Magnolia Broadband Inc. Method and system for accessing an occupied wi-fi channel by a client using a nulling scheme
CN104604309A (zh) * 2012-09-05 2015-05-06 高通股份有限公司 占空循环式传输
CN104812038A (zh) * 2014-01-23 2015-07-29 华为技术有限公司 一种ap发射功率调整方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101808333B (zh) * 2010-02-02 2013-09-04 深圳先进技术研究院 共享信道的方法及系统
US9521587B2 (en) * 2013-12-11 2016-12-13 Futurewei Technologies, Inc. System and method for determining a clear channel assessment threshold
EP3107340B1 (en) * 2014-02-10 2019-06-05 LG Electronics Inc. Method and apparatus for transmitting frame in wireless local area network
CN103997743B (zh) * 2014-05-07 2017-10-20 西安交通大学 一种认知无线电系统中基于有效容量的资源分配方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104604309A (zh) * 2012-09-05 2015-05-06 高通股份有限公司 占空循环式传输
US20150071270A1 (en) * 2013-09-12 2015-03-12 Magnolia Broadband Inc. Method and system for accessing an occupied wi-fi channel by a client using a nulling scheme
CN104812038A (zh) * 2014-01-23 2015-07-29 华为技术有限公司 一种ap发射功率调整方法及装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109769291A (zh) * 2017-11-09 2019-05-17 中国移动通信有限公司研究院 一种终端功率控制的方法和终端
CN109769291B (zh) * 2017-11-09 2022-09-13 中国移动通信有限公司研究院 一种终端功率控制的方法和终端
WO2021098062A1 (en) 2020-02-14 2021-05-27 Zte Corporation Method for multiplexing of services with different priority levels
EP4088535A4 (en) * 2020-02-14 2023-10-11 ZTE Corporation METHOD FOR MULTIPLEXING SERVICES AT DIFFERENT PRIORITY LEVELS

Also Published As

Publication number Publication date
CN107005949A (zh) 2017-08-01

Similar Documents

Publication Publication Date Title
US10123335B2 (en) Quality of service related enhancements for LTE over shared spectrum
US11849485B2 (en) Flexible time masks for listen-before-talk based channel access
US10548157B2 (en) Unlicensed spectrum scheduling method and device, and user equipment UE
CN107624253B (zh) 对执照辅助式接入的rrm测量和报告
EP3100531B1 (en) Techniques for controlling transmission power in shared radio frequency spectrum
CA3010619C (en) Synchronization across transmitting nodes using shared radio frequency spectrum
EP2915362B1 (en) Methods and devices related to interference mitigated effective measurements
US8891467B2 (en) Dynamic bandwidth adjustment in flexible bandwidth systems
US9807634B2 (en) Mobile communication system, and carrier measurement method in the mobile communication system
Li et al. Enhanced listen-before-talk scheme for frequency reuse of licensed-assisted access using LTE
EP3755069B1 (en) Method and device for controlling power
WO2017028440A1 (zh) 一种不同通信网络共存使用免授权频段的方法
JP6833814B2 (ja) 共有無線周波数スペクトル帯域中での送信のための競合ウィンドウ調整のための技法
WO2017133443A1 (zh) 一种非授权频段上行功率控制方法及相关设备
KR20110122454A (ko) 이동통신시스템에서 복수 개의 캐리어들이 집적된 단말기의 캐리어들에 대한 효율적인 메저먼트 방법
WO2017035887A1 (zh) 一种数据传输和信道测量方法、设备
US20160249226A1 (en) Wireless communication method and apparatus
Thalanany et al. License-assisted access considerations
KR101714592B1 (ko) 비면허 대역을 이용하여 캐리어 집적을 수행하기 위한 방법 및 장치
WO2017035716A1 (zh) 一种频谱共享的方法及装置
US11129193B2 (en) Data transmission method and apparatus using a clear channel assessment (CCA) detection threshold
Yang et al. ARIA-LAA: Alignment reference interval adaptation-based licensed-assisted access for LTE in unlicensed bands
Toskala et al. Small cell enhancements in Release 12/13

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15902694

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15902694

Country of ref document: EP

Kind code of ref document: A1