WO2017035850A1 - Système de démodulation et système de détection synchrones et à ligne partagée pour intégration de réseau de détection de fibre optique - Google Patents

Système de démodulation et système de détection synchrones et à ligne partagée pour intégration de réseau de détection de fibre optique Download PDF

Info

Publication number
WO2017035850A1
WO2017035850A1 PCT/CN2015/089195 CN2015089195W WO2017035850A1 WO 2017035850 A1 WO2017035850 A1 WO 2017035850A1 CN 2015089195 W CN2015089195 W CN 2015089195W WO 2017035850 A1 WO2017035850 A1 WO 2017035850A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
input end
port
circulator
coupler
Prior art date
Application number
PCT/CN2015/089195
Other languages
English (en)
Chinese (zh)
Inventor
吴智深
孙安
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Publication of WO2017035850A1 publication Critical patent/WO2017035850A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light

Definitions

  • the invention relates to a closed-loop dynamic filtering optical fiber sensing network integrated synchronous collinear demodulation system and sensing system, which can realize integrated networking of fiber grating and fiber Brillouin scattering sensing and other distributed optical fiber sensing systems. Synchronous collinear monitoring with real time.
  • the optical fiber sensing technology utilizes the optical wave modulation technology to utilize the optical wave parametric modulation to realize the extraction of the information to be tested.
  • Current fiber-optic sensing systems are mainly strain gauges, fiber Bragg grating (FBG) sensing, distributed fiber sensing based on Brillouin scattering, and distributed fiber sensing based on Raman scattering.
  • FBG fiber Bragg grating
  • the fiber grating sensing system is quasi-distributed sensing, and a plurality of fiber grating sensors of different wavelengths are written on a single fiber to form a sensor array in series, and the sensing is realized by measuring the change of the grating reflection wavelength caused by the external physical quantity; the optical fiber cloth
  • the Liyuan sensing system is fully distributed, that is, the whole fiber is used as a sensor to sense the frequency change of the Brillouin scattering light at each point of the fiber by measuring the physical quantity of the outside.
  • the advantages of FBG sensing are high precision and high-speed dynamic monitoring.
  • the fiber Brillouin sensing system can realize comprehensive monitoring in the range of tens of kilometers using one fiber.
  • the disadvantage is that it can only achieve static monitoring and the accuracy is lower than that of fiber.
  • Grating sensing system Distributed fiber sensing for Raman scattering can only be used for temperature sensing.
  • it is often required to be able to coordinate monitoring through a variety of fiber-optic sensing systems, taking advantage of the unique advantages of different sensing systems to achieve a comprehensive assessment of their damage and health status.
  • the existing signals of various optical fiber sensing systems are incompatible, crosstalk is severe, and real-time collinear demodulation cannot be realized to form a sensing network.
  • the technical problem to be solved by the present invention is to provide a versatility, a simplified system, a strong compatibility, and a networked monitoring to realize fiber grating and fiber Brillouin scattering sensing and the like.
  • Distributed optical fiber sensing system integrated synchronous collinear demodulation system and sensing system of the demodulation system.
  • Optical fiber sensing network integrated synchronous collinear demodulation system including single longitudinal mode laser, optical fiber amplifier, first coupler, second coupler, fiber grating wavelength demodulation unit, high frequency photodetector, polarizer a pulse modulator, a scrambler, a dual port fiber ASE amplifier, a first circulator, a second circulator, a phase shift grating filter, a signal amplification and filtering unit, and a Brillouin photoelectric signal frequency analyzing unit;
  • the output end of the mode laser is connected to the input end of the fiber amplifier, the output end of the fiber amplifier is connected to the input end of the first coupler, the first output end of the first coupler is connected to the input end of the second coupler, and the second output end of the first coupler is connected to the bias
  • the two output ends of the second coupler are respectively connected to the input end of the fiber grating wavelength demodulation unit and the high frequency photodetector, and the output end of the polarizer is connected
  • a first port of the circulator a second port of the first circulator is connected to the first port of the second circulator, and a third port of the first circulator is an output signal connection end of the integrated sensor network, and the second circulator is The second port and the third port are respectively connected to the input end of the phase shift grating filter and the input end of the high frequency photodetector, and the output end and the control end of the phase shift grating filter are respectively connected to the input end and control of the fiber grating wavelength demodulation unit
  • the output end of the high-frequency photodetector is connected to the signal amplification and filtering unit input end, and the signal amplification and filtering unit output end is connected to the Brillouin photoelectric signal frequency analyzing unit.
  • the phase shift grating filter can control the reflection and transmission wavelength by designing a suitable phase shift, and realize the reflection of the Brillouin Stokes and anti-Stokes light while the light of the fiber grating sensor array is transmitted.
  • the integrated sensing network is an integrated network of a fiber grating sensor array and a Brillouin sensing fiber.
  • Optical fiber sensing network integrated synchronous collinear sensing system including single longitudinal mode laser, optical fiber amplifier, first coupler, second coupler, fiber grating wavelength demodulation unit, high frequency photodetector, polarizer , pulse modulator, scrambler, dual port fiber ASE amplifier, first circulator, fiber grating sensor array and Brillouin sensing fiber integrated sensor network, second circulator, phase shift grating filter, signal amplification And a filtering unit and a Brillouin photoelectric signal frequency analyzing unit;
  • the single longitudinal mode laser output end is connected to the fiber amplifier input end, the fiber amplifier output end is connected to the first coupler input end, and the first coupler first output end is connected to the second The input end of the coupler, the second output end of the first coupler is connected to the input end of the polarizer, and the two output ends of the second coupler are respectively connected to the input end of the fiber grating wavelength demodulation unit and the high frequency photodetector,
  • the output of the polarizer is
  • the input end of the SE amplifier, the output of the dual port fiber ASE amplifier is connected to the first port of the first circulator, the second port of the first circulator is connected to the integrated sensor network, and the third port of the first circulator is connected to the second port.
  • the first port of the circulator, the second port and the third port of the second circulator are respectively connected to the input end of the phase shift grating filter and the input end of the high frequency photodetector, and the output of the phase shift grating filter
  • the end and the control end are respectively connected to the input end and the control end of the fiber grating wavelength demodulation unit, the output end of the high frequency photodetector is connected to the signal amplification and filtering unit input end, and the signal amplification and filtering unit output end is connected to the Brillouin photoelectric signal frequency analysis. unit.
  • the integrated sensing network is an integrated network of a fiber grating sensor array and a Brillouin sensing fiber.
  • the continuous light emitted by the single longitudinal mode laser of the present invention is amplified by the optical fiber amplifier and split into two paths through the first coupler, one enters the polarizer as the Brillouin scattering sensing light, and the other passes through the second coupler and is divided again.
  • the light entering the wavelength demodulation unit is used as the reference light.
  • the demodulation unit detects the wavelength of the reference light
  • the wavelength of the phase shift grating filter is controlled by feedback, and the wavelength of the fiber grating sensor and the Brillouin scattered light signal can be effectively separated.
  • the other light that enters the high-frequency photodetector is the local oscillator for coherent detection.
  • the Brillouin scattering sensor light passes through a polarizer, a pulse modulator, and a scrambler, and then becomes a pulsed light whose polarization state changes randomly.
  • the amplified pulse light and the ASE light pass through the same After a circulator, the fiber grating sensor array and the Brillouin sensing fiber integrated sensing network are entered.
  • the fiber grating optical signal and the Brillouin scattered light signal reflected by the sensing network pass through the circulator and then enter the second circulator again, wherein the fiber grating optical signal is transmitted through the phase shift grating filter into the fiber grating wavelength demodulation unit for wavelength detection,
  • the Brillouin scattered light signal is reflected by the phase shift grating filter and then enters the high frequency photodetector. After being coherent with the local oscillator, it enters the signal amplification and filtering unit and performs frequency analysis of the Brillouin photoelectric signal.
  • the demodulation system and the sensing system of the invention utilize the fiber grating wavelength demodulation unit to detect the wavelength of the fiber grating sensor while detecting the wavelength of the fiber Brillouin sensing light source and the Brillouin scattering light, and simultaneously utilize the phase
  • the grating grating separates the Brillouin scattered light signal, the fiber grating sensor optical signal, and the base noise such as Rayleigh scattering and end-reflection light.
  • the phase-shift grating wavelength is controlled by closed-loop feedback, and the phase-shift grating wavelength is accurately locked to realize dynamic filtering. Demodulation and simultaneous collinear monitoring of the sensor network consisting of fiber optic sensing systems.
  • the invention has the following advantages: 1.
  • the fiber grating and the fiber Brillouin scattering sensing and other distributed optical fiber sensing systems can be integrated and real-time synchronous collinear monitoring; 2 versatile, The system is simplified, the compatibility is strong, and networked monitoring can be formed. 3.
  • the system structure is simplified and the stability is good, the cost is low, and the cost performance is high.
  • FIG. 1 is a schematic illustration of the system of the present invention
  • the continuous light from the single longitudinal mode laser 1 is amplified by the optical fiber amplifier 2 and split into two paths through the first coupler 3, one into the polarizer 4 as Brillouin scattering sensing light, and the other path.
  • the second coupler 5 is further divided into two paths, and enters the input end of the fiber grating wavelength demodulating unit 6 and the high frequency photodetector 7, respectively.
  • the light entering the wavelength demodulating unit 6 is used as the reference light.
  • the wavelength demodulating unit 6 detects the wavelength of the reference light
  • the wavelength of the phase shift grating filter 8 is controlled by feedback, and the wavelength of the fiber grating sensor and Brillouin scattering can be effectively separated.
  • Optical signal is used as the reference light.
  • the other light that enters the high-frequency photodetector 7 is the local oscillator for coherent detection.
  • the Brillouin scattering sensor light passes through the polarizer 4, the pulse modulator 9, and the scrambler 10 in sequence to become pulsed light whose polarization state is randomly changed, and enters the dual-port fiber ASE amplifier 11 to perform signal amplification, and the amplified pulse light and ASE are amplified.
  • the light enters the fiber grating sensor array and the Brillouin sensing fiber integrated sensing network 13 as a dual system multiplexed light source through the first circulator 12 .
  • the fiber grating light signal and the Brillouin scattered light signal reflected by the sensing network pass through the first circulator 12 and enter the second circulator 14 , wherein the fiber grating optical signal is transmitted through the phase shift grating filter 8 into the fiber grating wavelength demodulation unit. 6 performing wavelength detection, and the Brillouin scattered light signal is reflected by the phase shift grating filter 8 and then enters the high frequency photodetector 7 via the second circulator 14 to be coherent with the local oscillator light, and then enters the signal amplification and filtering unit 15 and enters Brillouin photoelectric signal frequency analysis unit 16.
  • the phase shift grating can be dynamically controlled by the closed loop.
  • the wavelength of the filter 8 is such that the wavelength of the reflection filter is consistent with the Brillouin scattered light signal, so that the wavelength of the fiber grating sensor array can enter the fiber grating wavelength demodulation unit 6 through the phase shift grating filter 8 for sensor demodulation.
  • the fiber grating demodulation system and Buri Real-time collinear synchronous monitoring of the sensing system is not a simple dual-system combination.
  • the two are cross-correlated rather than independent. They can realize real-time collinear monitoring and signal separation of multiple sensing systems. Additional wavelength locking units make it possible to simplify the system and reduce costs.
  • more distributed optical fiber sensing systems such as but not limited to pull-based, can be expanded by increasing the wavelength selection of the sensing source and the coupling optical path and multi-wavelength of the filter.
  • the fiber-scattering system of the Man scattering is compatible with the networking, forming a multi-fiber sensing technology integrated synchronous demodulation and monitoring network.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)
  • Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

L'invention concerne un système de démodulation et un système de détection synchrones et à ligne partagée pour une intégration de réseau de détection de fibre optique. Le système de démodulation comprend un laser à mode longitudinal unique (1), un amplificateur à fibre (2), un premier coupleur (3), un second coupleur (5), une unité de démodulation de longueur d'onde à réseau de fibres (6), un détecteur photoélectrique à haute fréquence (7), un polariseur (4), un modulateur d'impulsions (9), un embrouilleur de polarisation (10), un amplificateur ASE à fibres à double port (11), un premier circulateur (12), un second circulateur (14), un filtre à réseau de diffraction déphasé (8), une unité d'amplification et de filtration de signal (15) et une unité d'analyse de fréquence de signal électro-optique de Brillouin (16). Le premier circulateur (12) possède un second port connecté à un premier port du second circulateur (14), et un deuxième port et un troisième port du second circulateur (14) sont connectés respectivement à une extrémité d'entrée du filtre à réseau de diffraction déphasé (8) et à une extrémité d'entrée du détecteur photoélectrique à haute fréquence (7). Une extrémité de sortie de l'unité d'amplification et de filtration de signal (15) est connectée à l'unité d'analyse de fréquence de signal électro-optique de Brillouin (16). Les caractéristiques du système comprennent une variété de fonctions, une structure de système simplifiée, une compatibilité élevée, la capacité à former un réseau de démodulation et à exécuter en temps réel une surveillance synchrone et à ligne partagée, etc.
PCT/CN2015/089195 2015-08-28 2015-09-08 Système de démodulation et système de détection synchrones et à ligne partagée pour intégration de réseau de détection de fibre optique WO2017035850A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510537601.0A CN105115525B (zh) 2015-08-28 2015-08-28 一种光纤传感网络一体化同步共线解调系统及传感系统
CN201510537601.0 2015-08-28

Publications (1)

Publication Number Publication Date
WO2017035850A1 true WO2017035850A1 (fr) 2017-03-09

Family

ID=54663570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089195 WO2017035850A1 (fr) 2015-08-28 2015-09-08 Système de démodulation et système de détection synchrones et à ligne partagée pour intégration de réseau de détection de fibre optique

Country Status (2)

Country Link
CN (1) CN105115525B (fr)
WO (1) WO2017035850A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107037583A (zh) * 2017-05-19 2017-08-11 深圳市光子传感技术有限公司 解调相移光栅中心波长与相移量的方法、装置和系统
CN109193323A (zh) * 2018-11-16 2019-01-11 忻州师范学院 锁定光通信波段双激光器频率的装置及方法
CN109274434A (zh) * 2018-11-07 2019-01-25 桂林电子科技大学 一种基于单光纤集成光缆的光能量和光信号收发处理系统
CN110632025A (zh) * 2019-07-30 2019-12-31 盐城工学院 一种具有低频检测性能的分布式光纤气体检测装置及方法
CN112880713A (zh) * 2021-01-18 2021-06-01 广东电网有限责任公司 一种布里渊光时域分析仪的光路保护装置
CN113670354A (zh) * 2021-08-17 2021-11-19 广西师范大学 基于少模光纤模式复用的布里渊光时域反射仪
CN115882937A (zh) * 2022-11-30 2023-03-31 江苏亮点光电研究有限公司 基于光时域反射的光纤激光器状态在线监测光路及方法
CN116599581A (zh) * 2023-05-19 2023-08-15 煤炭科学技术研究院有限公司 光纤传感网络的可靠性评估方法、装置、设备及介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111595365A (zh) * 2020-07-06 2020-08-28 山东省科学院激光研究所 一种用于海洋温度及压力同步监测的多波长激光器
CN112265657B (zh) * 2020-10-22 2021-11-23 北京卫星环境工程研究所 一种基于光纤传感的航天器地面环境试验测试系统
CN112504433B (zh) * 2020-12-18 2022-02-11 西北大学 温度自参考灵敏度可调谐光纤分布式振动检波装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070171402A1 (en) * 2004-05-01 2007-07-26 Sensornet Limited Direct measurement of brillouin frequency in destributed optical sensing systems
US20070242262A1 (en) * 2003-10-29 2007-10-18 Macdougall Trevor Combined bragg grating wavelength interrogator and brillouin backscattering measuring instrument
JP2011043379A (ja) * 2009-08-20 2011-03-03 Tobishima Corp ひずみ・変形の計測監視装置
CN102176684A (zh) * 2011-03-23 2011-09-07 东南大学 用于工程结构整体与局部应变同时监测的分布式光纤传感器
CN102607736A (zh) * 2011-12-30 2012-07-25 宋牟平 一种光纤光栅结合布里渊散射信号检测的传感结构
CN102928138A (zh) * 2012-10-29 2013-02-13 南阳理工学院 基于布里渊光时域反射式光纤传感和光纤光栅传感的底板应力监测装置和方法
CN103196584A (zh) * 2013-03-12 2013-07-10 重庆大学 测量光纤中温度和应力的方法、以及布里渊光时域反射仪

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001356070A (ja) * 2000-06-13 2001-12-26 Ando Electric Co Ltd 光ファイバ歪測定装置
CN101245990B (zh) * 2008-03-24 2010-07-21 哈尔滨工业大学 全尺度分布式与局部高精度共线的光纤传感方法
CN102322884A (zh) * 2011-08-09 2012-01-18 中国计量学院 融合光纤布里渊频移器的超远程脉冲编码分布式光纤布里渊传感器
CN102829806B (zh) * 2012-08-23 2014-12-10 中国科学院半导体研究所 基于相移光纤光栅的光纤传感系统
CN103437383B (zh) * 2013-09-04 2016-08-17 南京大学 管桩击入土层的fbg-botda联合传感器检测方法
CN104111086B (zh) * 2014-08-12 2017-04-05 盐城工学院 基于低布里渊散射阈值传感光纤的光时域反射仪的装置与方法
CN104567960B (zh) * 2015-01-04 2017-04-05 西南交通大学 一种基于相位调制探测光的相干布里渊光时域分析传感系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070242262A1 (en) * 2003-10-29 2007-10-18 Macdougall Trevor Combined bragg grating wavelength interrogator and brillouin backscattering measuring instrument
US20070171402A1 (en) * 2004-05-01 2007-07-26 Sensornet Limited Direct measurement of brillouin frequency in destributed optical sensing systems
JP2011043379A (ja) * 2009-08-20 2011-03-03 Tobishima Corp ひずみ・変形の計測監視装置
CN102176684A (zh) * 2011-03-23 2011-09-07 东南大学 用于工程结构整体与局部应变同时监测的分布式光纤传感器
CN102607736A (zh) * 2011-12-30 2012-07-25 宋牟平 一种光纤光栅结合布里渊散射信号检测的传感结构
CN102928138A (zh) * 2012-10-29 2013-02-13 南阳理工学院 基于布里渊光时域反射式光纤传感和光纤光栅传感的底板应力监测装置和方法
CN103196584A (zh) * 2013-03-12 2013-07-10 重庆大学 测量光纤中温度和应力的方法、以及布里渊光时域反射仪

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHOU, ZHI ET AL.: "Measurement Technique Based on the FBG-BOTDA(R) for Infrastructures", CHINA CIVIL ENGINEERING JOURNAL, vol. 43, no. 3, 31 March 2010 (2010-03-31), pages 111 - 118, ISSN: 1000-131X *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107037583A (zh) * 2017-05-19 2017-08-11 深圳市光子传感技术有限公司 解调相移光栅中心波长与相移量的方法、装置和系统
CN107037583B (zh) * 2017-05-19 2023-08-08 深圳市光子传感技术有限公司 解调相移光栅中心波长与相移量的方法、装置和系统
CN109274434A (zh) * 2018-11-07 2019-01-25 桂林电子科技大学 一种基于单光纤集成光缆的光能量和光信号收发处理系统
CN109193323B (zh) * 2018-11-16 2023-12-08 忻州师范学院 锁定光通信波段双激光器频率的装置及方法
CN109193323A (zh) * 2018-11-16 2019-01-11 忻州师范学院 锁定光通信波段双激光器频率的装置及方法
CN110632025A (zh) * 2019-07-30 2019-12-31 盐城工学院 一种具有低频检测性能的分布式光纤气体检测装置及方法
CN110632025B (zh) * 2019-07-30 2024-01-09 盐城工学院 一种具有低频检测性能的分布式光纤气体检测装置及方法
CN112880713A (zh) * 2021-01-18 2021-06-01 广东电网有限责任公司 一种布里渊光时域分析仪的光路保护装置
CN112880713B (zh) * 2021-01-18 2023-10-20 广东电网有限责任公司 一种布里渊光时域分析仪的光路保护装置
CN113670354A (zh) * 2021-08-17 2021-11-19 广西师范大学 基于少模光纤模式复用的布里渊光时域反射仪
CN113670354B (zh) * 2021-08-17 2023-04-25 广西师范大学 基于少模光纤模式复用的布里渊光时域反射仪
CN115882937A (zh) * 2022-11-30 2023-03-31 江苏亮点光电研究有限公司 基于光时域反射的光纤激光器状态在线监测光路及方法
CN115882937B (zh) * 2022-11-30 2024-01-09 江苏亮点光电研究有限公司 基于光时域反射的光纤激光器状态在线监测光路及方法
CN116599581B (zh) * 2023-05-19 2024-01-05 煤炭科学技术研究院有限公司 光纤传感网络的可靠性评估方法、装置、设备及介质
CN116599581A (zh) * 2023-05-19 2023-08-15 煤炭科学技术研究院有限公司 光纤传感网络的可靠性评估方法、装置、设备及介质

Also Published As

Publication number Publication date
CN105115525B (zh) 2018-01-02
CN105115525A (zh) 2015-12-02

Similar Documents

Publication Publication Date Title
WO2017035850A1 (fr) Système de démodulation et système de détection synchrones et à ligne partagée pour intégration de réseau de détection de fibre optique
US10048115B2 (en) Optical sensor and method of use
US9599460B2 (en) Hybrid Raman and Brillouin scattering in few-mode fibers
CN102538985B (zh) 基于光纤布里渊环形激光器的传感信号检测装置及方法
US10162245B2 (en) Distributed acoustic sensing system based on delayed optical hybrid phase demodulator
CN111289089B (zh) 一种基于外差检测技术的分布式光纤传感系统
US20100014071A1 (en) Frequency-scanned optical time domain reflectometry
CN105890797B (zh) 温度和应力同时探测的高光谱瑞利-布里渊光时域反射计
RU2413188C2 (ru) Волоконно-оптическое устройство для измерения температурного распределения (варианты)
US9658052B2 (en) Method for reducing interference from scattered light/reflected light of interference path by generating carrier through phase
CN102809430B (zh) 基于光学锁相环的布里渊光时域反射计的装置
CN105136179B (zh) 基于ase噪声相干探测的分布式光纤传感装置及方法
CN110672137B (zh) 基于波分复用和微波光子技术的干涉型光纤振动传感系统
US10145726B2 (en) Fiber optic acoustic wave detection system
US10145727B2 (en) Method and structure for diminishing signal interference of transmission path of optical fibre interference system
CN107202573A (zh) 一种双光源高精度光纤陀螺
CN103278185A (zh) 基于校准光纤光栅的腔衰荡光纤光栅传感解调装置
CN108613690A (zh) 基于差分脉冲对与拉曼放大的温度或应变的传感器和方法
CN107727122B (zh) 双端探测的联合拉曼和布里渊散射的分布式光纤传感装置
JP6763567B2 (ja) 光ファイバセンサ
CN112129243B (zh) 基于光电振荡器的准分布式光纤扭转角度测量装置和方法
AU2015201357B2 (en) Optical sensor and method of use
Wu et al. A novel Sagnac fiber optic sensor employing time delay estimation for distributed detection and location
CN104062031B (zh) 基于mzi传感和布里渊传感协作的长距离、高空间分辨率传感方法
CN107421629A (zh) 一种对比型的匹配光纤布拉格光栅测超声波信号传感系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15902657

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15902657

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/11/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15902657

Country of ref document: EP

Kind code of ref document: A1