WO2017035707A1 - 一种随机接入中的上行传输方法及装置 - Google Patents

一种随机接入中的上行传输方法及装置 Download PDF

Info

Publication number
WO2017035707A1
WO2017035707A1 PCT/CN2015/088436 CN2015088436W WO2017035707A1 WO 2017035707 A1 WO2017035707 A1 WO 2017035707A1 CN 2015088436 W CN2015088436 W CN 2015088436W WO 2017035707 A1 WO2017035707 A1 WO 2017035707A1
Authority
WO
WIPO (PCT)
Prior art keywords
codebook
user data
network side
side device
uplink user
Prior art date
Application number
PCT/CN2015/088436
Other languages
English (en)
French (fr)
Inventor
唐珣
权威
张戬
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15902514.7A priority Critical patent/EP3328149B1/en
Priority to CN201580044399.6A priority patent/CN106797660B/zh
Priority to PCT/CN2015/088436 priority patent/WO2017035707A1/zh
Publication of WO2017035707A1 publication Critical patent/WO2017035707A1/zh
Priority to US15/907,012 priority patent/US10616921B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/04Scheduled or contention-free access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an uplink transmission method and apparatus in random access.
  • LTE Long Term Evolution
  • UE user equipment
  • RRC radio resource control
  • the random access procedure performed in the above cases is generally a contention based random access procedure.
  • the contention-based random access procedure mainly involves four message transmission processes, which are respectively a random access preamble message (MSg1) sent by the UE to the base station, and a base station.
  • a Random Access-Response (MSg2) sent to the UE a scheduled message (msg3) for transmitting uplink user data sent by the UE to the base station, and a competition sent by the base station to the UE
  • msg4 the following describes the sending process of these four messages in detail.
  • the UE When the UE prepares to access the wireless network, 64 available random access preambles are obtained from the cell broadcast message broadcast by the base station, and the 64 random access preambles are divided into two groups according to the size of msg3. The UE randomly selects a random access preamble in one of the groups to transmit in the msg1 to the base station according to the amount of data to be sent by the UE;
  • the UE After the UE accesses the random access preamble sent by msg1, it calculates a Timing Advance (TA) and sends msg2 to the UE, where msg2 includes the detected random number.
  • TA Timing Advance
  • UL-Grant uplink grant
  • the foregoing UE may be a UE in an idle state or a UE in a connected state. If the UE is in an idle state, in the msg2, the msg2 sent by the base station further includes a temporary cell radio network temporary identifier of the UE (Temporary Cell- Radio network Temporary Identity, Temporary C-RNTI). In msg3, the uplink user data sent by the UE includes a Common Control Channel-Service Data Unit (CCCH-SDU) and a preset pilot signal. If the UE is in the connected state, in msg3, the uplink user data sent by the UE includes the C-RNTI and a preset pilot signal.
  • CCCH-SDU Common Control Channel-Service Data Unit
  • the base station After detecting the msg3, the base station sends the CCCH-SDU carried in the msg3 to the UE in the idle state. After the UE successfully detects the msg4 and confirms that the CCCH-SDU is the data sent by itself, it will be in the msg2.
  • the received Temporary C-RNTI is used as the actual C-RNTI.
  • the original C-RNTI of the UE is used, and a physical downlink control channel (PDCCH) resource is indicated to implement contention resolution.
  • PDCCH physical downlink control channel
  • the base station cannot determine the random access preamble after detecting the random access preamble. It is sent by several UEs. At this time, the base station calculates the TA according to the maximum multipath position of the detected signal energy, and sends msg2. Thereafter, the multiple UEs detect the preamble index carried in the msg2 and send according to the base station.
  • the time-frequency resource indicated by the TA and the UL-Grant sends msg3, and the pilot signals used by the multiple UEs in the msg3 are also the same; when the base station receives the multiple UEs on the time-frequency resource indicated by the UL-Grant After the msg3 sent in the extended range of the delay, since the pilot signals used by the multiple UEs are the same, the base station cannot correctly demodulate the uplink user data sent by each UE, thereby causing random access of the multiple UEs. The process may all fail.
  • the embodiments of the present invention provide an uplink transmission method and apparatus for random access, which are used to solve the problem of low success rate of a contention-based random access procedure.
  • the first aspect provides an uplink transmission method in random access, including:
  • the user equipment UE After receiving the random access response message sent by the network side device, the user equipment UE selects one pilot signal from the plurality of pilot signals indicated by the pilot signal parameter information sent by the network side device;
  • the method before the sending, by the UE, the uplink user data and the selected pilot signal to the network side device, the method further includes:
  • the UE selects a codebook from the plurality of candidate codebooks indicated by the sparse code multiple access SCMA parameter information sent by the network side device, and maps the uplink user data into the selected codebook.
  • Codeword ;
  • Select a pilot signal including:
  • the UE selects a pilot signal corresponding to the selected codebook from the plurality of pilot signals.
  • the multiple candidate codebooks indicated by the SCMA parameter information sent by the UE from the network side device In, select a codebook, including:
  • the UE Determining, by the UE, at least one codebook corresponding to the random access preamble among the plurality of candidate codebooks indicated by the SCMA parameter information according to the used random access preamble; the at least one codebook The number of codebooks is smaller than the number of the plurality of codebooks indicated by the SCMA parameter information the amount;
  • the UE selects one codebook in the determined at least one codebook.
  • the determining, by the UE, the SCMA parameter information that is sent by the network side device Indicated multiple candidate codebooks including:
  • the UE determines a plurality of codebooks that match the codeword length indicated by the SCMA parameter information and the number of non-zero elements in the codeword, and is determined as a plurality of candidate codebooks indicated by the SCMA parameter information.
  • the UE maps the uplink user data into the selected codebook.
  • Codewords including:
  • the UE selects one codeword number from the number of multiple codewords supported by each candidate codebook indicated by the SCMA parameter information, based on the size of the uplink user data;
  • the UE maps the uplink user data to a codeword in the selected codebook based on the selected codebook and the number of codewords.
  • the UE sends the uplink user data and the selected pilot to the network side device After the signal, it also includes:
  • the UE detects a feedback message of the network side device on the physical layer hybrid automatic repeat request indication channel PHICH resource corresponding to the selected pilot signal, and the feedback message is used for feedback to correctly receive the UE.
  • the UE After detecting the non-acknowledgment NACK message, the UE retransmits the uplink user data.
  • the selected codebook is a first codebook
  • the UE retransmits the uplink user data, including:
  • the UE reselects a second codebook different from the first codebook, including:
  • the UE adjusts the codeword length and/or the number of non-zero elements in the codeword corresponding to the first codebook, and matches the adjusted codeword length and/or non-zero elements in the codeword.
  • the second codebook is reselected.
  • the second aspect provides an uplink transmission method in random access, including:
  • the network side device sends pilot signal parameter information to the UE in the coverage, where the pilot signal parameter information is used to indicate a plurality of candidate pilot signals to the UE;
  • the network side device detects multiple pilot signals on the time-frequency resource indicated by the sent random access response message
  • the network side device After detecting the multiple pilot signals, the network side device decodes uplink user data sent by multiple user equipments UE on the time-frequency resource based on the detected multiple pilot signals. .
  • the network side device translates uplink user data sent by multiple UEs on the time-frequency resource Code, including:
  • the network side device performs uplink channel estimation based on each detected pilot signal, and determines a codebook corresponding to the pilot signal;
  • the network side device decodes uplink user data corresponding to the pilot signal based on a result of performing uplink channel estimation and a determined codebook.
  • the method before the network side device detects the multiple pilot signals, the method further includes:
  • the network side device sends the sparse code multiple access SCMA parameter information to the UE in the coverage; wherein the SCMA parameter information is used to indicate a plurality of candidate codebooks to the UE.
  • the SCMA parameter information includes parameter information for indicating one or more of the following information:
  • the network side device detects multiple times on the time-frequency resource indicated by the sent random access response message. Pilot signals, including:
  • the network side device determines, according to the random access preamble used by the UE, at least one codebook corresponding to the random access preamble in the plurality of candidate codebooks indicated by the SCMA parameter information; the at least one The number of codebooks of the codebook is less than the number of the plurality of codebooks indicated by the SCMA parameter information;
  • the network side device detects a plurality of pilot signals on the time-frequency resource indicated by the transmitted random access response message, based on the determined pilot signal corresponding to each codebook in the at least one codebook.
  • the network side device translates uplink user data sent by multiple UEs on the time-frequency resource Code, including:
  • the network side device decodes, according to the detected multiple pilot signals, uplink user data that is sent by multiple UEs on the time-frequency resource according to a multi-UE multiple-input multiple-out MU-MIMO mode.
  • the network side device is configured to translate the uplink user data.
  • the code it also includes:
  • the network side device sends a feedback message to the UE on the physical layer hybrid automatic repeat request indication channel PHICH resource corresponding to the detected multiple pilot signals, where the feedback message is used for feedback to correctly receive the
  • the ACK message of the uplink user data of the UE is not correctly received.
  • the multiple UEs are in an idle state; After the device successfully decodes the uplink user data sent by the multiple UEs on the time-frequency resource, the device further includes:
  • the network side device sends a contention resolution message to the plurality of UEs in an idle state;
  • the contention resolution message includes indication information indicating that the uplink user data sent by the multiple UEs in an idle state is successfully decoded, And a cell radio network temporary identification C-RNTI allocated for each UE in an idle state.
  • the third aspect provides an uplink transmission apparatus in random access, including:
  • a selecting module configured to: after receiving the random access response message sent by the network side device, select one pilot signal from the plurality of pilot signals indicated by the pilot signal parameter information sent by the network side device, And transmitting the selected pilot signal to the sending module;
  • a sending module configured to send the uplink user data and the selected pilot signal to the network side device on the time-frequency resource indicated by the random access response message.
  • the selecting module is further configured to:
  • the sending module is specifically configured to:
  • the selecting module is specifically configured to:
  • a pilot signal corresponding to the selected codebook is selected.
  • the selection module is specifically used to:
  • the at least one codebook Determining at least one codebook corresponding to the random access preamble in the plurality of candidate codebooks indicated by the SCMA parameter information, according to a random access preamble used by the user equipment UE; the at least one codebook The number of codebooks is smaller than the number of the plurality of codebooks indicated by the SCMA parameter information; and one codebook is selected among the determined at least one codebook.
  • the selecting module is specifically configured to:
  • a plurality of codebooks matching the codeword length indicated by the SCMA parameter information and the number of non-zero elements in the codeword are determined as the codebooks of the plurality of candidates indicated by the SCMA parameter information.
  • the selecting module is specifically configured to:
  • the apparatus further includes:
  • a detecting module configured to: after the sending module sends the uplink user data and the selected pilot signal to the network side device, mix the automatic retransmission request indication channel PHICH resource in the physical layer corresponding to the selected pilot signal And detecting, by the network side device, a feedback message, where the feedback message is used to feed back an ACK message that correctly receives uplink user data of the UE or a NACK message that does not correctly receive uplink user data of the UE;
  • the sending module is further configured to:
  • the uplink user data is retransmitted.
  • the selected codebook is a first codebook
  • the sending module is specifically configured to: Data is retransmitted:
  • the sending module is specifically configured to:
  • the second codebook is reselected.
  • the fourth aspect provides an uplink transmission device in random access, including:
  • a sending module configured to send, to the UE in the coverage, pilot signal parameter information, where the pilot signal parameter information is used to indicate, to the UE, a plurality of candidate pilot signals;
  • the detecting module is configured to detect a plurality of pilot signals on the time-frequency resource indicated by the sent random access response message, and transmit the detection result to the decoding module;
  • a decoding module configured to: after the detecting module detects the multiple pilot signals, send uplinks sent by multiple user equipments on the time-frequency resource based on the detected multiple pilot signals User data is decoded.
  • the decoding module is specifically configured to:
  • the sending module is further configured to:
  • the SCMA parameter information includes parameter information for indicating one or more of the following information:
  • the detecting module is specifically configured to:
  • the decoding module is specifically configured to:
  • the sending module is further configured to:
  • a feedback message is sent to the UE on the physical layer hybrid automatic repeat request indication channel PHICH resource corresponding to the detected multiple pilot signals, where the feedback message is used by the UE.
  • the ACK message that correctly receives the uplink user data of the UE or the NACK message that does not correctly receive the uplink user data of the UE is fed back.
  • the multiple UEs are in an idle state; Also used for:
  • the contention resolution message is sent to the multiple UEs in the idle state; the contention resolution message includes indication information indicating that the uplink user data sent by the multiple UEs in the idle state is successfully decoded. And a cell radio network temporary identification C-RNTI allocated for each UE in an idle state.
  • a fifth aspect provides an uplink transmission device in random access, including:
  • a processor configured to select a pilot signal from the plurality of pilot signals indicated by the pilot signal parameter information sent by the network side device, after determining that the random access response message sent by the network side device is received And transmitting the selected pilot signal and the uplink user data to be transmitted to the transmitter;
  • a transmitter configured to send the uplink user data and the selected pilot signal transmitted by the processor to the network side device on the time-frequency resource indicated by the random access response message.
  • the processor is further configured to:
  • the transmitter is specifically used to:
  • the processor is specifically configured to:
  • a pilot signal corresponding to the selected codebook is selected.
  • the processor is specifically configured to:
  • the at least one codebook Determining at least one codebook corresponding to the random access preamble in the plurality of candidate codebooks indicated by the SCMA parameter information, according to a random access preamble used by the user equipment UE; the at least one codebook The number of codebooks is smaller than the number of the plurality of codebooks indicated by the SCMA parameter information; and one codebook is selected among the determined at least one codebook.
  • the processor is specifically configured to:
  • a plurality of codebooks matching the codeword length indicated by the SCMA parameter information and the number of non-zero elements in the codeword are determined as the codebooks of the plurality of candidates indicated by the SCMA parameter information.
  • the processor is specifically configured to:
  • the device further includes:
  • a receiver configured to: after the transmitter sends the uplink user data and the selected pilot signal to the network side device, mix the automatic retransmission request indication channel PHICH resource at a physical layer corresponding to the selected pilot signal And detecting, by the network side device, a feedback message, where the feedback message is used to feed back an ACK message that correctly receives uplink user data of the UE or a NACK message that does not correctly receive uplink user data of the UE;
  • the transmitter is also used to:
  • the uplink user data is retransmitted.
  • the selected codebook is a first codebook
  • the transmitter is specifically configured to: Data is retransmitted:
  • the transmitter is specifically configured to:
  • the second codebook is reselected.
  • the sixth aspect provides an uplink transmission device in random access, including:
  • a transmitter configured to send pilot signal parameter information to the UE in the coverage, where the pilot signal parameter information is used to indicate, to the UE, a plurality of candidate pilot signals;
  • a receiver configured to detect a plurality of pilot signals on a time-frequency resource indicated by the random access response message sent by the transmitter, and transmit the detection result to the processor;
  • a processor configured to: after the receiver detects the multiple pilot signals, send uplink users that are sent by the multiple user equipment UEs on the time-frequency resource, based on the detected multiple pilot signals The data is decoded.
  • the processor is specifically configured to:
  • the transmitter is further configured to:
  • the processor Before the processor detects the plurality of pilot signals, sending the sparse code multiple access SCMA parameter information to the UE in the coverage; wherein the SCMA parameter information is used to indicate a plurality of candidate codebooks to the UE.
  • the SCMA parameter information includes parameter information for indicating one or more of the following information:
  • the processor is specifically configured to:
  • the processor is specifically configured to:
  • the transmitter is further configured to:
  • a feedback message is sent to the UE on the physical layer hybrid automatic repeat request indication channel PHICH resource corresponding to the detected multiple pilot signals, where the feedback message is used by the UE.
  • the ACK message that correctly receives the uplink user data of the UE or the NACK message that does not correctly receive the uplink user data of the UE is fed back.
  • the multiple UEs are in an idle state; Also used for:
  • the processor After the processor successfully decodes the uplink user data sent by the multiple UEs on the time-frequency resource, sending a contention resolution message to the multiple UEs in an idle state; And including indication information indicating that the uplink user data sent by the multiple UEs in the idle state is successfully decoded, and a cell radio network temporary identifier C-RNTI allocated for each UE in the idle state.
  • the network side device may indicate multiple pilot signals to the UE in advance, and after receiving the random access response message sent by the network side device, the UE may be in the multiple pilots. Selecting a pilot signal in the signal, and transmitting the uplink user data and the selected pilot signal to the network side device on the time-frequency resource indicated in the random access response message. In this way, when multiple UEs send the same random access preamble to the base station on the same random access resource, the probability that multiple UEs use different pilot signals in msg3 can be increased, thereby improving contention-based. The success rate of the random access process.
  • FIG. 1 is a schematic diagram of a structure 10 of an uplink transmission system in random access according to an embodiment of the present invention
  • FIG. 3 is a flowchart of an uplink transmission method in random access according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic diagram of a plurality of UEs transmitting different uplink code data to be transmitted to a network side device on the same time-frequency resource after using different codebooks;
  • FIG. 5(a) is a schematic diagram of a message format of a MAC message header of the original msg4;
  • FIG. 5(b) is a schematic diagram of a message format of a MAC message body of the original msg4;
  • FIG. 6(a) is a schematic diagram of a message format of msg4 according to an embodiment of the present invention.
  • 6(b) is a schematic diagram of a message format of a message body corresponding to a single UE in msg4 according to an embodiment of the present invention
  • FIG. 7 is a flowchart of an uplink transmission method in random access according to Embodiment 3 of the present invention.
  • FIG. 8 is a schematic structural diagram of an uplink transmission apparatus in random access according to Embodiment 4 of the present invention.
  • FIG. 9 is a schematic structural diagram of an uplink transmission apparatus in random access according to Embodiment 5 of the present invention.
  • FIG. 10 is a schematic structural diagram of an uplink transmission device in random access according to Embodiment 6 of the present invention.
  • FIG. 11 is a schematic structural diagram of an uplink transmission device in random access according to Embodiment 7 of the present invention.
  • an uplink transmission system structure 10 in random access is provided.
  • Schematic diagram including:
  • the user equipment UE11 After receiving the random access response message sent by the network side device 12, the user equipment UE11 selects one pilot signal from the plurality of pilot signals indicated by the pilot signal parameter information sent by the network side device. And sending the uplink user data and the selected pilot signal to the network side device on the time-frequency resource indicated by the random access response message;
  • the network side device 12 is configured to send pilot signal parameter information to the UE in the coverage, where the pilot signal parameter information is used to indicate a plurality of pilot signals of the UE candidate, and is indicated by the sent random access response message. Detecting a plurality of pilot signals on the time-frequency resource, and after detecting the plurality of pilot signals, transmitting, on the time-frequency resource, the multiple user equipment UEs based on the detected multiple pilot signals The uplink user data is decoded.
  • a flowchart of an uplink transmission method in random access according to Embodiment 1 of the present invention includes the following steps:
  • the UE After receiving the random access response message sent by the network side device, the UE selects one pilot signal from the plurality of pilot signals indicated by the pilot signal parameter information sent by the network side device.
  • the UE sends a random access preamble to the network side device (specifically, the base station) when the random access is initiated, and the network side device feeds back the random access response message after detecting the random access preamble.
  • the UE After receiving the random access response message, the UE sends the uplink user data and the pilot signal (ie, msg3).
  • the embodiment of the present invention allocates multiple pilot signals for the msg3. The UE can select one of the pilot signals as msg3.
  • the network side device may send pilot signal parameter information to the UE by using a broadcast message or dedicated signaling, where the pilot signal parameter information may include pilot signal configuration information of multiple pilot signals (such as including each pilot signal). a cyclic shift, a time domain spreading code, etc.; or may include a pilot index number of a plurality of pilot signals, each pilot index number corresponding to a pilot signal; or may be a pilot index group number, a guide The frequency index group number corresponds to a set of pilot signals (see the description of Embodiment 2 for details).
  • the UE sends the time-frequency resource indicated by the random access response message to the network side.
  • the device transmits uplink user data and selected pilot signals.
  • the UE carries the selected pilot signal and the uplink user data in the msg3 on the time-frequency resource indicated by the UL-Grant of the random access response message, and sends the signal to the network side device.
  • S203 The network side device detects multiple pilot signals on the time-frequency resource indicated by the sent random access response message.
  • the network side device After detecting the multiple pilot signals, the network side device decodes the uplink user data sent by the multiple user equipment UEs on the time-frequency resource based on the detected multiple pilot signals.
  • the network side device performs blind detection of the pilot signal on the time-frequency resource indicated by the random access response message to the UE. If only one pilot signal is detected, the channel estimation may be directly performed based on the pilot signal. And decoding the uplink user data received on the time-frequency resource based on the result of the channel estimation. If multiple pilot signals are detected, it is indicated that multiple UEs send uplink user data on the time-frequency resource, and channel user multiplexing technology may be used to translate uplink user data sent by multiple UEs on the time-frequency resource. code.
  • the channel multiplexing technology adopted by the network side device may be a Sparse Code Multiple Access (SCMA) technology, or may be a Multi-User Multiple-Input Multiple-Output (MU-) technology.
  • SCMA Sparse Code Multiple Access
  • MU- Multi-User Multiple-Input Multiple-Output
  • MIMO MIMO
  • the following describes the SCMA-based uplink user data transmission in the random access process in the second embodiment, and the MU-MIMO-based uplink user data transmission in the random access process in the third embodiment.
  • the embodiment of the present invention improves the transmission of the msg3 in the random access process
  • the network side device may indicate multiple pilot signals to the UE in advance, and the UE may be in the multiple when the msg3 needs to be sent.
  • a pilot signal is selected in the pilot signal and carried in msg3.
  • the probability that multiple UEs use different pilot signals in msg3 can be increased. Thereby, the success rate of the contention based random access procedure can be improved.
  • a flowchart of an uplink transmission method in random access according to Embodiment 2 of the present invention includes the following steps:
  • the UE After receiving the random access response message sent by the network side device, the UE selects one codebook from the plurality of candidate codebooks indicated by the SCMA parameter information sent by the network side device, and sends the uplink user to be sent.
  • the data is mapped to the codeword in the selected codebook; and a pilot corresponding to the selected codebook is selected from the plurality of pilot signals indicated by the pilot signal parameter information sent by the network side device. signal.
  • each codebook corresponds to one or more pilot signals
  • each pilot signal corresponds to one codebook
  • the network side device may send the SCMA parameter information and the pilot signal parameter information of the plurality of codebooks that are candidate to the UE by using a broadcast message or a dedicated signaling.
  • the broadcast message may be a master information block (Master Information). Block, MIB) message or system information block (SIB) message, when the SCMA parameter information and the pilot signal parameter information are sent in the MIB, the 10Bit that is currently idle of the MIB can be occupied, and the SCMA is issued in the SIB.
  • MIB master information block
  • SIB system information block
  • the SCMA parameter information may be an SCMA configuration index number, and each SCMA configuration index number corresponds to a known SCMA configuration.
  • the SCMA parameter information may also include specific configuration information, such as the codeword length of each candidate codebook. K, the number of non-zero elements in the codeword of each candidate codebook, the number of different kinds of codewords supported by each candidate codebook (such as supporting two codeword numbers M1 and M2), etc., as follows Table 1 shows:
  • the UE that receives the SCMA parameter information can learn that an available SCMA configuration is: the codeword length is 4, and the codeword is The number of non-zero elements is 2, and the number of available codebooks is Each codebook supports 4 codewords and 8 codewords.
  • the UE may determine, according to the codeword length K indicated by the SCMA parameter information and the plurality of codebooks (N ⁇ K) of the non-zero element number N in the codeword, as indicated by the SCMA parameter information.
  • Multiple codebooks for example, the codeword length is 4, the number of non-zero elements in the codeword is 2, and 2 element positions are selected from the 4 element positions as the position of the non-zero element, and there are 6 selection methods. Each of the selection methods corresponds to one codebook.
  • each codeword corresponds to a combination of data bits
  • the number of combinations of codewords and data bits in the codebook is equal, that is, the number of different codewords corresponds to different data sizes. For example, for 2-bit data, there are four combinations of data bits: (1, 0), (1, 1), (0, 0), (1, 1). In order to map the 2-bit data into codewords, in the codebook. Need to support 4 codewords.
  • the UE when mapping the uplink user data to be transmitted to the codeword in the selected codebook, the UE may support more than each candidate codebook indicated by the SCMA parameter information based on the size of the uplink user data.
  • the number of codewords is selected from the number of codewords, and the uplink user data is mapped to the codeword in the selected codebook based on the selected codebook and the number of codewords.
  • FIG. 4 a schematic diagram of transmitting, by using a different codebook, the uplink user data to be sent by a plurality of UEs to a network side device on the same time-frequency resource.
  • the method for supporting the number of different types of codewords in each codebook can be selected according to the size of the uplink user data to be sent, and the number of codewords actually needed is mapped; thus, depending on the number of different types of codewords applied, It is possible to transmit uplink user data of different sizes.
  • the time-frequency resource indicated by the network side device in the random access response message may be a preset number of resource blocks (RBs), so that the number of different RBs does not need to be indicated to meet the uplink users of different sizes. The need for data reduces signaling overhead.
  • the random access preamble transmitted by the UE in msg1 may be associated with a usable codebook.
  • the UE determines, according to the used random access preamble, at least one codebook corresponding to the random access preamble among the plurality of candidate codebooks indicated by the SCMA parameter information, where The number of codebooks of one less codebook is smaller than the number of the plurality of codebooks indicated by the SCMA parameter information; the UE selects one codebook in the determined at least one codebook;
  • At least one codebook corresponding to each type of random access preamble in each SCMA configuration may be preset. After the network side device sends the SCMA configuration index number to the UE, the UE may be in the SCMA.
  • the plurality of codebooks indicated by the index number are configured to determine at least one codebook corresponding to the random access preamble used by the user.
  • the network side device needs to perform uplink channel estimation before decoding the uplink user data sent by the UE. Therefore, the msg3 sent by the UE to the network side device needs to carry the pilot signal in addition to the uplink user data.
  • the UE maps the uplink user data to the codeword in the selected codebook based on the selected codebook, so that the network side device correctly decodes the uplink user data of the multiple UEs,
  • the codebook must have its corresponding pilot signal, and each codebook can correspond to one or more pilot signals, but each pilot signal corresponds to only one codebook.
  • the available pilot signals may be divided into three groups according to the cyclic shift of the pilot signal and the time domain spreading code, and each group has 8 pilot signals. Different kinds of cyclic shifts are used between different sets of pilot signals, and the cyclic shift and/or time domain spreading code corresponding to the pilot signals in the same group are different; when the available pilot signals are indicated to the UE A set of pilot signals is indicated to the UE.
  • the pilot signals corresponding to the pilot index numbers 0-7 are the first group
  • the pilot signals corresponding to the pilot index numbers 8-15 are the second group
  • the pilot signals corresponding to the pilot index numbers 16-23 are the first group
  • the pilot signals corresponding to the pilot index numbers 8-15 are the second group
  • the pilot signals corresponding to the pilot index numbers 16-23 are the pilot signals corresponding to the pilot index numbers 16-23.
  • each group of pilot signals may have a pilot index group number, and may only notify the UE of the pilot index group number, and is used to indicate that the UE corresponds to the pilot index group number.
  • the group pilot signal is a usable pilot signal.
  • the mapping between the pilot signal and the codebook may be preset for each SCMA configuration.
  • the number of available codebooks is smaller than the number of available pilot signals (for example, the number of available codebooks is 6.
  • the number of available pilot signals is 8
  • different pilot signals may correspond to the same codebook.
  • S302 The UE sends the uplink user data and the selected pilot signal mapped to the codeword to the network side device on the time-frequency resource indicated by the random access response message.
  • the UE transmits msg3 on the time-frequency resource indicated by the UE-Grant in the random access response message, where the uplink user data mapped to the codeword and the pilot signal used for decoding the uplink user data are carried.
  • the network side device detects multiple pilot signals on the time-frequency resource indicated by the sent random access response message.
  • the network side device may perform pilot signals on the time-frequency resources indicated by the random access response message according to the pilot signals respectively corresponding to the plurality of candidate codebooks indicated by the SCMA parameter information. Blind detection.
  • the random access preamble used by the UE can be associated with the codebook.
  • the preamble corresponds to a set of codebooks, and the number of codebooks of the set of codebooks is smaller than the total number of codebooks in the SCMA configuration.
  • the pilot signal corresponding to each codebook in the present embodiment detects the pilot signal on the time-frequency resource indicated by the transmitted random access response message.
  • the network side device After detecting multiple pilot signals, the network side device performs uplink channel estimation based on each detected pilot signal, and determines a codebook corresponding to the pilot signal, based on performing uplink channel estimation results and determining.
  • the codebook decodes uplink user data corresponding to the pilot signal received on the time-frequency resource.
  • the network side device After detecting a plurality of pilot signals, the network side device performs uplink channel estimation for each pilot signal, and based on the result of the uplink channel estimation, uplink user data corresponding to the pilot signal (in msg3 and The uplink user data transmitted by the pilot signal is decoded, that is, the codeword in the codebook corresponding to the pilot signal is detected in the uplink user data,
  • the network side device detects multiple pilot signals on the same time-frequency resource indicated by the random access response message (ie, msg2) to the UE, it indicates that multiple UEs are on the time-frequency resource.
  • the uplink user data is sent.
  • the contention resolution message (msg4) may be sent to the multiple UEs.
  • the message structure of msg4 does not change.
  • the msg4 needs to include an indication indicating that the uplink user data sent by the multiple UEs in the idle state is successfully decoded.
  • the indication information may be uplink user data sent by the multiple UEs in an idle state
  • msg4 further includes a cell radio network temporary identifier allocated to each of the plurality of UEs in an idle state (Cell-Radio) Network Temporary Identity, C-RNTI);
  • C-RNTIs allocated for the plurality of UEs in the idle state are generally different from the Temporary C-RNTIs allocated in msg2.
  • a certain UE in the idle UE may be allocated the same C-RNTI as the Temporary C-RNTI indicated in the msg2.
  • the UE may be indicated in the msg4.
  • RNTI is the previous Temporary C-RNTI, or, in msg4
  • the C-RNTI of the UE is not indicated, and the network side device defaults to the previous C-RNTI of the UE as the previous Temporary C-RNTI.
  • the message format of the Medium Access Control (MAC) message header and the message body of the original msg4 are respectively shown.
  • the msg4 MAC header includes a reserved bit (R), a message header cutoff flag (E), and a logical channel identifier, occupying one byte (Oct1).
  • the msg4 MAC message body is the CCCH-SDU, that is, the uplink user data carried by the UE in msg3: the UE Contention Resolution Identity, which is 48 bits in total and occupies 6 bytes (Oct1 to Oct6, respectively).
  • FIG. 6 is a schematic diagram of a message format of msg4 in an embodiment of the present invention, and a message format diagram of a message body corresponding to a single UE in msg4.
  • the contention resolution message of multiple UEs in the RRC idle state in the msg4 is equivalent to splicing the contention resolution messages of the single UE together.
  • the element setting in the MAC message header is consistent with the element setting in the MAC message header corresponding to the single UE;
  • the MAC message body ie, the MAC payload
  • the MAC message body includes a MAC control element (Control element) for each UE, that is, the For the message body information of each UE, as shown in FIG. 6(b), in the message body information for each UE, C-RNTI indication information needs to be added, and 2 words are added, compared with the original element setting. Section (Oct7 to Oct8).
  • Hybrid Automatic Repeat reQuest (HARQ) mechanism is enabled:
  • the transmission of the msg3 may support the HARQ process.
  • the network side device is configured on the physical layer hybrid automatic repeat request indication channel (PHICH) resource corresponding to the detected pilot signal. And sending a feedback message to the UE, where the feedback message is used to feed back an acknowledgment (ACK) message of the uplink user data that is correctly received by the UE or a non-acknowledgement (NACK) message that does not correctly receive the uplink user data of the UE.
  • PHICH physical layer hybrid automatic repeat request indication channel
  • the UE after transmitting the uplink user data and the selected pilot signal to the network side device, the UE detects the feedback message of the network side device on the PHICH resource corresponding to the selected pilot signal; after detecting the ACK message, The UE may confirm that the msg3 is successfully transmitted, prepare to receive the msg4, and retransmit the uplink user data after detecting the NACK message.
  • the selected codebook is a first codebook; and the UE retransmits the uplink user data, including:
  • the UE selects the second codebook, and there are two ways:
  • the UE reselects the second code different from the first codebook from the plurality of codebooks that match the codeword length corresponding to the first codebook and the number of non-zero elements in the codeword. this.
  • the UE does not change the size of the K and N used.
  • the second codebook is selected under the SCMA configuration indicated by the original SCMA configuration index number, so that the frequency domain diversity effect can be obtained. .
  • Method 2 changing the codeword length K and/or the number of non-zero elements in the codeword N;
  • the UE adjusts the codeword length corresponding to the first codebook and/or the number of non-zero elements in the codeword, and matches the adjusted codeword length and/or codeword.
  • the second codebook is reselected.
  • the UE may increase the value of K, or increase the value of N, or increase the values of K and N at the same time, wherein increasing the value of K may obtain greater data sparsity, reduce collision probability, and increase N value.
  • a larger multidimensional codeword gain (or spread gain) can be obtained.
  • the network side device may send the HARQ parameter information to the UE to indicate the retransmission mode used by the UE, and may send the HARQ parameter together when the SCMA parameter information and the pilot parameter information are sent.
  • information For example, 1 bit can be used as the retransmission mode flag ReModeFlag.
  • the UE uses the second method described above, that is, adjusts the K and N values. The specific change of the K and N values may be set in advance.
  • the value of the SC and the N may be changed according to the order in which the SCMA configuration index is in ascending order.
  • the SCMA configuration index number corresponding to the SCMA configuration used in the last transmission failure is 0.
  • the SCMA configuration corresponding to the SCMA configuration index number 1 is used in this retransmission, as shown in Table 1.
  • each UE randomly selects one codebook from the available codebooks to perform codeword mapping on the uplink user data to be sent, and selects a pilot signal corresponding to the selected codebook, and maps the code into a code.
  • the uplink user data of the word is carried along with the pilot signal and sent to the network side device in msg3.
  • the network side device may separately decode the uplink user data corresponding to the pilot signal based on the codebook corresponding to each pilot signal, thereby improving the same time frequency for multiple UEs.
  • the detection capability of msg3 sent on the resource thereby improving the success rate of random access.
  • each codebook can support different numbers of codewords, and the UE can select a number of codewords according to the amount of data of the uplink user data to be transmitted in the msg3, so that the network can be reduced.
  • the second embodiment of the present invention can support the HARQ mechanism.
  • the UE can change the codeword length K and the non-zero element number N, and only change the used codebook, so that the frequency domain diversity gain can be obtained. It is also possible to increase the size of the codeword length K and/or the number of non-zero elements N to obtain a smaller collision probability and/or a larger multidimensional codeword gain, improving system transmission performance.
  • FIG. 7 is a flowchart of an uplink transmission method in random access according to Embodiment 3 of the present invention.
  • the embodiment combines MU-MIMO technology to implement detection of msg3 sent by multiple UEs on the same time-frequency resource. Includes the following steps:
  • the UE After receiving the random access response message sent by the network side device, the UE selects one pilot signal from the plurality of pilot signals indicated by the pilot signal parameter information sent by the network side device.
  • the network side device may use the broadcast message or the dedicated signaling to send the pilot signal parameter information to the UE in the coverage area.
  • the frequency index group number indicates a set of pilot signals that the UE can use, here No longer detailed.
  • the UE sends the uplink user data and the selected pilot signal to the network side device on the time-frequency resource indicated by the random access response message.
  • the UE sends msg3 to the network side device, where the uplink user data and the pilot signal used by the network side device for uplink channel estimation are carried.
  • the network side device detects multiple pilot signals on the time-frequency resource indicated by the sent random access response message.
  • the network side device performs blind detection of the pilot signal on the time-frequency resource indicated by the random access response message. Specifically, the network side device may sequentially detect the msg3 based on a set of pilot signals sent to the UE. Whether there is a pilot signal in the set of pilot signals.
  • the random access preamble used by the UE may be associated with a pilot signal that can be used by the UE, so that when the pilot signal is blindly detected, only the random access preamble received before is detected. Pilot signal.
  • a correspondence between each random access preamble and a pilot signal set may be set, and the number of pilot signals in the pilot signal set is smaller than the number of pilot signals indicated by the transmitted pilot signal parameter information;
  • a correspondence relationship between each random access preamble and a pilot signal set (including a part of pilot signals in the set of pilot signals) may be separately set for each group of pilot signals shown in Table 2.
  • the network side device After detecting the multiple pilot signals, the network side device decodes, according to the detected multiple pilot signals, the uplink user data sent by the multiple UEs on the time-frequency resource according to the MU-MIMO mode.
  • the network side device may detect one or more pilot signals. If only one pilot signal is detected, the uplink channel estimation may be directly performed based on the pilot signal, and based on the result of the uplink channel estimation. The uplink user data corresponding to the pilot signal is decoded. If multiple pilot signals are detected, the decoding is performed in the MU-MIMO mode.
  • the HARQ process can also be supported.
  • the network side device sends a feedback message to the UE on the PHICH resource corresponding to the detected pilot signal, to indicate the The uplink user data transmission succeeded or failed.
  • the UE detects the feedback message of the network side device on the PHICH resource corresponding to the selected pilot signal; after detecting the NACK message, The uplink user data is retransmitted.
  • the UE may reselect a pilot signal in the available pilot signals to initiate retransmission.
  • the multiple UEs are in an idle state; after the network side device successfully decodes the uplink user data sent by the multiple UEs on the time-frequency resource, the method further includes:
  • the network side device sends a contention resolution message to the plurality of UEs in an idle state;
  • the contention resolution message includes indication information indicating that the uplink user data sent by the multiple UEs in an idle state is successfully decoded, And a cell radio network temporary identification C-RNTI allocated for each UE in an idle state.
  • the network side device when the network side device detects data of multiple UEs in the RRC idle state in the msg3, the network side device needs to include the indication in the msg4 sent to the multiple UEs in the idle state.
  • the indication information that the uplink user data is successfully sent by the UE in the idle state, and the C-RNTI allocated to each UE in the idle state, the indication information may be the CCCH SDU of the plurality of UEs in the idle state. That is, the embodiment of the present invention changes the MAC message format of the msg4, and is no longer a single UE data in the msg4.
  • This design mode is not limited to the above-mentioned SCMA and MU-MIMO multiplexing modes, and is detected by other multiplexing methods.
  • the message format of the above msg4 can be adopted.
  • the third embodiment of the present invention increases the probability that multiple UEs use different pilot signals in msg3.
  • the network side device may be based on multiple pilot signals detected.
  • the uplink user data sent by the UEs on the same time-frequency resource is decoded according to the MU-MIMO mode, thereby improving the success rate of the random access procedure.
  • the embodiment of the present invention further provides an uplink transmission apparatus in random access corresponding to the uplink transmission method in random access, and the principle of solving the problem by the apparatus and the random access in the embodiment of the present invention
  • the uplink transmission method is similar, so the implementation of the device can be referred to the implementation of the method, and the repeated description will not be repeated.
  • FIG. 8 is a schematic structural diagram of an uplink transmission apparatus in random access according to Embodiment 4 of the present invention, including:
  • the selecting module 81 is configured to: after receiving the random access response message sent by the network side device, select one pilot signal from the plurality of pilot signals indicated by the pilot signal parameter information sent by the network side device And transmitting the selected pilot signal to the transmitting module 82;
  • the sending module 82 is configured to send uplink user data and the selected pilot signal to the network side device on the time-frequency resource indicated by the random access response message.
  • the selecting module 81 is further configured to:
  • the sending module 82 Before the sending module 82 sends the uplink user data and the selected pilot signal to the network side device, the plurality of candidate codebooks indicated by the sparse code multiple access SCMA parameter information sent by the network side device Selecting a codebook to map the uplink user data to a codeword in the selected codebook;
  • the sending module 82 is specifically configured to:
  • the selecting module 81 is specifically configured to:
  • a pilot signal corresponding to the selected codebook is selected.
  • the selecting module 81 is specifically configured to:
  • the at least one codebook Determining at least one codebook corresponding to the random access preamble in the plurality of candidate codebooks indicated by the SCMA parameter information, according to a random access preamble used by the user equipment UE; the at least one codebook The number of codebooks is smaller than the number of the plurality of codebooks indicated by the SCMA parameter information; and one codebook is selected among the determined at least one codebook.
  • the selecting module 81 is specifically configured to:
  • a plurality of codebooks matching the codeword length indicated by the SCMA parameter information and the number of non-zero elements in the codeword are determined as the codebooks of the plurality of candidates indicated by the SCMA parameter information.
  • the selecting module 81 is specifically configured to:
  • Each candidate indicated by the SCMA parameter information based on the size of the uplink user data Selecting one of the plurality of codewords supported by the selected codebook; and mapping the uplink user data to the codeword in the selected codebook based on the selected codebook and the number of codewords.
  • the device further includes:
  • the detecting module 83 is configured to: after the sending module 82 sends the uplink user data and the selected pilot signal to the network side device, mix the automatic retransmission request indication channel in the physical layer corresponding to the selected pilot signal And detecting, on the PHICH resource, a feedback message of the network side device, where the feedback message is used to feed back an ACK message that correctly receives uplink user data of the UE or a NACK message that does not correctly receive uplink user data of the UE;
  • the sending module 82 is further configured to:
  • the uplink user data is retransmitted.
  • the selected codebook is a first codebook
  • the sending module 82 is specifically configured to retransmit the uplink user data according to the following steps:
  • the sending module 82 is specifically configured to:
  • the second codebook is reselected.
  • FIG. 9 is a schematic structural diagram of an uplink transmission apparatus in random access according to Embodiment 5 of the present invention, including:
  • the sending module 91 is configured to send, to the UE in the coverage, pilot signal parameter information, where the pilot signal parameter information is used to indicate, to the UE, a plurality of candidate pilot signals;
  • the detecting module 92 is configured to detect a plurality of pilot signals on the time-frequency resource indicated by the sent random access response message, and transmit the detection result to the decoding module 93;
  • the decoding module 93 is configured to send, after the detecting module 92 detects the multiple pilot signals, the plurality of user equipment UEs on the time-frequency resource based on the detected multiple pilot signals.
  • the uplink user data is decoded.
  • the decoding module 93 is specifically configured to:
  • the sending module 91 is further configured to:
  • the detecting module 92 Before the detecting module 92 detects the plurality of pilot signals, sending the sparse code multiple access SCMA parameter information to the UE in the coverage; wherein the SCMA parameter information is used to indicate a plurality of candidate codebooks to the UE.
  • the SCMA parameter information includes parameter information for indicating one or more of the following information:
  • the detecting module 92 is specifically configured to:
  • the decoding module 93 is specifically configured to:
  • the sending module 91 is further configured to:
  • a feedback message is sent to the UE on the physical layer hybrid automatic repeat request indication channel PHICH resource corresponding to the detected multiple pilot signals, where the feedback message is used by the UE.
  • the ACK message that correctly receives the uplink user data of the UE or the NACK message that does not correctly receive the uplink user data of the UE is fed back.
  • the multiple UEs are in an idle state; the sending module 91 is further configured to:
  • the decoding module 93 After the decoding module 93 successfully decodes the uplink user data sent by the multiple UEs on the time-frequency resource, sending a contention resolution message to the multiple UEs in an idle state;
  • the message includes indication information indicating that the uplink user data sent by the multiple UEs in the idle state is successfully decoded, and a cell radio network temporary identifier C-RNTI allocated for each UE in the idle state.
  • FIG. 10 is a schematic structural diagram of an uplink transmission device in a random access according to Embodiment 6 of the present invention, including:
  • the processor 101 is configured to: after determining that the random access response message sent by the network side device is received, selecting one pilot from the plurality of pilot signals indicated by the pilot signal parameter information sent by the network side device Signaling, and transmitting the selected pilot signal and the uplink user data to be transmitted to the transmitter 102;
  • the transmitter 102 is configured to send the uplink user data and the selected pilot signal transmitted by the processor to the network side device on the time-frequency resource indicated in the random access response message.
  • the processor 101 is further configured to:
  • the transmitter 102 Before the transmitter 102 sends the uplink user data and the selected pilot signal to the network side device, from the plurality of candidate codebooks indicated by the sparse code multiple access SCMA parameter information delivered by the network side device Selecting a codebook to map the uplink user data to a codeword in the selected codebook;
  • the transmitter 102 is specifically configured to:
  • the processor 101 is specifically configured to:
  • a pilot signal corresponding to the selected codebook is selected.
  • the processor 101 is specifically configured to:
  • the at least one codebook Determining at least one codebook corresponding to the random access preamble in the plurality of candidate codebooks indicated by the SCMA parameter information, according to a random access preamble used by the user equipment UE; the at least one codebook The number of codebooks is smaller than the number of the plurality of codebooks indicated by the SCMA parameter information; and one codebook is selected among the determined at least one codebook.
  • the processor 101 is specifically configured to:
  • a plurality of codebooks matching the codeword length indicated by the SCMA parameter information and the number of non-zero elements in the codeword are determined as the codebooks of the plurality of candidates indicated by the SCMA parameter information.
  • the processor 101 is specifically configured to:
  • the device further includes:
  • the receiver 103 is configured to: after the transmitter 102 sends the uplink user data and the selected pilot signal to the network side device, mix the automatic repeat request indication channel at a physical layer corresponding to the selected pilot signal And detecting, on the PHICH resource, a feedback message of the network side device, where the feedback message is used to feed back an ACK message that correctly receives uplink user data of the UE or a NACK message that does not correctly receive uplink user data of the UE;
  • the transmitter 102 is also used to:
  • the uplink user data is retransmitted.
  • the selected codebook is a first codebook; and the transmitter 102 is specifically configured to The next step retransmits the uplink user data:
  • the transmitter 102 is specifically configured to:
  • the second codebook is reselected.
  • FIG. 11 is a schematic structural diagram of an uplink transmission device in a random access according to Embodiment 7 of the present invention, including:
  • the transmitter 111 is configured to send pilot signal parameter information to the UE in the coverage, where the pilot signal parameter information is used to indicate, to the UE, a plurality of candidate pilot signals;
  • the receiver 112 is configured to detect a plurality of pilot signals on the time-frequency resource indicated by the random access response message sent by the transmitter 111, and transmit the detection result to the processor 113;
  • the processor 113 is configured to send, after the receiver 112 detects the multiple pilot signals, the multiple user equipment UEs on the time-frequency resource based on the detected multiple pilot signals.
  • the uplink user data is decoded.
  • the processor 113 is specifically configured to:
  • the transmitter 111 is further configured to:
  • the sparse code multiple access SCMA parameter information is sent to the UEs in the coverage; wherein the SCMA parameter information is used to indicate a plurality of candidate codebooks to the UE.
  • the SCMA parameter information includes parameter information for indicating one or more of the following information:
  • the processor 113 is specifically configured to:
  • the processor 113 is specifically configured to:
  • the transmitter 111 is further configured to:
  • a feedback message is sent to the UE on the physical layer hybrid automatic repeat request indication channel PHICH resource corresponding to the detected multiple pilot signals, where the feedback message is used by the UE.
  • the ACK message that correctly receives the uplink user data of the UE or the NACK message that does not correctly receive the uplink user data of the UE is fed back.
  • the multiple UEs are in an idle state; the transmitter 111 is further configured to:
  • the processor 113 After the processor 113 successfully decodes the uplink user data sent by the multiple UEs on the time-frequency resource, sending a contention resolution message to the multiple UEs in an idle state; the contention resolution message Included in the indication information indicating that the uplink user data sent by the multiple UEs in the idle state is successfully decoded, and the cell wireless network temporary identifier allocated for each UE in the idle state Know C-RNTI.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Abstract

本发明涉及通信技术领域,尤其涉及一种随机接入中的上行传输方法及装置,用以提高基于竞争的随机接入过程的成功率。本发明实施例提供的一种随机接入中的上行传输方法包括:用户设备UE在接收到网络侧设备发送的随机接入响应消息后,从所述网络侧设备下发的导频信号参数信息所指示的多个导频信号中,选择一个导频信号;UE在所述随机接入响应消息中所指示的时频资源上,向所述网络侧设备发送上行用户数据和选择的导频信号。采用本发明实施例,当多个UE在相同的随机接入资源上向基站发送了相同的随机接入前导码后,可以增加多个UE在发送上行用户数据时使用不同的导频信号的几率,从而可以提高基于竞争的随机接入过程的成功率。

Description

一种随机接入中的上行传输方法及装置 技术领域
本发明涉及通信技术领域,尤其涉及一种随机接入中的上行传输方法及装置。
背景技术
在长期演进(Long Term Evolution,LTE)系统中,当处于无线资源控制(Radio Resource Control,RRC)空闲态的用户设备(User Equipment,UE)需要发送上行数据时,首先需要获得上行同步并建立RRC连接态,这一过程即为随机接入的过程(Random Access Procedure)。当UE需要进行小区切换、RRC连接重建、重获上行同步、及申请发送上行用户数据所需上行资源等过程时,也都可能需要执行随机接入的过程。
上述几种情况下执行的随机接入过程一般是基于竞争的随机接入过程。如图1所示,基于竞争的随机接入过程主要涉及四个消息的发送过程,这四个消息分别为UE发送给基站的随机接入前导码(Random Access Preamble)消息(简称msg1)、基站发送给UE的随机接入响应消息(Random Access-Response)(简称msg2)、UE发送给基站的用于承载上行用户数据的调度消息(Scheduled Transmission)(简称msg3)、以及基站发送给UE的竞争解决(Contention Resolution)消息(简称msg4),下面详细介绍下这四种消息的发送过程。
UE在准备接入到无线网络中时,从基站广播的小区广播消息中获得64个可用的随机接入前导码,这64个随机接入前导码被按照msg3的大小划分为两组。UE根据自己待发送的数据量大小,在其中一组中随机选择一个随机接入前导码携带在msg1中发送给基站;
UE通过msg1发送的随机接入前导码后,计算出时间提前量(Timing Advance,TA),并向该UE发送msg2,其中msg2中包含检测出的上述随机 接入前导码的前导码索引、TA、用于传输msg3的上行授权(UL-Grant)信息;UE在接收到msg2后,在UL-Grant中指示的时频资源上发送msg3,其中包括上行用户数据。
上述UE可以是处于空闲态的UE,也可以是处于连接态的UE,若UE处于空闲态,在上述msg2中,基站发送的msg2中还包含UE的临时的小区无线网络临时标识(Temporary Cell-Radio Network Temporary Identity,Temporary C-RNTI),在msg3中,UE发送的上行用户数据包括公共控制信道-服务数据单元(Common Control Channel-Service Data Unit,CCCH-SDU)以及预先设定的导频信号;若UE处于连接态,在msg3中,UE发送的上行用户数据包括C-RNTI以及预先设定的导频信号。
基站在检测到msg3后,针对处于空闲态的UE,向该UE发送在msg3中携带的CCCH-SDU,UE成功检测到msg4后,确认CCCH-SDU是自己之前发送的数据,则将在msg2中接收到的Temporary C-RNTI作为实际使用的C-RNTI。针对处于连接态的UE,将会使用该UE原有的C-RNTI,并指示一个物理下行控制信道(Physical Downlink Control Channel,PDCCH)资源来实现竞争解决。
在上述过程中,如果有多个UE选择了相同的随机接入前导码,并在相同的随机接入资源上发送给了基站,则基站在检测到随机接入前导码后,并不能确定出是几个UE发送的,此时基站会根据检测到信号能量的最大多径位置计算TA,并发送msg2;此后,这多个UE都会检测到msg2中携带的前导码索引,并根据基站发送的TA及UL-Grant指示的时频资源,发送msg3,这多个UE在msg3中使用的导频信号也是相同的;当基站在UL-Grant指示的时频资源上接收到这多个UE在最大时延扩展范围内发送的msg3后,由于这多个UE采用的导频信号是相同的,基站无法正确解调出其中每个UE发送的上行用户数据,从而导致这多个UE的随机接入过程可能全部失败。
发明内容
本发明实施例提供一种随机接入中的上行传输方法及装置,用以解决基于竞争的随机接入过程的成功率较低的问题。
第一方面,提供一种随机接入中的上行传输方法,包括:
用户设备UE在接收到网络侧设备发送的随机接入响应消息后,从所述网络侧设备下发的导频信号参数信息所指示的多个导频信号中,选择一个导频信号;
所述UE在所述随机接入响应消息中所指示的时频资源上,向所述网络侧设备发送上行用户数据和选择的导频信号。
结合第一方面,在第一种可能的实现方式中,所述UE向所述网络侧设备发送上行用户数据和选择的导频信号之前,还包括:
所述UE从所述网络侧设备下发的稀疏码多址SCMA参数信息所指示的多个候选的码本中,选择一个码本,将所述上行用户数据映射为所选择的码本中的码字;
所述UE向所述网络侧设备发送上行用户数据和选择的导频信号,包括:
所述UE向所述网络侧设备发送映射为所述码字后的上行用户数据和选择的导频信号。
结合第一方面的第一种可能的实现方式,在第二种可能的实现方式中,所述UE从所述网络侧设备下发的导频信号参数信息所指示的多个导频信号中,选择一个导频信号,包括:
所述UE从所述多个导频信号中,选择一个与所选择的码本对应的导频信号。
结合第一方面的第一或第二种可能的实现方式,在第三种可能的实现方式中,所述UE从所述网络侧设备下发的SCMA参数信息所指示的多个候选的码本中,选择一个码本,包括:
所述UE根据使用的随机接入前导码,确定所述SCMA参数信息所指示的多个候选的码本中,与所述随机接入前导码对应的至少一个码本;所述至少一个码本的码本数量小于所述SCMA参数信息指示的所述多个码本的数 量;
所述UE在确定的至少一个码本中选择一个码本。
结合第一方面的第一~三种可能的实现方式中的任意一种实现方式,在第四种可能的实现方式中,所述UE确定所述网络侧设备下发的所述SCMA参数信息所指示的多个候选的码本,包括:
所述UE将匹配所述SCMA参数信息所指示的码字长度和码字中的非零元素个数的多个码本,确定为所述SCMA参数信息所指示的多个候选的码本。
结合第一方面的第一~四种可能的实现方式中的任意一种实现方式,在第五种可能的实现方式中,所述UE将所述上行用户数据映射为所选择的码本中的码字,包括:
所述UE基于所述上行用户数据的大小,从所述SCMA参数信息所指示的每个候选的码本支持的多种码字个数中选择一种码字个数;
所述UE基于选择的码本以及码字个数,将所述上行用户数据映射为所选择的码本中的码字。
结合第一方面的第一~五种可能的实现方式中的任意一种实现方式,在第六种可能的实现方式中,所述UE向所述网络侧设备发送上行用户数据和选择的导频信号之后,还包括:
所述UE在选择的所述导频信号所对应的物理层混合自动重传请求指示信道PHICH资源上,检测所述网络侧设备的反馈消息,所述反馈消息用于反馈正确接收到所述UE的上行用户数据的ACK消息或没有正确接收到所述UE的上行用户数据的NACK消息;
所述UE在检测到非确认NACK消息后,对所述上行用户数据进行重传。
结合第一方面的第六种可能的实现方式,在第七种可能的实现方式中,所述选择的码本为第一码本;所述UE对所述上行用户数据进行重传,包括:
所述UE重新选择与所述第一码本不同的第二码本,将所述上行用户数据映射为所述第二码本中的码字,并从所述导频信号参数信息指示的多个导频信号中,重新选择与所述第二码本对应的导频信号;
在所述随机接入响应消息所指示的时频资源上,将映射为所述第二码本中的码字的上行用户数据和与所述第二码本对应的导频信号发送给所述网络侧设备。
结合第一方面的第七种可能的实现方式,在第八种可能的实现方式中,所述UE重新选择与所述第一码本不同的第二码本,包括:
所述UE从与所述第一码本所对应的码字长度和码字中的非零元素个数相匹配的多个码本中,重新选择与所述第一码本不同的第二码本;或者,
所述UE对所述第一码本所对应的码字长度和/或码字中的非零元素个数进行调整,并从匹配调整后的码字长度和/或码字中的非零元素个数的多个码本中,重新选择第二码本。
第二方面,提供一种随机接入中的上行传输方法,包括:
网络侧设备向覆盖范围内的UE发送导频信号参数信息,所述导频信号参数信息用于向UE指示多个候选的导频信号;
所述网络侧设备在发送的随机接入响应消息所指示的时频资源上,检测多个导频信号;
所述网络侧设备在检测到所述多个导频信号后,基于检测到的所述多个导频信号,对多个用户设备UE在所述时频资源上发送的上行用户数据进行译码。
结合第二方面,在第一种可能的实现方式中,所述网络侧设备基于检测到的所述多个导频信号,对多个UE在所述时频资源上发送的上行用户数据进行译码,包括:
所述网络侧设备基于检测到的每个导频信号,进行上行信道估计,并确定与所述导频信号对应的码本;
所述网络侧设备基于进行上行信道估计的结果以及确定的码本,对所述导频信号对应的上行用户数据进行译码。
结合第二方面的第一种可能的实现方式,在第二种可能的实现方式中,所述网络侧设备检测多个导频信号之前,还包括:
所述网络侧设备向覆盖范围内的UE发送稀疏码多址SCMA参数信息;其中,所述SCMA参数信息用于向UE指示多个候选的码本。
结合第二方面的第二种可能的实现方式,在第三种可能的实现方式中,所述SCMA参数信息中包括用于指示以下信息中的一种或多种的参数信息:
每个候选的码本的码字长度;
每个候选的码本的码字中非零元素的个数;
每个候选的码本支持的多种码字个数。
结合第二方面的第二或第三种可能的实现方式,在第四种可能的实现方式中,所述网络侧设备在发送的随机接入响应消息所指示的时频资源上,检测多个导频信号,包括:
所述网络侧设备根据UE使用的随机接入前导码,确定所述SCMA参数信息指示的多个候选的码本中,与所述随机接入前导码对应的至少一个码本;所述至少一个码本的码本数量小于所述SCMA参数信息指示的所述多个码本的数量;
所述网络侧设备基于确定的至少一个码本中每个码本对应的导频信号,在发送的随机接入响应消息所指示的时频资源上,检测多个导频信号。
结合第二方面,在第五种可能的实现方式中,所述网络侧设备基于检测到的所述多个导频信号,对多个UE在所述时频资源上发送的上行用户数据进行译码,包括:
所述网络侧设备基于检测到的所述多个导频信号,对多个UE在所述时频资源上发送的上行用户数据按照多UE多入多出MU-MIMO模式进行译码。
结合第二方面,或第二方面的第一~五种可能的实现方式中的任意一种实现方式,在第六种可能的实现方式中,所述网络侧设备对所述上行用户数据进行译码之后,还包括:
所述网络侧设备在检测到的多个导频信号所对应的物理层混合自动重传请求指示信道PHICH资源上,向所述UE发送反馈消息,所述反馈消息用于反馈正确接收到所述UE的上行用户数据的ACK消息或没有正确接收到所述 UE的上行用户数据的NACK消息。
结合第二方面,或第二方面的第一~六种可能的实现方式中的任意一种实现方式,在第七种可能的实现方式中,所述多个UE处于空闲态;所述网络侧设备对所述多个UE在所述时频资源上发送的上行用户数据进行译码成功之后,还包括:
所述网络侧设备向所述多个处于空闲态的UE发送竞争解决消息;所述竞争解决消息中包含指示对所述多个处于空闲态的UE发送的上行用户数据译码成功的指示信息,以及为每个处于空闲态的UE分配的小区无线网络临时标识C-RNTI。
第三方面,提供一种随机接入中的上行传输装置,包括:
选择模块,用于在接收到网络侧设备发送的随机接入响应消息后,从所述网络侧设备下发的导频信号参数信息所指示的多个导频信号中,选择一个导频信号,并将选择的导频信号传输至发送模块;
发送模块,用于在所述随机接入响应消息中所指示的时频资源上,向所述网络侧设备发送上行用户数据和选择的导频信号。
结合第三方面,在第一种可能的实现方式中,所述选择模块还用于:
在所述发送模块向所述网络侧设备发送上行用户数据和选择的导频信号之前,从所述网络侧设备下发的稀疏码多址SCMA参数信息所指示的多个候选的码本中,选择一个码本,将所述上行用户数据映射为所选择的码本中的码字;
所述发送模块具体用于:
向所述网络侧设备发送映射为所述码字后的上行用户数据和选择的导频信号。
结合第三方面的第一种可能的实现方式,在第二种可能的实现方式中,所述选择模块具体用于:
从所述多个导频信号中,选择一个与所选择的码本对应的导频信号。
结合第三方面的第一或第二种可能的实现方式,在第三种可能的实现方 式中,所述选择模块具体用于:
根据用户设备UE使用的随机接入前导码,确定所述SCMA参数信息所指示的多个候选的码本中,与所述随机接入前导码对应的至少一个码本;所述至少一个码本的码本数量小于所述SCMA参数信息指示的所述多个码本的数量;在确定的至少一个码本中选择一个码本。
结合第三方面的第一~三种可能的实现方式中的任意一种实现方式,在第四种可能的实现方式中,所述选择模块具体用于:
将匹配所述SCMA参数信息所指示的码字长度和码字中的非零元素个数的多个码本,确定为所述SCMA参数信息所指示的多个候选的码本。
结合第三方面的第一~四种可能的实现方式中的任意一种实现方式,在第五种可能的实现方式中,所述选择模块具体用于:
基于所述上行用户数据的大小,从所述SCMA参数信息所指示的每个候选的码本支持的多种码字个数中选择一种码字个数;基于选择的码本以及码字个数,将所述上行用户数据映射为所选择的码本中的码字。
结合第三方面的第一~五种可能的实现方式中的任意一种实现方式,在第六种可能的实现方式中,所述装置还包括:
检测模块,用于在所述发送模块向所述网络侧设备发送上行用户数据和选择的导频信号之后,在选择的所述导频信号所对应的物理层混合自动重传请求指示信道PHICH资源上,检测所述网络侧设备的反馈消息,所述反馈消息用于反馈正确接收到所述UE的上行用户数据的ACK消息或没有正确接收到所述UE的上行用户数据的NACK消息;
所述发送模块还用于:
在所述检测模块检测到非确认NACK消息后,对所述上行用户数据进行重传。
结合第三方面的第六种可能的实现方式,在第七种可能的实现方式中,所述选择的码本为第一码本;所述发送模块具体用于根据以下步骤对所述上行用户数据进行重传:
重新选择与所述第一码本不同的第二码本,将所述上行用户数据映射为所述第二码本中的码字,并从所述导频信号参数信息指示的多个导频信号中,重新选择与所述第二码本对应的导频信号;在所述随机接入响应消息所指示的时频资源上,将映射为所述第二码本中的码字的上行用户数据和与所述第二码本对应的导频信号发送给所述网络侧设备。
结合第三方面的第七种可能的实现方式,在第八种可能的实现方式中,所述发送模块具体用于:
从与所述第一码本所对应的码字长度和码字中的非零元素个数相匹配的多个码本中,重新选择与所述第一码本不同的第二码本;或者,
对所述第一码本所对应的码字长度和/或码字中的非零元素个数进行调整,并从匹配调整后的码字长度和/或码字中的非零元素个数的多个码本中,重新选择第二码本。
第四方面,提供一种随机接入中的上行传输装置,包括:
发送模块,用于向覆盖范围内的UE发送导频信号参数信息,所述导频信号参数信息用于向UE指示多个候选的导频信号;
检测模块,用于在发送的随机接入响应消息所指示的时频资源上,检测多个导频信号,并将检测结果传输给译码模块;
译码模块,用于在所述检测模块检测到所述多个导频信号后,基于检测到的所述多个导频信号,对多个用户设备UE在所述时频资源上发送的上行用户数据进行译码。
结合第四方面,在第一种可能的实现方式中,所述译码模块具体用于:
基于检测到的每个导频信号,进行上行信道估计,并确定与所述导频信号对应的码本;基于进行上行信道估计的结果以及确定的码本,对所述导频信号对应的上行用户数据进行译码。
结合第四方面的第一种可能的实现方式,在第二种可能的实现方式中,所述发送模块还用于:
在所述检测模块检测多个导频信号之前,向覆盖范围内的UE发送稀疏码 多址SCMA参数信息;其中,所述SCMA参数信息用于向UE指示多个候选的码本。
结合第四方面的第二种可能的实现方式,在第三种可能的实现方式中,所述SCMA参数信息中包括用于指示以下信息中的一种或多种的参数信息:
每个候选的码本的码字长度;
每个候选的码本的码字中非零元素的个数;
每个候选的码本支持的多种码字个数。
结合第四方面的第二或第三种可能的实现方式,在第四种可能的实现方式中,所述检测模块具体用于:
根据UE使用的随机接入前导码,确定所述SCMA参数信息指示的多个候选的码本中,与所述随机接入前导码对应的至少一个码本;所述至少一个码本的码本数量小于所述SCMA参数信息指示的所述多个码本的数量;基于确定的至少一个码本中每个码本对应的导频信号,在发送的随机接入响应消息所指示的时频资源上,检测多个导频信号。
结合第四方面,在第五种可能的实现方式中,所述译码模块具体用于:
基于检测到的所述多个导频信号,对多个UE在所述时频资源上发送的上行用户数据按照多UE多入多出MU-MIMO模式进行译码。
结合第四方面,或第四方面的第一~五种可能的实现方式中的任意一种实现方式,在第六种可能的实现方式中,所述发送模块还用于:
在对所述上行用户数据进行译码之后,在检测到的多个导频信号所对应的物理层混合自动重传请求指示信道PHICH资源上,向所述UE发送反馈消息,所述反馈消息用于反馈正确接收到所述UE的上行用户数据的ACK消息或没有正确接收到所述UE的上行用户数据的NACK消息。
结合第四方面,或第四方面的第一~六种可能的实现方式中的任意一种实现方式,在第七种可能的实现方式中,所述多个UE处于空闲态;所述发送模块还用于:
在所述译码模块对所述多个UE在所述时频资源上发送的上行用户数据 进行译码成功之后,向所述多个处于空闲态的UE发送竞争解决消息;所述竞争解决消息中包含指示对所述多个处于空闲态的UE发送的上行用户数据译码成功的指示信息,以及为每个处于空闲态的UE分配的小区无线网络临时标识C-RNTI。
第五方面,提供一种随机接入中的上行传输设备,包括:
处理器,用于在确定接收到网络侧设备发送的随机接入响应消息后,从所述网络侧设备下发的导频信号参数信息所指示的多个导频信号中,选择一个导频信号,并将选择的导频信号和待发送的上行用户数据传输给发射器;
发射器,用于在所述随机接入响应消息中所指示的时频资源上,向所述网络侧设备发送所述处理器传输的上行用户数据和选择的导频信号。
结合第五方面,在第一种可能的实现方式中,所述处理器还用于:
在所述发射器向所述网络侧设备发送上行用户数据和选择的导频信号之前,从所述网络侧设备下发的稀疏码多址SCMA参数信息所指示的多个候选的码本中,选择一个码本,将所述上行用户数据映射为所选择的码本中的码字;
所述发射器具体用于:
向所述网络侧设备发送所述处理器映射为所述码字后的上行用户数据和选择的导频信号。
结合第五方面的第一种可能的实现方式,在第二种可能的实现方式中,所述处理器具体用于:
从所述多个导频信号中,选择一个与所选择的码本对应的导频信号。
结合第五方面的第一或第二种可能的实现方式,在第三种可能的实现方式中,所述处理器具体用于:
根据用户设备UE使用的随机接入前导码,确定所述SCMA参数信息所指示的多个候选的码本中,与所述随机接入前导码对应的至少一个码本;所述至少一个码本的码本数量小于所述SCMA参数信息指示的所述多个码本的数量;在确定的至少一个码本中选择一个码本。
结合第五方面的第一~三种可能的实现方式中的任意一种实现方式,在第四种可能的实现方式中,所述处理器具体用于:
将匹配所述SCMA参数信息所指示的码字长度和码字中的非零元素个数的多个码本,确定为所述SCMA参数信息所指示的多个候选的码本。
结合第五方面的第一~四种可能的实现方式中的任意一种实现方式,在第五种可能的实现方式中,所述处理器具体用于:
基于所述上行用户数据的大小,从所述SCMA参数信息所指示的每个候选的码本支持的多种码字个数中选择一种码字个数;基于选择的码本以及码字个数,将所述上行用户数据映射为所选择的码本中的码字。
结合第五方面的第一~五种可能的实现方式中的任意一种实现方式,在第六种可能的实现方式中,所述设备还包括:
接收器,用于在所述发射器向所述网络侧设备发送上行用户数据和选择的导频信号之后,在选择的所述导频信号所对应的物理层混合自动重传请求指示信道PHICH资源上,检测所述网络侧设备的反馈消息,所述反馈消息用于反馈正确接收到所述UE的上行用户数据的ACK消息或没有正确接收到所述UE的上行用户数据的NACK消息;
所述发射器还用于:
在所述接收器检测到非确认NACK消息后,对所述上行用户数据进行重传。
结合第五方面的第六种可能的实现方式,在第七种可能的实现方式中,所述选择的码本为第一码本;所述发射器具体用于根据以下步骤对所述上行用户数据进行重传:
重新选择与所述第一码本不同的第二码本,将所述上行用户数据映射为所述第二码本中的码字,并从所述导频信号参数信息指示的多个导频信号中,重新选择与所述第二码本对应的导频信号;在所述随机接入响应消息所指示的时频资源上,将映射为所述第二码本中的码字的上行用户数据和与所述第二码本对应的导频信号发送给所述网络侧设备。
结合第五方面的第七种可能的实现方式,在第八种可能的实现方式中,所述发射器具体用于:
从与所述第一码本所对应的码字长度和码字中的非零元素个数相匹配的多个码本中,重新选择与所述第一码本不同的第二码本;或者,
对所述第一码本所对应的码字长度和/或码字中的非零元素个数进行调整,并从匹配调整后的码字长度和/或码字中的非零元素个数的多个码本中,重新选择第二码本。
第六方面,提供一种随机接入中的上行传输设备,包括:
发射器,用于向覆盖范围内的UE发送导频信号参数信息,所述导频信号参数信息用于向UE指示多个候选的导频信号;
接收器,用于在所述发射器发送的随机接入响应消息所指示的时频资源上,检测多个导频信号,并将检测结果传输给处理器;
处理器,用于在所述接收器检测到所述多个导频信号后,基于检测到的所述多个导频信号,对多个用户设备UE在所述时频资源上发送的上行用户数据进行译码。
结合第六方面,在第一种可能的实现方式中,所述处理器具体用于:
基于检测到的每个导频信号,进行上行信道估计,并确定与所述导频信号对应的码本;基于进行上行信道估计的结果以及确定的码本,对所述导频信号对应的上行用户数据进行译码。
结合第六方面的第一种可能的实现方式,在第二种可能的实现方式中,所述发射器还用于:
在所述处理器检测多个导频信号之前,向覆盖范围内的UE发送稀疏码多址SCMA参数信息;其中,所述SCMA参数信息用于向UE指示多个候选的码本。
结合第六方面的第二种可能的实现方式,在第三种可能的实现方式中,所述SCMA参数信息中包括用于指示以下信息中的一种或多种的参数信息:
每个候选的码本的码字长度;
每个候选的码本的码字中非零元素的个数;
每个候选的码本支持的多种码字个数。
结合第六方面的第二或第三种可能的实现方式,在第四种可能的实现方式中,所述处理器具体用于:
根据UE使用的随机接入前导码,确定所述SCMA参数信息指示的多个候选的码本中,与所述随机接入前导码对应的至少一个码本;所述至少一个码本的码本数量小于所述SCMA参数信息指示的所述多个码本的数量;基于确定的至少一个码本中每个码本对应的导频信号,在发送的随机接入响应消息所指示的时频资源上,检测多个导频信号。
结合第六方面,在第五种可能的实现方式中,所述处理器具体用于:
基于检测到的所述多个导频信号,对多个UE在所述时频资源上发送的上行用户数据按照多UE多入多出MU-MIMO模式进行译码。
结合第六方面,或第六方面的第一~五种可能的实现方式中的任意一种实现方式,在第六种可能的实现方式中,所述发射器还用于:
在对所述上行用户数据进行译码之后,在检测到的多个导频信号所对应的物理层混合自动重传请求指示信道PHICH资源上,向所述UE发送反馈消息,所述反馈消息用于反馈正确接收到所述UE的上行用户数据的ACK消息或没有正确接收到所述UE的上行用户数据的NACK消息。
结合第六方面,或第六方面的第一~六种可能的实现方式中的任意一种实现方式,在第七种可能的实现方式中,所述多个UE处于空闲态;所述发射器还用于:
在所述处理器对所述多个UE在所述时频资源上发送的上行用户数据进行译码成功之后,向所述多个处于空闲态的UE发送竞争解决消息;所述竞争解决消息中包含指示对所述多个处于空闲态的UE发送的上行用户数据译码成功的指示信息,以及为每个处于空闲态的UE分配的小区无线网络临时标识C-RNTI。
采用上述任一方面提供的方法、装置或设备,网络侧设备可以提前向UE指示多个导频信号,UE在接收到网络侧设备发送的随机接入响应消息后,可以在这多个导频信号中选择一个导频信号,并在所述随机接入响应消息中所指示的时频资源上,向网络侧设备发送上行用户数据和选择的导频信号。这样,当多个UE在相同的随机接入资源上向基站发送了相同的随机接入前导码时,可以增加多个UE在msg3中使用不同的导频信号的几率,从而可以提高基于竞争的随机接入过程的成功率。
附图说明
图1为本发明实施例提供的随机接入中的上行传输系统结构10示意图;
图2为本发明实施例一提供的随机接入中的上行传输方法流程图;
图3为本发明实施例二提供的随机接入中的上行传输方法流程图;
图4为多个UE分别采用不同的码本将自身待发送的上行用户数据映射为码字后,在同一时频资源上发送给网络侧设备的示意图;
图5(a)为原有的msg4的MAC消息头的消息格式示意图;
图5(b)为原有的msg4的MAC消息体的消息格式示意图;
图6(a)为本发明实施例中msg4的消息格式示意图
图6(b)为本发明实施例中msg4中对应单个UE的消息体的消息格式示意图;
图7为本发明实施例三提供的随机接入中的上行传输方法流程图;
图8为本发明实施例四提供的随机接入中的上行传输装置结构示意图;
图9为本发明实施例五提供的随机接入中的上行传输装置结构示意图;
图10为本发明实施例六提供的随机接入中的上行传输设备结构示意图;
图11为本发明实施例七提供的随机接入中的上行传输设备结构示意图。
具体实施方式
如图1所示,为本发明实施例提供的随机接入中的上行传输系统结构10 示意图,包括:
用户设备UE11,在接收到网络侧设备12发送的随机接入响应消息后,从所述网络侧设备下发的导频信号参数信息所指示的多个导频信号中,选择一个导频信号,并在所述随机接入响应消息中所指示的时频资源上,向所述网络侧设备发送上行用户数据和选择的导频信号;
网络侧设备12,用于向覆盖范围内的UE发送导频信号参数信息,所述导频信号参数信息用于指示UE候选的多个导频信号;在发送的随机接入响应消息所指示的时频资源上,检测多个导频信号,在检测到所述多个导频信号后,基于检测到的所述多个导频信号,对多个用户设备UE在所述时频资源上发送的上行用户数据进行译码。
下面结合说明书附图对本发明实施例作进一步详细描述。
实施例一
如图2所示,为本发明实施例一提供的随机接入中的上行传输方法流程图,包括以下步骤:
S201:UE在接收到网络侧设备发送的随机接入响应消息后,从网络侧设备下发的导频信号参数信息所指示的多个导频信号中,选择一个导频信号。
在具体实施中,UE在发起随机接入时,向网络侧设备(具体可以是指基站)发送随机接入前导码,网络侧设备在检测到随机接入前导码后,反馈随机接入响应消息,UE在接收到随机接入响应消息后,发送上行用户数据和导频信号(即msg3);为了减少冲突,提高随机接入成功率,本发明实施例为msg3分配了多个导频信号,UE可以从中选择一个作为msg3的导频信号。
这里,网络侧设备可以通过广播消息或专用信令向UE发送导频信号参数信息,该导频信号参数信息可以包括多个导频信号的导频信号配置信息(比如包括每个导频信号的循环移位、时域扩展码等);或者可以包括多个导频信号的导频索引号,每个导频索引号对应一种导频信号;或者可以是一个导频索引组号,一个导频索引组号对应一组导频信号(详见实施例二的描述)。
S202:UE在所述随机接入响应消息所指示的时频资源上,向所述网络侧 设备发送上行用户数据和选择的导频信号。
这里,UE在随机接入响应消息的UL-Grant所指示的时频资源上,将选择的导频信号和上行用户数据携带在msg3中,发送给网络侧设备。
S203:网络侧设备在发送的随机接入响应消息所指示的时频资源上,检测多个导频信号。
S204:网络侧设备在检测到多个导频信号后,基于检测到的多个导频信号,对多个用户设备UE在所述时频资源上发送的上行用户数据进行译码。
在具体实施中,网络侧设备在通过随机接入响应消息指示给UE的时频资源上,进行导频信号盲检测,若只检测到一个导频信号,可以直接基于该导频信号进行信道估计,并基于信道估计的结果对在该时频资源上接收的上行用户数据进行译码。若检测到多个导频信号,则说明多个UE都在该时频资源上发送了上行用户数据,可以采用信道复用技术对多个UE在该时频资源上发送的上行用户数据进行译码。这里,网络侧设备采用的信道复用技术可以是稀疏码多址(Sparse Code Multiple Access,SCMA)技术,还可以是多用户多入多出技术(Multi-User Multiple-Input Multiple-Output,MU-MIMO),下面通过实施例二对随机接入过程中基于SCMA的上行用户数据传输进行介绍,以及通过实施例三对随机接入过程中基于MU-MIMO的上行用户数据传输进行介绍。
基于上述描述内容可知,本发明实施例对随机接入过程中的msg3的发送进行了改进,网络侧设备可以提前向UE指示多个导频信号,UE在需要发送msg3时,可以在这多个导频信号中选择一个导频信号携带在msg3中。这样,当在msg1中,即使多个UE在相同的随机接入资源上向基站发送了相同的随机接入前导码后,也可以增加多个UE在msg3中使用不同的导频信号的几率,从而可以提高基于竞争的随机接入过程的成功率。
实施例二
如图3所示,为本发明实施例二提供的随机接入中的上行传输方法流程图,包括以下步骤:
S301:UE在接收到网络侧设备发送的随机接入响应消息后,从网络侧设备下发的SCMA参数信息所指示的多个候选的码本中,选择一个码本,将待发送的上行用户数据映射为所选择的码本中的码字;并从所述网络侧设备下发的导频信号参数信息所指示的多个导频信号中,选择一个与所选择的码本对应的导频信号。
这里,每个码本对应一个或多个导频信号,每个导频信号对应一个码本。
在具体实施过程中,网络侧设备可以通过广播消息或专用信令向UE下发指示候选的多个码本的SCMA参数信息及导频信号参数信息,广播消息具体可以是主信息块(Master Information Block,MIB)消息或系统信息块(System Information Block,SIB)消息,当在MIB中下发SCMA参数信息及导频信号参数信息时,可以占用MIB目前空闲的10Bit,当在SIB中下发SCMA参数信息及导频信号参数信息时,可以在目前的SIB中添加相应字段。
下面分别对SCMA参数信息及导频信号参数信息进行介绍。
一、SCMA参数信息:
SCMA参数信息可以是一个SCMA配置索引号,每个SCMA配置索引号对应一种已知的SCMA配置;或者,SCMA参数信息也可以包括具体的配置信息,比如每个候选的码本的码字长度K、每个候选的码本的码字中的非零元素个数N、每个候选的码本支持的不同种码字个数(比如支持两种码字个数M1和M2)等,如下表一所示:
Figure PCTCN2015088436-appb-000001
表一
比如,网络侧设备下发的SCMA参数信息中指示了SCMA配置索引号为0,则接收到该SCMA参数信息的UE可以获知可用的一种SCMA配置为:码字长度为4、码字中的非零元素个数为2、可用的码本数量为
Figure PCTCN2015088436-appb-000002
每个 码本支持4个码字个数和8个码字个数两种码字个数。
在具体实施中,UE可以将匹配SCMA参数信息所指示的码字长度K和码字中的非零元素个数N的多个码本(N<K),确定为所述SCMA参数信息所指示的多个码本,比如,码字长度为4、码字中的非零元素个数为2,从4个元素位置中选择2个元素位置作为非零元素的位置,一共有6种选择方式,其中每一种选择方式即对应一个码本。
由于每个码字对应一种数据bit的组合,码本中的码字个数与数据bit的组合的种类相等,也即不同的码字个数对应不同的数据大小。比如,针对2bit数据,数据bit的组合有(1,0)、(1,1)、(0,0)、(1,1)四种,为了将这2bit数据映射为码字,码本中需要支持4个码字个数。
基于上述描述,UE在将待发送的上行用户数据映射为所选择的码本中的码字时,可以基于上行用户数据的大小,从SCMA参数信息所指示的每个候选的码本支持的多种码字个数中选择一种码字个数,基于选择的码本以及码字个数,将上行用户数据映射为所选择的码本中的码字。如图4所示,为多个UE分别采用不同的码本将自身待发送的上行用户数据映射为码字后,在同一时频资源上发送给网络侧设备的示意图。
采用这种每个码本支持不同种码字个数的方式,可以根据待发送的上行用户数据的大小,选择实际需要的码字个数进行映射;这样,依靠应用不同种码字个数,就可以实现传输不同大小的上行用户数据。网络侧设备在随机接入响应消息中所指示的时频资源可以是预设的一种资源块(Resource Block,RB)个数,从而无需指示不同的RB个数来满足传输不同大小的上行用户数据的需求,减少了信令开销。
作为一种实施方式,为了减少S203中网络侧设备进行导频信号盲检测的复杂度,可以将UE在msg1中发送的随机接入前导码与可使用的码本进行关联。
具体地,UE根据使用的随机接入前导码,确定所述SCMA参数信息所指示的多个候选的码本中,与该随机接入前导码对应的至少一个码本,该至 少一个码本的码本数量小于所述SCMA参数信息指示的所述多个码本的数量;UE在确定的至少一个码本中选择一个码本;
在具体实施过程中,可以预先设置好每种随机接入前导码在每种SCMA配置下对应的至少一个码本,网络侧设备在向UE下发SCMA配置索引号后,UE即可在该SCMA配置索引号所指示的多个码本中,确定出自己使用的随机接入前导码所对应的至少一个码本。
二、导频信号参数信息:
由于网络侧设备在对UE发送的上行用户数据进行译码之前需要先进行上行信道估计,所以UE发送给网络侧设备的msg3中除了携带上行用户数据外,还需要携带导频信号。在本发明实施例二中,UE基于选择的码本,将上行用户数据映射为了选择的码本中的码字,为了使网络侧设备对多个UE的上行用户数据进行正确译码,每个码本都要有其对应的导频信号,每个码本可以对应一个或多个导频信号,但每个导频信号只对应一个码本。
如下表二所示,为了保证信道估计性能,在具体实施中,可以按照导频信号的循环移位和时域扩展码,将可用的导频信号划分为三组,每组8个导频信号,不同组导频信号之间采用不同种的循环移位,同组内的导频信号之间所对应的循环移位和/或时域扩展码不同;在向UE指示可用的导频信号时,将其中的一组导频信号指示给UE。表二中,导频索引号0-7对应的导频信号为第一组,导频索引号8-15对应的导频信号为第二组,导频索引号16-23对应的导频信号为第三组;在具体实施中,每组导频信号可以有一个导频索引组号,可以只将导频索引组号通知给UE,用于指示UE该导频索引组号所对应的一组导频信号为可用的导频信号。
在具体实施中,可以针对每一种SCMA配置,预先设置导频信号与码本的对应关系,当在任一种SCMA配置下,可用码本数目小于可用导频信号数目(比如可用码本数目为6,可用导频信号数目为8)时,不同的导频信号可以对应同一个码本。
Figure PCTCN2015088436-appb-000003
表二
S302:UE在所述随机接入响应消息所指示的时频资源上,向网络侧设备发送映射为所述码字后的上行用户数据和选择的导频信号。
这里,UE在随机接入响应消息中UE-Grant指示的时频资源上发送msg3,其中携带映射为码字的上行用户数据和用于对该上行用户数据进行译码的导频信号。
S303:网络侧设备在发送的随机接入响应消息所指示的时频资源上,检测多个导频信号。
在具体实施过程中,网络侧设备可以根据通过SCMA参数信息指示给UE的多个候选的码本所分别对应的导频信号,在随机接入响应消息所指示的时频资源上进行导频信号盲检测。
在S301中已说明,为了减少进行导频信号盲检测的复杂度,可以将UE使用的随机接入前导码与码本相关联。在每种SCMA配置下,每个随机接入 前导码对应一组码本,该组码本的码本数量小于在该种SCMA配置下的总的码本数量。在网络侧设备侧,根据UE使用的随机接入前导码,确定SCMA参数信息指示的多个候选的码本中,与该随机接入前导码对应的至少一个码本,基于确定的至少一个码本中每个码本对应的导频信号,在发送的随机接入响应消息所指示的时频资源上,检测导频信号。
S304:网络侧设备在检测到多个导频信号后,基于检测到的每个导频信号进行上行信道估计,并确定与该导频信号对应的码本,基于进行上行信道估计的结果以及确定的码本,对在所述时频资源上接收的、该导频信号对应的上行用户数据进行译码。
这里,网络侧设备在检测到多个导频信号后,针对每个导频信号进行上行信道估计,并基于上行信道估计的结果,对该导频信号所对应的上行用户数据(在msg3中与导频信号一起传输的上行用户数据)进行译码,也即在该上行用户数据中检测出该导频信号所对应的码本中的码字,
在具体实施中,若网络侧设备在通过随机接入响应消息(也即msg2)指示给UE的同一时频资源上检测到了多个导频信号,则说明有多个UE在该时频资源上发送了上行用户数据。在网络侧设备在对这多个UE发送的上行用户数据进行译码成功之后,可以向这多个UE发送竞争解决消息(msg4)。当这多个UE为处于RRC连接态的UE时,msg4的消息结构不发生改变。当这多个UE包括多个处于空闲态的UE时,针对这多个处于空闲态的UE,该msg4中需要包含指示对这多个处于空闲态的UE发送的上行用户数据译码成功的指示信息,该指示信息可以是这多个处于空闲态的UE发送的上行用户数据,msg4中还包含为这多个处于空闲态的UE中的每个UE分配的小区无线网络临时标识(Cell-Radio Network Temporary Identity,C-RNTI);这里,为这多个处于空闲态的UE分别分配的C-RNTI通常不同于在msg2中分配的Temporary C-RNTI。可选地,也可以为这多个处于空闲态的UE中的某个UE分配与在msg2中指示的Temporary C-RNTI相同的C-RNTI,此时,可以在msg4中指示该UE的C-RNTI为之前的Temporary C-RNTI,或者,在msg4 中不指示该UE的C-RNTI,此时网络侧设备默认该UE的C-RNTI为之前的Temporary C-RNTI。
如图5(a)和图5(b)所示,分别为原有的msg4的媒体接入控制(Medium Access Control,MAC)消息头和消息体的消息格式示意图。其中,msg4 MAC消息头中包含有保留位(R)、消息头截止标志位(E)和逻辑信道标识,占用一个字节(Oct1)。msg4 MAC消息体为CCCH-SDU,也即UE在msg3中携带的上行用户数据:UE竞争解决标识(Contention Resolution Identity),共48bit,占用6个字节(分别为Oct1~Oct6)。
如图6(a)和图6(b)所示,分别为本发明实施例中msg4的消息格式示意图,和msg4中对应单个UE的消息体的消息格式示意图。在本发明实施例中,msg4中携带多个处于RRC空闲态的UE的竞争解决消息,相当于将单个UE的竞争解决消息拼接在一起。其中,MAC消息头中的元素设置与单个UE对应的MAC消息头中的元素设置一致;MAC消息体(也即MAC payload)中包含针对每个UE的MAC控制元素(Control element),也即包含针对每个UE的消息体信息,如图6(b)所示,在针对每个UE的消息体信息中,相比原有的元素设置,需要添加C-RNTI指示信息,增加了2个字节(Oct7~Oct8)。
混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)机制的启用:
在本发明实施例中,msg3的传输可以支持HARQ过程,具体地,网络侧设备在检测到的导频信号所对应的物理层混合自动重传请求指示信道(Physical HARQ Indicator Channel,PHICH)资源上,向UE发送反馈消息,该反馈消息用于反馈正确接收到所述UE的上行用户数据的确认(ACK)消息或没有正确接收到所述UE的上行用户数据的非确认(NACK)消息。相应地,UE在向网络侧设备发送上行用户数据和选择的导频信号之后,在选择的导频信号所对应的PHICH资源上,检测网络侧设备的反馈消息;在检测到ACK消息后,则UE可以确认msg3发送成功,准备接收msg4,在检测到NACK消息后,对所述上行用户数据进行重传。
可选地,所述选择的码本为第一码本;所述UE对所述上行用户数据进行重传,包括:
所述UE重新选择与所述第一码本不同的第二码本,将所述上行用户数据映射为重新所述第二码本中的码字,并从所述导频信号参数信息指示的多个导频信号中,重新选择与所述第二码本对应的导频信号;
在所述随机接入响应消息所指示的时频资源上,将映射为所述第二码本中的码字的上行用户数据和与所述第二码本对应的导频信号发送给所述网络侧设备。
这里,UE选择第二码本,可以有两种方式:
方式一:不改变码字长度K和码字中的非零元素个数N,只改变码本;
在这种方式下,UE从与第一码本所对应的码字长度和码字中的非零元素个数相匹配的多个码本中,重新选择与第一码本不同的第二码本。
在该方式一下,UE不改变所采用的K和N的大小,如表一所示,在原有的SCMA配置索引号所指示的SCMA配置下,选择第二码本,这样可以获得频域分集效果。
方式二:改变码字长度K和/或码字中的非零元素个数N;
在这种方式下,UE对所述第一码本所对应的码字长度和/或码字中的非零元素个数进行调整,并从匹配调整后的码字长度和/或码字中的非零元素个数的多个码本中,重新选择第二码本。
在该方式二下,UE可以增加K的值,也可以增加N的值,或同时增加K和N的值,其中,增加K值可以获得更大的数据稀疏性,减少冲突概率,增加N值可以获得更大的多维码字增益(或称扩频增益)。
在具体实施过程中,网络侧设备可以向UE下发HARQ参数信息,用于指示UE采用的重传方式,具体可以在下发所述SCMA参数信息及导频参数信息时,一起下发该HARQ参数信息。比如,可以采用1bit作为重传模式标志ReModeFlag,当ReModeFlag=0时,可以表示指示UE使用上述方式一,即不改变K、N值,只改变使用的码本。当ReModeFlag=1时,可以表示指示 UE使用上述方式二,即调整K、N值。具体改变K、N值的规则可以是预先设置的,比如可以按照SCMA配置索引号升序排列的顺序改变K、N值,如最近一次传输失败使用的SCMA配置所对应的SCMA配置索引号为0,则在本次重传中使用SCMA配置索引号1所对应的SCMA配置,如表一所示。
采用本发明实施例二,每个UE随机从可用的码本中选择一个码本对待发送的上行用户数据进行码字映射,并选择与所选择的码本对应的导频信号,将映射为码字的上行用户数据与该导频信号一起携带在msg3中发送给网络侧设备。网络侧设备在检测到多个导频信号后,可以分别基于每个导频信号对应的码本,对该导频信号对应的上行用户数据进行译码,从而提高了对多UE在同一时频资源上发送的msg3的检测能力,进而提高了随机接入成功率。
另外,本发明实施例二中,每个码本可以支持不同种码字个数,UE可以根据需要在msg3中传输的上行用户数据的数据量大小选择一种码字个数,这样可以减少网络侧设备在msg2的UL-Grant中对于RB个数的指示,从而节省了信令开销。
再者,本发明实施例二可以支持HARQ机制,在重传时,UE可以不改变码字长度K和非零元素个数N,只改变使用的码本,这样可以获得频域分集增益,UE也可以增加码字长度K和/或非零元素个数N的大小,以获得更小的冲突概率和/或更大的多维码字增益,提高系统传输性能。
实施例三
如图7所示,为本发明实施例三提供的随机接入中的上行传输方法流程图,该实施例结合MU-MIMO技术实现对多个UE在同一时频资源上发送的msg3的检测,包括以下步骤:
S701:UE在接收到网络侧设备发送的随机接入响应消息后,从该网络侧设备下发的导频信号参数信息所指示的多个导频信号中,选择一个导频信号。
在具体实施中,网络侧设备可以采用广播消息或专有信令向覆盖范围内的UE发送导频信号参数信息,关于导频信号参数信息的体现形式可参见实施例二的描述,比如通过导频索引组号指示UE能够使用的一组导频信号,这里 不再详述。UE在接收到msg2后,在网络侧设备指示的多个导频信号中,随机选择一个导频信号,作为在msg3中携带的导频信号。
S702:UE在所述随机接入响应消息中所指示的时频资源上,向网络侧设备发送上行用户数据和选择的导频信号。
这里,UE向网络侧设备发送msg3,其中携带上行用户数据以及用于网络侧设备进行上行信道估计的导频信号。
S703:网络侧设备在发送的随机接入响应消息所指示的时频资源上,检测多个导频信号。
该步骤中,网络侧设备在随机接入响应消息所指示的时频资源上,进行导频信号盲检测,具体地,网络侧设备可以基于下发给UE的一组导频信号,依次检测msg3中是否存在该组导频信号中的导频信号。
可选地,还可以将UE使用的随机接入前导码与UE可使用的导频信号进行关联,这样,在进行导频信号盲检测时,只需检测与之前接收的随机接入前导码相关联的导频信号。比如,可以设置每个随机接入前导码与导频信号集合的对应关系,该导频信号集合内的导频信号数量小于下发的导频信号参数信息所指示的导频信号的数量;在具体实施中,可以针对表二所示的每组导频信号,分别设置每个随机接入前导码与导频信号集合(包括该组导频信号中的部分导频信号)的对应关系。
S704:网络侧设备在检测到多个导频信号后,基于检测到的多个导频信号,对多个UE在所述时频资源上发送的上行用户数据按照MU-MIMO模式进行译码。
在具体实施过程中,网络侧设备可能检测到一个或多个导频信号,若只检测到一个导频信号,可以直接基于该导频信号进行上行信道估计,并基于上行信道估计的结果对该导频信号对应的上行用户数据进行译码。若检测到多个导频信号,则按照MU-MIMO模式进行译码。
在该实施例三中,也可以支持HARQ过程。具体地,网络侧设备在检测到的导频信号所对应的PHICH资源上,向UE发送反馈消息,用于指示所述 上行用户数据传输成功或失败。相应地,UE在向网络侧设备发送上行用户数据和选择的导频信号之后,在选择的导频信号所对应的PHICH资源上,检测网络侧设备的反馈消息;在检测到NACK消息后,对所述上行用户数据进行重传,此时,UE可以在可用的导频信号中重新选择一个导频信号发起重传。
可选地,所述多个UE处于空闲态;所述网络侧设备对所述多个UE在所述时频资源上发送的上行用户数据进行译码成功之后,还包括:
所述网络侧设备向所述多个处于空闲态的UE发送竞争解决消息;所述竞争解决消息中包含指示对所述多个处于空闲态的UE发送的上行用户数据译码成功的指示信息,以及为每个处于空闲态的UE分配的小区无线网络临时标识C-RNTI。
在具体实施中,当网络侧设备在msg3中检测到多个处于RRC空闲态的UE的数据时,网络侧设备在向这多个处于空闲态的UE发送的msg4中需要包含指示对这多个处于空闲态的UE发送的上行用户数据译码成功的指示信息,以及为每个处于空闲态的UE分配的C-RNTI,所述指示信息可以是这多个处于空闲态的UE的CCCH SDU。也即,本发明实施例改变了msg4的MAC消息格式,在msg4中不再是单个UE的数据,这种设计方式不仅限于上述SCMA和MU-MIMO的复用方式,当采用其它复用方式检测出多个处于空闲态的UE的msg3数据后,都可以采用上述这种msg4的消息格式。
采用本发明实施例三,增加了多个UE在msg3中使用不同的导频信号的几率,网络侧设备在检测到多个导频信号后,可以基于检测到的多个导频信号,对多个UE在同一时频资源上发送的上行用户数据按照MU-MIMO模式进行译码,从而可以提高随机接入过程的成功率。
基于同一发明构思,本发明实施例中还提供了一种与随机接入中的上行传输方法对应的随机接入中的上行传输装置,由于该装置解决问题的原理与本发明实施例随机接入中的上行传输方法相似,因此该装置的实施可以参见方法的实施,重复之处不再赘述。
实施例四
如图8所示,为本发明实施例四提供的随机接入中的上行传输装置结构示意图,包括:
选择模块81,用于在接收到网络侧设备发送的随机接入响应消息后,从所述网络侧设备下发的导频信号参数信息所指示的多个导频信号中,选择一个导频信号,并将选择的导频信号传输至发送模块82;
发送模块82,用于在所述随机接入响应消息中所指示的时频资源上,向所述网络侧设备发送上行用户数据和选择的导频信号。
可选地,所述选择模块81还用于:
在所述发送模块82向所述网络侧设备发送上行用户数据和选择的导频信号之前,从所述网络侧设备下发的稀疏码多址SCMA参数信息所指示的多个候选的码本中,选择一个码本,将所述上行用户数据映射为所选择的码本中的码字;
所述发送模块82具体用于:
向所述网络侧设备发送映射为所述码字后的上行用户数据和选择的导频信号。
可选地,所述选择模块81具体用于:
从所述多个导频信号中,选择一个与所选择的码本对应的导频信号。
可选地,所述选择模块81具体用于:
根据用户设备UE使用的随机接入前导码,确定所述SCMA参数信息所指示的多个候选的码本中,与所述随机接入前导码对应的至少一个码本;所述至少一个码本的码本数量小于所述SCMA参数信息指示的所述多个码本的数量;在确定的至少一个码本中选择一个码本。
可选地,所述选择模块81具体用于:
将匹配所述SCMA参数信息所指示的码字长度和码字中的非零元素个数的多个码本,确定为所述SCMA参数信息所指示的多个候选的码本。
可选地,所述选择模块81具体用于:
基于所述上行用户数据的大小,从所述SCMA参数信息所指示的每个候 选的码本支持的多种码字个数中选择一种码字个数;基于选择的码本以及码字个数,将所述上行用户数据映射为所选择的码本中的码字。
可选地,所述装置还包括:
检测模块83,用于在所述发送模块82向所述网络侧设备发送上行用户数据和选择的导频信号之后,在选择的所述导频信号所对应的物理层混合自动重传请求指示信道PHICH资源上,检测所述网络侧设备的反馈消息,所述反馈消息用于反馈正确接收到所述UE的上行用户数据的ACK消息或没有正确接收到所述UE的上行用户数据的NACK消息;
所述发送模块82还用于:
在所述检测模块83检测到非确认NACK消息后,对所述上行用户数据进行重传。
可选地,所述选择的码本为第一码本;所述发送模块82具体用于根据以下步骤对所述上行用户数据进行重传:
重新选择与所述第一码本不同的第二码本,将所述上行用户数据映射为所述第二码本中的码字,并从所述导频信号参数信息指示的多个导频信号中,重新选择与所述第二码本对应的导频信号;在所述随机接入响应消息所指示的时频资源上,将映射为所述第二码本中的码字的上行用户数据和与所述第二码本对应的导频信号发送给所述网络侧设备。
可选地,所述发送模块82具体用于:
从与所述第一码本所对应的码字长度和码字中的非零元素个数相匹配的多个码本中,重新选择与所述第一码本不同的第二码本;或者,
对所述第一码本所对应的码字长度和/或码字中的非零元素个数进行调整,并从匹配调整后的码字长度和/或码字中的非零元素个数的多个码本中,重新选择第二码本。
实施例五
如图9所示,为本发明实施例五提供的随机接入中的上行传输装置结构示意图,包括:
发送模块91,用于向覆盖范围内的UE发送导频信号参数信息,所述导频信号参数信息用于向UE指示多个候选的导频信号;
检测模块92,用于在发送的随机接入响应消息所指示的时频资源上,检测多个导频信号,并将检测结果传输给译码模块93;
译码模块93,用于在所述检测模块92检测到所述多个导频信号后,基于检测到的所述多个导频信号,对多个用户设备UE在所述时频资源上发送的上行用户数据进行译码。
可选地,所述译码模块93具体用于:
基于检测到的每个导频信号,进行上行信道估计,并确定与所述导频信号对应的码本;基于进行上行信道估计的结果以及确定的码本,对所述导频信号对应的上行用户数据进行译码。
可选地,所述发送模块91还用于:
在所述检测模块92检测多个导频信号之前,向覆盖范围内的UE发送稀疏码多址SCMA参数信息;其中,所述SCMA参数信息用于向UE指示多个候选的码本。
可选地,所述SCMA参数信息中包括用于指示以下信息中的一种或多种的参数信息:
每个候选的码本的码字长度;
每个候选的码本的码字中非零元素的个数;
每个候选的码本支持的多种码字个数。
可选地,所述检测模块92具体用于:
根据UE使用的随机接入前导码,确定所述SCMA参数信息指示的多个候选的码本中,与所述随机接入前导码对应的至少一个码本;所述至少一个码本的码本数量小于所述SCMA参数信息指示的所述多个码本的数量;基于确定的至少一个码本中每个码本对应的导频信号,在发送的随机接入响应消息所指示的时频资源上,检测多个导频信号。
可选地,所述译码模块93具体用于:
基于检测到的所述多个导频信号,对多个UE在所述时频资源上发送的上行用户数据按照多UE多入多出MU-MIMO模式进行译码。
可选地,所述发送模块91还用于:
在对所述上行用户数据进行译码之后,在检测到的多个导频信号所对应的物理层混合自动重传请求指示信道PHICH资源上,向所述UE发送反馈消息,所述反馈消息用于反馈正确接收到所述UE的上行用户数据的ACK消息或没有正确接收到所述UE的上行用户数据的NACK消息。
可选地,所述多个UE处于空闲态;所述发送模块91还用于:
在所述译码模块93对所述多个UE在所述时频资源上发送的上行用户数据进行译码成功之后,向所述多个处于空闲态的UE发送竞争解决消息;所述竞争解决消息中包含指示对所述多个处于空闲态的UE发送的上行用户数据译码成功的指示信息,以及为每个处于空闲态的UE分配的小区无线网络临时标识C-RNTI。
实施例六
如图10所示,为本发明实施例六提供的随机接入中的上行传输设备结构示意图,包括:
处理器101,用于在确定接收到网络侧设备发送的随机接入响应消息后,从所述网络侧设备下发的导频信号参数信息所指示的多个导频信号中,选择一个导频信号,并将选择的导频信号和待发送的上行用户数据传输给发射器102;
发射器102,用于在所述随机接入响应消息中所指示的时频资源上,向所述网络侧设备发送所述处理器传输的上行用户数据和选择的导频信号。
可选地,所述处理器101还用于:
在所述发射器102向所述网络侧设备发送上行用户数据和选择的导频信号之前,从所述网络侧设备下发的稀疏码多址SCMA参数信息所指示的多个候选的码本中,选择一个码本,将所述上行用户数据映射为所选择的码本中的码字;
所述发射器102具体用于:
向所述网络侧设备发送所述处理器101映射为所述码字后的上行用户数据和选择的导频信号。
可选地,所述处理器101具体用于:
从所述多个导频信号中,选择一个与所选择的码本对应的导频信号。
可选地,所述处理器101具体用于:
根据用户设备UE使用的随机接入前导码,确定所述SCMA参数信息所指示的多个候选的码本中,与所述随机接入前导码对应的至少一个码本;所述至少一个码本的码本数量小于所述SCMA参数信息指示的所述多个码本的数量;在确定的至少一个码本中选择一个码本。
可选地,所述处理器101具体用于:
将匹配所述SCMA参数信息所指示的码字长度和码字中的非零元素个数的多个码本,确定为所述SCMA参数信息所指示的多个候选的码本。
可选地,所述处理器101具体用于:
基于所述上行用户数据的大小,从所述SCMA参数信息所指示的每个候选的码本支持的多种码字个数中选择一种码字个数;基于选择的码本以及码字个数,将所述上行用户数据映射为所选择的码本中的码字。
可选地,所述设备还包括:
接收器103,用于在所述发射器102向所述网络侧设备发送上行用户数据和选择的导频信号之后,在选择的所述导频信号所对应的物理层混合自动重传请求指示信道PHICH资源上,检测所述网络侧设备的反馈消息,所述反馈消息用于反馈正确接收到所述UE的上行用户数据的ACK消息或没有正确接收到所述UE的上行用户数据的NACK消息;
所述发射器102还用于:
在所述接收器103检测到非确认NACK消息后,对所述上行用户数据进行重传。
可选地,所述选择的码本为第一码本;所述发射器102具体用于根据以 下步骤对所述上行用户数据进行重传:
重新选择与所述第一码本不同的第二码本,将所述上行用户数据映射为所述第二码本中的码字,并从所述导频信号参数信息指示的多个导频信号中,重新选择与所述第二码本对应的导频信号;在所述随机接入响应消息所指示的时频资源上,将映射为所述第二码本中的码字的上行用户数据和与所述第二码本对应的导频信号发送给所述网络侧设备。
可选地,所述发射器102具体用于:
从与所述第一码本所对应的码字长度和码字中的非零元素个数相匹配的多个码本中,重新选择与所述第一码本不同的第二码本;或者,
对所述第一码本所对应的码字长度和/或码字中的非零元素个数进行调整,并从匹配调整后的码字长度和/或码字中的非零元素个数的多个码本中,重新选择第二码本。
实施例七
如图11所示,为本发明实施例七提供的随机接入中的上行传输设备结构示意图,包括:
发射器111,用于向覆盖范围内的UE发送导频信号参数信息,所述导频信号参数信息用于向UE指示多个候选的导频信号;
接收器112,用于在所述发射器111发送的随机接入响应消息所指示的时频资源上,检测多个导频信号,并将检测结果传输给处理器113;
处理器113,用于在所述接收器112检测到所述多个导频信号后,基于检测到的所述多个导频信号,对多个用户设备UE在所述时频资源上发送的上行用户数据进行译码。
可选地,所述处理器113具体用于:
基于检测到的每个导频信号,进行上行信道估计,并确定与所述导频信号对应的码本;基于进行上行信道估计的结果以及确定的码本,对所述导频信号对应的上行用户数据进行译码。
可选地,所述发射器111还用于:
在所述处理器113检测多个导频信号之前,向覆盖范围内的UE发送稀疏码多址SCMA参数信息;其中,所述SCMA参数信息用于向UE指示多个候选的码本。
可选地,所述SCMA参数信息中包括用于指示以下信息中的一种或多种的参数信息:
每个候选的码本的码字长度;
每个候选的码本的码字中非零元素的个数;
每个候选的码本支持的多种码字个数。
可选地,所述处理器113具体用于:
根据UE使用的随机接入前导码,确定所述SCMA参数信息指示的多个候选的码本中,与所述随机接入前导码对应的至少一个码本;所述至少一个码本的码本数量小于所述SCMA参数信息指示的所述多个码本的数量;基于确定的至少一个码本中每个码本对应的导频信号,在发送的随机接入响应消息所指示的时频资源上,检测多个导频信号。
可选地,所述处理器113具体用于:
基于检测到的所述多个导频信号,对多个UE在所述时频资源上发送的上行用户数据按照多UE多入多出MU-MIMO模式进行译码。
可选地,所述发射器111还用于:
在对所述上行用户数据进行译码之后,在检测到的多个导频信号所对应的物理层混合自动重传请求指示信道PHICH资源上,向所述UE发送反馈消息,所述反馈消息用于反馈正确接收到所述UE的上行用户数据的ACK消息或没有正确接收到所述UE的上行用户数据的NACK消息。
可选地,所述多个UE处于空闲态;所述发射器111还用于:
在所述处理器113对所述多个UE在所述时频资源上发送的上行用户数据进行译码成功之后,向所述多个处于空闲态的UE发送竞争解决消息;所述竞争解决消息中包含指示对所述多个处于空闲态的UE发送的上行用户数据译码成功的指示信息,以及为每个处于空闲态的UE分配的小区无线网络临时标 识C-RNTI。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、装置(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本 发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (34)

  1. 一种随机接入中的上行传输方法,其特征在于,该方法包括:
    用户设备UE在接收到网络侧设备发送的随机接入响应消息后,从所述网络侧设备下发的导频信号参数信息所指示的多个导频信号中,选择一个导频信号;
    所述UE在所述随机接入响应消息中所指示的时频资源上,向所述网络侧设备发送上行用户数据和选择的导频信号。
  2. 如权利要求1所述的方法,其特征在于,所述UE向所述网络侧设备发送上行用户数据和选择的导频信号之前,还包括:
    所述UE从所述网络侧设备下发的稀疏码多址SCMA参数信息所指示的多个候选的码本中,选择一个码本,将所述上行用户数据映射为所选择的码本中的码字;
    所述UE向所述网络侧设备发送上行用户数据和选择的导频信号,包括:
    所述UE向所述网络侧设备发送映射为所述码字后的上行用户数据和选择的导频信号。
  3. 如权利要求2所述的方法,其特征在于,所述UE从所述网络侧设备下发的导频信号参数信息所指示的多个导频信号中,选择一个导频信号,包括:
    所述UE从所述多个导频信号中,选择一个与所选择的码本对应的导频信号。
  4. 如权利要求2或3所述的方法,其特征在于,所述UE从所述网络侧设备下发的SCMA参数信息所指示的多个候选的码本中,选择一个码本,包括:
    所述UE根据使用的随机接入前导码,确定所述SCMA参数信息所指示的多个候选的码本中,与所述随机接入前导码对应的至少一个码本;所述至少一个码本的码本数量小于所述SCMA参数信息指示的所述多个码本的数 量;
    所述UE在确定的至少一个码本中选择一个码本。
  5. 如权利要求2~4任一所述的方法,其特征在于,所述UE确定所述网络侧设备下发的所述SCMA参数信息所指示的多个候选的码本,包括:
    所述UE将匹配所述SCMA参数信息所指示的码字长度和码字中的非零元素个数的多个码本,确定为所述SCMA参数信息所指示的多个候选的码本。
  6. 如权利要求2~5任一所述的方法,其特征在于,所述UE将所述上行用户数据映射为所选择的码本中的码字,包括:
    所述UE基于所述上行用户数据的大小,从所述SCMA参数信息所指示的每个候选的码本支持的多种码字个数中选择一种码字个数;
    所述UE基于选择的码本以及码字个数,将所述上行用户数据映射为所选择的码本中的码字。
  7. 如权利要求2~6任一所述的方法,其特征在于,所述UE向所述网络侧设备发送上行用户数据和选择的导频信号之后,还包括:
    所述UE在选择的所述导频信号所对应的物理层混合自动重传请求指示信道PHICH资源上,检测所述网络侧设备的反馈消息,所述反馈消息用于反馈正确接收到所述UE的上行用户数据的ACK消息或没有正确接收到所述UE的上行用户数据的NACK消息;
    所述UE在检测到非确认NACK消息后,对所述上行用户数据进行重传。
  8. 如权利要求7所述的方法,其特征在于,所述选择的码本为第一码本;所述UE对所述上行用户数据进行重传,包括:
    所述UE重新选择与所述第一码本不同的第二码本,将所述上行用户数据映射为所述第二码本中的码字,并从所述导频信号参数信息指示的多个导频信号中,重新选择与所述第二码本对应的导频信号;
    在所述随机接入响应消息所指示的时频资源上,将映射为所述第二码本中的码字的上行用户数据和与所述第二码本对应的导频信号发送给所述网络侧设备。
  9. 如权利要求8所述的方法,其特征在于,所述UE重新选择与所述第一码本不同的第二码本,包括:
    所述UE从与所述第一码本所对应的码字长度和码字中的非零元素个数相匹配的多个码本中,重新选择与所述第一码本不同的第二码本;或者,
    所述UE对所述第一码本所对应的码字长度和/或码字中的非零元素个数进行调整,并从匹配调整后的码字长度和/或码字中的非零元素个数的多个码本中,重新选择第二码本。
  10. 一种随机接入中的上行传输方法,其特征在于,该方法包括:
    网络侧设备向覆盖范围内的UE发送导频信号参数信息,所述导频信号参数信息用于向UE指示多个候选的导频信号;
    所述网络侧设备在发送的随机接入响应消息所指示的时频资源上,检测多个导频信号;
    所述网络侧设备在检测到所述多个导频信号后,基于检测到的所述多个导频信号,对多个用户设备UE在所述时频资源上发送的上行用户数据进行译码。
  11. 如权利要求10所述的方法,其特征在于,所述网络侧设备基于检测到的所述多个导频信号,对多个UE在所述时频资源上发送的上行用户数据进行译码,包括:
    所述网络侧设备基于检测到的每个导频信号,进行上行信道估计,并确定与所述导频信号对应的码本;
    所述网络侧设备基于进行上行信道估计的结果以及确定的码本,对所述导频信号对应的上行用户数据进行译码。
  12. 如权利要求11所述的方法,其特征在于,所述网络侧设备检测多个导频信号之前,还包括:
    所述网络侧设备向覆盖范围内的UE发送稀疏码多址SCMA参数信息;其中,所述SCMA参数信息用于向UE指示多个候选的码本。
  13. 如权利要求12所述的方法,其特征在于,所述SCMA参数信息中包 括用于指示以下信息中的一种或多种的参数信息:
    每个候选的码本的码字长度;
    每个候选的码本的码字中非零元素的个数;
    每个候选的码本支持的多种码字个数。
  14. 如权利要求12或13所述的方法,其特征在于,所述网络侧设备在发送的随机接入响应消息所指示的时频资源上,检测多个导频信号,包括:
    所述网络侧设备根据UE使用的随机接入前导码,确定所述SCMA参数信息指示的多个候选的码本中,与所述随机接入前导码对应的至少一个码本;所述至少一个码本的码本数量小于所述SCMA参数信息指示的所述多个码本的数量;
    所述网络侧设备基于确定的至少一个码本中每个码本对应的导频信号,在发送的随机接入响应消息所指示的时频资源上,检测多个导频信号。
  15. 如权利要求10所述的方法,其特征在于,所述网络侧设备基于检测到的所述多个导频信号,对多个UE在所述时频资源上发送的上行用户数据进行译码,包括:
    所述网络侧设备基于检测到的所述多个导频信号,对多个UE在所述时频资源上发送的上行用户数据按照多UE多入多出MU-MIMO模式进行译码。
  16. 如权利要求10~15任一所述的方法,其特征在于,所述网络侧设备对所述上行用户数据进行译码之后,还包括:
    所述网络侧设备在检测到的多个导频信号所对应的物理层混合自动重传请求指示信道PHICH资源上,向所述UE发送反馈消息,所述反馈消息用于反馈正确接收到所述UE的上行用户数据的ACK消息或没有正确接收到所述UE的上行用户数据的NACK消息。
  17. 如权利要求10~16任一所述的方法,其特征在于,所述多个UE处于空闲态;所述网络侧设备对所述多个UE在所述时频资源上发送的上行用户数据进行译码成功之后,还包括:
    所述网络侧设备向所述多个处于空闲态的UE发送竞争解决消息;所述竞 争解决消息中包含指示对所述多个处于空闲态的UE发送的上行用户数据译码成功的指示信息,以及为每个处于空闲态的UE分配的小区无线网络临时标识C-RNTI。
  18. 一种随机接入中的上行传输装置,其特征在于,该装置包括:
    选择模块,用于在接收到网络侧设备发送的随机接入响应消息后,从所述网络侧设备下发的导频信号参数信息所指示的多个导频信号中,选择一个导频信号,并将选择的导频信号传输至发送模块;
    发送模块,用于在所述随机接入响应消息中所指示的时频资源上,向所述网络侧设备发送上行用户数据和选择的导频信号。
  19. 如权利要求18所述的装置,其特征在于,所述选择模块还用于:
    在所述发送模块向所述网络侧设备发送上行用户数据和选择的导频信号之前,从所述网络侧设备下发的稀疏码多址SCMA参数信息所指示的多个候选的码本中,选择一个码本,将所述上行用户数据映射为所选择的码本中的码字;
    所述发送模块具体用于:
    向所述网络侧设备发送映射为所述码字后的上行用户数据和选择的导频信号。
  20. 如权利要求19所述的装置,其特征在于,所述选择模块具体用于:
    从所述多个导频信号中,选择一个与所选择的码本对应的导频信号。
  21. 如权利要求19或20所述的装置,其特征在于,所述选择模块具体用于:
    根据用户设备UE使用的随机接入前导码,确定所述SCMA参数信息所指示的多个候选的码本中,与所述随机接入前导码对应的至少一个码本;所述至少一个码本的码本数量小于所述SCMA参数信息指示的所述多个码本的数量;在确定的至少一个码本中选择一个码本。
  22. 如权利要求19~21任一所述的装置,其特征在于,所述选择模块具体用于:
    将匹配所述SCMA参数信息所指示的码字长度和码字中的非零元素个数的多个码本,确定为所述SCMA参数信息所指示的多个候选的码本。
  23. 如权利要求19~22任一所述的装置,其特征在于,所述选择模块具体用于:
    基于所述上行用户数据的大小,从所述SCMA参数信息所指示的每个候选的码本支持的多种码字个数中选择一种码字个数;基于选择的码本以及码字个数,将所述上行用户数据映射为所选择的码本中的码字。
  24. 如权利要求19~23任一所述的装置,其特征在于,所述装置还包括:
    检测模块,用于在所述发送模块向所述网络侧设备发送上行用户数据和选择的导频信号之后,在选择的所述导频信号所对应的物理层混合自动重传请求指示信道PHICH资源上,检测所述网络侧设备的反馈消息,所述反馈消息用于反馈正确接收到所述UE的上行用户数据的ACK消息或没有正确接收到所述UE的上行用户数据的NACK消息;
    所述发送模块还用于:
    在所述检测模块检测到非确认NACK消息后,对所述上行用户数据进行重传。
  25. 如权利要求24所述的装置,其特征在于,所述选择的码本为第一码本;所述发送模块具体用于根据以下步骤对所述上行用户数据进行重传:
    重新选择与所述第一码本不同的第二码本,将所述上行用户数据映射为所述第二码本中的码字,并从所述导频信号参数信息指示的多个导频信号中,重新选择与所述第二码本对应的导频信号;在所述随机接入响应消息所指示的时频资源上,将映射为所述第二码本中的码字的上行用户数据和与所述第二码本对应的导频信号发送给所述网络侧设备。
  26. 如权利要求25所述的装置,其特征在于,所述发送模块具体用于:
    从与所述第一码本所对应的码字长度和码字中的非零元素个数相匹配的多个码本中,重新选择与所述第一码本不同的第二码本;或者,
    对所述第一码本所对应的码字长度和/或码字中的非零元素个数进行调 整,并从匹配调整后的码字长度和/或码字中的非零元素个数的多个码本中,重新选择第二码本。
  27. 一种随机接入中的上行传输装置,其特征在于,该装置包括:
    发送模块,用于向覆盖范围内的UE发送导频信号参数信息,所述导频信号参数信息用于向UE指示多个候选的导频信号;
    检测模块,用于在发送的随机接入响应消息所指示的时频资源上,检测多个导频信号,并将检测结果传输给译码模块;
    译码模块,用于在所述检测模块检测到所述多个导频信号后,基于检测到的所述多个导频信号,对多个用户设备UE在所述时频资源上发送的上行用户数据进行译码。
  28. 如权利要求27所述的装置,其特征在于,所述译码模块具体用于:
    基于检测到的每个导频信号,进行上行信道估计,并确定与所述导频信号对应的码本;基于进行上行信道估计的结果以及确定的码本,对所述导频信号对应的上行用户数据进行译码。
  29. 如权利要求28所述的装置,其特征在于,所述发送模块还用于:
    在所述检测模块检测多个导频信号之前,向覆盖范围内的UE发送稀疏码多址SCMA参数信息;其中,所述SCMA参数信息用于向UE指示多个候选的码本。
  30. 如权利要求29所述的装置,其特征在于,所述SCMA参数信息中包括用于指示以下信息中的一种或多种的参数信息:
    每个候选的码本的码字长度;
    每个候选的码本的码字中非零元素的个数;
    每个候选的码本支持的多种码字个数。
  31. 如权利要求29或30所述的装置,其特征在于,所述检测模块具体用于:
    根据UE使用的随机接入前导码,确定所述SCMA参数信息指示的多个候选的码本中,与所述随机接入前导码对应的至少一个码本;所述至少一个 码本的码本数量小于所述SCMA参数信息指示的所述多个码本的数量;基于确定的至少一个码本中每个码本对应的导频信号,在发送的随机接入响应消息所指示的时频资源上,检测多个导频信号。
  32. 如权利要求27所述的装置,其特征在于,所述译码模块具体用于:
    基于检测到的所述多个导频信号,对多个UE在所述时频资源上发送的上行用户数据按照多UE多入多出MU-MIMO模式进行译码。
  33. 如权利要求27~32任一所述的装置,其特征在于,所述发送模块还用于:
    在对所述上行用户数据进行译码之后,在检测到的多个导频信号所对应的物理层混合自动重传请求指示信道PHICH资源上,向所述UE发送反馈消息,所述反馈消息用于反馈正确接收到所述UE的上行用户数据的ACK消息或没有正确接收到所述UE的上行用户数据的NACK消息。
  34. 如权利要求27~33任一所述的装置,其特征在于,所述多个UE处于空闲态;所述发送模块还用于:
    在所述译码模块对所述多个UE在所述时频资源上发送的上行用户数据进行译码成功之后,向所述多个处于空闲态的UE发送竞争解决消息;所述竞争解决消息中包含指示对所述多个处于空闲态的UE发送的上行用户数据译码成功的指示信息,以及为每个处于空闲态的UE分配的小区无线网络临时标识C-RNTI。
PCT/CN2015/088436 2015-08-28 2015-08-28 一种随机接入中的上行传输方法及装置 WO2017035707A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15902514.7A EP3328149B1 (en) 2015-08-28 2015-08-28 Method and device for uplink transmission in random access process
CN201580044399.6A CN106797660B (zh) 2015-08-28 2015-08-28 一种随机接入中的上行传输方法及装置
PCT/CN2015/088436 WO2017035707A1 (zh) 2015-08-28 2015-08-28 一种随机接入中的上行传输方法及装置
US15/907,012 US10616921B2 (en) 2015-08-28 2018-02-27 Uplink transmission method and apparatus in random access

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/088436 WO2017035707A1 (zh) 2015-08-28 2015-08-28 一种随机接入中的上行传输方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/907,012 Continuation US10616921B2 (en) 2015-08-28 2018-02-27 Uplink transmission method and apparatus in random access

Publications (1)

Publication Number Publication Date
WO2017035707A1 true WO2017035707A1 (zh) 2017-03-09

Family

ID=58186430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/088436 WO2017035707A1 (zh) 2015-08-28 2015-08-28 一种随机接入中的上行传输方法及装置

Country Status (4)

Country Link
US (1) US10616921B2 (zh)
EP (1) EP3328149B1 (zh)
CN (1) CN106797660B (zh)
WO (1) WO2017035707A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110035537A (zh) * 2016-11-03 2019-07-19 联发科技股份有限公司 用于多波束操作的初始接入方法以及用户设备
CN111629447A (zh) * 2019-02-28 2020-09-04 中国移动通信有限公司研究院 一种配置方法、信道接入方法、网络设备及终端
CN111919494A (zh) * 2018-04-05 2020-11-10 株式会社Ntt都科摩 用户装置
CN113303006A (zh) * 2019-01-18 2021-08-24 株式会社Ntt都科摩 用户设备和基站以及由用户设备、基站执行的方法
CN113630898A (zh) * 2021-06-16 2021-11-09 北京邮电大学 无线数据监听的方法、装置、电子设备及介质

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017124433A1 (zh) * 2016-01-22 2017-07-27 富士通株式会社 随机接入与数据传输的装置、方法以及通信系统
US10958381B2 (en) * 2016-09-26 2021-03-23 Lg Electronics Inc. Uplink signal transmission method and user equipment, and uplink signal reception method and base station
US10779144B2 (en) * 2016-12-30 2020-09-15 Electronics And Telecommunications Research Institute Method and apparatus for transmitting downlink data and uplink data in NB-IoT system
CN110537392B (zh) * 2017-03-22 2023-05-30 Lg电子株式会社 执行随机接入过程的方法及其设备
KR102206068B1 (ko) * 2017-03-24 2021-01-21 삼성전자주식회사 무선 통신 시스템에서 상향링크 전송을 위한 장치 및 방법
WO2019218365A1 (zh) 2018-05-18 2019-11-21 北京小米移动软件有限公司 消息发送方法、装置和资源分配方法、装置
EP3657898B1 (en) * 2018-10-31 2023-04-05 ASUSTek Computer Inc. Method and apparatus for transmission using preconfigured uplink resources in a wireless communication system
US20200329504A1 (en) * 2019-04-11 2020-10-15 Mediatek Singapore Pte. Ltd. MsgB Format In Two-Step Random Access In Mobile Communications
WO2020242898A1 (en) 2019-05-26 2020-12-03 Genghiscomm Holdings, LLC Non-orthogonal multiple access
CN114125980B (zh) * 2021-11-29 2023-09-19 展讯通信(上海)有限公司 随机接入方法、装置、终端设备和介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101541092A (zh) * 2008-03-21 2009-09-23 富士通株式会社 通信系统、移动站以及通信方法
CN102291845A (zh) * 2010-06-21 2011-12-21 中兴通讯股份有限公司 随机接入方法及系统
CN102474885A (zh) * 2009-08-06 2012-05-23 夏普株式会社 移动站装置、无线通信方法以及移动站装置的控制程序
CN102469617A (zh) * 2010-11-19 2012-05-23 普天信息技术研究院有限公司 一种竞争随机接入的方法
WO2015005701A1 (en) * 2013-07-10 2015-01-15 Samsung Electronics Co., Ltd. Method and apparatus for coverage enhancement for a random access process

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101940053B (zh) * 2009-04-03 2013-06-26 华为技术有限公司 随机接入前导信号的发送方法及装置
US8964658B2 (en) * 2010-03-31 2015-02-24 Mediatek Inc. Methods of contention-based transmission
WO2013015606A2 (en) * 2011-07-25 2013-01-31 Lg Electronics Inc. Method and apparatus for transmitting control information in wireless communication system
TWI620459B (zh) * 2012-05-31 2018-04-01 內數位專利控股公司 在蜂巢式通訊系統中賦能直鏈通訊排程及控制方法
US10193665B2 (en) * 2013-03-21 2019-01-29 Texas Instruments Incorporated Reference signal for 3D MIMO in wireless communication systems
KR101881426B1 (ko) * 2014-01-29 2018-07-24 후아웨이 테크놀러지 컴퍼니 리미티드 업링크 액세스 방법, 장치, 및 시스템
US10148380B2 (en) * 2014-10-28 2018-12-04 Sony Corporation Communication control apparatus, radio communication apparatus, communication control method and radio communication method
EP3297377B1 (en) * 2015-05-10 2020-07-15 LG Electronics Inc. Method for supporting sporadic high-capacity packet service and apparatus therefor
US10652066B2 (en) * 2015-05-15 2020-05-12 Sony Corporation Device, method, and program for identifying a preferred codebook for non-orthogonal multiplexing/non-orthogonal multiple access

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101541092A (zh) * 2008-03-21 2009-09-23 富士通株式会社 通信系统、移动站以及通信方法
CN102474885A (zh) * 2009-08-06 2012-05-23 夏普株式会社 移动站装置、无线通信方法以及移动站装置的控制程序
CN102291845A (zh) * 2010-06-21 2011-12-21 中兴通讯股份有限公司 随机接入方法及系统
CN102469617A (zh) * 2010-11-19 2012-05-23 普天信息技术研究院有限公司 一种竞争随机接入的方法
WO2015005701A1 (en) * 2013-07-10 2015-01-15 Samsung Electronics Co., Ltd. Method and apparatus for coverage enhancement for a random access process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3328149A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110035537A (zh) * 2016-11-03 2019-07-19 联发科技股份有限公司 用于多波束操作的初始接入方法以及用户设备
CN110035537B (zh) * 2016-11-03 2023-10-24 联发科技股份有限公司 用于多波束操作的初始接入方法以及用户设备
CN111919494A (zh) * 2018-04-05 2020-11-10 株式会社Ntt都科摩 用户装置
CN111919494B (zh) * 2018-04-05 2023-12-01 株式会社Ntt都科摩 用户装置
CN113303006A (zh) * 2019-01-18 2021-08-24 株式会社Ntt都科摩 用户设备和基站以及由用户设备、基站执行的方法
CN111629447A (zh) * 2019-02-28 2020-09-04 中国移动通信有限公司研究院 一种配置方法、信道接入方法、网络设备及终端
CN113630898A (zh) * 2021-06-16 2021-11-09 北京邮电大学 无线数据监听的方法、装置、电子设备及介质

Also Published As

Publication number Publication date
EP3328149A4 (en) 2018-07-25
US20180192439A1 (en) 2018-07-05
CN106797660A (zh) 2017-05-31
CN106797660B (zh) 2020-11-27
US10616921B2 (en) 2020-04-07
EP3328149B1 (en) 2019-11-27
EP3328149A1 (en) 2018-05-30

Similar Documents

Publication Publication Date Title
WO2017035707A1 (zh) 一种随机接入中的上行传输方法及装置
CN109804697B (zh) 用于基于增强竞争的随机接入程序的方法和装置
JP6204599B2 (ja) ランダムアクセスにおいてリソースを事前決定するための方法、ユーザ機器、および基地局
EP2543225B1 (en) Contention-based transmission with contention-free feedback for reducing latency in lte advanced networks and enhanced pucch
EP2749112B1 (en) Method for contention based random access on a secondary carrier
AU2012254356B2 (en) Methods and apparatus for random access procedures with carrier aggregation for LTE-advanced systems
US20180249508A1 (en) Random access response transmission method and device
WO2012017841A1 (ja) 基地局装置、移動局装置、移動通信システム、通信方法、制御プログラムおよび集積回路
KR20200098572A (ko) 랜덤 액세스 프로세스에서 시간-주파수 리소스를 결정하고 구성하는 방법들 및 장치들
EP3316644B1 (en) Transmission device, receiving device and method for uplink data
US20130021993A1 (en) Method of Handling Random Access Response
CN103747533A (zh) 一种无线网络设备
CN113767702B (zh) 随机接入中的资源指示
KR20200083928A (ko) 무선 통신 시스템에서 신호를 전송하는 방법 및 장치
US20220264653A1 (en) Method and apparatus for transmitting an uplink signal in a wireless communication system
US10771197B2 (en) Method for transmitting hybrid automatic repeat request feedback information, and user equipment
WO2019192541A1 (zh) 传输方法及装置、计算机可读存储介质
US20210029744A1 (en) Methods and apparatus for mapping random access preamble groups to uplink channel configurations
JP2009153048A (ja) 移動局装置、基地局装置、無線通信システムおよびランダムアクセスプリアンブルの再送方法
KR20180055059A (ko) 무선 통신 시스템에서 랜덤 액세스 방법
CN109617656B (zh) 终端、基站及混合自动重传请求harq过程标识id配置方法
JP6449954B2 (ja) ランダムアクセスにおいてリソースを事前決定するための方法、ユーザ機器、および基地局
WO2023042897A1 (en) Terminal devices and communication methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15902514

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2015902514

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018002982

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112018002982

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180216