WO2017034219A1 - Device for detecting touch pressure of touch screen - Google Patents
Device for detecting touch pressure of touch screen Download PDFInfo
- Publication number
- WO2017034219A1 WO2017034219A1 PCT/KR2016/009104 KR2016009104W WO2017034219A1 WO 2017034219 A1 WO2017034219 A1 WO 2017034219A1 KR 2016009104 W KR2016009104 W KR 2016009104W WO 2017034219 A1 WO2017034219 A1 WO 2017034219A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pressure
- pressure sensor
- wire
- touch
- signal
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0446—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0445—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
Definitions
- the present invention relates to a touch pressure detection device of a touch screen, and to a touch pressure detection device that eliminates the difference in electrical characteristics between each pressure sensor and enables accurate pressure sensing.
- a touch panel is an input device mounted on the display surface and converting a physical contact such as a user's finger into an electrical signal to operate the product.
- the touch panel can be widely applied to various display devices. It is growing rapidly.
- Such touch panels may be classified into resistive, capacitive, ultrasonic (SAW), infrared (IR), and the like according to the operation principle.
- SAW resistive, capacitive, ultrasonic
- IR infrared
- conventional capacitive touch panels basically include a substrate, a metal wiring layer, and a pattern layer.
- the pattern layer is composed of a plurality of pattern electrodes (touch patterns), and each pattern electrode generates an electrical signal in response to external physical contact.
- the generated electrical signal is transmitted to the controller of the product through metal wires connected to the pattern electrode to operate the product.
- a pressure sensor for such an operation, it is generally disposed at the edge of the touch panel. Since the arrangement position of each pressure sensor is different based on the driving circuit that controls the operation of the pressure sensor, the electrical characteristic difference between the pressure sensors is different. Will occur.
- An object of the present invention is to eliminate the difference in electrical characteristics in a plurality of pressure sensing unit mounted on the touch screen.
- Another object of the present invention is to eliminate the parasitic capacitance that may be formed in the connection path between the pressure sensing unit and the driving circuit mounted on the touch screen.
- At least one pressure sensing unit for sensing the pressure applied to the touch screen; A signal wire and a ground wire connected to each of the pressure sensing units; And a shield wire disposed between the signal wire and the ground wire, the shield wire being controlled over the signal wire and the coin during the pressure sensing operation through the pressure sensing unit.
- the touch pressure detecting device may further include a buffer for supplying a potential of the signal wire to the shield wire.
- the first pressure sensing unit and the second pressure sensing unit for sensing the pressure applied to the touch screen;
- a ground wire connected to the first pressure sensing unit and the second pressure sensing unit;
- a first signal wire and a second signal wire connected to each of the first pressure sensing part and the second pressure sensing part, wherein the first signal wire extends between the second signal wire and the ground wire.
- a touch pressure detecting device which is controlled on the second signal line and the coin during the pressure sensing operation of the second pressure sensing unit.
- the touch pressure detecting device may further include a buffer configured to supply a potential of the second signal wire to the first signal wire.
- the difference in electrical characteristics in the plurality of pressure sensing units mounted on the touch screen is eliminated, so that the accuracy of pressure sensing can be improved.
- the shield wiring is disposed between the signal wiring and the ground wiring connected to each of the pressure sensing units mounted on the touch screen, and the signal wiring and the shield wiring are maintained at coincidence when sensing. The phenomenon in which parasitic capacitance is formed can be prevented.
- FIG. 1 is a view showing the configuration of a display device capable of detecting touch pressure according to an embodiment of the present invention.
- FIG. 2 is a flowchart illustrating a manufacturing process of a display device capable of detecting touch pressure according to an exemplary embodiment of the present invention.
- FIG. 3 is a diagram illustrating a configuration of a pressure sensor in a display device capable of detecting touch pressure.
- FIG. 4 is a circuit diagram illustrating an equivalent circuit of an impedance formed in a pressure sensor according to an exemplary embodiment of the present invention.
- FIG. 5 is a diagram schematically showing an arrangement of shield wiring according to an embodiment of the present invention.
- FIG. 6 is a circuit diagram illustrating an operation in which signal wires and shield wires are held in coin positions according to an embodiment of the present invention.
- FIG. 7 is a view showing the configuration of a touch pressure detection device according to an embodiment of the present invention.
- FIG. 8 is a view showing the configuration of a touch pressure detection device according to another embodiment of the present invention.
- FIG. 1 is a view showing a schematic configuration of a touch pressure detection device according to an embodiment of the present invention.
- a touch screen display device including a touch pressure detection device may include a substrate 100, a black matrix 200 formed below the substrate 100, and a black matrix 200 below. It includes a transparent electrode layer 300 is formed.
- the substrate 100 is formed on the outermost front surface of the display device, and serves to prevent physical impact from the outside.
- the substrate 100 may be made of a transparent material, and preferably, may be made of a material such as glass.
- the black matrix 200 is formed on the outer side of the display device and includes an outer black matrix having an opening therein.
- a plurality of internal black matrices may be formed in the opening.
- an electrode pattern may be formed on the transparent electrode layer 300 to detect a touch occurring on the upper surface of the substrate 100.
- the electrode pattern may be variously configured according to the touch sensing method. For example, when the display device is implemented as a mutual capacitive touch screen using a principle in which mutual capacitance between electrodes varies before and after touch, the electrode pattern includes a plurality of first electrodes disposed in parallel to each other in a row direction.
- the first electrode layer may include a second electrode layer including a plurality of second electrodes disposed in parallel with each other in a column direction.
- the electrode pattern is a plurality of sensor pads in the form of a matrix It may be made of an electrode layer disposed as.
- the electrode pattern may be made of a transparent material such as indium tin oxide (ITO).
- At least a portion of the edge of the transparent electrode layer 300 is provided with a plurality of pressure sensors 310 for detecting the pressure of the touch generated on the upper surface of the substrate 100.
- the pressure sensor 310 may be disposed near each corner of the transparent electrode layer 300 as shown in FIG. 1, but is not limited thereto.
- Each of the pressure sensors 310 includes a first electrode 311, a piezoelectric material 312 formed under the first electrode 311, a second electrode 313 and a second formed under the piezoelectric material 312.
- the protective layer 314 may be formed of an insulating material formed under the electrode 313.
- the first electrode 311 may be implemented as part of the transparent electrode layer 300. That is, a part of the electrode pattern formed on the transparent electrode layer 300 may function as the first electrode 311 of the pressure sensor 310.
- the first electrode 311 and the second electrode 313 are formed to face each other, and if necessary, between the first electrode 311 and the piezoelectric material 312, or between the first electrode 311 and the black matrix 200.
- a carbon layer or the like may be further formed between the layers.
- the pressure sensor 310 includes a piezoelectric material whose resistance value decreases as the pressure is applied, as will be described later.
- the pressure sensor 310 may grasp the current pressure through an electrical signal output from the pressure sensor 310. .
- a paint having a surface resistance may be utilized instead of the pressure sensor 310.
- an electrical signal is applied to the paint, and the paint has a sheet resistance value that varies according to the applied pressure, so that the value of the current flowing through the paint also varies according to the electrical signal. Using these characteristics, it is possible to grasp the pressure currently being applied through the electrical signal obtained from the paint.
- a paint having a pressure sensor and a sheet resistance or similar properties, that is, materials exhibiting different electrical characteristics depending on the pressure applied may be collectively referred to as a pressure sensing unit.
- FIG. 2 is a flowchart illustrating a manufacturing process of the display device illustrated in FIG. 1.
- a black matrix 200 is formed on a substrate 100 by a printing method or a sputtering method (S210).
- an electrode layer for forming the transparent electrode layer 300 is coated on the entire surface of the substrate 100 on which the black matrix 200 is formed (S220).
- the electrode layer may be formed by a sputtering method.
- an electrode pattern for touch detection and an electrode pattern for touch pressure detection are formed on the electrode layer by wet etching, dry etching, or laser (S230).
- the electrode pattern for pressure detection becomes part of the pressure sensor 310. That is, a part of the transparent electrode layer 300 functions as the first electrode 311 among the components of the pressure sensor 310, as described above.
- the piezoelectric material 312 is printed and formed on the first electrode 311 of the pressure sensor 310 (S240), and the first electrode 311 is formed so as to face the first electrode 311 on the piezoelectric material 312.
- the second electrode 313 is formed (S250).
- An insulating layer is formed as a protective layer 314 for protecting the electrode constituting the pressure sensor 310 on the second electrode 313, thereby completing a touch screen display device capable of detecting touch pressure (S260).
- FIG. 3 is a plan view showing in detail the configuration of the pressure sensor 310 shown in FIG.
- Each pressure sensor 310 is connected to the driving circuit 400 through a signal line 320 for transmitting and receiving an electrical signal and a ground line 330 maintained at a ground potential.
- the piezoelectric material 312 (refer to FIG. 1) included in each pressure sensor 310 is made of an elastic material such as Force Sensing Resistor (FSR), and the piezoelectric material is an electrical material whose resistance value decreases as pressure is applied. Has characteristics.
- FSR Force Sensing Resistor
- the electrical signal supplied from the driving circuit 400 is transmitted to each pressure sensor 310 through the signal wire 320, the electrical signal as a response according to the current resistance value of the pressure sensor 310 is again driven by the driving circuit 400. Is measured by.
- the driving circuit 400 determines the current resistance value of each pressure sensor 310 through the measured electrical signal, and measures the current applied pressure.
- All four pressure sensors 310 are connected to the driving circuit 400 through the signal wire 320 for the above-described measurement. Since the driving circuit 400 is disposed on one side of the display device, the length of the signal wire 320 connected to the pressure sensor 310 is longer than the driving circuit 400.
- the signal wire 320 extending from the pressure sensor 310 disposed adjacent to the driving circuit 400 is relatively short, and the signal wire extending from the pressure sensor 310 disposed far from the driving circuit 400.
- the length of 320 is relatively long.
- FIG. 3 an equivalent circuit diagram showing that the pressure sensor 310 located at the upper right of the drawing is connected to the driving circuit 400 is the same as that of FIG. 4.
- the pressure sensor 310 since the pressure sensor 310 operates on the principle that the resistance value varies according to the applied pressure, the pressure sensor 310 may be displayed by replacing it with a variable resistor.
- the signal wires 320 and the ground wires 330 are connected to each pressure sensor 310, and the parasitic capacitance Cp is formed in the signal wires 320 and the ground wires 330.
- the parasitic capacitance Cp is formed together with the resistor R having a relatively large value when the signal wire 320 and the ground wire 330 are formed of a transparent electrode having a sheet resistance value.
- the driving circuit 400 may not detect the resistance change value of the pressure sensor 310 properly or requires a very long time to detect the change.
- the shield wire 340 is disposed between the signal wire 320 and the ground wire 330 connected to the pressure sensor 310.
- the signal wire 320 and the shield are applied by applying a potential of the signal wire 320 connected to each pressure sensor 310 to the shield wire 340 disposed adjacent to the signal wire 320.
- the parasitic capacitance Cp (see FIG. 4) formed in the signal wiring 320 can be made zero.
- the change in resistance value in the pressure sensor 310 can be accurately transmitted to the driving circuit 400 side.
- FIG. 6 is a circuit diagram for describing an operation of applying a potential of a pressure sensor to a shield wire according to an exemplary embodiment of the present invention.
- the potential of the signal wire 320 connected to each pressure sensor 310 may be applied to the shield line 340 through the buffer B, and thus the potential of the pressure sensor 310 may be applied.
- the potential of the shield line 340 may be the same.
- the buffer B serves to supply the potential of the signal wire 320 connected to the pressure sensor 310 to the shield line 340 as it is, and the difference in electrical characteristics between the signal wire 320 and the shield line 340. It rewards you.
- FIG. 7 is a diagram illustrating a structure of a pressure sensor to which a shield wire according to an embodiment of the present invention is applied.
- a signal wire 320 and a ground wire 330 are connected to each pressure sensor 310, and a shield wire 340 is disposed between the signal wire 320 and the ground wire 330. It can be seen that.
- the phenomenon in which parasitic capacitance is formed in the signal wiring 320 can be effectively prevented, and the driving circuit and the pressure sensor ( Regardless of the distance between the 310, the resistance change value in the pressure sensor 310 can be accurately transmitted to the driving circuit side.
- FIG. 8 is a diagram illustrating a structure of a pressure sensor to which a shield wire according to another embodiment of the present invention is applied.
- the first pressure sensor 310-1 and the second pressure sensor 310-2 are connected to the first signal wire 320-1 and the second signal wire 320-2, respectively.
- Shield wires (not shown) may be disposed between the first signal wire 320-1 and the ground wire 330 as in the exemplary embodiment described with reference to FIG. 7.
- the second pressure sensor 310-2 has a signal wire 320-1 connected to the first pressure sensor 310-1, not the shield wire, between the second signal wire 320-2 and the ground wire 330. Can be seen extending.
- the signal wire 320-1 connected to the first pressure sensor 310-1 extends to the vicinity of the second pressure sensor 310-2, and the second wire connected to the second pressure sensor 310-2. It may be disposed between the signal wire 320-2 and the ground wire 330 to replace the shield wire.
- the second signal wire 320-2 when the pressure is sensed to the second pressure sensor 310-2, the second signal wire 320-2 is supplied by supplying the potential of the second signal wire 320-2 to the first signal wire 320-2.
- a parasitic capacitance may be prevented from being formed in the second signal wire 320-2 without additional components.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
Abstract
According to one embodiment, provided is a touch pressure detection device comprising: one or more pressure sensing units for sensing pressure applied to a touch screen; a signal wire and a ground wire, which are connected to each of the pressure sensors; and a shield wire arranged between the signal wire and the ground wire, and controlled at the same potential as that of the signal wire when a pressure detection operation is performed through the pressure sensing units.
Description
본 발명은 터치 스크린의 터치 압력 검출 장치에 관한 것으로, 각 압력 센서 간 전기적 특성의 차이를 없애고, 정확한 압력 센싱을 가능하게 하는 터치 압력 검출 장치에 관한 것이다. The present invention relates to a touch pressure detection device of a touch screen, and to a touch pressure detection device that eliminates the difference in electrical characteristics between each pressure sensor and enables accurate pressure sensing.
터치패널(touch panel)은 디스플레이 표면에 장착되어 사용자의 손가락 등의 물리적 접촉을 전기적 신호로 변환하여 제품을 작동시키는 입력장치로서, 각종 디스플레이 장치에 폭넓게 응용될 수 있으며, 근래에 와서는 그 수요가 비약적으로 성장하고 있다.A touch panel is an input device mounted on the display surface and converting a physical contact such as a user's finger into an electrical signal to operate the product. The touch panel can be widely applied to various display devices. It is growing rapidly.
이러한 터치패널은 동작원리에 따라 저항막 방식(Resistive), 정전용량 방식(Capacitive), 초음파 방식(SAW), 적외선 방식(IR)등으로 구분될 수 있다.Such touch panels may be classified into resistive, capacitive, ultrasonic (SAW), infrared (IR), and the like according to the operation principle.
이 중, 종래 정전용량 방식 터치패널은 기본적으로 기판, 금속배선층, 패턴층을 구비한다. 패턴층은 복수개의 패턴 전극(터치패턴)들로 구성되어 있으며, 각각의 패턴 전극은 외부의 물리적 접촉에 대응해 전기적 신호를 발생시킨다. 그리고 발생된 전기적 신호는 패턴 전극과 연결된 금속배선들을 통해 제품의 제어부로 전달되어 제품을 작동시킨다.Among these, conventional capacitive touch panels basically include a substrate, a metal wiring layer, and a pattern layer. The pattern layer is composed of a plurality of pattern electrodes (touch patterns), and each pattern electrode generates an electrical signal in response to external physical contact. The generated electrical signal is transmitted to the controller of the product through metal wires connected to the pattern electrode to operate the product.
최근에는, 스마트폰, 스마트TV 등에서 다양한 기능을 하는 다양한 종류의 애플리케이션(application)이 등장함에 따라, 터치패널에 있어서 다양한 터치 방식에 대한 수요가 급증하고 있는 실정이다.Recently, as various kinds of applications having various functions in smart phones, smart TVs, and the like appear, demand for various touch methods in the touch panel is rapidly increasing.
따라서, 단순히 터치 위치를 판단해내는 데에서 그치는 것이 아니라, 그 터치의 다양한 특성, 구체적으로는, 터치 압력을 판단하여, 그에 기초한 동작을 하도록 하는 기술이 요구되고 있다. Therefore, there is a need for a technology that not only determines a touch position but also determines various characteristics of the touch, specifically, touch pressure, and performs an operation based thereon.
최근에는 스마트폰 등의 스마트 기기에서 터치 압력을 판단하여, 임계 압력 이상이 가해지는 경우, 추가적인 동작이 수행되도록 하는 기술이 소개되었다. Recently, a technology for determining an touch pressure in a smart device such as a smartphone and performing an additional operation when a threshold pressure is applied is introduced.
이러한 동작을 위한 압력 센서의 경우, 터치 패널의 가장자리에 배치되는 것이 일반적인데, 압력 센서의 동작을 제어하는 구동 회로를 기준으로 각각의 압력 센서의 배치 위치가 상이하기 때문에, 압력 센서 간의 전기적 특성 차이가 발생하게 된다. In the case of a pressure sensor for such an operation, it is generally disposed at the edge of the touch panel. Since the arrangement position of each pressure sensor is different based on the driving circuit that controls the operation of the pressure sensor, the electrical characteristic difference between the pressure sensors is different. Will occur.
구체적으로는, 각각의 압력 센서와 구동 회로를 연결하는 배선의 길이가 서로 다르기 때문에, 배선의 선 저항 또는 배선에 형성되는 기생 정전용량 등에 따른 전기적 특성의 차이가 발생하게 되며, 이에 따라, 압력 센서를 통한 압력 센싱의 정확도가 떨어지는 문제점이 있다. Specifically, since the lengths of the wirings connecting the pressure sensors and the driving circuit are different from each other, a difference in electrical characteristics may occur due to the wire resistance of the wiring or the parasitic capacitance formed in the wiring, and thus, the pressure sensor. There is a problem that the accuracy of pressure sensing through the falling.
따라서, 각각의 압력 센서에 대한 전기적 차이를 없애고, 정확한 압력 센싱이 가능하도록 하는 기술이 요구된다. Accordingly, there is a need for a technique that eliminates electrical differences for each pressure sensor and enables accurate pressure sensing.
본 발명의 목적은, 터치 스크린에 장착되는 복수개의 압력 센싱부에서의 전기적 특성 차이를 제거하기 위한 것이다. An object of the present invention is to eliminate the difference in electrical characteristics in a plurality of pressure sensing unit mounted on the touch screen.
본 발명의 다른 목적은, 터치 스크린에 장착되는 압력 센싱부와 구동 회로 간 연결 경로에 형성될 수 있는 기생 정전용량을 제거하는 것이다. Another object of the present invention is to eliminate the parasitic capacitance that may be formed in the connection path between the pressure sensing unit and the driving circuit mounted on the touch screen.
상술한 목적을 달성하기 위한 본 발명의 일 실시예에 따르면, 터치 스크린에 가해지는 압력을 감지하기 위한 일 이상의 압력 센싱부; 상기 압력 센싱부 각각과 연결되는 신호 배선과 그라운드 배선; 및 상기 신호 배선과 그라운드 배선 사이에 배치되며, 상기 압력 센싱부를 통한 압력 감지 동작 시 상기 신호 배선과 동전위로 제어되는 실드 배선을 포함하는, 터치 압력 검출 장치가 제공된다. According to an embodiment of the present invention for achieving the above object, at least one pressure sensing unit for sensing the pressure applied to the touch screen; A signal wire and a ground wire connected to each of the pressure sensing units; And a shield wire disposed between the signal wire and the ground wire, the shield wire being controlled over the signal wire and the coin during the pressure sensing operation through the pressure sensing unit.
상기 터치 압력 검출 장치는, 상기 신호 배선의 전위를 상기 실드 배선으로 공급하는 버퍼를 더 포함할 수 있다. The touch pressure detecting device may further include a buffer for supplying a potential of the signal wire to the shield wire.
한편, 본 발명의 다른 실시예에 따르면, 터치 스크린에 가해지는 압력을 감지하기 위한 제1 압력 센싱부 및 제2 압력 센싱부; 상기 제1 압력 센싱부 및 제2 압력 센싱부와 연결되는 그라운드 배선; 상기 제1 압력 센싱부 및 제2 압력 센싱부 각각과 연결되는 제1 신호 배선 및 제2 신호 배선을 포함하고, 상기 제1 신호 배선은 상기 제2 신호 배선과 그라운드 배선 사이에 연장되며, 상기 제2 압력 센싱부에 대한 압력 감지 동작 시 상기 제2 신호 배선과 동전위로 제어되는, 터치 압력 검출 장치가 제공된다. On the other hand, according to another embodiment of the present invention, the first pressure sensing unit and the second pressure sensing unit for sensing the pressure applied to the touch screen; A ground wire connected to the first pressure sensing unit and the second pressure sensing unit; And a first signal wire and a second signal wire connected to each of the first pressure sensing part and the second pressure sensing part, wherein the first signal wire extends between the second signal wire and the ground wire. Provided is a touch pressure detecting device, which is controlled on the second signal line and the coin during the pressure sensing operation of the second pressure sensing unit.
상기 터치 압력 검출 장치는, 상기 제2 신호 배선의 전위를 상기 제1 신호 배선으로 공급하는 버퍼를 더 포함할 수 있다. The touch pressure detecting device may further include a buffer configured to supply a potential of the second signal wire to the first signal wire.
본 발명에 따르면, 터치 스크린에 장착되는 복수개의 압력 센싱부에서의 전기적 특성 차이가 제거되어, 압력 센싱의 정확도가 향상될 수 있다. According to the present invention, the difference in electrical characteristics in the plurality of pressure sensing units mounted on the touch screen is eliminated, so that the accuracy of pressure sensing can be improved.
또한, 본 발명에 따르면, 터치 스크린에 장착되는 각각의 압력 센싱부와 연결되는 신호 배선과 그라운드 배선 사이에 실드 배선이 배치되며, 센싱 시 신호 배선과 실드 배선이 동전위로 유지되기 때문에, 신호 배선에 기생 정전용량이 형성되는 현상이 방지될 수 있다. In addition, according to the present invention, the shield wiring is disposed between the signal wiring and the ground wiring connected to each of the pressure sensing units mounted on the touch screen, and the signal wiring and the shield wiring are maintained at coincidence when sensing. The phenomenon in which parasitic capacitance is formed can be prevented.
도 1은 본 발명의 일 실시예에 따른 터치 압력 검출이 가능한 디스플레이 장치의 구성을 나타내는 도면이다. 1 is a view showing the configuration of a display device capable of detecting touch pressure according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 터치 압력 검출이 가능한 디스플레이 장치의 제조 과정을 나타내는 흐름도이다. 2 is a flowchart illustrating a manufacturing process of a display device capable of detecting touch pressure according to an exemplary embodiment of the present invention.
도 3은 터치 압력 검출이 가능한 디스플레이 장치에서 압력 센서의 구성을 도시하는 도면이다. 3 is a diagram illustrating a configuration of a pressure sensor in a display device capable of detecting touch pressure.
도 4는 본 발명의 일 실시예에 따른 압력 센서에 형성되는 임피던스를 등가회로로 나타내는 회로도이다. 4 is a circuit diagram illustrating an equivalent circuit of an impedance formed in a pressure sensor according to an exemplary embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 실드 배선의 배치를 모식적으로 나타내는 도면이다. 5 is a diagram schematically showing an arrangement of shield wiring according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따라 신호 배선과 실드 배선이 동전위로 유지되는 동작을 설명하기 위한 회로도이다. FIG. 6 is a circuit diagram illustrating an operation in which signal wires and shield wires are held in coin positions according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 터치 압력 검출 장치의 구성을 나타내는 도면이다. 7 is a view showing the configuration of a touch pressure detection device according to an embodiment of the present invention.
도 8은 본 발명의 다른 실시예에 따른 터치 압력 검출 장치의 구성을 나타내는 도면이다.8 is a view showing the configuration of a touch pressure detection device according to another embodiment of the present invention.
이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.Hereinafter, with reference to the accompanying drawings will be described the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like parts throughout the specification.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.Throughout the specification, when a part is "connected" to another part, it includes not only "directly connected" but also "indirectly connected" with another member in between. . In addition, when a part is said to "include" a certain component, this means that it may further include other components, without excluding the other components unless otherwise stated.
이하 첨부된 도면을 참고하여 본 발명의 실시예를 상세히 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 실시예에 따른 터치 압력 검출 장치의 개략적인 구성을 나타내는 도면이다. 1 is a view showing a schematic configuration of a touch pressure detection device according to an embodiment of the present invention.
도 1을 참조하면, 일 실시예에 따른 터치 압력 검출 장치를 포함하는 터치 스크린 디스플레이 장치는, 기판(100), 기판(100) 하부에 형성되는 블랙 매트릭스(200), 블랙 매트릭스(200) 하부에 형성되는 투명 전극층(300)을 포함한다.Referring to FIG. 1, a touch screen display device including a touch pressure detection device according to an embodiment may include a substrate 100, a black matrix 200 formed below the substrate 100, and a black matrix 200 below. It includes a transparent electrode layer 300 is formed.
기판(100)은 디스플레이 장치의 최외측 전면에 형성되는 것으로, 외부로부터의 물리적인 충격을 막는 역할을 한다. 기판(100)은 투명한 물질로 이루어질 수 있고, 바람직하게는, 유리 등의 재질로 이루어질 수 있다. The substrate 100 is formed on the outermost front surface of the display device, and serves to prevent physical impact from the outside. The substrate 100 may be made of a transparent material, and preferably, may be made of a material such as glass.
블랙 매트릭스(200)는 디스플레이 장치의 외곽에 형성되며 내부에 개구부를 갖는 외곽 블랙매트릭스를 포함한다. 상기 개구부에는 다수의 내부 블랙매트릭스가 형성될 수 있다. The black matrix 200 is formed on the outer side of the display device and includes an outer black matrix having an opening therein. A plurality of internal black matrices may be formed in the opening.
일 실시예에 따르면, 투명전극층(300)에는 기판(100) 상면에서 발생하는 터치를 감지하기 위한 전극 패턴이 형성될 수 있다. 전극 패턴은 터치 감지 방식에 따라 다양하게 구성될 수 있다. 일례로, 디스플레이 장치가 전극 간의 상호 정전용량이 터치 전후에 달라지는 원리를 이용하는 상호 정전용량 방식의 터치 스크린으로 구현되는 경우, 전극 패턴은 행 방향으로 상호 평행하게 배치되는 복수개의 제1 전극을 포함하는 제1 전극층, 열 방향으로 상호 평행하게 배치되는 복수개의 제2 전극을 포함하는 제2 전극층을 포함할 수 있다. 또한, 다른 예로서, 디스플레이 장치가 센서 패드와 터치 발생 수단 간에 형성되는 정전용량의 크기를 통해 터치를 감지하는 자가 정전용량 방식의 터치 스크린으로 구현되는 경우, 전극 패턴은 복수개의 센서 패드가 매트릭스 형태로 배치되는 전극층으로 이루어질 수 있다. 이러한 전극 패턴은 ITO(Induim Tin Oxide) 등의 투명 물질로 이루어질 수 있다.In example embodiments, an electrode pattern may be formed on the transparent electrode layer 300 to detect a touch occurring on the upper surface of the substrate 100. The electrode pattern may be variously configured according to the touch sensing method. For example, when the display device is implemented as a mutual capacitive touch screen using a principle in which mutual capacitance between electrodes varies before and after touch, the electrode pattern includes a plurality of first electrodes disposed in parallel to each other in a row direction. The first electrode layer may include a second electrode layer including a plurality of second electrodes disposed in parallel with each other in a column direction. In addition, as another example, when the display device is implemented as a self-capacitive touch screen that senses a touch through the size of the capacitance formed between the sensor pad and the touch generating means, the electrode pattern is a plurality of sensor pads in the form of a matrix It may be made of an electrode layer disposed as. The electrode pattern may be made of a transparent material such as indium tin oxide (ITO).
투명 전극층(300)의 가장자리의 적어도 일부에는 기판(100) 상면에서 발생한 터치의 압력을 감지하는 압력 센서(310)가 복수개 구비된다. 일례로서, 압력 센서(310)는 도 1에 도시되는 바와 같이 투명 전극층(300)의 각 모서리 부근에 배치될 수 있으나, 이에 제한되지는 않는다. At least a portion of the edge of the transparent electrode layer 300 is provided with a plurality of pressure sensors 310 for detecting the pressure of the touch generated on the upper surface of the substrate 100. As an example, the pressure sensor 310 may be disposed near each corner of the transparent electrode layer 300 as shown in FIG. 1, but is not limited thereto.
각각의 압력 센서(310)는 제1 전극(311), 상기 제1 전극(311) 하부에 형성되는 압전 물질(312), 압전 물질(312) 하부에 형성되는 제2 전극(313), 제2 전극(313) 하부에 형성되는 절연재질의 보호층(314)으로 구성될 수 있다. Each of the pressure sensors 310 includes a first electrode 311, a piezoelectric material 312 formed under the first electrode 311, a second electrode 313 and a second formed under the piezoelectric material 312. The protective layer 314 may be formed of an insulating material formed under the electrode 313.
제1 전극(311)은 투명 전극층(300)의 일부로 구현될 수 있다. 즉, 투명 전극층(300)에 형성되는 전극 패턴의 일부는 압력 센서(310)의 제1 전극(311)으로 기능할 수 있다. 제1 전극(311)과 제2 전극(313)은 상호 대향되도록 형성되며, 필요에 따라, 제1 전극(311)과 압전 재료(312) 사이, 또는 제1 전극(311)과 블랙 매트릭스(200) 사이에 카본층 등이 추가적으로 형성될 수도 있다. The first electrode 311 may be implemented as part of the transparent electrode layer 300. That is, a part of the electrode pattern formed on the transparent electrode layer 300 may function as the first electrode 311 of the pressure sensor 310. The first electrode 311 and the second electrode 313 are formed to face each other, and if necessary, between the first electrode 311 and the piezoelectric material 312, or between the first electrode 311 and the black matrix 200. A carbon layer or the like may be further formed between the layers.
이러한 압력 센서(310)는 후술할 바와 같이 압력이 가해짐에 따라 저항값이 감소하는 압전 물질을 포함하며, 이러한 압력 센서(310)로부터 출력되는 전기적 신호를 통해 현재 가해지고 있는 압력을 파악할 수 있다. The pressure sensor 310 includes a piezoelectric material whose resistance value decreases as the pressure is applied, as will be described later. The pressure sensor 310 may grasp the current pressure through an electrical signal output from the pressure sensor 310. .
한편, 본 발명의 다른 실시예에 따르면, 압력 센서(310) 대신 면 저항을 갖는 도료가 활용될 수도 있다. 이 경우에도, 해당 도료에 전기적 신호가 가해지는데, 상기 도료는 가해지는 압력에 따라 면 저항값이 달라지게 되므로, 상기 전기적 신호에 따라 도료를 통해 흐르는 전류의 값 또한 달라지게 된다. 이러한 특성을 이용하여, 도료로부터 얻어지는 전기적 신호를 통해 현재 가해지고 있는 압력을 파악할 수 있다.On the other hand, according to another embodiment of the present invention, instead of the pressure sensor 310, a paint having a surface resistance may be utilized. Also in this case, an electrical signal is applied to the paint, and the paint has a sheet resistance value that varies according to the applied pressure, so that the value of the current flowing through the paint also varies according to the electrical signal. Using these characteristics, it is possible to grasp the pressure currently being applied through the electrical signal obtained from the paint.
압력 센서 및 면 저항을 갖는 도료 또는 이와 유사한 특성, 즉, 가해지는 압력에 따라서 서로 다른 전기적 특성을 나타내는 재료를 통칭하여 압력 센싱부라 칭할 수 있다. A paint having a pressure sensor and a sheet resistance or similar properties, that is, materials exhibiting different electrical characteristics depending on the pressure applied may be collectively referred to as a pressure sensing unit.
이하에서는, 설명의 편의상 압력 센싱부가 전술한 바와 같은 구성으로 형성되는 압력 센서(310)로 구현된 경우를 예로 들어 설명하기로 한다. Hereinafter, for convenience of description, a case in which the pressure sensing unit is implemented with the pressure sensor 310 formed as described above will be described as an example.
도 2는 도 1에 도시된 디스플레이 장치의 제조 과정을 설명하는 흐름도이다. FIG. 2 is a flowchart illustrating a manufacturing process of the display device illustrated in FIG. 1.
도 2를 참조하면, 먼저, 기판(100) 상에 블랙 매트릭스(200)를 인쇄 방식 또는 스퍼터링 방식으로 형성한다(S210). Referring to FIG. 2, first, a black matrix 200 is formed on a substrate 100 by a printing method or a sputtering method (S210).
그 후, 블랙 매트릭스(200)가 형성된 기판(100) 전면에 투명 전극층(300) 형성을 위한 전극 레이어를 도포한다(S220). 전극 레이어는 스퍼터링 방식으로 형성될 수 있다. Thereafter, an electrode layer for forming the transparent electrode layer 300 is coated on the entire surface of the substrate 100 on which the black matrix 200 is formed (S220). The electrode layer may be formed by a sputtering method.
전극 레이어 도포 후에는, 습식 에칭, 건식 에칭 또는 레이저 방식을 통해 전극 레이어에 터치 검출을 위한 전극 패턴 및 터치 압력 검출을 위한 전극 패턴을 형성한다(S230). 압력 검출을 위한 전극 패턴은 압력 센서(310)의 일부분이 된다. 즉, 투명 전극층(300)의 일부분은 압력 센서(310)의 구성요소 중 제1 전극(311)으로 기능하며, 이는 전술한 바와 같다. After application of the electrode layer, an electrode pattern for touch detection and an electrode pattern for touch pressure detection are formed on the electrode layer by wet etching, dry etching, or laser (S230). The electrode pattern for pressure detection becomes part of the pressure sensor 310. That is, a part of the transparent electrode layer 300 functions as the first electrode 311 among the components of the pressure sensor 310, as described above.
전극 패턴 형성 후, 압력 센서(310)의 제1 전극(311) 상에 압전 재료(312)를 인쇄하여 형성하고(S240), 압전 재료(312) 상에 제1 전극(311)과 대향하도록 제2 전극(313)을 형성한다(S250). After the electrode pattern is formed, the piezoelectric material 312 is printed and formed on the first electrode 311 of the pressure sensor 310 (S240), and the first electrode 311 is formed so as to face the first electrode 311 on the piezoelectric material 312. The second electrode 313 is formed (S250).
제2 전극(313) 상부에 압력 센서(310)를 구성하는 전극을 보호하기 위한 보호층(314)으로서 절연층을 형성하여 터치 압력 검출이 가능한 터치스크린 디스플레이 장치를 완성한다(S260). An insulating layer is formed as a protective layer 314 for protecting the electrode constituting the pressure sensor 310 on the second electrode 313, thereby completing a touch screen display device capable of detecting touch pressure (S260).
도 3은 도 1에 도시된 압력 센서(310)의 구성을 상세하게 나타내는 평면도이다. 3 is a plan view showing in detail the configuration of the pressure sensor 310 shown in FIG.
도 3을 참조하면, 4개의 압력 센서(310)가 디스플레이 장치의 4개의 모서리 부근에 배치되어 있다. 각각의 압력 센서(310)는 전기적 신호를 송수신하는 신호 배선(320) 및 그라운드 전위로 유지되는 그라운드 배선(330)을 통해 구동 회로(400)와 연결된다. Referring to FIG. 3, four pressure sensors 310 are disposed near four corners of the display device. Each pressure sensor 310 is connected to the driving circuit 400 through a signal line 320 for transmitting and receiving an electrical signal and a ground line 330 maintained at a ground potential.
각각의 압력 센서(310)에 포함되는 압전 물질(312, 도 1 참조)은 FSR(Force Sensing Resistor) 등의 탄성 재료로 이루어지며, 이러한 압전 물질은 압력이 가해짐에 따라 저항값이 감소하는 전기적 특성을 가지고 있다. The piezoelectric material 312 (refer to FIG. 1) included in each pressure sensor 310 is made of an elastic material such as Force Sensing Resistor (FSR), and the piezoelectric material is an electrical material whose resistance value decreases as pressure is applied. Has characteristics.
구동 회로(400)로부터 공급되는 전기적 신호가 신호 배선(320)을 통해 각 압력 센서(310)로 전달되면, 압력 센서(310)의 현재 저항값에 따른 응답으로서의 전기적 신호가 다시 구동 회로(400)에 의해 측정된다. 구동 회로(400)는 측정되는 전기적 신호를 통해 각 압력 센서(310)의 현재 저항값을 판단하고, 이를 통해 현재 가해진 압력을 측정하게 된다. When the electrical signal supplied from the driving circuit 400 is transmitted to each pressure sensor 310 through the signal wire 320, the electrical signal as a response according to the current resistance value of the pressure sensor 310 is again driven by the driving circuit 400. Is measured by. The driving circuit 400 determines the current resistance value of each pressure sensor 310 through the measured electrical signal, and measures the current applied pressure.
상기와 같은 방식의 측정을 위해 4개의 압력 센서(310)는 모두 신호 배선(320)을 통해 구동 회로(400)와 연결된다. 구동 회로(400)는 디스플레이 장치의 일측에 배치되기 때문에, 구동 회로(400)와 먼 거리에 배치된 압력 센서(310)일수록 그에 연결된 신호 배선(320)의 길이는 길어질 수밖에 없다. All four pressure sensors 310 are connected to the driving circuit 400 through the signal wire 320 for the above-described measurement. Since the driving circuit 400 is disposed on one side of the display device, the length of the signal wire 320 connected to the pressure sensor 310 is longer than the driving circuit 400.
즉, 구동 회로(400)와 인접하게 배치된 압력 센서(310)로부터 연장되는 신호 배선(320)은 상대적으로 짧고, 구동 회로(400)와 원거리에 배치된 압력 센서(310)로부터 연장되는 신호 배선(320)의 길이는 상대적으로 길게 형성된다.That is, the signal wire 320 extending from the pressure sensor 310 disposed adjacent to the driving circuit 400 is relatively short, and the signal wire extending from the pressure sensor 310 disposed far from the driving circuit 400. The length of 320 is relatively long.
한편, 신호 배선(320)은 그 길이에 비례하는 고유의 임피던스를 가지고 있기 때문에, 각 압력 센서(310)의 배치된 위치별로 그에 연결된 신호 배선(320)의 길이에 따른 임피던스 차이값이 발생하게 된다.On the other hand, since the signal wire 320 has an inherent impedance proportional to its length, an impedance difference value according to the length of the signal wire 320 connected thereto is generated for each position of each pressure sensor 310. .
도 3에서 도면상 우측 상단에 위치한 압력 센서(310)가 구동 회로(400)와 연결된 것을 등가 회로도로 나타내면 도 4와 같아진다.In FIG. 3, an equivalent circuit diagram showing that the pressure sensor 310 located at the upper right of the drawing is connected to the driving circuit 400 is the same as that of FIG. 4.
전술한 바와 같이, 압력 센서(310)는 가해지는 압력에 따라 저항값이 달라지는 원리로 작동하므로, 가변 저항으로 대체하여 표시할 수 있다. As described above, since the pressure sensor 310 operates on the principle that the resistance value varies according to the applied pressure, the pressure sensor 310 may be displayed by replacing it with a variable resistor.
전술한 바와 같이, 각각의 압력 센서(310)에는 신호 배선(320)과 그라운드 배선(330)이 연결되는데, 신호 배선(320) 및 그라운드 배선(330)에는 기생 정전용량(Cp)이 형성된다. 이러한 기생 정전용량(Cp)은 신호 배선(320)과 그라운드 배선(330)이 면저항값을 갖는 투명 전극으로 형성되는 경우 상대적으로 큰 값을 갖는 저항(R)과 함께 형성된다. 신호 배선(320)의 길이가 길어질수록 더 많은 기생 정전용량(Cp)과 저항(R)이 형성되게 된다. 즉, 구동 회로(400)와 원거리에 배치되는 압력 센서(310)일수록 그에 연결되는 신호 배선(320) 및 그라운드 배선(330)의 길이가 길어지기 때문에, 형성되는 기생 정전용량(Cp)과 저항(R) 값은 커지게 된다. As described above, the signal wires 320 and the ground wires 330 are connected to each pressure sensor 310, and the parasitic capacitance Cp is formed in the signal wires 320 and the ground wires 330. The parasitic capacitance Cp is formed together with the resistor R having a relatively large value when the signal wire 320 and the ground wire 330 are formed of a transparent electrode having a sheet resistance value. As the length of the signal wire 320 becomes longer, more parasitic capacitances Cp and resistors R are formed. That is, since the length of the signal wiring 320 and the ground wiring 330 connected to the driving circuit 400 and the pressure sensor 310 disposed at a long distance increases, the parasitic capacitance Cp and the resistance ( R) value becomes large.
도 4의 회로에서 만약 병렬로 연결된 기생 정전용량(Cp)의 크기가 매우 큰 상태이면, 터치에 의해 압력이 발생하여 압력 센서(310)의 저항값이 바뀌더라도 저항(R)과 기생 정전용량(Cp)에 따른 영향으로 기생 정전용량(Cp)에 충전되어 있는 전하는 구동 회로(400) 방향이 아니라 압력 센서(310)측으로 유도될 것이다.In the circuit of FIG. 4, if the size of the parasitic capacitance Cp connected in parallel is very large, even if pressure is generated by touch and the resistance value of the pressure sensor 310 is changed, the resistance R and the parasitic capacitance ( Under the influence of Cp), the charge charged in the parasitic capacitance Cp will be directed toward the pressure sensor 310 rather than in the direction of the driving circuit 400.
따라서, 구동 회로(400)에서는 압력 센서(310)의 저항 변화값을 제대로 감지해내지 못하거나 감지하기 위해 매우 긴 시간을 필요로 하게 된다.Therefore, the driving circuit 400 may not detect the resistance change value of the pressure sensor 310 properly or requires a very long time to detect the change.
이러한 문제점을 해결하기 위해 본 발명의 실시예에서는 도 5에 도시되는 바와 같이, 압력 센서(310)와 연결되는 신호 배선(320)과 그라운드 배선(330) 사이에 실드 배선(340)을 배치한다. In order to solve this problem, as illustrated in FIG. 5, the shield wire 340 is disposed between the signal wire 320 and the ground wire 330 connected to the pressure sensor 310.
두 개의 도체가 있을 때, 양 도체 사이에 충전되는 전하량은 Q=CV 로 정의될 수 있다. 이 때, 양 도체의 전위차를 0V로 하면, 두 도체 사이에 충전되는 전하량이 없게 되고, 정전용량 또한 제거될 수 있다. When there are two conductors, the amount of charge charged between both conductors can be defined as Q = CV. At this time, if the potential difference between the two conductors is 0 V, there is no charge amount charged between the two conductors, and the capacitance can also be removed.
따라서, 일 실시예에서는 각각의 압력 센서(310)에 연결된 신호 배선(320)의 전위를 해당 신호 배선(320)과 인접하게 배치된 실드 배선(340)에 가해줌으로써, 신호 배선(320)과 실드 배선(340) 간 전위차를 0V에 가깝게 해줌으로써, 신호 배선(320)에 형성되는 기생 정전용량(Cp, 도 4 참조)을 0으로 만들 수 있다.Therefore, in one embodiment, the signal wire 320 and the shield are applied by applying a potential of the signal wire 320 connected to each pressure sensor 310 to the shield wire 340 disposed adjacent to the signal wire 320. By making the potential difference between the wirings 340 close to 0V, the parasitic capacitance Cp (see FIG. 4) formed in the signal wiring 320 can be made zero.
이에 따르면, 압력 센서(310)에서의 저항값 변화량이 구동 회로(400) 측으로 정확하게 전달될 수 있다. According to this, the change in resistance value in the pressure sensor 310 can be accurately transmitted to the driving circuit 400 side.
도 6은 본 발명의 일 실시예에 따라 압력 센서의 전위를 실드 배선으로 인가하는 동작을 설명하기 위한 회로도이다. 6 is a circuit diagram for describing an operation of applying a potential of a pressure sensor to a shield wire according to an exemplary embodiment of the present invention.
도 6을 참조하면, 각각의 압력 센서(310)와 연결된 신호 배선(320)의 전위가 버퍼(B)를 거쳐 실드 라인(340)에 인가될 수 있으며, 이를 통해 압력 센서(310)의 전위와 실드 라인(340)의 전위가 동일해질 수 있다. 버퍼(B)는 압력 센서(310)와 연결된 신호 배선(320)의 전위를 실드 라인(340)으로 그대로 공급해주는 역할, 및 신호 배선(320)과 실드 라인(340) 간의 전기적인 특성 차이 등을 보상해주는 역할을 한다. Referring to FIG. 6, the potential of the signal wire 320 connected to each pressure sensor 310 may be applied to the shield line 340 through the buffer B, and thus the potential of the pressure sensor 310 may be applied. The potential of the shield line 340 may be the same. The buffer B serves to supply the potential of the signal wire 320 connected to the pressure sensor 310 to the shield line 340 as it is, and the difference in electrical characteristics between the signal wire 320 and the shield line 340. It rewards you.
도 7은 본 발명의 일 실시예에 따른 실드 배선이 적용된 압력 센서의 구조를 나타내는 도면이다. 7 is a diagram illustrating a structure of a pressure sensor to which a shield wire according to an embodiment of the present invention is applied.
도 7을 참조하면, 각각의 압력 센서(310)에 신호 배선(320)과 그라운드 배선(330)이 연결되고, 신호 배선(320)과 그라운드 배선(330) 사이에는 실드 배선(340)이 배치된다는 것을 알 수 있다. 이렇게 배치하고, 신호 배선(320)과 실드 배선(340)의 전위를 동전위로 제어해줌으로써, 신호 배선(320)에 기생 정전용량이 형성되는 현상을 효과적으로 방지할 수 있고, 구동 회로와 압력 센서(310) 간 거리와 무관하게 압력 센서(310)에서의 저항 변화값이 구동 회로측으로 정확하게 전달될 수 있다. Referring to FIG. 7, a signal wire 320 and a ground wire 330 are connected to each pressure sensor 310, and a shield wire 340 is disposed between the signal wire 320 and the ground wire 330. It can be seen that. By arranging in this way and controlling the potentials of the signal wiring 320 and the shield wiring 340 above the coin, the phenomenon in which parasitic capacitance is formed in the signal wiring 320 can be effectively prevented, and the driving circuit and the pressure sensor ( Regardless of the distance between the 310, the resistance change value in the pressure sensor 310 can be accurately transmitted to the driving circuit side.
도 8은 본 발명의 다른 실시예에 따른 실드 배선이 적용된 압력 센서의 구조를 나타내는 도면이다. 8 is a diagram illustrating a structure of a pressure sensor to which a shield wire according to another embodiment of the present invention is applied.
도 8을 참조하면, 제1 압력 센서(310-1) 및 제2 압력 센서(310-2)는 각각 제1 신호 배선(320-1) 및 제2 신호 배선(320-2)과 연결된다. 제1 신호 배선(320-1)과 그라운드 배선(330) 사이에는 도 7을 참조하여 설명한 실시예에서와 같이 실드 배선(미도시됨)이 배치될 수 있다. 한편, 제2 압력 센서(310-2)에는 제2 신호 배선(320-2)과 그라운드 배선(330) 사이에 실드 배선이 아닌 제1 압력 센서(310-1)에 연결된 신호 배선(320-1)이 연장되어 배치된다는 것을 알 수 있다. Referring to FIG. 8, the first pressure sensor 310-1 and the second pressure sensor 310-2 are connected to the first signal wire 320-1 and the second signal wire 320-2, respectively. Shield wires (not shown) may be disposed between the first signal wire 320-1 and the ground wire 330 as in the exemplary embodiment described with reference to FIG. 7. Meanwhile, the second pressure sensor 310-2 has a signal wire 320-1 connected to the first pressure sensor 310-1, not the shield wire, between the second signal wire 320-2 and the ground wire 330. Can be seen extending.
본 실시예에서는 제1 압력 센서(310-1)와 연결된 신호 배선(320-1)이 제2 압력 센서(310-2) 부근까지 연장되되, 제2 압력 센서(310-2)와 연결된 제2 신호 배선(320-2)과 그라운드 배선(330) 사이에 배치되어 실드 배선의 역할을 대신할 수 있다. In the present embodiment, the signal wire 320-1 connected to the first pressure sensor 310-1 extends to the vicinity of the second pressure sensor 310-2, and the second wire connected to the second pressure sensor 310-2. It may be disposed between the signal wire 320-2 and the ground wire 330 to replace the shield wire.
이 경우, 제2 압력 센서(310-2)에 대한 압력 감지 시, 제2 신호 배선(320-2)의 전위를 제1 신호 배선(320-2)에 공급해줌으로써, 제2 신호 배선(320-2)과 그라운드 배선(330) 사이에 실드 배선이 배치된 것과 같은 효과를 낼 수 있다. 본 실시예에 따르면, 추가적인 구성요소 없이도, 제2 신호 배선(320-2)에 기생 정전용량이 형성되는 현상을 방지할 수 있게 된다. In this case, when the pressure is sensed to the second pressure sensor 310-2, the second signal wire 320-2 is supplied by supplying the potential of the second signal wire 320-2 to the first signal wire 320-2. The same effect as the shield wiring is disposed between 2) and the ground wiring 330. According to the present exemplary embodiment, a parasitic capacitance may be prevented from being formed in the second signal wire 320-2 without additional components.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The foregoing description of the present invention is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is represented by the following claims, and it should be construed that all changes or modifications derived from the meaning and scope of the claims and their equivalents are included in the scope of the present invention.
Claims (4)
- 터치 스크린에 가해지는 압력을 감지하기 위한 일 이상의 압력 센싱부; At least one pressure sensing unit for sensing a pressure applied to the touch screen;상기 압력 센싱부 각각과 연결되는 신호 배선과 그라운드 배선; 및 A signal wire and a ground wire connected to each of the pressure sensing units; And상기 신호 배선과 그라운드 배선 사이에 배치되며, 상기 압력 센싱부를 통한 압력 감지 동작 시 상기 신호 배선과 동전위로 제어되는 실드 배선을 포함하는, 터치 압력 검출 장치. And a shield wire disposed between the signal wire and the ground wire, the shield wire being controlled on the signal wire and the coin during the pressure sensing operation through the pressure sensing unit.
- 제1항에 있어서,The method of claim 1,상기 신호 배선의 전위를 상기 실드 배선으로 공급하는 버퍼를 더 포함하는, 터치 압력 검출 장치. And a buffer for supplying a potential of the signal wiring to the shield wiring.
- 터치 스크린에 가해지는 압력을 감지하기 위한 제1 압력 센싱부 및 제2 압력 센싱부; A first pressure sensing unit and a second pressure sensing unit for sensing a pressure applied to the touch screen;상기 제1 압력 센싱부 및 제2 압력 센싱부와 연결되는 그라운드 배선; A ground wire connected to the first pressure sensing unit and the second pressure sensing unit;상기 제1 압력 센싱부 및 제2 압력 센싱부 각각과 연결되는 제1 신호 배선 및 제2 신호 배선을 포함하고, A first signal wire and a second signal wire connected to each of the first pressure sensor and the second pressure sensor,상기 제1 신호 배선은 상기 제2 신호 배선과 그라운드 배선 사이에 연장되며, 상기 제2 압력 센서에 대한 압력 감지 동작 시 상기 제2 신호 배선과 동전위로 제어되는, 터치 압력 검출 장치. And the first signal line extends between the second signal line and the ground line, and is controlled to be coincident with the second signal line when the pressure is sensed with respect to the second pressure sensor.
- 제3항에 있어서,The method of claim 3,상기 제2 신호 배선의 전위를 상기 제1 신호 배선으로 공급하는 버퍼를 더 포함하는, 터치 압력 검출 장치. And a buffer for supplying a potential of the second signal wire to the first signal wire.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20150121213 | 2015-08-27 | ||
KR10-2015-0121213 | 2015-08-27 | ||
KR1020160019375A KR20170026069A (en) | 2015-08-27 | 2016-02-18 | Touch force sensing apparatus |
KR10-2016-0019375 | 2016-02-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017034219A1 true WO2017034219A1 (en) | 2017-03-02 |
Family
ID=58100272
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/009104 WO2017034219A1 (en) | 2015-08-27 | 2016-08-18 | Device for detecting touch pressure of touch screen |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017034219A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018182287A1 (en) * | 2017-03-28 | 2018-10-04 | 삼성전자 주식회사 | Method for low power driving of display and electronic device for performing same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101461926B1 (en) * | 2012-06-04 | 2014-11-14 | 크루셜텍 (주) | Touch detecting apparatus and method for reducing parasitic capacitance |
KR20150002918A (en) * | 2013-06-26 | 2015-01-08 | 엘지디스플레이 주식회사 | Touch sensing apparatus and method for driving the same |
KR20150019157A (en) * | 2013-08-12 | 2015-02-25 | 주식회사 켐트로닉스 | Capacity type touch sensing panel |
KR101537229B1 (en) * | 2013-08-30 | 2015-07-16 | 크루셜텍 (주) | Touch detecting apparatus and method |
KR20150085395A (en) * | 2014-01-15 | 2015-07-23 | 한상현 | Control device of inversion LCD display with touch screen |
-
2016
- 2016-08-18 WO PCT/KR2016/009104 patent/WO2017034219A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101461926B1 (en) * | 2012-06-04 | 2014-11-14 | 크루셜텍 (주) | Touch detecting apparatus and method for reducing parasitic capacitance |
KR20150002918A (en) * | 2013-06-26 | 2015-01-08 | 엘지디스플레이 주식회사 | Touch sensing apparatus and method for driving the same |
KR20150019157A (en) * | 2013-08-12 | 2015-02-25 | 주식회사 켐트로닉스 | Capacity type touch sensing panel |
KR101537229B1 (en) * | 2013-08-30 | 2015-07-16 | 크루셜텍 (주) | Touch detecting apparatus and method |
KR20150085395A (en) * | 2014-01-15 | 2015-07-23 | 한상현 | Control device of inversion LCD display with touch screen |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018182287A1 (en) * | 2017-03-28 | 2018-10-04 | 삼성전자 주식회사 | Method for low power driving of display and electronic device for performing same |
CN110476138A (en) * | 2017-03-28 | 2019-11-19 | 三星电子株式会社 | The low power driving method of display and electronic equipment for executing this method |
EP3582065A4 (en) * | 2017-03-28 | 2020-04-01 | Samsung Electronics Co., Ltd. | Method for low power driving of display and electronic device for performing same |
US11106307B2 (en) | 2017-03-28 | 2021-08-31 | Samsung Electronics Co., Ltd. | Method for low power driving of display and electronic device for performing same |
CN110476138B (en) * | 2017-03-28 | 2024-02-13 | 三星电子株式会社 | Low power driving method of display and electronic device for performing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9864458B2 (en) | Touch-control display panel | |
WO2010019004A2 (en) | Touch sensing panel including bidirectional adjacent electrodes, and touch sensing apparatus | |
WO2010082795A2 (en) | Input device | |
WO2009096712A2 (en) | Touch sensing apparatus with parasitic capacitance prevention structure | |
CN107783689B (en) | Driver chip, circuit film, chip-on-film type driver circuit, and display device | |
WO2009096706A9 (en) | Touch sensor panel having a split-electrode structure and a touch sensor device provided with the same | |
EP3561650B1 (en) | Input sensing device and display device including the same | |
WO2016089149A1 (en) | Display panel, touch input apparatus, sensing apparatus for sensing touch position and touch pressure from display panel, and sensing method | |
WO2017023108A1 (en) | Touch detector, touch detection chip and touch input device | |
WO2016093526A1 (en) | Touch screen panel | |
WO2013012216A2 (en) | Touch screen panel having esd function | |
TW201709038A (en) | A three-dimensional touch control device | |
US20170160866A1 (en) | Touch display device | |
CN106055166A (en) | Capacitive touch screen panel | |
WO2012134026A1 (en) | Apparatus and method for detecting contact | |
WO2013180438A1 (en) | Improved single-layer capacitive touch panel | |
WO2012173305A1 (en) | Hybrid touch panel capable of sensing capacitance and pressure | |
CN105404430B (en) | 3D pressure-sensitive touch screen, manufacturing method thereof and 3D pressure-sensitive touch implementation method | |
WO2014168368A1 (en) | Capacitive touch panel | |
WO2011145877A2 (en) | Touch sensor testing apparatus | |
WO2014054878A2 (en) | Touchscreen panel having single laminated structure for improving sensitivity without interference | |
WO2014104642A1 (en) | Apparatus and method for sensing touch | |
WO2012157930A2 (en) | Touch panel sensor devicedevice for a touch panel sensor having improved accuracy in detecting a touch position | |
CN106855760B (en) | Touch display device with pressure sensing function | |
WO2014003518A1 (en) | Touch display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16839508 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16839508 Country of ref document: EP Kind code of ref document: A1 |