WO2017033701A1 - Method for producing resin film - Google Patents

Method for producing resin film Download PDF

Info

Publication number
WO2017033701A1
WO2017033701A1 PCT/JP2016/072941 JP2016072941W WO2017033701A1 WO 2017033701 A1 WO2017033701 A1 WO 2017033701A1 JP 2016072941 W JP2016072941 W JP 2016072941W WO 2017033701 A1 WO2017033701 A1 WO 2017033701A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin film
resin
die
resin composition
film
Prior art date
Application number
PCT/JP2016/072941
Other languages
French (fr)
Japanese (ja)
Inventor
正 澤里
洪太 永岡
睦 松本
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2017536721A priority Critical patent/JP6762945B2/en
Publication of WO2017033701A1 publication Critical patent/WO2017033701A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/69Filters or screens for the moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/885External treatment, e.g. by using air rings for cooling tubular films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins

Definitions

  • the present invention is a method for producing a resin film using a resin composition containing an ethylene-chlorotrifluoroethylene copolymer, and the resin film obtained thereby is laminated with a base material containing a thermoplastic resin.
  • the present invention relates to a laminated film manufacturing method and an outdoor waterproof film manufacturing method.
  • Ethylene-chlorotrifluoroethylene copolymer is weather resistant, chemical resistant, stain resistant, water repellency, insulation, low friction, electrical insulation, low moisture absorption, water vapor barrier property, low Because of its excellent chemical permeability, flame retardancy, and fire spread resistance, it is used for structural parts of semiconductor manufacturing equipment and various corrosion-resistant lining materials. Moreover, since ECTFE can be extrusion-molded and film-forming is also possible, it is used for various uses, such as a surface protection film and a member film for solar cells.
  • a molding process in which the resin temperature is rapidly cooled from a state higher than the crystallization temperature to suppress crystallization.
  • ECTFE is known to have a maximum melting point of 242 ° C and a crystallization temperature of 222 ° C by adjusting the composition ratio of ethylene and chlorotrifluoroethylene. It is easy to crystallize at the time of molding, and the transparency of the film becomes difficult to express.
  • the resin temperature is set too high, it is known that, on the contrary, the deterioration of the resin easily proceeds and the color changes to brown or black.
  • a film using ECTFE has a high quality requirement that does not contain discontinuous physical unevenness or hue unevenness as much as possible, which is called a defect, such as foreign matter, fish eye, gel, and contamination. ing. For this reason, further efforts to reduce the occurrence of defects are required.
  • the main causes of defects are coloring due to decomposition or deterioration of ECTFE, gelation, carbonization, mixing of components other than ECTFE, and the like.
  • As an approach to reduce the occurrence of these defects there is a means for making the mesh of the screen mesh arranged downstream of the screw tip of the extruder finer.
  • the opening is made too fine, it will lead to the retention and deterioration of the molten resin, making it difficult to suppress the occurrence of defects, and toxic corrosive properties such as hydrogen chloride and hydrogen fluoride. This is not preferable because it increases the risk of gas generation.
  • an object of the present invention is to provide a method for producing a resin film containing an ethylene-chlorotrifluoroethylene copolymer excellent in transparency and appearance. Furthermore, it aims at providing the manufacturing method of the laminated
  • the present inventor when producing a resin film from a resin composition containing ECTFE, has an aperture ratio of a breaker plate, an opening of a screen mesh, a resin temperature at a T die discharge port, and a T die.
  • ethylene-chlorotrifluoro is prevented while preventing the resin composition from rising in temperature and mixing in foreign matter.
  • the present inventors have found that crystallization of an ethylene copolymer can be suppressed and have completed the present invention.
  • a resin composition containing an ethylene-chlorotrifluoroethylene copolymer is melt-kneaded with an extruder equipped with a T-die, and then subjected to a casting treatment using at least one cooling roll.
  • the extruder includes a breaker plate between a screw tip and the T die, the breaker plate includes a screen mesh, and the opening ratio of the breaker plate is 40% to 60%. %, The minimum mesh opening of the screen mesh is 0.03 mm to 0.1 mm, and the temperature of the resin composition at the discharge port of the T die is 110 ° C. to the surface temperature of the first cooling roll.
  • the casting process is performed using the first cooling roll and the touch roll, and a part of the surface of the first cooling roll is in contact with a part of the surface of the touch roll.
  • the distance between the discharge port tip of the T die and the end of the T die on the surface where the first cooling roll surface and the touch roll surface are in contact is 400 mm or less. It can be set as a manufacturing method.
  • the method for producing a resin film according to (1) or (2), wherein the temperature of the resin composition at the discharge port of the T die is 240 ° C. to 300 ° C. .
  • the resin composition contains a heat stabilizer, and the content of the heat stabilizer in the resin composition is 0.1% by mass to 5% by mass. It can be set as the manufacturing method of the resin film as described in any one of (3).
  • the resin composition contains an ultraviolet absorber, and the content of the ultraviolet absorber in the resin composition is 0.1% by mass to 5% by mass. It can be set as the manufacturing method of the resin film as described in any one of (4).
  • a recycling raw material comprising a resin film prepared using a resin composition containing an ethylene-chlorotrifluoroethylene copolymer as the resin composition,
  • the present invention relates to a resin film in which an ethylene-chlorotrifluoroethylene copolymer-containing resin composition is melt-kneaded with an extruder equipped with a T die and then cast using at least one cooling roll.
  • the extruder includes a breaker plate between a screw tip and the T die, and the breaker plate
  • the breaker plate has an opening ratio of 40% to 60%, the minimum opening of the screen mesh is 0.03 mm to 0.1 mm, and the resin composition at the discharge port of the T die
  • This is a method for producing a laminated film, wherein the temperature is 110 ° C. to 280 ° C. higher than the surface temperature of the first cooling roll.
  • the present invention relates to a resin film obtained by melt-kneading a resin composition containing an ethylene-chlorotrifluoroethylene copolymer in an extruder equipped with a T-die and then casting using at least one cooling roll.
  • the extruder includes a breaker plate between a screw tip and the T die, and the breaker plate
  • the breaker plate has an opening ratio of 40% to 60%, the minimum opening of the screen mesh is 0.03 mm to 0.1 mm, and the resin composition at the discharge port of the T die
  • the temperature is 110 ° C. to 280 ° C. higher than the surface temperature of the first cooling roll.
  • a method for producing a resin film containing an ethylene-chlorotrifluoroethylene copolymer having excellent transparency and appearance can be provided. Furthermore, the manufacturing method of the laminated
  • the resin film obtained by the production method of the present invention is excellent in transparency and appearance.
  • the resin film production method of the present embodiment is obtained by melt-kneading a resin composition containing an ethylene-chlorotrifluoroethylene copolymer in an extruder equipped with a T die, and then performing a casting treatment using a cooling roll. Forming a film.
  • a resin composition contains an ethylene-chlorotrifluoroethylene copolymer (hereinafter also referred to as “ECTFE”).
  • ethylene-chlorotrifluoroethylene copolymer a copolymer comprising ethylene (hereinafter also referred to as “Et”) and chlorotrifluoroethylene (also referred to as “ethylene trifluorinated chloride”, hereinafter also referred to as “CTFE”).
  • Et ethylene
  • CTE chlorotrifluoroethylene
  • CTFE chlorotrifluoroethylene
  • the copolymer used as the third monomer can be used.
  • ECTFE having an arbitrary Et / CTFE ratio may be used alone, or at least one kind of ECTFE having different Et / CTFE ratios may be mixed and used.
  • resin other than ECTFE can be added in the range which does not inhibit the effect of the resin film of this invention.
  • the resin composition can contain a heat stabilizer as necessary.
  • heat stabilizers include phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, metal soaps, organotin compounds, epoxy compounds, ⁇ -diketones, perchloric acid metal salts, hydrotalcite, etc. Of these, phenol-based antioxidants, phosphorus-based antioxidants, and metal soaps are preferable in terms of transparency.
  • a method for adding the heat stabilizer one previously added in the granulating step of the ECTFE raw material to be used may be used, or when manufacturing a resin film, an ECTFE raw material to which no heat stabilizer is added and A heat stabilizer and a melt stabilizer can also be contained.
  • the addition amount of the antioxidant is preferably 0.001% by mass to 5% by mass in the total resin composition, and more preferably 0.1% by mass to 1.0% by mass. If it is less than 0.001% by mass, sufficient thermal stability cannot be obtained, and if it exceeds 5% by mass, the transparency or color tone may be deteriorated.
  • An ultraviolet absorber can be added to the resin composition as necessary.
  • the UV absorber include organic UV absorbers such as benzotriazole UV absorbers, benzophenone UV absorbers and triazine UV absorbers, hindered amine stabilizers (HALS), and the like.
  • organic UV absorbers such as benzotriazole UV absorbers, benzophenone UV absorbers and triazine UV absorbers, hindered amine stabilizers (HALS), and the like.
  • triazine-based ultraviolet absorbers are preferable, and 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5- [2- (2- (4) is particularly preferable in terms of compatibility with ECTFE.
  • 2-Ethylhexanoyloxy) ethoxy] phenol is preferred.
  • the ultraviolet absorber As a method for adding the ultraviolet absorber, one previously added in the granulation step of the ECTFE raw material to be used may be used, or when the resin film is produced, the ECTFE raw material to which the ultraviolet absorber is not added and the ultraviolet ray are added. It is also possible to melt and mix the absorbent.
  • the addition amount of the ultraviolet absorber is preferably 0.001% by mass to 5% by mass, and more preferably 0.1% by mass to 1.0% by mass. If the amount is less than 0.001% by mass, the effect of a sufficient ultraviolet absorber cannot be obtained, and if it exceeds 5% by mass, transparency or color tone may be deteriorated.
  • the resin composition a part of the broken material of the resin film produced by the method described later can be added to the resin composition as a recycle raw material within a range that does not impair the effects of the present invention.
  • the addition ratio of the resin film broken material is preferably 1% by mass to 40% by mass in the resin composition.
  • the resin composition has plasticizers, lubricants, antistatic agents, antifogging agents, droplets, hydrophilic agents, liquid repellents, etc., as long as the transparency, color tone, heat resistance, film appearance, etc. are not practically impaired. Can be added.
  • the resin composition may be kneaded, or may be applied to the surface of the resin film after producing the resin film.
  • the resin film is obtained by melt-kneading the resin composition with an extruder equipped with a T die and then casting with a cooling roll.
  • the “casting process” is a process for forming a film by a so-called casting method. For example, a resin melted by an extruder is extruded from a linear slit (discharge port) provided in a die, and the molten film is formed. The process which forms a winding film, cooling and extending
  • “resin composition” may be abbreviated as “resin”.
  • FIG. 1 is a schematic diagram showing an example of a resin film forming process of the present embodiment.
  • the resin composition is melt-kneaded with a screw in a heated cylinder (not shown) provided in the extruder 1, and then passed through a T die 3 connected through a single pipe 2, and is discharged from a discharge port 4. Discharge molten resin. Thereafter, the molten resin is cast using the first cooling roll 5 and the touch roll 6 to obtain the resin film 10.
  • the “first cooling roll” is a cooling roll provided closest to the discharge port 4 of the T die 3 and is a casting roll that cools and stretches the discharged resin.
  • a single screw type, a twin screw type, a tandem type or the like can be used as a general one, but a single screw is used because it does not give excessive shear to the resin and does not stay in the system.
  • a screw type extruder is preferred.
  • the screw of the extruder is not particularly limited as long as the specification is sufficient to plasticize and homogenize the resin and does not cause resin deterioration due to excessive shearing.
  • a full flight type screw is preferable.
  • the full flight type screw preferably has a compression ratio of 1.3 to 3.0, and the ratio of the screw length L to the screw diameter D (L / D) is preferably 20 to 40, more preferably 2. 0 to 3.0 and L / D is 25 to 35.
  • the extruder includes a breaker plate between the screw tip and the T die.
  • the breaker plate may be provided, for example, at the tip flange portion of the cylinder in the extruder so as to cross the inner hole of the cylinder and to go directly to the flow path of the molten resin.
  • the breaker plate has a plurality of through-holes through which the molten resin passes at the center.
  • the opening ratio of the breaker plate is 40% to 60%, preferably 42% to 58%.
  • the opening ratio means the area of the part where the resin through-hole is formed with respect to the entire area including the resin through-hole with reference to the part exposed to the resin circulation part of the extruder.
  • the minimum diameter of the resin through hole of the breaker plate is 3.7 mm to 6.0 mm. “Minimum diameter” refers to the smallest diameter of each through hole. By setting the minimum diameter of the resin through hole to 3.7 mm or more, the back pressure on the resin can be suppressed and the resin staying in the extruder can be suppressed. Further, by setting the minimum diameter of the resin through hole to 6.0 mm or less, the number of defects of the film can be stably kept low for a long time.
  • the breaker plate has a screen mesh.
  • one or more screen meshes may be provided in contact with the surface on the upstream side (screw tip side) of the breaker plate.
  • the screen mesh disposed on the breaker plate is preferably a combination of two or more screen meshes having different openings.
  • a screen mesh having the same mesh opening can be used in combination.
  • the minimum mesh opening of the screen mesh is 0.03 mm to 0.1 mm, and preferably 0.03 mm to 0.7 mm.
  • the screen mesh having a large opening serves to remove coarse defects, and the opening is preferably 0.15 mm to 0.6 mm.
  • a coarse screen mesh having a larger opening may be introduced downstream of the screen mesh having the smallest opening. It is preferable that the screen mesh is disposed 10 to 100 mm downstream from the tip of the screw.
  • the resin temperature at the T-die discharge port is preferably maintained at 240 ° C. to 300 ° C., although it depends on the melting point of ECTFE used. When the resin temperature exceeds 300 ° C., ECTFE is likely to be decomposed, which may easily lead to a change in color tone and generation of defects due to degradation of the resin. On the other hand, if the resin temperature is less than 240 ° C., a decrease in fluidity accompanying an increase in the viscosity of the resin occurs, which may promote excessive shearing and retention in the extruder.
  • the resin plasticized according to the above-described method is extruded from a T-die into a sheet shape, and then taken out while being cast between a temperature-controlled first cooling roll and a rubber touch roll. It can be adjusted to a predetermined thickness by being pulled while contacting the cooling roll.
  • a part of the surface of the touch roll is in contact with the surface of the cooling roll.
  • the thickness of the resin can be adjusted to a desired thickness by adjusting the pressure applied to and the take-up speed of the first cooling roll and the touch roll.
  • the cooling roll includes at least one cooling roll and may include a plurality of rolls. As described above, the cooling roll provided closest to the discharge port of the T die is the first cooling roll.
  • the resin temperature at the T die discharge port is + 110 ° C. to + 280 ° C. higher than the surface temperature of the first cooling roll, and preferably + 120 ° C. to + 250 ° C. higher. If the temperature difference between the resin temperature at the discharge port of the T-die and the surface temperature of the cooling roll is less than + 110 ° C., ECTFE will crystallize and the transparency of the resin film will deteriorate, or the film to the cooling roll will be produced during resin film production Since adhesion occurs, it is not preferable.
  • the resin temperature at the T die discharge port can be obtained, for example, by measuring the temperature of the resin passing through the lip outlet of the T die using a contact thermometer or the like.
  • the surface temperature of the first cooling roll can be obtained, for example, by measuring the surface temperature of the first cooling roll using a contact thermometer or the like.
  • the distance from the T-die discharge port to the surface where the first cooling roll surface and the touch roll surface are in contact plays an important role in controlling the crystallinity of the resin film.
  • 1 and 2 show configurations of the T die, the first cooling roll, and the touch roll. As shown in FIGS. 1 and 2, on the surface 7 where the surface of the first cooling roll 5 and the surface of the touch roll 6 are in contact, the point 8 at the highest position of the surface 7 in contact (the first cooling roll and the touch roll in the rotating state are Or the contact point between the cooling roll surface and the touch roll surface may be abbreviated as “contact”, and the distance from the T-die discharge port 4 to the contact 8 (shortest distance) ) 9 may be abbreviated as “air gap”.
  • the air gap is when the T-die discharge port and the contact surface of the first cooling roll surface and the touch roll surface are in a vertical position (for example, the contact surface is positioned below the T-die discharge port in the vertical direction).
  • T means the linear distance connecting the die outlet and the contact.
  • the distance (shortest distance) of the air gap is preferably 400 mm or less, and more preferably 100 mm to 300 mm or less. If the distance of the air gap exceeds 400 mm, crystallization proceeds before reaching the first cooling roll, and a good transparent resin film may not be obtained.
  • the resin film can be obtained by slitting the end of the cooled film to an arbitrary film width and then winding the film with an appropriate tension that does not cause the film to be tightened or wound.
  • the thickness of the resin film is preferably 0.001 mm to 0.5 mm, and more preferably 0.01 mm to 0.3 mm. If the thickness of the resin film is less than 0.001 mm, tearing may easily occur during film production, and it may be difficult to control the thickness of the film. Moreover, when thickness exceeds 0.5 mm, the nonuniformity of a cooling rate will arise easily in the thickness direction of a film, and transparency will deteriorate easily.
  • the resin film obtained by the production method of the present embodiment preferably has a total light transmittance of 92% or more, more preferably 93% or more, measured by a haze meter. If it is less than 92%, it may be difficult to apply to uses where a reduction in designability when a resin film is laminated on a substrate or a high light collection efficiency is required.
  • the resin film obtained by the production method of the present embodiment can be suitably used as various waterproof films used outdoors, taking advantage of the water vapor barrier property, chemical resistance, antifouling property, and weather resistance of ECTFE.
  • applications used outdoors include membrane materials in buildings such as sports facilities, metal steel sheet coating materials such as road signs, concrete waterproof sheets, etc. Can be suitably used.
  • the resin film of the present embodiment described above is excellent in transparency and appearance, it is suitable as a surface protective film for other resin sheets and inorganic materials.
  • it contains ECTFE excellent in weather resistance and water vapor barrier properties it is suitable for use as an outdoor waterproof film.
  • an adhesive surface (first surface of the resin film) is provided so as to provide adhesion to an object to be protected (hereinafter referred to as “base material”).
  • base material an object to be protected
  • a resin film forming step comprising the above-described resin film manufacturing method, a step of surface-modifying the first surface of the obtained resin film, and a surface-modified resin film And laminating a base material containing a thermoplastic resin on the first surface.
  • Examples of the surface modification method include a method of treating the first surface of the resin film with corona treatment or plasma treatment.
  • the “first surface” refers to either one or both of the front and back surfaces of a resin film that can be an adhesive surface.
  • the resin film may be processed in-line downstream of the process of the cooling roll, or after the resin film is manufactured, it may be processed off-line with corona treatment equipment or plasma treatment equipment. Good.
  • the amount of discharge related to the corona treatment is not particularly limited, but is preferably 30 W ⁇ min / m 2 or more, more preferably 50 W ⁇ min for the purpose of obtaining suitable adhesion to the substrate. / M 2 or more. If it is less than 30 W ⁇ min / m 2 , a sufficient surface modification effect of the resin film cannot be obtained, and the adhesion to the substrate may be insufficient.
  • About the upper limit of discharge amount it can set suitably in the range by which the external appearance of a resin film is not impaired.
  • the surface modification effect obtained by the plasma treatment varies depending on the type of gas to be present, but examples of the modified gas that can be suitably used for the resin film of the present embodiment include nitrogen, oxygen, hydrogen, carbon dioxide, and argon. And hydrocarbon-based gas.
  • a rare gas element gas component such as argon gas and a hydrocarbon-based gas can be given. These process gases may be used alone or in combination of two or more.
  • a general plasma processing method there are a remote plasma method and a direct plasma method, and the resin film of this embodiment can be suitably used for any of the processing methods.
  • the direct plasma method is more preferable for the purpose of reducing surface roughness and enabling surface treatment at a low cost.
  • Substrate lamination process As a method of laminating a substrate on a resin film whose surface has been modified by corona treatment or plasma treatment, a method of laminating a resin film on the surface of a substrate softened by heat can be employed.
  • an adhesive resin having adhesiveness to both the resin film and the substrate is applied to the adhesive surface (first surface) of the surface-modified resin film, and heat is applied.
  • a method of softening the resin film and laminating the surface of the substrate can be suitably employed.
  • the main adhesive resins that can be used in the coating include ethylene-vinyl acetate copolymer (EVA), acrylate resins, isocyanate resins, epoxy resins, urethane resins, silicone resins, polyolefin resins, ionomers. Resins etc. are mentioned, At least 1 or more types can be selected and used according to the objective and a use. These adhesive resins are also used as sealing resins.
  • EVA ethylene-vinyl acetate copolymer
  • acrylate resins acrylate resins
  • isocyanate resins epoxy resins
  • urethane resins urethane resins
  • silicone resins polyolefin resins
  • ionomers polyolefin resins etc.
  • the substrate examples include films and sheet-like flat plate shapes, and those having a three-dimensional shape such as a rectangular parallelepiped, a prism, a pyramid, a cylinder, and a cone.
  • the kind of base material is not specifically limited, Resin, glass, etc. can be mentioned.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polycarbonate (PC), polymethyl methacrylate (PMMA), styrene-butadiene copolymer (SBC), and ethylene-vinyl acetate copolymer ( EVA), polyimide (PI), polyphenylene sulfide (PPS), aramid, polypropylene (PP), polyethylene (PE), polylactic acid (PLA), polyvinyl chloride (PVC), silicone resin, alicyclic acrylic resin, cycloolefin A thermoplastic resin such as resin (COP) or triacetyl cellulose (TAC) can be used.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • PMMA polymethyl methacrylate
  • SBC styrene-butadiene copolymer
  • EVA ethylene-vinyl acetate copolymer
  • PI polyimide
  • thermoplastic resin is preferable from the viewpoint of adhesion to a resin film, and an ethylene-vinyl acetate copolymer is particularly preferable from the viewpoint of adhesion and transparency.
  • ECTFE1 “Halar ECTFE 500LC” manufactured by Solvay, melting point 242 ° C., MFR 18 g / 10 min (ASTM D1238 275 ° C./2.16 kg load)
  • ECTFE2 “Halar ECTFE 350LC” manufactured by Solvay, melting point 242 ° C., MFR 4.0 g / 10 min (ASTM D1238 275 ° C./2.16 kg load)
  • ECTFE3 “Halar ECTFE XPH802B (700HC)” manufactured by Solvay, melting point 202 ° C., MFR 9.0 g / 10 min (ASTM D1238 275 ° C./2.16 kg load)
  • Antioxidant * "ADEKA STAB 593” manufactured by ADEKA: Mixture of zinc stearate and calcium stearate [UV absorber] “LA-46” manufactured by ADEKA: 2- (4,6-dip
  • the resin film of an Example and a comparative example was formed using the following apparatus.
  • [Extruder] ⁇ “VS65-25 single screw horizontal extruder” manufactured by Tanabe Plastic Industry Co., Ltd., hopper type [screw] ⁇ Screw configuration: Full flight type screw ⁇ Screw diameter: 65 mm -Screw length (L) / screw diameter (D) ratio: 25 ⁇ Compression ratio: 2.5
  • Tables 1 and 2 show the screen mesh configurations and aperture values used in Examples and Comparative Examples.
  • the material of the screen mesh was SUS304, and was installed 20 mm downstream from the screw tip.
  • the screen mesh has a three-layer structure that is continuous on the screw side, the center side, and the T die side.
  • Tables 1 and 2 show the aperture ratios of the breaker plates used in the examples and comparative examples.
  • SUS304 was used for the material of a breaker plate, and it installed with the form adjacent to the process downstream of the said screen mesh.
  • T die The specifications of the T-die used in the examples and comparative examples are shown below.
  • -Die specification Coat hanger method / downward discharge type, hard chrome plating on the inner surface-Lip width: 1050mm [roll]
  • Model Touch roll type Linear pressure 25-30kgf / cm ⁇
  • Roll specifications First cooling roll 260mm in diameter Hard chrome plating finish after surface hardening and polishing Surface roughness: 0.2S (maximum height of convex part) Chiller water circulation system
  • Touch roll Diameter 260mm Surface mirror finish white mirror roll
  • Surface roughness (maximum height of convex part) Ry 3.2 ⁇ m, (arithmetic mean roughness) Ra 0.05 ⁇ m ⁇
  • Example 1 After drying pellets of ECTFE1 (Halar ECTFE 500LC) at 80 ° C. for 4 hours, the set temperature of the breaker plate part and the T die was set to 280 ° C. using the above-described extruder, and melt-kneaded. As the screen mesh, meshes of 0.18 mm, 0.075 mm, and 0.18 mm were used from the upstream side to the downstream side of the resin flow part. The air gap was 120 mm. The resin temperature at the T-die discharge port was 280 ° C., and the surface temperature of the first cooling roll was 60 ° C. The thickness of the obtained resin film was 0.025 m. The results are shown in Table 1.
  • ⁇ Resin temperature at T-die outlet> The resin temperature at the T-die outlet is measured using a contact-type thermometer (DIGITAL SURFACE THERMOMETER, model number: HL-200, manufactured by Anritsu Keiki Co., Ltd.), and the temperature of the resin passing through the lip outlet of the T-die is measured. The measured value.
  • DIGITAL SURFACE THERMOMETER model number: HL-200, manufactured by Anritsu Keiki Co., Ltd.
  • ⁇ Defects of resin film (appearance)> The number of defects (foreign matter, fish eye, gel) of 0.7 mm or more contained in a film area of 1000 m 2 was measured using an in-line defect detector equipped in the film production facility. The number of defects in the resin film was determined based on the following criteria. Excellent: Less than 50 Good: 50 or more, less than 80 Possible: 80 or more, less than 100 Poor: 100 or more
  • the obtained resin film was dried using a xenon arc weatherometer Ci4000 (light source xenon lamp) manufactured by Toyo Seiki Seisakusho Co., Ltd., with an irradiation intensity of 80 W / m 2 , a black panel temperature of 85 ° C., a relative humidity of 50%, and drying for 102 minutes.
  • the resin film was irradiated with ultraviolet rays for 2000 hours with a water spray cycle of 18 minutes, and the total light transmittance and hue change ( ⁇ b) of the obtained resin film were measured.
  • the hue ( ⁇ b) was measured by using “Color Cute i” manufactured by Suga Test Instruments Co., Ltd., and the change in b value with respect to before ultraviolet irradiation was measured as ⁇ b.
  • the performance was determined according to the following criteria for the measured ⁇ b value. Excellent: Less than 0.3 Good: 0.3 or more, less than 0.6 Possible: 0.7 or more, less than 0.9 Poor: 1.0 or more
  • the moisture resistance of the resin film was measured at a temperature of 40 ° C. and a relative humidity of 90% using an L-80-5000 type water vapor permeability meter manufactured by Lyssy. The moisture resistance of the resin film was determined based on the following criteria. Excellent: Less than 1.0 Good: 1.0 or more, less than 5.0 Possible: 5.0 or more, less than 10.0 Poor: 10.0 or more
  • the resin film was plasma-treated in an argon environment by a remote plasma method to a wetness index of 44 mN / m, and then the plasma-treated surface was pressure-bonded to an EVA resin sheet having a thickness of 0.4 mm at 150 ° C. for 30 minutes and vacuum laminated. .
  • the performance of the base material after lamination was judged according to the following criteria.
  • An atmospheric pressure plasma surface treatment apparatus was used for the plasma treatment. Good: Macroscopic appearance deterioration such as defects such as delamination and discoloration of molded product is not recognized. Defect: Delamination is observed, or a macroscopic appearance deterioration such as a defect such as discoloration of a molded product is recognized.
  • Examples 2 to 9 Under the conditions shown in Table 1, resin films were prepared and subjected to various evaluations.
  • the recycled resin films used in Examples 2 to 4 and Examples 6 to 9 are obtained by blending the resin film produced in the same Example with the raw material for the resin composition.
  • the resin film of this embodiment has excellent transparency and a small number of defects.
  • it can be suitably used for various protective films that require design properties and outdoor waterproof films.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Abstract

[Problem] To provide a method for producing a resin film that contains an ethylene-chlorotrifluoroethylene copolymer and has excellent transparency and appearance. To additionally provide a method for producing a multilayer film and a method for producing an outdoor waterproof film, each of which uses this resin film. [Solution] A resin film having excellent transparency and appearance is able to be obtained by melting and kneading a resin composition, which contains an ethylene-chlorotrifluoroethylene copolymer, by an extruder provided with a T-die under specific conditions, and subsequently subjecting the resulting resin composition to casting with use of a cooling roll. The extruder is provided with a breaker plate between the front end portion of a screw and the T-die; the breaker plate is provided with a screen mesh; the aperture ratio of the breaker plate is 40-60%; the minimum opening of the screen mesh is 0.03-0.1 mm; and the temperature of the resin composition at the front end portion of the ejection port of the T-die is higher than the surface temperature of the cooling roll by 110-280°C.

Description

樹脂フィルムの製造方法Manufacturing method of resin film
 本発明は、エチレン-クロロトリフルオロエチレン共重合体を含む樹脂組成物を用いた樹脂フィルムの製造方法、及びこれにより得られた樹脂フィルムを、熱可塑性樹脂を含有する基材と積層してなる、積層フィルムの製造方法及び屋外防水フィルムの製造方法に関する。 The present invention is a method for producing a resin film using a resin composition containing an ethylene-chlorotrifluoroethylene copolymer, and the resin film obtained thereby is laminated with a base material containing a thermoplastic resin. The present invention relates to a laminated film manufacturing method and an outdoor waterproof film manufacturing method.
 エチレン-クロロトリフルオロエチレン共重合体(ECTFE)は、耐候性、耐薬品性、耐汚染性、撥水性、絶縁性、低摩擦性、電気絶縁性の他、低吸湿性、水蒸気バリア性、低薬品透過性、難燃性、耐延焼性に優れることから、半導体製造機器の構造部品、各種耐蝕ライニング材等に使用されている。また、ECTFEは押出成形が可能であり、フィルム成形も可能であることから、表面保護フィルム、太陽電池用部材フィルム等の各種用途に使用されている。 Ethylene-chlorotrifluoroethylene copolymer (ECTFE) is weather resistant, chemical resistant, stain resistant, water repellency, insulation, low friction, electrical insulation, low moisture absorption, water vapor barrier property, low Because of its excellent chemical permeability, flame retardancy, and fire spread resistance, it is used for structural parts of semiconductor manufacturing equipment and various corrosion-resistant lining materials. Moreover, since ECTFE can be extrusion-molded and film-forming is also possible, it is used for various uses, such as a surface protection film and a member film for solar cells.
 一般的に、透明性に優れるフィルムを得る為には、樹脂の温度を結晶化温度より高い状態から急冷し結晶化を抑制する成形プロセスが必要とされている。しかし、ECTFEは、エチレンとクロロトリフルオロエチレンとの組成比の調整によって、最大融点が242℃、結晶化温度が222℃になることが知られており、結晶化温度が融点に近い為、押出成形時に結晶化し易く、フィルムの透明性の発現が難しくなる。また、優れた透明性を得るためには、押出機で溶融、混練され、ダイス出口から押出される際の樹脂温度をなるべく高く設定することが好ましいとされている。しかし、樹脂温度を高温に設定し過ぎた場合、反対に、樹脂の劣化が進行し易くなり、茶色や黒色に変色することが知られている。 Generally, in order to obtain a film having excellent transparency, a molding process is required in which the resin temperature is rapidly cooled from a state higher than the crystallization temperature to suppress crystallization. However, ECTFE is known to have a maximum melting point of 242 ° C and a crystallization temperature of 222 ° C by adjusting the composition ratio of ethylene and chlorotrifluoroethylene. It is easy to crystallize at the time of molding, and the transparency of the film becomes difficult to express. In order to obtain excellent transparency, it is preferable to set the resin temperature as high as possible when melted and kneaded by an extruder and extruded from the die outlet. However, when the resin temperature is set too high, it is known that, on the contrary, the deterioration of the resin easily proceeds and the color changes to brown or black.
 一方、ECTFEを使用したフィルムには、欠点と呼ばれる、異物、フィッシュアイ、ゲル、コンタミ等の、フィルムの平均厚みに対し不連続な物理的凹凸、或いは色相ムラ等を極力含有しない品質要求が高まっている。そのため、欠点の発生を低減するさらなる取り組みが求められている。
特開2013-237730号公報 特表2013-500856号公報 特開2011-176192号公報
On the other hand, a film using ECTFE has a high quality requirement that does not contain discontinuous physical unevenness or hue unevenness as much as possible, which is called a defect, such as foreign matter, fish eye, gel, and contamination. ing. For this reason, further efforts to reduce the occurrence of defects are required.
JP 2013-237730 A Special table 2013-500856 gazette JP 2011-176192 A
 欠点の発生原因としては、ECTFEの分解又は劣化による着色、ゲル化、炭化、ECTFE以外の成分の混入等が主なものとして挙げられる。これらの欠点の発生を低減するための取り組みとして、押出機のスクリュー先端部よりもプロセス下流に配置されるスクリーンメッシュの目開きを細かくする手段がある。しかし、目開きを細かくし過ぎた場合、溶融樹脂の滞留や劣化を助長させることに繋がり、欠点の発生を抑制する効果が得られ難くなる他、塩化水素、フッ化水素等の有毒性腐食性ガスの発生リスクを高めるため、好ましくない。 The main causes of defects are coloring due to decomposition or deterioration of ECTFE, gelation, carbonization, mixing of components other than ECTFE, and the like. As an approach to reduce the occurrence of these defects, there is a means for making the mesh of the screen mesh arranged downstream of the screw tip of the extruder finer. However, if the opening is made too fine, it will lead to the retention and deterioration of the molten resin, making it difficult to suppress the occurrence of defects, and toxic corrosive properties such as hydrogen chloride and hydrogen fluoride. This is not preferable because it increases the risk of gas generation.
 さらに、フィルムの製造に際しては、製造したフィルムの一部を粉砕又は造粒して再生原料にした後、未使用の原料に任意の割合で配合し、歩留りを向上させる取り組みが一般的に行われている。この場合、一度、溶融環境に曝されることで熱履歴を受けたECTFEが、再度、熱履歴を受けることから、樹脂の劣化による透明性の低下や、欠点が発生する可能性が高くなる。このような状況の下、スクリーンメッシュの目開きを細かくした場合においても、樹脂の滞留を生じ難く、フィッシュアイ、ゲル、コンタミ等の欠点のない外観に優れた、透明性に優れるECTFEフィルムの開発が望まれていた。 Furthermore, in the production of a film, after a part of the produced film is pulverized or granulated to be a recycled raw material, it is generally mixed with an unused raw material at an arbitrary ratio to improve the yield. ing. In this case, since ECTFE that has received a thermal history once exposed to the molten environment receives the thermal history again, there is a high possibility that a decrease in transparency due to deterioration of the resin or a defect will occur. Under such circumstances, even when the mesh of the screen mesh is made finer, the development of an ECTFE film with excellent transparency and excellent appearance without defects such as fish eye, gel, and contamination is difficult to cause resin retention. Was desired.
 本発明は、上記問題と実状に鑑み、透明性及び外観に優れたエチレン-クロロトリフルオロエチレン共重合体を含む樹脂フィルムの製造方法を提供することを課題とする。さらに、この樹脂フィルムを用いた積層フィルム及び屋外防水フィルムの製造方法を提供することを課題とする。 In view of the above problems and actual conditions, an object of the present invention is to provide a method for producing a resin film containing an ethylene-chlorotrifluoroethylene copolymer excellent in transparency and appearance. Furthermore, it aims at providing the manufacturing method of the laminated | multilayer film and outdoor waterproofing film using this resin film.
 本発明者は、鋭意研究を進める過程で、ECTFEを含む樹脂組成物から樹脂フィルムを作製する際に、ブレーカープレートの開口率、スクリーンメッシュの目開き、Tダイ吐出口での樹脂温度とTダイ吐出口から吐出される樹脂を受ける冷却ロール(第一冷却ロール)の表面温度との差を特定の範囲にすることにより、樹脂組成物の温度上昇や異物混入を防ぎつつ、エチレン-クロロトリフルオロエチレン共重合体の結晶化を抑制できることを見出し、本発明を完成させるに至った。 In the process of carrying out earnest research, the present inventor, when producing a resin film from a resin composition containing ECTFE, has an aperture ratio of a breaker plate, an opening of a screen mesh, a resin temperature at a T die discharge port, and a T die. By making the difference from the surface temperature of the cooling roll (first cooling roll) that receives the resin discharged from the discharge port within a specific range, ethylene-chlorotrifluoro is prevented while preventing the resin composition from rising in temperature and mixing in foreign matter. The present inventors have found that crystallization of an ethylene copolymer can be suppressed and have completed the present invention.
 上記課題を解決する本発明は、下記より構成される。
(1)本発明は、エチレン-クロロトリフルオロエチレン共重合体を含む樹脂組成物を、Tダイを備えた押出機にて溶融混練後、少なくとも1つの冷却ロールを用いてキャスティング処理して樹脂フィルムを形成する工程を有し、前記押出機は、スクリュー先端部と前記Tダイとの間にブレーカープレートを備え、前記ブレーカープレートは、スクリーンメッシュを備え、前記ブレーカープレートの開口率が40%~60%であり、前記スクリーンメッシュの最小の目開きが0.03mm~0.1mmであり、前記Tダイの吐出口における前記樹脂組成物の温度が、第一冷却ロールの表面温度よりも110℃~280℃高い温度である、樹脂フィルムの製造方法である。
(2)本発明において、前記キャスティング処理が、前記第一冷却ロール及びタッチロールを用いて行われ、前記第一冷却ロールの表面の一部が、前記タッチロールの表面の一部と接しており、前記Tダイの吐出口先端部と、前記第一冷却ロール表面及びタッチロール表面が接する面における前記Tダイ側の端部との距離が400mm以下である、(1)に記載の樹脂フィルムの製造方法とすることができる。
(3)本発明において、前記Tダイの吐出口における前記樹脂組成物の温度が、240℃~300℃である、(1)または(2)に記載の樹脂フィルムの製造方法とすることができる。
(4)本発明において、前記樹脂組成物が熱安定剤を含有し、前記樹脂組成物中の前記熱安定剤の含有量が、0.1質量%~5質量%である、(1)~(3)の何れか一つに記載の樹脂フィルムの製造方法とすることができる。
(5)本発明において、前記樹脂組成物が紫外線吸収剤を含有し、前記樹脂組成物中の前記紫外線吸収剤の含有量が、0.1質量%~5質量%である、(1)~(4)の何れか一つに記載の樹脂フィルムの製造方法とすることができる。
(6)本発明において、前記樹脂組成物が、エチレン-クロロトリフルオロエチレン共重合体を含む樹脂組成物を用いて作製された樹脂フィルムからなるリサイクル原料を、前記樹脂組成物中に1質量%~40質量%含有する、(1)~(5)の何れか一つに記載の樹脂フィルムの製造方法とすることができる。
(7)本発明は、エチレン-クロロトリフルオロエチレン共重合体を含む樹脂組成物を、Tダイを備えた押出機にて溶融混練後、少なくとも1つの冷却ロールを用いてキャスティング処理して樹脂フィルムを形成する工程と、得られた樹脂フィルムの第一面を、窒素ガス、酸素ガス、水素ガス、二酸化炭素ガス、希ガス元素ガスおよび炭化水素ガスから選択される一種以上の改質ガス中でコロナ処理またはプラズマ処理により表面改質する工程と、前記表面改質した樹脂フィルムの第一面に、熱可塑性樹脂を含有する基材を、真空ラミネートにより積層する工程と、を有し、前記樹脂フィルムを形成する工程において、前記押出機は、スクリュー先端部と前記Tダイとの間にブレーカープレートを備え、前記ブレーカープレートは、スクリーンメッシュを備え、前記ブレーカープレートの開口率が40%~60%であり、前記スクリーンメッシュの最小の目開きが0.03mm~0.1mmであり、前記Tダイの吐出口における前記樹脂組成物の温度が、第一冷却ロールの表面温度よりも110℃~280℃高い温度である、積層フィルムの製造方法である。
(8)本発明は、エチレン-クロロトリフルオロエチレン共重合体を含む樹脂組成物を、Tダイを備えた押出機にて溶融混練後、少なくとも1つの冷却ロールを用いてキャスティング処理して樹脂フィルムを形成する工程と、得られた樹脂フィルムの第一面を、窒素ガス、酸素ガス、水素ガス、二酸化炭素ガス、希ガス元素ガスおよび炭化水素ガスから選択される一種以上の改質ガス中でコロナ処理またはプラズマ処理により表面改質する工程と、前記表面改質した樹脂フィルムの第一面に、熱可塑性樹脂を含有する基材を、真空ラミネートにより積層する工程と、を有し、前記樹脂フィルムを形成する工程において、前記押出機は、スクリュー先端部と前記Tダイとの間にブレーカープレートを備え、前記ブレーカープレートは、スクリーンメッシュを備え、前記ブレーカープレートの開口率が40%~60%であり、前記スクリーンメッシュの最小の目開きが0.03mm~0.1mmであり、前記Tダイの吐出口における前記樹脂組成物の温度が、第一冷却ロールの表面温度よりも110℃~280℃高い温度である、屋外防水フィルムの製造方法である。
The present invention for solving the above-described problems is constituted as follows.
(1) In the present invention, a resin composition containing an ethylene-chlorotrifluoroethylene copolymer is melt-kneaded with an extruder equipped with a T-die, and then subjected to a casting treatment using at least one cooling roll. The extruder includes a breaker plate between a screw tip and the T die, the breaker plate includes a screen mesh, and the opening ratio of the breaker plate is 40% to 60%. %, The minimum mesh opening of the screen mesh is 0.03 mm to 0.1 mm, and the temperature of the resin composition at the discharge port of the T die is 110 ° C. to the surface temperature of the first cooling roll. It is a manufacturing method of the resin film which is 280 degreeC high temperature.
(2) In the present invention, the casting process is performed using the first cooling roll and the touch roll, and a part of the surface of the first cooling roll is in contact with a part of the surface of the touch roll. The distance between the discharge port tip of the T die and the end of the T die on the surface where the first cooling roll surface and the touch roll surface are in contact is 400 mm or less. It can be set as a manufacturing method.
(3) In the present invention, the method for producing a resin film according to (1) or (2), wherein the temperature of the resin composition at the discharge port of the T die is 240 ° C. to 300 ° C. .
(4) In the present invention, the resin composition contains a heat stabilizer, and the content of the heat stabilizer in the resin composition is 0.1% by mass to 5% by mass. It can be set as the manufacturing method of the resin film as described in any one of (3).
(5) In the present invention, the resin composition contains an ultraviolet absorber, and the content of the ultraviolet absorber in the resin composition is 0.1% by mass to 5% by mass. It can be set as the manufacturing method of the resin film as described in any one of (4).
(6) In the present invention, a recycling raw material comprising a resin film prepared using a resin composition containing an ethylene-chlorotrifluoroethylene copolymer as the resin composition, The method for producing a resin film according to any one of (1) to (5), which is contained at 40% by mass.
(7) The present invention relates to a resin film in which an ethylene-chlorotrifluoroethylene copolymer-containing resin composition is melt-kneaded with an extruder equipped with a T die and then cast using at least one cooling roll. And forming the first surface of the obtained resin film in one or more reformed gases selected from nitrogen gas, oxygen gas, hydrogen gas, carbon dioxide gas, rare gas element gas and hydrocarbon gas A step of surface modification by corona treatment or plasma treatment, and a step of laminating a base material containing a thermoplastic resin on the first surface of the surface-modified resin film by vacuum lamination. In the step of forming a film, the extruder includes a breaker plate between a screw tip and the T die, and the breaker plate The breaker plate has an opening ratio of 40% to 60%, the minimum opening of the screen mesh is 0.03 mm to 0.1 mm, and the resin composition at the discharge port of the T die This is a method for producing a laminated film, wherein the temperature is 110 ° C. to 280 ° C. higher than the surface temperature of the first cooling roll.
(8) The present invention relates to a resin film obtained by melt-kneading a resin composition containing an ethylene-chlorotrifluoroethylene copolymer in an extruder equipped with a T-die and then casting using at least one cooling roll. And forming the first surface of the obtained resin film in one or more reformed gases selected from nitrogen gas, oxygen gas, hydrogen gas, carbon dioxide gas, rare gas element gas and hydrocarbon gas A step of surface modification by corona treatment or plasma treatment, and a step of laminating a base material containing a thermoplastic resin on the first surface of the surface-modified resin film by vacuum lamination. In the step of forming a film, the extruder includes a breaker plate between a screw tip and the T die, and the breaker plate The breaker plate has an opening ratio of 40% to 60%, the minimum opening of the screen mesh is 0.03 mm to 0.1 mm, and the resin composition at the discharge port of the T die A method for producing an outdoor waterproof film, wherein the temperature is 110 ° C. to 280 ° C. higher than the surface temperature of the first cooling roll.
 本発明によれば、透明性及び外観に優れたエチレン-クロロトリフルオロエチレン共重合体を含む樹脂フィルムの製造方法を提供することができる。さらに、この樹脂フィルムを用いた積層フィルム及び屋外防水フィルムの製造方法を提供することができる。本発明の製造方法により得られる樹脂フィルムは、透明性及び外観に優れる。 According to the present invention, a method for producing a resin film containing an ethylene-chlorotrifluoroethylene copolymer having excellent transparency and appearance can be provided. Furthermore, the manufacturing method of the laminated | multilayer film and outdoor waterproofing film using this resin film can be provided. The resin film obtained by the production method of the present invention is excellent in transparency and appearance.
押出機、Tダイ、第一冷却ロール及びタッチロールの構成を示す模式図である。It is a schematic diagram which shows the structure of an extruder, T die | dye, a 1st cooling roll, and a touch roll. Tダイ、第一冷却ロール及びタッチロールの構成を拡大した模式図である。It is the schematic diagram which expanded the structure of T die | dye, a 1st cooling roll, and a touch roll.
 以下、本発明を実施するための形態について、詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。 Hereinafter, embodiments for carrying out the present invention will be described in detail. Note that the present invention is not limited to the embodiments described below.
[樹脂フィルムの製造方法]
 本実施形態の樹脂フィルムの製造方法は、エチレン-クロロトリフルオロエチレン共重合体を含む樹脂組成物を、Tダイを備えた押出機にて溶融混練後、冷却ロールを用いてキャスティング処理して樹脂フィルムを形成する工程を有する。
<樹脂組成物>
 樹脂組成物は、エチレン-クロロトリフルオロエチレン共重合体(以下、「ECTFE」ともいう。)を含有する。エチレン-クロロトリフルオロエチレン共重合体としては、エチレン(以下、「Et」ともいう。)とクロロトリフルオロエチレン(別名「三フッ化塩化エチレン」、以下、「CTFE」ともいう。)からなる共重合体の他、前記モノマーに加え、(パーフルオロヘキシル)エチレン、(パーフルオロブチル)エチレン、(パーフルオロオクチル)エチレン、[4(ヘプタフルオロイソプロピル)パーフルオロブチル]エチレン、パーフルオロアルキルビニルエーテル等を第3モノマーとして使用した共重合体を使用することができる。EtとCTFEとの共重合におけるモノマー比(モル比)については、特に制限を受けるものでは無いが、樹脂フィルムに耐熱性を付与するために、前記モノマー比がEt/CTFE=40/60~60/40であることが好ましい。
[Production method of resin film]
The resin film production method of the present embodiment is obtained by melt-kneading a resin composition containing an ethylene-chlorotrifluoroethylene copolymer in an extruder equipped with a T die, and then performing a casting treatment using a cooling roll. Forming a film.
<Resin composition>
The resin composition contains an ethylene-chlorotrifluoroethylene copolymer (hereinafter also referred to as “ECTFE”). As the ethylene-chlorotrifluoroethylene copolymer, a copolymer comprising ethylene (hereinafter also referred to as “Et”) and chlorotrifluoroethylene (also referred to as “ethylene trifluorinated chloride”, hereinafter also referred to as “CTFE”). In addition to the polymer, in addition to the above monomers, (perfluorohexyl) ethylene, (perfluorobutyl) ethylene, (perfluorooctyl) ethylene, [4 (heptafluoroisopropyl) perfluorobutyl] ethylene, perfluoroalkyl vinyl ether, etc. The copolymer used as the third monomer can be used. The monomer ratio (molar ratio) in the copolymerization of Et and CTFE is not particularly limited, but the monomer ratio is Et / CTFE = 40 / 60-60 in order to impart heat resistance to the resin film. / 40 is preferable.
 樹脂組成物は、任意のEt/CTFE比(モル比)を有するECTFEを単独で使用してもよいし、少なくとも1種類以上の異なるEt/CTFE比のECTFEと混合して使用してもよい。また本発明の樹脂フィルムの効果を阻害しない範囲で、ECTFE以外の樹脂を添加することができる。 As the resin composition, ECTFE having an arbitrary Et / CTFE ratio (molar ratio) may be used alone, or at least one kind of ECTFE having different Et / CTFE ratios may be mixed and used. Moreover, resin other than ECTFE can be added in the range which does not inhibit the effect of the resin film of this invention.
 樹脂組成物には、必要に応じて熱安定剤を含有させることができる。熱安定剤としては、フェノール系酸化防止剤、リン系酸化防止剤、硫黄系酸化防止剤、金属石鹸、有機スズ化合物、エポキシ化合物、β-ジケトン、過塩素酸金属塩、ハイドロタルサイト等が挙げられるが、これらの中では透明性の点でフェノール系酸化防止剤、リン系酸化防止剤、金属石鹸が好ましい。熱安定剤の添加方法としては、使用するECTFE原料の造粒工程で予め添加されたものを使用してもよいし、樹脂フィルムを製造する際に、熱安定剤が添加されていないECTFE原料と熱安定剤とを溶融混合して含有させることもできる。酸化防止剤の添加量としては、全樹脂組成物中0.001質量%~5質量%であることが好ましく、0.1質量%~1.0質量%であることがより好ましい。0.001質量%を下回ると十分な熱安定性が得られず、5質量%を超えると透明性または色調が悪化する場合がある。 The resin composition can contain a heat stabilizer as necessary. Examples of heat stabilizers include phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, metal soaps, organotin compounds, epoxy compounds, β-diketones, perchloric acid metal salts, hydrotalcite, etc. Of these, phenol-based antioxidants, phosphorus-based antioxidants, and metal soaps are preferable in terms of transparency. As a method for adding the heat stabilizer, one previously added in the granulating step of the ECTFE raw material to be used may be used, or when manufacturing a resin film, an ECTFE raw material to which no heat stabilizer is added and A heat stabilizer and a melt stabilizer can also be contained. The addition amount of the antioxidant is preferably 0.001% by mass to 5% by mass in the total resin composition, and more preferably 0.1% by mass to 1.0% by mass. If it is less than 0.001% by mass, sufficient thermal stability cannot be obtained, and if it exceeds 5% by mass, the transparency or color tone may be deteriorated.
 樹脂組成物には、必要に応じて紫外線吸収剤を添加することができる。紫外線吸収剤としては、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、トリアジン系紫外線吸収剤等の有機系紫外線吸収剤、ヒンダートアミン系安定剤(HALS)等が挙げられる。これらの中ではトリアジン系紫外線吸収剤が好ましく、特にECTFEとの相溶性の点で、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[2-(2-エチルヘキサノイロキシ)エトキシ]フェノールが好ましい。紫外線吸収剤の添加方法としては、使用するECTFE原料の造粒工程で予め添加されたものを使用してもよいし、樹脂フィルムを製造する際に紫外線吸収剤が添加されていないECTFE原料と紫外線吸収剤とを溶融混合して含有させることもできる。紫外線吸収剤の添加量としては、0.001質量%~5質量%であることが好ましく、0.1質量%~1.0質量%であることがより好ましい。0.001質量%を下回ると十分な紫外線吸収剤の効果が得られず、5質量%を超えると透明性または色調が悪化する場合がある。 An ultraviolet absorber can be added to the resin composition as necessary. Examples of the UV absorber include organic UV absorbers such as benzotriazole UV absorbers, benzophenone UV absorbers and triazine UV absorbers, hindered amine stabilizers (HALS), and the like. Of these, triazine-based ultraviolet absorbers are preferable, and 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5- [2- (2- (4) is particularly preferable in terms of compatibility with ECTFE. 2-Ethylhexanoyloxy) ethoxy] phenol is preferred. As a method for adding the ultraviolet absorber, one previously added in the granulation step of the ECTFE raw material to be used may be used, or when the resin film is produced, the ECTFE raw material to which the ultraviolet absorber is not added and the ultraviolet ray are added. It is also possible to melt and mix the absorbent. The addition amount of the ultraviolet absorber is preferably 0.001% by mass to 5% by mass, and more preferably 0.1% by mass to 1.0% by mass. If the amount is less than 0.001% by mass, the effect of a sufficient ultraviolet absorber cannot be obtained, and if it exceeds 5% by mass, transparency or color tone may be deteriorated.
 樹脂組成物には、本発明の効果を阻害しない範囲で、後述の方法により製造された樹脂フィルムの破材の一部を、リサイクル原料として樹脂組成物に添加することができる。樹脂フィルム破材の添加割合は、樹脂組成物中に1質量%~40質量%であることが好ましい。その他、樹脂組成物には、透明性、色調、耐熱性、フィルム外観等を実用上損なわない範囲で、可塑剤、滑剤、帯電防止剤、防曇剤、流滴剤、親水剤、撥液剤等を添加することができる。これらの添加剤の添加方法としては、樹脂組成物を混練する際でもよく、樹脂フィルムを製造した後、樹脂フィルム表面に塗布してもよい。 In the resin composition, a part of the broken material of the resin film produced by the method described later can be added to the resin composition as a recycle raw material within a range that does not impair the effects of the present invention. The addition ratio of the resin film broken material is preferably 1% by mass to 40% by mass in the resin composition. In addition, the resin composition has plasticizers, lubricants, antistatic agents, antifogging agents, droplets, hydrophilic agents, liquid repellents, etc., as long as the transparency, color tone, heat resistance, film appearance, etc. are not practically impaired. Can be added. As a method for adding these additives, the resin composition may be kneaded, or may be applied to the surface of the resin film after producing the resin film.
<樹脂フィルムの形成工程>
 樹脂フィルムは、樹脂組成物を、Tダイを備えた押出機にて溶融混練後、冷却ロールにてキャスティング処理して得られる。「キャスティング処理」とは、いわゆるキャスト法でフィルムを形成する処理であり、例えば、押出機で溶融された樹脂を、ダイに設けられた直線状のスリット(吐出口)から押出し、その溶融膜を冷却ロールで冷却及び延伸しながら巻き取りフィルムを形成する処理をいう。なお、以降の記載において、「樹脂組成物」を「樹脂」と略すことがある。
<Resin film forming process>
The resin film is obtained by melt-kneading the resin composition with an extruder equipped with a T die and then casting with a cooling roll. The “casting process” is a process for forming a film by a so-called casting method. For example, a resin melted by an extruder is extruded from a linear slit (discharge port) provided in a die, and the molten film is formed. The process which forms a winding film, cooling and extending | stretching with a cooling roll. In the following description, “resin composition” may be abbreviated as “resin”.
 図1は、本実施形態の樹脂フィルムの形成工程の一例を示す模式図である。本実施形態では、樹脂組成物を、押出機1が備える図示しない加熱されたシリンダー内でスクリューにより溶融混練した後、単管2を介して連結されたTダイ3を通過させ、吐出口4から溶融樹脂を吐出する。その後、この溶融樹脂を第一冷却ロール5及びタッチロール6を用いてキャスティング処理して樹脂フィルム10を得る。なお、「第一冷却ロール」は、Tダイ3の吐出口4に最も近接して設けられる冷却ロールであって、吐出された樹脂を冷却及び延伸するキャスティングロールである。 FIG. 1 is a schematic diagram showing an example of a resin film forming process of the present embodiment. In the present embodiment, the resin composition is melt-kneaded with a screw in a heated cylinder (not shown) provided in the extruder 1, and then passed through a T die 3 connected through a single pipe 2, and is discharged from a discharge port 4. Discharge molten resin. Thereafter, the molten resin is cast using the first cooling roll 5 and the touch roll 6 to obtain the resin film 10. The “first cooling roll” is a cooling roll provided closest to the discharge port 4 of the T die 3 and is a casting roll that cools and stretches the discharged resin.
 押出機としては、単軸スクリュー型、二軸スクリュー型、タンデム型等が一般的なものとして使用できるが、樹脂に過剰なせん断を与えずに、且つ系内に滞留し難い点で、単軸スクリュー型押出機が好ましい。 As the extruder, a single screw type, a twin screw type, a tandem type or the like can be used as a general one, but a single screw is used because it does not give excessive shear to the resin and does not stay in the system. A screw type extruder is preferred.
 押出機のスクリューとしては、樹脂を可塑化させ、均一化させるのにするのに十分で、且つ過剰なせん断による樹脂劣化が生じない仕様であれば、特に制限を受けるものでは無い。好適に使用することができるスクリューとしては、フルフライト型スクリューが好ましい。フルフライト型スクリューは圧縮比が1.3~3.0、スクリューの長さLとスクリューの直径Dとの比(L/D)が20~40が好ましく、より好ましくは、圧縮比が2.0~3.0、L/Dが25~35である。 The screw of the extruder is not particularly limited as long as the specification is sufficient to plasticize and homogenize the resin and does not cause resin deterioration due to excessive shearing. As a screw which can be used suitably, a full flight type screw is preferable. The full flight type screw preferably has a compression ratio of 1.3 to 3.0, and the ratio of the screw length L to the screw diameter D (L / D) is preferably 20 to 40, more preferably 2. 0 to 3.0 and L / D is 25 to 35.
 押出機は、スクリュー先端部と前記Tダイとの間にはブレーカープレートを備える。ブレーカープレートは、例えば、押出機中のシリンダーの先端フランジ部に、シリンダーの内孔を横断しかつ溶融樹脂の流路に直行するように備えられていてもよい。ブレーカープレートは、中央部に、溶融樹脂が通過する複数の貫通孔が形成されている。ブレーカープレートの開口率は40%~60%であり、42%~58%であることが好ましい。ブレーカープレートの開口率を40%以上とすることで、樹脂への背圧を抑え樹脂の押出機内の滞留を抑えることができる。また、開口率を60%以下とすることで、フィルムの欠点数(フィッシュアイ、ゲル、コンタミ等の数)を長時間に渡り、安定的に低く保つことが可能となる。なお、開口率とは押出機の樹脂流通部に露出する部分を基準とし、樹脂貫通孔も含めた全体の面積に対して、樹脂貫通孔が形成された部分の面積を意味する。 The extruder includes a breaker plate between the screw tip and the T die. The breaker plate may be provided, for example, at the tip flange portion of the cylinder in the extruder so as to cross the inner hole of the cylinder and to go directly to the flow path of the molten resin. The breaker plate has a plurality of through-holes through which the molten resin passes at the center. The opening ratio of the breaker plate is 40% to 60%, preferably 42% to 58%. By setting the opening ratio of the breaker plate to 40% or more, it is possible to suppress back pressure to the resin and to prevent the resin from staying in the extruder. Further, by setting the aperture ratio to 60% or less, the number of defects of the film (number of fish eyes, gels, contaminants, etc.) can be stably kept low for a long time. The opening ratio means the area of the part where the resin through-hole is formed with respect to the entire area including the resin through-hole with reference to the part exposed to the resin circulation part of the extruder.
 ブレーカープレートの樹脂貫通孔の最小直径は、3.7mm~6.0mmであることがより好ましい。「最小直径」とは、各貫通孔の直径のうち最小のものをいう。樹脂貫通孔の最小直径を3.7mm以上とすることで、樹脂への背圧を抑え樹脂の押出機内の滞留を抑えることができる。また樹脂貫通孔の最小直径を6.0mm以下とすることで、フィルムの欠点数を長時間に渡り、安定的に低く保つことが可能となる。 More preferably, the minimum diameter of the resin through hole of the breaker plate is 3.7 mm to 6.0 mm. “Minimum diameter” refers to the smallest diameter of each through hole. By setting the minimum diameter of the resin through hole to 3.7 mm or more, the back pressure on the resin can be suppressed and the resin staying in the extruder can be suppressed. Further, by setting the minimum diameter of the resin through hole to 6.0 mm or less, the number of defects of the film can be stably kept low for a long time.
 ブレーカープレートは、スクリーンメッシュを備える。スクリーンメッシュは、例えば、ブレーカープレートの上流側(スクリュー先端部側)の面に接して1又は2以上備えられていてもよい。ブレーカープレートに配置されたスクリーンメッシュは、目開きが異なる2枚以上のスクリーンメッシュを組み合わせることが好ましい。スクリーンメッシュは、目開きが同じスクリーンメッシュを併用することもできる。一般には樹脂流通部の上流側(スクリュー近傍側)から下流側(ブレーカープレート開口側)に向かい、目開きの大きいスクリーンメッシュ、目開きの小さいスクリーンメッシュの順に配置することが好ましい。さらに、目開きが最少のメッシュの下流には、樹脂圧力によるメッシュの破れを防止する目的で、当該メッシュより粗いメッシュを配置することが好ましい。本実施形態では、スクリーンメッシュの最小の目開きは、0.03mm~0.1mmであり、0.03mm~0.7mmであることが好ましい。スクリーンメッシュの最小の目開きを0.03mm以上とすることで、樹脂の滞留及び剪断発熱による劣化を抑制することができる。また、スクリーンメッシュの最小の目開きを0.1mm以下とすることで、樹脂中に混入するコンタミ、原料の劣化物等を低減することができる。目開きの大きいスクリーンメッシュは、粗大な欠点を取り除く役割を担い、目開きは0.15mm~0.6mmであることが好ましい。さらに、スクリーンメッシュが樹脂圧により破けるのを防ぐ目的で、目開きが最小のスクリーンメッシュの下流側に、それより目開きが大きい粗いスクリーンメッシュを導入してもよい。前記スクリーンメッシュの配置位置としては、スクリュー先端部から10mm~100mm下流側に設置されることが好ましい。 The breaker plate has a screen mesh. For example, one or more screen meshes may be provided in contact with the surface on the upstream side (screw tip side) of the breaker plate. The screen mesh disposed on the breaker plate is preferably a combination of two or more screen meshes having different openings. As the screen mesh, a screen mesh having the same mesh opening can be used in combination. In general, it is preferable to arrange a screen mesh having a large mesh size and a screen mesh having a small mesh size in this order from the upstream side (near the screw) to the downstream side (breaker plate opening side) of the resin flow part. Furthermore, it is preferable to dispose a mesh coarser than the mesh downstream of the mesh having the smallest mesh size for the purpose of preventing the mesh from being broken by the resin pressure. In this embodiment, the minimum mesh opening of the screen mesh is 0.03 mm to 0.1 mm, and preferably 0.03 mm to 0.7 mm. By setting the minimum mesh size of the screen mesh to 0.03 mm or more, it is possible to suppress deterioration due to resin retention and shear heat generation. In addition, by setting the minimum mesh size of the screen mesh to 0.1 mm or less, it is possible to reduce contamination, degraded raw materials, and the like mixed in the resin. The screen mesh having a large opening serves to remove coarse defects, and the opening is preferably 0.15 mm to 0.6 mm. Furthermore, for the purpose of preventing the screen mesh from being broken by the resin pressure, a coarse screen mesh having a larger opening may be introduced downstream of the screen mesh having the smallest opening. It is preferable that the screen mesh is disposed 10 to 100 mm downstream from the tip of the screw.
 Tダイ吐出口での樹脂温度としては、用いるECTFEの融点にもよるが、240℃~300℃に保つことが好ましい。樹脂温度が300℃を超えると、ECTFEが分解し易くなり、樹脂の分解劣化に伴う色調変化や欠点発生に繋がり易くなる場合がある。また、樹脂温度が240℃未満であると、樹脂の粘度上昇に伴う流動性の低下が生じ、押出機内での過剰なせん断、滞留を助長させることになる場合がある。 The resin temperature at the T-die discharge port is preferably maintained at 240 ° C. to 300 ° C., although it depends on the melting point of ECTFE used. When the resin temperature exceeds 300 ° C., ECTFE is likely to be decomposed, which may easily lead to a change in color tone and generation of defects due to degradation of the resin. On the other hand, if the resin temperature is less than 240 ° C., a decrease in fluidity accompanying an increase in the viscosity of the resin occurs, which may promote excessive shearing and retention in the extruder.
 前述の方法に従って可塑化された樹脂は、Tダイからシート状に押出された後、温調された第一冷却ロール及びゴム製のタッチロール間にキャスティング処理されながら引き取られ、その後、さらに複数の冷却ロールに接触しながら引き取られることで所定の厚みに調製されることができる。ここで、タッチロールは第一冷却ロールに接した状態又は押圧された状態にあるため、タッチロール表面の一部は、冷却ロール表面と面で接触した状態にあり、タッチロールは圧力センサーにより樹脂に付加される圧力、ならびに第一冷却ロールとタッチロールの引き取り速度を調整することで樹脂の厚みを所望の厚みに調整することができる。 The resin plasticized according to the above-described method is extruded from a T-die into a sheet shape, and then taken out while being cast between a temperature-controlled first cooling roll and a rubber touch roll. It can be adjusted to a predetermined thickness by being pulled while contacting the cooling roll. Here, since the touch roll is in contact with or pressed against the first cooling roll, a part of the surface of the touch roll is in contact with the surface of the cooling roll. The thickness of the resin can be adjusted to a desired thickness by adjusting the pressure applied to and the take-up speed of the first cooling roll and the touch roll.
 冷却ロールは、少なくとも1つの冷却ロールを備え、複数のロールを備えていてもよい。上述のように、Tダイの吐出口に最も近接して設けられる冷却ロールが第一冷却ロールである。Tダイ吐出口における樹脂温度は、第一冷却ロールの表面温度より+110℃~+280℃高温であり、+120℃~+250℃高温であることが好ましい。Tダイの吐出口における樹脂温度と冷却ロール表面温度との温度差が、+110℃未満であるとECTFEの結晶化を生じ樹脂フィルムの透明性が悪化したり、樹脂フィルム製造時に冷却ロールへのフィルム粘着が生じたりするため、好ましくない。また、温度差が+280℃を上回ると、樹脂の劣化による欠点数の増加やフィルム外観の悪化が生じ易くなるため好ましくない。Tダイ吐出口における樹脂温度は、例えば、接触式温度計等を用いてTダイのリップ出口を通過する樹脂の温度を測定することで得ることができる。第一冷却ロールの表面温度は、例えば、接触式温度計等を用いて、第一冷却ロールの表面温度を測定することで得ることができる。 The cooling roll includes at least one cooling roll and may include a plurality of rolls. As described above, the cooling roll provided closest to the discharge port of the T die is the first cooling roll. The resin temperature at the T die discharge port is + 110 ° C. to + 280 ° C. higher than the surface temperature of the first cooling roll, and preferably + 120 ° C. to + 250 ° C. higher. If the temperature difference between the resin temperature at the discharge port of the T-die and the surface temperature of the cooling roll is less than + 110 ° C., ECTFE will crystallize and the transparency of the resin film will deteriorate, or the film to the cooling roll will be produced during resin film production Since adhesion occurs, it is not preferable. On the other hand, if the temperature difference exceeds + 280 ° C., the number of defects due to the deterioration of the resin and the deterioration of the film appearance tend to occur, which is not preferable. The resin temperature at the T die discharge port can be obtained, for example, by measuring the temperature of the resin passing through the lip outlet of the T die using a contact thermometer or the like. The surface temperature of the first cooling roll can be obtained, for example, by measuring the surface temperature of the first cooling roll using a contact thermometer or the like.
 Tダイ吐出口からの、第一冷却ロール表面とタッチロール表面が接する面までの距離は、樹脂フィルムの結晶性を制御する上で重要な役割を担う。図1,2に、Tダイ、第一冷却ロール及びタッチロールの構成を示す。図1,2に示すように、第一冷却ロール5表面とタッチロール6表面が接する面7において、接する面7の最高位置にある点8(回転状態にある第一冷却ロールとタッチロールが最初に接する点、又は冷却ロール表面及びタッチロール表面が接する面における前記Tダイ側の端部)を「接点」と略す場合があり、Tダイ吐出口4からの、接点8までの距離(最短距離)9を「エアギャップ」と略す場合がある。即ち、エアギャップとは、Tダイ吐出口と、第一冷却ロール表面及びタッチロール表面の接触面とが垂直位置にある場合(例えば、接触面が、Tダイ吐出口の垂直方向下側に位置している場合、つまり下方吐出の場合)は、Tダイ吐出口と接点までの垂直方向の最短距離を意味し、Tダイ吐出口と前記接触面が垂直とは異なる位置に配置される場合は、Tダイ吐出口と接点を結ぶ直線距離を意味する。 The distance from the T-die discharge port to the surface where the first cooling roll surface and the touch roll surface are in contact plays an important role in controlling the crystallinity of the resin film. 1 and 2 show configurations of the T die, the first cooling roll, and the touch roll. As shown in FIGS. 1 and 2, on the surface 7 where the surface of the first cooling roll 5 and the surface of the touch roll 6 are in contact, the point 8 at the highest position of the surface 7 in contact (the first cooling roll and the touch roll in the rotating state are Or the contact point between the cooling roll surface and the touch roll surface may be abbreviated as “contact”, and the distance from the T-die discharge port 4 to the contact 8 (shortest distance) ) 9 may be abbreviated as “air gap”. That is, the air gap is when the T-die discharge port and the contact surface of the first cooling roll surface and the touch roll surface are in a vertical position (for example, the contact surface is positioned below the T-die discharge port in the vertical direction). , That is, in the case of downward discharge) means the shortest vertical distance between the T-die discharge port and the contact, and when the T-die discharge port and the contact surface are arranged at positions different from vertical , T means the linear distance connecting the die outlet and the contact.
 前記エアギャップの距離(最短距離)は、400mm以下であることが好ましく、100mm~300mm以下であることがより好ましい。エアギャップの距離が400mmを超えると、第一冷却ロールに到達する前に結晶化が進み、良好な透明性の樹脂フィルムが得られない場合がある。 The distance (shortest distance) of the air gap is preferably 400 mm or less, and more preferably 100 mm to 300 mm or less. If the distance of the air gap exceeds 400 mm, crystallization proceeds before reaching the first cooling roll, and a good transparent resin film may not be obtained.
 冷却されたフィルムの端部をスリットし、任意のフィルム幅にした後、フィルムの巻き締まり、巻きズレが生じない適度な張力で巻き取ることによって、樹脂フィルムを得ることができる。 The resin film can be obtained by slitting the end of the cooled film to an arbitrary film width and then winding the film with an appropriate tension that does not cause the film to be tightened or wound.
 樹脂フィルムの厚みは、0.001mm~0.5mmが好ましく、0.01mm~0.3mmであることがより好ましい。樹脂フィルムの厚みが0.001mm未満では、フィルム製造時に破れが発生し易くなったり、フィルムの厚み制御が困難となったりする場合がある。また、厚みが0.5mmを超えると、フィルムの厚み方向で冷却速度のムラが生じ易く、透明性が悪化し易くなる。 The thickness of the resin film is preferably 0.001 mm to 0.5 mm, and more preferably 0.01 mm to 0.3 mm. If the thickness of the resin film is less than 0.001 mm, tearing may easily occur during film production, and it may be difficult to control the thickness of the film. Moreover, when thickness exceeds 0.5 mm, the nonuniformity of a cooling rate will arise easily in the thickness direction of a film, and transparency will deteriorate easily.
 樹脂フィルムの透明性を表す尺度の一つとして、全光線透過率が挙げられる。本実施形態の製造方法により得られる樹脂フィルムは、ヘイズメーターにより測定されるフィルムの全光線透過率が、92%以上であることが好ましく、より好ましくは93%以上である。92%を下回ると、樹脂フィルムを基材に積層した際の意匠性の低下や、高い集光効率が求められる用途への適用が難しくなる場合がある。 As one of the measures representing the transparency of a resin film, the total light transmittance can be mentioned. The resin film obtained by the production method of the present embodiment preferably has a total light transmittance of 92% or more, more preferably 93% or more, measured by a haze meter. If it is less than 92%, it may be difficult to apply to uses where a reduction in designability when a resin film is laminated on a substrate or a high light collection efficiency is required.
 本実施形態の製造方法により得られる樹脂フィルムは、ECTFEの優れた水蒸気バリア性、耐薬品性、防汚性、耐候性を活かし、屋外で使用される各種防水フィルムとして好適に用いることができる。屋外で使用される用途の一例としては、スポーツ施設等の建造物での膜材料、道路標識等を一例とする金属鋼板の被覆材、コンクリートの止水シート等、前述の特性が求められる各種用途に好適に用いることができる。特に、上記した本実施形態の樹脂フィルムは、透明性および外観に優れるため、他の樹脂シートや無機材料の表面保護フィルムとして好適である。特に、耐候性や水蒸気バリア性に優れるECTFEを含有するため、屋外防水フィルムとしての用途に適している。 The resin film obtained by the production method of the present embodiment can be suitably used as various waterproof films used outdoors, taking advantage of the water vapor barrier property, chemical resistance, antifouling property, and weather resistance of ECTFE. Examples of applications used outdoors include membrane materials in buildings such as sports facilities, metal steel sheet coating materials such as road signs, concrete waterproof sheets, etc. Can be suitably used. In particular, since the resin film of the present embodiment described above is excellent in transparency and appearance, it is suitable as a surface protective film for other resin sheets and inorganic materials. In particular, since it contains ECTFE excellent in weather resistance and water vapor barrier properties, it is suitable for use as an outdoor waterproof film.
[積層フィルムの製造方法及び屋外防水フィルムの製造方法]
 上記した樹脂フィルムを表面保護フィルムとして用いて積層フィルムを形成する際は、被保護体(以下、「基材」という。)との接着性を付与すべく、接着面(樹脂フィルムの第1面)を表面改質することが好ましい。積層フィルム又は屋外防水フィルムとする場合、上記した樹脂フィルムの製造方法からなる樹脂フィルムの形成工程と、得られた樹脂フィルムの第一面を表面改質する工程と、表面改質した樹脂フィルムの第一面に、熱可塑性樹脂を含有する基材を積層する工程と、を有するように構成することができる。
[Method for producing laminated film and method for producing outdoor waterproof film]
When forming a laminated film using the above-described resin film as a surface protective film, an adhesive surface (first surface of the resin film) is provided so as to provide adhesion to an object to be protected (hereinafter referred to as “base material”). ) Is preferably surface-modified. In the case of a laminated film or an outdoor waterproof film, a resin film forming step comprising the above-described resin film manufacturing method, a step of surface-modifying the first surface of the obtained resin film, and a surface-modified resin film And laminating a base material containing a thermoplastic resin on the first surface.
(表面改質工程)
 表面改質方法としては、樹脂フィルムの第一面を、コロナ処理やプラズマ処理する方法等が挙げられる。なお、「第一面」とは、接着面となり得る樹脂フィルムの表裏面のうちのいずれか一方又は両方の面のことをいう。コロナ処理、およびプラズマ処理の方法としては、樹脂フィルム製造時に冷却ロールのプロセス下流でインラインで処理してもよいし、樹脂フィルム製造後に、オフラインでコロナ処理設備、プラズマ処理機設備で処理してもよい。
(Surface modification process)
Examples of the surface modification method include a method of treating the first surface of the resin film with corona treatment or plasma treatment. The “first surface” refers to either one or both of the front and back surfaces of a resin film that can be an adhesive surface. As a method of corona treatment and plasma treatment, the resin film may be processed in-line downstream of the process of the cooling roll, or after the resin film is manufactured, it may be processed off-line with corona treatment equipment or plasma treatment equipment. Good.
 コロナ処理に係る放電量としては、特に限定するものではないが、基材との好適な接着性を得る目的において、30W・min/m以上であることが好ましく、より好ましくは、50W・min/m以上である。30W・min/m未満では、樹脂フィルムの十分な表面改質効果が得られず、基材との接着性が不十分となる場合がある。放電量の上限値については、樹脂フィルムの外観が損なわれない範囲で適宜設定することができる。 The amount of discharge related to the corona treatment is not particularly limited, but is preferably 30 W · min / m 2 or more, more preferably 50 W · min for the purpose of obtaining suitable adhesion to the substrate. / M 2 or more. If it is less than 30 W · min / m 2 , a sufficient surface modification effect of the resin film cannot be obtained, and the adhesion to the substrate may be insufficient. About the upper limit of discharge amount, it can set suitably in the range by which the external appearance of a resin film is not impaired.
 プラズマ処理によって得られる表面改質効果については、存在させるガスの種類によって様々だが、本実施形態の樹脂フィルムに好適に用いることができる改質ガスとしては、窒素、酸素、水素、二酸化炭素、アルゴン、炭化水素系ガス等が挙げられる。基材との接着性を得る目的において、より好ましい処理ガスの一例として、アルゴンガス等の希ガス元素ガス成分、炭化水素系ガスが挙げられる。これらの処理ガスは、1種類を単独で使用してもよいし、2種類以上を混合ガスとして併用することもできる。一般的なプラズマ処理の方式としては、リモートプラズマ方式、ダイレクトプラズマ方式が挙げられ、本実施形態の樹脂フィルムはそのいずれの処理方式にも好適に用いることができるが、プラズマ処理時のガス使用量を低減し、低コストでの表面処理を可能にする目的で、ダイレクトプラズマ方式がより好ましい。 The surface modification effect obtained by the plasma treatment varies depending on the type of gas to be present, but examples of the modified gas that can be suitably used for the resin film of the present embodiment include nitrogen, oxygen, hydrogen, carbon dioxide, and argon. And hydrocarbon-based gas. As an example of a more preferable processing gas for the purpose of obtaining adhesiveness to the substrate, a rare gas element gas component such as argon gas and a hydrocarbon-based gas can be given. These process gases may be used alone or in combination of two or more. As a general plasma processing method, there are a remote plasma method and a direct plasma method, and the resin film of this embodiment can be suitably used for any of the processing methods. The direct plasma method is more preferable for the purpose of reducing surface roughness and enabling surface treatment at a low cost.
(基材の積層工程)
 コロナ処理またはプラズマ処理により表面改質された樹脂フィルムに基材を積層する方法としては、熱により軟化させた基材表面に樹脂フィルムをラミネート処理する方法を採用することができる。
(Substrate lamination process)
As a method of laminating a substrate on a resin film whose surface has been modified by corona treatment or plasma treatment, a method of laminating a resin film on the surface of a substrate softened by heat can be employed.
 樹脂フィルムの他の表面改質方法としては、表面改質した樹脂フィルムの接着面(第1面)に、当該樹脂フィルム及び基材の両者に対する接着性を有する接着樹脂を塗工し、熱により樹脂フィルムを軟化させ、基材表面にラミネート処理する方法等を好適に採用することができる。 As another surface modification method of the resin film, an adhesive resin having adhesiveness to both the resin film and the substrate is applied to the adhesive surface (first surface) of the surface-modified resin film, and heat is applied. A method of softening the resin film and laminating the surface of the substrate can be suitably employed.
 前記塗工で使用することが可能な主な接着樹脂としては、エチレン-酢酸ビニル共重合体(EVA)、アクリレート系樹脂、イソシアネート系樹脂、エポキシ樹脂、ウレタン樹脂、シリコン樹脂、ポリオレフィン系樹脂、アイオノマー樹脂等が挙げられ、目的と用途に応じ、少なくとも1種類以上を選定し使用することができる。これらの接着樹脂は、封止樹脂としても用いられる。 The main adhesive resins that can be used in the coating include ethylene-vinyl acetate copolymer (EVA), acrylate resins, isocyanate resins, epoxy resins, urethane resins, silicone resins, polyolefin resins, ionomers. Resins etc. are mentioned, At least 1 or more types can be selected and used according to the objective and a use. These adhesive resins are also used as sealing resins.
 基材としては、フィルムやシート状の平板形状のものや、直方体、角柱、角錐、円柱、円錐等の立体形状を有するものが挙げられる。基材の種類は特に限定されず、樹脂、ガラスなどを挙げることができる。樹脂としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)などのポリエステル、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)、スチレン-ブタジエン共重合体(SBC)、エチレン-酢酸ビニル共重合体(EVA)、ポリイミド(PI)、ポリフェニレンスルフィド(PPS)、アラミド、ポリプロピレン(PP)、ポリエチレン(PE)、ポリ乳酸(PLA)、ポリ塩化ビニル(PVC)、シリコーン樹脂、脂環式アクリル樹脂、シクロオレフィン樹脂(COP)、トリアセチルセルロース(TAC)等の熱可塑性樹脂を挙げることができる。ガラスとしては、軟質ガラス、硬質ガラスまたは石英ガラスを用いることができる。これらの中では、樹脂フィルムとの接着性の点で、熱可塑性樹脂が好ましく、特に接着性や透明性の点でエチレン-酢酸ビニル共重合体が好ましい。 Examples of the substrate include films and sheet-like flat plate shapes, and those having a three-dimensional shape such as a rectangular parallelepiped, a prism, a pyramid, a cylinder, and a cone. The kind of base material is not specifically limited, Resin, glass, etc. can be mentioned. Examples of the resin include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polycarbonate (PC), polymethyl methacrylate (PMMA), styrene-butadiene copolymer (SBC), and ethylene-vinyl acetate copolymer ( EVA), polyimide (PI), polyphenylene sulfide (PPS), aramid, polypropylene (PP), polyethylene (PE), polylactic acid (PLA), polyvinyl chloride (PVC), silicone resin, alicyclic acrylic resin, cycloolefin A thermoplastic resin such as resin (COP) or triacetyl cellulose (TAC) can be used. As glass, soft glass, hard glass, or quartz glass can be used. Among these, a thermoplastic resin is preferable from the viewpoint of adhesion to a resin film, and an ethylene-vinyl acetate copolymer is particularly preferable from the viewpoint of adhesion and transparency.
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
 実施例及び比較例で使用した原料を以下に記す。
[ECTFE]
・ECTFE1:Solvay社製「Halar ECTFE 500LC」、融点242℃、MFR18g/10min(ASTM D1238 275℃/2.16kg荷重)
・ECTFE2:Solvay社製「Halar ECTFE 350LC」、融点242℃、MFR4.0g/10min(ASTM D1238 275℃/2.16kg荷重)
・ECTFE3:Solvay社製「Halar ECTFE XPH802B(700HC)」、融点202℃、MFR9.0g/10min(ASTM D1238 275℃/2.16kg荷重)
[酸化防止剤]
・ADEKA社製「アデカスタブ593」:ステアリン酸亜鉛とステアリン酸カルシウムとの混合物
[紫外線吸収剤]
・ADEKA社製「LA-46」:2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[2-(2-エチルヘキサノイロキシ)エトキシ]フェノール
The raw materials used in Examples and Comparative Examples are described below.
[ECTFE]
ECTFE1: “Halar ECTFE 500LC” manufactured by Solvay, melting point 242 ° C., MFR 18 g / 10 min (ASTM D1238 275 ° C./2.16 kg load)
ECTFE2: “Halar ECTFE 350LC” manufactured by Solvay, melting point 242 ° C., MFR 4.0 g / 10 min (ASTM D1238 275 ° C./2.16 kg load)
ECTFE3: “Halar ECTFE XPH802B (700HC)” manufactured by Solvay, melting point 202 ° C., MFR 9.0 g / 10 min (ASTM D1238 275 ° C./2.16 kg load)
[Antioxidant]
* "ADEKA STAB 593" manufactured by ADEKA: Mixture of zinc stearate and calcium stearate [UV absorber]
“LA-46” manufactured by ADEKA: 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5- [2- (2-ethylhexanoyloxy) ethoxy] phenol
 実施例及び比較例の樹脂フィルムは、下記の装置を使用して形成した。
[押出機]
・田辺プラスチック工業社製「VS65-25単軸横型押出機」、ホッパー型
[スクリュー]
・スクリュー構成:フルフライト型スクリュー
・スクリュー直径:65mm
・スクリュー長さ(L)/スクリュー直径(D)比:25
・圧縮比:2.5
The resin film of an Example and a comparative example was formed using the following apparatus.
[Extruder]
・ “VS65-25 single screw horizontal extruder” manufactured by Tanabe Plastic Industry Co., Ltd., hopper type [screw]
・ Screw configuration: Full flight type screw ・ Screw diameter: 65 mm
-Screw length (L) / screw diameter (D) ratio: 25
・ Compression ratio: 2.5
[スクリーンメッシュ]
 実施例及び比較例で使用したスクリーンメッシュの構成、目開き値を表1,2に示した。スクリーンメッシュの材質はSUS304を使用し、スクリュー先端部から20mm下流に設置した。なお、スクリーンメッシュの構成は、スクリュー側、中央側及びTダイ側に連続した3層構造とした。
[Screen mesh]
Tables 1 and 2 show the screen mesh configurations and aperture values used in Examples and Comparative Examples. The material of the screen mesh was SUS304, and was installed 20 mm downstream from the screw tip. The screen mesh has a three-layer structure that is continuous on the screw side, the center side, and the T die side.
[ブレーカープレート]
 実施例及び比較例で使用したブレーカープレートの開口率を表1,2に示した。なお、ブレーカープレートの材質にはSUS304を使用し、前記スクリーンメッシュのプロセス下流に隣接する形態で設置した。
[Breaker plate]
Tables 1 and 2 show the aperture ratios of the breaker plates used in the examples and comparative examples. In addition, SUS304 was used for the material of a breaker plate, and it installed with the form adjacent to the process downstream of the said screen mesh.
[Tダイ]
 実施例及び比較例で使用したTダイの仕様を以下に示した。
・ダイス仕様:コートハンガー方式/下方吐出式、内面に硬質クロムメッキ処理
・リップ幅:1050mm
[ロール]
・型式:タッチロール式 線圧25~30kgf/cm
・ロール仕様:
 第一冷却ロール
  直径260mm
  表面焼入れ研磨後硬質クロムメッキ仕上げ
  表面粗さ:0.2S(凸部最大高さ)
  チラー水循環方式
 タッチロール
  直径260mm
  表面鏡面仕上げホワイトミラーロール
  表面粗さ:(凸部最大高さ)Ry3.2μm、(算術平均粗さ)Ra0.05μm
・Tダイ吐出口からの、第一冷却ロール表面とタッチロール表面が接する面における最高位置までの最短距離(エアギャップ):100~250mm
[T die]
The specifications of the T-die used in the examples and comparative examples are shown below.
-Die specification: Coat hanger method / downward discharge type, hard chrome plating on the inner surface-Lip width: 1050mm
[roll]
・ Model: Touch roll type Linear pressure 25-30kgf / cm
・ Roll specifications:
First cooling roll 260mm in diameter
Hard chrome plating finish after surface hardening and polishing Surface roughness: 0.2S (maximum height of convex part)
Chiller water circulation system Touch roll Diameter 260mm
Surface mirror finish white mirror roll Surface roughness: (maximum height of convex part) Ry 3.2 μm, (arithmetic mean roughness) Ra 0.05 μm
・ The shortest distance (air gap) from the T-die discharge port to the highest position on the surface where the first cooling roll surface and the touch roll surface are in contact: 100 to 250 mm
(実施例1)
 ECTFE1(Halar ECTFE 500LC)のペレットを80℃で4時間乾燥させた後、前述の押出機を用いて、ブレーカープレート部、及びTダイの設定温度を280℃とし溶融混練した。スクリーンメッシュは、樹脂流通部の上流側から下流側に向かい、0.18mm、0.075mm、0.18mmのメッシュを用いた。また、エアギャップは120mmとした。Tダイ吐出口での樹脂温度は、280℃であり、第一冷却ロールの表面温度は、60℃とした。得られた樹脂フィルムの厚みは、0.025mであった。結果を表1に示した。
Example 1
After drying pellets of ECTFE1 (Halar ECTFE 500LC) at 80 ° C. for 4 hours, the set temperature of the breaker plate part and the T die was set to 280 ° C. using the above-described extruder, and melt-kneaded. As the screen mesh, meshes of 0.18 mm, 0.075 mm, and 0.18 mm were used from the upstream side to the downstream side of the resin flow part. The air gap was 120 mm. The resin temperature at the T-die discharge port was 280 ° C., and the surface temperature of the first cooling roll was 60 ° C. The thickness of the obtained resin film was 0.025 m. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

<Tダイ吐出口での樹脂温度>
 Tダイ吐出口における樹脂温度の測定は、接触式の温度計(安立計器株式会社製 DIGITAL SURFACE THERMOMETER、型番:HL-200)を使用し、Tダイのリップ出口を通過する樹脂の温度を計測し、測定値とした。
<Resin temperature at T-die outlet>
The resin temperature at the T-die outlet is measured using a contact-type thermometer (DIGITAL SURFACE THERMOMETER, model number: HL-200, manufactured by Anritsu Keiki Co., Ltd.), and the temperature of the resin passing through the lip outlet of the T-die is measured. The measured value.
<樹脂フィルムの透明性>
 樹脂フィルムの透明性は、日本電色工業株式会社製 Haze Meter「NDH7000」を使用し、全光線透過率、ヘイズ値にて評価した。評価に際しては、樹脂フィルムのTD方向より任意の5点より切り出した試料を用い、その算術平均値を採用した。
  優:ヘイズ値4%未満
  良:ヘイズ値4%以上、7%未満
  可:ヘイズ値7%以上、20%未満
  不良:ヘイズ値20%以上
<Transparency of resin film>
The transparency of the resin film was evaluated by using a Haze Meter “NDH7000” manufactured by Nippon Denshoku Industries Co., Ltd., based on the total light transmittance and the haze value. In the evaluation, a sample cut out from any five points from the TD direction of the resin film was used, and its arithmetic average value was adopted.
Excellent: Haze value of less than 4% Good: Haze value of 4% or more, less than 7% Possible: Haze value of 7% or more, less than 20% Defect: Haze value of 20% or more
<樹脂フィルムの欠点(外観)>
 フィルム製造設備に装備されたインラインの欠点検出機を用い、フィルム面積1000m中に含まれる0.7mm以上の欠点(異物、フィッシュアイ、ゲル)数を計測した。樹脂フィルム中の欠点数は以下の基準で性能を判定した。
  優:50個未満
  良:50個以上、80個未満
  可:80個以上、100個未満
  不良:100個以上
<Defects of resin film (appearance)>
The number of defects (foreign matter, fish eye, gel) of 0.7 mm or more contained in a film area of 1000 m 2 was measured using an in-line defect detector equipped in the film production facility. The number of defects in the resin film was determined based on the following criteria.
Excellent: Less than 50 Good: 50 or more, less than 80 Possible: 80 or more, less than 100 Poor: 100 or more
<耐候性>
 得られた樹脂フィルムを、株式会社東洋精機製作所製キセノンアークウェザオメーター Ci4000(光源キセノンランプ)を用いて、照射強度80W/m、ブラックパネル温度85℃、相対湿度50%、102分乾燥/ウォータースプレー18分のサイクルで2000時間紫外線照射し、得られた樹脂フィルムの全光線透過率、色相変化(△b)を測定した。
 色相(△b)の測定は、スガ試験機株式会社製「Colour Cute i」を用いて、紫外線照射前に対するb値の変動を△bとして計測した。耐候性については、計測した△b値について、以下の基準で性能を判定した。
  優:0.3未満
  良:0.3以上、0.6未満
  可:0.7以上、0.9未満
  不良:1.0以上
<Weather resistance>
The obtained resin film was dried using a xenon arc weatherometer Ci4000 (light source xenon lamp) manufactured by Toyo Seiki Seisakusho Co., Ltd., with an irradiation intensity of 80 W / m 2 , a black panel temperature of 85 ° C., a relative humidity of 50%, and drying for 102 minutes. The resin film was irradiated with ultraviolet rays for 2000 hours with a water spray cycle of 18 minutes, and the total light transmittance and hue change (Δb) of the obtained resin film were measured.
The hue (Δb) was measured by using “Color Cute i” manufactured by Suga Test Instruments Co., Ltd., and the change in b value with respect to before ultraviolet irradiation was measured as Δb. Regarding the weather resistance, the performance was determined according to the following criteria for the measured Δb value.
Excellent: Less than 0.3 Good: 0.3 or more, less than 0.6 Possible: 0.7 or more, less than 0.9 Poor: 1.0 or more
<防湿性>
 樹脂フィルムの防湿性は、Lyssy社製 L-80-5000型水蒸気透過度計を使用し、温度40℃、相対湿度90%で計測した。樹脂フィルムの防湿性は以下の基準で性能を判定した。
  優:1.0未満
  良:1.0以上、5.0未満
  可:5.0以上、10.0未満
  不良:10.0以上
<Dampproof>
The moisture resistance of the resin film was measured at a temperature of 40 ° C. and a relative humidity of 90% using an L-80-5000 type water vapor permeability meter manufactured by Lyssy. The moisture resistance of the resin film was determined based on the following criteria.
Excellent: Less than 1.0 Good: 1.0 or more, less than 5.0 Possible: 5.0 or more, less than 10.0 Poor: 10.0 or more
<樹脂フィルムによる基材への表面被覆>
 樹脂フィルムを、リモートプラズマ方式でアルゴン環境下でプラズマ処理し、濡れ指数44mN/mとした後、プラズマ処理面を厚さ0.4mmのEVA樹脂シートと150℃で30分間圧着させ、真空ラミネートした。ラミネート後の基材に関し、性能を以下の基準で判定した。プラズマ処理には、大気圧プラズマ表面処理装置を用いた。
  良:層間剥離、成形品の変色等、欠点等の巨視的な外観悪化が認められない。
  不良:層間剥離が認められる、或いは成形品の変色等、欠点等の巨視的な外観悪化が認められる。
<Surface coating on substrate with resin film>
The resin film was plasma-treated in an argon environment by a remote plasma method to a wetness index of 44 mN / m, and then the plasma-treated surface was pressure-bonded to an EVA resin sheet having a thickness of 0.4 mm at 150 ° C. for 30 minutes and vacuum laminated. . The performance of the base material after lamination was judged according to the following criteria. An atmospheric pressure plasma surface treatment apparatus was used for the plasma treatment.
Good: Macroscopic appearance deterioration such as defects such as delamination and discoloration of molded product is not recognized.
Defect: Delamination is observed, or a macroscopic appearance deterioration such as a defect such as discoloration of a molded product is recognized.
(実施例2~9)
 表1に示す条件にて、樹脂フィルムを作製し各種評価を実施した。なお、実施例2~4、実施例6~9で用いた再生樹脂フィルムは、同じ実施例で作製した樹脂フィルムを樹脂組成物用原料に配合したものである。
(Examples 2 to 9)
Under the conditions shown in Table 1, resin films were prepared and subjected to various evaluations. The recycled resin films used in Examples 2 to 4 and Examples 6 to 9 are obtained by blending the resin film produced in the same Example with the raw material for the resin composition.
(比較例1~9)
 表2に示す条件にて、樹脂フィルムを作製し各種評価を実施した。なお、比較例7~9は樹脂組成物としてポリフッ化ビニリデン(PVDF)を用いたものである。
(Comparative Examples 1 to 9)
Under the conditions shown in Table 2, resin films were prepared and subjected to various evaluations. In Comparative Examples 7 to 9, polyvinylidene fluoride (PVDF) was used as the resin composition.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

 実施例1~9、及び比較例1~9の結果から、本実施形態の樹脂フィルムは、透明性に優れ、且つ欠点数も少ないフィルムが得られていることが分かる。本実施形態のフィルムを使用することにより、意匠性が求められる各種保護フィルム、ならびに屋外防水フィルムに好適に用いることができる。 From the results of Examples 1 to 9 and Comparative Examples 1 to 9, it can be seen that the resin film of this embodiment has excellent transparency and a small number of defects. By using the film of this embodiment, it can be suitably used for various protective films that require design properties and outdoor waterproof films.
1 押出機
2 単管
3 Tダイ
4 Tダイ吐出口
5 第一冷却ロール
6 タッチロール
7 第一冷却ロール表面とタッチロール表面の接触面
8 第一冷却ロール表面とタッチロール表面が接する面における最高位置
9 第一冷却ロール表面とタッチロール表面が接する面における最高位置までの最短距離
10 樹脂
1 Extruder 2 Single tube 3 T die 4 T die discharge port 5 First cooling roll 6 Touch roll 7 Contact surface 8 between the first cooling roll surface and the touch roll surface 8 Position 9 Shortest distance to the highest position on the surface where the surface of the first cooling roll and the surface of the touch roll contact 10 Resin

Claims (8)

  1.  エチレン-クロロトリフルオロエチレン共重合体を含む樹脂組成物を、Tダイを備えた押出機にて溶融混練後、少なくとも1つの冷却ロールを用いてキャスティング処理して樹脂フィルムを形成する工程を有し、
     前記押出機は、スクリュー先端部と前記Tダイとの間にブレーカープレートを備え、
     前記ブレーカープレートは、スクリーンメッシュを備え、
     前記ブレーカープレートの開口率が40%~60%であり、前記スクリーンメッシュの最小の目開きが0.03mm~0.1mmであり、
     前記Tダイの吐出口における前記樹脂組成物の温度が、第一冷却ロールの表面温度よりも110℃~280℃高い温度である、樹脂フィルムの製造方法。
    A step of forming a resin film by melt-kneading a resin composition containing an ethylene-chlorotrifluoroethylene copolymer with an extruder equipped with a T-die and casting using at least one cooling roll; ,
    The extruder includes a breaker plate between a screw tip and the T die,
    The breaker plate comprises a screen mesh,
    The opening ratio of the breaker plate is 40% to 60%, and the minimum mesh opening of the screen mesh is 0.03 mm to 0.1 mm;
    The method for producing a resin film, wherein the temperature of the resin composition at the discharge port of the T die is 110 ° C. to 280 ° C. higher than the surface temperature of the first cooling roll.
  2.  前記キャスティング処理が、前記第一冷却ロール及びタッチロールを用いて行われ、
     前記第一冷却ロールの表面の一部が、前記タッチロールの表面の一部と接しており、
     前記Tダイの吐出口先端部と、前記第一冷却ロール表面及びタッチロール表面が接する面における前記Tダイ側の端部との距離が400mm以下である、請求項1に記載の樹脂フィルムの製造方法。
    The casting process is performed using the first cooling roll and the touch roll,
    A part of the surface of the first cooling roll is in contact with a part of the surface of the touch roll,
    2. The resin film production according to claim 1, wherein a distance between a discharge port front end portion of the T die and an end portion on the T die side in a surface where the first cooling roll surface and the touch roll surface are in contact is 400 mm or less. Method.
  3.  前記Tダイの吐出口における前記樹脂組成物の温度が、240℃~300℃である、請求項1または2に記載の樹脂フィルムの製造方法。 The method for producing a resin film according to claim 1 or 2, wherein the temperature of the resin composition at the discharge port of the T-die is 240 ° C to 300 ° C.
  4.  前記樹脂組成物が熱安定剤を含有し、前記樹脂組成物中の前記熱安定剤の含有量が、0.1質量%~5質量%である、請求項1から3の何れか一項に記載の樹脂フィルムの製造方法。 4. The resin composition according to claim 1, wherein the resin composition contains a heat stabilizer, and the content of the heat stabilizer in the resin composition is 0.1% by mass to 5% by mass. The manufacturing method of the resin film of description.
  5.  前記樹脂組成物が紫外線吸収剤を含有し、前記樹脂組成物中の前記紫外線吸収剤の含有量が、0.1質量%~5質量%である、請求項1から4の何れか一項に記載の樹脂フィルムの製造方法。 5. The resin composition according to claim 1, wherein the resin composition contains an ultraviolet absorber, and the content of the ultraviolet absorber in the resin composition is 0.1% by mass to 5% by mass. The manufacturing method of the resin film of description.
  6.  前記樹脂組成物が、エチレン-クロロトリフルオロエチレン共重合体を含む樹脂組成物を用いて作製された樹脂フィルムからなるリサイクル原料を、前記樹脂組成物中に1質量%~40質量%含有する、請求項1から5の何れか一項に記載の樹脂フィルムの製造方法。 The resin composition contains 1% by mass to 40% by mass of a recycled material composed of a resin film produced using a resin composition containing an ethylene-chlorotrifluoroethylene copolymer. The manufacturing method of the resin film as described in any one of Claim 1 to 5.
  7.  エチレン-クロロトリフルオロエチレン共重合体を含む樹脂組成物を、Tダイを備えた押出機にて溶融混練後、少なくとも1つの冷却ロールを用いてキャスティング処理して樹脂フィルムを形成する工程と、
     得られた樹脂フィルムの第一面を、窒素ガス、酸素ガス、水素ガス、二酸化炭素ガス、希ガス元素ガスおよび炭化水素ガスから選択される一種以上の改質ガス中でコロナ処理またはプラズマ処理により表面改質する工程と、
     前記表面改質した樹脂フィルムの第一面に、熱可塑性樹脂を含有する基材を、真空ラミネートにより積層する工程と、を有し、
     前記樹脂フィルムを形成する工程において、前記押出機は、スクリュー先端部と前記Tダイとの間にブレーカープレートを備え、前記ブレーカープレートは、スクリーンメッシュを備え、
     前記ブレーカープレートの開口率が40%~60%であり、前記スクリーンメッシュの最小の目開きが0.03mm~0.1mmであり、
     前記Tダイの吐出口における前記樹脂組成物の温度が、第一冷却ロールの表面温度よりも110℃~280℃高い温度である、積層フィルムの製造方法。
    A step of forming a resin film by melt-kneading a resin composition containing an ethylene-chlorotrifluoroethylene copolymer with an extruder equipped with a T-die and casting using at least one cooling roll;
    The first surface of the obtained resin film is subjected to corona treatment or plasma treatment in one or more reformed gases selected from nitrogen gas, oxygen gas, hydrogen gas, carbon dioxide gas, rare gas element gas and hydrocarbon gas. A step of surface modification;
    Laminating a base material containing a thermoplastic resin on the first surface of the surface-modified resin film by vacuum lamination,
    In the step of forming the resin film, the extruder includes a breaker plate between a screw tip and the T die, and the breaker plate includes a screen mesh,
    The opening ratio of the breaker plate is 40% to 60%, and the minimum mesh opening of the screen mesh is 0.03 mm to 0.1 mm;
    The method for producing a laminated film, wherein the temperature of the resin composition at the discharge port of the T die is 110 ° C. to 280 ° C. higher than the surface temperature of the first cooling roll.
  8.  エチレン-クロロトリフルオロエチレン共重合体を含む樹脂組成物を、Tダイを備えた押出機にて溶融混練後、少なくとも1つの冷却ロールを用いてキャスティング処理して樹脂フィルムを形成する工程と、
     得られた樹脂フィルムの第一面を、窒素ガス、酸素ガス、水素ガス、二酸化炭素ガス、希ガス元素ガスおよび炭化水素ガスから選択される一種以上の改質ガス中でコロナ処理またはプラズマ処理により表面改質する工程と、
     前記表面改質した樹脂フィルムの第一面に、熱可塑性樹脂を含有する基材を、真空ラミネートにより積層する工程と、を有し、
     前記樹脂フィルムを形成する工程において、前記押出機は、スクリュー先端部と前記Tダイとの間にブレーカープレートを備え、前記ブレーカープレートは、スクリーンメッシュを備え、
     前記ブレーカープレートの開口率が40%~60%であり、前記スクリーンメッシュの最小の目開きが0.03mm~0.1mmであり、
     前記Tダイの吐出口における前記樹脂組成物の温度が、第一冷却ロールの表面温度よりも110℃~280℃高い温度である、屋外防水フィルムの製造方法。
    A step of forming a resin film by melt-kneading a resin composition containing an ethylene-chlorotrifluoroethylene copolymer with an extruder equipped with a T-die and casting using at least one cooling roll;
    The first surface of the obtained resin film is subjected to corona treatment or plasma treatment in one or more reformed gases selected from nitrogen gas, oxygen gas, hydrogen gas, carbon dioxide gas, rare gas element gas and hydrocarbon gas. A step of surface modification;
    Laminating a base material containing a thermoplastic resin on the first surface of the surface-modified resin film by vacuum lamination,
    In the step of forming the resin film, the extruder includes a breaker plate between a screw tip and the T die, and the breaker plate includes a screen mesh,
    The opening ratio of the breaker plate is 40% to 60%, and the minimum mesh opening of the screen mesh is 0.03 mm to 0.1 mm;
    The method for producing an outdoor waterproof film, wherein the temperature of the resin composition at the discharge port of the T die is 110 ° C. to 280 ° C. higher than the surface temperature of the first cooling roll.
PCT/JP2016/072941 2015-08-26 2016-08-04 Method for producing resin film WO2017033701A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017536721A JP6762945B2 (en) 2015-08-26 2016-08-04 Resin film manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015166608 2015-08-26
JP2015-166608 2015-08-26

Publications (1)

Publication Number Publication Date
WO2017033701A1 true WO2017033701A1 (en) 2017-03-02

Family

ID=58099944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072941 WO2017033701A1 (en) 2015-08-26 2016-08-04 Method for producing resin film

Country Status (3)

Country Link
JP (1) JP6762945B2 (en)
TW (1) TWI712637B (en)
WO (1) WO2017033701A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020040023A1 (en) * 2018-08-24 2020-02-27 Agc株式会社 Film, film manufacturing method, laminated body, and packaging material
KR20200105634A (en) * 2019-02-28 2020-09-08 양창록 Builder's assembled waterproofing sheet and manufacturing method
WO2020203528A1 (en) * 2019-03-29 2020-10-08 デンカ株式会社 Resin composition, molded body using said resin composition, and film structure, building structure and adhesive molded body each using said resin composition or said molded body

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222214A (en) * 1992-02-07 1993-08-31 Tonen Chem Corp Waterproof sheet
JPH06263891A (en) * 1993-03-17 1994-09-20 Toray Ind Inc Ultraviolet-screening film
JP2002240144A (en) * 2001-02-19 2002-08-28 Asahi Glass Co Ltd Fluoroplastic film of low double refraction
JP2010023464A (en) * 2008-07-24 2010-02-04 Sumitomo Chemical Co Ltd Manufacturing method of polyolefinic resin composition and filter used therein
JP2011037172A (en) * 2009-08-12 2011-02-24 Mitsubishi Gas Chemical Co Inc Method for manufacturing resin molded article
JP2013237730A (en) * 2012-05-11 2013-11-28 Tokyo Univ Of Agriculture & Technology Method for producing fluororesin film
WO2014103845A1 (en) * 2012-12-25 2014-07-03 ダイキン工業株式会社 Fluororesin film having excellent transparency
WO2016031930A1 (en) * 2014-08-29 2016-03-03 旭硝子株式会社 Ethylene-tetrafluoroethylene copolymer sheet and method for producing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG192976A1 (en) * 2011-03-01 2013-09-30 Denki Kagaku Kogyo Kk Resin composition and heat-shrinkable film thereof
JP6263891B2 (en) 2013-07-26 2018-01-24 セイコーエプソン株式会社 Control method for liquid ejection system and liquid ejection system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222214A (en) * 1992-02-07 1993-08-31 Tonen Chem Corp Waterproof sheet
JPH06263891A (en) * 1993-03-17 1994-09-20 Toray Ind Inc Ultraviolet-screening film
JP2002240144A (en) * 2001-02-19 2002-08-28 Asahi Glass Co Ltd Fluoroplastic film of low double refraction
JP2010023464A (en) * 2008-07-24 2010-02-04 Sumitomo Chemical Co Ltd Manufacturing method of polyolefinic resin composition and filter used therein
JP2011037172A (en) * 2009-08-12 2011-02-24 Mitsubishi Gas Chemical Co Inc Method for manufacturing resin molded article
JP2013237730A (en) * 2012-05-11 2013-11-28 Tokyo Univ Of Agriculture & Technology Method for producing fluororesin film
WO2014103845A1 (en) * 2012-12-25 2014-07-03 ダイキン工業株式会社 Fluororesin film having excellent transparency
WO2016031930A1 (en) * 2014-08-29 2016-03-03 旭硝子株式会社 Ethylene-tetrafluoroethylene copolymer sheet and method for producing same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020040023A1 (en) * 2018-08-24 2020-02-27 Agc株式会社 Film, film manufacturing method, laminated body, and packaging material
US20210023756A1 (en) * 2018-08-24 2021-01-28 AGC Inc. Film, film manufacturing method, laminated body, and packaging material
CN112585196A (en) * 2018-08-24 2021-03-30 Agc株式会社 Film, method for producing film, laminate, and packaging material
JPWO2020040023A1 (en) * 2018-08-24 2021-09-24 Agc株式会社 Films, film manufacturing methods, laminates and packaging materials
JP7251550B2 (en) 2018-08-24 2023-04-04 Agc株式会社 Film, film manufacturing method, laminate and packaging material
CN112585196B (en) * 2018-08-24 2023-09-08 Agc株式会社 Film, film manufacturing method, laminate, and packaging material
KR20200105634A (en) * 2019-02-28 2020-09-08 양창록 Builder's assembled waterproofing sheet and manufacturing method
KR102341180B1 (en) * 2019-02-28 2021-12-21 양창록 Builder's assembled waterproofing sheet and manufacturing method
WO2020203528A1 (en) * 2019-03-29 2020-10-08 デンカ株式会社 Resin composition, molded body using said resin composition, and film structure, building structure and adhesive molded body each using said resin composition or said molded body
JP7445647B2 (en) 2019-03-29 2024-03-07 デンカ株式会社 Resin compositions, molded bodies using the resin compositions, membrane structures, buildings, and adhesive molded bodies using these

Also Published As

Publication number Publication date
TW201718730A (en) 2017-06-01
TWI712637B (en) 2020-12-11
JPWO2017033701A1 (en) 2018-06-28
JP6762945B2 (en) 2020-09-30

Similar Documents

Publication Publication Date Title
KR101320144B1 (en) Film, method for producing same, laminated film or sheet, and laminate
JP2002293973A (en) Porous polypropylene film and method for producing the same
US11338558B2 (en) Multilayer assembly
WO2017033701A1 (en) Method for producing resin film
EP3524640B1 (en) Resin composition and membrane structure using same
KR101607153B1 (en) Resin composition for industry protective film using UV master batch and Manufacturing protective film using the same
JP5720936B2 (en) Polyolefin resin multilayer film
CN109843585A (en) Laminated resin body and its manufacturing method
JP5896367B2 (en) Polyolefin resin multilayer film
JP2002146070A (en) Polypropylene-based porous film and method for producing the same
JP7445647B2 (en) Resin compositions, molded bodies using the resin compositions, membrane structures, buildings, and adhesive molded bodies using these
EP3233490B1 (en) Tear resistant multilayer film
TWI837335B (en) Resin compositions, molded articles using the resin compositions, and film structures, buildings and adhesive molded articles using the same
KR20020068405A (en) Transparent, Biaxially Oriented, UV-Stabilized Barrier Film, Production Method and Utilization Thereof
JP7009123B2 (en) Film for solar cell back surface protective sheet, solar cell back surface protective sheet, and solar cell module
JP2019189785A (en) Polyethylene terephthalate film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16839048

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017536721

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16839048

Country of ref document: EP

Kind code of ref document: A1