WO2017033661A1 - Vehicular air-conditioning system - Google Patents

Vehicular air-conditioning system Download PDF

Info

Publication number
WO2017033661A1
WO2017033661A1 PCT/JP2016/072185 JP2016072185W WO2017033661A1 WO 2017033661 A1 WO2017033661 A1 WO 2017033661A1 JP 2016072185 W JP2016072185 W JP 2016072185W WO 2017033661 A1 WO2017033661 A1 WO 2017033661A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
heat generation
generation amount
seat
combustion engine
Prior art date
Application number
PCT/JP2016/072185
Other languages
French (fr)
Japanese (ja)
Inventor
将徳 森川
増田 貴文
中島 洋
好児 藤井
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2017033661A1 publication Critical patent/WO2017033661A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/04Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant
    • B60H1/08Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant from other radiator than main radiator

Definitions

  • the present disclosure relates to a vehicle air-conditioning system that air-conditions a vehicle interior using cooling water of an internal combustion engine that outputs driving force for vehicle travel as a heat source.
  • a vehicle seat air conditioner that supplies conditioned air from a front air conditioning unit disposed in front of a passenger compartment to a seat through an air duct and blows conditioned air from the surface of the seat (see, for example, Patent Document 1). ).
  • Some vehicle seat air-conditioners of this type are configured to heat the vehicle interior by using cooling water of an internal combustion engine that generates driving force for vehicle travel as a heat source.
  • a heater that heats air blown out into the passenger compartment using cooling water of the internal combustion engine as a heat source is disposed inside the front air conditioning unit.
  • the air heated by the heater is blown out from the opening provided on the instrument panel in front of the vehicle or the surface of the seat, and the vehicle interior is heated. It has become.
  • the vehicle seat air conditioner can improve the comfort of passengers by blowing air from the surface of the seat, but it is necessary to blow air from the front air conditioning unit to the surface of the seat.
  • the load of the blower that blows air increases. This is not preferable because it causes an increase in energy consumption in the vehicle and causes a deterioration in the fuel consumption rate of the internal combustion engine.
  • This disclosure is intended to provide a vehicle air conditioning system capable of suppressing a decrease in passenger comfort while suppressing an increase in fuel consumption of an internal combustion engine.
  • the present disclosure is directed to a vehicle air conditioning system that air-conditions a vehicle interior using cooling water of an internal combustion engine that outputs a driving force for vehicle travel as a heat source.
  • a vehicle air conditioning system includes: An indoor air conditioner unit configured to include a heater that heats blown air blown by the indoor fan, using the cooling water of the internal combustion engine as a heat source, and blows air toward the vehicle interior; Seat air conditioner including a sheet side blower for blowing air to a sheet ventilation path formed in the seat, and an air duct that guides at least a part of the air whose temperature is adjusted by the indoor air conditioning unit to the air suction side of the sheet side blower Unit, Heating switching unit for switching between a seat heating operation for operating both the indoor fan and the seat fan to warm the vehicle interior, and a non-seat heating operation for operating the indoor fan with the seat fan stopped to warm the vehicle interior
  • a required calorific value calculation unit for calculating a required calorific value required for the internal combustion engine in order to compensate for the insufficient heating capacity of the blown air by the heater
  • a required heat quantity determining unit that determines the required heat value of the internal combustion engine in consideration of the required heat value
  • the required heat amount calculation unit is configured to reduce the required heat generation amount in the seat heating operation compared to the non-seat heating operation.
  • the required heat generation amount is reduced as compared with the non-seat heating operation, so that the internal combustion engine operates in a state where the operation efficiency is good. For this reason, the fuel consumption of an internal combustion engine can be suppressed.
  • the seat air conditioning unit is located closer to the occupant than the indoor air conditioning unit and can directly warm the occupant, so even if the required heat generation is reduced during seat heating operation, the comfort of the occupant The impact on is small.
  • FIG. 1st Embodiment It is a schematic block diagram of the vehicle air conditioning system of 1st Embodiment. It is a schematic block diagram of the indoor air conditioning unit shown in FIG. It is a block diagram which shows the control apparatus of the vehicle air conditioner system of 1st Embodiment. It is a flowchart which shows the flow of the adjustment process of the heating capability of the indoor air conditioning unit which the control apparatus of the vehicle air conditioner system of 1st Embodiment performs. It is explanatory drawing explaining the determination method of the required emitted-heat amount by the control apparatus of the vehicle air conditioner system of 1st Embodiment. It is a figure which shows an example of the time change of the ignition advance in the internal combustion engine at the time of seat heating operation, non-seat heating operation, and heating stop.
  • FIG. 1 It is a figure which shows the time change of the temperature of the cooling water in the internal combustion engine at the time of seat heating operation, non-seat heating operation, and heating stop. It is a flowchart which shows the flow of the adjustment process of the heating capability of the indoor air conditioning unit which the control apparatus of the vehicle air conditioner system of 2nd Embodiment performs. It is explanatory drawing explaining the determination method of the required emitted-heat amount by the control apparatus of the vehicle air conditioner system of 2nd Embodiment. It is a schematic block diagram of the vehicle air conditioning system of 3rd Embodiment. It is a disassembled perspective view of the infrared sensor shown in FIG. It is a perspective view which shows the principal part of the infrared sensor shown in FIG.
  • the vehicle air-conditioning system 1 is a system that is applied to a vehicle that obtains driving force for vehicle travel from the internal combustion engine EG, and that air-conditions the vehicle interior using cooling water of the internal combustion engine EG as a heat source.
  • the vehicle air conditioning system 1 includes an indoor air conditioning unit 10, a seat air conditioning unit 50, and a control device 100 as main components.
  • the indoor air conditioning unit 10 is disposed inside the instrument panel IP at the foremost part of the vehicle interior.
  • the indoor air conditioning unit 10 includes an indoor air blower 13, an evaporator 14, a heater core 18, and the like housed in an air conditioning case 11 that constitutes an outer shell thereof.
  • an inside / outside air switching box 12 for switching and introducing vehicle interior air (hereinafter referred to as “inside air”) and vehicle exterior air (hereinafter referred to as “outside air”) is disposed.
  • the inside / outside air switching box 12 is formed with an inside air introduction port 12 a for introducing inside air into the air conditioning case 11 and an outside air introduction port 12 b for introducing outside air into the air conditioning case 11.
  • the inside / outside air switching box 12 is provided with an inside / outside air switching door 12c that adjusts the opening areas of the inside air introduction port 12a and the outside air introduction port 12b in accordance with a control signal from the control device 100.
  • An indoor fan 13 is disposed on the downstream side of the air flow in the inside / outside air switching box 12.
  • the indoor-side blower 13 is a blower that blows air sucked through the inside / outside air switching box 12 toward the vehicle interior.
  • the indoor blower 13 is an electric blower that can change the number of rotations in accordance with a control signal from the control device 100. Note that a centrifugal fan, an axial fan, a cross flow fan, or the like can be employed as the fan of the indoor fan 13.
  • the evaporator 14 is arrange
  • the evaporator 14 is a cooling heat exchanger that exchanges heat between the refrigerant circulating in the interior and the blown air blown from the indoor fan 13 to cool the blown air.
  • the evaporator 14 constitutes a vapor compression refrigeration cycle 30 together with a compressor 31, a condenser 32, a gas-liquid separator 33, an expansion valve 34, and the like.
  • the compressor 31 sucks in the refrigerant in the refrigeration cycle 30, compresses it, and discharges it.
  • the compressor 31 of the present embodiment is configured to be driven by transmission of driving force from the internal combustion engine EG.
  • the compressor 31 is changed into a driving state in which the driving force from the internal combustion engine EG is transmitted and a stopped state in which the driving force is not transmitted in accordance with a control signal from the control device 100.
  • the compressor 31 may be comprised with the electric compressor.
  • the condenser 32 is an outdoor heat exchanger that condenses the refrigerant discharged from the compressor 31 by exchanging heat between the refrigerant circulating inside and the outside air.
  • the gas-liquid separator 33 is a receiver that separates the gas-liquid of the refrigerant condensed by the condenser 32 and stores surplus refrigerant and flows the liquid-phase refrigerant downstream.
  • the expansion valve 34 is a decompression mechanism that decompresses and expands the liquid-phase refrigerant that has flowed out of the gas-liquid separator 33.
  • the evaporator 14 is a heat exchanger that evaporates the refrigerant decompressed and expanded by the expansion valve 34 and exerts an endothermic effect on the refrigerant.
  • the hot air passage 15, the cold air bypass passage 16, the hot air passage 15, and the cold air bypass passage 16 through which the air after passing through the evaporator 14 flows.
  • a mixing space 17 is formed for mixing the air that has flowed out of the air.
  • a heater core 18 for heating the air after passing through the evaporator 14 is disposed in the hot air passage 15.
  • the heater core 18 is a heater that heats the blown air by exchanging heat between the cooling water that cools the internal combustion engine EG and the blown air that has passed through the evaporator 14.
  • the heater core 18 and the internal combustion engine EG are connected by a cooling water pipe 41.
  • the cooling water circuit 40 in which the cooling water circulates between the heater core 18 and the engine EG is configured.
  • the cooling water circuit 40 is provided with a cooling water pump 40a for circulating the cooling water.
  • the cooling water pump 40 a is configured by an electric pump whose rotation speed is controlled by a control signal output from the control device 100.
  • the cold air bypass passage 16 is an air passage for guiding the air after passing through the evaporator 14 to the mixing space 17 without passing through the heater core 18. Accordingly, the temperature of the blown air mixed in the mixing space 17 varies depending on the air volume ratio of the air passing through the hot air passage 15 and the air passing through the cold air bypass passage 16.
  • the air volume ratio of the cool air flowing into the hot air passage 15 and the cold air bypass passage 16 on the downstream side of the air flow of the evaporator 14 and on the inlet side of the hot air passage 15 and the cold air bypass passage 16 is set as follows.
  • An air mix door 19 to be changed is arranged.
  • the air mix door 19 functions as a temperature adjusting member that adjusts the air temperature in the mixing space 17.
  • the operation of the air mix door 19 is controlled by a control signal output from the control device 100.
  • first to third blowout openings 20 to 22 for blowing out the blown air whose temperature is adjusted in the mixing space 17 are provided in the most downstream portion of the blown air flow of the air conditioning case 11.
  • the first blowout opening 20 is an opening through which air is blown toward the upper body of the passenger in the passenger compartment.
  • the 2nd blowing opening 21 is an opening which blows off air to a passenger
  • the 3rd blowing opening part 22 is an opening part which blows off air toward the inner side of the window glass W of the vehicle front.
  • first to third mode doors 20a to 22a for adjusting the opening area are arranged on the upstream side of the air flow of the respective blowing openings 20 to 22.
  • Each mode door 20a to 22a constitutes an outlet mode switching unit for switching an outlet mode. The operation of each mode door 20a to 22a is controlled by a control signal output from the control device 100.
  • the seat air conditioning unit 50 is an air conditioning unit that imparts comfort to the passenger by blowing out the air whose temperature has been adjusted by the indoor air conditioning unit 10 from the surface of the seat 2.
  • the seat air conditioning unit 50 is attached to the seat 2 arranged in front of the vehicle.
  • the seat 2 includes a seat cushion portion 2a that supports the lower body of the occupant and a seat back portion 2b that supports the upper body of the occupant.
  • the sheet 2 is formed with a sheet ventilation path 3 that guides air supplied from the sheet air-conditioning unit 50 to an air blowing portion on the sheet surface (not shown).
  • the seat ventilation path 3 of the present embodiment is branched inside the seat 2 so that air is blown from both the seat cushion portion 2a and the air blowing portion of the seat back portion 2b.
  • a connection duct 5 connected to the seat air conditioning unit 50 is disposed at the most upstream part of the air flow in the seat ventilation path 3.
  • connection duct 5 has one end connected to the air inlet side of the seat ventilation path 3 and the other end connected to the air outlet side of the seat side blower 51 of the seat air conditioning unit 50.
  • the connection duct 5 is disposed between the seat 2 and the floor 6.
  • the connection duct 5 is formed of a bellows-like duct so as to be able to cope with the movement of the seat position in the vertical direction and the front-rear direction.
  • the connecting duct 5 may be a duct other than the bellows-shaped duct as long as it is a flexible duct.
  • the seat air-conditioning unit 50 includes a sheet-side blower 51 that blows air to the sheet ventilation path 3 formed in the seat 2, and at least a part of the air whose temperature is adjusted by the indoor air-conditioning unit 10 to the air suction side of the seat-side blower 51.
  • the air duct 52 which guides is included.
  • the sheet-side blower 51 is disposed under the floor 6 facing the lower surface of the sheet 2.
  • the sheet-side blower 51 blows out the air sucked from the blower duct 52 side to the sheet ventilation path 3 side via the connection duct 5.
  • the seat-side blower 51 of the present embodiment is configured by an electric blower that can change the rotation speed in accordance with a control signal from the control device 100.
  • a fan of the seat side blower 51 a centrifugal fan, an axial fan, a cross flow fan, or the like can be employed.
  • the air duct 52 is arranged below the floor 6 of the vehicle, like the seat side fan 51. One end side of the air duct 52 is connected to the second blow-out opening 21 provided in the indoor air conditioning unit 10, and the other end side is connected to the air suction side of the seat-side blower 51.
  • the control device 100 includes an air conditioning control device 110 and a drive control device 120.
  • the air conditioning control device 110 and the drive control device 120 are constituted by a microcomputer including a CPU, a ROM, a RAM, and the like and peripheral circuits thereof.
  • the air conditioning control device 110 and the drive control device 120 perform various calculations and processes based on the control program stored in the ROM, and control the operation of various devices connected to the output side.
  • the storage units of the air-conditioning control device 110 and the drive control device 120 are configured by non-transitional physical storage media.
  • the air conditioning control device 110 is a device that controls the operation of the indoor air conditioning unit 10 and the seat air conditioning unit 50.
  • the output side of the air conditioning control device 110 is connected to the indoor / outdoor air switching door 12c, the indoor air blower 13, the air mix door 19, the first to third mode doors 20a to 22a, etc., which are components of the indoor air conditioning unit 10. ing.
  • the compressor 31 that is a component device of the refrigeration cycle 30, the cooling water pump 40a that is a component device of the cooling water circuit 40, and the seat side that is a component device of the seat air conditioning unit 50 are provided.
  • a blower 51 and the like are connected.
  • an inside air sensor 111 that detects the inside air temperature Tr
  • an outside air sensor 112 that detects the outside air temperature Tam
  • a solar radiation sensor 113 that detects the amount of solar radiation Ts in the passenger compartment.
  • various air conditioning control sensor groups such as a cooling water temperature sensor 114 for detecting the temperature Tw of the cooling water flowing out from the internal combustion engine EG are connected to the input side of the air conditioning control device 110.
  • an operation panel 115 disposed near the instrument panel IP is connected to the input side of the air conditioning control device 110.
  • the operation panel 115 is provided with various operation switches such as an air conditioning operation switch 115a, an operation mode switching switch 115b, a vehicle interior temperature setting switch 115c, a seat operation switch 115d of the seat air conditioning unit 50, and the like.
  • the air conditioning operation switch 115a is a switch that outputs a request signal for operating the indoor fan 13 to adjust the temperature of air blown into the vehicle interior by the indoor air conditioning unit 10 to the air conditioning control device 110.
  • the seat operation switch 115d activates the indoor fan 13 and the seat fan 51, and outputs a request signal for performing a seat air-conditioning operation in which the air whose temperature is adjusted in the indoor air-conditioning unit 10 is blown from the seat 2 is the air-conditioning control device 110. It is a switch that outputs to
  • the air-conditioning control device 110 performs the seat heating operation for operating both the indoor fan 13 and the seat fan 51 to warm the vehicle interior. To do.
  • the air-conditioning control device 110 operates the indoor air blower 13 with the seat air blower 51 stopped to warm the vehicle interior.
  • the seat heating operation is executed.
  • the seat operation switch 115d functions as a heating switching unit that switches between a seat heating operation and a non-seat heating operation.
  • the drive control device 120 is a device that controls the operation of the internal combustion engine EG.
  • a starter 121 for starting the internal combustion engine EG which is a component for driving the internal combustion engine EG
  • a drive circuit 122 for a fuel injection valve for supplying fuel to the internal combustion engine EG and the like. ing.
  • a throttle opening sensor 123 that detects the throttle opening degree Sw that is the depression amount of the accelerator pedal
  • an engine speed sensor 124 that detects the rotation speed Ne of the internal combustion engine EG. Sensor groups are connected.
  • the air conditioning control device 110 and the drive control device 120 are connected so as to be capable of bidirectional communication. Accordingly, the control device 100 operates various devices connected to the output side of the other device based on the detection signal or the operation signal input to one of the air conditioning control device 110 and the drive control device 120. Can be controlled.
  • the operation efficiency of the internal combustion engine EG can be changed by the air conditioning control device 110 outputting a request signal for requesting the drive control device 120 to increase or decrease the operation efficiency of the internal combustion engine EG. Yes.
  • the control device 100 can control the internal combustion engine EG so that the operating efficiency during the operation of the internal combustion engine EG is lowered in order to compensate for the insufficient heating capacity of the blown air by the indoor air conditioning unit 10. .
  • control device 100 of the present embodiment is configured such that a control unit that controls various devices to be controlled connected to the output side is integrally configured.
  • control device 100 hardware or software that controls the operation of each component device to be controlled functions as a control unit that controls the operation of each component device.
  • the control device 100 requests the internal combustion engine EG to compensate for the insufficient heating capacity of the blown air by the heater core 18 during heating operation, at least one of the air conditioning control device 110 and the drive control device 120.
  • the required heat generation amount Qr is calculated.
  • hardware or software for calculating the required heat generation amount Qr in the control device 100 constitutes the required heat amount calculation unit 100a.
  • control device 100 of the present embodiment includes at least one of the air-conditioning control device 110 and the drive control device 120, taking into account the required heat value Qr calculated by the required heat value calculation unit 100a, and the required heat value in the internal combustion engine EG. Qn is determined.
  • hardware and software for determining the required heat generation amount Qn in the control device 100 constitute the required heat amount determination unit 100b.
  • control device 100 of the present embodiment increases the operation efficiency when the internal combustion engine EG is operated as the required heat generation amount Qn increases, and decreases the operation efficiency as the required heat generation amount Qn decreases.
  • the drive control device 120 is configured to control the operation of the internal combustion engine EG.
  • hardware and software for controlling the operation of the internal combustion engine EG in the control device 100 constitute the operation control unit 100c.
  • the control device 100 controls various components to start the air conditioning operation in the vehicle interior.
  • the control device 100 controls the various components to perform the cooling operation for cooling the vehicle interior.
  • control device 100 controls the compressor 31 of the refrigeration cycle 30 to a driving state in which the driving force from the internal combustion engine EG is transmitted.
  • control device 100 calculates the target blowing temperature TAO based on the detection signals of various sensor groups and the operation signals of the operation panel 115.
  • TAO is a blown air temperature necessary to bring the vehicle interior temperature close to the set temperature Tset set by the setting switch 115c of the operation panel 115.
  • the control device 100 calculates TAO using the following formula F1 based on the set temperature Tset, the internal air temperature Tr, the external air temperature Tam, and the solar radiation amount Ts set by the setting switch 115c.
  • TAO Kset ⁇ Tset ⁇ Kr ⁇ Tr ⁇ Kam ⁇ Tam ⁇ Ks ⁇ Ts + C (F1) Note that Kset, Kr, Kam, and Ks shown in Formula F1 are control gains, and C is a correction constant.
  • control device 100 determines the rotational speed of the indoor blower 13, the inside / outside air switching door 12c, the mode doors 20a to 22a, the opening degree of the air mix door 19 and the like based on TAO, and the determined control state is Control signals are output to various devices so as to be obtained.
  • the control device 100 repeats a routine of reading an operation signal and a detection signal ⁇ calculating TAO ⁇ determining a new control state ⁇ outputting a control signal.
  • the air blown from the indoor side blower 13 is cooled by the evaporator 14 in the indoor air conditioning unit 10.
  • the cooling of the vehicle interior is realized by the air cooled by the indoor air conditioning unit 10.
  • the seat operation switch 115d when the seat operation switch 115d is in an OFF state, the air cooled by the indoor air conditioning unit 10 is blown into the vehicle interior, so that cold air is indirectly supplied to the passenger.
  • the seat operation switch 115d when the seat operation switch 115d is in the on state during the cooling operation, the air cooled by the indoor air conditioning unit 10 is blown out from the seat 2 by the seat air conditioning unit 50, as indicated by the white arrow in FIG. Thus, the cool air is directly supplied to the occupant.
  • the vehicle air conditioning system 1 performs a heating operation in which the control device 100 controls various components to warm the vehicle interior.
  • control device 100 operates the cooling water pump 40 a so that the cooling water of the internal combustion engine EG flows into the heater core 18.
  • control device 100 calculates TAO in the same manner as in the cooling operation. Then, the control device 100 determines the rotational speed of the indoor blower 13, the inside / outside air switching door 12c, the mode doors 20a to 22a, the opening degree of the air mix door 19 and the like based on TAO, and the determined control state is Control signals are output to various devices so as to be obtained. The control device 100 repeats a routine of reading an operation signal and a detection signal ⁇ calculating TAO ⁇ determining a new control state ⁇ outputting a control signal.
  • the air blown from the indoor fan 13 is heated by the heater core 18 in the indoor air conditioning unit 10. And the heating of the vehicle interior is realized by the air heated by the indoor air conditioning unit 10.
  • the air heated by the indoor air conditioning unit 10 is blown into the passenger compartment, so that warm air is indirectly supplied to the passenger.
  • the air heated by the indoor air-conditioning unit 10 is blown out of the seat 2 by the seat air-conditioning unit 50 as shown by the white arrows in FIG. Wind is supplied.
  • the heating capacity of the blown air by the heater core 18 during the seat heating operation and the non-seat heating operation is changed by the control processing of the control device 100. It is configured.
  • FIG. 4 shows a flow of processing executed by the control device 100 when the operation mode selector switch 115b is set to the heating mode.
  • the control device 100 first detects the coolant temperature Two when the internal combustion engine EG is started by the coolant temperature sensor 114 and stores it in the storage unit of the control device 100 (S10). Then, the control device 100 detects the current coolant temperature Tw of the internal combustion engine EG with the coolant temperature sensor 114 (S11).
  • the coolant temperature at the start of the internal combustion engine EG is referred to as a start-up water temperature Two
  • the current coolant temperature of the internal combustion engine EG is referred to as a current coolant temperature Tw.
  • the control device 100 determines whether or not the current heating operation is the seat heating operation (S12). In this determination process, the determination is made based on whether the seat operation switch 115d is on or off. That is, the control device 100 determines that the seat heating operation is performed when the seat operation switch 115d is turned on, and determines that the seat heating operation is not performed when the seat operation switch 115d is turned on.
  • the control device 100 calculates the reference required heat generation amount Qc (S13).
  • the reference required heat generation amount Qc is the amount of heat required to compensate for the insufficient heating capacity of the blown air by the heater core 18, and is based on a physical quantity that correlates with the insufficient heating capacity of the blown air by the heater core 18. Is calculated.
  • the control device 100 determines that the reference required heat generation amount Qc decreases as the cooling water temperature of the internal combustion engine EG increases, and increases as the cooling water temperature decreases.
  • the required heat generation amount Qc is calculated.
  • control device 100 refers to a reference required heat generation amount map that predetermines the relationship among the start time water temperature Two, the current water temperature Tw, and the reference required heat generation amount Qc, and the start time detected in steps S10 and S11.
  • a reference required heat generation amount Qc is calculated based on the water temperature Two and the current water temperature Tw.
  • the control device 100 calculates the reference required heat generation amount Qc in the same manner as in step S13 (S14). Note that the calculation method of the reference required heat generation amount Qc in step S14 is the same as the content of step S13, and thus the description thereof is omitted.
  • the control device 100 calculates a reduced heat generation amount ⁇ Q, which is a heat amount that decreases the required heat generation amount Qr required for the internal combustion engine EG during the seat heating operation (S15).
  • This reduced calorific value ⁇ Q is calculated by the control device 100 on the basis of a physical quantity having a correlation with insufficient heating capacity of the blown air by the heater core 18.
  • the control device 100 reduces the heat generation amount so that the reduced heat generation amount ⁇ Q increases as the temperature of the cooling water of the internal combustion engine EG increases, and the heat generation decrease ⁇ Q decreases as the temperature of the cooling water decreases. ⁇ Q is calculated.
  • control device 100 refers to a reduced heat generation amount map that predetermines the relationship between the starting water temperature Two, the current water temperature Tw, and the reduced heat generation amount ⁇ Q, and the starting water temperature detected in steps S10 and S11.
  • a reduced heat generation amount ⁇ Q is calculated based on Two and the current water temperature Tw.
  • the control device 100 calculates the upper limit value of the reduced heat generation amount ⁇ Q to be the reference required heat generation amount Qc ( ⁇ Q ⁇ Qc).
  • the control device 100 reads the rotational speed Ne of the internal combustion engine EG detected by the engine rotational speed sensor 124 after the control processing of steps S13 to S15 (S16). Further, the control device 100 reads the throttle opening degree Sw detected by the throttle opening degree sensor 123 (S17).
  • the control device 100 calculates a drive heat generation amount Qd that is a heat generation amount of the internal combustion engine EG required for driving the internal combustion engine EG (S18). ). Specifically, the control device 100 refers to a driving heat generation amount map in which the relationship among the rotational speed Ne, the throttle opening degree Sw, and the driving heat generation amount Qd is defined in advance, and the rotation speed detected in steps S16 and S17. A driving heat generation amount Qd is calculated based on Ne and the throttle opening degree Sw.
  • the control device 100 determines the required heat generation amount Qn required for the internal combustion engine EG when the vehicle is traveling and when the vehicle is air-conditioned (S19).
  • the control device 100 determines the required heat generation amount Qn in consideration of not only the drive heat generation amount Qd required for the operation of the internal combustion engine EG but also the required heat generation amount Qr required for vehicle interior air conditioning.
  • control device 100 of the present embodiment increases the decreased heat generation amount ⁇ Q as the temperature of the cooling water of the internal combustion engine EG increases during the seat heating operation. For this reason, during the seat heating operation, the required heat generation amount Qr decreases as the temperature of the cooling water of the internal combustion engine EG increases.
  • the control device 100 calculates the ignition timing of the fuel having a great influence on the operation efficiency when the internal combustion engine EG is operated based on the necessary heat generation amount Qn calculated in step S19 (S20).
  • the control device 100 defines the ignition timing of the internal combustion engine EG so that the operation efficiency decreases as the required heat generation amount Qn increases, and the operation efficiency increases as the required heat generation amount Qn decreases. Calculate the ignition advance.
  • the ignition advance angle becomes the retard side as the required heat generation amount Qn increases, and the ignition advance angle becomes the advance side as the required heat generation amount Qn decreases. The ignition advance angle is calculated.
  • control device 100 outputs a control signal to the fuel injection valve drive circuit 122 of the internal combustion engine EG so that the internal combustion engine EG operates at the ignition timing calculated in step S20 (S21).
  • FIG. 6 shows an example of the time change of the ignition advance in the internal combustion engine EG during the seat heating operation, during the non-seat heating operation, and when the heating is stopped.
  • FIG. 7 shows an example of the time change of the temperature of the cooling water in the internal combustion engine EG during the seat heating operation, the non-seat heating operation, and the heating stop.
  • the solid line indicates the change during the seat heating operation
  • the one-dot chain line indicates the change when the heating is stopped
  • the two-dot chain line indicates the change during the non-seat heating operation.
  • the required heat generation amount is reduced during the seat heating operation compared to the non-seat heating operation. For this reason, at the time of seat heating operation, the required heat generation amount is reduced compared to that at the time of non-seat heating operation, and as shown in FIG. 6, the ignition advance approaches the ignition advance at the time of heating stop. As a result, at the time of seat heating operation, the internal combustion engine EG can be operated with better operating efficiency than at the time of non-seat heating operation.
  • the temperature of the cooling water of the internal combustion engine EG is slightly lower during the seat heating operation than during the non-seat heating operation. Since warm air is supplied, the impact on passenger comfort is small.
  • the vehicle air-conditioning system 1 of the present embodiment described above is configured to reduce the required heat generation amount Qr required for the internal combustion engine EG during the seat heating operation compared to during the non-seat heating operation. According to this, at the time of seat heating operation, the internal combustion engine EG can be operated in a state where the operation efficiency is better than that at the time of non-seat heating operation. For this reason, the fuel consumption of the internal combustion engine EG can be suppressed.
  • the seat air conditioning unit 50 is located closer to the occupant than the indoor air conditioning unit 10 and can directly warm the occupant. Therefore, even if the required heat generation amount Qr is reduced during the seat heating operation, the occupant The impact on comfort is small.
  • the vehicle air conditioning system 1 of the present embodiment it is possible to suppress a decrease in passenger comfort while suppressing an increase in fuel consumption of the internal combustion engine EG.
  • the reduced heat generation amount ⁇ Q is calculated based on the cooling water having a correlation with the insufficient heating capacity of the blown air by the heater core 18. According to this, even when the required heat generation amount Qr is reduced during the seat heating operation as compared with the non-seat heating operation, it is possible to appropriately maintain the passenger comfort.
  • the present embodiment is different from the first embodiment in that the amount of heat for reducing the required heat generation amount Qr is calculated based on the target blowing temperature TAO during the seat heating operation.
  • FIG. 8 is a flowchart showing a flow of adjustment processing for adjusting the heating capacity of the indoor air conditioning unit 10 executed by the control device 100 of the present embodiment.
  • FIG. 8 shows the flow of processing executed by the control device 100 when the operation mode selector switch 115b is set to the heating mode.
  • the control device 100 first reads detection signals of various sensor groups and operation signals of the operation panel 115 (S30). Then, the control device 100 calculates the target blowing temperature TAO based on the detection signals of the various sensor groups and the operation signal of the operation panel 115 (S31). Since the TAO calculation method is the same as that in the first embodiment, a description thereof will be omitted.
  • the control device 100 determines whether or not the heating operation is the seat heating operation (S32). As a result, when it is determined that the seat heating operation is not performed, the control device 100 calculates a reference required heat generation amount Qc (S33).
  • TAO increases as the temperature difference between the set temperature Tset and the internal temperature Tr increases, as shown in Formula F1.
  • the state in which the temperature difference between the set temperature Tset and the internal temperature Tr is greatly deviated is also a state in which the air blowing capacity by the heater core 18 is insufficient.
  • the reference required heat generation amount Qc increases so that the reference required heat generation amount Qc increases as TAO increases, and the reference required heat generation amount Qc decreases as TAO decreases. Is calculated. More specifically, the control device 100 refers to the reference required heat generation amount map that predefines the relationship between TAO and the reference required heat generation amount Qc, and sets the reference required heat generation amount Qc based on the TAO calculated in step S31. calculate.
  • step S34 the control device 100 calculates the reference required heat generation amount Qc as in step S33 (S34). Note that the calculation method of the reference required heat generation amount Qc in step S34 is the same as the content of step S33, and thus the description thereof is omitted.
  • the control device 100 calculates a reduced calorific value ⁇ Q during the seat heating operation (S35).
  • the control device 100 calculates the reduced heat generation amount ⁇ Q so that the reduced heat generation amount ⁇ Q decreases as TAO increases and the decrease heat generation amount ⁇ Q increases as TAO decreases. More specifically, the control device 100 refers to a reduced calorific value map that predefines the relationship between TAO and the reduced calorific value ⁇ Q, and calculates the reduced calorific value ⁇ Q based on the TAO calculated in step S31.
  • the control device 100 calculates the upper limit value of the reduced heat generation amount ⁇ Q to be the reference required heat generation amount Qc ( ⁇ Q ⁇ Qc).
  • the control device 100 reads the rotational speed Ne of the internal combustion engine EG (S36). Further, the control device 100 reads the throttle opening degree Sw detected by the throttle opening degree sensor 123 (S37). Then, the control device 100 calculates the driving heat generation amount Qd based on the rotational speed Ne of the internal combustion engine EG and the throttle opening degree Sw (S38). Note that the control processing of steps S36 to S38 shown in FIG. 8 is the same as the control processing of steps S16 to S18 of FIG. 4 described in the first embodiment, and thus detailed description thereof is omitted.
  • control device 100 of the present embodiment increases the decreased heat generation amount ⁇ Q as the TAO decreases during the seat heating operation. For this reason, during seat heating operation, the required heat generation amount Qr decreases as TAO decreases.
  • the control device 100 calculates the ignition timing of the fuel that has a great influence on the operating efficiency during the operation of the internal combustion engine EG, based on the required calorific value Qn calculated in step S39 (S40). Then, the control device 100 outputs a control signal to the drive circuit 122 for the fuel injection valve of the internal combustion engine EG so that the internal combustion engine EG operates at the ignition timing calculated in step S20 (S41).
  • the reduced heat generation amount ⁇ Q is calculated based on TAO having a correlation with insufficient heating capacity of the blown air by the heater core 18. According to this, even when the required heat generation amount Qr is reduced during the seat heating operation as compared with the non-seat heating operation, it is possible to appropriately maintain the passenger comfort.
  • the present embodiment is different from the first embodiment in that the amount of heat for reducing the required heat generation amount Qr is calculated based on the detection value of the infrared sensor 130 during the seat heating operation.
  • an infrared sensor 130 is provided on the instrument panel IP.
  • the infrared sensor 130 is a non-contact temperature sensor and constitutes a temperature detection unit that detects the temperature near the surface of the sheet 2.
  • the infrared sensor 130 is sometimes referred to as an IR sensor.
  • the infrared sensor 130 of this embodiment includes a thermopile detection element 131 that outputs a change in electromotive force corresponding to a change in the amount of input infrared light as a temperature change.
  • the detection element 131 is disposed on the pedestal 131c and is covered with a cup-shaped case 131b.
  • a through hole 131d is formed at the bottom of the case 131b, and a lens 131e is fitted in the through hole 131d.
  • the detection element 131 includes a sensor chip 132 installed on the substrate 131a and an infrared absorption film 133 disposed so as to cover the sensor chip 132.
  • the infrared absorption film 133 plays a role of absorbing infrared rays incident from the vicinity of the sheet 2 serving as a temperature detection region through the lens 131e and converting the infrared rays into heat.
  • the infrared sensor 130 configured in this way is connected to the input side of the control device 100. In other words, the infrared sensor 130 is connected to the input side of the control device 100.
  • FIG. 13 shows a flow of processing executed by the control device 100 when the operation mode changeover switch 115b is set to the heating mode.
  • the control device 100 first reads the detected temperature Tir of the infrared sensor 130, that is, the temperature near the sheet 2 (S51). Then, the control device 100 determines whether or not the heating operation is the seat heating operation (S52). As a result, when it is determined that the seat heating operation is not performed, the control device 100 calculates the reference required heat generation amount Qc (S53).
  • the infrared sensor 130 detects the surface temperature of the body of the occupant seated on the seat 2.
  • the state where the surface temperature of the occupant's body is low is considered to be a state where the heating capacity of the blown air by the heater core 18 is insufficient.
  • the reference required heat generation amount Qc decreases as the detection temperature Tir of the infrared sensor 130 increases, and the reference required heat generation amount as the detection temperature Tir of the infrared sensor 130 decreases.
  • the reference required heat generation amount Qc is calculated so that Qc increases. More specifically, the control device 100 refers to the reference required heat generation amount map in which the relationship between the detected temperature Tir of the infrared sensor 130 and the reference required heat generation amount Qc is defined in advance, and the infrared sensor 130 read in step S51.
  • a reference required heat generation amount Qc is calculated based on the detected value.
  • the control device 100 calculates the reference required heat generation amount Qc in the same manner as in step S53 (S54). Note that the calculation method of the reference required heat generation amount Qc in step S54 is the same as the content of step S53, and thus the description thereof is omitted.
  • the control device 100 calculates a reduced calorific value ⁇ Q during the seat heating operation (S55).
  • the reduced heat generation amount ⁇ Q increases as the detection temperature Tir of the infrared sensor 130 increases, and the decrease heat generation amount ⁇ Q decreases as the detection temperature Tir of the infrared sensor 130 decreases.
  • the reduced heat generation amount ⁇ Q is calculated.
  • the control device 100 refers to the reduced heat generation amount map that predefines the relationship between the detected temperature Tir of the infrared sensor 130 and the reduced heat generation amount ⁇ Q, and the detected value of the infrared sensor 130 detected in step S51. Based on the above, a reduced heat generation amount ⁇ Q is calculated.
  • the control device 100 calculates the upper limit value of the reduced heat generation amount ⁇ Q to be the reference required heat generation amount Qc ( ⁇ Q ⁇ Qc).
  • the control device 100 reads the rotational speed Ne of the internal combustion engine EG (S56). Further, the control device 100 reads the throttle opening degree Sw detected by the throttle opening degree sensor 123 (S57). Then, the control device 100 calculates the driving heat generation amount Qd based on the rotational speed Ne of the internal combustion engine EG and the throttle opening degree Sw (S58). Note that the control processing of steps S56 to S58 shown in FIG. 13 is the same as the control processing of steps S16 to S18 of FIG. 4 described in the first embodiment, and therefore detailed description thereof is omitted.
  • control device 100 of the present embodiment increases the decreased heat generation amount ⁇ Q as the detection temperature Tir of the infrared sensor 130 increases during the seat heating operation. For this reason, during the seat heating operation, the required heat generation amount Qr decreases as the detection temperature Tir of the infrared sensor 130 increases.
  • control device 100 calculates the ignition timing of the fuel having a great influence on the operation efficiency when the internal combustion engine EG is operated based on the necessary heat generation amount Qn calculated in step S59 (S60).
  • the control device 100 then outputs a control signal to the fuel injection valve drive circuit 122 of the internal combustion engine EG so that the internal combustion engine EG operates at the ignition timing calculated in step S60 (S61).
  • the reduced heat generation amount ⁇ Q is calculated based on the detected temperature Tir of the infrared sensor 130 that has a correlation with the insufficient heating capacity of the blown air by the heater core 18. According to this, even when the required heat generation amount Qr is reduced during the seat heating operation as compared with the non-seat heating operation, it is possible to appropriately maintain the passenger comfort.
  • the infrared sensor 130 can detect the surface temperature of the body of the occupant seated on the seat 2, which is advantageous in that the required calorific value Qr can be adjusted in response to the lack of heating felt by the occupant. is there.
  • the present invention is not limited to this.
  • a temperature sensor is provided for the sheet 2 and the sheet 2 is detected by the temperature sensor. It may be configured to detect the temperature in the vicinity.
  • the reference required heat generation amount Qc may be a constant amount, for example, regardless of a physical quantity that has a correlation with insufficient heating capability of the blown air by the heater core 18.
  • the reduced heat generation amount ⁇ Q may be a constant amount regardless of the physical quantity correlated with the insufficient heating capacity of the blown air by the heater core 18.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

[Problem] To suppress the decrease in the comfort of occupants while suppressing the increase in the fuel consumption of an internal combustion engine in a vehicular air-conditioning system. [Solution] This vehicular air-conditioning system (1) is equipped with: an indoor air-conditioning unit (10); a seat air-conditioning unit (50); and a heating switching unit (115d) switching between seat heating operation and non seat heating operation. The vehicular air-conditioning system is also equipped with: a required heating value calculation unit (100a) that calculates a required heating value (Qr) of the internal combustion engine; and a necessary heating value determination unit (100b) that determines a necessary heating value (Qn) for the internal combustion engine which reflects the required heating value. Furthermore, the vehicular air-conditioning system is equipped with an operation control unit (100c) that controls the operation of the internal combustion engine so that the operating efficiency during the operation of the internal combustion engine decreases with an increase in the necessary heating value and increases with a decrease in the necessary heating value. The required heating value calculation unit is configured so as to reduce the required heating value during the seat heating operation relative to during the non seat heating operation.

Description

車両用空調システムAir conditioning system for vehicles 関連出願への相互参照Cross-reference to related applications
 本出願は、2015年8月25日に出願された日本出願番号2015-166100号に基づくものであって、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2015-166100 filed on August 25, 2015, the contents of which are incorporated herein by reference.
 本開示は、車両走行用の駆動力を出力する内燃機関の冷却水を熱源として車室内を空調する車両用空調システムに関する。 The present disclosure relates to a vehicle air-conditioning system that air-conditions a vehicle interior using cooling water of an internal combustion engine that outputs driving force for vehicle travel as a heat source.
 従来、車室内の前方に配置されたフロント空調ユニットから送風ダクトを通じてシートへ空調空気を供給し、シートの表面から空調空気を吹き出す車両用シート空調装置が知られている(例えば、特許文献1参照)。この種の車両用シート空調装置では、車両走行用の駆動力を発生させる内燃機関の冷却水を熱源として車室内を暖房する構成としているものがある。 2. Description of the Related Art Conventionally, there is known a vehicle seat air conditioner that supplies conditioned air from a front air conditioning unit disposed in front of a passenger compartment to a seat through an air duct and blows conditioned air from the surface of the seat (see, for example, Patent Document 1). ). Some vehicle seat air-conditioners of this type are configured to heat the vehicle interior by using cooling water of an internal combustion engine that generates driving force for vehicle travel as a heat source.
特開平11-28928号公報JP-A-11-28928
 ところで、上述のような車両用シート空調装置は、フロント空調ユニットの内部に、内燃機関の冷却水を熱源として車室内へ吹き出す空気を加熱する加熱器が配置されている。そして、車両用シート空調装置では、車室内の暖房時に、加熱器で加熱した空気を車両前方のインストルメントパネルに設けられた開口部やシートの表面から吹き出すことで、車室内を暖房する構成となっている。 By the way, in the vehicle seat air conditioner as described above, a heater that heats air blown out into the passenger compartment using cooling water of the internal combustion engine as a heat source is disposed inside the front air conditioning unit. And in the vehicle seat air conditioner, when heating the vehicle interior, the air heated by the heater is blown out from the opening provided on the instrument panel in front of the vehicle or the surface of the seat, and the vehicle interior is heated. It has become.
 ここで、車両用シート空調装置は、シートの表面から空気を吹き出すことで、乗員の快適性の向上を図ることが可能となるが、フロント空調ユニットからシートの表面まで空気を送風する必要があり、空気を送風する送風機の負荷が増える。このことは、車両におけるエネルギ消費量の増大を招き、内燃機関の燃料消費率が悪化する要因となることから好ましくない。 Here, the vehicle seat air conditioner can improve the comfort of passengers by blowing air from the surface of the seat, but it is necessary to blow air from the front air conditioning unit to the surface of the seat. The load of the blower that blows air increases. This is not preferable because it causes an increase in energy consumption in the vehicle and causes a deterioration in the fuel consumption rate of the internal combustion engine.
 本開示は、内燃機関の燃料消費量の増加を抑えつつ、乗員の快適性の低下を抑えることが可能な車両用空調システムを提供することを目的とする。 This disclosure is intended to provide a vehicle air conditioning system capable of suppressing a decrease in passenger comfort while suppressing an increase in fuel consumption of an internal combustion engine.
 本開示は、車両走行用の駆動力を出力する内燃機関の冷却水を熱源として車室内を空調する車両用空調システムを対象としている。 The present disclosure is directed to a vehicle air conditioning system that air-conditions a vehicle interior using cooling water of an internal combustion engine that outputs a driving force for vehicle travel as a heat source.
 本開示の1つの観点によれば、車両用空調システムは、
 車室内へ向けて空気を送風する室内側送風機、内燃機関の冷却水を熱源として室内側送風機により送風された送風空気を加熱する加熱器を含んで構成される室内空調ユニットと、
 シートに形成されたシート通風路に空気を送風するシート側送風機、室内空調ユニットで温度調整された空気の少なくとも一部をシート側送風機の空気吸入側に導く送風ダクトを含んで構成されるシート空調ユニットと、
 室内側送風機およびシート側送風機の双方を作動させて車室内を暖めるシート暖房運転、シート側送風機を停止させた状態で室内側送風機を作動させて車室内を暖める非シート暖房運転を切り替える暖房切替部と、
 加熱器による送風空気の加熱能力不足を補うために内燃機関に対して要求する要求発熱量を算出する要求熱量算出部と、
 要求発熱量を加味して内燃機関の必要発熱量を決定する必要熱量決定部と、
 必要発熱量の増加に伴って内燃機関の作動時の運転効率が低下し、必要発熱量の減少に伴って運転効率が上昇するように内燃機関の作動を制御する作動制御部と、を備える。
According to one aspect of the present disclosure, a vehicle air conditioning system includes:
An indoor air conditioner unit configured to include a heater that heats blown air blown by the indoor fan, using the cooling water of the internal combustion engine as a heat source, and blows air toward the vehicle interior;
Seat air conditioner including a sheet side blower for blowing air to a sheet ventilation path formed in the seat, and an air duct that guides at least a part of the air whose temperature is adjusted by the indoor air conditioning unit to the air suction side of the sheet side blower Unit,
Heating switching unit for switching between a seat heating operation for operating both the indoor fan and the seat fan to warm the vehicle interior, and a non-seat heating operation for operating the indoor fan with the seat fan stopped to warm the vehicle interior When,
A required calorific value calculation unit for calculating a required calorific value required for the internal combustion engine in order to compensate for the insufficient heating capacity of the blown air by the heater;
A required heat quantity determining unit that determines the required heat value of the internal combustion engine in consideration of the required heat value;
An operation control unit that controls the operation of the internal combustion engine so that the operation efficiency during operation of the internal combustion engine decreases with an increase in the required heat generation amount and the operation efficiency increases with a decrease in the required heat generation amount.
 そして、要求熱量算出部は、シート暖房運転時に非シート暖房運転時に比べて要求発熱量を減少させるように構成されている。 The required heat amount calculation unit is configured to reduce the required heat generation amount in the seat heating operation compared to the non-seat heating operation.
 これによれば、シート暖房運転時には、非シート暖房運転時に比べて、要求発熱量を減少させるので、内燃機関が運転効率のよい状態で作動する。このため、内燃機関の燃料消費量を抑えることができる。 According to this, during the seat heating operation, the required heat generation amount is reduced as compared with the non-seat heating operation, so that the internal combustion engine operates in a state where the operation efficiency is good. For this reason, the fuel consumption of an internal combustion engine can be suppressed.
 そして、シート空調ユニットは、室内空調ユニットよりも乗員の近くに位置しており、直接的に乗員を暖めることができるので、シート暖房運転時に要求発熱量を減少させたとしても、乗員の快適性への影響が小さい。 The seat air conditioning unit is located closer to the occupant than the indoor air conditioning unit and can directly warm the occupant, so even if the required heat generation is reduced during seat heating operation, the comfort of the occupant The impact on is small.
 従って、車両用空調システムにおいて、内燃機関の燃料消費量の増加を抑えつつ、乗員の快適性の低下を抑えることが可能となる。 Therefore, in the vehicle air conditioning system, it is possible to suppress a decrease in passenger comfort while suppressing an increase in fuel consumption of the internal combustion engine.
第1実施形態の車両用空調システムの概略構成図である。It is a schematic block diagram of the vehicle air conditioning system of 1st Embodiment. 図1に示す室内空調ユニットの概略構成図である。It is a schematic block diagram of the indoor air conditioning unit shown in FIG. 第1実施形態の車両用空調システムの制御装置を示すブロック図である。It is a block diagram which shows the control apparatus of the vehicle air conditioner system of 1st Embodiment. 第1実施形態の車両用空調システムの制御装置が実行する室内空調ユニットの加熱能力の調整処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the adjustment process of the heating capability of the indoor air conditioning unit which the control apparatus of the vehicle air conditioner system of 1st Embodiment performs. 第1実施形態の車両用空調システムの制御装置による必要発熱量の決定手法を説明する説明図である。It is explanatory drawing explaining the determination method of the required emitted-heat amount by the control apparatus of the vehicle air conditioner system of 1st Embodiment. シート暖房運転時、非シート暖房運転時、暖房停止時の内燃機関における点火進角の時間変化の一例を示す図である。It is a figure which shows an example of the time change of the ignition advance in the internal combustion engine at the time of seat heating operation, non-seat heating operation, and heating stop. シート暖房運転時、非シート暖房運転時、暖房停止時の内燃機関における冷却水の温度の時間変化を示す図である。It is a figure which shows the time change of the temperature of the cooling water in the internal combustion engine at the time of seat heating operation, non-seat heating operation, and heating stop. 第2実施形態の車両用空調システムの制御装置が実行する室内空調ユニットの加熱能力の調整処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the adjustment process of the heating capability of the indoor air conditioning unit which the control apparatus of the vehicle air conditioner system of 2nd Embodiment performs. 第2実施形態の車両用空調システムの制御装置による必要発熱量の決定手法を説明する説明図である。It is explanatory drawing explaining the determination method of the required emitted-heat amount by the control apparatus of the vehicle air conditioner system of 2nd Embodiment. 第3実施形態の車両用空調システムの概略構成図である。It is a schematic block diagram of the vehicle air conditioning system of 3rd Embodiment. 図10に示す赤外線センサの分解斜視図である。It is a disassembled perspective view of the infrared sensor shown in FIG. 図10に示す赤外線センサの要部を示す斜視図である。It is a perspective view which shows the principal part of the infrared sensor shown in FIG. 第3実施形態の車両用空調システムの制御装置が実行する室内空調ユニットの加熱能力の調整処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the adjustment process of the heating capability of the indoor air conditioning unit which the control apparatus of the vehicle air conditioner system of 3rd Embodiment performs. 第3実施形態の車両用空調システムの制御装置による必要発熱量の決定手法を説明する説明図である。It is explanatory drawing explaining the determination method of the required emitted-heat amount by the control apparatus of the vehicle air conditioner system of 3rd Embodiment.
 以下、本開示の実施形態について図面を参照して説明する。なお、以下の各実施形態において、先行する実施形態で説明した事項と同一もしくは均等である部分には、同一の参照符号を付し、その説明を省略する場合がある。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. Note that, in each of the following embodiments, parts that are the same as or equivalent to the matters described in the preceding embodiment are denoted by the same reference numerals, and the description thereof may be omitted.
 また、各実施形態において、構成要素の一部だけを説明している場合、構成要素の他の部分に関しては、先行する実施形態において説明した構成要素を適用することができる。 In addition, in each embodiment, when only a part of the constituent elements are described, the constituent elements described in the preceding embodiment can be applied to the other parts of the constituent elements.
 以下の実施形態は、特に組み合わせに支障が生じない範囲であれば、特に明示していない場合であっても、各実施形態同士を部分的に組み合わせることができる。 The following embodiments can be partially combined with each other even if they are not clearly specified, as long as they do not cause any trouble in the combination.
 (第1実施形態)
 本実施形態について、図1~図7を参照して説明する。車両用空調システム1は、内燃機関EGから車両走行用の駆動力を得る車両に適用され、内燃機関EGの冷却水を熱源として車室内を空調するシステムである。図1に示すように、車両用空調システム1は、主たる構成要素として、室内空調ユニット10、シート空調ユニット50、制御装置100を備えている。
(First embodiment)
This embodiment will be described with reference to FIGS. The vehicle air-conditioning system 1 is a system that is applied to a vehicle that obtains driving force for vehicle travel from the internal combustion engine EG, and that air-conditions the vehicle interior using cooling water of the internal combustion engine EG as a heat source. As shown in FIG. 1, the vehicle air conditioning system 1 includes an indoor air conditioning unit 10, a seat air conditioning unit 50, and a control device 100 as main components.
 まず、室内空調ユニット10は、車室内最前部のインストルメントパネルIPの内側に配置されている。図2に示すように、室内空調ユニット10は、その外殻を構成する空調ケース11の内部に室内側送風機13、蒸発器14、ヒータコア18等が収容されている。空調ケース11の空気流れ最上流側には、車室内空気(以下、内気と呼ぶ。)および車室外空気(以下、外気と呼ぶ。)を切り替え導入する内外気切替箱12が配置されている。内外気切替箱12は、空調ケース11内に内気を導入する内気導入口12a、空調ケース11内に外気を導入する外気導入口12bが形成されている。また、内外気切替箱12には、制御装置100からの制御信号に応じて内気導入口12aおよび外気導入口12bの開口面積を調整する内外気切替ドア12cが配置されている。 First, the indoor air conditioning unit 10 is disposed inside the instrument panel IP at the foremost part of the vehicle interior. As shown in FIG. 2, the indoor air conditioning unit 10 includes an indoor air blower 13, an evaporator 14, a heater core 18, and the like housed in an air conditioning case 11 that constitutes an outer shell thereof. On the most upstream side of the airflow case 11, an inside / outside air switching box 12 for switching and introducing vehicle interior air (hereinafter referred to as “inside air”) and vehicle exterior air (hereinafter referred to as “outside air”) is disposed. The inside / outside air switching box 12 is formed with an inside air introduction port 12 a for introducing inside air into the air conditioning case 11 and an outside air introduction port 12 b for introducing outside air into the air conditioning case 11. The inside / outside air switching box 12 is provided with an inside / outside air switching door 12c that adjusts the opening areas of the inside air introduction port 12a and the outside air introduction port 12b in accordance with a control signal from the control device 100.
 内外気切替箱12の空気流れ下流側には、室内側送風機13が配置されている。室内側送風機13は、内外気切替箱12を介して吸入した空気を車室内へ向けて送風する送風機である。室内側送風機13は、制御装置100からの制御信号に応じて回転数を変更可能な電動送風機で構成されている。なお、室内側送風機13のファンとしては、遠心式ファン、軸流ファン、クロスフローファン等を採用することができる。 An indoor fan 13 is disposed on the downstream side of the air flow in the inside / outside air switching box 12. The indoor-side blower 13 is a blower that blows air sucked through the inside / outside air switching box 12 toward the vehicle interior. The indoor blower 13 is an electric blower that can change the number of rotations in accordance with a control signal from the control device 100. Note that a centrifugal fan, an axial fan, a cross flow fan, or the like can be employed as the fan of the indoor fan 13.
 室内側送風機13の空気流れ下流側には、蒸発器14が配置されている。蒸発器14は、内部を流通する冷媒と室内側送風機13から送風された送風空気とを熱交換させて、当該送風空気を冷却する冷却用熱交換器である。具体的には、蒸発器14は、圧縮機31、凝縮器32、気液分離器33および膨張弁34等とともに、蒸気圧縮式の冷凍サイクル30を構成している。 The evaporator 14 is arrange | positioned in the air flow downstream of the indoor side air blower 13. As shown in FIG. The evaporator 14 is a cooling heat exchanger that exchanges heat between the refrigerant circulating in the interior and the blown air blown from the indoor fan 13 to cool the blown air. Specifically, the evaporator 14 constitutes a vapor compression refrigeration cycle 30 together with a compressor 31, a condenser 32, a gas-liquid separator 33, an expansion valve 34, and the like.
 圧縮機31は、冷凍サイクル30において冷媒を吸入し、圧縮して吐出するものである。本実施形態の圧縮機31は、内燃機関EGからの駆動力が伝達されることで駆動するように構成されている。圧縮機31は、制御装置100からの制御信号に応じて、内燃機関EGからの駆動力が伝達される駆動状態と、駆動力が伝達されない停止状態とに変更される。なお、圧縮機31は、電動圧縮機で構成されていてもよい。 The compressor 31 sucks in the refrigerant in the refrigeration cycle 30, compresses it, and discharges it. The compressor 31 of the present embodiment is configured to be driven by transmission of driving force from the internal combustion engine EG. The compressor 31 is changed into a driving state in which the driving force from the internal combustion engine EG is transmitted and a stopped state in which the driving force is not transmitted in accordance with a control signal from the control device 100. In addition, the compressor 31 may be comprised with the electric compressor.
 凝縮器32、内部を流通する冷媒と外気とを熱交換させることにより、圧縮機31から吐出された冷媒を凝縮させる室外熱交換器である。気液分離器33は、凝縮器32で凝縮された冷媒の気液を分離して余剰冷媒を蓄えるとともに、液相冷媒を下流側に流すレシーバである。膨張弁34は、気液分離器33から流出した液相冷媒を減圧膨張させる減圧機構である。蒸発器14は、膨張弁34で減圧膨張された冷媒を蒸発させて、冷媒に吸熱作用を発揮させる熱交換器である。 The condenser 32 is an outdoor heat exchanger that condenses the refrigerant discharged from the compressor 31 by exchanging heat between the refrigerant circulating inside and the outside air. The gas-liquid separator 33 is a receiver that separates the gas-liquid of the refrigerant condensed by the condenser 32 and stores surplus refrigerant and flows the liquid-phase refrigerant downstream. The expansion valve 34 is a decompression mechanism that decompresses and expands the liquid-phase refrigerant that has flowed out of the gas-liquid separator 33. The evaporator 14 is a heat exchanger that evaporates the refrigerant decompressed and expanded by the expansion valve 34 and exerts an endothermic effect on the refrigerant.
 また、空調ケース11内の蒸発器14の空気流れ下流側には、蒸発器14を通過した後の空気が流れる温風通路15、冷風バイパス通路16、並びに、温風通路15および冷風バイパス通路16から流出した空気を混合させる混合空間17が形成されている。 Further, on the downstream side of the air flow of the evaporator 14 in the air conditioning case 11, the hot air passage 15, the cold air bypass passage 16, the hot air passage 15, and the cold air bypass passage 16 through which the air after passing through the evaporator 14 flows. A mixing space 17 is formed for mixing the air that has flowed out of the air.
 温風通路15には、蒸発器14通過後の空気を加熱するためのヒータコア18が配置されている。ヒータコア18は、内燃機関EGを冷却する冷却水と蒸発器14を通過した後の送風空気とを熱交換させて、送風空気を加熱する加熱器である。 A heater core 18 for heating the air after passing through the evaporator 14 is disposed in the hot air passage 15. The heater core 18 is a heater that heats the blown air by exchanging heat between the cooling water that cools the internal combustion engine EG and the blown air that has passed through the evaporator 14.
 具体的には、ヒータコア18と内燃機関EGとは、冷却水配管41によって接続されている。これにより、ヒータコア18とエンジンEGとの間を冷却水が循環する冷却水回路40が構成されている。この冷却水回路40には、冷却水を循環させるための冷却水ポンプ40aが配置されている。冷却水ポンプ40aは、制御装置100から出力される制御信号によって回転数が制御される電動ポンプで構成されている。 Specifically, the heater core 18 and the internal combustion engine EG are connected by a cooling water pipe 41. Thereby, the cooling water circuit 40 in which the cooling water circulates between the heater core 18 and the engine EG is configured. The cooling water circuit 40 is provided with a cooling water pump 40a for circulating the cooling water. The cooling water pump 40 a is configured by an electric pump whose rotation speed is controlled by a control signal output from the control device 100.
 一方、冷風バイパス通路16は、蒸発器14を通過した後の空気を、ヒータコア18を通過させることなく、混合空間17に導くための空気通路である。従って、混合空間17にて混合された送風空気の温度は、温風通路15を通過する空気および冷風バイパス通路16を通過する空気の風量割合によって変化する。 On the other hand, the cold air bypass passage 16 is an air passage for guiding the air after passing through the evaporator 14 to the mixing space 17 without passing through the heater core 18. Accordingly, the temperature of the blown air mixed in the mixing space 17 varies depending on the air volume ratio of the air passing through the hot air passage 15 and the air passing through the cold air bypass passage 16.
 そこで、本実施形態では、蒸発器14の空気流れ下流側であって、温風通路15および冷風バイパス通路16の入口側に、温風通路15および冷風バイパス通路16へ流入させる冷風の風量割合を変化させるエアミックスドア19を配置している。エアミックスドア19は、混合空間17内の空気温度を調整する温度調整部材として機能する。エアミックスドア19は、制御装置100から出力される制御信号によって、その作動が制御される。 Therefore, in the present embodiment, the air volume ratio of the cool air flowing into the hot air passage 15 and the cold air bypass passage 16 on the downstream side of the air flow of the evaporator 14 and on the inlet side of the hot air passage 15 and the cold air bypass passage 16 is set as follows. An air mix door 19 to be changed is arranged. The air mix door 19 functions as a temperature adjusting member that adjusts the air temperature in the mixing space 17. The operation of the air mix door 19 is controlled by a control signal output from the control device 100.
 さらに、空調ケース11の送風空気流れ最下流部には、混合空間17で温度調整された送風空気を吹き出す第1~第3吹出開口部20~22が設けられている。 Furthermore, first to third blowout openings 20 to 22 for blowing out the blown air whose temperature is adjusted in the mixing space 17 are provided in the most downstream portion of the blown air flow of the air conditioning case 11.
 第1吹出開口部20は、車室内の乗員の上半身に向けて空気を吹き出す開口部である。第2吹出開口部21は、乗員の足元または後述する送風ダクト52に空気を吹き出す開口部である。また、第3吹出開口部22は、車両前面の窓ガラスWの内側に向けて空気を吹き出す開口部である。 The first blowout opening 20 is an opening through which air is blown toward the upper body of the passenger in the passenger compartment. The 2nd blowing opening 21 is an opening which blows off air to a passenger | crew's step or the ventilation duct 52 mentioned later. Moreover, the 3rd blowing opening part 22 is an opening part which blows off air toward the inner side of the window glass W of the vehicle front.
 そして、各吹出開口部20~22の空気流れ上流側には、開口面積を調整する第1~第3モードドア20a~22aが配置されている。各モードドア20a~22aは、吹出口モードを切り替える吹出口モード切替部を構成している。各モードドア20a~22aは、制御装置100から出力される制御信号によってその作動が制御される。 Further, first to third mode doors 20a to 22a for adjusting the opening area are arranged on the upstream side of the air flow of the respective blowing openings 20 to 22. Each mode door 20a to 22a constitutes an outlet mode switching unit for switching an outlet mode. The operation of each mode door 20a to 22a is controlled by a control signal output from the control device 100.
 次に、シート空調ユニット50について説明する。図1に示すように、シート空調ユニット50は、室内空調ユニット10で温度調整された空気をシート2の表面から吹き出すことで、乗員に快適性を付与する空調ユニットである。シート空調ユニット50は、車両の前方に配置されたシート2に対して取り付けられている。シート2は、乗員の下半身を支えるシートクッション部2aと、乗員の上半身を支えるシートバック部2bを有している。 Next, the seat air conditioning unit 50 will be described. As shown in FIG. 1, the seat air conditioning unit 50 is an air conditioning unit that imparts comfort to the passenger by blowing out the air whose temperature has been adjusted by the indoor air conditioning unit 10 from the surface of the seat 2. The seat air conditioning unit 50 is attached to the seat 2 arranged in front of the vehicle. The seat 2 includes a seat cushion portion 2a that supports the lower body of the occupant and a seat back portion 2b that supports the upper body of the occupant.
 シート2には、シート空調ユニット50から供給される空気を図示しないシート表面の空気吹出部に導くシート通風路3が形成されている。本実施形態のシート通風路3は、シートクッション部2a、シートバック部2bの空気吹出部の双方から空気が吹き出されるように、シート2の内部で枝分かれしている。また、シート通風路3の空気流れ最上流部には、シート空調ユニット50に接続する接続ダクト5が配置されている。 The sheet 2 is formed with a sheet ventilation path 3 that guides air supplied from the sheet air-conditioning unit 50 to an air blowing portion on the sheet surface (not shown). The seat ventilation path 3 of the present embodiment is branched inside the seat 2 so that air is blown from both the seat cushion portion 2a and the air blowing portion of the seat back portion 2b. A connection duct 5 connected to the seat air conditioning unit 50 is disposed at the most upstream part of the air flow in the seat ventilation path 3.
 接続ダクト5は、一端側がシート通風路3の空気入口側に接続され、他端側がシート空調ユニット50のシート側送風機51の空気流出口側に接続されている。接続ダクト5は、シート2と床6との間に配置されている。接続ダクト5は、上下方向や前後方向へのシート位置の移動に対応可能なように、蛇腹状のダクトで構成されている。なお、接続ダクト5としては、可撓性を有するダクトであれば、蛇腹状のダクト以外のダクトを採用してもよい。 The connection duct 5 has one end connected to the air inlet side of the seat ventilation path 3 and the other end connected to the air outlet side of the seat side blower 51 of the seat air conditioning unit 50. The connection duct 5 is disposed between the seat 2 and the floor 6. The connection duct 5 is formed of a bellows-like duct so as to be able to cope with the movement of the seat position in the vertical direction and the front-rear direction. The connecting duct 5 may be a duct other than the bellows-shaped duct as long as it is a flexible duct.
 シート空調ユニット50は、シート2に形成されたシート通風路3に空気を送風するシート側送風機51、室内空調ユニット10で温度調整された空気の少なくとも一部をシート側送風機51の空気吸入側に導く送風ダクト52を含んでいる。 The seat air-conditioning unit 50 includes a sheet-side blower 51 that blows air to the sheet ventilation path 3 formed in the seat 2, and at least a part of the air whose temperature is adjusted by the indoor air-conditioning unit 10 to the air suction side of the seat-side blower 51. The air duct 52 which guides is included.
 シート側送風機51は、シート2の下面に対向する床6の下に配置されている。シート側送風機51は、送風ダクト52側から吸い込んだ空気を、接続ダクト5を介してシート通風路3側へ吹き出す。 The sheet-side blower 51 is disposed under the floor 6 facing the lower surface of the sheet 2. The sheet-side blower 51 blows out the air sucked from the blower duct 52 side to the sheet ventilation path 3 side via the connection duct 5.
 本実施形態のシート側送風機51は、制御装置100からの制御信号に応じて回転数を変更可能な電動送風機で構成されている。なお、シート側送風機51のファンとしては、遠心式ファン、軸流ファン、クロスフローファン等を採用することができる。 The seat-side blower 51 of the present embodiment is configured by an electric blower that can change the rotation speed in accordance with a control signal from the control device 100. In addition, as a fan of the seat side blower 51, a centrifugal fan, an axial fan, a cross flow fan, or the like can be employed.
 送風ダクト52は、シート側送風機51と同様に、車両の床6の下側に配置されている。送風ダクト52は、一端側が室内空調ユニット10に設けられた第2吹出開口部21に接続され、他端側がシート側送風機51の空気吸入側に接続されている。 The air duct 52 is arranged below the floor 6 of the vehicle, like the seat side fan 51. One end side of the air duct 52 is connected to the second blow-out opening 21 provided in the indoor air conditioning unit 10, and the other end side is connected to the air suction side of the seat-side blower 51.
 次に、図3を参照して、本実施形態の電気制御部である制御装置100について説明する。制御装置100は、空調用制御装置110、および駆動用制御装置120を有している。空調用制御装置110および駆動用制御装置120は、CPU、ROMおよびRAM等を含むマイクロコンピュータとその周辺回路から構成されている。そして、空調用制御装置110および駆動用制御装置120は、そのROM内に記憶された制御プログラムに基づいて各種演算、処理を行い、出力側に接続された各種機器の作動を制御する。なお、空調用制御装置110および駆動用制御装置120の記憶部は、非遷移的実体的記憶媒体で構成される。 Next, with reference to FIG. 3, the control apparatus 100 which is an electric control part of this embodiment is demonstrated. The control device 100 includes an air conditioning control device 110 and a drive control device 120. The air conditioning control device 110 and the drive control device 120 are constituted by a microcomputer including a CPU, a ROM, a RAM, and the like and peripheral circuits thereof. The air conditioning control device 110 and the drive control device 120 perform various calculations and processes based on the control program stored in the ROM, and control the operation of various devices connected to the output side. Note that the storage units of the air-conditioning control device 110 and the drive control device 120 are configured by non-transitional physical storage media.
 空調用制御装置110は、室内空調ユニット10およびシート空調ユニット50の作動を制御する装置である。空調用制御装置110の出力側には、室内空調ユニット10の構成機器である内外気切替ドア12c、室内側送風機13、エアミックスドア19、第1~第3モードドア20a~22a等が接続されている。また、空調用制御装置110の出力側には、冷凍サイクル30の構成機器である圧縮機31、冷却水回路40の構成機器である冷却水ポンプ40a、シート空調ユニット50の構成機器であるシート側送風機51等が接続されている。 The air conditioning control device 110 is a device that controls the operation of the indoor air conditioning unit 10 and the seat air conditioning unit 50. The output side of the air conditioning control device 110 is connected to the indoor / outdoor air switching door 12c, the indoor air blower 13, the air mix door 19, the first to third mode doors 20a to 22a, etc., which are components of the indoor air conditioning unit 10. ing. Further, on the output side of the control device 110 for air conditioning, the compressor 31 that is a component device of the refrigeration cycle 30, the cooling water pump 40a that is a component device of the cooling water circuit 40, and the seat side that is a component device of the seat air conditioning unit 50 are provided. A blower 51 and the like are connected.
 空調用制御装置110の入力側には、内気温Trを検出する内気センサ111、外気温Tamを検出する外気センサ112、車室内の日射量Tsを検出する日射センサ113が接続されている。また、空調用制御装置110の入力側には、内燃機関EGから流出した冷却水の温度Twを検出する冷却水温度センサ114等の種々の空調制御用のセンサ群が接続されている。 Connected to the input side of the air conditioning control device 110 are an inside air sensor 111 that detects the inside air temperature Tr, an outside air sensor 112 that detects the outside air temperature Tam, and a solar radiation sensor 113 that detects the amount of solar radiation Ts in the passenger compartment. Further, various air conditioning control sensor groups such as a cooling water temperature sensor 114 for detecting the temperature Tw of the cooling water flowing out from the internal combustion engine EG are connected to the input side of the air conditioning control device 110.
 さらに、空調用制御装置110の入力側には、インストルメントパネルIP付近に配置された操作パネル115が接続されている。操作パネル115には、各種操作スイッチとして、空調作動スイッチ115a、運転モードの切替スイッチ115b、車室内温度の設定スイッチ115c、シート空調ユニット50のシート作動スイッチ115d等が設けられている。 Furthermore, an operation panel 115 disposed near the instrument panel IP is connected to the input side of the air conditioning control device 110. The operation panel 115 is provided with various operation switches such as an air conditioning operation switch 115a, an operation mode switching switch 115b, a vehicle interior temperature setting switch 115c, a seat operation switch 115d of the seat air conditioning unit 50, and the like.
 空調作動スイッチ115aは、室内側送風機13を作動させて室内空調ユニット10で車室内へ吹き出す空気の温度調整を実施するための要求信号を空調用制御装置110に出力するスイッチである。 The air conditioning operation switch 115a is a switch that outputs a request signal for operating the indoor fan 13 to adjust the temperature of air blown into the vehicle interior by the indoor air conditioning unit 10 to the air conditioning control device 110.
 シート作動スイッチ115dは、室内側送風機13およびシート側送風機51を作動させて室内空調ユニット10で温度調整された空気をシート2から吹き出すシート空調運転を実施するための要求信号を空調用制御装置110に出力するスイッチである。 The seat operation switch 115d activates the indoor fan 13 and the seat fan 51, and outputs a request signal for performing a seat air-conditioning operation in which the air whose temperature is adjusted in the indoor air-conditioning unit 10 is blown from the seat 2 is the air-conditioning control device 110. It is a switch that outputs to
 例えば、車室内を暖める暖房運転時にシート作動スイッチ115dがオンされると、空調用制御装置110は、室内側送風機13およびシート側送風機51の双方を作動させて車室内を暖めるシート暖房運転を実行する。 For example, when the seat operation switch 115d is turned on during the heating operation for heating the vehicle interior, the air-conditioning control device 110 performs the seat heating operation for operating both the indoor fan 13 and the seat fan 51 to warm the vehicle interior. To do.
 一方、車室内を暖める暖房運転時にシート作動スイッチ115dがオフされると、空調用制御装置110は、シート側送風機51を停止させた状態で室内側送風機13を作動させて、車室内を暖める非シート暖房運転を実行する。本実施形態では、シート作動スイッチ115dが、シート暖房運転と非シート暖房運転を切り替える暖房切替部として機能する。 On the other hand, when the seat operation switch 115d is turned off during the heating operation for heating the vehicle interior, the air-conditioning control device 110 operates the indoor air blower 13 with the seat air blower 51 stopped to warm the vehicle interior. The seat heating operation is executed. In the present embodiment, the seat operation switch 115d functions as a heating switching unit that switches between a seat heating operation and a non-seat heating operation.
 続いて、駆動用制御装置120は、内燃機関EGの作動を制御する装置である。駆動用制御装置120の出力側には、内燃機関EGの駆動用の構成機器である内燃機関EGを始動させるスタータ121、内燃機関EGに燃料を供給する燃料噴射弁の駆動回路122等が接続されている。 Subsequently, the drive control device 120 is a device that controls the operation of the internal combustion engine EG. Connected to the output side of the drive control device 120 are a starter 121 for starting the internal combustion engine EG, which is a component for driving the internal combustion engine EG, a drive circuit 122 for a fuel injection valve for supplying fuel to the internal combustion engine EG, and the like. ing.
 駆動用制御装置120の入力側には、アクセルペダルの踏み込み量であるスロットル開度Swを検出するスロットル開度センサ123、内燃機関EGの回転数Neを検出するエンジン回転数センサ124等の種々のセンサ群が接続されている。 On the input side of the drive control device 120, there are various types such as a throttle opening sensor 123 that detects the throttle opening degree Sw that is the depression amount of the accelerator pedal, and an engine speed sensor 124 that detects the rotation speed Ne of the internal combustion engine EG. Sensor groups are connected.
 本実施形態の制御装置100は、空調用制御装置110および駆動用制御装置120が双方向に通信可能に接続されている。これにより、制御装置100は、空調用制御装置110および駆動用制御装置120の一方の装置に入力された検出信号あるいは操作信号に基づいて、他方の装置の出力側に接続された各種機器の作動を制御することが可能となっている。 In the control device 100 of the present embodiment, the air conditioning control device 110 and the drive control device 120 are connected so as to be capable of bidirectional communication. Accordingly, the control device 100 operates various devices connected to the output side of the other device based on the detection signal or the operation signal input to one of the air conditioning control device 110 and the drive control device 120. Can be controlled.
 例えば、空調用制御装置110が駆動用制御装置120に対して内燃機関EGの運転効率の増減を要求する要求信号を出力することによって、内燃機関EGの運転効率を変化させることが可能となっている。 For example, the operation efficiency of the internal combustion engine EG can be changed by the air conditioning control device 110 outputting a request signal for requesting the drive control device 120 to increase or decrease the operation efficiency of the internal combustion engine EG. Yes.
 この点について説明すると、内燃機関EGの始動時等では、内燃機関EGの冷却水の温度が低く、室内空調ユニット10による送風空気の加熱能力が不足することがある。このため、制御装置100は、室内空調ユニット10による送風空気の加熱能力不足を補うために、あえて内燃機関EGの作動時の運転効率が低下するように、内燃機関EGを制御可能となっている。 Describing this point, at the time of starting the internal combustion engine EG, the temperature of the cooling water of the internal combustion engine EG is low, and the heating capacity of the blown air by the indoor air conditioning unit 10 may be insufficient. For this reason, the control device 100 can control the internal combustion engine EG so that the operating efficiency during the operation of the internal combustion engine EG is lowered in order to compensate for the insufficient heating capacity of the blown air by the indoor air conditioning unit 10. .
 ここで、本実施形態の制御装置100は、その出力側に接続された制御対象となる各種機器を制御する制御部が一体に構成されたものである。そして、制御装置100は、制御対象となる各構成機器の作動を制御するハードウェアやソフトウェアが各構成機器の作動を制御する制御部として機能する。 Here, the control device 100 of the present embodiment is configured such that a control unit that controls various devices to be controlled connected to the output side is integrally configured. In the control device 100, hardware or software that controls the operation of each component device to be controlled functions as a control unit that controls the operation of each component device.
 例えば、本実施形態の制御装置100は、空調用制御装置110および駆動用制御装置120の少なくとも一方で、暖房運転時にヒータコア18による送風空気の加熱能力不足を補うために内燃機関EGに対して要求する要求発熱量Qrを算出する構成となっている。本実施形態では、制御装置100における要求発熱量Qrを算出するハードウェアやソフトウェアが要求熱量算出部100aを構成している。 For example, the control device 100 according to the present embodiment requests the internal combustion engine EG to compensate for the insufficient heating capacity of the blown air by the heater core 18 during heating operation, at least one of the air conditioning control device 110 and the drive control device 120. The required heat generation amount Qr is calculated. In the present embodiment, hardware or software for calculating the required heat generation amount Qr in the control device 100 constitutes the required heat amount calculation unit 100a.
 また、本実施形態の制御装置100は、空調用制御装置110および駆動用制御装置120の少なくとも一方で、要求熱量算出部100aで算出した要求発熱量Qrを加味して内燃機関EGにおける必要発熱量Qnを決定する構成となっている。本実施形態では、制御装置100における必要発熱量Qnを決定するハードウェアやソフトウェアが必要熱量決定部100bを構成している。 In addition, the control device 100 of the present embodiment includes at least one of the air-conditioning control device 110 and the drive control device 120, taking into account the required heat value Qr calculated by the required heat value calculation unit 100a, and the required heat value in the internal combustion engine EG. Qn is determined. In the present embodiment, hardware and software for determining the required heat generation amount Qn in the control device 100 constitute the required heat amount determination unit 100b.
 さらに、本実施形態の制御装置100は、必要発熱量Qnの増加に伴って内燃機関EGの作動時の運転効率が上昇し、必要発熱量Qnの減少に伴って運転効率が低下するように、駆動用制御装置120で内燃機関EGの作動を制御する構成となっている。本実施形態では、制御装置100における内燃機関EGの作動を制御するハードウェアやソフトウェアが作動制御部100cを構成している。 Further, the control device 100 of the present embodiment increases the operation efficiency when the internal combustion engine EG is operated as the required heat generation amount Qn increases, and decreases the operation efficiency as the required heat generation amount Qn decreases. The drive control device 120 is configured to control the operation of the internal combustion engine EG. In the present embodiment, hardware and software for controlling the operation of the internal combustion engine EG in the control device 100 constitute the operation control unit 100c.
 次に、本実施形態の車両用空調システム1の作動について説明する。車両用空調システム1は、内燃機関EGの始動後、空調作動スイッチ115aがオンされると、制御装置100が各種構成機器を制御して車室内の空調運転を開始する。 Next, the operation of the vehicle air conditioning system 1 of this embodiment will be described. In the vehicular air conditioning system 1, when the air conditioning operation switch 115 a is turned on after the internal combustion engine EG is started, the control device 100 controls various components to start the air conditioning operation in the vehicle interior.
 本実施形態の車両用空調システム1は、運転モードの切替スイッチ115bが冷房モードに設定されている際に、制御装置100が各種構成機器を制御して、車室内を冷却する冷房運転を行う。 In the vehicle air conditioning system 1 according to the present embodiment, when the operation mode changeover switch 115b is set to the cooling mode, the control device 100 controls the various components to perform the cooling operation for cooling the vehicle interior.
 以下、制御装置100が実行する冷房モード時の各種構成機器の基本的な制御態様について説明する。まず、制御装置100は、冷凍サイクル30の圧縮機31を内燃機関EGからの駆動力が伝達される駆動状態に制御する。 Hereinafter, basic control modes of various components in the cooling mode executed by the control device 100 will be described. First, the control device 100 controls the compressor 31 of the refrigeration cycle 30 to a driving state in which the driving force from the internal combustion engine EG is transmitted.
 また、制御装置100は、各種センサ群の検出信号および操作パネル115の操作信号に基づいて、目標吹出温度TAOを算出する。TAOは操作パネル115の設定スイッチ115cにより設定した設定温度Tsetに車室内温度に近づけるために必要な吹出空気温度である。具体的には、制御装置100は、設定スイッチ115cで設定された設定温度Tset、内気温Tr、外気温Tam、日射量Tsに基づいて、以下の数式F1を用いてTAOを算出する。 Further, the control device 100 calculates the target blowing temperature TAO based on the detection signals of various sensor groups and the operation signals of the operation panel 115. TAO is a blown air temperature necessary to bring the vehicle interior temperature close to the set temperature Tset set by the setting switch 115c of the operation panel 115. Specifically, the control device 100 calculates TAO using the following formula F1 based on the set temperature Tset, the internal air temperature Tr, the external air temperature Tam, and the solar radiation amount Ts set by the setting switch 115c.
 TAO=Kset×Tset-Kr×Tr-Kam×Tam-Ks×Ts+C…(F1)
 なお、数式F1に示すKset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
TAO = Kset × Tset−Kr × Tr−Kam × Tam−Ks × Ts + C (F1)
Note that Kset, Kr, Kam, and Ks shown in Formula F1 are control gains, and C is a correction constant.
 そして、制御装置100は、TAOに基づいて、室内側送風機13の回転数、内外気切替ドア12c、各モードドア20a~22a、エアミックスドア19の開度等を決定し、決定した制御状態が得られるように各種機器に制御信号を出力する。制御装置100は、操作信号および検出信号の読込み→TAOの算出→新たな制御状態の決定→制御信号の出力といったルーチンを繰り返す。 Then, the control device 100 determines the rotational speed of the indoor blower 13, the inside / outside air switching door 12c, the mode doors 20a to 22a, the opening degree of the air mix door 19 and the like based on TAO, and the determined control state is Control signals are output to various devices so as to be obtained. The control device 100 repeats a routine of reading an operation signal and a detection signal → calculating TAO → determining a new control state → outputting a control signal.
 これにより、冷房運転時には、室内空調ユニット10において、室内側送風機13からの送風空気が蒸発器14で冷却される。そして、室内空調ユニット10で冷却された空気によって車室内の冷房が実現される。 Thereby, during the cooling operation, the air blown from the indoor side blower 13 is cooled by the evaporator 14 in the indoor air conditioning unit 10. And the cooling of the vehicle interior is realized by the air cooled by the indoor air conditioning unit 10.
 具体的には、シート作動スイッチ115dがオフ状態の場合には、室内空調ユニット10で冷却された空気が、車室内へ吹き出されることで、乗員に対して間接的に冷風が供給される。 Specifically, when the seat operation switch 115d is in an OFF state, the air cooled by the indoor air conditioning unit 10 is blown into the vehicle interior, so that cold air is indirectly supplied to the passenger.
 一方、冷房運転時にシート作動スイッチ115dがオン状態の場合には、図1の白抜き矢印で示すように、室内空調ユニット10で冷却された空気がシート空調ユニット50によってシート2から吹き出されることで、乗員に対して直接的に冷風が供給される。 On the other hand, when the seat operation switch 115d is in the on state during the cooling operation, the air cooled by the indoor air conditioning unit 10 is blown out from the seat 2 by the seat air conditioning unit 50, as indicated by the white arrow in FIG. Thus, the cool air is directly supplied to the occupant.
 続いて、車両用空調システム1は、運転モードの切替スイッチ115bが暖房モードに設定されている際に、制御装置100が各種構成機器を制御して、車室内を暖める暖房運転を行う。 Subsequently, when the operation mode changeover switch 115b is set to the heating mode, the vehicle air conditioning system 1 performs a heating operation in which the control device 100 controls various components to warm the vehicle interior.
 以下、制御装置100が実行する暖房モード時の各種構成機器の基本的な制御態様について説明する。まず、制御装置100は、ヒータコア18に対して内燃機関EGの冷却水が流入するように、冷却水ポンプ40aを作動させる。 Hereinafter, basic control modes of various components in the heating mode executed by the control device 100 will be described. First, the control device 100 operates the cooling water pump 40 a so that the cooling water of the internal combustion engine EG flows into the heater core 18.
 続いて、制御装置100は、冷房運転時と同様にTAOを算出する。そして、制御装置100は、TAOに基づいて、室内側送風機13の回転数、内外気切替ドア12c、各モードドア20a~22a、エアミックスドア19の開度等を決定し、決定した制御状態が得られるように各種機器に制御信号を出力する。制御装置100は、操作信号および検出信号の読込み→TAOの算出→新たな制御状態の決定→制御信号の出力といったルーチンを繰り返す。 Subsequently, the control device 100 calculates TAO in the same manner as in the cooling operation. Then, the control device 100 determines the rotational speed of the indoor blower 13, the inside / outside air switching door 12c, the mode doors 20a to 22a, the opening degree of the air mix door 19 and the like based on TAO, and the determined control state is Control signals are output to various devices so as to be obtained. The control device 100 repeats a routine of reading an operation signal and a detection signal → calculating TAO → determining a new control state → outputting a control signal.
 これにより、暖房運転時には、室内空調ユニット10において、室内側送風機13からの送風空気がヒータコア18で加熱される。そして、室内空調ユニット10で加熱された空気によって車室内の暖房が実現される。 Thus, during the heating operation, the air blown from the indoor fan 13 is heated by the heater core 18 in the indoor air conditioning unit 10. And the heating of the vehicle interior is realized by the air heated by the indoor air conditioning unit 10.
 具体的には、非シート暖房運転時には、室内空調ユニット10で加熱された空気が、車室内へ吹き出されることで、乗員に対して間接的に温風が供給される。一方、シート暖房運転時には、図1の白抜き矢印で示すように、室内空調ユニット10で加熱された空気がシート空調ユニット50によってシート2から吹き出されることで、乗員に対して直接的に温風が供給される。 Specifically, during the non-seat heating operation, the air heated by the indoor air conditioning unit 10 is blown into the passenger compartment, so that warm air is indirectly supplied to the passenger. On the other hand, during the seat heating operation, the air heated by the indoor air-conditioning unit 10 is blown out of the seat 2 by the seat air-conditioning unit 50 as shown by the white arrows in FIG. Wind is supplied.
 ところで、シート暖房運転時には、シート側送風機51を作動させて、室内空調ユニット10で暖めた空気をシート2の表面まで送風する必要があり、非シート暖房運転時に比べて車両におけるエネルギ消費量が増大してしまう。このことは、内燃機関EGの燃料消費率が悪化する要因となり、好ましくない。 By the way, at the time of seat heating operation, it is necessary to operate the seat side blower 51 to blow the air warmed by the indoor air conditioning unit 10 to the surface of the seat 2, and the energy consumption in the vehicle is increased as compared with the non-seat heating operation. Resulting in. This causes a deterioration in the fuel consumption rate of the internal combustion engine EG, which is not preferable.
 これに対して、本実施形態では、制御装置100の制御処理によって、シート暖房運転時と非シート暖房運転時におけるヒータコア18による送風空気の加熱能力、すなわち、室内空調ユニット10の加熱能力を変更する構成としている。 On the other hand, in this embodiment, the heating capacity of the blown air by the heater core 18 during the seat heating operation and the non-seat heating operation, that is, the heating capacity of the indoor air conditioning unit 10 is changed by the control processing of the control device 100. It is configured.
 以下、本実施形態の制御装置100が実行する室内空調ユニット10の加熱能力を調整する調整処理について、図4のフローチャートを参照して説明する。なお、図4は、運転モードの切替スイッチ115bが暖房モードに設定された際に、制御装置100が実行する処理の流れを示している。 Hereinafter, the adjustment process for adjusting the heating capacity of the indoor air conditioning unit 10 executed by the control device 100 of the present embodiment will be described with reference to the flowchart of FIG. FIG. 4 shows a flow of processing executed by the control device 100 when the operation mode selector switch 115b is set to the heating mode.
 図4に示すように、制御装置100は、まず、冷却水温度センサ114で内燃機関EGの始動時の冷却水の水温Twoを検出し、制御装置100の記憶部に記憶する(S10)。そして、制御装置100は、冷却水温度センサ114で内燃機関EGの現在の冷却水の水温Twを検出する(S11)。以下では、説明の便宜上、内燃機関EGの始動時の冷却水の水温を始動時水温Twoと呼び、内燃機関EGの現在の冷却水の水温を現状水温Twと呼ぶ。 As shown in FIG. 4, the control device 100 first detects the coolant temperature Two when the internal combustion engine EG is started by the coolant temperature sensor 114 and stores it in the storage unit of the control device 100 (S10). Then, the control device 100 detects the current coolant temperature Tw of the internal combustion engine EG with the coolant temperature sensor 114 (S11). Hereinafter, for convenience of explanation, the coolant temperature at the start of the internal combustion engine EG is referred to as a start-up water temperature Two, and the current coolant temperature of the internal combustion engine EG is referred to as a current coolant temperature Tw.
 続いて、制御装置100は、現在の暖房運転がシート暖房運転であるか否かを判定する(S12)。この判定処理では、シート作動スイッチ115dのオン・オフに基づいて判定する。すなわち、制御装置100は、シート作動スイッチ115dのオンされている場合にシート暖房運転であると判定し、シート作動スイッチ115dのオンされている場合にシート暖房運転でないと判定する。 Subsequently, the control device 100 determines whether or not the current heating operation is the seat heating operation (S12). In this determination process, the determination is made based on whether the seat operation switch 115d is on or off. That is, the control device 100 determines that the seat heating operation is performed when the seat operation switch 115d is turned on, and determines that the seat heating operation is not performed when the seat operation switch 115d is turned on.
 ステップS12の判定処理の結果、シート暖房運転でないと判定された場合、すなわち現在の暖房運転が非シート暖房運転である場合、制御装置100は、基準要求発熱量Qcを算出する(S13)。この基準要求発熱量Qcは、ヒータコア18による送風空気の加熱能力不足を補うのに必要とされる熱量であり、ヒータコア18による送風空気の加熱能力不足に相関性を有する物理量に基づいて制御装置100が算出する。 If it is determined that the seat heating operation is not performed as a result of the determination process in step S12, that is, if the current heating operation is a non-seat heating operation, the control device 100 calculates the reference required heat generation amount Qc (S13). The reference required heat generation amount Qc is the amount of heat required to compensate for the insufficient heating capacity of the blown air by the heater core 18, and is based on a physical quantity that correlates with the insufficient heating capacity of the blown air by the heater core 18. Is calculated.
 制御装置100は、内燃機関EGの冷却水の温度が高くなるに伴って基準要求発熱量Qcが減少し、冷却水の温度が低くなるに伴って基準要求発熱量Qcが増加するように、基準要求発熱量Qcを算出する。 The control device 100 determines that the reference required heat generation amount Qc decreases as the cooling water temperature of the internal combustion engine EG increases, and increases as the cooling water temperature decreases. The required heat generation amount Qc is calculated.
 より具体的には、制御装置100は、始動時水温Two、現状水温Tw、基準要求発熱量Qcの関係を予め規定した基準要求発熱量マップを参照して、ステップS10、S11で検出した始動時水温Two、現状水温Twに基づいて基準要求発熱量Qcを算出する。 More specifically, the control device 100 refers to a reference required heat generation amount map that predetermines the relationship among the start time water temperature Two, the current water temperature Tw, and the reference required heat generation amount Qc, and the start time detected in steps S10 and S11. A reference required heat generation amount Qc is calculated based on the water temperature Two and the current water temperature Tw.
 一方、ステップS12の判定処理の結果、シート暖房運転であると判定された場合、制御装置100は、ステップS13と同様に、基準要求発熱量Qcを算出する(S14)。なお、ステップS14における基準要求発熱量Qcの算出手法は、ステップS13の内容と同様であるため、その説明を省略する。 On the other hand, when it is determined that the seat heating operation is performed as a result of the determination process in step S12, the control device 100 calculates the reference required heat generation amount Qc in the same manner as in step S13 (S14). Note that the calculation method of the reference required heat generation amount Qc in step S14 is the same as the content of step S13, and thus the description thereof is omitted.
 続いて、制御装置100は、シート暖房運転時に、内燃機関EGに対して要求する要求発熱量Qrを減少させる熱量である減少発熱量ΔQを算出する(S15)。この減少発熱量ΔQは、ヒータコア18による送風空気の加熱能力不足に相関性を有する物理量に基づいて制御装置100が算出する。 Subsequently, the control device 100 calculates a reduced heat generation amount ΔQ, which is a heat amount that decreases the required heat generation amount Qr required for the internal combustion engine EG during the seat heating operation (S15). This reduced calorific value ΔQ is calculated by the control device 100 on the basis of a physical quantity having a correlation with insufficient heating capacity of the blown air by the heater core 18.
 制御装置100は、内燃機関EGの冷却水の温度が高くなるに伴って減少発熱量ΔQが増加し、冷却水の温度が低くなるに伴って減少発熱量ΔQが減少するように、減少発熱量ΔQを算出する。 The control device 100 reduces the heat generation amount so that the reduced heat generation amount ΔQ increases as the temperature of the cooling water of the internal combustion engine EG increases, and the heat generation decrease ΔQ decreases as the temperature of the cooling water decreases. ΔQ is calculated.
 より具体的には、制御装置100は、始動時水温Two、現状水温Tw、および減少発熱量ΔQの関係を予め規定した減少発熱量マップを参照して、ステップS10、S11で検出した始動時水温Two、現状水温Twに基づいて減少発熱量ΔQを算出する。なお、制御装置100は、減少発熱量ΔQの上限値が基準要求発熱量Qcとなるように算出する(ΔQ≦Qc)。 More specifically, the control device 100 refers to a reduced heat generation amount map that predetermines the relationship between the starting water temperature Two, the current water temperature Tw, and the reduced heat generation amount ΔQ, and the starting water temperature detected in steps S10 and S11. A reduced heat generation amount ΔQ is calculated based on Two and the current water temperature Tw. The control device 100 calculates the upper limit value of the reduced heat generation amount ΔQ to be the reference required heat generation amount Qc (ΔQ ≦ Qc).
 制御装置100は、ステップS13~S15の制御処理の後、エンジン回転数センサ124で検出された内燃機関EGの回転数Neを読み込む(S16)。また、制御装置100は、スロットル開度センサ123で検出されたスロットル開度Swを読み込む(S17)。 The control device 100 reads the rotational speed Ne of the internal combustion engine EG detected by the engine rotational speed sensor 124 after the control processing of steps S13 to S15 (S16). Further, the control device 100 reads the throttle opening degree Sw detected by the throttle opening degree sensor 123 (S17).
 そして、制御装置100は、内燃機関EGの回転数Neおよびスロットル開度Swに基づいて、内燃機関EGの駆動に要求される内燃機関EGの発熱量である駆動用発熱量Qdを算出する(S18)。具体的には、制御装置100は、回転数Ne、スロットル開度Sw、および駆動用発熱量Qdの関係を予め規定した駆動用発熱量マップを参照して、ステップS16、S17で検出した回転数Ne、スロットル開度Swに基づいて駆動用発熱量Qdを算出する。 Then, based on the rotational speed Ne of the internal combustion engine EG and the throttle opening degree Sw, the control device 100 calculates a drive heat generation amount Qd that is a heat generation amount of the internal combustion engine EG required for driving the internal combustion engine EG (S18). ). Specifically, the control device 100 refers to a driving heat generation amount map in which the relationship among the rotational speed Ne, the throttle opening degree Sw, and the driving heat generation amount Qd is defined in advance, and the rotation speed detected in steps S16 and S17. A driving heat generation amount Qd is calculated based on Ne and the throttle opening degree Sw.
 続いて、制御装置100は、車両走行時および車室内空調時に内燃機関EGに必要とされる必要発熱量Qnを決定する(S19)。制御装置100は、内燃機関EGの作動に必要な駆動用発熱量Qdだけでなく、車室内空調に必要な要求発熱量Qrを加味して必要発熱量Qnを決定する。 Subsequently, the control device 100 determines the required heat generation amount Qn required for the internal combustion engine EG when the vehicle is traveling and when the vehicle is air-conditioned (S19). The control device 100 determines the required heat generation amount Qn in consideration of not only the drive heat generation amount Qd required for the operation of the internal combustion engine EG but also the required heat generation amount Qr required for vehicle interior air conditioning.
 ここで、制御装置100は、シート暖房運転時に非シート暖房運転時に比べて要求発熱量Qrを減少させる。具体的には、本実施形態の制御装置100は、非シート暖房運転時に、基準要求発熱量Qcを要求発熱量Qrとし(Qr=Qc)、当該要求発熱量Qrおよび駆動用発熱量Qdを加算した値を必要発熱量Qnに決定する(Qn=Qd+Qr)。 Here, the control device 100 reduces the required calorific value Qr during the seat heating operation compared to the non-seat heating operation. Specifically, the control device 100 of the present embodiment sets the reference required heat generation amount Qc as the required heat generation amount Qr (Qr = Qc) and adds the required heat generation amount Qr and the drive heat generation amount Qd during non-seat heating operation. The determined value is determined as the required calorific value Qn (Qn = Qd + Qr).
 一方、本実施形態の制御装置100は、シート暖房運転時に、図5に示すように、基準要求発熱量Qcから減少発熱量ΔQを減算した値を要求発熱量Qrとする(Qr=Qc-ΔQ)。そして、制御装置100は、当該要求発熱量Qrおよび駆動用発熱量Qdを加算した値を必要発熱量Qnに決定する(Qn=Qd+Qr)。 On the other hand, as shown in FIG. 5, the control device 100 according to the present embodiment sets a value obtained by subtracting the reduced heat generation amount ΔQ from the reference required heat generation amount Qc as the required heat generation amount Qr (Qr = Qc−ΔQ), as shown in FIG. ). Then, the control device 100 determines a value obtained by adding the required heat generation amount Qr and the drive heat generation amount Qd as the required heat generation amount Qn (Qn = Qd + Qr).
 ここで、本実施形態の制御装置100は、シート暖房運転時に、内燃機関EGの冷却水の温度が高くなるに伴って、減少発熱量ΔQを増加させる。このため、シート暖房運転時には、内燃機関EGの冷却水の温度が高くなるに伴って要求発熱量Qrが減少することになる。 Here, the control device 100 of the present embodiment increases the decreased heat generation amount ΔQ as the temperature of the cooling water of the internal combustion engine EG increases during the seat heating operation. For this reason, during the seat heating operation, the required heat generation amount Qr decreases as the temperature of the cooling water of the internal combustion engine EG increases.
 図4に戻り、制御装置100は、ステップS19で算出した必要発熱量Qnに基づいて、内燃機関EGの作動時の運転効率に影響力の大きい燃料の点火時期を算出する(S20)。本実施形態の制御装置100は、必要発熱量Qnの増加に伴って運転効率が低下し、必要発熱量Qnの減少に伴って運転効率が上昇するように、内燃機関EGの点火時期を規定する点火進角を算出する。 Returning to FIG. 4, the control device 100 calculates the ignition timing of the fuel having a great influence on the operation efficiency when the internal combustion engine EG is operated based on the necessary heat generation amount Qn calculated in step S19 (S20). The control device 100 according to the present embodiment defines the ignition timing of the internal combustion engine EG so that the operation efficiency decreases as the required heat generation amount Qn increases, and the operation efficiency increases as the required heat generation amount Qn decreases. Calculate the ignition advance.
 ここで、内燃機関EGは、点火進角をある程度進角させると、運転効率が向上して発熱量が減少する。一方、内燃機関EGは、点火進角を遅角側に設定すると、運転効率が悪化して発熱量が増加する。このため、本実施形態の制御装置100は、必要発熱量Qnの増加に伴って点火進角が遅角側となり、必要発熱量Qnの減少に伴って点火進角が進角側となるように、点火進角を算出する。 Here, in the internal combustion engine EG, when the ignition advance angle is advanced to some extent, the operation efficiency is improved and the heat generation amount is reduced. On the other hand, in the internal combustion engine EG, when the ignition advance angle is set to the retard angle side, the operation efficiency is deteriorated and the heat generation amount is increased. For this reason, in the control device 100 of the present embodiment, the ignition advance angle becomes the retard side as the required heat generation amount Qn increases, and the ignition advance angle becomes the advance side as the required heat generation amount Qn decreases. The ignition advance angle is calculated.
 続いて、制御装置100は、ステップS20で算出した点火時期で内燃機関EGが作動するように、内燃機関EGの燃料噴射弁の駆動回路122に対して制御信号を出力する(S21)。 Subsequently, the control device 100 outputs a control signal to the fuel injection valve drive circuit 122 of the internal combustion engine EG so that the internal combustion engine EG operates at the ignition timing calculated in step S20 (S21).
 ここで、図6は、シート暖房運転時、非シート暖房運転時、暖房停止時の内燃機関EGにおける点火進角の時間変化の一例を示している。また、図7は、シート暖房運転時、非シート暖房運転時、暖房停止時の内燃機関EGにおける冷却水の温度の時間変化の一例を示している。なお、図6、図7では、実線がシート暖房運転時の変化、一点鎖線が暖房停止時の変化、二点鎖線が非シート暖房運転時の変化を示している。 Here, FIG. 6 shows an example of the time change of the ignition advance in the internal combustion engine EG during the seat heating operation, during the non-seat heating operation, and when the heating is stopped. FIG. 7 shows an example of the time change of the temperature of the cooling water in the internal combustion engine EG during the seat heating operation, the non-seat heating operation, and the heating stop. In FIGS. 6 and 7, the solid line indicates the change during the seat heating operation, the one-dot chain line indicates the change when the heating is stopped, and the two-dot chain line indicates the change during the non-seat heating operation.
 本実施形態では、シート暖房運転時に非シート暖房運転時に比べて要求発熱量を減少させている。このため、シート暖房運転時には、非シート暖房運転時に比べて必要発熱量が減少して、図6に示すように、点火進角が暖房停止時の点火進角に近づく。この結果、シート暖房運転時には、非シート暖房運転時に比べて、内燃機関EGを運転効率の良い状態で作動させることができる。 In the present embodiment, the required heat generation amount is reduced during the seat heating operation compared to the non-seat heating operation. For this reason, at the time of seat heating operation, the required heat generation amount is reduced compared to that at the time of non-seat heating operation, and as shown in FIG. 6, the ignition advance approaches the ignition advance at the time of heating stop. As a result, at the time of seat heating operation, the internal combustion engine EG can be operated with better operating efficiency than at the time of non-seat heating operation.
 ところで、図7に示すように、シート暖房運転時には、非シート暖房運転時に比べて内燃機関EGの冷却水の温度が若干低下してしまうが、シート暖房運転時は、乗員に対して直接的に温風が供給されることから、乗員の快適性への影響は小さい。 By the way, as shown in FIG. 7, the temperature of the cooling water of the internal combustion engine EG is slightly lower during the seat heating operation than during the non-seat heating operation. Since warm air is supplied, the impact on passenger comfort is small.
 以上説明した本実施形態の車両用空調システム1は、シート暖房運転時に非シート暖房運転時に比べて、内燃機関EGに対して要求する要求発熱量Qrを減少させる構成としている。これによれば、シート暖房運転時には、非シート暖房運転時に比べて内燃機関EGを運転効率のよい状態で作動させることができる。このため、内燃機関EGの燃料消費量を抑えることができる。 The vehicle air-conditioning system 1 of the present embodiment described above is configured to reduce the required heat generation amount Qr required for the internal combustion engine EG during the seat heating operation compared to during the non-seat heating operation. According to this, at the time of seat heating operation, the internal combustion engine EG can be operated in a state where the operation efficiency is better than that at the time of non-seat heating operation. For this reason, the fuel consumption of the internal combustion engine EG can be suppressed.
 そして、シート空調ユニット50は、室内空調ユニット10よりも乗員の近くに位置しており、直接的に乗員を暖めることができるので、シート暖房運転時に要求発熱量Qrを減少させたとしても、乗員の快適性への影響が小さい。 The seat air conditioning unit 50 is located closer to the occupant than the indoor air conditioning unit 10 and can directly warm the occupant. Therefore, even if the required heat generation amount Qr is reduced during the seat heating operation, the occupant The impact on comfort is small.
 従って、本実施形態の車両用空調システム1では、内燃機関EGの燃料消費量の増加を抑えつつ、乗員の快適性の低下を抑えることが可能となる。 Therefore, in the vehicle air conditioning system 1 of the present embodiment, it is possible to suppress a decrease in passenger comfort while suppressing an increase in fuel consumption of the internal combustion engine EG.
 ここで、シート暖房運転時に非シート暖房運転時に比べて、過度に要求発熱量Qrを減少させると、内縁機関EGの燃料消費量を大幅に低減できるものの、乗員の快適性に影響が大きくなってしまうことが懸念される。 Here, if the required heat generation amount Qr is excessively reduced compared with the non-seat heating operation during the seat heating operation, the fuel consumption of the inner edge engine EG can be significantly reduced, but the passenger comfort is greatly affected. There is a concern that
 これに対して、本実施形態では、減少発熱量ΔQをヒータコア18による送風空気の加熱能力不足に相関性を有する冷却水に基づいて算出している。これによれば、シート暖房運転時に非シート暖房運転時に比べて要求発熱量Qrを減少させても、乗員の快適性を適切に維持することが可能となる。 On the other hand, in the present embodiment, the reduced heat generation amount ΔQ is calculated based on the cooling water having a correlation with the insufficient heating capacity of the blown air by the heater core 18. According to this, even when the required heat generation amount Qr is reduced during the seat heating operation as compared with the non-seat heating operation, it is possible to appropriately maintain the passenger comfort.
 (第2実施形態)
 次に、第2実施形態について、図8、図9を参照して説明する。本実施形態では、シート暖房運転時に、要求発熱量Qrを減少させる熱量を目標吹出温度TAOに基づいて算出する点が第1実施形態と相違している。
(Second Embodiment)
Next, a second embodiment will be described with reference to FIGS. The present embodiment is different from the first embodiment in that the amount of heat for reducing the required heat generation amount Qr is calculated based on the target blowing temperature TAO during the seat heating operation.
 図8は、本実施形態の制御装置100が実行する室内空調ユニット10の加熱能力を調整する調整処理の流れを示すフローチャートである。なお、図8は、運転モードの切替スイッチ115bが暖房モードに設定された際に、制御装置100が実行する処理の流れを示している。 FIG. 8 is a flowchart showing a flow of adjustment processing for adjusting the heating capacity of the indoor air conditioning unit 10 executed by the control device 100 of the present embodiment. FIG. 8 shows the flow of processing executed by the control device 100 when the operation mode selector switch 115b is set to the heating mode.
 図8に示すように、制御装置100は、まず、各種センサ群の検出信号および操作パネル115の操作信号を読み込む(S30)。そして、制御装置100は、各種センサ群の検出信号および操作パネル115の操作信号に基づいて、目標吹出温度TAOを算出する(S31)。TAOの算出手法については、第1実施形態と同様であることから、その説明を省略する。 As shown in FIG. 8, the control device 100 first reads detection signals of various sensor groups and operation signals of the operation panel 115 (S30). Then, the control device 100 calculates the target blowing temperature TAO based on the detection signals of the various sensor groups and the operation signal of the operation panel 115 (S31). Since the TAO calculation method is the same as that in the first embodiment, a description thereof will be omitted.
 続いて、制御装置100は、暖房運転がシート暖房運転であるか否かを判定する(S32)。この結果、シート暖房運転でないと判定された場合、制御装置100は、基準要求発熱量Qcを算出する(S33)。 Subsequently, the control device 100 determines whether or not the heating operation is the seat heating operation (S32). As a result, when it is determined that the seat heating operation is not performed, the control device 100 calculates a reference required heat generation amount Qc (S33).
 ここで、TAOは、前述の数式F1に示すように、設定温度Tsetと内気温Trとの温度差が大きくなる程増加する。そして、設定温度Tsetと内気温Trとの温度差が大きく乖離した状態は、ヒータコア18による送風空気の加熱能力不足となっている状態でもある。 Here, TAO increases as the temperature difference between the set temperature Tset and the internal temperature Tr increases, as shown in Formula F1. The state in which the temperature difference between the set temperature Tset and the internal temperature Tr is greatly deviated is also a state in which the air blowing capacity by the heater core 18 is insufficient.
 そこで、本実施形態の制御装置100は、TAOが高くなるに伴って基準要求発熱量Qcが増加し、TAOが低くなるに伴って基準要求発熱量Qcが減少するように、基準要求発熱量Qcを算出する。より具体的には、制御装置100は、TAOと基準要求発熱量Qcとの関係を予め規定した基準要求発熱量マップを参照して、ステップS31で算出したTAOに基づいて基準要求発熱量Qcを算出する。 Therefore, in the control device 100 of the present embodiment, the reference required heat generation amount Qc increases so that the reference required heat generation amount Qc increases as TAO increases, and the reference required heat generation amount Qc decreases as TAO decreases. Is calculated. More specifically, the control device 100 refers to the reference required heat generation amount map that predefines the relationship between TAO and the reference required heat generation amount Qc, and sets the reference required heat generation amount Qc based on the TAO calculated in step S31. calculate.
 一方、ステップS32の判定処理の結果、シート暖房運転であると判定された場合、制御装置100は、ステップS33と同様に、基準要求発熱量Qcを算出する(S34)。なお、ステップS34における基準要求発熱量Qcの算出手法は、ステップS33の内容と同様であるため、その説明を省略する。 On the other hand, when it is determined that the seat heating operation is performed as a result of the determination process in step S32, the control device 100 calculates the reference required heat generation amount Qc as in step S33 (S34). Note that the calculation method of the reference required heat generation amount Qc in step S34 is the same as the content of step S33, and thus the description thereof is omitted.
 続いて、制御装置100は、シート暖房運転時の減少発熱量ΔQを算出する(S35)。本実施形態の制御装置100は、TAOが高くなるに伴って減少発熱量ΔQが減少し、TAOが低くなるに伴って減少発熱量ΔQが増加するように、減少発熱量ΔQを算出する。より具体的には、制御装置100は、TAOと減少発熱量ΔQとの関係を予め規定した減少発熱量マップを参照して、ステップS31で算出したTAOに基づいて減少発熱量ΔQを算出する。なお、制御装置100は、減少発熱量ΔQの上限値が基準要求発熱量Qcとなるように算出する(ΔQ≦Qc)。 Subsequently, the control device 100 calculates a reduced calorific value ΔQ during the seat heating operation (S35). The control device 100 according to the present embodiment calculates the reduced heat generation amount ΔQ so that the reduced heat generation amount ΔQ decreases as TAO increases and the decrease heat generation amount ΔQ increases as TAO decreases. More specifically, the control device 100 refers to a reduced calorific value map that predefines the relationship between TAO and the reduced calorific value ΔQ, and calculates the reduced calorific value ΔQ based on the TAO calculated in step S31. The control device 100 calculates the upper limit value of the reduced heat generation amount ΔQ to be the reference required heat generation amount Qc (ΔQ ≦ Qc).
 続いて、制御装置100は、内燃機関EGの回転数Neを読み込む(S36)。また、制御装置100は、スロットル開度センサ123で検出されたスロットル開度Swを読み込む(S37)。そして、制御装置100は、内燃機関EGの回転数Neおよびスロットル開度Swに基づいて、駆動用発熱量Qdを算出する(S38)。なお、図8に示すステップS36~S38の制御処理は、第1実施形態で説明した図4のステップS16~S18の制御処理と同様であることから、その詳細な説明については省略する。 Subsequently, the control device 100 reads the rotational speed Ne of the internal combustion engine EG (S36). Further, the control device 100 reads the throttle opening degree Sw detected by the throttle opening degree sensor 123 (S37). Then, the control device 100 calculates the driving heat generation amount Qd based on the rotational speed Ne of the internal combustion engine EG and the throttle opening degree Sw (S38). Note that the control processing of steps S36 to S38 shown in FIG. 8 is the same as the control processing of steps S16 to S18 of FIG. 4 described in the first embodiment, and thus detailed description thereof is omitted.
 続いて、制御装置100は、車両走行時および車室内空調時に内燃機関EGに必要とされる必要発熱量Qnを決定する(S39)。具体的には、本実施形態の制御装置100は、非シート暖房運転時に、基準要求発熱量Qcを要求発熱量Qrとし(Qr=Qc)、当該要求発熱量Qrおよび駆動用発熱量Qdを加算した値を必要発熱量Qnに決定する(Qn=Qd+Qr)。 Subsequently, the control device 100 determines a necessary heat generation amount Qn required for the internal combustion engine EG when the vehicle is traveling and when the vehicle is air-conditioned (S39). Specifically, the control device 100 of the present embodiment sets the reference required heat generation amount Qc as the required heat generation amount Qr (Qr = Qc) and adds the required heat generation amount Qr and the drive heat generation amount Qd during non-seat heating operation. The determined value is determined as the required calorific value Qn (Qn = Qd + Qr).
 一方、本実施形態の制御装置100は、シート暖房運転時に、図9に示すように、基準要求発熱量Qcから減少発熱量ΔQを減算した値を要求発熱量Qrとする(Qr=Qc-ΔQ)。そして、当該要求発熱量Qrおよび駆動用発熱量Qdを加算した値を必要発熱量Qnに決定する(Qn=Qd+Qr)。 On the other hand, as shown in FIG. 9, the control device 100 of the present embodiment sets the value obtained by subtracting the reduced heat generation amount ΔQ from the reference required heat generation amount Qc as the required heat generation amount Qr (Qr = Qc−ΔQ), as shown in FIG. ). Then, a value obtained by adding the required heat generation amount Qr and the drive heat generation amount Qd is determined as the required heat generation amount Qn (Qn = Qd + Qr).
 ここで、本実施形態の制御装置100は、シート暖房運転時に、TAOが低くなるに伴って、減少発熱量ΔQを増加させる。このため、シート暖房運転時には、TAOが低くなるに伴って要求発熱量Qrが減少することになる。 Here, the control device 100 of the present embodiment increases the decreased heat generation amount ΔQ as the TAO decreases during the seat heating operation. For this reason, during seat heating operation, the required heat generation amount Qr decreases as TAO decreases.
 図8に戻り、制御装置100は、ステップS39で算出した必要発熱量Qnに基づいて、内燃機関EGの作動時の運転効率に影響力の大きい燃料の点火時期を算出する(S40)。そして、制御装置100は、ステップS20で算出した点火時期で内燃機関EGが作動するように、内燃機関EGの燃料噴射弁の駆動回路122に対して制御信号を出力する(S41)。 Referring back to FIG. 8, the control device 100 calculates the ignition timing of the fuel that has a great influence on the operating efficiency during the operation of the internal combustion engine EG, based on the required calorific value Qn calculated in step S39 (S40). Then, the control device 100 outputs a control signal to the drive circuit 122 for the fuel injection valve of the internal combustion engine EG so that the internal combustion engine EG operates at the ignition timing calculated in step S20 (S41).
 その他の構成および作動は、第1実施形態と同様である。本実施形態の車両用空調システム1では、第1実施形態と同様に、内燃機関EGの燃料消費量の増加を抑えつつ、乗員の快適性の低下を抑えることが可能となる。 Other configurations and operations are the same as those in the first embodiment. In the vehicle air conditioning system 1 according to the present embodiment, as in the first embodiment, it is possible to suppress a decrease in passenger comfort while suppressing an increase in fuel consumption of the internal combustion engine EG.
 また、本実施形態では、減少発熱量ΔQをヒータコア18による送風空気の加熱能力不足に相関性を有するTAOに基づいて算出している。これによれば、シート暖房運転時に非シート暖房運転時に比べて要求発熱量Qrを減少させても、乗員の快適性を適切に維持することが可能となる。 Further, in the present embodiment, the reduced heat generation amount ΔQ is calculated based on TAO having a correlation with insufficient heating capacity of the blown air by the heater core 18. According to this, even when the required heat generation amount Qr is reduced during the seat heating operation as compared with the non-seat heating operation, it is possible to appropriately maintain the passenger comfort.
 (第3実施形態)
 次に、第3実施形態について、図10~図14を参照して説明する。本実施形態では、シート暖房運転時に、要求発熱量Qrを減少させる熱量を、赤外線センサ130の検出値に基づいて算出する点が第1実施形態と相違している。
(Third embodiment)
Next, a third embodiment will be described with reference to FIGS. The present embodiment is different from the first embodiment in that the amount of heat for reducing the required heat generation amount Qr is calculated based on the detection value of the infrared sensor 130 during the seat heating operation.
 図10に示すように、本実施形態では、インストルメントパネルIPに赤外線センサ130が設けられている。赤外線センサ130は、非接触型の温度センサであり、シート2の表面付近の温度を検出する温度検出部を構成している。赤外線センサ130は、IRセンサと称されることもある。 As shown in FIG. 10, in this embodiment, an infrared sensor 130 is provided on the instrument panel IP. The infrared sensor 130 is a non-contact temperature sensor and constitutes a temperature detection unit that detects the temperature near the surface of the sheet 2. The infrared sensor 130 is sometimes referred to as an IR sensor.
 図11に示すように、本実施形態の赤外線センサ130は、入力される赤外線量の変化に対応した起電力の変化を温度変化として出力するサーモパイル型の検出素子131を有する。 As shown in FIG. 11, the infrared sensor 130 of this embodiment includes a thermopile detection element 131 that outputs a change in electromotive force corresponding to a change in the amount of input infrared light as a temperature change.
 具体的には、赤外線センサ130は、検出素子131が台座131cに配置されるとともに、カップ状のケース131bによって覆われている。ケース131bの底部には、貫通穴131dが形成されており、当該貫通穴131dにレンズ131eがはめ込まれている。 Specifically, in the infrared sensor 130, the detection element 131 is disposed on the pedestal 131c and is covered with a cup-shaped case 131b. A through hole 131d is formed at the bottom of the case 131b, and a lens 131e is fitted in the through hole 131d.
 また、検出素子131は、図12に示すように、基板131a上に設置されるセンサチップ132、およびセンサチップ132を覆うように配設される赤外線吸収膜133を有する。なお、赤外線吸収膜133は、温度の検出領域となるシート2付近からレンズ131eを介して入射される赤外線を吸収して熱に変換する役割を果たす。 Further, as shown in FIG. 12, the detection element 131 includes a sensor chip 132 installed on the substrate 131a and an infrared absorption film 133 disposed so as to cover the sensor chip 132. The infrared absorption film 133 plays a role of absorbing infrared rays incident from the vicinity of the sheet 2 serving as a temperature detection region through the lens 131e and converting the infrared rays into heat.
 このように構成される赤外線センサ130は、制御装置100の入力側に接続されている。換言すれば、制御装置100には、その入力側に赤外線センサ130が接続されている。 The infrared sensor 130 configured in this way is connected to the input side of the control device 100. In other words, the infrared sensor 130 is connected to the input side of the control device 100.
 次に、本実施形態の制御装置100が実行する室内空調ユニット10の加熱能力を調整する調整処理について、図13を参照して説明する。なお、図13は、運転モードの切替スイッチ115bが暖房モードに設定された際に、制御装置100が実行する処理の流れを示している。 Next, an adjustment process for adjusting the heating capacity of the indoor air conditioning unit 10 executed by the control device 100 of the present embodiment will be described with reference to FIG. FIG. 13 shows a flow of processing executed by the control device 100 when the operation mode changeover switch 115b is set to the heating mode.
 図13に示すように、制御装置100は、まず、赤外線センサ130の検出温度Tir、すなわち、シート2付近の温度を読み込む(S51)。そして、制御装置100は、暖房運転がシート暖房運転であるか否かを判定する(S52)。この結果、シート暖房運転でないと判定された場合、制御装置100は、基準要求発熱量Qcを算出する(S53)。 As shown in FIG. 13, the control device 100 first reads the detected temperature Tir of the infrared sensor 130, that is, the temperature near the sheet 2 (S51). Then, the control device 100 determines whether or not the heating operation is the seat heating operation (S52). As a result, when it is determined that the seat heating operation is not performed, the control device 100 calculates the reference required heat generation amount Qc (S53).
 ここで、シート2に乗員が着座している場合、赤外線センサ130では、シート2に着座した乗員の身体の表面温度を検出することになる。そして、乗員の身体の表面温度が低い状態は、ヒータコア18による送風空気の加熱能力不足となっている状態と考えられる。 Here, when an occupant is seated on the seat 2, the infrared sensor 130 detects the surface temperature of the body of the occupant seated on the seat 2. The state where the surface temperature of the occupant's body is low is considered to be a state where the heating capacity of the blown air by the heater core 18 is insufficient.
 そこで、本実施形態の制御装置100は、赤外線センサ130の検出温度Tirが高くなるに伴って基準要求発熱量Qcが減少し、赤外線センサ130の検出温度Tirが低くなるに伴って基準要求発熱量Qcが増加するように、基準要求発熱量Qcを算出する。より具体的には、制御装置100は、赤外線センサ130の検出温度Tirと基準要求発熱量Qcとの関係を予め規定した基準要求発熱量マップを参照して、ステップS51で読み込んだ赤外線センサ130の検出値に基づいて基準要求発熱量Qcを算出する。 Therefore, in the control device 100 of the present embodiment, the reference required heat generation amount Qc decreases as the detection temperature Tir of the infrared sensor 130 increases, and the reference required heat generation amount as the detection temperature Tir of the infrared sensor 130 decreases. The reference required heat generation amount Qc is calculated so that Qc increases. More specifically, the control device 100 refers to the reference required heat generation amount map in which the relationship between the detected temperature Tir of the infrared sensor 130 and the reference required heat generation amount Qc is defined in advance, and the infrared sensor 130 read in step S51. A reference required heat generation amount Qc is calculated based on the detected value.
 一方、ステップS52の判定処理の結果、シート暖房運転であると判定された場合、制御装置100は、ステップS53と同様に、基準要求発熱量Qcを算出する(S54)。なお、ステップS54における基準要求発熱量Qcの算出手法は、ステップS53の内容と同様であるため、その説明を省略する。 On the other hand, when it is determined that the seat heating operation is performed as a result of the determination process in step S52, the control device 100 calculates the reference required heat generation amount Qc in the same manner as in step S53 (S54). Note that the calculation method of the reference required heat generation amount Qc in step S54 is the same as the content of step S53, and thus the description thereof is omitted.
 続いて、制御装置100は、シート暖房運転時の減少発熱量ΔQを算出する(S55)。本実施形態の制御装置100は、赤外線センサ130の検出温度Tirが高くなるに伴って減少発熱量ΔQが増加し、赤外線センサ130の検出温度Tirが低くなるに伴って減少発熱量ΔQが減少するように、減少発熱量ΔQを算出する。より具体的には、制御装置100は、赤外線センサ130の検出温度Tirと減少発熱量ΔQとの関係を予め規定した減少発熱量マップを参照して、ステップS51で検出した赤外線センサ130の検出値に基づいて減少発熱量ΔQを算出する。なお、制御装置100は、減少発熱量ΔQの上限値が基準要求発熱量Qcとなるように算出する(ΔQ≦Qc)。 Subsequently, the control device 100 calculates a reduced calorific value ΔQ during the seat heating operation (S55). In the control device 100 of the present embodiment, the reduced heat generation amount ΔQ increases as the detection temperature Tir of the infrared sensor 130 increases, and the decrease heat generation amount ΔQ decreases as the detection temperature Tir of the infrared sensor 130 decreases. In this way, the reduced heat generation amount ΔQ is calculated. More specifically, the control device 100 refers to the reduced heat generation amount map that predefines the relationship between the detected temperature Tir of the infrared sensor 130 and the reduced heat generation amount ΔQ, and the detected value of the infrared sensor 130 detected in step S51. Based on the above, a reduced heat generation amount ΔQ is calculated. The control device 100 calculates the upper limit value of the reduced heat generation amount ΔQ to be the reference required heat generation amount Qc (ΔQ ≦ Qc).
 続いて、制御装置100は、内燃機関EGの回転数Neを読み込む(S56)。また、制御装置100は、スロットル開度センサ123で検出されたスロットル開度Swを読み込む(S57)。そして、制御装置100は、内燃機関EGの回転数Neおよびスロットル開度Swに基づいて、駆動用発熱量Qdを算出する(S58)。なお、図13に示すステップS56~S58の制御処理は、第1実施形態で説明した図4のステップS16~S18の制御処理と同様であることから、その詳細な説明については省略する。 Subsequently, the control device 100 reads the rotational speed Ne of the internal combustion engine EG (S56). Further, the control device 100 reads the throttle opening degree Sw detected by the throttle opening degree sensor 123 (S57). Then, the control device 100 calculates the driving heat generation amount Qd based on the rotational speed Ne of the internal combustion engine EG and the throttle opening degree Sw (S58). Note that the control processing of steps S56 to S58 shown in FIG. 13 is the same as the control processing of steps S16 to S18 of FIG. 4 described in the first embodiment, and therefore detailed description thereof is omitted.
 続いて、制御装置100は、車両走行時および車室内空調時に内燃機関EGに必要とされる必要発熱量Qnを決定する(S59)。具体的には、本実施形態の制御装置100は、非シート暖房運転時に、基準要求発熱量Qcを要求発熱量Qrとし(Qr=Qc)、当該要求発熱量Qrおよび駆動用発熱量Qdを加算した値を必要発熱量Qnに決定する(Qn=Qd+Qr)。 Subsequently, the control device 100 determines the necessary heat generation amount Qn required for the internal combustion engine EG when the vehicle is traveling and when the vehicle is air-conditioned (S59). Specifically, the control device 100 of the present embodiment sets the reference required heat generation amount Qc as the required heat generation amount Qr (Qr = Qc) and adds the required heat generation amount Qr and the drive heat generation amount Qd during non-seat heating operation. The determined value is determined as the required calorific value Qn (Qn = Qd + Qr).
 一方、本実施形態の制御装置100は、シート暖房運転時に、図14に示すように、基準要求発熱量Qcから減少発熱量ΔQを減算した値を要求発熱量Qrとする(Qr=Qc-ΔQ)。そして、制御装置100は、要求発熱量Qrおよび駆動用発熱量Qdを加算した値を必要発熱量Qnに決定する(Qn=Qd+Qr)。 On the other hand, in the seat heating operation, as shown in FIG. 14, the control device 100 of the present embodiment sets a value obtained by subtracting the reduced heat generation amount ΔQ from the reference required heat generation amount Qc as the required heat generation amount Qr (Qr = Qc−ΔQ ). Then, the control device 100 determines a value obtained by adding the required heat generation amount Qr and the drive heat generation amount Qd as the required heat generation amount Qn (Qn = Qd + Qr).
 ここで、本実施形態の制御装置100は、シート暖房運転時に、赤外線センサ130の検出温度Tirが高くなるに伴って、減少発熱量ΔQを増加させる。このため、シート暖房運転時には、赤外線センサ130の検出温度Tirが高くなるに伴って要求発熱量Qrが減少することになる。 Here, the control device 100 of the present embodiment increases the decreased heat generation amount ΔQ as the detection temperature Tir of the infrared sensor 130 increases during the seat heating operation. For this reason, during the seat heating operation, the required heat generation amount Qr decreases as the detection temperature Tir of the infrared sensor 130 increases.
 図13に戻り、制御装置100は、ステップS59で算出した必要発熱量Qnに基づいて、内燃機関EGの作動時の運転効率に影響力の大きい燃料の点火時期を算出する(S60)。そして、制御装置100は、ステップS60で算出した点火時期で内燃機関EGが作動するように、内燃機関EGの燃料噴射弁の駆動回路122に対して制御信号を出力する(S61)。 Referring back to FIG. 13, the control device 100 calculates the ignition timing of the fuel having a great influence on the operation efficiency when the internal combustion engine EG is operated based on the necessary heat generation amount Qn calculated in step S59 (S60). The control device 100 then outputs a control signal to the fuel injection valve drive circuit 122 of the internal combustion engine EG so that the internal combustion engine EG operates at the ignition timing calculated in step S60 (S61).
 その他の構成および作動は、第1実施形態と同様である。本実施形態の車両用空調システム1では、第1実施形態と同様に、内燃機関EGの燃料消費量の増加を抑えつつ、乗員の快適性の低下を抑えることが可能となる。 Other configurations and operations are the same as those in the first embodiment. In the vehicle air conditioning system 1 according to the present embodiment, as in the first embodiment, it is possible to suppress a decrease in passenger comfort while suppressing an increase in fuel consumption of the internal combustion engine EG.
 また、本実施形態の車両用空調システム1では、減少発熱量ΔQをヒータコア18による送風空気の加熱能力不足に相関性を有する赤外線センサ130の検出温度Tirに基づいて算出している。これによれば、シート暖房運転時に非シート暖房運転時に比べて要求発熱量Qrを減少させても、乗員の快適性を適切に維持することが可能となる。 Further, in the vehicle air conditioning system 1 of the present embodiment, the reduced heat generation amount ΔQ is calculated based on the detected temperature Tir of the infrared sensor 130 that has a correlation with the insufficient heating capacity of the blown air by the heater core 18. According to this, even when the required heat generation amount Qr is reduced during the seat heating operation as compared with the non-seat heating operation, it is possible to appropriately maintain the passenger comfort.
 特に、赤外線センサ130は、シート2に着座した乗員の身体の表面温度を検出することができるので、乗員が感じる暖房不足に対応して、要求発熱量Qrを調整することができる点で有利である。 In particular, the infrared sensor 130 can detect the surface temperature of the body of the occupant seated on the seat 2, which is advantageous in that the required calorific value Qr can be adjusted in response to the lack of heating felt by the occupant. is there.
 ここで、本実施形態では、シート2付近の温度を赤外線センサ130によって検出する例について説明したが、これに限定されず、例えば、シート2に対して温度センサを設け、当該温度センサによりシート2付近の温度を検出する構成となっていてもよい。 Here, in this embodiment, the example in which the temperature near the sheet 2 is detected by the infrared sensor 130 has been described. However, the present invention is not limited to this. For example, a temperature sensor is provided for the sheet 2 and the sheet 2 is detected by the temperature sensor. It may be configured to detect the temperature in the vicinity.
 (他の実施形態)
 以上、本開示の実施形態について説明したが、本開示は上述の実施形態に限定されるものではなく、適宜変更が可能である。例えば、以下のように種々変形可能である。
(Other embodiments)
As mentioned above, although embodiment of this indication was described, this indication is not limited to the above-mentioned embodiment, and can change suitably. For example, various modifications are possible as follows.
 上述の各実施形態の如く、ヒータコア18による送風空気の加熱能力不足に相関性を有する物理量に基づいて基準要求発熱量Qcを算出することが望ましいが、これに限定されない。基準要求発熱量Qcは、例えば、ヒータコア18による送風空気の加熱能力不足に相関性を有する物理量によらず、一定量となっていてもよい。 As in each of the above-described embodiments, it is desirable to calculate the reference required heat generation amount Qc based on a physical quantity that has a correlation with a shortage of the heating capacity of the blown air by the heater core 18, but the invention is not limited to this. The reference required heat generation amount Qc may be a constant amount, for example, regardless of a physical quantity that has a correlation with insufficient heating capability of the blown air by the heater core 18.
 上述の各実施形態の如く、ヒータコア18による送風空気の加熱能力不足に相関性を有する物理量に基づいて減少発熱量ΔQを算出することが望ましいが、これに限定されない。減少発熱量ΔQは、例えば、ヒータコア18による送風空気の加熱能力不足に相関性を有する物理量によらず、一定量となっていてもよい。 As in each of the above-described embodiments, it is desirable to calculate the reduced heat generation amount ΔQ based on a physical quantity that has a correlation with insufficient heating capacity of the blown air by the heater core 18, but the present invention is not limited to this. For example, the reduced heat generation amount ΔQ may be a constant amount regardless of the physical quantity correlated with the insufficient heating capacity of the blown air by the heater core 18.
 上述の実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。 In the above-described embodiment, it is needless to say that elements constituting the embodiment are not necessarily indispensable except for the case where it is clearly indicated that the element is essential and the case where the element is clearly considered to be essential in principle.
 上述の実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されない。 In the above-described embodiment, when numerical values such as the number, numerical value, quantity, range, etc. of the constituent elements of the embodiment are mentioned, it is particularly limited to a specific number when clearly indicated as essential and in principle. Except in some cases, the number is not limited.
 上述の実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されない。 In the above embodiment, when referring to the shape, positional relationship, etc. of the component, etc., the shape, positional relationship, etc. unless otherwise specified and in principle limited to a specific shape, positional relationship, etc. It is not limited to etc.

Claims (5)

  1.  車両走行用の駆動力を出力する内燃機関(EG)の冷却水を熱源として車室内を空調する車両用空調システムにおいて、
     前記車室内へ向けて空気を送風する室内側送風機(13)、前記内燃機関の冷却水を熱源として前記室内側送風機により送風された送風空気を加熱する加熱器(17)を含んで構成される室内空調ユニット(10)と、
     シート(2)に形成されたシート通風路(3)に空気を送風するシート側送風機(51)、前記室内空調ユニットで温度調整された空気の少なくとも一部を前記シート側送風機の空気吸入側に導く送風ダクト(52)を含んで構成されるシート空調ユニット(50)と、
     前記室内側送風機および前記シート側送風機の双方を作動させて前記車室内を暖めるシート暖房運転、前記シート側送風機を停止させた状態で前記室内側送風機を作動させて前記車室内を暖める非シート暖房運転を切り替える暖房切替部(115d)と、
     前記加熱器による前記送風空気の加熱能力不足を補うために前記内燃機関に対して要求する要求発熱量(Qr)を算出する要求熱量算出部(100a)と、
     前記要求発熱量を加味して前記内燃機関の必要発熱量(Qn)を決定する必要熱量決定部(100b)と、
     前記必要発熱量の増加に伴って前記内燃機関の作動時の運転効率が低下し、前記必要発熱量の減少に伴って前記運転効率が上昇するように前記内燃機関の作動を制御する作動制御部(100c)と、を備え、
     前記要求熱量算出部は、前記シート暖房運転時に前記非シート暖房運転時に比べて前記要求発熱量を減少させる車両用空調システム。
    In a vehicle air conditioning system that air-conditions a vehicle interior using cooling water of an internal combustion engine (EG) that outputs driving force for vehicle travel as a heat source,
    An indoor fan (13) for blowing air toward the vehicle interior and a heater (17) for heating the blown air blown by the indoor fan using the cooling water of the internal combustion engine as a heat source. An indoor air conditioning unit (10);
    A sheet-side fan (51) for blowing air to a sheet ventilation path (3) formed in the sheet (2), and at least part of the air whose temperature is adjusted by the indoor air-conditioning unit is sent to the air suction side of the sheet-side fan A seat air conditioning unit (50) configured to include a leading air duct (52);
    Seat heating operation for operating both the indoor fan and the seat fan to warm the vehicle interior, and non-seat heating for operating the indoor fan and heating the vehicle cabin with the seat fan stopped A heating switching unit (115d) for switching operation;
    A required calorific value calculation unit (100a) for calculating a required calorific value (Qr) required for the internal combustion engine in order to compensate for a lack of heating capability of the blown air by the heater;
    A required heat amount determining unit (100b) for determining the required heat value (Qn) of the internal combustion engine in consideration of the required heat value;
    An operation control unit that controls the operation of the internal combustion engine so that the operation efficiency at the time of operation of the internal combustion engine decreases as the necessary heat generation amount increases, and the operation efficiency increases as the necessary heat generation amount decreases. (100c)
    The required heat amount calculation unit is a vehicle air conditioning system that reduces the required heat generation amount during the seat heating operation compared to during the non-seat heating operation.
  2.  前記要求熱量算出部は、
     前記シート暖房運転時に減少させる前記要求発熱量の減少発熱量(ΔQ)を、前記加熱器による前記送風空気の加熱能力不足に相関性を有する物理量に基づいて算出し、
     前記シート暖房運転時に前記非シート暖房運転時に比べて前記要求発熱量を前記減少発熱量の分だけ減少させる請求項1に記載の車両用空調システム。
    The required heat amount calculation unit
    A reduction calorific value (ΔQ) of the required calorific value to be reduced during the seat heating operation is calculated based on a physical quantity that has a correlation with insufficient heating capacity of the blown air by the heater,
    2. The vehicle air conditioning system according to claim 1, wherein the required heat generation amount is reduced by the reduced heat generation amount during the seat heating operation as compared with the non-seat heating operation.
  3.  前記要求熱量算出部は、前記冷却水の温度が高くなるに伴って前記要求発熱量が減少するように、前記減少発熱量を増加させる請求項2に記載の車両用空調システム。 The vehicle air conditioning system according to claim 2, wherein the required heat amount calculation unit increases the reduced heat generation amount so that the required heat generation amount decreases as the temperature of the cooling water increases.
  4.  前記要求熱量算出部は、前記室内空調ユニットから前記車室内へ吹き出す吹出空気の目標吹出温度(TAO)が低くなるに伴って前記要求発熱量が減少するように、前記減少発熱量を増加させる請求項2に記載の車両用空調システム。 The required heat amount calculation unit increases the reduced heat generation amount so that the required heat generation amount decreases as the target air temperature (TAO) of the air blown out from the indoor air conditioning unit into the vehicle interior decreases. Item 3. The vehicle air conditioning system according to Item 2.
  5.  前記シートの表面付近の温度を検出する温度検出部(130)を備え、
     前記要求熱量算出部は、前記温度検出部で検出された検出温度の上昇に伴って前記要求発熱量が減少するように、前記減少発熱量を増加させる請求項2に記載の車両用空調システム。
    A temperature detector (130) for detecting the temperature near the surface of the sheet;
    The vehicle air conditioning system according to claim 2, wherein the required heat amount calculation unit increases the reduced heat generation amount so that the required heat generation amount decreases with an increase in the detected temperature detected by the temperature detection unit.
PCT/JP2016/072185 2015-08-25 2016-07-28 Vehicular air-conditioning system WO2017033661A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015166100A JP2018167591A (en) 2015-08-25 2015-08-25 Vehicle air conditioning system
JP2015-166100 2015-08-25

Publications (1)

Publication Number Publication Date
WO2017033661A1 true WO2017033661A1 (en) 2017-03-02

Family

ID=58099905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072185 WO2017033661A1 (en) 2015-08-25 2016-07-28 Vehicular air-conditioning system

Country Status (2)

Country Link
JP (1) JP2018167591A (en)
WO (1) WO2017033661A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10625569B2 (en) 2015-09-15 2020-04-21 Denso Corporation Engine controller, air conditioning system, and program for air-conditioning controller

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06234318A (en) * 1993-01-25 1994-08-23 Nippondenso Co Ltd Air conditioner for automobile
JPH1178484A (en) * 1997-07-15 1999-03-23 Denso Corp Car seat air conditioner
JP2002144849A (en) * 2000-03-30 2002-05-22 Denso Corp Vehicular air conditioner
WO2010146691A1 (en) * 2009-06-18 2010-12-23 トヨタ自動車 株式会社 Control device for vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06234318A (en) * 1993-01-25 1994-08-23 Nippondenso Co Ltd Air conditioner for automobile
JPH1178484A (en) * 1997-07-15 1999-03-23 Denso Corp Car seat air conditioner
JP2002144849A (en) * 2000-03-30 2002-05-22 Denso Corp Vehicular air conditioner
WO2010146691A1 (en) * 2009-06-18 2010-12-23 トヨタ自動車 株式会社 Control device for vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10625569B2 (en) 2015-09-15 2020-04-21 Denso Corporation Engine controller, air conditioning system, and program for air-conditioning controller

Also Published As

Publication number Publication date
JP2018167591A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
JP3841039B2 (en) Air conditioner for vehicles
JP6447737B2 (en) Air conditioner for vehicles
US7275379B2 (en) Automotive HVAC system and method of operating same utilizing enthalpy-based control
JP6278214B2 (en) Air conditioner for vehicles
US20050092479A1 (en) Air-conditioner for vehicles
US6233957B1 (en) Vehicular air conditioner
JP2005059797A (en) Air-conditioner for vehicle
JP2007308133A (en) Air conditioning device for vehicle
JP3918328B2 (en) Air conditioner for vehicles
WO2016199421A1 (en) Vehicle air conditioner
US10744842B2 (en) Vehicular air conditioning device
US20190351742A1 (en) Air conditioner for vehicle
WO2019194027A1 (en) Battery cooling device
US7201219B2 (en) Automotive air-conditioner operable under cooling, heating or air-mixing mode
JP2010030435A (en) Air conditioner for vehicle
JP5533516B2 (en) Air conditioner for vehicles
JP5549639B2 (en) Air conditioner for vehicles
WO2017033661A1 (en) Vehicular air-conditioning system
JP4161457B2 (en) Air conditioner for vehicles
JP2007125941A (en) Air conditioner for vehicle
JP5494595B2 (en) Air conditioner for vehicles
JP2019104443A (en) Vehicle air conditioner
JP6711246B2 (en) Vehicle air conditioner
JP5181997B2 (en) Air conditioner for vehicles
JP5310323B2 (en) Control method for vehicle air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16839008

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16839008

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP